
A simplified model for linear and nonlinear processes in
thermoacoustic prime movers. Part I. Model and linear theory

M. Watanabe,a) A. Prosperetti, and H. Yuan
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218

~Received 12 December 1995; accepted for publication 30 July 1997!

A simplified quasi-one-dimensional model of thermoacoustic devices is formulated by averaging the
conservation equations over the cross section. Heat transfer and drag effects are introduced by
means of suitable coefficients. While the primary motivation for this work is the development of a
model approximately valid in the nonlinear regime, the focus of this paper is the proper formulation
of the transfer coefficients and the analysis of the linear problem. The accuracy of the model is
demonstrated by comparison with existing more precise theories and data. Examples of devices with
variable cross section demonstrate the flexibility of the approach. ©1997 Acoustical Society of
America.@S0001-4966~97!01412-4#
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INTRODUCTION

In recent years there has been a renewal of interest in
thermoacoustic devices, both prime movers and heat pumps
~for reviews see Wheatley, 1986; Swift, 1988!. The founda-
tions of the linear theory were firmly established in a well-
known series of papers by Rott~1969, 1976, 1980, 1983, and
others! and further developed by a number of authors
~Merkli and Thomann, 1975; Yazakiet al., 1980, 1987; Ar-
nott et al., 1991, 1992 1996; Atchley, 1992, 1994; Atchley
and Kuo, 1994; Atchleyet al., 1990a, 1990b, 1992; Olson
and Swift, 1994; Raspetet al., 1993; Swift, 1992; Swift and
Keolian, 1993; Wheatleyet al., 1983!. As a consequence of
this work, the linear analytical theory of such devices is now
well developed although, due to the complexities of the pro-
cess, it appears doubtful that much progress can be made into
the nonlinear realm along similar lines~Gaitan and Atchley,
1993!.

Progress in the direction of nonlinear phenomena clearly
requires a time-domain formulation. For this purpose, we use
a method very common in the study of nonlinear compress-
ible flows and shock waves, namely the integration of the
governing equations over the cross section of the device~see,
e.g., Crocco, 1958; Landau and Lifshitz, 1959!. This proce-
dure leads us to a quasi-one-dimensional model that, al-
though approximate, appears useful to further an understand-
ing of thermoacoustic devices in the nonlinear regime.

Briefly, the novelty of the model described in this paper
consists in:~i! its nonlinear nature;~ii ! its formulation in the
time domain necessary for the study of nonlinear effects; and
~iii ! its ability to account for changes of the cross section of
the device also in the nonlinear regime.

In spite of its approximate nature, the present model is
still very complex and its full study is a nontrivial matter. In
the present paper we consider the prime mover case. We
develop the model and compare it with the existing linear
theory. Part II of this study~Yuanet al., 1997! addresses the

issue of the numerical integration of the nonlinear problem
and presents some results. Future work will be devoted to
improved approximations, the weakly nonlinear regime, the
refrigerator case, and other related topics.

I. SIMPLIFIED MODEL OF THERMOACOUSTIC
DEVICES

Most thermoacoustic devices consist of an acoustic reso-
nator containing different heat transfer components~stack,
heat exchangers, etc.!. Typically the dimensions along the
direction of the particle displacement, the resonator ‘‘axis,’’
is much longer than the transverse one and this circumstance
suggests the basis for our approximation. We recast the gov-
erning equations in an integrated form over the cross section
of the device thus reducing the model to one dimension in
space~along the tube axis! and time. Effects taking place in
the orthogonal directions~friction, heat transfer, etc.! are to
be accounted for approximately by the introduction of suit-
able terms in the equations.

Consider a thermoacoustic device consisting of a duct of
variable areaS(x). The coordinatex is taken along the axis
of the device that is not necessarily straight. Upon integrat-
ing the equation of continuity over the volume delimited by
two neighboring cross sectionsS(x) and S(x1dx) we find
the well-known relation

]^r&
]t

1
1

S

]S^ru&
]x

50, ~1!

wherer is the gas density,u the velocity in thex direction,
and the angle brackets indicate the cross sectional average,

^•••&5
1

S~x!
E

S~x!
dS~••• !. ~2!

The vanishing of the exact normal velocity on the lateral
walls of the duct has been applied to obtain~1!.

Similarly, the momentum equation in thex direction be-
comes
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Here,p is the gas pressure,t the viscous stress tensor, and
the overline denotes the average over the ‘‘wetted perim-
eter’’ L, i.e., the lines along which the cross-sectionS is cut
by solid boundaries,

p̄5
1

P
R

L

p dl, ~4!

whereP is the length ofL. The unit normaln is directed
into the fluid region. The viscous componenttxx has been
neglected in deriving~3!.

Before turning to the energy equation we introduce an
assumption widely used in gas dynamics~see e.g., Crocco,
1958 for a discussion!, namely that the fields are approxi-
mately uniform over the cross section.@The assumption of
uniform pressure over the cross section has already been
used in thermoacoustics, e.g., by Tominaga~1995! and can
be traced at least as far back as Lord Rayleigh.# As a conse-
quence of the cross-sectional uniformity,^p&. p̄ and we
may disregard correlation terms writing the average of prod-
ucts as products of averages. This approximation is ad-
dressed quantitatively in Sec. IV. The effects of nonunifor-
mities, such as wall drag, are accounted for in an
approximate manner. For the wall shear stress we write

P

S
~t–n!x[D~u!, ~5!

whereD is a suitable operator the exact form of which can
only be found in the linear case as shown later in Sec. III, Eq.
~45!. As made evident from this relation, in the linear do-
main,D(u)/^u& is a complex, frequency-dependent quantity.
The first feature implies that the wall drag has a component
in phase with the velocity and one in phase with the accel-
eration, while the second one implies that an exact represen-
tation of the action ofD(u) requires a convolution integral
in time. The latter feature would render the integration of the
equations over the many thousands of cycles necessary to
reach steady state completely impractical. We are therefore
forced to neglect memory effects assuming the form

