Database of Redox Potentials of Porphyrins and Related Macrocycles

A Thesis

Presented to the Faculty of the Department of Chemistry

University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science

by

Jing Xu

May 2012

Database of Redox Potentials of Porphyrins and Related Macrocycles

Jing Xu

Approved:

Dr. Karl M. Kadish, Chairman

Dr. John L. Bear

Dr. Arnold Guloy

Dr. Roman Czernuszewicz

Dr. Eric Van Caemelbecke

Dean, College of Natural Sciences and Mathematics

Dedication

This Thesis is dedicated to my parents, Zhiyou Xu and Shiping Luo.

Acknowledgments

First of all, I would like to express my grateful appreciation to my research advisor, Dr. Karl. M. Kadish for his advising and support for my research in his laboratory.

I would like to give special thanks to my mother, Shiping Luo, for her love and support and to my father, Zhiyou Xu, for his love and encouragement.

I am very thankful to Dr. P. Bhyrappa for his suggestions and help with construction of the database in this thesis and to Dr. Ping Chen for his assistance during three years in the laboratory; Dr. Zhongping Ou and Dr. Eric Van Caemelbecke are acknowledged for their help and suggestions, as is Mr. David Ou for introducing FileMaker to me. The Robert A. Welch Foundation is gratefully acknowledged for supporting me during my studies at the University of Houston.

My deep appreciation and thanks to my "brothers and sisters" in the Dumble Church for giving me so much help and support outside of the larboratory.

Finally, I would like to acknowledge all of my labmates and the secretary for their help and understanding during my years in the laboratory.

Database of Redox Potentials of Porphyrins and Related Macrocycles

An Abstract of a Thesis Presented to the Faculty of the Department of Chemistry University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science

> by Jing Xu

May 2012

Abstract

Thermodynamic half wave potentials $(E_{1/2})$ for oxidation and reduction of porphyrins and related macrocycles which have appeared in the literature from 1997 to 2011 are collected and categorized as a function of compound structure and solution conditions with the goal of better understanding, predicting, and "tuning" redox behavior for a given type of molecule. The redox reactions of each porphyrin are categorized in 24 different tables varying from simple to complex which have been organized as a function of compound structure. The values of $E_{1/2}$ are further categorized as a function of the site of electron transfer which may occur at the conjugated π ring system, at the central metal ion or at another redox active group on the molecule. After organizing the data in a specific table, they can then be analyzed as a function of macrocycle structure, type and oxidation state of the central metal ion, type and number of axial ligands, solvent, supporting electrolyte, working electrode and reference electrode. A brief summary of factors related to the determination of porphyrin redox potentials is given in this thesis along with examples of how trends in the electrochemical data on groups of compounds may be used to better understand the chemistry and redox activity of these type molecules. Original literature references and the structures of every compound in the database are shown in the thesis.

Table of Contents

Chaj	pter One Introduction and Scope of the Work	1
1.1	General Introduction and Rationale for Study	2
1.2	Brief Backgournd of Porphyrin Structures	4
1.3	Electrochemistry of Porphyrins	7
1.4	References	19

Chapter Two		Experimental: Collection of Data and Characterization of	26
		Porphyrin Redox Reactions	
2.1	Softw	are	27
2.2	Procee	dure	27
2.3	Limita	ation of the Database	28
2.4	Chara	cterization of Porphyrin Redox Reactions	29
	2.4.1	Selection of Appropriate Solvent	29
	2.4.2	Selection of Appropriate Supporting Electrolyte	31
	2.4.3	Measuring and Reporting Redox Potentials	32
	2.4.4	Measuring and Reporting the Numbers of Electrons Transferred	33
	2.4.5	Assigning Site of Electron Transfer	34
	2.4.6	Selection of Appropriate Porphyrin Reference Compound	34

	References
Cha	pter Three How To Use the Database And What You Can Find?
3.1	How To Use the Database?
	3.1.1 Paper Copy
	3.1.2 Electronic Copy
3.2	What Can You Find?
	3.2.1 Examples of Correlations
3.3	References
Cha	pter Four Database of Porphyrin Redox Potentials
4.1	Organization of the Database
	4.1.1 Basic Structure of the Database
4.2	Abbreviations Used in the Database
	4.2.1 Macrocycle (Ring)
	122 Central Metal Ion
	4.2.2 Central inetal ion 4.2.3 Axial Ligands
	4.2.2 Central interal for4.2.3 Axial Ligands4.2.4 Solvents
	 4.2.2 Central interal for 4.2.3 Axial Ligands 4.2.4 Solvents 4.2.5 Supporting Electrolytes (Salts)
	 4.2.2 Central Wetal for 4.2.3 Axial Ligands 4.2.4 Solvents 4.2.5 Supporting Electrolytes (Salts) 4.2.6 Reference Electrodes (or Reference Redox Couples)

Table 2.	Octaethylporphyrin (OEP) macrocycles	109
Table 3.	Tetramesitylporphyrin (TMP) and substituted TMP macrocycles	118
Table 4.	meso-substituted OEP and porphinone macrocycles	120
Table 5.	meso-substituted TPP macrocycles	
	Table 5a. Picket-fence porphyrins and related derivatives	123
	Table 5b. meso-Tetraalkylporphyrins	126
	Table 5c. meso-Tetraarylporphyrins	128
Table 6.	β-substituted TPP macrocycles	
	Table 6a. β -alkyl and β -aryl-substituted TPP macrocycles	156
	Table 6b. β-pyrrole halogenated porphyrins	157
	Table 6c. TPP with mixed β -pyrrole substituents	167
	Table 6d. Nitro-substituted TPP and tetraarylporphyrin (TArP)	
	derivatives	169
	Table 6e. Porphiones	171
	Table 6f. Mono β-pyrrole-substituted porphyrins	172
Table 7.	Dodecaphenylporphyrin (DPP) and substituted DPP macrocycles	174
Table 8.	Porphyrins with fused groups	
	Table 8a. Quinoxalinoporphyrins	180
	Table 8b. TPP macrocycles with fused groups	187
Table 9.	Core-substituted porphyrins	
	Table 9a. N-substituted tetraarylporphyrins	192
	Table 9b. Heteroporphyrins	194

