A Proteomic Signature of Dormancy in an Actinobacterium: Micrococcus luteus

<u>Sujina Mali¹</u>, Jonathan Rangel¹, Morgan Mitchell¹, Spencer Havis¹, Abiodun Bodunrin¹, Arshad Khan², William Widger¹, Steven Bark¹

¹Department of Biology and Biochemistry, University of Houston, ²Department of Pathology and Laboratory Medicine, UT Health Science Center at Houston

Introduction

- ☐ Dormancy is a protective state where diverse bacteria curtail metabolic activity to survive severe external stresses
- ☐ Viable but non-culturable (VBNC) dormant bacterial state is important for antibiotic tolerance, latent infection, and reemergence of active infections
- ☐ Proteins critical for dormancy are important drug targets to treat dormant bacterial infections such as latent tuberculosis

Micrococcus luteus is a model bacteria

- ☐ Non-pathogenic, rapid growth rate
- ☐ Small genome ☐ Belongs to Actinobacteria
- ☐ Undergoes VBNC dormant state upon nutrient deprivation
- ☐ M. luteus resuscitation promoting factor (Rpf) can resuscitate dormant M. luteus (C) and M. tuberculosis (D)

micrograph and (B) colony of M. luteus

Methods

☐ Workflow of the sample preparation for proteomic study

Results

☐ VBNC state M. luteus exhibits a global loss of protein diversity compared to logarithmic (log) or stationary growth phase

☐ Proteomic signature of viable but non-culturable (VBNC) M. luteus Bar graph (A) and Heat map (B) representation of eighteen proteins upregulated in dormant phase compared to log phase

	0	1	2	3	4	5	6	7	8	9	10	11	12 13	3 14	15 16	17	18		
	PROTEIN IDENTIFICATION										REPLICATE 1			REPLICATE 2			REPLICATE 3		
	I NOTE IN IDENTIFICATION									-		Dormant		Log Dormant			Log	Dormant	
1	Isocitrate Iyase							Mlut (2080		10.51	-5.12		-8.33		***	-9.73		
2	Hypothetical protein Mlut_03760							Mlut (10.51	-5.72	***	-8.01		*	-7.56		***
3	O-acetylhomoserine sulfhydrolase							Mlut (9.264	-5.07	*	-10.80		***	-9.50		*
4	ABC transporter substrate-binding protein							Mlut (10.51	-7.21	***	-6.31		*	-9.26		*
5	Acetyl-CoA synthetase							Mlut 1			-8.06	-5.16	***	-6.59	-5.32	*	-8.64	-6.50	**
6	Ribosomal biogenesis protein							Mlut_1			-7.52	-4.64	**	-7.45	-5.61	*	-5.87	-4.92	*
7	Universal stress protein UspA							Mlut_(1830		-6.28	-3.69	***	-4.84	-3.89	***	-4.86	-3.54	***
8	Aldolase							Mlut_(00870		-6.08	-4.03	**	-8.86	-4.50	*	-9.61	-5.04	*
9	Integration host factor							Mlut_1	9160		-5.86	-3.87	***	-4.87	-3.23	***	-4.96	-4.39	*
10	Aldehyde dehydrogenase							Mlut_2	21440		-5.35	-3.50	***	-4.71	-3.43	***	-6.36	-3.36	***
11	Amidohydrolase							Mlut_1	7580		-7.70	-5.92	**	-6.52	-5.77	***	-7.45	-6.40	*
12	Hypothetical protein Mlut_10450							Mlut_1	10450		-4.62	-3.07	***	-3.85	-2.90	***	-4.39	-3.47	***
13	Cysteine synthase							Mlut_0	9450		-5.79	-4.34	**	-6.47	-5.09	***	-6.40	-4.78	*
14	Alcohol dehydrogenase							Mlut_2	21430		-5.41	-4.16	***	-4.93	-4.12	*	-6.54	-4.38	***
15	Ketol-acid reductoisomerase							Mlut_0	8550		-5.17	-4.00	***	-5.51	-4.46	**	-5.72	-4.28	*
16	Superoxide dismutase							Mlut_1	1340		-5.92	-4.97	*	-5.12	-4.41	*	-5.20	-3.90	**
17	ATP synthase subunit beta							Mlut_(8180		-4.39	-3.72	***	-4.37	-3.79	**	-4.68	-4.04	***
18	Mole	Molecular chaperone GroEL						Mlut_1	16540		-4.23	-3.65	***	-3.93	-3.34	**	-3.84	-3.59	**

Low Abundance **High Abundanc** p-Value: * = <0.05 ** = <0.01 *** = <0.005

Discussion

- ☐ The VBNC dormancy signature proteins are conserved across actinobacteria
- ☐ The proteins upregulated in VBNC implicate the role of glyoxylate shunt, redox and amino acid metabolism, and ribosomal regulatory processes in VBNC transition
- ☐ Upregulation of DNA binding proteins suggests bacterial chromosome compaction which correlates with reduced protein synthesis

Fig: Glyoxylate Shunt and TCA proteins that were upregulated (red) in the VBNC state of Ml-2665 are mapped onto the TCA Cycle

Future Work

- ☐ Identify critical proteins to develop antibiotics against dormant bacteria
- ☐ Determine if protein mechanisms are the same across different external stress conditions and different bacteria

References

- ☐ Mali *et al*. (2017) A Proteomic Signature of Dormancy in an Actinobacterium: Micrococcus luteus. Journal of Bacteriology
- ☐ Li et al. (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology
- ☐ Zhao et al. (2017) Current perspectives on viable but non-culturable state in foodborne pathogens. Frontiers in Microbiology

UNIVERSITY of

HOUSTON