D~u!5rDF11uVS ]

]t
1^u&

]

]xD G^u&, ~6!

whereD anduV are quantities to be specified later. The latter
parameter accounts for the phase relation between velocity
and acceleration. Truncated to the linear terms, this form
approximates the correct action ofD in the case of single-
frequency oscillations. The convective term̂u&]^u&/]x is
an educated guess of a form suitable for the nonlinear re-
gime. With these assumptions, and the omission henceforth
of explicit indication of cross-sectional averages, the conti-
nuity ~1! and momentum~3! equations become
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The cross-sectional averaging procedure applied to the
energy equation of a perfect gas gives

]

]t F 1

g21
p1

1

2
ru2G1

1

S

]

]x FuSS g

g21
p1

1

2
ru2D G

5
P

S
q–n, ~9!

whereq is the heat flux andg is the ratio of specific heats.
The most intense heat transfer occurs in the directions nor-
mal to x and, accordingly, the effect of axial conductionqx

has been disregarded. This approximation is of course in-
valid at the ends of the tube. We return on this point below.
Note also that the viscous dissipation term has been ne-
glected here because it is small in comparison with the wall
heat transfer.

Similar to ~5!, we introduce two heat transfer operators
H, Q by writing

P

S
q–n[H~Tw2T!2

dTw

dx
Q~u!, ~10!

whereTw(x) is the temperature of the solid structure~e.g.,
the stack plates! at x. In this paper this quantity is taken to be
prescribed, e.g., on the basis of experiment. A refinement of
the model enablingTw to be calculated will be presented in a
future paper. The second term in~10! accounts for the dis-
tortion of the temperature distribution due to the flow in the
presence of a mean temperature gradient. This ansatz is sug-
gested by the structure of the temperature distribution given
by the exact linear theory as will be seen below in connec-
tion with Eq. ~51!. As for D , the form for the operatorsH,
Q assumed here is

H~Tw2T!5rcpHF11uTS ]

]t
1u

]

]xD G~Tw2T!, ~11!

Q~u!5rcpQF12uQS ]

]t
1u

]

]xD Gu, ~12!

wherecp is the gas specific heat at constant pressure. The
time derivatives have been introduced for the same reason as
previously in connection withD(u), i.e., to account for
phase relations. The convective derivative in~11! is taken to
operate onTw2T, rather thanT alone, as what matters
physically is the temperature difference between the fluid
particle and the solid structure it is in contact with. If a
particle has moved fromx to x1udt, it will ‘‘see’’ a tem-
peratureTw(x1udt) rather thanTw(x). The determination
of the parametersH, Q, uT , anduQ will be considered in
Sec. III.

Now, upon using~7! and ~8! to eliminate the time de-
rivatives ofr andu, the energy equation~9! becomes
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The third term in the right-hand side represents the rate of
conversion of mechanical to thermal energy by friction.

The last step to close the system~7!, ~8!, ~13! is to
specify an equation of state. We assume that the averaged
variables are related by the perfect gas equation

p5RrT, ~14!

where R is the universal gas constant divided by the gas
molecular mass.

In Part II of this study~Yuan et al., 1997!, devoted to
the nonlinear problem, it will prove desirable to change
slightly the form of H shown above by adding a second-
order spatial derivative. In this way it will be possible to
bring the spectra of the approximate and exact linear prob-
lems in better agreement, which is important when nonlin-
earities cause a mixing of different modes. Since the remain-
der of this paper is devoted to the linear case, and for brevity,
we postpone the discussion of this point until then.

In the present paper we consider only the prime mover
problem in which the end walls of the tube are fixed. There-
fore, we must require that the velocity vanish atx50 and
x5L. As a consequence of~8!, this implies

]p

]x
50 ~15!

as well. Equations~7! and~13! written at the end points give
then

F]r
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]xG
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50, ~16!
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]t D ~Tw2T!G
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. ~17!

Upon eliminating]u/]x one finds

F ]

]t
1HS 11uT
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]t D G
x50,L

T

5Fg21

g

T

p

]p

]t
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]

]t DTwG
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. ~18!

This relation shows that a knowledge ofp at the boundary
completely specifies the gas temperature perturbation pro-
vided Tw is known, as assumed in this paper. No additional
boundary conditions are therefore necessary. In order to un-
derstand this result it may be useful to rewrite it in the ex-
actly equivalent form

]

]t S T

pg21/gD5
1

pg21/g HS 11uT

]

]t D ~Tw2T!, ~19!

which shows that the gas would behave adiabatically ifH
vanished, i.e., in the absence of heat exchange with the wall.

It is evident that, in general, the relation~18! implies a
temperature jump at the left and right boundaries from theT
given by this relation to the end-wall temperatures. This is a
consequence of the neglect of axial conduction in the deri-
vation of the energy equation~9!. Axial conduction would
introduce a term]2T/]x2, important only near the end walls,
the role of which would be to reestablish continuity of tem-
perature by means of a thin boundary layer. The temperature
in this layer would adjust itself so as to match the value
given by ~18!. This is an essentially passive process with
negligible effects on the temperature distribution elsewhere
in the device and can therefore be disregarded. Alternatively,
the value ofH at x50, L can be adjusted to account for heat
transfer with the terminations of the tube.

II. LINEARIZATION

The model described by Eqs.~7!, ~8!, ~13!, and ~14! is
general. For the rest of this article we focus, however, only
on its linear aspects.