Table 10.	Tetrabenzoporphyrins (TBP) and tetraazaporphyrins (TArP)	198
Table 11.	Porphyrins with charged peripheral groups	
	Table 11a. Tetraarylporphyrins with charged peripheral groups	200
	Table 11b. Octaethylporphyrins with charged peripheral groups	213
Table 12.	Porphyrin dimers	215
Table 13.	Porphyrin trimers	236
Table 14.	Porphyrin-corrole dyads	240
Table 15.	Porphyrin dendrimers, and oligimeric or polymeric porphyrins	243
Table 16.	Porphyrin metal sandwich complexes	248
Table 17.	Porphyrins with mixed meso- and/or β -pyrrole-substituents	
	Table 17a. A ₃ B <i>meso</i> -substituted porphyrins	254
	Table 17b. cis and trans-A2B2 meso-substituted porphyrins	271
	Table 17c. <i>cis</i> and <i>trans</i> -A ₂ B <i>meso</i> -substituted porphyrins	275
	Table 17d. trans-A2BC meso-substituted porphyrins	277
	Table 17e. A2 meso-substituted porphyrins	280
	Table 17f. β-pyrrole-substitued porphyrins with less than four <i>meso-</i>	
	substituents	282
Table 18.	Porphyrin-ferrocene conjugates	285
Table 19.	Porphyrin-fullerene conjugates and porphyrin-fullerene complexes	291
Table 20.	Porphyrin-C ₆₀ -ferrocene triads	301
Table 21.	Supramolecular porphyrin assemblies	302
Table 22.	Porphyrins containing peripheral metal complexes	

	Table 22a. Porphyrins with covalently bonded peripheral metal	
	complexes	-
	Table 22b Porphyrins with non-covalently bonded peripheral metal	
	complexes	-
Table 23.	Natually occurring porphyrins	
	Table 23a. Heme and related macrocycles	-
	Table 23b. meso-Substituted etioporphyrin II macrocycles	-
	Table 23c. β-alkyl and <i>meso</i> -substituted porphyrins	-
Table 24.	Porphyrins and porphyin- C_{60} conjugates adsorbed on electrode	
	surfaces	
Figure 1.	Structures of tetraphenylporphyrin (TPP) macrocycles in Table 1	
Figure 2.	Structures of octaethylporphyrin (OEP) macrocycles in Table 2	
Figure 3.	Structures of tetramesitylporphyrin (TMP) and substituted TMP	
	macrocycles in Table 3	
Figure 4.	Structures of meso-substituted OEP and porphinone macrocycles in	
	Table 4	
Figure 5.	Structures of meso-substituted TPP macrocycles	
	Figure 5a. Structures of Picket-fence porphyrins and related	
	derivatives in Table 5a	
	Figure 5b. Structures of <i>meso</i> -Tetraalkylporphyrins in Table 5b	
	Figure 5c. Structures of meso-Tetraarylporphyrins in Table 5c	
Figure 6.	Structures of β-substituted TPP macrocycles	

	Figure 6a. Structures of β -alkyl and β -aryl substituted TPP	
	macrocycles in Table 6a	
	Figure 6b. Structures of β -pyrrole halogenated porphyrins in Table 6b	
	Figure 6c. Structures of TPP with mixed β -pyrrole substituents in	
	Table 6c	
	Figure 6d. Structures of nitro-substituted TPP and tetraarylporphyrin	
	(TArP) derivatives in Table 6d	
	Figure 6e. Structures of porphiones in Table 6e	
	Figure 6f. Structures of mono β -pyrrole-substituted porphyrins in	
	Table 6f	
Figure 7.	Structures of dodecaphenylporphyrin (DPP) and substituted DPP	
	macrocycles in Table 7	
Figure 8.	Structures of porphyrins with fused groups	
	Figure 8a. Structures of quinoxalinoporphyrins in Table 8a	
	Figure 8b. Structures of TPP macrocycles with fused groups in Table	
	8b	
Figure 9.	Structures of core-substituted porphyrins	
	Figure 9a. Structures of N-substituted tetraarylporphyrins in Table 9a	
	Figure 9b. Structures of heteroporphyrins in Table 9b	
Figure 10.	Structures of tetrabenzoporphyrins (TBP) and tetraazaporphyrins	
	(TArP) in Table 10	
Figure 11.	Structures of porphyrins with charged peripheral groups	

	Figure 11a. Structures of tetraarylporphyrins with charged peripheral	
	groups in Table 11a	432
	Figure 11b. Structures of octaethylporphyrins with charged	
	peripheral groups in Table 11b	446
Figure 12.	Structures of porphyrin dimmers in Table 12	449
Figure 13.	Structures of porphyrin trimers in Table 13	480
Figure 14.	Structures of porphyrin-corrole dyads in Table 14	486
Figure 15.	Structures of porphyrin dendrimers, and oligimeric or polymeric	
	porphyrins in Table 15	488
Figure 16.	Structures of porphyrin metal sandwich complexes in Table 16	512
Figure 17.	Structures of porphyrins with mixed meso- and/or β -pyrrole-	
	substituents	
	Figure 17a. Structures of A ₃ B <i>meso</i> -substituted porphyrins in Table	
	17a	525
	Figure 17b. Structures of <i>cis</i> and <i>trans</i> -A ₂ B ₂ <i>meso</i> -substitute	
	porphyrins in Table 17b	551
	Figure 17c. Structures of <i>cis</i> and <i>trans</i> -A ₂ B <i>meso</i> -substituted	
	porphyrins in Table 17c	561
	Figure 17d. Structures of <i>trans</i> -A ₂ BC <i>meso</i> -substituted porphyrins in	
	Table 17d	566
	Figure 17e. Structures of A ₂ meso-substituted porphyrins in 17e	574

