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Abstract 

For successful commercialization of evolving devices (e.g., micro-electro-

mechanical systems, and biomedical devices), there must be new research focusing on 

reliability models and analysis tools that can assist manufacturing and maintenance of these 

devices. These advanced systems may experience multiple failure processes that compete 

against each other. Two major failure processes are identified to be deteriorating or 

degradation processes (e.g., wear, fatigue, erosion, corrosion) and random shocks. When 

these failure processes are dependent, it is a challenging problem to predict reliability of 

complex systems. This research aims to develop reliability models by exploring new 

aspects of dependency between competing risks of degradation-based and shock-based 

failure considering a generalized mixed shock model, and to develop new and effective 

condition-based maintenance policies based on the developed reliability models.  

In this research, different aspects of dependency are explored to accurately estimate 

the reliability of complex systems. When the degradation rate is accelerated as a result of 

withstanding a particular shock pattern, we develop reliability models with a changing 

degradation rate for four different shock patterns. When the hard failure threshold reduces 

due to changes in degradation, we investigate reliability models considering the 

dependence of the hard failure threshold on the degradation level for two different 

scenarios. More generally, when the degradation rate and the hard failure threshold can 

simultaneously transition multiple times, we propose a rich reliability model for a new 

generalized mixed shock model that is a combination of extreme shock model, δ-shock 

model and run shock model. This general assumption reflects complex behaviors 
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associated with modern systems and structures that experience multiple sources of external 

shocks. 

Based on the developed reliability models, we introduce new condition-based 

maintenance strategies by including various maintenance actions (e.g., corrective 

replacement, preventive replacement, and imperfect repair) to minimize the expected long-

run average maintenance cost rate. The decisions for maintenance actions are made based 

on the health condition of systems that can be observed through periodic inspection. The 

reliability and maintenance models developed in this research can provide timely and 

effective tools for decision-makers in manufacturing to economically optimize operational 

decisions for improving reliability, quality and productivity. 
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Chapter 1  

Introduction 

This chapter introduces the research background about the reliability modeling and 

maintenance scheduling for systems subject to multiple failure processes. It is important to 

consider the dependence relationship between multiple failure processes to have an 

accurate estimation of the system reliability and an optimum maintenance policy. A 

detailed explanation about the importance of this research along with research objectives 

are presented in this chapter.  

1.1. Dependent Competing Risks of Degradation and Shocks 

In a highly competitive global market, emerging technologies and new products are 

challenged to compete to survive. Consumers appreciate high quality products that can 

bring ease and convenience to use on a daily base. When it comes to choosing a product, 

customers often compare alternatives based on their quality characteristics. One of the most 

valuable quality characteristics with which consumers are concerned is the reliability 

performance of products. Reliability is defined as the probability that a product functions 

for a desired period of time without failure under specified operating conditions (Elsayed 

1996). 

Typical quality characteristics such as dimensions, weight, etc. can be monitored 

during the production phase before delivering final products to consumers; however, the 

reliability is a time-dependent quality characteristic and it can only be estimated (Elsayed 

2000). Therefore, researchers have focused on the development of probabilistic models to 

estimate reliability of complex systems. Predicting reliability of such systems is a 
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challenging problem due to interactions among components and environmental factors. To 

overcome this difficulty, it is necessary to explore the mechanisms that lead to the system 

failure. 

System failures can be broadly classified into three categories (Meeker & Hamada 

1995): infant mortality, external shocks/accidents, and unavoidable graceful degradation. 

Systems, especially mechanical devices, usually deteriorate and lose the intended 

functionality due to wear, fatigue, erosion, corrosion, and aging (Huynh et al. 2012). 

Systems can also stop functioning abruptly due to shocks, overloads, and other external 

stressors. Some systems may be affected by more than one failure process at a time. These 

processes compete against each other, and whichever occurs first can cause the system to 

fail. For example, a battery that supplies electrical power by chemical reaction weakens 

due to usage. On the other hand, a battery can suddenly fail under unusual environmental 

conditions or stressors, such as overheating and over-voltage. Due to the structure of 

complex systems, independence assumption of random shocks and degradation is 

unrealistic, and may lead to inaccurate estimation of the system reliability. Therefore, the 

dependence between these failure processes should not be neglected in reliability analysis 

of complex systems.  

Generally, there are three aspects of a dependence relationship between competing 

failure risks of degradation and random shocks: 

a) Degradation toward shocks: Most previous research assumes that the hard failure 

threshold remains a constant during the entire life of a device (Wang et al. 2008; Peng et 

al. 2010) or decreases according to different shock patterns (Jiang et al. 2012), which are 

appropriate assumptions for many design problems. However, due to the nature of 
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degradation for complex devices such as MEMS, a degraded system is more vulnerable to 

external forces and stresses during the operation. In other words, a device is more likely to 

fail against external shocks when it suffers more degradation. Few researchers considered 

the impact of degradation process toward shocks process. For instance, Fan et al. (2000) 

studied a multi-component system subject to the non-homogeneous Poisson process, while 

aging affects the magnitude of random shocks resulting in a higher failure rate. However, 

there is no research in the literature exploring the dependence of hard failure threshold on 

the degradation level. 

b) Shocks toward shocks: When random shocks arrive, the system becomes more 

sensitive to future shocks. Jiang et al. (2012) assumed the hard failure threshold is not fixed, 

and can change due to different shock patterns (i.e., extreme shock model, m-shock model, 

and δ-shock model). The hard failure threshold shifts to a lower level when one of the 

shock patterns occurs.  

c) Shocks toward degradation: In most studies on the competing failure processes, the 

degradation follows a linear path where the degradation rate is a random variable with 

known and fixed parameters (Wang et al. 2008; Peng et al. 2010), which is a valid 

assumption for many cases. However, for complex devices such as MEMS, the degradation 

rate can increase when the system becomes more prone to fatigue and deteriorates faster, 

as a result of withstanding shocks. The impact of shocks on the degradation process 

typically presents in two different ways: 1) an abrupt increment of the degradation level, 

and 2) increasing the degradation rate. For example, a component of a MEMS device 

becomes more susceptible to degradation/soft failure and degrades faster, after exposure to 

a significantly large shock (Tanner et al. 2000). When a device begins vibrating due to 
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impact of huge shocks, the deterioration rate of the device increases suddenly (Saassouh et 

al. 2007). Cha and Finkelstein (2009) assumed that random shocks may cause the 

catastrophic failure with probability p(t), or may accelerate the wear process with 

probability 1− p(t). Peng et al. (2010) proposed a reliability model for complex systems 

where the degradation is accumulated by continuous degradation over time and sudden 

increase due to shocks. However, there is a lack of research in the literature about the 

impact of different shock patterns on the degradation rate. 

1.2. Condition-based Maintenance 

Products deteriorate and finally break down because they are subject to load and 

stress while functioning in dynamic environments. Performing maintenance is an effective 

approach to achieve a satisfactory level of product reliability during its life. An effective 

maintenance plays an important role in mitigating the risk of system failure. Various 

maintenance policies have been proposed in the literature from corrective maintenance 

(CM), preventive maintenance (PM), to the recent condition-based maintenance (CBM). 

The early form of maintenance policies was unplanned maintenance (also called corrective 

maintenance), happening only at system failure. A later form of maintenance policies is 

planned or preventive maintenance that occurs to prevent system failures when the system 

is still functioning. In the traditional PM, maintenance actions are scheduled to be carried 

out at the predetermined intervals based on the historical life time data. The major problem 

that makes the PM approach less practical is that maintenance decision is made not based 

on the real health condition of the system, which may result in unnecessary maintenance 

actions and increase the maintenance cost. On the other hand, CBM, a recent approach of 

PM, is more effective because it takes into account the real health condition of the system 
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(i.e., degradation level) that can be observed through periodic inspection, continuous 

monitoring or the combination of both. 

1.3. Problem Statement 

In reality, there are many challenges that prevent the commercialization of new and 

evolving technologies such as micro-electro-mechanical systems (MEMS) and biomedical 

implant devices (e.g., stent). MEMS are a new technology that is composed of miniaturized 

mechanical and electro-mechanical components (i.e., actuators and sensors) that are made 

using micro-fabrication methods (Huang et al. 2012). MEMS devices have been used in 

many products such as accelerometers in automotive airbag deployment systems, and 

inkjet printer heads (Tanner 2009). They can also be applied in critical industries such as 

aerospace, nuclear, biological/medical and weapons due to cost efficiency, small size and 

weight, and high throughput (Peng et al. 2009). Stents, a small scaffold, are one of evolving 

bio-structures that are implanted in human arteries to counteract the effects of 

atherosclerosis (preventing the artery wall from collapsing). As reported in 2005, over one 

million stents are implanted in human arteries each year, and the market for endo- and 

cardiovascular stents was estimated to exceed $7 billion annually (Marrey et al. 2006). 

However, one of the major challenges that have to be addressed for successful 

commercialization of advanced devices (e.g., MEMS and stents) is to improve reliability 

performance. It can assure that devices meet the required lifetime for commercial 

applications and defense-related products.  

To address MEMS reliability issues, potential failure processes must be 

investigated for predicted usage conditions. MEMS may fail due to wear process or may 

break down due to shock loads caused by external sources. In the literature, these two 

5 
 



failure processes have been assumed to be independent, which is not a valid assumption. 

Complex structures of MEMS, due to both mechanical and electrical parts, and their 

interactions, make the wear process and shock process dependent. Therefore, conducting 

reliability research to explore new aspects of dependency between failure processes can 

help the commercialization of these products.  

 Traditionally, it has been assumed that a system fails as result of one large shock 

(i.e., extreme shock model), cumulative damages of smaller consecutive shocks (i.e., run 

shock model), or a short time lag between successive shocks (i.e., δ-shock model). 

However, in practice, it is common that a system fails due to more than one particular shock 

model (i.e., mixed shock model). The mixed shock models investigated in the literature are 

typically a combination of two classic shock models. There is a lack of research to 

incorporate three or more classic shock models into a generalized mixed shock model. 

Another major challenge due to increasing product complexity is the high 

maintenance cost that has created a major expense for many industries. Therefore, a new 

maintenance approaches (e.g., CBM) must be introduced to handle this situation more 

efficiently. CBM is a technique that recommends maintenance actions according to the 

data collected through condition inspections (Jardine et al. 2006). CBM aims to prevent 

unnecessary maintenance actions by performing maintenance tasks only if an unusual 

system status is observed during inspections. The effective development and proper 

implementation of CBM policy is crucial, and can significantly cut maintenance costs 

through fewer PM actions. Most research about CBM modeling in the literature assumes 

that the system is non-repairable or the repair action is perfect, which is not a valid 

assumption for many cases. When the decision about a maintenance action is made based 
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on the actual health condition of a system, instead of the elapsed time or the number of 

inspections carried out since last action, there is a critical need for CBM policies to include 

different maintenance actions, such as corrective replacement, preventive replacement and 

imperfect repair. 

1.4. Objectives and Contributions 

The overall goals of this study are: 1) to develop reliability models by exploring 

new aspects of dependency between competing risks of soft failure due to degradation and 

hard failure due to shocks; and 2) to develop new and effective CBM policies based on the 

developed reliability modeling. We achieve these goals through five specific objectives: 

Objective 1: Develop reliability models when the degradation rate increases according to 

a particular shock pattern. We assume the degradation rate shifts when a classic shock 

pattern occurs, including extreme shock model, δ-shock model, m-shock model and run 

shock model (Chapter 3). 

Objective 2: Develop reliability models when the degradation rate and the hard failure 

threshold can simultaneously transition multiple times, whenever the condition for a 

generalized mixed shock model is satisfied. What distinguishes our new model from the 

previous research lies on this new assumption that the degradation rate and the hard failure 

threshold can simultaneously change multiple times given the condition for the generalized 

mixed shock model is satisfied (Chapter 4). 

Objective 3: Investigate reliability models when the hard failure threshold is dependent 

on the degradation level. We assume that a system may suffer one time reduction in hard 

failure threshold as soon as the overall degradation reaches a critical value, or it may 
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undergo continuous reduction in hard failure threshold and the amount of reduction is 

proportional to the change in degradation (Chapter 5). 

Objective 4: Explore a new generalized mixed shock model that can impact the 

degradation rate and hard failure threshold simultaneously, or lead to the failure of a 

system. We introduce a new shock model called generalized mixed shock model that is a 

combination of three classic shock models including extreme shock model, δ-shock model 

and run shock model (Chapters 4 and 7). 

Objective 5: Develop new condition-based maintenance policies. Maintenance policies 

presented in Chapters 5 and 6 include preventive replacement and corrective replacement. 

Chapter 7 extends the proposed condition-based maintenance policy in previous chapters 

by adding imperfect repair action.  The decisions for maintenance actions are made based 

on the system condition (e.g., degradation level) revealed at each inspection. 

We use two figures to illustrate the contributions of this research. Figure 1.1 

presents how this study distinguishes from the previous research, in terms of the new 

aspects of dependency between shock process and degradation process. Figure 1.2 

represents how different CBM policies presented in this research are related to each other. 
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Figure 1.1: Flow diagram to illustrate the contributions of this study in terms of the new 
aspects of dependency between shock process and degradation process 

 

 

Figure 1.2: Flow diagram to illustrate the contributions of this study in terms of new 
condition-based maintenance policies 
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policies. Chapter 3 presents reliability models for systems subject to multiple competing 

risks of soft failure and hard failure, with degradation rate transition. Soft failure occurs 

when the overall degradation (continuous degradation with additional abrupt damages 

caused by shocks) exceeds the soft failure threshold. Hard failure occurs when the 

magnitude of any shock is greater than the strength threshold. These two failure processes 

of soft failure and hard failure are dependent because: 1) each shock damages the system 

by increasing the degradation level; and 2) the degradation rate accelerates as soon as the 

condition for a particular shock model (extreme shock model, δ-shock model, m-shock 

model, or run shock model) is satisfied. Numerical results for MEMS are presented to 

illustrate the developed reliability models. 

Chapter 4 develops a reliability model for complex systems subject to continuous 

degradation and random shocks under the impact from a generalized mixed shock model. 

The shock process contains fatal shocks that can cause hard failure instantaneously, and 

nonfatal shocks that impact the system in three different ways concurrently: 1) damage the 

unit by increasing the degradation instantaneously; 2) speed up the deterioration by 

accelerating the degradation rate; and 3) weaken the unit by reducing the hard failure 

threshold. While the first impact of non-fatal shocks comes from each individual shock, 

the other two impacts are realized when the condition for a generalized mixed shock model 

is satisfied, including the three classic shock models: extreme shock model, δ-shock model 

and run shock model. According to the proposed generalized mixed shock model, the 

degradation rate and the hard failure threshold shift simultaneously when at least one of 

these three shock models occurs. An example using MEMS devices illustrates the 

effectiveness of the proposed model with sensitivity analysis. 
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Chapter 5 introduces reliability analysis for systems subject to two competing 

failure risks of soft failure and hard failure, when the hard failure threshold depends on the 

degradation level. The system deterioration makes it more vulnerable to shocks by 

decreasing the strength threshold. We address two different scenarios of the changing hard 

failure threshold due to changes in degradation. In Case 1, the initial hard failure threshold 

value reduces to a lower level as soon as the overall degradation reaches a critical value. 

In Case 2, the hard failure threshold decreases continuously, and the amount of reduction 

is proportional to the change in degradation. A new CBM model derived from failure limit 

policy (FLP) is presented to ensure a device is functioning under a certain level of 

degradation. Finally, numerical examples are illustrated to explain the developed reliability 

and maintenance models along with sensitivity analysis. 

Chapter 6 develops a condition-based replacement (CBR) models for a multi-

component system of stents implanted in human arteries that is subject to both delayed and 

instantaneous failures. We develop a new CBR policy, in which the replacement is either 

a preventive or corrective action, performed depending on the condition of the system. 

Numerical examples using data from the literature are presented to investigate the 

effectiveness of the proposed CBR policy. 

Chapter 7 proposes a CBM policy considering imperfect repair for complex 

systems subject to dependent competing risks of internal degradation and external shocks.  

External shocks can be divided into two classes: (1) fatal shocks that can cause the system 

to fail immediately, if a shock belongs to any of the three classic shock models (i.e., 

extreme shock model, run shock model, and δ-shock model), or the generalized mixed 

shock model; (2) non-fatal shocks that can damage the system by randomly increasing the 
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degradation level. Under the proposed CBM policy, the system is inspected at fixed time 

intervals and a decision for an appropriate maintenance action (i.e., no action, imperfect 

repair, preventive or corrective replacement) is made based on the actual health condition 

of the system detected through inspection. The imperfect repair impacts the system by 

lowering the degradation level to a certain level. The objective is to determine the optimal 

inspection interval that minimizes the expected long-run average maintenance cost rate. 

An MEMS example is used to evaluate the efficiency of developed reliability and CBM. 

Finally, conclusions for this research are given in Chapter 8. 
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Chapter 2  

Literature Review 

Literature reviews for random shock modeling, degradation modeling, multiple 

failure processes, and CBM policies are presented in this chapter. 

2.1. Random Shock Models 

Shock models are one of the most important subjects in reliability analysis, where 

a system is subject to shocks arriving at random times with random magnitudes. Many 

papers have studied the reliability of systems subject to shocks in a random environment, 

such as Wortman et al. (1994), Chelbi and Ait-Kadi (2000), Finkelstein and Zarudnij 

(2001), and Cirillo and Hüsler (2011). Mallor and Santos (2003) and Bai et al. (2006) 

surveyed the literature for shock models studied during the last three decades. According 

to their survey, shock models are classified according to their arrival time and their 

resulting effect on the system. In the first category, shock models are divided into four 

subcategories depending on how their arrival times are governed. In the second category, 

shock models are divided into five major models depending on how they can impact on the 

system. 

2.1.1. Classification of Shock Models According to Arrival Time 

1) Homogeneous Poisson process: The times between two successive shocks are 

independent, identically distributed (i.i.d.) exponential random variables. This model was 

first introduced by Esary et al. (1973). They proposed some models for the life distribution 

of a device subject to a sequence of shocks arriving randomly governed by a Poisson 

process. Li and Zhao (2007) investigated a general lifetime distribution for the δ-shock 
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model of complex systems consisting of n independent components where the shocks 

arrived according to homogeneous Poisson process. Finkelstein and Marais (2010) 

discussed the system failure and probabilities of failure-free performance of a system 

subject to a shock process that arrives according to a homogeneous Poisson process. 

2) Non-homogeneous Poisson process: The probability of a shock in (t , t + Δt] is 

λ(t)Δt + ο(Δt) based on a counting process with independent increments while the 

probability of more than one shock in (t , t + Δt] is ο(Δt). Abdel-Hameed and Proschan 

(1973) introduced this model as an extension of the results obtained by Esary et al. (1973). 

They studied a device subject to shocks that arrive according to a nonhomogeneous Poisson 

process. Life distribution properties are related to the probability of failure after 

experiencing a given number of shocks. Li and Kong (2007) provided the analytical 

survival function, moment of any order, class properties and asymptotic behavior of a 

system for two cases: one with underlying homogeneous Poisson process and another case 

with underlying non-homogeneous Poisson process with periodic intensity λ(t).  Bai et al. 

(2012) analyzed the lifetime behavior of system subject to two types of shocks. The first 

type, called primary shocks that arrive according to a non-homogeneous Poisson process, 

causes a series of shocks called secondary shocks.  

3) Non-stationary pure birth process: It is a Markov process where the probability of 

a shock in (t , t + Δt] is λjλ(t)Δt + ο(Δt), given j shocks in (0 , t], while the probability of 

more than one shock in (t , t + Δt] is ο(Δt). Abdel-Hameed and Proschan (1975) introduced 

this model by considering the life distribution of a device subject to a series of shocks 

arriving randomly according to a non-stationary pure birth process. They showed that 

various fundamental classes of life distributions can be obtained under appropriate 
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assumptions on λj and λ(t). Sheu et al. (2012) studied a system subject to shocks that occur 

according to a non-stationary pure birth process. As shocks arrive, two types of failures 

may happen: i) minor failure that can be fixed by a general repair, and ii) catastrophic 

failure that leads to an unplanned replacement. The number of shocks that have occurred 

since the last replacement indicates the failure type based on some random mechanism. 

4) Renewal process: The interval times between two successive shocks are i.i.d. 

random variables. Skoulakis (2000) investigated a reliability system subject to shocks 

generated by a renewal point process. Shocks arrive independently of each other with equal 

probabilities, and the shock arrival times are random drawn from a distribution. Sumita and 

Shanthikumar (1985) analyzed a class of cumulative shock models associated with a 

bivariate sequence {Xn , Yn} of correlated random variables. The {Xn} denote the sizes of 

the shocks and the {Yn} denote the times between successive shocks that follows a renewal 

process. Two models, depending on whether the size of the nth shock is correlated with the 

length of the interval since the last shock or with the length of the succeeding interval until 

the next shock, are considered. 