We assume that, at equilibrium, the device contains gas
at a uniform pressurep0 and in thermal equilibrium with the
solid boundaries with which it is in contact, so that its tem-
perature isTw(x). Let now

p5p01p8, r5r01r8, T5Tw1T8, ~20!

where the subscript 0 and the prime indicate unperturbed and
perturbed quantities, respectively. The unperturbed quantities
satisfy the equation of state withp0 independent ofx so that
r05r0(x) must compensate for thex dependence ofTw .
Upon assuming a time dependence proportional to expivt
and neglecting quadratic and higher terms in the primed
quantities and inu, we readily find:

ivr81
1

S

d

dx
~r0Su!50, ~21!

r0ivu1
dp8

dx
52r0D~11 ivuV!u, ~22!

ivp81g
p0

S

d~Su!

dx

52g
p0

Tw
H~11 ivuT!T82~g21!r0cp

dTw

dx

3Q~12 ivuQ!u. ~23!

From the momentum equation~22! we have

u52
1

11~11 ivuV!~D/ iv!

1

r0iv

dp8

dx
, ~24!

and, upon substituting into the continuity equation~21!,

r852
1

v2S

d

dx F S

11~11 ivuV!~D/ iv!

dp8

dx G . ~25!

By substituting these relations into the energy equation~23!
and using the linearized form of the equation of state we find
the following equation for the pressure:
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where

cA
25gRTw , cI

25RTw , ~27!

are the adiabatic and isothermal sound speeds, respectively.
The associated boundary conditions are the vanishing of the
first derivative at the two ends of the tube as given in Eq.
~15!.

If drag is disregarded so thatD50, the previous equa-
tion may be written in the time domain in the form

]

]t F1

S

]

]x S ScA
2 ]p8

]x D2
]2p8

]t2 G1gHS 11uT

]

]t D
3FcI
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]

]x S S
]p8

]x D2
]2p8

]t2 G1~g21!cp

dTw

dx
Q

3S 12uQ

]

]t D ]2p8

]x ]t
50. ~28!

This equation may be considered as falling in the class of the
‘‘wave hierarchies’’ studied, among others, by Whitham
~1974!. This remark is, however, of limited usefulness as the
standard theory of wave hierarchies applies to propagating,
rather than standing, waves.

Once the pressure has been found, the temperature dis-
turbance can be calculated by eliminating](Su)/]x between
the continuity and the energy equation. The result is

F11
H

iv
~11 ivuT!GT8

5
p8

r0cp
1 i

u

v
@11Q~12 ivuQ!#

dTw

dx
. ~29!

With ~24! for u and ~25! for r8, the determination ofp8
gives then a complete solution of the problem.

It is evident from~28! that, if no heat transfer occurs so
that H50, Q50, the equation describes adiabatic sound
waves in an imposed temperature distribution. In the oppo-
site limit of very large heat transfer, but again withQ50, the
waves propagate isothermally in the sense that each fluid
‘‘slice’’ retains the temperature of the solid surface in con-
tact with it. More generally, Eq.~28! describes the competi-
tion of processes occurring on three time scales, the acoustic
one of the wave oscillation, that associated to heat transfer,
and that associated to convection. These time scales can be
estimated as follows. Let

c̄, H̄, T̄w ~30!

be suitable average values of the sound speed, heat transfer
coefficient, and gas temperature. Then the acoustic time scale
ta is of orderv21;L/ c̄, while for the thermal time scale,
from the coefficient of the second group of terms in~28!, we
have

th;
1

gH̄
. ~31!

From the definition~11! of H we can clearly write

rcpH̄DT;
1

l
k

DT

dK
, ~32!

whereDT is of the order of the temperature difference be-
tween gas and solid surfaces in the stack,k is the gas thermal
conductivity,dK defined by

dK5A2a

v
, ~33!

with a the thermal diffusivity of the gas is the thermal dif-
fusion length, andl is the plate spacing in the stack. Upon
substitution into~31! we thus have

th;
ldK

ga
, ~34!

The ratio of the thermal and acoustic time scales is then

th

ta
;

l

gdK
. ~35!

At low frequenciesdK is large and the motion in the stack is
dominated by the terms multiplied byH in ~28!. At high
frequencies, the terms in the first square brackets prevail.

For the coefficientQ, it is simple to obtain the estimate
Q;1 so that, in order of magnitude, the ratio between the
first and the last group of terms of~28! is

~g21!cpQ~dTw /dx!~]2p8/]x ]t !

cA
2~]3p8/]x2 ]t !

;
TH2TC

T̄w

L

LS

, ~36!

whereTH2TC is the temperature difference over the length
LS of the stack. This estimate indicates that this convective
term is not small in typical applications.

Viscous effects introduce an additional time scaletv
;1/D that affects equally the ‘‘isothermal’’ and the ‘‘adia-
batic’’ components. From the definition~6! we expect that
D;n/ ldV , wheren is the gas kinematic viscosity anddV the
viscous diffusion length defined by

dV5A2n

v
5AsdK , ~37!

with s the Prandtl number. The condition for viscous effects
to be negligible is thattvv!1, which is verified at low fre-
quencies. Since, for gases, diffusivities are of the order of the
speed of sound times the molecular mean free paths ~see,
e.g., Chapman and Cowling, 1952!, we have

vtv;
l

L

dV

s
. ~38!
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This quantity can assume a wide range of values depending
on pressure, temperature, and nature of the gas. The ratio of
th and tv is

th

tv
;

1

g

n

a

dK

dV
5

As

g
. ~39!

Since the Prandtl number has a value close to 1 for most
gases, this relation implies that viscous effects are normally
just as important as heat transfer ones.

III. DRAG AND HEAT TRANSFER PARAMETERS

In the linear regime, appropriate expressions for the drag
and heat transfer coefficients can be found from their defini-
tions ~6! and ~10! upon comparison with the exact linear
results.