Figure 17f. Structures of β -pyrrole substitued porphyrins with less

	than four meso-substituents in Table 17f	578		
Figure 18.	Structures of porphyrin-ferrocene conjugates in Table 18	583		
Figure 19.	Structures of porphyrin-fullerene conjugates and porphyrin-fullerene			
	complexes in Table 19	590		
Figure 20.	Structures of porphyrin-C ₆₀ -ferrocene triads in Table 20	609		
Figure 21.	Structures of supramolecular porphyrin assemblies in Table 21	611		
Figure 22.	Figure 22. Structures of porphyrins containing peripheral metal complexes			
	Figure 22a. Structures of porphyrins with covalently bonded			
	peripheral metal complexes in Table 22a	618		
	Figure 22b Structures of porphyrins with non-covalently bonded			
	peripheral metal complexes in Table 22b	620		
Figure 23.	Structures of natually occurring porphyrins			
	Figure 23a. Structures of heme and related macrocycles in Table 23a	631		
	Figure 23b. Structures of meso-substituted etioporphyrin II			
	macrocycles in Table 23b	633		
	Figure 23c. Structures of β -alkyl and <i>meso</i> -substituted porphyrins in			
	Table 23c	637		
Figure 24.	Structures of porphyrins and porphyin-C60 conjugates adsorbed on			
	electrode surfaces in Table 24	640		
References		648		

CHAPTER ONE

Introduction and Scope of the Work

1.1 General Introduction and Rationale for Study

Porphyrins have attracted considerable interest because of their applications in catalysis,¹⁻² photochemistry,³⁻⁴ pharmacology,⁵ and material chemistry.⁶⁻⁷ Many new synthetic porphyrin derivatives have been prepared over the last five decades⁸⁻¹⁵ and characterized by various physicochemical methods, one of which is electrochemistry.

An understanding of metalloporphyrin redox reactions is important to better understand the use of these molecules in biological systems and as essential components in many applications.^{12, 16-19} In this regard, numerous synthetic porphyrins with a variety of structures have been prepared and characterized as to their redox reactions in nonaqueous media. The number of published papers on porphyrins has increased significantly over the five decades, going from about 4000 papers in 1960 to more than 30,000 in 2012 as determined by a simple literature search with SciFinder.

Our own interest is in the electrochemistry of porphyrins, with an emphasis on understanding the factors which influence redox potentials in non-aqueous media. Several reviews have been published on porphyrin electrochemistry in non-aqueous media,²⁰⁻²³ one of which was from our own laboratory²³ and focused on monomeric porphyrins in non-aqueous media. Our laboratory also published a database of porphyrin redox potentials,²¹ but this review is now 12 years old and did not include dimers, trimers, or oligomeric porphyrins. It was therefore decided to examine how the field has changed over the last decade with respect to the types of macrocycles now being studied and to then summarize and analyze trends in the electrochemical data of porphyrins and related macrocycles which have appeared in the literature on porphyrins and related macrocycles between 1997 and 2011. Our analysis was intended to be a

continuation of a 1997 M.S. Thesis from the University of Houston²⁴ and a follow-up review which was published in 2000.²¹ The end goal of the "new" and expanded analysis given as part of this thesis is to enable the reader to better examine trends in redox behavior of metalloporphyrins as a function of macrocycle structure, metal ion, axial ligand, and solvent. In order to accomplish this, we began with a similar structural organization as was used in the earlier M.S. Thesis²⁴ and review²¹ but have substantially expanded upon this published work in two ways. The first is that we have cataloged, for the first time, the electrochemistry of porphyrins in terms of a very specific structural features as described on the following pages where we have divided the published data into 24 tables, starting with simple monomeric macrocycles and then proceeding to more complexes containing a poprhyrin unit. Unlike the earlier M.S. Thesis²⁴ and publications,^{21, 23} all potentials and experimental conditions are searchable and available in electronic form, something which has never been possible in the past.

Although we have made on exhaustive search of the literature from 1997 to 2011, we have not attempted to provide a comprehensive description of all known porphyrin electrochemistry, but rather have concentrated on specific types of porphyrin macrocycles, specific groups of metalloporphyrin complexes and on guiding the reader through some of the more practical aspects of the measurement techniques. We describe systematic trends in the data as a function of central metal ion, type of macrocycle and the type of axial ligand, so that the reader can make a comparison with their own results under very specific experimental conditions. It is hoped that this approach will answer the majority of the readers' questions as to what has been done in the past decade while

at the same time enabling the reader to utilize data in the literature to predict and "tune" what might be observed studies involving the electrochemistry of porphyrins which have yet to be synthesized.

1.2 Brief Background of Porphyrin Structures

The basic structure of a porphyrin consists of four pyrrole units linked by four methine bridges to form an aromatic system which is a 16-atom, 18-electron highly conjugated macrocycle.^{25, 26} Figure 1.1 shows the basic structure of porphine whose positions are labeled according to the IUPAC numbering system.²⁷ The carbons at the four *meso* positions are labeled as 5, 10, 15, and 20 while those at the eight β -pyrrole positions are labeled 2, 3, 7, 8, 12, 13, 17, and 18. All twelve positions on the periphery of the porphyrin macrocycle may be substituted by electron-withdrawing or electron-donating groups to form different synthetic derivatives, the best known of which are tetraphenylporphyrin (TPP) and octaphenylporphyrin (OEP) those structures are shown in Figure 1.2 and in Chapter 2 of this thesis.