2.1.2. Classification of Shock Models According to Impact 

1) Extreme shock model: a system fails as soon as the magnitude of a shock exceeds 

some given threshold. Shanthikumar and Sumita (1983) developed an extreme shock 

model by considering a sequence of random shocks associated with a correlated pair (Xn , 

Yn), where Xn represents the magnitude of the nth shock and Yn is the time lag between two 

successive shocks. Cha and Finkelstein (2013) generalized the classic extreme shock model 

to the history-dependent case, where the probability that a system survives each shock 

depending on the corresponding history of the shock process. 
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2) Cumulative shock model: a system breaks down when the accumulated magnitude 

of shocks exceeds some given threshold. Agrafiotis and Tsoukalas (1995) discussed a class 

of cumulative process with excess increments where the counting process is generated by 

the renewal sequence. The first passage time problem along with various asymptotic 

properties of the process was also obtained. Qian et al. (2003) analyzed maintenance and 

minimal repair policies for a system subject to an extended cumulative shock model where 

random shocks arrive according to a non-homogeneous Poisson process. The system 

undergoes the maintenance action every time that a shock occurs. Gut and Hüsler (2005) 

considered a cumulative shock model in which only the summation of the most recent 

shocks contribute to the system failure. Bai et al. (2012) studied a generalized cumulative 

shock model with a cluster shock structure. The system is subject to two kinds of shocks, 

called primary shocks and secondary shocks, where each primary shock causes a series of 

secondary shocks. They analyzed the lifetime behavior of the system with light-tailed and 

heavy-tailed distributed secondary shocks, while the primary shocks are governed by a 

non-homogeneous Poisson process. 

3) Run shock model: a system works until the first run of n consecutive shocks greater 

than some given threshold. This model was defined by Mallor and Omey (2001) that 

studied random variables related to a shock reliability model. Their models can be used to 

study a system that breaks down when n consecutive shocks with critical magnitude arrive. 

They obtained characteristics of a distribution function of the random variables and 

limiting behaviors when n tends to infinity. 

4) δ-shock model: a system fails when the time lag between two successive shocks 

falls into some critical region. Eryilmaz (2012) studied run-related generalization of the δ-

16 
 



shock model such that the system breaks down when n consecutive interval times are less 

than a threshold δ. The survival function and the mean value of the failure time are derived 

when the shocks arrive according to a Poisson process. They also proposed a new combined 

shock model which considers both the magnitude of successive shocks and the interval 

times. Eryilmaz (2013) introduced a discrete time version of the shock model which has 

been studied previously for a continuous case. According to the model, a system fails when 

the interval time between two consecutive shocks is less than a pre-specified threshold, 

where the shocks occur according to a binomial process, i.e., the interval times between 

consecutive shocks follow a geometric distribution. 

5) Mixed shock model:  a system fails due to a mixture of different shock models. 

Traditionally, the mixed shock model studied in the literature is a combination of extreme 

shock model and cumulative shock model. This model was built by Gut (2001), in which 

the system is supposed to break down either because of one large shock, or as a result of 

many smaller ones. Cha and Finkelstein (2009) derived the survival function and 

corresponding failure rate function for systems subject to a specific shock process, which 

is a mixture of the extreme shock model and the cumulative shock model. Unlike traditional 

mixed shock models, Mallor et al. (2006) introduced the mixed shock model as a result of 

the combination of the run shock model and the cumulative shock model. They supposed 

that the system fails as soon as one of the following two events is presented: the 

accumulated damage exceeds a prefix level, or a critical run of specified length occurs. 

Eryilmaz (2012b) studied the survival function and mean time to failure of systems subject 

to a mixed shock model assuming that the shock magnitudes are random variable over 

discrete time periods. 

17 
 



2.2. Degradation Models 

Reliability study based on degradation models has been focused on by a number of 

literature, such as Lu and Meeker (1993), Singpurwalla (1995), van Noortwijk and Pandey 

(2003), Pandey et al. (2005), Liao et al. (2006) and Yuan and Pandey (2009). 

2.2.1. Classification of Degradation Models According to Trend 

Degradation curves can be classified into three types (Meeker & Hamada 1995): 

1) Linear: The degradation rate is constant over time. Linear degradation models can 

be used to model the increase of a resistance measurement over time (Suzuki et al. 1993) 

and to model lumen-output from florescent light bulbs over time (Taguchi 1987). The 

linear degradation also can be used to model wear degradation in advanced technology 

such as MEMS (Huang et al. 2012). 

2) Convex: It is a non-linear degradation path where the degradation rate increases 

over time. In the literature, the convex-shape degradation path can be used to describe 

fatigue crack growth (Lu & Meeker 1993). 

3) Concave: It is also a non-linear degradation path where the degradation rate tends 

to decrease over time. The concave degradation path can be used to model the degradation 

of  electronic circuit boards (Meeker & LuValle 1995). 

2.2.2. Classification of Degradation Models According to Variation 

There are some factors impacting degradation-failure of systems, such as 

manufacturing, operating and environmental conditions. Depending on the degree of 

variability due to different factors, the degradation models can be categorized as follows 

(Meeker & Hamada 1995): 
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1) Unit-to-unit variability: The variability due to difference in the characteristics of 

individual units: 

• Initial degradation level: The manufacturing process is not identical for all the 

units; therefore, it causes a unit-to-unit variability in the initial degradation 

level. 

• Degradation growth rate: The variability in degradation growth rate is due to 

variability in material properties and component geometries or dimensions. 

• Degradation limit level: The variability in the degradation threshold level is 

due to variability in material properties such as strength. 

2) Temporal variability due to operating and environmental conditions: The 

variability in degradation-failure can be caused by operating and environmental conditions, 

called external noise (Taguchi 1986). Variability in operation conditions includes changes 

in the amount of stresses applied to components, and variability in environmental 

conditions includes different temperature, humidity, etc. 

3) Variability due to measurement errors: Inspection tools and processes used to 

measure degradation amounts may have measurement errors associated with them and are 

not always error-free. Therefore, in order to determine the actual degradation, the 

measurement error should be considered in the measured degradation obtained by using an 

inspection device.   

2.2.3. Classification of Degradation Models According to Modeling Approach 

In the literature, there are three different approaches to model the degradation: 

1) Parametric method: that is, using experimental data to estimate the degradation 

path parameters, also called the general path model. Lu and Meeker (1993) described a 
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two-stage method based on Monte Carlo simulation to estimate the parameters for the 

mixed-effect path. Wu and Shao (1999) studied the product reliability based on a nonlinear 

mixed-effect degradation model and the ordinary and weighted least squares method. A 

simulation was also run to assess the result obtained from the proposed method. 

Yuan and Pandey (2009) presented an advanced a nonlinear mixed-effect (NLME) 

method to model and predict the degradation path. The NLME method considers unit-

specific random effects and the potential correlation among repeated measurements, unlike 

traditional regression models. The method is applied to a nuclear pipe system example to 

predict degradation. Robinson and Crowder (2000) proposed a fully Bayesian approach to 

estimate the distribution function of failure time for both future units and those that are 

currently under test. In addition, fatigue crack growth data was used to illustrate the 

methods.  

2) Stochastic process method: The degradation model is described as a stochastic 

process such as Brownian motion and gamma process. van Noortwijk et al. (1995) 

proposed a Bayesian approach of the failure model where the average degradation over a 

finite or an infinite time is defined by a prior density function. The probability of preventive 

repair and failure depends on the average deterioration. Xue and Yang (1995) generalized 

2-state reliability parameters such as R(t) to multi-state reliability parameters, R(t , i) by 

combining a Markov process and a coherent multi-state system structure to transfer multi-

state reliability dynamics to a set of 2-state reliability dynamics. The model was 

implemented for multi-state systems including series systems and parallel systems. 

Ebrahimi (2001) assessed the failure time of a system by using a deterioration 

process and covariates. The survival and hazard functions for two semi-parametric models 
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are obtained by using the differential equation. Kharoufeh (2003) derived the the failure 

time distribution of a single-unit system by a Markov additive process where the 

cumulative damage over time follows a continuous wear process and depends on the 

external environment process. Kharoufeh and Cox (2005) developed a degradation based 

model to estimate the full and residual lifetime distributions for single-unit systems subject 

to a Markov environment by using a hybrid approach including two models: i) the 

degradation rate depends on the state of random environment that follows a homogeneous 

Markov process; and ii) the degradation rate is estimated by using the differential equation 

and clustering method. 

Nicolai et al. (2007) focused on modeling the deterioration of an organic coating 

layer based on three stochastic processes including Brownian motion with non-linear drift, 

non-stationary gamma process, and two-stage hit-and-grow process. The model parameters 

were estimated by either the least-squares approach when the data set is based on expert 

judgment or the maximum likelihood when the data set is based on inspection results. The 

discrete degradation model can be utilized when the amount of degradation can be observed 

at the particular time points, e.g., the metal crack growth on an aircraft. Saassouh et al. 

(2007) proposed an online maintenance policy to maximize availability of a system with a 

two-mode stochastically deteriorating model. When the system is in the first mode, the 

deterioration level increases suddenly where the amount of increase follows a gamma 

process and the deterioration rate increases when the system transitions to the second mode. 

Hsieh et al. (2009) proposed a non-homogeneous compound Poisson process to model the 

discrete degradation. Then the first passage time distributions (FPTD) and the likelihood 

estimation of the model parameters are presented. 
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3) Mixed parametric and stochastic process method: that is, a combination of 

parametric and non-parametric methods, called statistical method. Bae and Kvam (2004) 

examined a nonlinear random coefficient model to predict the non-monotonic degradation 

path for highly reliable light displays. Performance of four different methods in 

approximating the log-likelihood function including Lindstrom-bates algorithm, adaptive 

Gaussian quadrature, adaptive importance sampling and first-order method were 

compared. 

Huang and Dietrich (2005) proposed a new graphical approach for degradation 

reliability modeling considering the degradation path governed by a truncated Weibull 

distribution with a time-dependent shape parameter. A maximum likelihood method is 

derived to estimate the two parameters of Weibull distribution. Bae et al. (2007) 

investigated the relationship between the practitioner’s selected degradation path function 

and the resulting lifetime distribution for two cases: in the first case, the additive function 

is used to model the degradation path; and in the second case, the multiplicative function 

is used. The result implies that the lifetime distribution is affected by the degradation path 

in terms of failure rate and distribution classes.  

2.3. Multiple Competing Failure Processes of Degradation and Random Shocks 

The failure of a system can be due to random shocks, or graceful degradation. Some 

systems may experience more than one failure process that compete against each other, 

and whichever occurs first causes the system to fail. Most of the papers in the literature 

assume that these two competing failure processes of random shocks and degradation are 

independent from each other, which is not a realistic assumption due to the structure of 

systems and may lead to inaccurate estimation of the system reliability. When they are 
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dependent, predicting the system reliability becomes a challenging problem. There are 

some aspects underlying the dependence assumption between these two failure processes: 

(1) random shocks cause abrupt increase in the degradation level; (2) random shocks 

accelerate the degradation rate; (3) random shocks make the system more vulnerable to 

upcoming shocks; and (4) the degradation makes the system more vulnerable to upcoming 

shocks. 

2.3.1. Independence between Degradation and Random Shocks 

Sim and Endrenyi (1993) proposed a Markov model for a system subject to 

deterioration and Poisson failures. In addition, the optimal maintenance policy including 

minimal repair, periodic minimal maintenance and major maintenance after a number of 

minimal maintenances was explored to minimize costs or unavailability. Ciampoli (1998) 

developed a probabilistic model to forecast the reliability of structural components where 

the deterioration process modeled by the stochastic differential equation is due to shocks 

created during regular operation and accidental events. 

Hosseini et al. (2000) presented a generalized stochastic Petri net to formulate the 

maintenance policy for a system subject to deterioration process and shocks modulated by 

a homogeneous Poisson process. If the system fails due to deterioration failure, a major 

maintenance needs to be carried out to restore the system to “as good as new”; however, if 

the system breaks down due to shocks, a minimal maintenance needs to be performed to 

restore the system to an early stage. Chiang and Yuan (2001) developed a state-dependent 

maintenance policy for a multi-state continuous-time Markovian system subject to 

degradation and shocks. The system is inspected at scheduled time points.  Depending on 
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the current state of the system, a further action is performed including do-nothing, repair 

and replacement. 

Klutke and Yang (2002) derived the availability of a system that deteriorates due 

to random shocks that occur according to a Poisson process and graceful degradation that 

follows a linear path. The failure of the system is hidden and can be explored during 

periodical inspections. Huang and Askin (2004) extended the stress-strength interference 

(SSI) reliability model so that it can be applied for any non-homogeneous Poisson shock 

process and any type of strength degradation process. Wang and Zhang (2005) studied 

reliability of a system subject to two shock processes described by the extreme shock model 

and the δ-shock model. The failed system undergoes a repair to make it “as good as new”; 

however, repair times follow a stochastically-increasing geometric process. The optimal 

replacement policy determines the number of repairs before the system is being replaced, 

to minimize the long-run average cost. 

Li and Pham (2005) extended the multi-state degraded system reliability when there 

is more than one failure process. They derived a generalized reliability model for a multi-

state degraded system subject to two degradation processes and a cumulative shock process 

that are independent. Montoro-Cazorla and Pérez-Ocón (2006) presented a maintenance 

policy for a two-unit cold standby system, where the units are repairable. Two types of 

maintenance actions governed by phase-type distributions are considered: PM that restores 

the unit degradation to be operative and CM that replaces the failed unit. Chien et al. (2006) 

proposed a generalized maintenance policy for a system subject to random shocks that are 

modeled by a non-homogeneous Poisson process. The system is replaced as soon as: (i) 

the nth minor failure occurs where the first n − 1 minor failures are rectified by minimal 
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repair; (ii) catastrophic failure occurs where its probability depends on the number of 

shocks since the last replacement; or (iii) the age of system exceeds T. 

van der Weide et al. (2010) introduced a method to assess the reliability of systems 

subject to transient shocks and a degradation process which is modeled as a cumulative 

stochastic point process. Furthermore, a combined maintenance policy considering both 

condition-based and aged-based criteria was presented. Wang and Pham (2011) studied 

reliability and maintenance modeling for a system subject to competing risks of 

degradation wear and random shocks. Two kinds of random shocks are considered: 1) fatal 

shocks that can lead to sudden failures, and 2) nonfatal shocks that cause abrupt damage in 

the degradation level. 

2.3.2. Dependence between Degradation and Random Shocks 

Satow et al. (2000) put forward a replacement policy for a system that is damaged 

due to shocks or aging. The system is considered as failed as soon as the damage exceeds 

the threshold level K. To avoid failure, the system is inspected after each shock and 

replaced if the damage is beyond a lower threshold k. The optimum maintenance policy 

defines an optimal k* that minimizes the expected cost rate. Chiodo and Mazzanti (2006) 

dealt with the stress-strength model for a system subject to repeated shocks while the 

system fails when the magnitude of a shock is greater than the remaining degradation 

resistance. 

van Noortwijk et al. (2007) introduced a time-dependent reliability model for a 

structural component subject to two stochastic processes, which are the deteriorating 

resistance that follows a gamma process and the fluctuating load that is governed by a 

Poisson process. Wang et al. (2008) dealt with multi-state system reliability for a system 
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subject to dependent and competing risks of shocks and degradation process, when the 

transition time from state i to i + 1 is a random variable. The shocks that are generated by 

the system themselves during the operation have regular periods; however, the shocks that 

are imposed from the external environment are governed by a Poisson process. Frostig and 

Kenzin (2009) examined an availability model for a hidden-failure system that breaks 

down due to the cumulative shock model and degradation process according to two 

different scenarios. In the first scenario, the shocks and degradation process are 

independent of the external environment; in the second scenario, the shock arrival rate, the 

shock size and the degradation rate depend on the external environment that is modulated 

by a Markov process. 

Lehmann (2009) focused on degradation-threshold-shock models (DTS) to 

discover how the survival function is affected when considering the relationship between 

failure time data and covariate data. Two types of DTS models are compared, including a 

general DTS where the degradation process and catastrophic failure are modeled based on 

stochastic processes, and the DTS with covariate where an external covariate process due 

to dynamic environment may affect soft failure and hard failure. Zhu et al. (2010) studied 

a maintenance model for a unit subject to the dependent competing risks of degradation 

and sudden failure. Every time that the unit breaks down, an immediate repair is carried 

out where the time associated with repair increases with the number of repairs. The 

proposed maintenance policy aims to maximize the unit availability given that the budget 

for repair cost is limited. 

Huynh et al. (2011) compared a new CBM policy with traditional time-based block 

replacement policy for a system subject to two dependent competing risks of deterioration 
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and traumatic failure. Ye et al. (2011) introduced the single failure time model and the 

recurrent event model by using a Brown-Proschan model. The system subjects to shocks 

that arrive according to a non-homogeneous Poisson process and the degradation process, 

given that the amount of degradation and the magnitude of shocks are not observable. Chen 

et al. (2011) investigated reliability modeling for complex systems under dependent 

competing failures of degradation and shocks. In addition, the maintenance actions 

including inspection, PM and replacement are obtained to minimize the maintenance 

expected cost rate. 

Wang and Pham (2011b) proposed a two-process combination model for a 

deteriorating system that fails due to multiple dependent competing risks of cumulative 

damage of shocks, where the multiple degradation processes include additive and 

multiplicative models. Furthermore, an imperfect PM policy was introduced to adopt 

inspection intervals and the total number of minimal repairs before replacement, in order 

to minimize the long-run average maintenance cost rate.  Wang and Pham (2012) put 

forward a novel approach in the reliability modeling of systems subject to dependent 

competing risks of multiple degradation processes and random shocks by employing time-

varying copulas. A time-scaled covariate factor is used to govern the dependent 

relationship between shocks and degradation processes. 

2.4. Condition-based Maintenance Policy 

Recently, there has been much research on the mathematical formulation of 

maintenance policies where the system undergoes a maintenance action such as corrective 

replacement, preventive replacement or imperfect repair according to the system condition. 

Liao et al. (2009) proposed a novel imperfect PM model to minimize the total maintenance 

27 
 



cost for a repairable system subject to both sudden failure and delayed failure. The aim of 

their sequential maintenance policy is to find (R*, N*), where R* is the optimum repair 

threshold (when the system reliability reaches R* or an unexpected system failure occurs, 

a repair needs to be performed to restore the system to an earlier age), and N* is the number 

of repairs that the system can be undergone before it is replaced. Zhao et al. (2010) 

discussed a CBM policy for a deteriorating system subject to environmental covariates that 

are modulated by a time-homogeneous Markov chain with finite state space. The optimum 

inspection interval and replacement policy is derived to minimize the average maintenance 

cost. Tan et al. (2010) investigated an imperfect maintenance policy for a repairable system 

that deteriorates according to a gamma process. The imperfect maintenance improves the 

system condition; however, the degradation level immediately after the repair is a random 

variable. 

Fan et al. (2011) studied a predictive maintenance strategy for a repairable system 

subject to two dependent failure processes. The imperfect repair improves the system 

condition by impacting on the hazard rate function and effective age. The amount of age 

reduction depends on the resources allocated to perform maintenance. Fouladirad and Grall 

(2011) proposed a CBM strategy for a deteriorating system by using a detection algorithm. 

The deterioration is governed by a non-homogeneous gamma process, while at an unknown 

time the deterioration rate increases due to external factors. Li and Pham (2011) addressed 

a CBM policy for a system subject to degradation and cumulative shock damage. While 

the system is being inspected, the appropriate maintenance action can be performed, 

including PM, CM, or no actions. The optimum inspection interval and PM threshold are 

determined to minimize the long-run maintenance cost per unit time. 
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van and Bérenguer (2012) presented an imperfect PM strategy considering aspects of 

maintenance cost and productivity for a single-unit deteriorating system. The imperfect 

repair restores the system condition to “better than old”, but the repair actions can be 

performed for a limited number of times and the system will be replaced after. Taghipour 

and Banjevic (2012) studied a maintenance policy for a complex system including two 

types of components: the first type experiences hard failure that is self-announcing; and the 

second type experiences soft failure that is hidden and can only be detected during the 

inspection. The system can operate with soft failure, but its performance is declined. Even 

though the system is inspected periodically, the hard failure provides a chance for an 

unplanned inspection (opportunistic inspection). A minimal repair or corrective 

replacement is performed to remove both types of failure depending on the condition of 

system. Huynh et al. (2012) assessed the performance of degradation-based maintenance 

with minimal repairs. The minimal repair is carried out after a failure due to shocks to bring 

the system back to the same degradation level right before failure. A preventive 

replacement is performed when the degradation level exceeds a predetermined threshold. 

Le and Tan (2013) studied inspection-maintenance schemes for a multi-state 

degradation system. The degradation follows a continuous-time Markov process where 

each degradation level is represented by a state. The aim of combining both inspection and 

continuous monitoring is to minimize the mean long-run cost rate by enhancing the system 

reliability and avoiding unnecessary inspection. Liu et al. (2013) developed a CBM policy 

for a continuously monitored degrading system subject to multiple failure modes. The 

degradation is a stochastic process and a corrective replacement is performed when the 

degradation level exceeds a pre-determined threshold. 
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Chapter 3  

Reliability Modeling for Dependent Competing Failure Processes with 

Changing Degradation Rate 

In this chapter, we propose reliability models for devices subject to dependent 

competing failure processes (DCFP) of degradation and random shocks with a changing 

degradation rate according to particular random shock patterns. In the literature, the 

degradation rate is commonly assumed to be fixed, which is an appropriate assumption for 

many design problems and reliability analyses. However, due to the nature of degradation 

for complex devices such as MEMS, the degradation rate can change when the system 

becomes more susceptible to fatigue, as a result of withstanding shocks. In this chapter, we 

consider four different cases of dependency between the shock process and the degradation 

rate. Numerical examples are presented to illustrate the developed reliability models, along 

with sensitivity analysis. 