Swift ~1988, Eq. A4! gives the following expression for
the velocity field in a plane channel of widthl :

u15
i

vr0

dp8

dx S 12
cosh~11 i !y/dV

cosh~11 i !l /2dV
D , ~40!

where y is measured from the center plane of the channel
and the diffusion lengthdV is given by~37!. From this equa-
tion we have

~t–n!x52m
]u1

]y U
y5 l /2

52
i ~11 i !m

vr0dV

dp8

dx
tanh

~11 i !l

2dV
.

~41!

The mean velocity in the channel~to be identified with our
u! is

u5
1

l E
2 l /2

l /2

u1 dy5
i

vr0
~12 f V!

dp8

dx
, ~42!

where

f V5
tanh~11 i !l /2dV

~11 i !l /2dV
. ~43!

From these two expressions we find

P

S
~t–n!x52 ivr0

f V

12 f V
u. ~44!

Comparison with~6! then gives

D~11vuV!5 iv
f V

12 f V
. ~45!

Upon separating real and imaginary parts, explicit expres-
sions forD anduV are readily obtained.

For later reference it is useful to note the following
asymptotic behaviors of the functionf V(h), with h
52dV / l , defined by~43!. In the thin viscous layer limit
h→0 and one has

f V. 1
2~12 i !h, ~46!

while, for dV@ l ,

f V.12
2i

3h22
8

15h4 . ~47!

With these results it is easy to establish the asymptotic be-
havior of

F5
i f V

12 f V
, ~48!

namely

F. 1
2~11 i !h1 1

2h
21 1

4~12 i !h3, h→0, ~49!

and

F.
3

2
h21

i

5
2

338

175

1

h2 , h→`. ~50!

Graphs of the real and imaginary parts ofF are shown in Fig.
1.

We now proceed in a similar fashion to calculate the
heat transfer coefficient. From Eq.~A10! in Swift ~1988!,
neglecting the small termes involving the conductivity and
heat capacity of the solid, we have the temperature perturba-
tion in the channel as

FIG. 1. The real,~a!, and imaginary,~b!, parts of the functionF(h) defined
in ~48!. The dashed line is the asymptotic approximation~50! for h→`, and
the dotted line the approximation~49! for h→0 truncated to the term linear
in h.
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T15
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r0cp
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cosh~11 i !l /2dK
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dp8
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dx F s

s21

cosh~11 i !y/dV

cosh~11 i !l /2dV

2
1

s21

cosh~11 i !y/dK

cosh~11 i !l /2dK
21G , ~51!

where the thermal diffusion lengthdK has been defined in
~33!. The structure of this result, with dependence on bothdV

and dK , shows that the temperature disturbance is deter-
mined by both convection and conduction processes. This is
the reason for our ansatz~10! to express the mean energy
transport.

Using ~51!, we can calculate the mean ofT1 over the
channel width, to be identified with the temperature distur-
banceT8 of our theory:

T85~12 f K!
p8

r0cP
1

1

v2r0~12s!

3@s~12 f V!2~12 f K!#
dTw

dx

dp8

dx
, ~52!

where, as in~43!,

f K5
tanh~11 i !l /2dK

~11 i !l /2dK
. ~53!

Again from ~51!, one can calculate the heat flux into the
boundaries:

2q–n5
kl

dK
2 F i f K

p8

r0cp
1

f V2 f K

~12 f V!~12s!

dTw

dx
uG . ~54!

Upon using~42! and ~52!, we then find

2
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ivk
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f K

12 f K
T81

k

a~12s!
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dx

3S s211
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12 f v
2

s

12 f K
Du, ~55!

from which, comparing with~11! and ~12!, we deduce

H~11 ivuT!5 iv
f K

12 f K
, ~56!

Q~12 ivuQ!5
1

12s S 1

12 f V
2

s

12 f K
D21. ~57!

The functionsf V , f K defined in~43!, ~53! are appropri-
ate for a plane channel geometry. As shown by Rott~1969!,
for a circular tube with radiusr 0 one has

f V52
J1„~ i 21!~r 0 /dV!…

~ i 21!~r 0 /dV!J0„~ i 21!~r 0 /dV!…
, ~58!

with a corresponding expression forf K . Asymptotic ap-
proximations for large and small tube radii now are, withh
52dV /r 0 ,

f V. 1
2~12 i !h, ~59!

and

f V.12
i

2h22
1

6h4 , ~60!

respectively. Note that the two asymptotic expressions for
small h are the same for the plane channel and the cylindri-
cal tube. More generally, the same expression holds provided
h is defined as the ratio of 2dV to the hydraulic radius.

Upon substituting~45!, ~56!, and ~57! into the wave
equation~26!, we find

1

S

d

dx F ~12 f V!S
dp8

dx G1
1

Tw

dTw

dx S 11
s f V2 f K

12s D dp8

dx

1
v2

cA
2 @11~g21! f K#p850. ~61!

If S is a constant, this equation is identical to that given by
Swift @1988, his Eq.~54!# provided his wall parameteres is
neglected and the gas is treated as perfect. If the spatial
variation ofS is retained, it coincides with a result given by
Rott @1976, his Eq.~6!#. With the choices~45!, ~56!, and
~57!, the present theory thus reproduces exactly the eigenfre-
quency and pressure eigenfunction of the standard linear
theory. The velocity and temperature eigenfunction are only
reproduced in the cross-sectional mean as indicated by~42!
and ~52!.

Upon substituting~45! for D into the expression~24! for
u, we recover~42! as expected. The expression~29! for the
~cross-sectional mean! temperature disturbance becomes

T85
12 f K
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p81

i

12s S 12 f K

12 f V
2s D u
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dTw

dx

5
12 f K
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p82

1

r0v2 S 11
s f V2 f K

12s D dTw

dx

dp8

dx
, ~62!

while from ~25! for the density disturbance we find

r852
1

v2S

]

]x F ~12 f V!S
]p8

ax G . ~63!

Upon substitution of the expression~56! for the heat transfer
parameter into the linearized boundary condition~18! for the
temperature we find

T8

Tw
5~12 f K!

g21

g

p8

p0
. ~64!