The metal free (free base) porphyrin macrocycle possesses two protons which can be replaced by metal ions in +2, +3, +4, +5 or +6 oxidation states. Almost all transition and main group metals can be complexed by a porphyrin macrocycle to form different metalloporphyrins.^{22, 28-31} Metalloporphyrins with no axial ligands are fourcoordinate and generally have the metal in the plane of the macrocycle, while those with one or two axial ligands are five- or six- coordinated and may have the metal ion or out of the plane of the four nitrogens. The six-coordinate complexes are often have the metal within the plane of the macrocycle while the five-coordinate complexes often

Porphine (P)H₂

(TPP)M

Figure 1.1. Structure of free base porphine (P)H₂, and metalated tetraphenylporphyrin (TPP)M and octaethylporphyrin (OEP)M.

Figure 1.2 Structures of selected substituted porphyrin macrocycles with OEP or TPP type skeletons. Structures of other metalloporphyrins are given in Figures 4.1 to 4.8 of this thesis.

have the metal out of the plane as schematically shown in Scheme 1.³² The specific coordination number depends on several factors, the most important in which are the specific metal ion, the metal oxidation state and substituents on the macrocycle.³³ A variety of axial ligands have been shown to bind to the porphyrin central metal ion under different experimental conditions. Examples of different ligands are given in several reviews^{22, 28, 34} and a list is also given in Table 4.2 of this thesis.

1.3 Electrochemistry of Porphyrins

The electrochemistry of metalloporphyrins will be described from a variety of perspectives. Generally, the site of electron transfer can occur at the conjugated π -ring system of the macrocycle or at the central metal ion if it is electroactive. In some compounds, an electroactive substituent or electroactive axial ligand will be oxidized or reduced. A brief summary of metalloporphyrin electrochemistry is given blow.

The porphyrin macrocycle possesses a highly conjugated π -ring system, which is an ideal location for the addition or abstraction of electrons. Many metalloporphyrins undergo four one-electron transfer reactions in non-aqueous media to yield π -cation radicals and dications on oxidation and π -anion radicals and dianions on reduction.²¹⁻²³ Metal-centered redox processes may also be observed for compounds with electroactive central metal ions, examples being iron, cobalt, manganese, silver, platinum, and ruthenium. When these central metal ions are oxidized or reduced to a higher or a lower oxidation state, the redox reactions often occur before the first ring oxidation and also before the first ring reduction, but this is not always the case.^{20, 21, 23} In addition to the ring- and metal-centered reactions of porphyrins, some electroactive subsituents or bound electroactive axial ligand might also be oxidized or reduced. In these cases, the **Scheme 1** Schematic illustration of axial ligand (L) binding to central metal ion of a metalloporphyrin. Examples of the different macrocycles and axial ligands are given in Table 4.1 and Table 4.2 of this thesis.

overall number of redox processes may be greater than four, the number expected for seen porphyrins with redox inactive central metals. However, not all of the expected macrocycle-centered redox processes can be observed within the solvent potential window. This may be due to presence of highly electron-donating or highly electronwithdrawing substituents on the macrocycle which might shift the half-wave potentials to very positive or very negative values such that they cannot be observed within the anodic or cathodic potential limit of the utilized solvent (see Table 1.1 for anodic and cathodic limits of selected solvents).

The effect of electron-donating or electron-withdrawing substituents on the porphyrin redox potentials will depend on the type of substituent, its specific location on the macrocycle and the site of electron transfer. Table 1.2 gives examples of substituents, which have been added to the periphery of a macrocycle. The half wave potentials of porphyrin electrode reactions will often vary systematically as the function of the number and type of electron-donating or electron-withdrawing substituents and values of $E_{1/2}$ have often been analyzed as a function of the Hammett substituent parameter σ . Example of substituents are given in Table 1.2 where the value of σ are taken from the literature.³⁵ When electron-withdrawing substituents such as F⁻, Br⁻, or CF₃ are attached to the macrocycle, the π -electron density of the conjugated system in the molecule will be decreased. As reductions will become easier while oxidations will become harder (a positive shift of potentials) as compared to the unsubstituted porphyrin. An opposite effect (a negative shift of potentials) is observed in the case of porphyrins having electron-donating substituents such as OCH₃, CH₃, or NH₂. Substitution at the β -pyrrole on *meso* positions of the porphyrin ring will more strongly

Solvent	Abbrev.	e _r ^a	AN ^b	DN ^c	$\mathrm{E_T}^{\mathrm{N}}(30)^{\mathrm{d}}$	Solvent Limit ^e		
						Ox	Red	
Tetrahydrofuran	THF	7.58	8.0	20.0	0.207	+1.8	-3.6	
Dichloromethane	CH_2Cl_2	8.93	20.4	0.0	0.309	+1.8	-1.9	
1,2-Dichloroethane	EtCl ₂	10.37	16.7	0.0	0.327	+1.8	-1.9	
Pyridine	ру	12.91	14.2	33.1	0.302	+0.8	-1.8	
Benzonitrile	PhCN	25.20	15.5	11.9	0.333	+1.7	-1.8	
Acetonitrile	MeCN	35.94	18.9	14.1	0.460	+1.8	-2.0	
Dimethylsulfoxide	DMSO	46.68	18.8	29.8	0.444	+0.7	-1.9	
N, N'-Dimethylformamide	DMF	36.71	16.0	26.6	0.404	+1.6	-2.5	

Table 1.1 Physical properties and maximum potential range (V vs SCE) of severalcommon solvents used for porphyrin electrochemistry.³⁶

^a e_r = dielectric constant, ^b AN = acceptor number, ^c DN = donor number, ^d $E_T^{N}(30)$ = Dimroth-Reichardt parameter at 30 °C, ^e Solvent limit defined as potential limit for oxidation or reduction of the solvent.