3.1. Introduction 

In this chapter, we develop reliability models for a unit experiencing DCFP by 

considering the changing degradation rate due to the exposure to a particular pattern of 

shocks. We study two dependent failure processes: soft failure due to continuous 

degradation as well as sudden increases in degradation caused by random shocks, and hard 

failure due to the same shocks. These two failure processes are dependent because arriving 

random shocks affect both failure processes. Furthermore, in our new model, the shock 

process impacts the degradation rate: the exposure to a significant pattern of shocks or 

sufficiently large shocks can accelerate the degradation process by increasing the 
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degradation rate. In most studies on the competing failure processes, the degradation 

follows a linear path where the degradation rate is a random variable with known and fixed 

parameters (Wang et al. 2008; Peng et al. 2011), which is an appropriate assumption for 

many cases. However, due to the nature of degradation in complex devices such as MEMS, 

the degradation rate can increase when the system becomes more prone to fatigue and 

deteriorates faster, as a result of withstanding shocks. For example, a component of a 

MEMS device becomes more susceptible to degradation/soft failure and degrades faster, 

after exposure to a significantly large shock (Tanner et al. 2000). When a device begins 

vibrating due to impact of huge shocks, the deterioration rate of the device increases 

suddenly (Saassouh et al. 2007). 

We focus on four shock models: extreme shock model, δ-shock model, m-shock 

model and run shock model, which are representatives among many different shock models 

explored in the literature. Our work can be readily extended to other shock models such as 

cumulative shock model. Specifically, the four different cases of dependency between the 

shock process and the degradation rate include (1) generalized extreme shock model: the 

degradation rate shifts when the first shock above a critical value is recorded,  (2) 

generalized δ-shock model: the degradation rate changes when the inter-arrival time of two 

sequential shocks is less than a threshold δ, (3) generalized m-shock model: the degradation 

rate varies after m shocks greater than a critical level, and (4) generalized run shock model: 

the degradation rate transitions right after the first run of n consecutive shocks greater than 

a critical value. The reliability analysis with the changing degradation rate is a challenging 

problem, especially considering that the transition time for the degradation rate is unknown 

and random. 
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The developed reliability model is illustrated by using a realistic example of MEMS 

exposed to DCFP. Recently, there have been many studies performed on the reliability of 

MEMS to achieve wide acceptance of MEMS devices (Peng et al. 2009; Ye et al.  2012). 

Sandia National Laboratory has conducted reliability experiments to demonstrate failure 

processes and mechanisms for MEMS devices (Miller et al. 1998; Tanner et al. 2000; 

Tanner & Dugger 2003). The results of tests implied that, both soft failure due to wear 

degradation as well as random shocks and hard failure due to the same shock impact the 

reliability of MEMS.  

The remainder of this chapter is organized as follows. Section 3.2 presents a brief 

description of reliability models for two dependent failure processes, along with the 

notations used in the reliability modeling. In Section 3.3, we propose the reliability models 

for a unit experiencing DCFP of degradation and random shocks with a changing 

degradation rate due to different shock patterns. Section 3.4 uses a numerical example to 

demonstrate the reliability models. Section 3.5 summarizes the article and concluding 

remarks are made. 

3.2. System Description 

As shown in Figure 3.1, the failure of a unit is due to two dependent yet competing 

failure processes: soft failure due to continuous degradation, in addition to sudden 

degradation increases caused by random shocks; and hard failure due to the same shock 

process. Whichever occurs first can cause the system failure. The dependence of these two 

failure processes are reflected in two different aspects: 
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a) Because random shocks cause additional abrupt increases in the degradation level, the 

two competing failure processes are dependent due to shared exposure to random 

shocks. 

b) When a device sustains a series of shocks, it becomes more sensitive to degradation 

and degrades at a faster rate. The increase of the degradation rate occurs based on four 

different shock models: generalized extreme shock, δ-shock, m-shock, or run shock 

model. 

 
Figure 3.1: Two dependent competing failure modes: a) soft failure, b) hard failure 

Notation 

D1   Threshold level for hard failure 
D0   Critical level on shock magnitude 
N(t)  Number of random shocks arrived by time t 
λ  Arrival rate of random shocks 
Wk   Magnitude of the kth shock load  
FW(w)   Cumulative distribution function (cdf) of Wki 
H  Threshold level for soft failure 
X(t)  Amount of continuous degradation at time t   
XS(t)  Total degradation due to both continuous degradation and instantaneous 

damage at time t   
φ   Initial level of degradation 
β1   Initial degradation rate 
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β2   Changed degradation rate after the trigger shock in different cases 
η  Amount of increase in initial degradation rate 
Yk   Damage size on degradation caused by the kth random shock  
Z(t)   Cumulative damage size by random shocks at time t 
ε  Random error term in degradation path 
FX(x, t)  Cumulative distribution function (cdf) of XS(t) 
Tj  Arrival time of the jth shock (Tj ~ gamma (λ, j)) 
J  Shock count that causes a transition in the degradation rate (trigger shock) 
TJ  Time at which the degradation rate changes (occurring at the Jth shock) 
m  Required number of shocks that are greater than D0 to change the 

degradation rate in the m-shock model 
n  Required number of consecutive shocks that are greater than D0 to change 

the degradation rate in the run shock model 
Ui  Probability that by the ith random shock, no run of n consecutive shocks that 

are greater than D0 happens 

jU   Probability that by the jth random shock, the first run of n consecutive shocks 
that are greater than D0 occurs 

Bk   Inter-arrival time between the (k –1)th and kth
 shocks 

δ   Minimum time lag between two consecutive shocks for δ-shock model 
R(t)  Reliability function by time t 

3.2.1. Modeling of Hard Failure Due to Shocks 

Hard failure occurs as soon as the magnitude of a random shock is greater than the 

strength of material or the threshold level D1, which implies an extreme shock model. 

Arriving random shocks occur according to Poisson process with a rate of λ. The size of 

the kth random shock denoted by Wk is an i.i.d. random variable with the cdf of FW(w). 

Therefore, the probability that the hard failure does not occur by time t, given number of 

shocks arrived by that time, N(t), is 

( ) { }
( )

( ) ( )
1 1

1

.=
N t

N t
H k W

k

R t P W D F D
=

 
< =     

 
     (3.1) 
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3.2.2. Modeling of Soft Failure Due to Degradation and Shocks 

Soft failure occurs when the total degradation exceeds the threshold level H. The 

overall degradation, XS(t), is accumulated by continuous degradation and abrupt damage 

caused by shocks (based on cumulative shock model). The continuous degradation is 

assumed to follow a degradation path X(t) = φ + βt + ε, where the initial degradation φ and 

the degradation rate β (the slope of degradation path) are random variables, capturing the 

unit-to-unit variability. The random error term ε following a normal distribution ε ~ N(0, 

σ2), is added to model temporal variability. The initial degradation rate β1 can increase to 

β2 if the condition for one of the four cases is satisfied, where β2 = β1 + η, and η is a positive 

random variable and independent of the initial degradation rate.  

We define the first shock that triggers the change in the degradation rate as the 

trigger shock, occurring at the Jth shock where J is a random variable. The time at which 

the degradation rate changes (i.e., the arrival time of the Jth shock) is called transition time, 

denoted as TJ, which is a random variable with an unknown J. The trigger shock may or 

may not occur by time t. Therefore, the degradation by time t in this new model is expressed 

as 

( ) ( ) ( )
( )

1 2

1

,
,

,                  
J JT t T J N t

X t
t J N t

ϕ β β ε
ϕ β ε

 + + − + ≤
= 

+ + >
 

  (3.2)

 
where N(t) is the total number of shocks arrived by time t. In this chapter, the degradation 

rate is allowed to change only once, as soon as the condition for the specified shock model 

is satisfied. That is, the increased degradation rate remains the same, even if the condition 

for the same shock model is repetitively satisfied after the trigger shock. 

In addition, the degradation can accumulate damage instantaneously when a shock 

arrives. The abrupt shift in the overall degradation described as the shock damage size, Yk, 
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for k = 1, 2, …, N(t), is an i.i.d. random variable. The total damage size caused by random 

shocks by time t, Z(t), is 

( )
( )

( )

( )
1

,  0
.

0,        0

N t

k
k

Y N t
Z t

N t
=


>= 

 =

∑

     

(3.3) 

The overall degradation consists of both degradation and shock damage, XS(t) = 

X(t) + Z(t). In order for a unit to survive, the total degradation must be less than the 

threshold H. Therefore, the probability of no soft failure by time t is 

( ) ( ) ( ) ( )
0 0

, ( ) ( ) ( ) ,S S
i j

R t R t J j N t i P J j N t i P N t i
∞ ∞

= =

= = = = = =∑∑   (3.4) 

where P(J = j | N(t) = i) is the conditional probability that the jth shock is the trigger shock 

given i shocks by time t. Conditioning on the values of N(t) and J, the probability of 

surviving against soft failure at time t is  

( )
( )1 2

1

1
1

,
, ( ) .

,                    

i

j j k
k

S i

k
k

P T t T Y H j i
R t J j N t i

P t Y H j i

ϕ β β ε

ϕ β ε

=

=

  + + − + + < ≤  
  = = = 

  + + + < >   

∑

∑
 (3.5)

 

It is essential to investigate the distribution for the transition time of the degradation 

rate, Tj, in (3.5). Random shocks arrive according to a Poisson process; therefore, given a 

value of J = j, the transition time of the degradation rate, Tj (i.e., the arrival time of the jth 

shock), follows a gamma distribution with the scale parameter of j, and the shape parameter 

of λ. Therefore, the probability density function (pdf) for the transition time, given a value 

of J = j, is  

( ) ( )
1 ,

1 !
j

j

j
tj

T j jf t t e
j

λλ −−=
−

    (3.6)
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where the probability that the trigger shock occurs at the jth shock can be calculated based 

on the specific case considered. Then the conditional probability in (3.5) can be calculated 

as 

( )
( ) ( )1 20

1

1
1

,
, ( ) .

,                                  

j

it

j j k T j j
k

S i

k
k

P t t t Y H f t dt j i
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  = = = 

  + + + < >   

∑∫

∑
(3.7)

 

The model presented in (3.7), is general and can accommodate many distributional 

assumptions. In a specific case, we assume that φ is a constant, Yk, β1 and η are normally-

distributed, i.e., Yk ~ N(μY , σY
2), β1 ~ N(μβ1 , σβ1

2), and η ~ N(μη , ση
2); consequently, β2 is 

also normally-distributed, β2 ~ N(μβ1 + μη , σβ1
2 + ση

2) or β2 ~ N(μβ2 , σβ2
2). We assume that 

μη >> 3ση to ensure β2 > β1. The probability in (3.7) for this special case is 
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3.3. Reliability Analysis Considering Changing Degradation Rate 

In this section, reliability analysis is investigated for four different cases of random 

shock patterns. The reliability at time t for a device that experiences two DCFP is 
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(3.9) 

The conditional independence between the events RH(t) and RS(t) is due to the 

assumption that the shock damage size Yi is independent of the shock load Wi. 
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Figure 3.2: Generalized extreme shock model 

3.3.1. Case 1: Generalized Extreme Shock Model 

Figure 3.2 shows a generalized extreme shock model; that is, the degradation rate 

changes from β1 to β2 when the first shock greater than D0 is recorded. 

By considering the following situations, the reliability is derived further. 

i) When no shocks occur by time t, or N(t) = 0: 

( )( ) ( )10R t N t P t Hϕ β ε= = + + < .

    

(3.10) 

ii) When at least one shock occurs by time t, or N(t) > 0, there are two different situations 

for the unit to work without failure, and the probability of those mutually exclusive 

scenarios must be added together for every possible N(t) > 0. 

a. All the shocks are less than D0, or J > N(t): 
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∑ 

 (3.11)
 

b. At least a random shock is greater than D0, or J = j ≤ N(t), and j = min{k; Wk > D0}: 
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Now by summing them all, the system reliability at time t is derived to be 
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The reliability function for the specific case of constant φ and normally-distributed 

Yk, β1 and η, can be expressed as 
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3.3.2. Case 2: Generalized δ-Shock Model 

As shown in Figure 3.3, in the generalized δ-shock model, the degradation rate 

changes from β1 to β2 when the time interval of two sequential shocks is less than δ. Since 

the arrival of random shocks follows a Poisson process with parameter λ, the inter-arrival 

time of two consecutive shocks follows an exponential distribution with the same 
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parameter λ. We define Bk as the time between the occurrences of the (k − 1)th and kth 

random shocks, or Bk = Tk − Tk −1. 

 
Figure 3.3: Generalized δ-shock model (B4 < δ) 

By considering the following situations, it is derived further. 

i) When no shocks occur by time t, or N(t) = 0, 

( )( ) ( )10R t N t P t Hϕ β ε= = + + < .     (3.15) 

ii) When there is just one random shock by time t, or N(t) = 1: 

( )( ) ( ) ( )1 1 1 11R t N t P t Y H P W Dϕ β ε= = + + + < < .   (3.16) 

iii) When there are more than one shock by time t, or N(t) > 1, the degradation rate may or 

may not shift from β1 to β2 depending on if Bk is less than δ or not. 

a. There is no Bk < δ  for k = 2, …, i, or J > N(t): 
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For all time lags to be larger than or equal to δ, the maximum number of shocks 

occurred by time t is / 1t δ +   , where /t δ    is the integer part of t/δ, and it 

is the maximum number of inter-arrival times by time t given that all time lags are 

larger than or equal to δ. 

b. There is at least one Bk < δ for k = 2, …, i, or J = j ≤ N(t), and j = min{k ; Bk < δ}. 

The ratio t/δ can be either an integer or not. When t / δ is an integer, j − 1 must be 

less than or equal to / 1t δ −   , or / /j t tδ δ≤ =       . However, when t/δ is not 

an integer, j − 1 must be less than or equal to /t δ   , or /j t δ≤    , where 

{ }min / ,L t iδ=    : 
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Now by summing them all, the system reliability at time t is derived to be: 
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Since Bk follows an exponential distribution, the reliability function for specific 

case where φ is a constant, Yk, β1 and η are normally distributed can be expressed as 
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Figure 3.4: Generalized m-shock model (m = 2) 

3.3.3. Case 3: Generalized m-Shock Model 

Figure 3.4 shows a generalized m-shock model; that is, the degradation rate changes 

from β1 to β2 immediately following m shocks that are larger than a threshold D0.  

By considering the following situations, it can be derived further. 

i) When no shocks occur by time t, or N(t) = 0: 

( )( ) ( )10R t N t P t Hϕ β ε= = + + < .   (3.21) 

ii) When number of shocks by time t is between 1 and m − 1 , or N(t) = i, 1 ≤ i ≤ m – 1: 
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iii) When the number of shocks is greater than or equals to m, the degradation rate may or 

may not shift from β1 to β2: 

a. There are less than m shocks greater than D0, or J > N(t): 
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where number of shocks greater than D0 is denoted by l, for l = 0, 1, 2, …, m − 1. 

To derive the reliability that the system survives by time t, all possible combinations 

of l out of the total number of shocks i must be considered. Since all the shock sizes 

are independent and identically distributed, the formula remains unchanged for 

each of the combinations. 

b. There are at least m shocks greater than the critical level D0, or J = j ≤ N(t): 
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where the mth shock that is greater than D0 is the trigger shock j, for j = m, m + 1, 

m + 2, …, N(t). Therefore, there are m − 1 shocks larger than the critical level by 

the (j − 1)th shock. To derive the probability that the system survives by time t, all 

possible combinations of m − 1 out of j − 1 shocks must be considered. 

Now by summing them all, the system reliability at time t is derived to be 
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The reliability function for the specific case that φ is a constant, Yk, β1 and η are 

normally distributed can be expressed as 
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3.3.4. Case 4: Generalized Run Shock Model 

As shown in Figure 3.5, in a run shock model, the degradation rate changes from 

β1 to β2 immediately following the first run of n consecutive shocks larger than a threshold 

D0.  
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Figure 3.5: Generalized run shock model (n = 2) 

By considering the following situations, it can be derived further. 

i) When no shocks occur by time t, or N(t) = 0: 

( )( ) ( )10R t N t P t Hϕ β ε= = + + < .    (3.27)

  

ii) When at least one shock occurs by time t, or N(t) > 0, the degradation rate may or may 

not shift from β1 to β2: 

a. There is no run of n consecutive shocks (CS) that are greater than a critical value 

D0, or J > N(t): 
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b. There is at least one run of n CS greater than D0, or J = j > N(t). The first run of n 

CS greater than D0 can happen at the jth random shock for j = n, n + 1, n + 2, …, i: 

( )( ) { }

( ) ( )

1
1

1 20
1

.
j

ii

j k
j n k

it

j j k T j j
k

R t n J j N t i U P W D

P t t t Y H f t dtϕ β β ε

= =

=

 
≤ = ≤ = = < 

 
  × + + − + + <  

  

∑

∑∫





  (3.29) 

t 

H 

Y1
 

Y2
 

Y3
 

XS(t)
 

D0
 

D1
 

t1
 

t2
 

t3
 

t 

W(t) 

W1
 W2

 W3
 

t1
 

t2
 

t3
 

β1 
β2 
 

 

45 
 



Now the reliability function by time t is 
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where Ui is the probability that by the ith random shock, no run of n CS that are greater than 

D0 has occurred, or Ui = ( )( )P J i N t i> = ; and jU  is the probability that, by the jth random 

shock, the first run of n CS greater than D0 occurs, or ( )( )P J j i N t i= ≤ = . We propose 

Lemma 3.1 to derive Ui and jU . 

Lemma 3.1: We define UN to be the probability that no n consecutive successes occur in N 

trials, and NU  to be the probability that the first run of n consecutive successes occurs at 

the Nth trial: 

{ }
{ }

Pr no consecutive successes in  trials

Pr the first run of consecutive successes occurs at the  trial
N

th
N

U n N

U n N

=

=

 

In general, UN has been shown to satisfy the recursive equation (Krieger, 1984): 

2 1
1 2 3

n
N N N N N nU qU pqU p qU p qU−

− − − −= + + + + ,   (3.31) 

where p is the probability of success, and q = 1 − p. In addition, we have Uk  = 1 for 0 ≤ k 

≤ n − 1, and Un = 1 − pn. To have the first run of n consecutive successes occurring at the 

Nth trial, the last n trials must be successes, the (N − n)th trial must be a failure, and no 

consecutive n successes occur in the first N – n − 1 trials. Therefore, we have 
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□ 

For our model, we define a success as a shock being greater than the critical value 

D0, given it is not beyond the failure threshold value D1. Then we have 
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We use tj to denote the time that the degradation rate changes from β1 to β2, i.e., the 

first time that a run of n CS that are greater than D0 happens. If we assume that φ is a 

constant, and Yk, β1 and η are normally distributed, the reliability function for this specific 

case is 
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3.4. Numerical Examples and Results 

A micro-engine includes orthogonal comb-drive actuators and a rotating gear that 

are mechanically joined to each other. The linear displacement of the comb-drives is 

transferred to the gear through pin joints. Operation of a micro-engine over time leads to 

visible wear on the rubbing surface between the gear and the pin joint, and finally the 

growth of the wear results in a broken pin joint, which is the most frequent reason for 
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micro-engine failure. The major source of wear is degradation process. However, the 

results from shock tests on micro-engines demonstrate that shocks themselves can create 

wear debris between the pin joint and the gear, and cause the spring fracture (Tanner et al. 

2000). Therefore, a micro-engine fails due to two competing failure processes: (1) soft 

failure as the result of aging degradation and debris caused by shocks, and (2) hard failure 

because of spring fracture from the same shocks. In addition, a micro-engine becomes more 

susceptible to wear degradation and the wear volume accumulates faster, after exposure to 

a certain pattern of shocks or a significantly large shock. We implement our new reliability 

models to the application of micro-engines. The corresponding values of the parameters 

for the reliability analysis are given in Table 3.1.  

Table 3.1: Parameter values 
Parameters Values Sources 

H 0.00125 μm3 (Tanner & Dugger, 2003) 
D1 1.5 Gpa (Tanner & Dugger, 2003) 
D0 1.2 Gpa Assumption 
φ 0 (Tanner & Dugger, 2003) 
μβ1 8.4823×10-9 μm3 (Tanner & Dugger, 2003) 
σβ1 6.0016×10-10 μm3 (Tanner & Dugger, 2003) 
μη 2.4823×10-9 μm3 Assumption 
ση 1.0016×10-10 μm3 Assumption 
σ 10-10 μm3 Assumption 
λ 5×10-5 / revolutions Assumption 
μW 1.2 Gpa Assumption 
σW 0.2 Gpa Assumption 
μY 1.0×10-4 μm3 Assumption 
σY 2×10-5 μm3 Assumption 
δ 2.0×103 revolutions Assumption 
m 2 Assumption 
n 2 Assumption 

In reality, only one shock pattern may exist for a certain device. However, for the 

purpose of illustration, we use this application of micro-engines to demonstrate the four 
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different cases. By using a similar set of parameter values for all four cases (other than the 

model-specific parameters), it also enables comparison among different shock models. 

3.4.1. Reliability Analysis for Case 1 

For the described extreme shock model with increasing degradation rate, the 

reliability function R(t) in (3.13) is plotted in Figure 3.6, and a sensitivity analysis is 

performed to measure the effects of the ratios D0 / D1 and μβ2 / μβ1 on the reliability function 

(Figure 3.7-3.8).  

 
Figure 3.6: Plot of R(t) for Case 1 

As you can see in Figure 3.7, the ratio between the critical threshold and hard failure 

threshold (D0 / D1) has a significant impact on the reliability of the system. By increasing 

the ratio (D1 is fixed at 1.5 Gpa and D0 increases from 1.2 Gpa to 1.5 Gpa), R(t) shifts to 

right. It can be inferred that reliability of system improves by approaching D0 to D1, and 

finally when D0 = D1, the system performs without the change of degradation rate. In Figure 

3.8, we can observe that R(t) is susceptible to the ratio between the increased degradation 

rate and the initial degradation rate, μβ2 / μβ1. When the ratio reduces, R(t) shifts to right. 