This relation is identical to~62! evaluated at the end walls
whereu50.

When the stack plates are widely separated, from~43!
and ~53!, we havef V , f K.0 and as a consequence, from
~57!, Q.0. The temperature disturbance~62! becomes then

T85
1

r0cp
p82

1

r0v2

]Tw

]x

dp8

dx
. ~65!

Setting the right-hand side to zero we find the well-known
expression of the critical temperature gradient~see, e.g.,
Swift, 1988!:

dT̄w

dx
U

crit

5
v2p8

cp~dp8/dx!
. ~66!
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In general, however, only the component ofT8 in phase with
the second term of Eq.~62! can be made to vanish by a
suitable choice ofdTw /dx. The component in quadrature
with this term will not normally be zero. We conclude that,
in general, the gas temperature disturbance cannot vanish.

The procedure followed in this section has led to expres-
sions for the viscous and heat transfer terms of the approxi-
mate model that match those of the exact linear theory for
oscillations at one fixed frequency. Thus in the linear case
where the different modes can be considered independently
of each other, results such as Eq.~61! are exact. For ex-
ample, Eq.~61! can be solved exactly to produce eigenfre-
quencies and eigenfunctions for all the modes. If many
modes are present at the same time, as with a time-dependent
nonlinear calculation, the need to use one specific value for
each of the exchange parameters forces one to make some
compromises. It turns out that in most practical cases only
the lowest-frequency mode is unstable, and it is therefore
reasonable to use the frequency of this mode to evaluate the
parameters. The~real part of this! frequency can be approxi-
mated by

v̄5
c̄

L
, ~67!

wherec̄5(gRT̄w)1/2 and

T̄w5
1

L E
0

L

Tw~x!dx. ~68!

We will make use ofv̄ thus defined in some of the examples
that follow. An unwelcome feature of committing oneself to
one value of the frequency is, however, that the spectrum of
the linear problem is altered. We shall pursue this point in
Part II of this study devoted to the nonlinear problem~Yuan
et al., 1997!.

The dependence of the boundary layer thicknesses~37!,
~33! on Av implies that the diffusive transfers of momentum
and energy to the solid boundaries are affected by the history
of the flow and are therefore nonlocal in time. This feature is
of course well recognized in the literature~see, e.g., Achard
and Lespinard, 1981!. The representations of the exchange
operators assumed in~6!, ~11!, and~12! are local in time and
therefore can only be approximations. Conceivably, these ap-
proximations can be improved in the manner suggested by
Achard and Lespinard by introducing, in place of explicit
relations such as~10!, differential ones connecting the time
derivative ofq, in addition toq itself, to the quantities in the
right-hand side. In this way a nonlocal nature in time would
be reintroduced, if with a kernel different from the exact one.
This matter will be examined in a future study.

IV. CORRELATION TERMS

As pointed out in Sec. I, the major approximation un-
derlying the present model consists in the neglect of the cor-
relation terms, i.e., in setting the cross-sectional average of
the product of two quantities equal to the product of the
averages. Of course, the error associated with this procedure
only affects the nonlinear calculations to be reported in sub-
sequent papers as the choice of the drag and heat transfer

parameters made in the previous section insures that the lin-
ear results are reproduced exactly. Nevertheless this remains
an important point that we can examine approximately using
exact linear-theory results such as~40! and ~51!.

The most interesting quantity to consider is the product
u1T1 as it enters in the expression for the energy flow in the
device~see, e.g., Rott, 1975; Swift, 1988!. In the special case
of s51, dTw /dx50, the result of this calculation also gives
the correlation term foru1

2. It may be noted that the neglect
of correlation terms can be expected to be much more accu-
rate for products involving the pressure field as, contrary to
velocity, temperature, and density, the latter does not have a
boundary layer structure.

By using ~40! and ~51!, a straightforward calculation
gives

^u1T1&[
1

l E
0

l

dy u1~y!T1~y!

5
i

vr0
2cp

p8
dp8

dx
Fe~z,s!

1
i

~12s!v3r0
2 S dp8

dx D 2 dTw

dx
Ce~z,s!, ~69!

where

z5
l /2

dV
~70!

is the ratio of the channel half-width to the boundary layer
thickness and

Fe511
s f V2 f K

12s
, ~71!

Ce512s1
1

2
s

523s

12s
f V2

1

12s
f K

2
s

2 cosh2~11 i !~ l /2dV!
. ~72!

Here f V and f K are as defined in the previous section, Eq.
~43!, and we use the subscripte to indicate that these are
exact expressions.

By taking the product of the averages~42! and~52! of u
andT8 we find an expression with the same structure as~69!,
but with the following approximate values ofF andC:

Fapp5~12 f V!~12 f K!, ~73!

Capp5~12s1s f V2 f K!~12 f V!. ~74!

It may be noted that, fors50, the boundary layer structure
of the velocity field disappears and the exact and approxi-
mate expressions ofF andC become identical for anydK .

Figures 2 and 3 show the real and imaginary parts of the
ratios Fe /Fapp and Ce /Capp for s50.71 ~helium! and s
50.392~60% helium and 40% argon mixture!, respectively,
as functions ofz5( l /2)/dV . The range of interest ofz for
existing thermoacoustic engines with a gas medium is typi-
cally from a low value of 4 to 5 in the stack region to many
tens or more away from the stack. The figures show that,
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over this range, the moduli of the approximate and exact
expressions differ by less than 6% and the phases by less
than 5°.

These results suggest that the negative impact of cross-
sectional averaging is limited. In particular, the model should
be able to reproduce correctly the trends of real thermoa-
coustic prime movers resulting from different values of pa-
rameters or operating conditions.