Substituent	$4\sigma^{a}$
<i>p</i> -NO ₂	3.12
<i>m</i> -CN	2.72
<i>p</i> -CN	2.64
<i>p</i> -COOCH ₃	1.80
<i>р</i> -СООН	1.64
<i>m</i> -Br	1.56
<i>m</i> -Cl	1.48
<i>m</i> -F	1.36
<i>m</i> -OCH ₂ Ph	1.20
p-Cl	0.92
<i>p</i> -F	0.24
<i>p</i> -Ph	0.04
Н	0.00
<i>m</i> -CH ₃	-0.28
<i>p</i> -CH ₃	-0.68
<i>p</i> -C(CH ₃) ₃	-0.80
<i>p</i> -OCH ₃	-1.08
<i>р</i> -ОН	-1.48
<i>p</i> -OCH ₂ Ph	-1.64

Table 1.2 List of selected substituents and values of 4σ for para and meta ironsubstituted tetraphenylporphyrin (TPP).³⁷

^a 4σ = four times Hammett substituent constant.³⁵

influence the electrochemical properties than substitution at the four phenyl groups of a tetraphenylporphyrin type compound.^{21, 23} Changes in planarity of the macrocycle upon addition of electron-withdrawing or electron-donating to the macrocycle will also affect redox potentials.³⁸⁻⁴¹ In some cases, the addition of specific substituents to the porphyrin macrocycle may alter mechanistic pathways for electron transfer, as well as influence coupled chemical reactions of the compounds in their oxidized or reduced forms.³⁸⁻⁴³

Studies of substituent effects on porphyrin redox potentials have often been used as a basis for deciding whether a given electrode reaction occurs at the porphyrin π ring system or at the central metal ion. A series of porphyrin derivatives having a similar structures but different substituents may or may not follow similar oxidation/reduction mechanisms. Therefore, it is essential to compare and summarize the reported $E_{1/2}$ values of porphyrins with similar structures in order to better understand the electrochemical behavior of each investigated compound or group of compounds.

The potentials of each porphyrin redox reaction may also vary with changes of type and concentration in the solvent or the supporting electrolyte. This change may be due to differences in axial ligand binding or in the case of the supporting electrolyte it may be due to differences in ionic strength effects. Not only is solubility an important factor in selected a given solvent but one also must consider the ability of the solvent to stabilize anion or cation radicals. Therefore, the selection of a given solvent/supporting electrolyte system will depend on the requirements of the individual experiment.

As indicated above the binding of solvent molecules as well as anions or cations from the supporting electrolytes will effect with the thermodynamic half wave potentials. Examples of bonding solvents are pyridine,⁴⁴⁻⁴⁶ DMF and DMSO. Diatomic molecules which bind to the central metal ion of the porphyrin will also effects $E_{1/2}$, the best examples being given by CO^{47, 48} or NO.^{49, 50} Differences in axial ligation can also lead to changes in the site of electron transfer.

The potential differences ($\Delta E_{1/2}$) between the first porphyrin ring reduction and the first porphyrin ring oxidation has often been used to suggest the site of the electron transfer reaction.⁵¹ For example, an experimental measured difference between the first reversible oxidation and first reversible reduction, (the HOMO-LUMO which is defined as highest occupied molecular orbital and lowest unoccupied molecular orbital) is often 2.25 ± 0.15 V for metalloporphyrins with TPP or OEP type macrocycles. The HOMOs were calculated to be two near-degenerated π orbitals (a_{1u} and a_{2u}), while the LUMOs were calculated to be a set of degenerated π * orbitals (e_g). The experimentally measured electrochemical HOMO-LUMO gap of 2.25 V is in good agreement with a theoretically calculated value of 2.18 V for the difference between the HOMO and LUMO and suggested ring-centered oxidation and reduction.⁵² However, it should be pointed out that the HOMO-LUMO gap can vary as the function of both the type of the central metal ion (see Figure 1.3) and the planarity of the porphyrin macrocycle.⁵³

A constant potential difference of 0.42 ± 0.05 V between the first and second reductions has been reported for many with OEP and TPP porphyrins while the difference between the first and second oxidations was reported to be 0.29 ± 0.05 V (see Figure 1.4). This diagnostic criteria has often been used to suggest a site of electron transfer reactions in metalloporphyrins.⁵¹ Although exceptions exist, several other indirect means of identifying the site of electron transfer have been used. One of these

Figure 1.3 Cyclic voltammograms of (TPP)M where M = Ni, Pd, and Pt in CH_2Cl_2 containing 0.1 M TBAP. Adapted from ref. ⁵⁴.

Figure 1.4 Cyclic voltammograms of (P)Cu and (P)Zn where P = TPP or OEP. Adapted from ref. ⁵⁵.

includes the use of Hammett linear free-energy relationships⁵⁴ or the Gutmann donor number of the solvent as a parameter.^{22, 55}

Electrochemistry is an effective technique to study the redox reactivity of metalloporphyrins. The applied reducing and oxidizing potentials can be controlled as accurately as ± 2 mV. In addition, the use of electrochemical techniques has made it possible to control redox reations, to characterize the products of the reactions and to evaluate the mechanism of the electrode reaction as well as to tune the electron transfer site.

The first electrochemical studies of synthetic porphyrins began to appear in the early 1950s and mainly involved potentiometry and polaropraphy. These studies were then followed by numerous cyclic voltammetric studies which started to appear in the early 1960s.

At the start of 1960s, the majority of porphyrin electrochemistry studies involved naturally occurring complexes; however, these electrochemical investigations were limited mainly to thermodynamic measurements of standard potentials utilizing potentiometry or to measurements of reduction potentials using polarography at a dropping mercury electrode. In addition, the choice of the measurement technique was limited in large part by the availability of electrochemical instrumentation, almost all of which at that time was home-made and limited almost excluded to electrochemical laboratories.