Therefore, units with a smaller ratio μβ2 / μβ1 have a better reliability performance.  
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Figure 3.7: Sensitivity analysis of R(t) on 

D0 / D1 for Case 1 

 
Figure 3.8: Sensitivity analysis of R(t) on 

μβ2 / μβ1 for Case 1 

3.4.2. Reliability Analysis for Case 2 

Figure 3.9 presents the reliability plot for the generalized δ-shock model in (3.19). 

Figure 3.10 and Figure 3.11, show that sensitivity analysis was performed to observe how 

the parameters δ and μβ2 / μβ1 affect system reliability, respectively. 

 
Figure 3.9: Plot of R(t) for Case 2 

As can be observed in Figure 3.10, the inter-arrival time threshold δ affects the 

reliability function. By increasing δ from 0.5×103 revolutions to 2.0×103 revolutions, R(t) 

shifts slightly to the right at the time that degradation rate changes. It indicates that 

reliability performance is better for the smaller value of δ. Figure 3.11 shows that R(t) is 

significantly dependent on the ratio between the increased degradation rate and the initial 
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degradation rate, μβ2 / μβ1. When the ratio reduces, R(t) moves to right. Therefore, the device 

with a smaller ratio μβ2 / μβ1 is more likely to survive. 

 
Figure 3.10: Sensitivity analysis of R(t) on 

δ for Case 2 

 
Figure 3.11: Sensitivity analysis of R(t) on 

μβ2 / μβ1 for Case 2 

3.4.3. Reliability Analysis for Case 3 

The reliability function for the generalized m-shock model in (3.25) is plotted in 

Figure 3.12. Sensitivity analyses were also conducted to assess impact of the ratio D0 / D1 

and μβ2 / μβ1 on the system reliability, respectively (Figure 3.13-3.14). 

 
Figure 3.12: Plot of R(t) for Case 3 

From Figure 3.13, one can understand the great effect of the ratio between the 

critical threshold and hard failure threshold (D0 / D1) on the reliability of the system. When 

the ratio increases (D1 is fixed at 1.5 Gpa and D0 increases from 1.2 Gpa to 1.5 Gpa), the 
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R(t) shifts to right. This implies that a system with a higher ratio (D0 / D1) has better 

performance. In Figure 3.14, we can see that μβ2 / μβ1 has a large impact on R(t). When the 

ratio reduces, R(t) shifts to right. Therefore, units with a smaller ratio of μβ2 / μβ1 can have 

a better reliability performance.  

 
Figure 3.13: Sensitivity analysis of R(t) on 

D0 / D1 for Case 3 

 
Figure 3.14: Sensitivity analysis of R(t) on 

μβ2 / μβ1 for Case 3 

3.4.4. Reliability Analysis for Case 4 

For the generalized run shock model, we plot the reliability function in Figure 3.15. 

In addition, we perform sensitivity analyses to study how R(t) in (3.30) responds to the 

ratios D0 / D1 and μβ2 / μβ1, respectively (Figure 3.16-3.17). Figure 3.16 shows that system 

reliability is sensitive to the ratio D0 / D1. Increasing D0 / D1 (D1 is fixed at 1.5 Gpa and D0 

increases from 1.2Gpa to 1.5 Gpa), causes R(t) to shift to right. When D0 approaches the 

value of D1, R(t) becomes closer to the basic system reliability with a fixed degradation 

rate. It has been shown in Figure 3.17, that R(t) is responsive to the change in the ratio 

between the increased degradation rate and the initial degradation rate, μβ2 / μβ1. When the 

ratio reduces, R(t) shifts to right. Therefore, units with a smaller ratio μβ2 / μβ1 have a better 

reliability performance. 
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Figure 3.15: Plot of R(t) for Case 4 

 
Figure 3.16: Sensitivity analysis of R(t) on 

D0 / D1 for Case 4 

 
Figure 3.17: Sensitivity analysis of R(t) on 

μβ2 / μβ1 for Case 4 

3.5. Conclusion 

In this chapter, we introduced new reliability models for a complex system 

experiencing DCFP with a changing degradation rate according to different shock patterns. 

This study represents entirely new research for a device with DCFP. The two dependent 

failure processes are soft failure due to continuous wear degradation, and sudden increases 

in degradation caused by random shocks, and hard failure due to same shocks. These two 

failure processes are dependent because arriving random shocks affect both failure 

processes and the shock processes impact on the degradation rate. Four cases of 
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dependency between the shock process and the wear degradation rate are studied: 1) the 

degradation rate changes when the first shock is recorded above a critical value, or a 

generalized extreme shock model; 2) the degradation rate shifts when the inter-arrival time 

of two sequential shocks is less than a threshold, or a generalized δ-shock model; 3) the 

degradation rate shifts to a higher level right after m shocks greater than a threshold, or a 

generalized m-shock model; and 4) the degradation rate changes right after the first run of 

n consecutive shocks larger than a critical value, or generalized run shock model. Then the 

developed reliability models are demonstrated for these four cases by using a micro-engine 

example. 

  

54 
 



 Chapter 4   

Reliability Assessment of Competing Risks with Generalized Mixed 

Shock Model 

This chapter investigates reliability modeling for systems subject to dependent 

competing risks considering the impact from a new generalized mixed shock model. Two 

dependent competing risks are soft failure due to a degradation process, and hard failure 

due to random shocks. Unlike most existing mixed shock models that consider a 

combination of two shock patterns, our new generalized mixed shock model includes three 

classic shock patterns: extreme shock model, δ-shock model, and run shock model. 

According to the proposed generalized mixed shock model, the degradation rate and the 

hard failure threshold can simultaneously shift multiple times, whenever the condition for 

one of these three shock patterns is satisfied. An example using MEMS devices illustrates 

the effectiveness of the proposed modeling approach with sensitivity analysis. 

4.1. Introduction 

Recently, there have been many studies devoted to reliability analysis for systems 

subject to multiple DCFP (Wang et al. 2008; Lehmann 2009; Jiang et al. 2012). For 

complex systems such as MEMS, the dependence between the two competing risks of 

degradation and shocks can lead to complex behavior, which can be considered in a variety 

of different analytical perspectives. When a system withstands shocks, it becomes more 

vulnerable to upcoming shocks, while the shock process can also damage the system and 

accelerate the deterioration process (Tanner et al. 2000). This chapter aims to extend the 

previous models (Jiang et al. 2012; Rafiee et al. 2014a; Rafiee et al. 2014b) by 
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incorporating multiple sources of dependence between competing risks into a rich 

reliability model. 

Recent research has started to consider the impacts of shocks on the degradation 

process in dependent competing risks. Wang et al. (2011) investigated reliability modeling 

when the degradation and shocks are involved. Each shock impacts degradation in two 

forms: a sudden increase in the degradation rate, and an abrupt damage. Peng et al. (2010) 

proposed a reliability model for systems with two dependent failure processes: soft failure 

due to degradation that is accumulated by continuous degradation over time and sudden 

increase due to shocks, and hard failure caused by the same shocks. To extend the study in 

Peng et al. (2010), Jiang et al. (2012) considered the case where the system resistance to 

failure weakens when withstanding shocks. Therefore, the hard failure threshold is not 

fixed, and can change due to different shock patterns, i.e., extreme shock model, m-shock 

model, and δ-shock model. The hard failure threshold shifts to a lower level when one of 

the shock patterns occurs. Rafiee et al. (2014b) extended the model in Peng et al. (2010) 

by introducing new reliability models where the degradation rate can accelerate due to 

different shock patterns. As a result of withstanding shocks, the degradation rate is not a 

constant when the system becomes more prone to fatigue. By considering the declining 

hard failure threshold according to changes in degradation, Rafiee et al. (2014a) introduced 

reliability models for a device with two dependent failure processes: soft failure due to 

degradation, and hard failure due to random shocks. 

However, none of the existing research considers the integration or combination of 

these impacts of shocks on the system in one general model. The new model proposed in 

this chapter takes care of three different impacts of shocks on the system: 1) abrupt damage 
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on degradation, 2) increasing the degradation rate, and 3) shifting the hard failure threshold. 

What distinguishes our model from the previous research lies on this new assumption that 

the degradation rate and the hard failure threshold can simultaneously change multiple 

times, given the condition for the generalized mixed shock model is satisfied. This general 

assumption reflects the more complex behavior associated with modern systems and 

structures that experience multiple sources of external shocks.  

Compared to existing studies (Jiang et al. 2012; Rafiee et al. 2014a; Rafiee et al. 

2014b), the main contributions of this chapter are considered to be: 

1. The degradation rate and the hard failure threshold can shift/transition 

simultaneously. 

2. A transition is triggered by three shock models in a new generalized mixed shock 

model, instead of only one shock model. 

3. The transition can occur multiple times, whenever the condition for the generalized 

mixed shock model is satisfied. 

This chapter is organized as follows. Section 4.2 describes two dependent failure 

processes of hard failure and soft failure, and derives the reliability model for a system 

subject to a generalized mixed shock model. In Section 4.3, we derive the probability of 

trigger shock count in the generalized mixed shock model. Section 4.4 presents a numerical 

example and evaluates the effects of model parameters. Section 4.5 summarizes the chapter 

and concluding remarks are made. 

4.2. Reliability Modeling with Generalized Mixed Shock Model 

We propose a new reliability model for systems subject to dependent competing 

risks under the impact from a generalized mixed shock model. Two dependent competing 
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risks are soft failure due to a degradation process, and hard failure due to shocks. The shock 

process contains fatal shocks that can cause the hard failure instantaneously, and nonfatal 

shocks that simultaneously impact the system in three different ways: 1) damage the unit 

by increasing the degradation level instantaneously, 2) speed up the deterioration by 

accelerating the degradation rate, and 3) weaken the unit strength by reducing the hard 

failure threshold. While the first impact of nonfatal shocks comes from each individual 

shock, the other two impacts are realized when the condition for the generalized mixed 

shock model is satisfied. Unlike most existing mixed shock models that consider a 

combination of two shock patterns, our generalized mixed shock model includes three 

classic shock patterns: extreme shock model, δ-shock model and run shock model.  

Figure 4.1 depicts two dependent failure processes: soft failure due to a degradation 

process and hard failure due to random shocks. A soft failure occurs when the overall 

degradation level exceeds a predetermined threshold H. The continuous degradation by 

time t, X(t), is monotonically increasing, which is assumed to be a linear path, expressed 

as X(t) = φ + βt, where φ is the initial degradation level and β is degradation rate. This linear 

path function can be applied to a wide range of degradation models. 

Hard failure can be caused by fatal shocks that have a magnitude larger than Dj (j 

= 1, 2, 3). Nonfatal shocks impact the systems in three different ways: sudden increment 

in the degradation level at each shock z, Yz, and the simultaneous transitions in the hard 

failure threshold Dj and the degradation rate βj, whenever the conditions of the generalized 

mixed shock model is satisfied. For example, the first transition occurs when the magnitude 

of the shock arrived at time t2 is greater than the critical level for the extreme shock model 
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(W2 > De), which results in the reduced hard failure threshold from D1 to D2, and the 

increased degradation rate from β1 to β2. 

  
Figure 4.1: Two dependent competing failure processes: (a) soft failure, (b) hard failure 

Notation 

De   Critical level for extreme shock model 
Dr   Critical level for run shock model 
Dj   Hard failure threshold after the j-1th transition, j=1, 2… 
d  Amount of reduction in hard failure threshold after a transition 
N(t)  Number of shocks arrived by time t 
λ  Arrival rate of shocks 
Wz  Magnitude of the shock load  
FW(w)   Cumulative distribution function (cdf) of W 
H  Threshold level for soft failure 
X(t)  Amount of continuous degradation at time t   
XS(t)  Degradation due to continuous degradation and abrupt damage at time t   
φ   Initial level of degradation 
βj   Degradation rate after the j-1th transition 
η  Amount of increase in degradation rate after a transition  
Yz  Damage size on degradation caused by the shocks  

t 

H 

Y1
 

Y2
 

Y3
 

Y4
 

Xs(t)
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Z(t)   Cumulative damage size by shocks at time t  
n  Required number of consecutive shocks that are greater than Dr in the run 

shock model 
Bz  Inter-arrival time between two consecutive shocks 
δ   Minimum time lag between two consecutive shocks for the δ-shock model 
Tj   The jth transition time 
L  Maximum number of possible transitions for a system 
R(t)  Reliability function by time t 
RH(t)  Probability of no hard failure by time t 
RS(t)  Probability of no soft failure by time t 
Sj  Shock count that triggers the jth transition 
Sj

e  Shock count that triggers the jth transition according to extreme shock model 
Sj

r  Shock count that triggers the jth transition according to run shock model 
Sj

δ  Shock count that triggers the jth transition according to δ-shock model 

4.2.1. Transition Process 

According to the proposed generalized mixed shock model, the degradation rate 

and the hard failure threshold shift simultaneously, if 1) a shock is above a critical value 

De in the extreme shock model, 2) a time lag between two sequential shocks is less than δ 

in the δ-shock model, or 3) a run of n consecutive shocks are greater than a critical level 

Dr (Dr < De) in the run shock model. These three classic shock models are competing 

against each other, and whichever occurs first causes the shift in the hard failure threshold 

and the degradation rate. Every time that a transition occurs, the condition of the system 

worsens. In practice, the system can only undergo a limited number of transitions, after 

which any transition can cause the system to fail. The maximum number of possible 

transitions for a system, L, is predetermined based on the device characteristics. Some 

important assumptions regarding the transitions include: 

1. If more than one shock pattern takes place at the same time, they do not amplify the 

effects on the hard failure threshold and the degradation rate.  
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2. The transition is not a onetime event, and can happen multiple times whenever the 

condition for the generalized mixed shock model is satisfied.  

3. After each transition, prior shocks are not taken into account for the next generalized 

mixed shock model.  

4. The trigger shock count and the transition time are being reset after each transition. 

The degradation rate increases from βj to βj+1 when the system experiences the jth 

transition for j = 1, …, l, where l is the total number of transitions actually occurred before 

failure, and l ≤ L.  The β representing the degradation rate vector is 

1 1j lβ β β + =  β  
,    (4.1)

 

where the jth element (βj) is the degradation rate after the (j − 1)th transition. We define βj+1 

= βj + η where η is an i.i.d. positive random variable and independent of βj. 

Similarly, the hard failure threshold declines from Dj to Dj+1 after the jth transition 

for j = 1, …, l. We use D to represent the hard failure threshold vector as 

1 1j lD D D + =  D  
,   (4.2)

 

where the jth element (Dj) is the hard failure threshold after the (j − 1)th transition. We define 

Dj+1 = Dj − d where d is an i.i.d. positive random variable that is independent of Dj. 

The shock that triggers a transition is called the trigger shock. The time lag between 

two successive transitions is defined as the transition time. To facilitate the evaluation of 

reliability for a system subject to changing hard failure threshold and changing degradation 

rate according to multiple competing shock patterns, we investigate each transition 

separately from others. Consequently, the trigger shock count (the number of shocks 

leading to a transition) and the transition time are being reset after each transition. The 

number of shocks leading to the jth transition is denoted as Sj after the last transition, which 
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is an unknown random variable. The time lag between the (j − 1)th and the jth trigger shocks 

is called the jth transition time, Tj, which is also a random variable. We use T to denote the 

transition time vector including Tj for j = 1, …, l: 

1 1j l lT T T T + =  T  
,   (4.3)

 

where 1 1

l
l jj

T t T+ =
= −∑  represents the remaining time after the last transition. After the 

random transition times are realized, the vector T transfers to be a vector composed of 

known values of transition times:
 

1 1 .j l lt t t t + =  t  
   (4.4) 

4.2.2. Shock Process and Hard Failure 

Random shocks arrive according to a homogeneous Poisson process with rate λ, 

and it is independent of the degradation process. The total number of shocks by time t, N(t), 

follows a Poisson distribution: 

( )( ) ( ) ,    0,1, 2,
!

ite t
P N t i i

i

λ λ−

= = = …    (4.5) 

The magnitude of a shock is denoted by Wz for z = 1, 2,…, a sequence of i.i.d. non-

negative random variables with a common cumulative distribution FW(w) = P(Wz < w). In 

this chapter, the traditional extreme shock model is employed for traumatic failure. It 

means that the unit fails as soon as the size of any shock is greater than the corresponding 

hard failure threshold at the time of shock arrival. The probability that a unit survives after 

exposing to a single shock is 

( ) ( ) , for   1,  2, ;   1, , or 1.z j W jP W D F D z j l< = = … = +     (4.6) 
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In order for a unit not to experience hard failure by time t, it needs to survive all the 

shocks by that time. By considering the following two scenarios, the probability of no hard 

failure by time t, RH(t), can be derived further. 

i) No transition occurs by time t, or the shock count for the first transition is larger than 

N(t), S1 > N(t) = i. The magnitude of each shock must be less than the initial hard failure 

threshold, D1. The probability of surviving against hard failure given that no transition 

occurs by time t is 

( )( ) { } ( )1 1 1
1

.
i

i
H z W

z

R t S N t i P W D F D
=

 
> = = < = 

 


    (4.7) 

ii) At least one transition occurs by time t, or the shock count for the first transition is less 

than or equal to N(t), S1 ≤ N(t) = i. The magnitude of each shock must be less than the 

corresponding hard failure threshold at the time of shock arrival. We use 

1 1
,j

j kk
I i S+ =

= −∑  
for j = 1,…, l, to denote the number of remaining shocks after the jth 

transition, which is a random variable. After the value for shock counts are realized, it 

becomes 1 1

j
j kk

i i s+ =
= −∑ . The probability of no hard failure given S1 ≤ N(t) = i is (see 

Appendix I) 

( )( ) ( ) ( )

( ) ( )

2
1

2

1 1 1
1 1 1 1

1 1
2

.

l
j l

l

i i lL
s i

H W j W l
s s l j

l

l l j j
j

R t S s N t i F D F D

P S i P S s

+

+
= = = =

+ +
=

 
= ≤ = =  

 
 

× > = 
 

∑ ∑∑ ∏

∏



  (4.8) 

We present the further derivation of P(Sj = sj), the probability that the jth transition 

occurs at the sj
th shock after the last transition, and P(Sl+1 > il+1), the probability that no 

transition occurs in the remaining shocks after the very last transition in Section 4.3.  
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4.2.3. Degradation Process and Soft Failure 

A soft failure occurs when the overall degradation exceeds a predetermined 

threshold H. As aforementioned, we model the degradation process as a linear path, 

expressed as X(t) = φ + βt, where φ is the initial degradation level that is a random variable 

(due to variability in manufacturing and delivering processes) and β is degradation rate that 

is a random variable and varies from part to part.  

The shock process impacts the degradation in two ways: causing a sudden 

increment to the degradation by each nonfatal shock, and increasing the degradation rate 

according to a generalized mixed shock model. We denote the damage from each shock by 

Yz for z = 1, 2…, where Yz is an i.i.d. non-negative random variable. The overall degradation 

including both continuous degradation and instantaneous damage induced by nonfatal 

shocks can be expressed as 

( ) ( ) ( )
( )

1
( ) ,

N t

S z
z

X t X t Z t X t Y
=

= + = +∑     (4.9) 

where Z(t) represents the cumulative damage by nonfatal random shocks.  

 By considering the following two situations, the probability of no soft failure by 

time t, RS(t), can be derived further. 

i) No transition occurs by time t, or the shock count for the first transition is larger than 

N(t), S1 > N(t) = i. Given no transition by time, the initial degradation rate is fixed and 

the probability of no soft failure by time t is  

( )( ) ( ) ( )( )1 1 1
1

.
i

S S z
z

R t S N t i P X t H S N t i P t Y Hϕ β
=

 > = = < > = = + + < 
 

∑ (4.10)

 

ii) At least one transition occurs by time t, or the shock count for the first transition is less 

than or equal to N(t), S1 ≤ N(t) = i. When a system experiences a transition, the 
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degradation rate shifts; therefore, the degradation progresses at an increased 

degradation rate. The probability of no soft failure given at least one transition and the 

total number of shocks occurred by time t is (see Appendix II) 

( )( )

( ) ( )

2

2

1 1 1 1
1 1 1 1 1

1 1
2

.

l

l

i i L l i

S j j l l z
s s l j z

l

l l j j
j

R t S s N t i P T T Y H

P S i P S s

ϕ β β + +
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+ +
=

 
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 
 

× > = 
 

∑ ∑∑ ∑ ∑

∏



       

(4.11) 

 In a homogeneous Poisson process, the time for the jth transition Tj, given a value 

of Sj = sj, follows a gamma distribution with the scale parameter of sj, and the shape 

parameter of λ:

 ( ) ( )
1 , for 1, , .

1 !

j
j j

j

s
s t

T j j
j

f t t e j l
s

λλ − −= =
−



    (4.12) 

The probability that the jth transition occurs at the sj
th shock after the last transition, 

P(Sj = sj), changes based on which shock pattern occurs. Let 1

1

j
j kk

t t t−

=
′ = −∑  denote the 

remaining time after the jth transition for j = 1, …, l. Then the probability in (4.11) can be 

calculated as 

( )( ) ( ) ( )

( ) ( )

2

2

1

1 1 1 1
1 1 1 2

1 1 1 1
1 10 0

.

l

l

l

l

i i lL

S l l j j
s s l j

tt l i

j j l l z T l l T
j z
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
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(4.13) 

4.2.4. System Reliability Modeling 

We investigate the reliability model for a system subject to the generalized mixed 

shock model that can cause multiple transitions in both the degradation rate and the hard 

failure threshold. Given the number of shocks by time t, the soft failure and hard failure 
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processes are conditionally independent, due to the assumption that the shock damage size 

Yz is independent of the shock load Wz. Considering situations when there is no transition, 

only one transition, and more than one transition by time t, the reliability at time t for a 

system that experiences two DCFP is derived based on Eqs. (4.8) and (4.13): 

( ) ( ) ( ) ( ) ( )

( ) ( )
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4.3. Probability of Trigger Shock Count in the Generalized Mixed Shock Model 

The probabilities related to Sj (the trigger shock count for the jth transition) in (4.14) 

are derived in the following sections. First section discussed the applicability of different 

shock models, and last two sections derive the probability of trigger shock count and no 

transition consecutively. 