V. NUMERICAL RESULTS

We now turn to some numerical results obtained from
the linearized equations of Sec. II. The expressions for the
drag and heat transfer parameters found in Sec. III are used
throughout. Although obtained from the linear theory, results
of the type considered here do not seem to have been shown
before. Most of the previous studies, and in particular the
analysis of data that we consider here, have been based on
approximations rather than on the exact theory.

As another point, we want to demonstrate the ability of
the model to deal with devices with a variable cross section.
By assuming a linear growth of the cross-sectional area with
distance fromx50, we could readily adapt our model to the
case of a cylindrical resonator. Since, however, a cylindrical
system can be treated exactly by separation of variables, as

recently demonstrated by Arnottet al. ~1996!, we prefer to
focus on cases for which no exact method is available to
demonstrate the specific strengths of our approach in this
particular respect. For this reason, we consider a linear de-
vice with a contraction or expansion at its midsection.

We start by comparing the results of the model with the
data of Atchley~1992! who measured the damping of oscil-
lations in a thermoacoustic tube for different values of the
imposed temperature difference across the stack. His results
are expressed in terms of the inverse quality factor 1/Q of the
oscillations that is related to the real and imaginary parts of
the eigenfrequencyv appearing in our analysis by

1

Q
52

Im v

Re v
. ~75!

Below the stability threshold 1/Q is positive, while it be-
comes negative above. At the threshold, 1/Q50.

The gas used in the experiment was helium. Over the
temperature range of interest here, from 300 to 650 K, we fit
thermal conductivity data~Vargaftik, 1975! by a linear func-
tion of temperature ask50.15113.22831024(T2300),
with k in W/m K andT in K, which provides a better fit than
a power law. We have included this effect in our calculation
as the value ofk determines the boundary layer thickness,

FIG. 2. The ratiosFe /Fapp, ~a!, and Ce /Capp, ~b!, of the correlation
coefficients appearing in the approximate and exact expressions of the
velocity-temperature correlation~69! as functions of the ratio of the viscous

penetration lengthdv to the channel half-width
1
2l for s50.71~helium!. The

solid lines are the modulus and the dashed lines the argument in degrees.
The range of interest of the ratio (l /2)/dv for existing thermoacoustic en-
gines with a gas medium is typically from a low value of 4 to 5 up.

FIG. 3. The ratiosFe /Fapp, ~a!, andCe /Capp, ~b! of the correlation co-
efficients appearing in the approximate and exact expressions of the
velocity-temperature correlation~69! as functions of the ratio of the viscous

penetration lengthdv to the channel half-width
1
2l for s50.392 ~60% he-

lium and 40% argon mixture!. The solid lines are the modulus and the
dashed lines the argument in degrees. The range of interest of the ratio
( l /2)/dv for existing thermoacoustic engines with a gas medium is typically
from a low value of 4 to 5 up.
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and therefore the heat transfer parameters. For the specific
heat we use the constant value 5.2 kJ/kg K andg55/3, s
50.71.

For Atchley’s experiment, the tube length was 99.87 cm,
its radius was 3.82 cm, the stack lengthLS53.5 cm, and the
stack was positioned atxS587.95 cm from the cold end. The
cold heat exchanger, consisting of two equal parts separated
by 1.04 mm and 10.2-mm long, is to the left of the stack and
the hot heat exchanger, 7.62-mm long, to the right. The com-
bined cross-sectional area of the stack plates was 3.1 cm2,
i.e., 27% of the entire cross section. Atchley reports that the
temperature was approximately constant and equal to its cold
and hot values to the left and right of the stack, respectively,
and linear in the stack so thatT5TC for 0<x<xS , T5TH

for xS1LS<x<L, and

T5TC1
x2xS

LS
~TH2TC!, ~76!

for xS,x,xS1LS .
To solve Eq.~61! numerically we multiply byS and

discretize by centered differences on an equispaced grid.
This procedure requires the values of (12 f V)S at the half-
integer nodes, that are calculated as simple arithmetic aver-
ages. Typically 2000 cells were used along the tube length,
with approximately 100 in the stack region. The eigenvalues
were searched by the inverse iteration method~Presset al.,
1992!.

The specification of the cross-sectional area and wall
temperature according to the data given before leads to
strong spatial discontinuities of the cross section and heat
flux. In principle this causes no difficulties, as Eq.~61! is in
conservation form and the corresponding jump conditions on
p8 are automatically satisfied. However, such discontinuities
cannot give a realistic representation of the actual physical
situation. Small-scale thermal transport processes~conduc-
tion between the stack ends and the heat exchangers, natural
convection, etc.! must cause the wall temperature distribu-
tion to become smoother than the mathematical idealization
given by ~76!. Similarly, flow separation phenomena must
prevent the streamlines from precisely expanding to follow
the discontinuities of the cross-sectional area mentioned be-
fore. Unfortunately the published information does not give a
characterization of the system sufficiently precise to enable
us to use more realistic distributions. Therefore we decided
to mimic the action of these unknown, but certainly present,
diffusive processes by smoothing the discontinuous distribu-
tions of S(x) andTw(x). We accomplish this by effecting a
series of sweeps in whichSi andTwi , the values ofS(x) and
Tw(x) at the nodexi , are replaced by

1
4~Si 1112Si1Si 21!, ~77!

and similarly forTw . The same prescription is applied to the
exchange parametersD, H, Q, uV , uK , anduQ . It will be
seen that this smoothing procedure has a rather strong impact
on the final results. A comparison between the smoothed and
nonsmoothed distributions is shown graphically in Part II for
one example. It may be remarked that something correspond-
ing to our smoothing operation is implicit in all earlier treat-

ments of the problem where it is introduced~with limited
control! through the spatial discretization.