The situation began to change in the mid-1960s in three important aspects. First, cyclic voltammetric theory was becoming better understood,^{56, 57} which led to the popularization of this technique as a rapid and efficient method for obtaining reversible redox potentials. Second, many laboratories had begun to use non-aqueous solvents for studying electrochemical reactions of organic and inorganic compounds.⁵⁸⁻⁶⁰ Thirdly, a large number of easily synthesized tetraphenyl- and octaethylporphyrins with a wide variety of different central metal ions were becoming available for study.

In the 1970s, the technique of cyclic voltammetry was used for the majority of electrochemical measurements of porphyrins. However, most utilized instrumentation will still homemade and only few laboratories were actually making the measurements.^{22, 61-64}

In the 1980s and 1990s, electrochemical studies of synthetic porphyrins mainly involved derivatives with unusual structures, porphyrins with metal-carbon bonds, porphyrins with central metal ions in low or high oxidation states, and porphyrins which react with small molecules.^{20, 65-67} At the same time, some "unusual" macrocycles were synthesized and their redox properties were compared to the oxidation and reduction potentials of OEP or TPP macrocycles which contained the same metal ion.^{68, 69} At that point in time the electrochemistry of metalloporphyrins was no longer hindered by the lack of electrochemical instrumentation which had become more available at relatively low cost and was becoming standard analytical equipment in a large number of laboratories around the world.^{49, 54, 70-77}

Only a few reviews have systematically summarized results from electrochemical investigations of synthetic and natural porphyrins, with most concentrating in large part on derivatives of octaethylporphyrins (OEP) or tetraphenylporphyrins (TPP), whose properties were described as function of the central metal ion, macrocycle, and porphyrin substitutes of the axial ligands.^{20, 22, 61-67} These

types of reviews are useful if people are interested in a specific central metal ion or a specific type of macrocycle. However, they may fail to answer more detailed questions, such as how the reported electrochemical measurements were made, how systematic changes in macrocyclic structure, central metal ion, or solvent conditions might vary for similar compounds or a series of compounds. Also, past reviews did not always address what factors were important that might effect the electrochemistry of the molecules.

1.4 References

- Metalloporphyrins in Catalytic Oxidation; Sheldon, R. A., Eds; Marcel Dekker: New York, 1994.
- Aida, T.; Inoue, S. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, **2000**; Vol. 4, Chapter 26-27; Vol. 6, Chapter 42.
- Mauzerall, D. H., F. T. In *Porphyrins and Metalloporphyrins*; Smith, K. M., Ed.; Elsevier: New York, 1975.
- Hoft, F. R.; Whitten, D. G. In *The Porphyrins*; Dolphin, D., Ed.; Academic Press: New York, **1978**; Vol. II, Chapter 6.
- The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2003; Vol. 14.
- 6. Wagner, R. W. L., J. S. J. Am. Chem. Soc. 1994, 116, 9759.
- Chou, J. H. N., H. S.; Kosal, M. E.; Rakow, N. A.; Suslick, K. S. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 6, Chapter 41.
- 8. Jasat, A.; Dolphin, D. Chem. Rev. 1997, 97, 2267.
- Sessler, J. L.; Weghorn, S. J. *Expanded, Contracted and Isomeric Porphyrins*; Pergamon Press; New York, 1997.
- The Porphyrin Handbook, Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.;
 Academic Press; San Diego 2000; pp. 1-20.
- 11. Stanovnik, B.; Svete, J. Chem. Rev. 2004, 104, 2433.
- 12. Boyle, N. M.; Rochford, J.; Pryce, M. T., Coord. Chem. Rev. 2010, 254, 77.

- Che, C.-M.; Lo, V. K.-Y.; Zhou, C.-Y.; Huang, J.-S., Chem. Soc. Rev. 2011, 40, 1950.
- Ono, N.; Yamada, H.; Okujima, T. In *Handbook of Porphyrin Science:Synthesis of Porphyrins Fused with Aromatic Rings*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; World Scientific publishing: Singapore, **2010**; Vol. 2. Chapter 7.
- Toganoh, M.; Furuta, H. In Handbook of Porphyrin Science:Synthesis and Metal Coordination of N-Confused and N-Fused Porphyrinoids; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; World Scientific publishing: Singapore, 2010; Vol. 2. Chapter 10.
- Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Graetzel, M., *Science*. 2011, 334, 629.
- 17. Xu, Z.; Swavey, S., Dalton Trans. 2011, 40, 7319.
- Xiang, N.; Zhou, W.; Jiang, S.; Deng, L.; Liu, Y.; Tan, Z.; Zhao, B.; Shen, P.;
 Tan, S., Sol. Energy Mater. Sol. Cells. 2011, 95, 1174.
- 19. Lee, C. H.; Dogutan, D. K.; Nocera, D. G., J. Am. Chem. Soc. 2011, 133, 8775.
- 20. Kadish, K. M.; Guilard, R. Chem. Rev. 1988, 88, 1121.
- Kadish, K. M.; Royal, G.; Caemelbecke, V. E.; Gueletti, E. In *The Porphyrin Handbook: Metalloporphyrins in Nonaqueous Media: Database of Redox Potentials*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 9. Page 1-212.
- 22. Kadish, K. M., Prog. Inorg. Chem. 1986, 34, 435.