4.3.1. Applicability of Different Shock Models  

A transition occurs when the condition is satisfied for at least one of three shock 

patterns in the generalized mixed shock model: extreme shock model, δ-shock model, and 

run shock model. It is likely that the conditions for two or more shock patterns are satisfied 

at the same shock. For example, a shock with a size greater than De (extreme shock pattern) 

can have a time lag that is shorter than δ (δ-shock pattern). In a transition, the hard failure 

threshold is assumed to shift to a lower level. If the resulting hard failure threshold Dj is 

less than De in the extreme shock model or Dr in the run shock model, the corresponding 
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shock pattern is not applicable in the generalized mixed shock model anymore. For 

example, when Dj is less than De, a shock larger than Dj leads to a hard failure even before 

it is considered in the extreme shock model for triggering a transition.  

 Depending on the applicability of different shock patterns, we derive the probability 

of the jth transition occurring at the sj
th shock (after the last transition), P(Sj = sj), in the 

following. Due to the independence between the arriving time and the shock magnitude, 

the occurrence of δ-shock model is probabilistically independent from the occurrence of 

extreme shock model and run shock model.  

1. If the hard failure threshold is greater than the critical level of extreme shock model (Dj 

> De > Dr), all three shock patterns are applicable.  Then we have 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ).

e r
j j j j j j j j

e r
j j j j j j

r e e e
j j j j j j j j j j

r r e e
j j j j j j j j j j j j

P S s P S s S s S s

P S s P S s P S s

P S s S s P S s P S s P S s

P S s P S s P S s S s P S s P S s

δ

δ

δ

δ δ

= = = ∪ = ∪ =

= = + = + =

− = = = − = =

− = = + = = = =

(4.15) 

2. If the hard failure threshold is between the critical levels of extreme shock model and 

run shock model (De > Dj > Dr), the extreme shock model is not applicable. Then we 

have 

( ) ( ) ( ) ( ) ( ) ( ).r r r
j j j j j j j j j j j j j jP S s P S s S s P S s P S s P S s P S sδ δ δ= = = ∪ = = = + = − = =

 

 
(4.16) 

3. If the hard failure threshold is less than the critical level of run shock model (Dr > Dj), 

only δ-shock model is applicable: 

( ) ( ).j j j jP S s P S sδ= = =
     

(4.17)
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4.3.2. Probability of Trigger Shock Count 

The probabilities for different shock patterns occurring at the sj
th shock in Eqs. 

(4.15-4.17) are derived and presented in Table 4.1. The first column lists different shock 

patterns that can cause the jth transition, and the second column presents the probabilities 

of the corresponding shock patterns.  

Table 4.1: Probability for occurrence of different shock patterns 
Shock models that 

cause the jth transition 
at the sjth shock 

Probability 

1) Extreme shock pattern 
at the sj

th shock 
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When the run shock model is involved, we have three subcases based on the 

relationship between sj and n, as presented in Table 4.1. In general, we defined Vsj to be the 

probability that no run of n consecutive successes (a success is defined as a shock greater 

than Dr) occur in a set of sj shocks, and V′sj to be the probability that the first run of n 

consecutive successes occurs at the sj
th shock. We have (Krieger 1984): 

1
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,                                       if   ,

,             
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(4.18)
 

where p is the probability of success, and q = 1 –  p. In addition, we have 
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(4.19) 

When sj > n, to have the first run of n consecutive successes occurring at the sj
th 

trial, the last n trials must be successes, the (sj − n)th trial must be a failure, and no 

consecutive n successes occur in the first sj − n − 1 trials.  

The derivation of the four cases in Table 1 is described as follows: 

1) Extreme shock pattern: the probability is derived for the situation when the sj
th shock 

is the first shock with a magnitude greater than De, and the prior sj − 1 shocks are less 

than De, given that the magnitudes of all shocks are less than Dj to ensure no occurrence 

of hard failure.  

2) δ-shock pattern: the probability is derived for the situation when the time lag between 

the sj − 1th shock and the sj
th shock is shorter than δ, while the prior sj − 1 time lags are 

longer than δ.  
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3) Run shock pattern: the probability is derived based on the relationship between sj and 

n. Eq. (4.19) is used in three different subcases to derive the probability of the first run 

of n consecutive shocks greater than Dr occurs at the sj
th shock, with the probability of 

success p = ( Wz ≥ Dr | Wz < Dj ).  

4) Run shock pattern given concurrent occurrence of extreme shock pattern at the sj
th 

shock: according to Eq. (4.19), when the run shock model is among shock patterns that 

can cause a transition, we have three subcases based on the relationship between sj and 

n, with the probability of success p = ( Wz ≥ Dr | Wz < De ). 

4.3.3. Probability of no Transition in Remaining Shocks 

When the number of transitions by time t is l, it implies that there is no transition 

in the remaining il+1 shocks after the lth transition, or the shock count for the l + 1 transition 

is larger than il+1. The probability of no transition in the last il+1 shocks depends on the 

relationship between the final hard failure threshold Dl+1 and the critical levels for extreme 

shock pattern (De) and run shock pattern (Dr): 

1. If the hard failure threshold after the lth transition is greater than the critical level of 

extreme shock model (Dl+1 > De > Dr), all three shock patterns are applicable.  Then the 

probability of no transition in the last il+1 shocks is 

( ) ( )
( ) ( ) ( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 .

e r
l l l l l l l l

r e e
l l l l l l l l
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     (4.20) 

2. If the hard failure threshold after the lth transition is between the critical levels of 

extreme shock model and run shock model (De > Dl+1 > Dr), the extreme shock model 

is not applicable. Then we have 

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 .r r
l l l l l l l l l lP S i P S i S i P S i P S iδ δ
+ + + + + + + + + +> = > ∩ > = > >

 
(4.21) 
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3. If the hard failure threshold after the lth transition is less than the critical level of run 

shock model (Dr > Dl+1), only δ-shock model is applicable: 

( ) ( )1 1 1 1 .l l l lP S i P S iδ
+ + + +> = >

    

(4.22)
 

The probabilities of no transition after the lth transition in the remaining il+1 shocks, 

or P(Sl+1 > il+1), for different scenarios in Eqs. (4.20)-(4.22) are derived and presented in 

Table 4.2.  

Table 4.2: Probability of no transition after the lth transition 
Shock models that can 

cause the l+1th transition 
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Probability 
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4) No run shock 
pattern in 
remaining il+1 
shocks given no 
extreme shock 
pattern 
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1) No extreme shock pattern: the probability is derived for the situation when the 

magnitude of all il+1 shocks are less than De, given that the magnitudes of all shocks are 

less than Dl+1 to ensure no occurrence of hard failure. 

2) No δ-shock pattern: the probability is derived for the situation when the time lags 

between any two successive shocks must be longer than δ.  

3) No run shock pattern: the probability is derived based on the relationship between il+1 

and n. Eq. (4.18) is used to further derive the probability of no transition for three 

different subcases with the probability of success p = ( Wz ≥ Dr | Wz < De ). 

4) No run shock pattern given no extreme shock pattern in the remaining il+1 shocks: Eq. 

(4.18) is used to further derive the probability of no set of n consecutive shocks that are 

greater than Dr (no run shock pattern), given that the magnitudes of all shocks are less 

than De (no extreme shock pattern) for three subcases. 

4.4. Numerical Examples 

The developed reliability model is illustrated by using a realistic example of 

MEMS. Emerged in the late 1980s, MEMS devices are composed of (a) micro mechanical-

structures, (b) micro-sensors, (c) micro-electronics, and (d) micro-actuators, all placed into 

the same device at micro-scale. They have been widely used in many applications such as 
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medical, aerospace, military, etc. (Ye et al. 2012). We implement our new reliability 

models to the application of micro-engines, because a micro-engine fails due to two 

competing failure processes: (1) soft failure as the result of aging degradation and debris 

caused by shocks, and (2) hard failure because of spring fracture from the same shocks. In 

addition, a micro-engine becomes more susceptible to shocks and the wear volume 

accumulates faster, after exposure to a certain pattern of shocks or a significantly large 

shock. The corresponding value for each parameter is presented in Table 4.3.  

Table 4.3: Parameter values 
Parameters Values Sources 

H 0.00125μm3 (Tanner & Dugger 2003) 
D1 1.5Gpa (Tanner & Dugger 2003) 
μd 0.2Gpa Assumption 
σd 0.01Gpa Assumption 
De 1.4Gpa Assumption 
Dr 1.2Gpa Assumption 
φ 0 (Tanner & Dugger 2003) 

μβ1 8.4823×10-9μm3 (Tanner & Dugger 2003) 
σβ1 6.0016×10-10μm3 (Tanner & Dugger 2003) 

μη1 , μη2 2.4823×10-9 μm3 Assumption 
ση1 , ση2 1.0016×10-10 μm3 Assumption 

λ 5×10-5
 / revolutions Assumption 

μW 1.2Gpa Assumption 
σW 0.2Gpa Assumption 
μY 1.0×10-4μm3 Assumption 
σY 2×10-5μm3 Assumption 
δ 2.0×103 revolutions Assumption 

For the proposed generalized mixed shock model with increasing degradation rate 

and decreasing hard failure threshold, the reliability function R(t) in (4.14) is plotted in 

Figure 4.2, and sensitivity analysis is performed to measure the effects of the parameters 

De, δ and Dr on the reliability function (Figure 4.3-4.5). 
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Figure 4.2: Plot of R(t) 

 
Figure 4.3: Sensitivity analysis of R(t) on De 

As can be observed in Figure 4.3, the critical threshold for extreme shock model 

(De) has a significant impact on the reliability of the system. By increasing the threshold 

(De increases from 1.35 Gpa to 1.45 Gpa), R(t) shifts to right. It can be inferred that the 

reliability of system improves by increasing De. As you can see in Figure 4.4, the time lag 

threshold δ affects the reliability function. By increasing δ from 0.5×103 revolutions to 

2.0×103 revolutions, R(t) shifts slightly to the left. It indicates that the reliability 

performance is better for the smaller value of δ. 

 
Figure 4.4: Sensitivity analysis of R(t) on δ 

 
Figure 4.5: Sensitivity analysis of R(t) on Dr 

Figure 4.5 shows that the system reliability is sensitive to the critical threshold for 

run shock model (Dr). Increasing Dr from 1.15Gpa to 1.25 Gpa, causes R(t) to shift to right. 

When D0 approaches D1, R(t) shifts to right that indicates a more reliable system. 
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4.5. Conclusion 

This chapter studies a new reliability model for a system subject to dependent 

competing risks under the impact from a generalized mixed shock model. Two dependent 

failure risks are soft failure due to degradation process, and hard failure due to shocks. A 

soft failure occurs when the overall degradation level accumulated by continuous 

degradation and sudden increment caused by shocks exceeds a predetermined threshold. 

The hard failure occurs when the size of a fatal shock is beyond the hard failure threshold 

level that can change over time. A device fails as soon as either one of the failure 

mechanisms occurs. These two failure processes are competing yet dependent, because 1) 

the shocks damage the unit by increasing the degradation instantaneously, 2) the shock 

process may speed up the deterioration by accelerating the degradation rate, and 3) the 

shock process may weaken the unit by reducing the hard failure threshold. While the first 

impact of nonfatal shocks comes from each individual shocks, the other two impacts are 

realized when the condition for a generalized mixed shock model is satisfied. The proposed 

generalized mixed shock model happens if 1) a shock is above a critical value in extreme 

shock model, 2) a time lag between two sequential shocks is less than δ in δ-shock model, 

or 3) a run of n consecutive shocks is greater than a threshold in run shock model. When 

the condition for the generalized mixed shock model is satisfied, the degradation rate 

increases and the hard failure threshold decreases simultaneously. An example using 

MEMS devices illustrates the effectiveness of the proposed model with sensitivity analysis.  
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Chapter 5  

Reliability Analysis and Condition-based Maintenance for Multiple 

Failure Processes under Degradation-dependent Hard Failure 

Threshold 

In this chapter, we introduce reliability models for a device with two dependent 

failure processes: soft failure due to degradation, and hard failure due to random shocks, 

by considering the declining hard failure threshold according to changes in degradation. 

Previous research assumes that the hard failure threshold is a constant during the entire life 

of a device or decreases according to different shock models, which are appropriate 

assumptions for many applications. However, due to the nature of degradation for complex 

devices such as MEMS, a degraded system is more vulnerable to force and stress during 

operation. A new CBM model derived from failure limit policy (FLP) is presented to ensure 

that a device is functioning under a certain level of degradation. Finally, numerical 

examples are illustrated to explain the developed reliability and maintenance models, along 

with sensitivity analysis. 

5.1. Introduction 

For a system with two dependent failure processes: soft failure and hard failure, 

this chapter investigates a new problem on the decreasing hard failure threshold due to 

changes in degradation level that creates a direct dependence between hard failure and soft 

failure. Most previous research assumes that the hard failure threshold remains a constant 

during the entire life of a device (Wang et al. 2008; Peng et al. 2010) or decreases according 

to different shock models (Jiang et al. 2012), which are appropriate assumptions for many 
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design problems. However, due to the nature of degradation for complex devices such as 

MEMS, a degraded system can be more vulnerable to external force and stress during the 

operation. In other words, a device is more susceptible to failure due to external shocks 

when it has suffered more degradation. This observation motivates us to study the 

reliability of a device given that the hard failure threshold is not fixed, but decreases 

according to changes in degradation.  

We investigate two different scenarios including (1) one-time reduction in hard 

failure threshold, where hard failure threshold decreases to a lower level instantaneously 

when the overall degradation exceeds a critical level; and (2) continuous reduction in hard 

failure threshold, where hard failure threshold gradually reduces from an initial value, and 

the amount of reduction is linearly proportional to changes in degradation. This new 

problem is related to but fundamentally different from the work in Jiang et al. (2012), where 

the hard failure threshold shifts due to the exposure to various shock patterns, rather than 

due to the changes in degradation. Our problem is more challenging in modeling the 

unknown random transition time in Case 1, and the continuously declining hard failure 

threshold in Case 2. 

Based on the reliability models developed for these two cases, we propose a new 

CBM model derived from FLP, under which parts are preventively replaced when some 

reliability index reaches a predetermined level. Under FLP, parts are replaced preventively 

when the failure rate or other reliability indices reach a predetermined level. FLP can assure 

that a unit functions above a minimum acceptable level of reliability (Wang 2002). 

Bergman (1978) studied a FLP, in which replacement is performed according to an 

assessment of some changing state variable, e.g., wear, accumulated damage, or 
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accumulated stress. They proved that the optimal maintenance rule, based on the average 

long-run cost, is to replace units instantly at failure or when the state variable exceeds a 

critical threshold, whichever occurs first. In this chapter, we extend Bergman’s FLP to a 

CBM policy by inspecting the part at the prearranged times. Based on what the inspection 

reveals, preventive replacement is performed if the degradation is beyond a cut-off limit, 

or corrective replacement is performed if the part has failed. 

The remainder of this chapter is organized as follows. Section 5.2 proposes the 

reliability models for devices subject to degradation and random shocks with a decreasing 

hard failure threshold due to the changing degradation. In Section 5.3, we introduce a new 

maintenance policy based on FLP. Section 5.4 presents a numerical example to assess the 

reliability models and maintenance policy. Section 5.5 summarizes the chapter and 

concluding remarks are made. 

5.2. Reliability Analysis with Decreasing Hard Failure Threshold 

As shown in both Figure 5.1 and Figure 5.2, we consider two competing dependent 

failure processes: (i) soft failure happens when the total level of degradation, the result of 

continuous degradation in addition to abrupt damages due to random shocks, exceeds a 

threshold level H0; and (ii) hard failure occurs when the magnitude of a shock is above a 

changing threshold level. In the previous research, the hard failure threshold is either fixed 

(Peng et al. 2010) or changing due to different shock patterns (Jiang et al. 2012). In this 

new model, we address the problem of the decreasing hard failure threshold due to the 

changes in degradation. When a device deteriorates, it is more likely to fail due to shocks. 

For example, a component of a MEMS device becomes more susceptible to hard failure 

after it wears out over time (Tanner et al. 2000). 
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The dependence between two failure processes is reflected in two respects. 

1) The two competing failure processes are dependent due to shared exposure to random 

shocks: random shocks cause additional abrupt increasing in degradation level.  

2) The hard failure threshold reduces according to the changes in degradation. In Case 1 

(Figure 5.1), it lowers to a reduced level when the degradation amount reaches a 

specified critical value; and in Case 2 (Figure 5.2), it gradually decreases when the 

system is degrading. 

 
Figure 5.1: Two dependent competing 

failure modes for Case 1 

 
Figure 5.2: Two dependent competing 

failure modes for Case 2 

The dependence between two failure processes is reflected in two respects. 

3) The two competing failure processes are dependent due to shared exposure to random 

shocks: random shocks cause additional abrupt increasing in degradation level.  

4) The hard failure threshold reduces according to the changes in degradation. In Case 1 

(Figure 5.1), it lowers to a reduced level when the degradation amount reaches a 

specified critical value; and in Case 2 (Figure 5.2), it gradually decreases when the 

system is degrading. 
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Notation 

D0   Initial hard failure threshold 
D1   Reduced hard failure threshold in Case 1 
D(t)   Hard failure threshold at time t in Case 2 
λ    Arrival rate of random shocks 
α   Coefficient in continuously decreasing hard failure threshold in Case 2 
Wk   Magnitude of the kth shock load 
H0    Soft failure threshold 
H1   Degradation level for the hard failure threshold transition in Case 1 
X(t)   Amount of continuous degradation at time t   
XS(t)   Degradation due to continuous degradation and shock damages at time t   
φ    Initial level of degradation 
β    Degradation rate 
Yk    Damage size caused by the kth random shock 
Tk   Arrival time of the kth shock in Case 2 
Z(t)  Cumulative damage size by random shocks at time t 
RH(t)  Probability of no hard failure by time t 
RS(t)  Probability of no soft failure by time t 
R(t)   System reliability by time t 
CA(τ , HR) Average maintenance cost rate 
C(t)   Cumulative maintenance cost by time t 
CI   Inspection cost 
CR   Replacement cost 
CF   Penalty cost per unit of time for an undetected failure 
CT   Total maintenance cost incurred in a renewal cycle 
L   Length of a renewal cycle 
ρ  System down time (time from system failure to the next inspection) 
τ   Length of inspection interval 
T  Failure time 
NI   Number of inspection before replacement 
HR   Cut-off limit on degradation for preventive replacement 
R(t | H) System reliability by time t given the soft failure threshold is H 
NPR  Count of inspection at which the preventive replacement is performed 
NCR Count of inspection at which the corrective replacement is performed 

5.2.1. Modeling Soft Failure 

Soft failure occurs when the overall degradation exceeds the threshold value H0. 

The total degradation expressed as XS(t) is accumulated by continuous degradation over 

time and instantaneous damage caused by shocks. The degradation over time follows a 
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path X(t) = φ + βt + ε, where the initial value φ and the degradation rate β (the slope of 

degradation path) are random variables, capturing the unit-to-unit variability. The random 

error term ε following a normal distribution ε ~ N(0 , σ2), is added to model temporal 

variability. In addition, degradation accumulates instantaneously when a shock arrives. The 

abrupt shifts in degradation measured as shock damage size, Yk, for k = 1, 2, …, N(t), are 

assumed to be i.i.d. random variables. The total damage size caused by random shocks by 

time t, Z(t), is 
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where N(t) is the total number of shocks that have arrived by time t. The degradation, 

consisting of both degradation and accumulated shock damages, is XS(t) = X(t) + Z(t). 

For a unit not to experience a soft failure, the total degradation should be less than 

the threshold H0. Therefore the probability of surviving against soft failure, RS(t), is 
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If we denote FX(x , t) to be the cdf of the continuous degradation, X(t), and fZ(z) to 

be the pdf of the accumulated damage caused by shocks, Z(t), then the cdf of XS(t), FXs(x , 

t), can be derived using a convolution integral: 
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(5.3) 

and we have RS(t)= FXs(H0 , t).  
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The model in (5.3) is general and can accommodate different distributional 

assumptions. In a specific case, we assume that φ is a constant, β and Yk are normally 

distributed, i.e., β ~ N(μβ , σβ
2) and Yk ~ N(μY , σY

2). For this specific case, the resulting total 

degradation, XS(t), follows a normal distribution. Then the probability in (5.2) can be 

expressed as 
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(5.4) 

where Ф(.) is the cdf of a standard normal random variable. 

5.2.2. Modeling Hard Failure 

Random shocks arrive according to Poisson process with a rate λ. The size of the 

kth random shock, denoted by Wk, and they are i.i.d. random variables with cdf FW(w). The 

system fails due to hard failure as soon as the size of a random shock exceeds the 

corresponding threshold. The initial threshold for hard failure is D0; however, it may 

decrease due to the changes in degradation by considering two different cases. 