Figures 4 and 5 show 1/Q versus the temperature differ-
enceDT5TH2TC along the stack for pressures of 170 and
500 kPa, respectively. The data are shown by circles. The
solid lines are the result given by the full solution of the
eigenvalue problem associated with Eq.~61! with the discon-
tinuous area and temperature distributions as mentioned be-
fore. The dashed lines are the results corresponding to
smoothed distributions with the smoothing procedure ex-
plained before applied 50 times in Fig. 4 and 200 times in
Fig. 5.

Since Eq.~61! coincides with the exact linear theory,
these results are to be considered exact solutions to the prob-
lem. In the past, the same data had only been analyzed on the
basis of approximations to the eigenfunction and real part of
the eigenfrequency~Atchley, 1992!. It can be seen that, par-
ticularly in the unstable region where the temperature differ-

FIG. 4. 1/Q versus the temperature differenceDT5TH2TC along the stack
for an undisturbed pressure of 170 kPa. The circles are the data of Atchley
~1992!. The solid line is the result for discontinuous cross-sectional area and
wall temperature distributions given in the text. The dashed line is the result
with the same quantities smoothed by effecting the operation~77! 50 times.

FIG. 5. 1/Q versus the temperature differenceDT5TH2TC along the stack
for an undisturbed pressure of 500 kPa. The circles the data of Atchley
~1992!. The solid line is the result for discontinuous cross-sectional area and
wall temperature distributions given in the text. The dashed line is the result
with the same quantities smoothed by effecting the operation~77! 200 times.
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ence is large, the smoothing has a significant effect on the
results. By smoothing only the wall temperature or only the
cross-sectional area, it is found that the latter affects theQ
value more than the former. In both figures, and particularly
at the higher pressure and temperatures, the data lie above
the Q values calculated from the discontinuous distributions
~solid lines!. The smoothed distributions~dashed lines! give
instead largerQ values and results generally closer to the
data. The implication is that the thermoacoustic energy con-
version process is stronger in the case of sharp discontinui-
ties. At the higher pressure the density is larger and the effect
of area discontinuities on the mass flux correspondingly
greater. Of course, our smoothed profiles are simply a con-
jecture about the conditions prevailing in the experiment.
Other causes may produce a largerQ, i.e., a greater damp-
ing. One may mention the mismatch between the number of
plates in the heat exchangers and in the stack, or other factors
as discussed by Atchley~1992!. In spite of these elements of
uncertainty, however, theory and experiment seem to be in
good overall agreement. Only smoothed distributions are
used in the calculations shown in the rest of the paper.

Figures 6 and 7 show the real and imaginary part of the
normalized pressure and velocity eigenfunctions forDT
5350 K, p05500 kPa. The quantities plotted are

p8~x!

p8~0!
,

u8~x!r* c*
p8~0!

5
p0

p8~0!
A g

RTC
u8~x!. ~78!

The real part ofp8 ~solid line, Fig. 6! and the imaginary part
of u8 ~solid line, Fig. 7! are very close to the corresponding
results for an unobstructed isothermal tube. The quantity af-
fected most is the velocity, where the fluctuations in the
stack region correspond to the rapid area variations. The
imaginary part ofp8 and real part ofu8 ~dashed lines! are
much smaller.

Figure 8 is the real part of the eigenfrequency Rev/2p
as a function of the position of the cold end of the stack, at a
pressure of 170 kPa forDT5300 K. The solid line is the
exact value, and the dashed line the value calculated by ap-
proximating the exchange coefficients in terms of the effec-
tive angular frequencyv̄ defined in~67!. The approximation
is seen to be quite good. The significant change in the fre-
quency is due to the fact that, in this calculation, the gas
temperature has been taken equal toTH in the entire region
to the right of the stack.

Information on Imv as a function of the stack position
is given in Fig. 9 in the form of a graph of 1/Q for 170 and
500 kPa andDT5300 K. The solid lines are the exact results
and the dashed lines those obtained by usingv̄ in the ex-
change coefficients. The system is seen to be most unstable
for a stack position in the neighborhood of the 3/4 point as is
well known ~see, e.g., Swift, 1988!. For this example, the
lower pressure leads to a stronger maximum growth rate of
the instability.

We now turn to a system with a cross-sectional area
given by

S~x!5S0F11C cos2 pS 2x

L
21D G2

,

for 1
4 L<x< 3

4 L, ~79!

FIG. 6. Real~solid line! and imaginary part of the pressure eigenfunction
for DT5350 K, p05500 kPa, and the situation of Atchley’s~1992! experi-
ment.

FIG. 7. Imaginary~solid line! and real part of the normalized velocity eigen-
function for DT5350 K, p05500 kPa, and the situation of Atchley’s
~1992! experiment. The oscillations in the stack region occur in correspon-
dence of the area changes.

FIG. 8. Real part of the eigenfrequency of the fundamental modef 1

5Rev/2p as a function of the position of the cold end of the stack at 170
kPa for DT5300 K. Other conditions as in Atchley’s~1992! experiment.
The gas temperature equalsTC in the entire region to the left of the stack
andTH to the right. In the stack region a linear dependence is assumed. The
solid line is the exact result. The dashed line is obtained by using the ap-
proximation~67! for the parameterv̄ entering the expression of the expres-
sion of the exchange coefficientsD, H, andQ.
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while S5S0 elsewhere other than in the stack region which
is the same as before. WithS0524 cm2 andC50, this is the
same system considered up to now. WithC.0, the tube’s
cross section is thicker in the central region, and withC
,0 it is thinner. The stack region has the same geometry as
before independently of the value ofC. Figures 10–12 show
the effect of the cross-sectional area change on theQ value
of the fundamental mode, the first, and the second harmonic.
In all the figures, the dashed line is forC50, the dotted line
for the smallest value ofC considered,C520.4, and the
dash- dot line for the largest one,C50.4. It is seen that
thicker and thinner cross sections, respectively, increase and
decrease the frequency of the fundamental and second har-
monic, while they have the opposite effect on the first har-
monic. The dependence of the corresponding frequencies on
the temperature difference along the stack is rather weak,
increasing with the order of the harmonic.