- Kadish, K. M.; Caemelbecke, V.; E.; Royal, G. In *The Porphyrin Handbook:Electrochemistry of Metalloporphyrins in Nonaqueous Media*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 8. Page 1-97.
- Elena Y. Gueletii. M.S. Thesis; The University of Houston, Department of Chemistry, 1997.
- The Porphyrin Handbook, Kadish, K. M., Smith, K. M., Guilard, R. Eds.;
 Academic Press: San Diego, 2000; Vol. 1-10.
- 26. The Porphyrins, Dolphin, D. Ed.; Academic Press: New York, 1978; Vol. 1-7
- 27. Johnson, A. W., Chem. Soc. Rev. 1975, 4, 1.
- Kadish, K. M. R., G.; Van Caemelbecke, E. and Gueletti, E. *The Porphyrin Handbook*, Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 9, Chapter 59.
- 29. Ikeda, S.; Toganoh, M.; Furuta, H., Inorg. Chem. 2011, 50, 6029.
- Diev, V. V.; Schlenker, C. W.; Hanson, K.; Zhong, Q.; Zimmerman, J. D.;
 Forrest, S. R.; Thompson, M. E., *J. Org. Chem.* 2012, 77, 143.
- Tabbi, G.; Di Mauro, G.; Purrello, R.; Bonomo, R. P., *Dalton Trans.* 2011, 40, 4223.
- 32. Smith, K. M. *Porphyrins and Metalloporphyrins*, Smith, K. M., Ed.; Elsevier: New York, **1975**, Chapters 2 and 14.
- 33. Walker, F. A.; Hui, E. and Walker, J. M. J. Am. Chem. Soc. 1975, 97, 2390
- Buchler, J. W. *Porphyrins and Metalloporphyrins*, Smith, K. M., Ed.; Elsevier: New York, **1975**, Chapter 5.

- 35. H. H. Jaffe, Chem. Rev. 1953, 53, 191.
- Kadish, K. M.; Caemelbecke, V.; E.; Royal, G. The Porphyrin Handbook:Electrochemistry of Metalloporphyrins in Nonaqueous Media; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 8, Page 8.
- Kadish, K. M.; Morrison, M. M.; Constant, L. A.; Dickens, L.; Davis, D. G., J.
 Am. Chem. Soc. 1976, 98, 8387.
- 38. D'Souza, F.; Zandler, M. E.; Tagliatesta, P.; Ou, Z,; Shao, J.; Van Caemelbecke,
 E. and Kadish, K. M. *Inorg. Chem.* 1998, *37*, 4567.
- Kadish, K. M.; D'Souza, F.; Villard, A.; Van Caemelbecke, E.; Bianco, P.;
 Antonini, A. and Tagliatesta, P. *Inorg. Chem.*1994, 33, 5169
- Kadish, K. M.; Li, J.; Van Caemelbecke, E.; Ou, Z.; Guo, N.; Autret, M.;
 D'Souza, F. and Tagliatesta, P. *Inorg. Chem.* 1997, *36*, 6292
- 41. Tagliatesta, P.; Li, J.; Autret, M.; Van Caemelbecke, Villard, A.; D'Souza, F. and Kadish, K. M. *Inorg. Chem.* **1996**, *35*, 5570.
- 42. Kadish, K. M.; Lin, X. Q.; Han, B. C. Inorg. Chem. 1997, 26, 4161.
- 43. Lin, X. Q.; Boisselier-Cocolios, B. and Kadish, K. M. *Inorg. Chem.* **1986**, *25*, 3242.
- 44. Walker, F. A.; Beroiz, D.; Kadish, K. M. J. Am. Chem. Soc. 1976, 98, 3484.
- 45. Araullo-McAdams, C.; Kadish, K. M. Inorg. Chem. 1990, 29, 2749.
- 46. Kadish, K. M.; Bottomley, L. A.; Beroiz, D. Inorg. Chem. 1978, 17, 1124.
- 47. Mu, X. H. and Kadish, K. M. Inorg. Chem. **1989**, *28*, 3743.
- Hu, Y.; Han, B. C.; Bao, L. Y.; Mu, X. H. and Kadish, K. M. *Inorg. Chem.* 1991, 30, 2444.
- 49. Kadish, K. M.; Mu, X. H.; Lin, X. Q., Inorg. Chem. 1988, 27, 1489.
- 50. Kelly, S.; Lancon, D.; Kadish, K. M. Inorg. Chem. 1984, 23, 1451.
- 51. Fuhrhop, J. -H.; Kadish, K. M.; Davis, D. G. J. Am. Chem. Soc. 1973, 95, 5140
- 52. Zermer, M.; Gouterman, M. Theor. Chim. Acta. 1966, 4, 44
- Kadish, K. M.; Caemelbecke, V.; E.; Royal, G. *The Porphyrin Handbook*, Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 8, Chapter 55.
- 54. Takeda, J.; Sato, M., Chem. Lett. 1995, 939.
- Kadish, K. M.; Caemelbecke, V.; E.; Royal, G. The Porphyrin Handbook:Electrochemistry of Metalloporphyrins in Nonaqueous Media; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 8, Page 12.
- 56. Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706.
- 57. Nicholson, R. S., Anal. Chem. 1965, 37, 1351.
- Mann, C. K. "*Electroanalytical Chemistry*"; Bard, A. J. Ed.; Marcel Dekker, New York, 1969; Vol. 3.
- 59. Mann, C. K.; Barnes, R. K. "*Electrochemical Reactions in Nonaqueous Systems*"; Marcel Dekker, New York, **1970**; Vol. 3.
- Sawyer, D. T.; Roberts, J. L. "*Experimental Electrochemistry for Chemists*"; John Wiley and Sons, New York, **1974**.