Case 1: One time reduction in hard failure threshold 

When the degradation reaches the transition level H1, it causes the hard failure 

threshold to reduce to D1. We denote the first time that the degradation exceeds H1, or the 

transition time, to be Θ, which is a random variable defined as 

( ){ }1inf : .St X t HΘ = ≥      (5.5) 

The number of shocks before the degradation exceeds H1, N(Θ), is also a random 

variable. The degradation may or may not reach the transition level H1 by time t. Then the 

probability that the system survives against hard failure by time t, RH(t), is 
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 (5.6) 

To derive the conditional pdf of Θ, fΘ(θ | N(θ) = j ), we employ the cdf of XS(t) in 

Eq. (5.3) to find the cdf of Θ given the number of shocks by that time, FΘ(θ | N(θ) = j ). 

Similar to defining the probability of no soft failure by time t, we have 
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For the specific case when β and Z(t) follow normal distributions,  
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Then the pdf of Θ is derived as follows: 
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where ϕ(.) is the pdf of a standard normal random variable. 

Case 2: Continuous reduction in hard failure threshold  

A unit fails if the size of random shock exceeds the corresponding threshold D(t), 

which is a function of the degradation at time t. The rationale is that a device is weakening 

when the total degradation continuously increases. Therefore, it becomes more sensitive to 

shocks, as reflected in the form that the hard failure threshold drops gradually. We assume 

that the change in D(t) is inversely proportional to the change in XS(t):  

( ) ( ) ( )( )0 0 .S SD t D X t Xα= − −
 

   (5.10)

 
The probability a device survives against hard failure by time t, RH(t), is 

( ) ( )( ) ( )( ) ( ){ } ( )( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( )( )

( )

1

1

0 0 1

0 1

0
0 1

00
0 1

0
1

( )

(

)

=

)

(

k
i

k
i

kk

i

H H k k
i i k

i

k k
i k

it t

k k T k kt
i k

it t

k T k kt
i k

i

T k kW
k

R t R t N t i P N t i P W D T P N t i

P W D T P N t i

P W D t f t dt P N t i

P W D f t dt P N t i

F D f t dt

−

−

∞ ∞

= = =

∞

= =

∞

= =

∞

= =

=

 
= = = < = 

 
 

= < = 
 

 
= < = 

 
 

= < = 
 


=


∑ ∑

∑ ∏

∑ ∏∫ ∫

∑ ∏∫ ∫

∏









( )( )
1 0

0
,

i

t t

t
i

P N t i
−

∞

=


= 


∑∫ ∫

(5.11) 

84 
 



where ( )( )( ) 0k k S k SW W X t Xα= + −  is a random variable with cdf ( )
kWF w , and Tk is the 

arrival time of the kth shock, for k = 1, …, N(t). Given k, Tk follows a gamma distribution 

with the scale parameter of k, and the shape parameter of λ: 

1( | ) .
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λλ −−=
−  

    (5.12)

 In a specific case where the Wk and XS(tk) are assumed to follow normal 

distributions, it can be shown that kW  is also a normal variable. Therefore, the probability 

of no hard failure by time t is 
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(5.13) 

 For numerical computation, a practical upper-bound can be used for the number of 

random shocks, instead of infinity. 

5.2.3. System Reliability Analysis 

The reliability at time t for a device that experiences two DCFP is formulated as 
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.S H
i
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=

= = = =∑
        

(5.14) 

 Given the number of shocks by time t, the soft failure and hard failure processes 

are conditionally independent, due to the assumption that the shock damage size Yk is 

independent of the shock load Wk. 

Case 1: One time reduction in hard failure threshold 

The reliability in (5.14) is derived further by considering the following situations:

 

i) When no shocks occur by time t, or N(t)=0, 

85 
 



( )( ) ( )( ) ( )( ) ( )00 0 0 ( ) .S HR t N t R t N t R t N t P X t H= = = = = <  (5.15) 

ii) At least one shock occurs by time t, or N(t) > 0. There are two different scenarios for 

the device to work without failure. The probability of the two mutually exclusive 

scenarios must be added for every possible number of random shocks. 

1) The system does not experience transition in hard failure threshold by time t, or 

XS(t) < H1. Based on Eqs. (5.2) and (5.6), we have 
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2) The system experiences transition in hard failure threshold due to excess of 

degradation over the critical value H1 by time t, or XS(t) ≥ H1. Based on Eqs. (5.2) 

and (5.6), we have 
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Now by summing them all, the system reliability at time t is expressed as: 
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In the specific case where φ is a constant, Wk, Yk, and β are normally distributed, 

the reliability function can be derived as 
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Case 2: Continuous reduction in hard failure  

The threshold for hard failure decreases continuously depending on the 

degradation. By considering the following situations, the reliability function is derived 

further. 

i) When no shocks occur by time t, or N(t) = 0, 

( )( ) ( )( ) ( )( ) ( )00 0 0 ( ) .S HR t N t R t N t R t N t P X t H= = = = = <
  

(5.20) 

ii) At least one shock occurs by time t, or N(t) > 0, 
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By combining these two different situations, the system reliability at time t is derived to be 
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(5.22) 

The reliability function for the specific case where φ is a constant, Wk, Yk, and β are 

normally distributed can be expressed as 
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5.3. Condition-based Maintenance Based on Failure Limit Policy 

In this section, we consider a CBM policy developed based on FLP. The basic 

assumptions for this maintenance policy include: 

1. The device is inspected at periodic intervals τ.  

2. At inspection, if the device is failed, corrective replacement takes place; if the 

degradation is beyond the cut-off limit HR, a preventive replacement will be 

implemented; if the device is still functioning and the degradation is less than HR (safe 

region), no action takes place. 

3. If the device fails, it is not self-announcing, and remains failed until the next inspection. 
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Figure 5.3 depicts how the proposed maintenance model is implemented. In this 

example, the first unit is preventively replaced at the third inspection, because the 

degradation exceeded the cut-off limit although the device is still operating.  The second 

unit is correctively replaced due to hard failure at the sixth inspection. For the purpose of 

illustrating the proposed CBM model, Figure 5.3 shows the decreasing hard failure 

threshold related to Case 1. 

 

 

Figure 5.3: Condition-based maintenance policy 

By minimizing the average maintenance cost rate, two decision variables are 

determined: cut-off limit on degradation for preventive replacement HR, and inspection 

interval τ. From basic renewal theory, the average long run maintenance cost per unit of 

time can be calculated as follows: 
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A renewal cycle is defined as the time from the installation to the first replacement, 

or the time between two successive replacements. The total maintenance cost, CT, includes 

the inspection cost, replacement cost, and penalty cost due to failure, which is partially 

based on the lost profit during down time. Therefore, the expected total maintenance cost 

is formulated to be 

[ ] [ ] [ ] .T I I F RE C C E N C E Cρ= + +     (5.25) 

The probability of performing preventive replacement at the kth inspection, P(NPR 

= k), that ensures the system does not experience hard failure and the degradation is within 

(HR , H0) at the kth inspection can be derived as: 
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where R(t | H) is the probability that system is still functioning by time t given the threshold 

of H. The probability of performing corrective replacement at the kth inspection, P(NCR = 

k), i.e., the probability that the system fails between the (k − 1)th and kth inspections, can be 

derived as: 

( ) ( )( ) ( )0 01 .CRP N k R k H R i Hτ τ= = − −    (5.27) 

The number of inspections in a renewal cycle, NI, is determined by the time of 

replacement, which takes place when we have to perform either preventive replacement or 

corrective replacement. Therefore, the probability mass function of NI is given as 

( ) ( ) ( ) ( )( ) ( )01 .I PR CR RP N k P N k P N k R k H R k Hτ τ= = = + = = − −

 
(5.28) 
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Then the expected number of inspections in a renewal cycle is derived as 
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(5.29) 

The expected length of renewal cycle is subsequently determined as 
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(5.30) 

The downtime is the time from a failure to the next inspection, or ρ = NI τ – T. Then 

the expected length of downtime is given as 
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Based on Eqs. (5.24) to (5.31), the average long run maintenance cost rate as a 

function of τ and HR is derived as  
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(5.32) 

We obtain the optimal time interval for periodic inspection, and the cut-off limit on 

degradation by minimizing CA(τ , HR) using Nelder-Mead algorithm in the numerical 

examples (Lagarias et al. 1998). Optimum Results along with sensitivity analysis are 

presented in Section 5.4.3. 

5.4. Numerical Examples 

Numerical examples were solved to demonstrate the models and equations that 

were presented in the chapter. The corresponding values for the parameters in reliability 
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analysis are given in Table 5.1, where some parameters are adopted from literature and 

others are assumptions based on typical and plausible values. 

5.4.1. Reliability Analysis for Case 1 

For the described system when the hard failure threshold decreases to a lower level 

after the degradation exceeds a critical level, the reliability function R(t) in (5.19) is plotted 

in Figure 5.4, and a sensitivity analysis was performed to measure the effect of the changing 

ratio D1 / D0 on the reliability function (Figure 5.5). As shown in Figure 5.5, the ratio 

between the reduced hard failure threshold and initial threshold (D1 / D0) has significant 

impact on the reliability of the device. By increasing the ratio (D0 is fixed at 1.5Gpa, and 

D1 increases from 1.2Gpa to 1.5Gpa), the R(t) shifts to right. It can be inferred that by 

approaching D1 to D0, the reliability improves and the model becomes the basic model 

without the decreasing hard failure threshold. 

Table 5.1: Parameter values 
Parameters Values Sources 

H0 0.00125μm3 (Tanner & Dugger 2003) 
H1 0.000875 μm3 Assumption 
D0 1.5Gpa (Tanner & Dugger 2003) 
D1 1.2Gpa Assumption 
φ 0 (Tanner & Dugger 2003) 
μβ 8.4823×10-9μm3 (Tanner & Dugger 2003) 
σβ 6.0016×10-10μm3 (Tanner & Dugger 2003) 
μW 1.2Gpa Assumption 
σW 0.2Gpa Assumption 
μY 1.0×10-4μm3 Assumption 
σY 2×10-5μm3 Assumption 
σ 10-10 μm3 Assumption 
α 300Gpa / μm3 Assumption 
λ 5×10-5 / revolutions Assumption 
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5.4.2. Reliability Analysis for Case 2 

Figure 5.6 shows the reliability function in (5.23 for Case 2, when the hard failure 

threshold constantly decreases due to the degrading of the device. Figure 5.7 shows a 

sensitivity analysis performed to study how the parameter α affects system reliability. 

The coefficient in hard failure threshold impacts the reliability function 

significantly (Figure 5.7). By changing α from 0Gpa / μm3 to 400Gpa / μm3, the R(t) shifts 

to the left. It indicates that reliability performance is better for the smaller value of α. When 

α = 0, the hard failure threshold remains a constant. 

 
Figure 5.4: Plot of R(t) for Case 1 

 
Figure 5.5: Sensitivity analysis of R(t) on 

D1 / D0 for Case 1 
 

 
Figure 5.6: Plot of R(t) for Case 2 

 
Figure 5.7: Sensitivity analysis of R(t) 

on α for Case 2 
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5.4.3. Optimal Maintenance Policy 

By minimizing CA(τ , HR) in (5.32), we can obtain the optimal time interval for 

periodic inspection τ, and cut-off limit HR, in the proposed CBM policy. Since the objective 

function is a highly nonlinear function with two decision variables, it is challenging to find 

the optimum solution for the maintenance model. Therefore, we used Nelder-Mead simplex 

algorithm that is an effective nonlinear optimization method for problems in which 

derivatives may not be known. This technique can be used to approximate a local optimum 

of a problem with multiple variables when the objective function changes smoothly 

(Lagarias et al. 1998). Nelder-Mead algorithm is based on evaluating a function of N 

variables at the N + 1 vertices of a simplex to find a local minimum. In the long-run average 

cost rate function with two variables, the inspection interval and cut-off limit, a simplex is 

a triangle, and the algorithm is a pattern search that compares the cost rate values for the 

three vertices of a triangle. In each iteration a triangle is generated, for which the CA(τ , HR) 

values at the vertices become smaller. The ith iteration starts by ordering the function values 

for three vertices, such that 

( ) ( ) ( )
1 2 3 .i i i

A A AC C C≤ ≤     (5.33) 

The worst vertex, CA3
(i), where the value of CA(τ , HR) is the largest, is replaced by 

a new vertex with an improved function value to form a new triangle, and the search is 

continued. The value for the updated vertex is computed by using reflection, expansion, 

contraction, and reduction rules. Matlab is used to solve this nonlinear optimization 

problem. To demonstrate the optimization of the average long run cost rate, example values 

are assigned to the cost parameters: CI = $1, CF = $50, and CR = $10. For Case 1, the 

minimum average long-run maintenance cost rate is $4.3888/cycle, which is obtained at τ* 
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= 1.125×105, the optimal number of revolutions per inspection period, and HR
* = 0.00097 

μm3 (Figure 5.8). For Case 2, the minimum average long-run maintenance cost rate is 

$5.1964 / cycle, which occurs at τ* = 1.026×105 and HR
 * = 0.00093 μm3 (Figure 5.9). 

Figures 5.8 and 5.9 depict CA(τ , HR) as a function of τ and HR for Case 1 and 2, respectively. 

It can be observed from the figures how τ and HR affect the long-run average cost rate. 

From Figures 5.8 and 5.9, we can see that CA(τ , HR) is not very sensitive to changes in HR, 

compared to changes in τ.  

 
Figure 5.8: Plot of CA(τ , HR) on HR and τ 

for Case 1 

 
Figure 5.9: Plot of CA(τ , HR) on HR and 

τ for Case 2 

  
Figure 5.10: Sensitivity analysis of CA(τ , 

HR) on D1 for Case 1 

 
Figure 5.11: Sensitivity analysis of 

CA(τ , HR) on α for Case 2 

We perform a sensitivity analysis for both cases to study the effects of certain 

parameters on CA(τ , HR). In Case 1, D1 changes from 1.2Gpa to 1.5Gpa; and in Case 2, α 

D1=1.2GPa … 1.5GPa α=400GPa/μm3 
… 0GPa/μm3 
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varies from 0Gpa / μm3 to 400Gpa / μm3. As shown in both Figure 5.10, and Figure 5.11, 

when the reliability function improves, i.e., in Case 1 by increasing ratio D1 / D0, and in 

Case 2 by decreasing parameter α, the optimum inspection interval becomes longer and the 

minimum average long-run maintenance cost rate decreases.  

5.5. Conclusion 

In this chapter, we propose new reliability models and CBM policy for a device 

subject to DCFP of degradation and random shocks, with a decreasing hard failure 

threshold according to the change of degradation. The two dependent failure processes are 

degradation and random shocks. The degradation process can cause soft failure and random 

shocks can cause hard failure. Soft failure occurs when the degradation, accumulated by 

continuous wear degradation and instantaneous damage caused by random shocks, exceeds 

the soft failure threshold value. Hard failure occurs if the size of a shock is beyond the hard 

failure threshold level. A device fails as soon as either one of the failure mechanism occurs. 

These two failure processes are competing yet dependent, because arriving random shocks 

affect both failure processes and the degradation impacts on the hard failure threshold. 

Two cases of dependency between the hard failure threshold and the degradation 

are studied: 1) the hard failure threshold has an initial value and it reduces to a lower level 

as soon as the overall degradation reaches a critical value, and 2) the threshold decreases 

continuously, but the amount of reduction in the threshold is proportional to changes in 

degradation. We also develop a maintenance strategy based on FLP to ensure the device 

functioning under a certain level of degradation. The average long-run maintenance cost 

rate based on the reliability model is a multivariate nonlinear function with two decision 

variables of cut-off limit on degradation, and inspection interval. Then the developed 
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reliability models are demonstrated for these two cases by using a micro-engine example. 

There are several interesting future research directions.  One is to develop a reliability 

model for systems of multiple components, where each component is subject to DCFP with 

decreasing hard failure threshold. 
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Chapter 6  

Condition-based Replacement Analysis for Multi-stent Systems 

In this chapter, we develop a condition-based replacement (CBR) model for a multi-

component system of stents implanted in human arteries that is subject to both delayed and 

instantaneous failures, based on the system-level reliability model developed by Feng et 

al. (2014) for such a system. In the proposed CBR, the replacement is either a preventive 

or corrective action performed depending on the condition of the system. Numerical 

examples using data from the literature are presented to investigate the effectiveness of the 

proposed CBR policy for implanted multi-stent systems. 

6.1. Introduction 

The high occurrence of cardiovascular diseases and the rapid evolution of bio-

structure devices have elevated the maintenance study of biomedical devices from being a 

feature to a necessity. This issue becomes even more challenging as the failure may not be 

self-announcing in most cases, and hence, requires a well-studied predictive approach. 

Stent, a small scaffold, is one of such evolving bio-structures that is implanted in human 

arteries to counteract the effects of atherosclerosis (preventing the artery wall from 

collapsing). As reported in 2005, over one million stents are implanted in human arteries 

each year, and the market for endo- and cardiovascular stents was estimated to exceed $7 

billion annually (Marrey et al., 2006). Although stents have been an effective substitute for 

practice of vascular intrusions, the potential in-vivo failure of this device should never be 

neglected. Applied stresses in manufacturing, implantation, and operation of stents subject 

them to a variety of overloads and cyclic stresses, which can cause two dominating failure 
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modes of stents: instantaneous failures due to single-event overloads, and delayed failures 

or crack growth due to cyclic stresses(Robertson & Ritchie 2007). 

In this chapter, we extend the previous research work presented in Keedy and Feng 

(2013) to a multi-stent system by proposing a CBR strategy to minimize the impact of 

unforeseen failures of stents and facilitate continued advancement of the implant devices. 

Almost none of previous studies on replacement scheduling of single or multiple stents 

conducted by medical and engineering research communities have considered the 

probabilistic nature of stent failure. The only research work addressing this issue is 

presented in Keedy and Feng (2013) that incorporated reliability models in the optimization 

of a unique two-phase maintenance policy to achieve the optimal follow-up schedule. 

However, their study does not address the issue of multiple stents implanted in patient 

arteries, which is the case in many stent implantation surgeries. The stochastic, economical, 

and structural dependencies and interconnection of multiple stents implanted in human 

arteries significantly affect the system-level reliability of stents resulting in different 

follow-up schedules, which has motivated us to carry out this research work.  

The rest of the chapter is organized as follows. In Sections 6.2 and 6.3, the analysis 

of failure processes and the reliability modeling for a multiple-stent system developed by 

Feng et al. (2014) is presented. Their proposed reliability model is used for the 

mathematical formulation of the condition-based replacement (CBR) developed in Section 

6.4. In Section 6.5, numerical results and discussions are presented. Finally, concluding 

remarks are made in Section 6.6. 

Notation 

N(t)    Number of shocks by time t 

𝜆𝜆     Shock arrival rate Average 
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a(i)    Crack length of stent i 

ath(i)    Failure threshold value of crack length for stent i 

Hij    Shock damage size on crack length from the jth shock on stent i 

Kij    Fracture toughness value caused by the jth shock on stent i 

Kiʹ    Crack initiation toughness of stent i 

Wi  Threshold on expected fracture toughness value for stent i  

τ    Length of inspection interval 

CA(τ)   Average long run maintenance cost rate 

C(t)    Cumulative maintenance cost by time t 

CT    Total maintenance cost incurred in a renewal cycle 

L    Length of a renewal cycle 

R(t|a1,…an) Reliability function given the delayed failure threshold for a set of 

stents is (a1,…an) 

fT(t|a1,…an) pdf of the failure time given the delayed failure threshold for a set 

of stents is (a1,…an) 

NPR   Inspection count at which the preventive replacement is performed 

NCR   Inspection count at which the corrective replacement is performed 

NI    Number of inspection before replacement 

CI    Inspection cost 

CPR    Preventive replacement cost 

CCR    Corrective replacement cost (CPR << CCR) 

6.2. Analysis of Two Failure Processes for Stents 

There are two dominating failure modes of stents that have been identified and 

experimentally studied in the literature: instantaneous fracture due to single-event 

overloads and delayed failure or crack growth due to cyclic stresses (Robertson & Ritchie 

2007). Stents in a multi-stent system may fail due to instantaneous fracture when a large 

single-event overload or shock arrives. The fracture toughness value of the jth shock on 

stent i by Kij, and the crack-initiation toughness of stent i by Kiʹ. An instantaneous fracture 
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occurs at the jth shock when Kij is greater than Kiʹ. Single-event overloads or shocks arrive 

in random interval of time that can be modeled by a Poisson process with arrival rate of λ. 

The experimental results from Daly et al. (2007) indicate that the fracture toughness values 

Kij are i.i.d. normal random variables, Kij ~ N(μKi , σKi
2). Furthermore, the crack-initiation 

toughness for stent i is normally distributed, Kiʹ ~ N(μKʹi , σKʹi
2). Therefore, the survival 

probability of stent i for each random shock is 

  

( ) '

'
2 2

Φ
 

ii

ii

KK
I

K

i i

K

jP P K K
µ µ

σ σ

 − ′
 + 
 

= < = ,  for j=1, 2, …  (6.1) 

where ( )Φ ⋅  is the cdf of the standard normal random variable. 

Stents may also fail due to delayed failure, when the crack length of stent i, denoted 

by ai(t) as a function of loading cycles, reaches a critical threshold value of crack length 

for stent i denoted by ath(i). Using Paris power law, the crack propagation of Nitinol stents 

has been formulated as (Keedy & Feng, 2013; Marrey et al., 2006; Robertson & Ritchie, 

2007): 

( ) i
i ia t tαθ= ,     (6.2) 

where t is the number of loading cycles, and θi ~ N(μθi  , σθi
2), and αi is an experimentally 

determined parameter for stent i. A standard Brownian motion Bi(t) ~ N(0 , σBi
2t) is used to 

represent the stochastic nature of crack propagation over time. The model is modified as 

( ) ( )i
i i ia t t B tαθ= + ,    (6.3) 

where Bi(t) and θi are assumed to be independent. 