The Q value tends to become negative, implying insta-

bility, at smallerDT’s for a thickening cross section than for
a thinning one for the fundamental and first harmonic mode.
A thickening cross section, however, has a stabilizing effect
on the third harmonic at the higherDT’s. These results can
be interpreted by considering the eigenfunctions, two ex-
amples of which are shown in Figs. 13 and 14 for the fun-
damental mode. In all cases, the pressure distribution~solid
line, left vertical scale! is very similar to the usual sinusoidal
one. There is, however, a marked effect on the velocity dis-
tribution ~dashed line, right vertical scale! as a consequence
of the constraint arising from mass conservation. With a nar-
rowing tube, the velocity is relatively large in the narrow part
and has a long distance over which to decrease to zero at the
left and right boundaries. It is therefore small in the stack
region with a consequent reduction in the thermoacoustic
effect. For a thickening cross section, on the other hand, the
velocity starts decreasing closer to the ends, and therefore it
is larger in the stack region. Another feature evident from
these figures is the asymmetry, caused by the stack, of the

FIG. 9. 1/Q as a function of the stack position at two pressures from the
exact linear theory withDT5300 K for Atchley’s ~1992! experiment. The
dotted lines are the approximations due to the use ofv̄ defined in~67! in the
expressions of the exchange coefficientsD, H, andQ. The system is most
unstable for a stack position in the neighborhood of the 3/4 point. The pair
of lines with the smallest oscillation is for 500 kPa, the other pair for 170
kPa.

FIG. 10. Effect on the damping parameter 1/Q1 of the fundamental mode of
a narrowing or expanding cross section of the tube.——— C50, constant
cross section; – –C50.2; –• –• C50.4; --- C520.2; ••••• C520.4.

FIG. 11. Effect on the damping parameter 1/Q2 of the first harmonic mode
of a narrowing or expanding cross section of the tube.——— C50, con-
stant cross section; – –C50.2; –• –• C50.4; --- C520.2; ••••• C
520.4.

FIG. 12. Effect on the damping parameter 1/Q3 of the second harmonic
mode of a narrowing or expanding cross section of the tube.——— C
50, constant cross section; – –C50.2; –• –• C50.4; --- C520.2;
••••• C520.4.
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velocity eigenfunction with respect to the tube’s midpoint. It
is found that, the largerDT, the steeper the eigenfunction
near the hot end. Similar trends are found in the eigenfunc-
tions of the first harmonic mode. For the second mode, how-
ever, the stack is close to the optimal position of 1/4 wave-
length from the velocity node. Therefore forDT greater than
about 500 K, the thickening of the cross section causes the
antinode to move toward the stack thus decreasing the mag-
nitude of the thermoacoustic destabilization. Conversely,
narrowing the cross section displaces the antinode in the fa-
vorable direction and decreases the damping. The opposite
occurs at lowerDT’s due to interplay between this effect and
the asymmetrical nature of the eigenfunction.

As a final item of interest we show in Fig. 15 the ratios
f 2 / f 1 ~solid line! and f 3 / f 1 as a function of the cross-
sectional area parameterC in Eq. ~79! for DT5300 K and a
pressure of 500 kPa. For a straight tubeC50 and these
ratios are extremely close to 2 and 3, respectively. Evidently,
the detuning of the system resulting from the presence of the
stack and of the heated region has a very small effect on the
harmonic structure of the modes. Area changes do, however,

result in a considerable detuning, with contractions relatively
more effective than expansions.

VI. CONCLUSIONS

We have presented an approximate theory of a thermoa-
coustic prime mover based on a quasi-one-dimensional ap-
proximation. Primarily, the theory differs from available
ones in the following respects:

~1! It is nonlinear in nature.
~2! It is formulated in the time domain.
~3! It can readily account for changes of the device’s

cross section in the direction normal to the wavefronts also
in the nonlinear case.

This paper has dealt with the linear version of the model
and has shown that, in those situations where the exact
theory available in the literature applies, the approximate
theory gives results for the pressure eigenfunctions and fre-
quency eigenvalues that are identical to the exact ones. The
cross-sectional averages of the other primary fields—
velocity, temperature, and density—are reproduced exactly,
but not the pointwise structure in the cross section. As a
consequence, the mean value of fields nonlinear in the pri-
mary ones, such as the energy flux, is not reproduced exactly
in the model. A preliminary analysis given in Sec. IV would
seem to indicate that this error is not serious in many cases.

We have applied the theory to data that had, in the past,
only been examined on the basis of an approximate model
and we have found a very good agreement. We have also
shown some results for tubes of axially varying cross section
finding a tendency to greater instability for a tube that wid-
ens in its midsection.

The present model can be made more realistic by includ-
ing heat conduction in the stack and other effects. Further-
more, it can equally well be adapted to the refrigerator case.
Work in these directions is currently under way.

The study of the nonlinear regime with the present
model still remains a rather complex matter and will be car-
ried out in subsequent papers. Some results are shown in Part
II of this work ~Yuan et al., 1997!.

FIG. 13. Real part of the pressure eigenfunction~solid line, left vertical
scale! and imaginary part of the normalized velocity eigenfunction~dashed
line, right vertical scale! for a thickening tube withC50.2; DT5350 K and
p05500 kPa.

FIG. 14. Real part of the pressure eigenfunction~solid line, left vertical
scale! and imaginary part of the normalized velocity eigenfunction~dashed
line, right vertical scale! for a thickening tube withC520.2; DT5350 K
andp05500 kPa.

FIG. 15. Ratiosf 2 / f 1 ~solid line! and f 3 / f 1 of the first and second har-
monic frequencies to the fundamental as a function of the cross-section
parameterC, Eq. ~79! for DT5300 K, p05500 kPa. PositiveC corre-
sponds to an area increase.
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