These two failure processes can be dependent or associated when the shock 

magnitude is large enough to cause an instantaneous step increase on the crack propagation 

(Keedy & Feng, 2013).  
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Figure 6.1. Two failure processes of degradation and random shocks 

6.3. Reliability Function of Multi-stent Systems 

As shown in Figure 6.1, each single-event overload j can result in an abrupt increase 

in the crack length. These abrupt increases in crack length denoted by Hij are assumed to 

be independent and identically distributed following a normal distribution, Hij ~ N(μHi  , 

σHi
2), for j = 1,2,… . It is reasonable to assume that the mean of abrupt increase in crack 

length due to overloads, μHi, is proportional to the difference between the mean shock 

magnitude, E[Kij], and the threshold value, Wi. Mathematically, 

[ ]
iH i ij iE H E K Wµ  = ∝ −      

 (6.4a) 
or 

( )iH ij ib E K Wµ  = −  ,    (6.4b) 

where b is  a predetermined constant. The cumulative damage size due to single-event 

overloads by time t for stent i is 
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( )
( )

1

N t

i ij
j

S t H
=

= ∑ ,
     

(6.5) 

where N(t) is the number of shocks by time t. Therefore, the total crack length aS(i)(t) is due 

to both cyclic loads, and the cumulative shock damage size. Mathematically we have 

( ) ( ) ( ) ( ).i iS ia t a t S t= +  
   

(6.6) 

The delayed failure occurs when aS(i) > ath(i). The probability that stent i does not 

fail due to the delayed failure is 

( ) ( ) ( ) ( ) ( )( ) ( )( )
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 (6.7) 

The reliability of a multi-component system of n stents at time t, is the probability 

that all of stents survive the N(t) shocks, and the total crack length of any single stent i due 

to both cyclic loads and abrupt increase in crack length as a result of single-event overloads 

is less than its critical crack length threshold as well. Therefore, the system reliability for a 

multi-stent system implanted is 
 

( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( )

1 1

1
1 1 1

, ,  0

    ,  ,  ,     

nth th n

n m

i i im i i ij th i
m i j

R t P a t a a t a P N t

P K K K K a t H a P N t m
∞

= = =

= < … < =

 
′ ′+ < … < + < = 

 
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(6.8a) 

or 

( ) ( ) ( ) ( ) ( )( )
0 1 0

         .
n m

m
i i i ij th i

m i j

R t P K K P a t H a P N t m
∞

= = =

 
′= < + < = 

 
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(6.8b) 
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By plugging Equations (6.1) and (6.7) in (6.8b), the reliability function for a multi-

component system of stents implanted in patient’s arteries is expressed as follows: 

( ) ( ) ( ) ( )
2 2 22 2 2

0 1

  Φ Φ   .
! 

i

i ii i

i

i i i i i

t
m

mn
i K ith iK K
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R t

mt t m
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= = ′

     − − −−    =
    + + +    

∑∏ (6.9) 

 Using data from Keedy and Feng (2012) and Robertson and Ritchie (2007), along 

with some reasonable assumptions, the parameters for reliability analysis provided in Feng 

et al. (2014) study, is shown in Table 6.1.  

Table 6.1. Parameter values for multi-component system reliability analysis 

6.4. Condition-based Replacement with Warning Limit 

The implementation of follow-up after multiple stenting is still in the case-by-case 

recommendation phase according to the physician’s perception. It is imperative to 

implement reliability-based maintenance policies to minimize the impact of unforeseen 

failures. We develop a replacement policy derived from the CBR for multi-stent systems. 

Parameters Value Source 
𝑎𝑎𝑡𝑡ℎ(𝑖𝑖) 5 𝜇𝜇𝜇𝜇 Robertson and Ritchie (2007) 
𝜆𝜆 0.3, 1, and 3/year  Assumption 
𝜇𝜇𝐾𝐾𝑖𝑖′ 27 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚 Robertson and Ritchie (2007) 

𝜎𝜎𝐾𝐾𝑖𝑖′
2  (0.167 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚) 2 Keedy and Feng (2013) 

𝜇𝜇𝐾𝐾𝑖𝑖 6.25 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚 Robertson and Ritchie (2007) 
𝜎𝜎𝐾𝐾𝑖𝑖
2  (0.325 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚) 2 Keedy and Feng (2013) 
𝜇𝜇𝜃𝜃𝑖𝑖 8.36×10-17 Robertson and Ritchie (2007) 
𝜎𝜎𝜃𝜃𝑖𝑖
2  4.18×10-18 Keedy and Feng (2013) 

𝜎𝜎𝐵𝐵𝑖𝑖
2  6.25×10-16 Assumption 

𝜎𝜎𝐻𝐻𝑖𝑖
2  (0.00001 𝜇𝜇𝜇𝜇)2 Assumption 
𝑊𝑊𝑖𝑖 1.33 Robertson and Ritchie (2007) 
𝛼𝛼𝑖𝑖 −1.3986 Robertson and Ritchie (2007) 
𝑏𝑏 0.01504 (𝑚𝑚𝑚𝑚 ⁄𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚) Robertson and Ritchie (2007) 
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After the first survey paper on maintenance policies for multi-component systems 

conducted by Thomas (1986), this topic has attracted increasing attention. Cho and Parlar 

(1991) conducted a comprehensive survey on maintenance models for multi-component 

systems, including group, block, and opportunistic models. Another survey paper on this 

topic is provided by Dekker et al. (1997) with a focus on economic dependence.   

In our practical case, failure of stents can put the life of patients in danger. 

Therefore, the cost associated to system failure is significantly higher than the cost to 

preventively replace the system when it is in the critical condition. Preventive replacement 

according to its condition is a form of CBR that is an effective option to reduce unexpected 

failure of degrading systems when the failure cost is relatively high. We can discover 

whether a system is in a critical condition by conducting periodic inspections or follow-

ups. During an inspection, we correctively replace the whole multi-stent system if it has 

already failed; or we replace the system preventively if we find that the crack length on all 

stents is above a warning limit. The warning limit is a critical threshold predetermined by 

manufacturers, exceeding from which indicates that a stent is more likely to fail within a 

short period. It is important to determine the inspection intervals, because short inspection 

intervals can lead to more frequent inspection actions and increase the inspection cost, and 

long inspection intervals can increase the chance of unexpected system failure. Our 

proposed CBR model intends to determine the inspection interval by minimizing the long 

run replacement cost. 

In the model, the entire multi-stent system is inspected periodically at interval τ. 

The required action is determined based on the system status detected during the 

inspection: i) if the system is still functioning and the crack length on at least one stent is 
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less than its warning limit, awar(i), no action is necessary to be taken, ii) if the system is still 

operating, but the crack length on each of all n stents is beyond its warning limit, awar(i), we 

need to preventively replace the whole system, and iii) if the system has already failed due 

to either instantaneous failure or delayed failure of at least one stent, we need to 

correctively replace the entire system. We assume the failure of a multi-stent system does 

not show significant symptom and only can be discovered during the inspection (hidden 

failure).  

 

 
Figure 6.2: Condition-based replacement policy 

Figure 6.2 depicts how the proposed CBR model is implemented for a system of 

three stents. In this example, the first system of three stents is preventively replaced at the 

second inspection, because the degradation for all stents exceeds the warning limit although 

the device is still operating. The second system is correctively replaced at the fifth 

inspection due to delayed failure of one stent. Finally, the third system is replaced 

correctively due to instantaneous failure. 
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By minimizing the average long run maintenance cost rate, the optimum value for 

the decision variable, τ, can be determined. From the basic renewal theory, the average 

long run maintenance cost per unit of time can be calculated as follows: 

( ) ( )( ) [ ]
[ ]

Expected replacement cost incured in a renewal cyclelim .
Expected length of a renewal cycle

T
A t

E C
C C t t

E L
τ

→∞
= = =

(6.10) 

The total maintenance cost in a renewal cycle, CT, includes the inspection cost, 

preventive replacement cost and corrective replacement cost. Therefore, the expected total 

maintenance cost is given as 

[ ] Inspection Preventive Corrective
.

Cost Replacement Cost Replacement CostTE C E E E     
= + +     

       
(6.11) 

The probability of performing a preventive replacement at the kth inspection, P(NPR 

= k), i.e., the probability that the degradation of each of all n stents is within (awar(i) , ath(i)) 

while the system is still functioning by time kτ, can be derived as 

( ) ( ) ( )( ) ( ) ( )( )1 1 ., , , ,PR th th n war war nP N k R a a R ak k aτ τ= = −   (6.12) 

The probability of performing a corrective replacement at the kth inspection, P(NCR 

= k), i.e., the probability that the system fails between the (k − 1)th and kth inspections, can 

be derived as: 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 11 , , , , .CR th th n th th nP N k R a a a akRk τ τ= = − −   (6.13) 

The number of inspections in a renewal cycle, NI, is determined by the time of a 

preventive or corrective replacement that terminates a renewal cycle. Therefore, the 

probability mass function of NI is given as 
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( ) ( ) ( ) ( )
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  (6.14) 

We replace the system with a new one if we find the system has failed or it is in a 

critical condition where the crack length of each of all stents is above its warning limit. 

Therefore, the expected number of inspections, E(NI), is 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
1

1
1

11 , , , , .th th n war waI I
k k

r nR a a R a aE N kP N k k k kτ τ
∞ ∞

= =

 = = = − −∑ ∑   (6.15) 

The renewal cycle is defined as the time from the installation to the first 

replacement, or the time between two successive replacements that takes a value of a 

multiple of τ is determined as 

[ ] ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
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(6.16) 

There is a cost associated with inspection when an inspection is performed. The 

expected inspection cost during a renewal cycle depends on the number of inspections and 

can be derived as 

[ ] [ ] ( )

( ) ( ) ( )( ) ( ) ( )( )1 1

1

1
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(6.17) 

The replacement can be either corrective or preventive, and the expected cost for 

replacement can be derived as 

[ ] ( )

( ) ( ) ( )( ) ( ) ( )( )1
1

1

1
Corrective Replacement Cost

1 , , , ,

CR C

th th n war war

R

CR n

k

k

E C P N k

C R a a R a ak kτ τ

∞

=

∞

=

= =

 = − −

∑

∑  

  
(6.18) 
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and 

[ ] ( )

( ) ( ) ( )( ) ( ) ( )( )
1
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  (6.19) 

Based on Equations (6.10) to (6.19), the average long run maintenance cost rate as 

a function of τ is derived as  

( )
( ) ( ) ( )
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(6.20) 

An analytical solution for this problem can be obtained by calculating the first 

derivative of the objective function in Equation (6.20). We can find the optimal time 

interval of periodic inspection by setting C′A(τ) equal to zero, as given as below: 

( ) ( ) ( )
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d d d d
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v u u v
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τ τ
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where 
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6.5. Numerical Examples 

To obtain the optimal interval for periodic inspection, we need to minimize the 

average long-run maintenance cost rate, CA(τ), by using analytical or numerical methods. 

We use the simplex search method of Lagarias et al. (1998) that is a direct search method 

without using numerical or analytic gradients. For an example of CI=$1, CPR=$10 and 

CCR=$100, the average long-run maintenance cost rate is $388.7032, that can be obtained 

at τ*= 7.0×106, the optimum number of revolutions for inspection interval. These optimal 

solutions are verified through numerical calculation. Figure 6.3 presents CA(τ) as a function 

of τ.  

 
Figure 6.3: CA(τ) versus τ 

We also perform sensitivity analyses to capture the impact of the model parameters 

on the optimal solutions. These model parameters are the delayed failure threshold, ath, and 

the warning limit, awar. To avoid unnecessary complexity, we assume that these parameters 

are the same for all the components in a multi-stent system. As shown in Figure 6.4, when 
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the warning limit for doing the preventive replacement increases, the average long-run 

maintenance cost rate also increases, because the system is replaced less often preventively 

resulting in a higher probability of unexpected system failure and a higher maintenance 

cost. At the same time, the inspection interval is decreasing to reduce the risk of system 

failure. 

 
Figure 6.4: Sensitivity analysis of CA(τ*) and τ* on awar 

 
Figure 6.5: Sensitivity analysis of CA(τ*) and τ* on ath 

Figure 6.5 illustrates that increasing the delayed failure threshold ath causes the 

average long-run maintenance cost rate to be lowered, because it is less likely for the 

system to fail. At the same time, the inspection interval increases. 
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6.6. Conclusion  

In this chapter, reliability models were used as a foundation for the follow-up or 

maintenance of a multi-stent system. We proposed the replacement policy derived from 

CBR to reduce unexpected system failure by preventively replacing the whole system if 

we discover that the system degradation exceeds the warning limit during the inspection. 

The frequency of system inspection is a decision variable, and the optimum inspection 

interval has been obtained by minimizing the average long-run maintenance cost rate. 
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Chapter 7  

A Condition-based Maintenance Strategy for Repairable Deteriorating 

Systems subject to Generalized Mixed Shock Model 

In this chapter, a new generalized mixed shock model is proposed to describe the 

failure process due to external shocks, and it is a mixture of three classic shock models, 

i.e., extreme shock model, run shock model, and δ-shock model. Based on reliability 

analysis for a system subject to dependent competing risks of internal degradation and 

external shocks, we propose a CBM policy considering imperfect repair. Under the 

proposed CBM policy, the system is inspected at fixed time intervals and a decision for an 

appropriate maintenance action (i.e., no action, imperfect repair, preventive or corrective 

replacement) is made based on the actual health condition of the system detected through 

inspection. The objective is to determine the optimal inspection interval that minimizes the 

expected long-run average maintenance cost rate. A MEMS example is used to evaluate 

the efficiency of developed reliability and condition-based maintenance model.  

7.1. Introduction 

In this chapter, we attempt to generalize the traditional mixed shock model by 

incorporating three, rather than two, classic shock models (i.e. extreme shock model, run 

shock model, and δ-shock model). We assume that a system fails because of a single large 

shock, a series of consecutive shocks, or a short time lag between successive shocks, 

depending on which critical level is attained first. An example to illuminate this new 

generalized shock model is in boxing, where a knockout can happen due to a single 

powerful punch, a series of moderate punches, or two immediate punches. 
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External shocks are not the only reason causing the system failure. It is well known 

that systems degrade over time due to different factors such as erosion, corrosion, wear 

out, fatigue and crack growth. Even new technologies cannot protect modern systems from 

degradation. Such systems can be critical engineering systems (e.g., a reactor fuel core in 

a nuclear power plant), a giant structure (e.g., a bridge), or a complex device (e.g., a MEMS 

device). Degradation processes can be modeled using different approaches, such as a 

stochastic process (Kharoufeh & Cox, 2005), or a random coefficient model (Bae & Kvam, 

2004). A system fails when the overall degradation level exceeds a critical threshold.  

In this chapter, we develop a new CBM policy considering imperfect repair, based 

on the reliability modeling for systems subject to dependent competing risks of degradation 

and generalized mixed shock model. What distinguishes this model from others (Tan et al. 

2010; Fouladirad & Grall 2011; van & Bérenguer 2012) is that we incorporate various 

actions in the maintenance model: imperfect repair, preventive replacement, and corrective 

replacement. The imperfect repair impacts the system by lowering the degradation level to 

a certain level.  

The remainder of this chapter is structured as follows. Section 7.2 discusses the 

modeling of different competing failure processes of the system. The maintenance strategy 

is described in details in Section 7.3. Section 7.4 presents a numerical example to illustrate 

the reliability modeling and the maintenance strategy, and finally Section 7.5 provides 

summary and conclusions. 

Notation 

X(t)  Amount of continuous degradation at time t 
N(t)   Number of random shocks by time t 
De  Failure threshold for the extreme shock model 
Dr  Failure threshold for the run shock model 
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δ  Minimum time lag between two successive shocks for the δ-shock model 
S   Fatal shock count  
Se   Fatal shock count due to the extreme shock model 
Sδ   Fatal shock count due to the δ-shock model 
Sr   Fatal shock count due to the run shock model 
Bk   Interval time between the (k –1)th and kth

 shocks 
Wk   Magnitude of the kth shock load  
FW(w)   Cumulative distribution function (cdf) of Wk 
τ  Length of inspection interval 
H  Threshold for degradation-based failure  
Hp  Critical degradation level for preventive replacement 
Hw  Critical degradation level for imperfect repair 
Hr  Restored degradation level after imperfect repair 
L  Length of renewal cycle 
NI  Number of inspection before replacement 
NPR  Inspection count at which a preventive replacement is performed 
NCR  Inspection count at which a corrective replacement is performed 

NIR   Inspection count at which an imperfect repair is performed 
Tw Time when the degradation reaches Hw, given the initial degradation level 

equals 0 
Tp Time when the degradation reaches Hp, given the initial degradation level 

equals Hr 

CI Cost to inspect the system 

CIR Cost to perform imperfect repair 
CPR Cost to perform preventive replacement 
CCR Cost to perform corrective replacement 

7.2. System Failure Modeling  

Consider a repairable system whose failure is due to the competing risks of 

degradation and shocks. The system is considered as failed when the degradation level 

exceeds a critical threshold or when a fatal shock arrives, or a DTS model. Figure 7.1 

illustrates an example of the two dependent failure processes: degradation-based failure 

and shock-based failure for a deteriorating system subject to the generalized mixed shock 

model. As shown in Figure 7.1, the first failure the system experiences is a shock-based 

failure when the magnitude of the shock arrived at time t2 is greater than the critical level 
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for the extreme shock model (W2 > De). The system experiences the second failure at time 

t3 when B3 is less than the threshold δ (δ-shock model). The third failure is a degradation-

based failure because the accumulated degradation level exceeds the threshold H. The last 

failure occurs at time t3 as soon as there are two successive shocks with their magnitudes 

greater than the critical level for the run shock model (W2, W3 > Dr). Because the system is 

replaced after each failure, the shock count and time origin have been reset after each 

failure as shown in Figure 7.1. 

 
Figure 7.1: Two dependent competing failure processes: 

(a) degradation-based failure, (b) shock-based failure 

7.2.1. Degradation-based Failure Modeling 

We assume that the system is subject to a monotonically increasing degradation 

over time due to use, which is denoted by X(t) with X(0) = φ, where φ is the initial 

degradation level that is a random variable (due to variability in manufacturing and 

delivering processes). If no maintenance is performed, the continuous degradation by time 
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t is expressed as X(t) = φ + βt + ε, where β is the degradation rate that is a random variable 

and varies from part to part, and ε is the random error term following a normal distribution 

ε ~ N(0 , σ2). This linear path function can be applied to a wide range of degradation 

phenomena, such as wear degradation. 

When a non-fatal shock arrives, we assume that it damages the system by increasing 

the degradation level. We denote the damage caused by the kth shock by Yk for k = 1, 2…, 

where Yk is an i.i.d. non-negative random variable. The accumulated degradation including 

both continuous degradation and instantaneous damage induced by non-fatal shocks can 

be expressed as 

( ) ( ) ( )
( )

1
( ) ,

N t

S k
k

X t X t Z t X t Y
=

= + = +∑     (7.1) 

where Z(t) represents the cumulative damage by non-fatal random shocks, and N(t) is the 

number of shocks by time t. In order for the system to survive the degradation-based 

failure, the accumulated degradation level must be less than the threshold H. Therefore, 

the probability of no degradation-based failure by time t is 

( ) ( )
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0 1
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We assume that shocks arrive according to a homogenous Poisson process with a 

constant rate of λ. If we consider FX(x ; φ, t) to be the cdf of continuous degradation, X(t), 

and fZ(z) to be the pdf of the accumulated damage caused by shocks, Z(t), then the cdf of 

XS(t), FXs(x ; φ, t), can be derived using a convolution integral: 
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The model in (7.3) is general and can accommodate different distributional 

assumptions. In a specific case, we assume that φ is a constant, β and Yk are normally 

distributed, i.e., β ~ N(μβ , σβ
2) and Yk ~ N(μY , σY

2). For this specific case, the resulting total 

degradation, XS(t), follows a normal distribution. Then the probability in (7.2) can be 

expressed as 

( ) ( ) ( )
2 2 2 2
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(7.4) 

7.2.2. Shock-based Failure Modeling 

Only one shock model (e.g., extreme shock model, δ-shock model) is typically 

considered to result in an immediate failure. We introduce a generalized mixed shock 

model, a combination of three shock models including extreme shock model, δ-shock 

model, and run shock model, as the direct cause for the shock-based failure. The system 

suffers shock-based failure as soon as the condition for one of the three shock models is 

realized: 1) the magnitude of one shock is above the critical value De (extreme shock 

model), 2) the time lag between two sequential shocks is less than the threshold δ (δ-shock 

model), or 3) a set of n consecutive shocks with magnitudes that are greater than the critical 

level Dr (Dr < De) occurs (run shock model). These three classic shock models are 

competing against each other, and whichever occurs first causes the system to experience 

shock-based failure.  

Depending on which shock model is the reason for the system failure, different 

scenarios can occur. In the following, we discuss each scenario along with the 

correspondent probability that the system survives by the ith shock. 
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Scenario (1): If the magnitude of the ith shock is greater than the critical threshold De, the 

system fails according to the extreme shock model, and the ith shock is the fatal shock. We 

use Se to denote the fatal shock count due to the extreme shock model, which is a random 

variable. The probability that the system does not experience extreme shock model by the 

ith shock is derived to be  

( ) ( )( ) { } ( )
1

,
i

i
e k e W e

k

P S N t N t i P W D F D
=

 
> = = < = 

 
   (7.5) 

where Wk is the magnitude of the kth shock load, an i.i.d. non-negative random variable, 

and FW(w) is the cdf of Wk. 

Scenario (2): If the time interval between the (i – 1)th shock and the ith shock is less than 

the threshold δ, the system breaks down and the ith shock is considered as the fatal shock. 

We use Sδ to denote the fatal shock count due to the δ-shock model, which is a random 

variable. The probability that the system does not fail according to the δ-shock model by 

the ith shock is derived to be 

( ) ( )( ) { }
1

,
i

i
k

k

P S N t N t i P B e λδ
δ δ −

=

 
> = = > = 

 
    (7.6) 

where Bk is the arrival time of the first shock or the time interval between the (k – 1)th and 

kth
 shocks, an i.i.d. non-negative random variable. For the homogenous Poisson process, 

Bk follows an exponential distribution with a rate of λ. 

Scenario (3): If the first run of n consecutive shocks that are greater than the critical level 

Dr occurs by the ith shock, it causes the system to break down according to the run shock 

model. The ith shock is considered to be the fatal shock. We use Sr to denote the fatal shock 

count due to the run shock model, which is a random variable.  
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In general, if we define Vm to be the probability that no run of n consecutive 

successes (in our case, a success is defined as a shock greater than Dr) occurs in a set of m 

shocks, it has been shown to satisfy the recursive equation (Krieger 1984): 

1
1 ,                 for  ,n

m m m nV qV p qV m n−
− −= + + >

   

(7.7)
 

with the initial conditions Vk = 1 when 1 ≤ k ≤ n – 1, and Vn = 1 – pn, where p is the 

probability of success, and q = 1 – p. Based on Eq. (7.7), the probability that no run of n 

consecutive shocks greater than Dr happens by time t, or the probability that the fatal shock 

count due to the run shock model, Sr, is larger than N(t), is derived to be 
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with the initial conditions ( ) ( )( )1 1rP S N t N t i n> = ≤ − = , and 
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□ 

For a system not to experience a shock-based failure, the condition for the above 

three scenarios should not be met. Therefore, the probability that a system does not 

experience the shock-based failure by time t, i.e., the fatal shock count is greater than N(t), 

is derived as follows: 
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where ( ) ( )( )r eP S N t S N t i> > =  is the probability that no run of n consecutive shocks 

greater than Dr occurs by time t given that the magnitudes of all shocks are less than De. 

By considering the following situations, the probability of no shock-based failure 

by time t is derived further: 

i) When the number of shocks by time t is less than n, or N(t) ≤ n − 1, based on Eqs. (7.5), 

(7.6) and (7.10), we have 

( ) ( )( ) ( )1 1 .i i
W eP S N t N t i n F D e λδ−> = ≤ − = ×     (7.11) 

ii) When the number of shocks by time t is equal to n, or N(t) = n, based on Eqs. (7.5), 

(7.6), (7.9) and (7.10), we have 
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iii) When the number of shocks by time t is larger than n, or N(t) > n, based on Eqs. (7.5), 

(7.6), (7.8) and (7.10), we have 
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 Now by summing them all, we finally have the probability that a system does not 

experience the shock-based failure by time t, i.e., the fatal shock count is greater than N(t): 
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7.2.3. System Reliability Function 

For a system to survive by time t in this DTS model, we need to ensure that 

degradation-based failure and shock-based failure do not occur by time t. The reliability 

function for such a system using Eqs. (7.2) and (7.14) is derived as 
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∑ ∑   (7.15) 

 Given the number of shocks by time t, degradation-based failure and shock-based 

failure are conditionally independent, due to the assumption that the shock damage size Yk 

is independent of the shock load Wk. 

 

 
Figure 7.2: Proposed condition-based maintenance policy 

7.3. Condition-based Maintenance Strategy 

In this section, we propose a condition-based maintenance model with periodic 

inspection for a repairable system subject to two competing failure processes. The proposed 
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repair actions. The maintenance actions take place according to the detected condition of 

the system through inspections. The proposed condition-based maintenance model is 

illustrated in Figure 7.2, which presents the critical level for preventive replacement, Hp, 

the critical level for imperfect repair, Hw, and the restored level from imperfect repair, Hr. 

Assumptions 

1. The repairable system is inspected at a periodic interval, τ.  

2. If the system fails, it is not self-announcing and remains failed until the next inspection. 

3. At an inspection,  

a. If the system is detected to be failed due to shock-based or degradation-based 

failure, a corrective replacement is performed; 

b. If the degradation is beyond the cut-off limit, Hp, a preventive replacement is 

implemented even though the device is still functioning; 

c. If the degradation exceeds the warning limit value Hw, but is not beyond Hp, an 

imperfect repair takes place that restores the degradation level to some younger 

system status, Hr, Hr < Hw < Hp < H; 

d. If the system is operating and the degradation level is less than the warning 

limit, Hw, no action is needed. 

4. The repair action can be performed only once during a renewal cycle, which is defined 

as the time from the installation to the first replacement, or the time between two 

successive replacements. 

From the basic renewal theory, the average long run maintenance cost per unit of 

time can be calculated as follows:
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By minimizing the average maintenance cost rate, the decision variable is 

determined: the inspection interval τ. The expected renewal cycle length, E[L], is 

formulated as follows 
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where NI is the number of inspections taking place in a renewal cycle. The probability for 

the number of inspection is derived according to the replacement actions taken, either 

preventively or correctively: 

( ) ( ) ( ) ( ) ,I PR CR PR CRP N i P N i N i P N i P N i= = = ∪ = = = + =   (7.18) 

where NPR and NCR, the inspection counts at which we perform preventive replacement and 

corrective replacement, respectively, are random variables.  

7.3.1.  Probability of Performing Imperfect Repair  

During the jth inspection, if the degradation level is within the interval of [Hw , Hp) 

for the first time, i.e., the time that the degradation reaches Hw is between the j − 1th 

inspection and the jth inspection, an imperfect repair is performed at the jth inspection that 

brings the degradation to the restored level of Hr. We define NIR to be the inspection count 

at which a repair action is performed. The probability of performing a repair at the jth 

inspection is 
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where Tw, the first time that the degradation reaches Hw given the initial degradation level 

equals 0, is a random variable defined as  

( ){ }inf : .w S wT t X t H= ≥      (7.20) 

The pdf for Tw is to be provided in Section 7.3.4. 

7.3.2. Probability of Performing Preventive Replacement  

The system is preventively replaced when the overall degradation is greater than 

Hp, but the system is still functioning. The probability of performing a preventive 

replacement at the ith inspection depends on whether the system has already undergone a 

repair action during the renewal cycle. Two scenarios may occur before the preventive 

replacement is performed. 

Scenario 1: No repair is recorded by the ith inspection.  

 
Figure 7.3: Scenario 1 for performing preventive replacement at the ith inspection 

Figure 7.3 shows an example of Scenario 1 where the degradation level is less than 

the warning limit Hw at time (i − 1)τ, and it is within the interval of [Hp , H) at time iτ 
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leading to a preventive replacement. Let P(NPR = i | NIR > i−1) denote the probability of 

performing a preventive replacement at time iτ, given the system has not been repaired yet, 

and it is derived as follows:  
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Scenario 2: One repair action is performed by the ith inspection.  

 
Figure 7.4: Scenario 2 for performing preventive replacement at the ith inspection 

Figure 7.4 depicts an example of Scenario 2 where the degradation is within [Hw , 

Hp) at time jτ, and therefore, an imperfect repair action is taken to restore the degradation 

level to Hr at the jth inspection. The system is continuously operating and the degradation 

level reaches the interval [Hp , H) at time iτ, i.e. the time that the degradation reaches Hp is 

between the i − 1th inspection and the ith inspection, leading to a preventive replacement. 

Let P(NPR = i | NIR = j) denote the probability of performing the preventive replacement at 

the ith inspection given the system has been repaired at the jth inspection, j < i, and we have  
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where Tp, the first time that the degradation reaches Hp given the initial degradation level 

equals Hr, is a random variable defined as  

( ){ }inf : .p S p rT t X t H H= ≥ −     (7.23) 

The pdf for Tp is to be provided in Section 7.3.4. Considering the above two scenarios, the 

probability of performing a preventive replacement at the ith inspection is 

( ) ( ) ( ) ( ) ( )
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1 1 .
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−

=

= = = = = + = > − > −∑ (7.24) 

7.3.3. Probability of Performing Corrective Replacement  

The system is correctively replaced when it fails due to either internal degradation 

process or external shock process. The probability that a corrective replacement is 

performed at the ith inspection depends on whether the system is already repaired or not 

during the renewal cycle. Two scenarios may happen before the corrective replacement 

takes place. 

Scenario 1: No repair is recorded by the ith inspection.  

 
Figure 7.5: Scenario 1 for performing corrective replacement at the ith inspection 
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Figure 7.5 shows an example of Scenario 1 where the degradation level is less than 

the warning limit Hw at time (i − 1)τ, and the system is failed at time iτ due to degradation-

based failure, leading to corrective replacement. Let P(NCR = i |NIR > i−1) denote the 

probability of performing the corrective replacement at time iτ, given the system has not 

been repaired yet:  

( ) ( ) ( )( )1 0 1 0 ,CR IR T TP N i N i F i F iτ ϕ τ ϕ= > − = = − − =    (7.25) 

where FT(t | φ = 0) is the cdf of the time to failure given the initial degradation equals to 

zero, and it can be calculated using the reliability function in (7.15).  

Scenario 2: One repair action is performed by the ith inspection. Figure 7.6 depicts an 

example of Scenario 2 where the degradation is within [Hw , Hp) at time jτ, and therefore, 

an imperfect repair action is taken to restore the degradation level to Hr. The system is 

continuously operating and the degradation level is beyond H at time iτ leading to a 

corrective replacement. Let P(NCR = i | NIR = j ) denote the probability of performing the 

corrective replacement at the ith inspection given the system was repaired at the jth 

inspection, and we have 

( ) ( )( ) ( )( )1 ,CR IR T r T rP N i N j F i j H F i j Hτ ϕ τ ϕ= = = − = − − − =  (7.26) 

where FT( t | φ = Hr) is the cdf of the time to failure for a system that has been undergone 

a repair action, i.e., the initial degradation equals to Hr. 

 
Figure 7.6: Scenario 2 for performing corrective replacement at the ith inspection 
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Considering the above two scenarios, the probability of performing a corrective 

replacement at the ith inspection is 

( ) ( ) ( ) ( ) ( )
1

1
1 1
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j

P N i P N i N j P N j P N i N i P N i
−

=

= = = = = + = > − > −∑ .(7.27) 

7.3.4. Probability Density Functions of Tw and Tp 

To derive the probability density functions of Tw and Tp to be used in calculating 

the probabilities of different actions, we use Θ to denote the time that the degradation 

reaches a threshold H1 given the initial degradation is equal to φ. We employ the cdf of 

XS(t) in (7.3) to find the cdf of Θ, FΘ (θ): 
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Then the pdf of Θ for the specific case when β and Z(t) follow normal distributions 

is derived as follows: 
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where ϕ(.) is the pdf of a standard normal random variable. By using (φ = 0 , H1 = Hw) and 

(φ = Hr , H1=Hp), we can find the pdf of Tw and Tp, respectively.  
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7.3.5. Expected Cost Rate 

As part of the average maintenance cost rate in (7.16), the expected total cost in a 

renewal cycle includes the expected values of the inspection, one time imperfect repair, 

preventive replacement, and corrective replacement costs: 

( ) Inspection Imperfect Preventive
Cost Repair Cost Replacement Cost

Corrective
.

Replacement Cost

TE C E E E

E

     
= + +     

     
 

+  
 

  (7.30) 

Every time that the system is inspected, a fixed inspection cost is imposed to the 

system. The expected inspection cost in a renewal cycle is calculated as 
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The imperfect repair cost incurs when the system is repaired before replacement. 

The expected imperfect repair cost during a renewal cycle is derived to be 
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The expected preventive replacement cost is formulated as 

1

Preventive
( ).
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Finally, the expected corrective replacement cost is 

1

Corrective
( ).
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E C P N i
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 
= = 

 
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We assume that CCR > CPR > CIR > CI. 
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7.4. Illustrative Examples 

 Numerical examples are presented to illustrate the reliability and maintenance 

models that were developed. The corresponding values for the parameters in reliability 

analysis are given in Table 7.1, where some parameters are adopted from the literature and 

others are assumptions based on typical and plausible values. 

Table 7.1. Parameter values 
Parameters Values Sources 
H 0.00125 μm3 (Tanner & Dugger 2003) 
Hp 0.00100 μm3 Assumption 
Hw 0.00075 μm3 Assumption 
Hr 0.00050 μm3 Assumption 
De 1.55 Gpa (Tanner & Dugger 2003) 
Dr 1.20 Gpa Assumption 
φ 0 (Tanner & Dugger 2003) 
μβ 8.4823×10-9 μm3 (Tanner & Dugger 2003) 
σβ 6.0016×10-10 μm3 (Tanner & Dugger 2003) 
μW 1.2 Gpa Assumption 
σW 0.2 Gpa Assumption 
μY 1.0×10-4 μm3 Assumption 
σY 2×10-5 μm3 Assumption 
σ 10-10 μm3 Assumption 
δ 2×103 revolutions Assumption 
λ 5×10-5/ revolutions Assumption 

 

For the described system, the reliability function R(t) in (7.15) is plotted in Figure 

7.7, and sensitivity analyses was performed to measure the effect of the changing 

parameters De, Dr, and δ on the reliability function (Figure 7.8-7.10). As shown in Figure 

7.8, by increasing De, the critical level for the extreme shock model, from 1.55 Gpa to 1.65 

Gpa, the R(t) shifts to right. It can be inferred that by increasing the value of De, the 

reliability improves. Figure 7.9 shows that system reliability is sensitive to the parameter 

Dr, the critical level for the run shock model. Increasing Dr from 1.2 Gpa to 1.4 Gpa, causes 
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R(t) to shift to right. As can be observed in Figure 7.10, the inter-arrival time threshold δ 

affects the reliability function. By increasing δ from 1.0×103 revolutions to 3.0×103 

revolutions, the R(t) shifts slightly to the left. It indicates that reliability performance is 

better for the smaller value of δ. 

 
Figure 7.7: Plot of R(t) 

 
Figure 7.8: Sensitivity analysis of R(t) 

on De 
 

 
Figure 7.9: Sensitivity analysis of R(t) on Dr 

 
Figure 7.10: Sensitivity analysis of R(t) 

on δ 

To obtain the optimal time interval for the periodic inspection, we need to minimize 

the average long-run maintenance cost rate, CA(τ) in (7.16). We use the simplex search 

method of Lagarias et al. (1998) that is a direct search method without using numerical or 

analytic gradients. For an example of CI = $10, CIR = $50, CPR = $100 and CCR = $500, the 

minimum average long-run maintenance cost rate is $57.1585 that is obtained at τ*= 
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7.59×104 revolutions, the optimum inspection interval. Figure 7.11 presents CA(τ) as a 

function of τ, obtained by using Matlab to solve this optimization problem. We also 

performed sensitivity analyses to capture the impact of the model parameters (H, Hp , Hw , 

and Hr) on the optimal solutions (Figures 7.12-7.15).  

 
Figure 7.11: Average long-run maintenance cost rate versus inspection interval 

 

 
Figure 7.12: Sensitivity analysis of CA(τ∗) and 

τ∗ on H 

 

 
Figure 7.13: Sensitivity analysis of 

CA(τ∗) and τ∗ on Hp 

 
Figure 7.14: Sensitivity analysis of CA(τ∗) and 

τ∗ on Hw 

 
Figure 7.15: Sensitivity analysis of CA(τ∗) 

and τ∗ on Hr 
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7.5. Conclusions 

In this chapter, we investigate the reliability modeling for a complex system subject 

to dependent competing risks of degradation-based failure and shock-based failure. The 

system experiences degradation-based failure when the overall degradation exceeds the 

critical threshold for degradation process. The shock-based failure occurs when the 

condition for the generalized mixed shock model is satisfied. The generalized mixed shock 

model is the combination of three classic shock models: extreme shock model, run shock 

model and δ-shock model. These three classic shock models are competing against each 

other, whichever occurs first can cause the system to fail. 

We also develop a condition-based maintenance policy based on the reliability 

analysis. The proposed maintenance strategy incorporates various maintenance actions: 

imperfect repair, preventive replacement and corrective replacement. The decision 

regarding the appropriate maintenance action is made based on the information gathered 

about the real-time condition of the system through inspection. The maintenance strategy 

is analyzed through the numerical search of the optimal inspection interval that minimizes 

the cost rate of maintenance.  
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Chapter 8  

Conclusions and Summary 

Novel and evolving technologies such as MEMS, biomedical implant devices and 

other new device types continue to achieve innovative and impressive new features and 

capabilities. These new technologies are to be transitioned from low volume production or 

relatively simple design applications. However, there must also be associated new research 

focusing on reliability to develop new models and analysis tools that can assist 

manufacturing and maintenance of these evolving devices, and also to offer fundamentally 

new insights on the application of effective reliability analyses for technologies that have 

unique manufacturing challenges.  

This research aims to develop new methodologies to model the system reliability 

by relaxing the assumption of independency between competing risks of degradation and 

random shocks to have more accurate estimation of system reliability. We also investigate 

various CBM policies for repairable systems to reduce maintenance cost by eliminating 

unnecessary replacement actions. Case studies on complex systems, e.g., MEMS, and 

biomedical implant systems, are provided to implement and demonstrate this new 

probabilistic and stochastic methodology to estimate system reliability and evaluate 

optimum maintenance policies.  

In Chapter 3, we develop reliability models by considering the increasing 

degradation rate affected by the shock process. The degradation process can accelerate 

when the system becomes more susceptible to fatigue and deteriorates faster, as a result of 

withstanding shocks. We consider four classic shock models, including extreme shock 

model, δ-shock model, m-shock model, and run shock model that can cause the degradation 
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rate to transition. Then numerical results for MEMS are presented to illustrate the 

developed reliability models. 

In Chapter 4, we study a system subject to dependent competing risks under the 

impact from a generalized mixed shock model. Random shocks imposed on a complex 

system can affect the system in three different ways simultaneously: 1) damage the unit by 

increasing the degradation level instantaneously; 2) speed up the deterioration process by 

accelerating the degradation rate; and 3) weaken the unit by reducing the hard failure 

threshold. While the first impact of non-fatal shocks comes from individual shocks, the 

other two impacts are realized when the condition for a generalized mixed shock model, a 

combination of three classic shock models, is satisfied. Based on degradation and random 

shock modeling, we present a reliability model by incorporating all these impacts due to 

the shock process in one extended model. An example using MEMS devices illustrates the 

effectiveness of the proposed model with sensitivity analysis. 

In Chapter 5, we model reliability for complex systems subject to shifting hard 

failure threshold due to changes in degradation. In reality, a degraded system is more 

vulnerable to force and stress during operation. We assume the initial hard failure threshold 

value may reduce to a lower level as soon as the overall degradation reaches a critical value, 

or it may decrease continuously and the amount of reduction is proportional to the change 

in degradation. In addition, a new CBM model derived from FLP is also applied to ensure 

a device is functioning under a certain level of degradation. A numerical example based on 

MEMS example is used to demonstrate the developed reliability and maintenance models, 

along with sensitivity analysis. 
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In Chapter 6, based on reliability analysis for a multi-component system subject to 

both delayed and instantaneous failures, we extend the CBM policy presented in Chapter 

5 for single-unit systems to be applied for multiple component systems. As a case study, 

the replacement policy for the multi-component system of stents implanted in human 

arteries is investigated. 

In Chapter 7, we attempt to generalize the traditional mixed shock model by 

incorporating three, rather than two, classic shock models (i.e., extreme shock model, run 

shock model, and δ-shock model). We also propose a CBM policy considering imperfect 

repair for a system subject to dependent competing risks of internal degradation and such 

a generalized mixed shock process. Under the proposed CBM policy, the system is 

inspected at fixed time intervals and a decision for an appropriate maintenance action is 

made based on the actual health condition of the system detected through inspection. The 

objective is to determine the optimal inspection interval that minimizes the expected long-

run average maintenance cost rate. 

Several future research directions can be pursued to extend our reliability modeling 

considering dependence relationship between degradation process and shock process. 

Systems subject to multiple dependent degradation processes can be considered in future 

reliability modeling using stochastic processes. In our CBM policies, modem concepts 

associated with multi-objective optimization can be applied. Besides the real-world 

applications of MEMS and stents in this research, our integrated methodology can also be 

applied directly or customized for many other complex systems to optimize their operation 

and maintenance processes, such as power grids and oil pipelines.  
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Appendices 

Appendix I: The Probability of no Hard Failure given S1 ≤ N(t) = i in Section 4.2.3 

Given the shock count for the first transition is less than or equal to N(t), S1 = s1 ≤ 

N(t) = i, we have 
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(A.1) 

This formula derives the probability of no hard failure when the system experiences 

at least one transition by time t, i.e., the shock count for the l + 1th transition is greater than 

the number of remaining shocks after the lth transition, Sl+1 > Il+1. 

Appendix II: The Probability of no Soft Failure given S1 ≤ N(t) = i in Section 4.2.4

     

 

Similar to the derivation in Appendix I, the following derivation takes into account 

when there is at least one transition by time t, i.e., the shock count for the l + 1th transition 

is greater than the number of remaining shocks after the lth transition, Sl+1 > Il+1: 
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