- Fuhrhop, J.-H. In "*Porphyrins and Metalloporphyrins*"; K. Smith Ed.; Elsevier, New York, **1975**, Chapter 14.
- 62. Buchler, J. W.; Kokisch, W.; Smith, P. D. Struct. Bonding, 1978, 34, 79.
- Davis, D. G. "*The Porphyrins*"; D. Dolphin Ed.; Academic, New York, 1978;
 Vol. 5
- 64. Felton, R. H. In "*The Porphyrins*"; D. Dolphin Ed.; Academic Press, New York, 1978; Chapter 3.
- Kadish, K. M. In "*Iron Porphyrins*"; A. B. P. Lever and H. B. Gray, Eds.,
 Addison Wesley, Reading, Massachusetts, **1983**; Part 2, p 161-249.
- 66. Kadish, K. M.; Guilard, R. Comments Inorg. Chem. 1988, 7, 287.
- 67. Kadish, K. M.; Xu, Q. Y.; Anderson, J. E. ACS Symposium Series. 1988, 378, 451.
- Anderson, J.; E.Liu, Y. H.; Guilard, R.; Barbe, J.-M.; Kadish, K. M. Inorg. Chem. 1986, 25, 3786.
- 69. Anderson, J. E.; Liu, Y. H.; Kadish, K. M. Inorg. Chem. 1987, 26, 4174.
- 70. Bond, A. M.; Sweigart, D. A., Inorg. Chim. Acta 1986, 123, 167.
- Byers, W.; Cossham, J. A.; Edwards, J. O.; Gordon, A. T.; Jones, J. G.; Kenny,
 E. T. P.; Mahmood, A.; McKnight, J.; Sweigart, D. A.; Tondreau, G. A.; Wright,
 T., *Inorg. Chem.* 1986, 25, 4767.
- Cosmo, R.; Kautz, C.; Meerholz, K.; Heinze, J.; Mullen, K., Angew. Chem., Int. Ed. Engl. 1989, 28, 604.
- 73. Hinman, A. S.; Pavelich, B. J.; Kondo, A. E.; Pons, S., *J. Electroanal. Chem.*1987, 234, 145.

- 74. Gagné, R. R.; Koval, C. A.; Lisensky, G. C., Inorg. Chem. 1980, 19, 2854.
- Ono, N.; Hironaga, H.; Ono, K. K., S.; Murashima, T.; Ueda, T.; Tsukamura, C.;
 Ogawa, T., J. Chem. Soc., Perkin I 1996, 417.
- 76. Hariprasad, G.; Dahal, S.; Maiya, B. G., J. Chem. Soc., Dalton Trans. 1996, 3429.
- 77. Feng, D.; Schultz, F. A., Inorg. Chem. 1988, 27, 2144.

CHAPTER TWO

Experimental: Collection of Data and Characterization of Porphyrin Redox Reactions The collected electrochemical data is organized in the form of a database which has fields for the porphyrin macrocycle, central metal ion, axial ligand, solvent, supporting electrolyte, redox potentials for oxidation and reduction, reference electrode, and so on. A database management system is a useful tool for researchers to organize and computerize experimental information, data, and references. To construct a database management system required specialized software, which in this case was commercially available. Details on the software utilized and the procedure for entering data is given below.

2.1 Software

The redox potentials of porphyrins and related macrocycles are summarized in the form of a computerized database using the FileMaker Pro 11.0 program from Claris Corporation.¹ FileMaker Pro uses simple concepts like find, sort, and connect. FileMaker Pro is designed from the ground up for non-technical people who have a real job to do. It's designed to let you get in, build your database, and get back to work. It can handle large amounts of data and let many people share the data.² Furthermore, the data you store in your database management system can be in the form of text, photos, PDF and Excel files.

2.2 Procedure

Many methods were used to find the electrochemical redox potentials entered into the FileMaker program. One way was to carry out the search with SciFinder, a system provided by CAS division of the American Chemical Society. SciFinder is a research discovery tool that allows college students and faculty to access a wide diversity of research from many scientific disciplines, including biomedical sciences, chemistry, engineering, materials science, agricultural science, and more.³

In addition to SciFinder, we examined publications from our own laboratory over the last 40 years to find the names of other major laboratories and researchers working in the field of porphyrins and porphyrin electrochemistry and then searched the publications of these people. We made copies and read all published papers which contain electrochemical data from 1997 to 2011.

All published papers that related to porphyrin macrocycles have been checked and their redox potentials and experimental conditions were analyzed not only to the $E_{1/2}$ values but also to the site of electron transfer. Authors' names that appeared in the 1999 database⁴ were further searched by SciFinder and any relevant publications collected.

The electrochemical data we have listed appear in many different types of journals around the world. We have routinely cross-checked through those different types of journals to make sure that the electrochemical data collected was mostly complete.

2.3 Limitation of the Database

It should be pointed out that some limitations of our database exist. For instance, sometimes different redox potentials of the same porphyrin compounds are reported under the same experimental conditions. In these cases, both sets of published values are listed and it is up to reader to decide which is the best value for their own research. In some cases, the published redox potentials or experimental conditions in the original manuscript are incomplete. For example, sometimes only oxidations are given and no

reductions or there are reductions and no oxidations. In these cases, the fields for the missing data are left blank. In other cases, the utilized salt, RE, WE, or atmospheric conditions are missing. When this occurs, the entry in these fields is given as NR (not reported).

2.4 Characterization of Porphyrin Redox Reactions

2.4.1 Selection of Appropriate Solvent

Most early investigations of porphyrins in non-aqueous media were made in DMF or DMSO for reductions and in benzonitrile or butyronitile for oxidations. Later studies of porphyrin electrochemistry were made in the nonbinding solvent dichloromethane (CH₂Cl₂) for both oxidations and reductions. The advantage of this solvent is that the radical anions and radical cations could both be electrogenerated in solution and then characterized by ESR, NMR or UV-visible spectroscopy. The selection of which aprotic solvent to utilize may depend on its anodic or cathodic potential range, or its ability to stabilize π -anion and/or π -cation radicals. For instance, the stability of anion radicals is greater in DMF and DMSO than in acentonitrile. This is because of the fact that solvents with a large Gutmann donor number tend to associate with hydrogen donors like water. Therefore, DMF and DMSO are able to stabilize π -anion radicals even when a small amount of water is present in the solvent.

The overall requirements of the individual experiment will dictate the reasons to select a proper solvent. The first requirement is solubility. One must also consider the ease of solvent purification, the chemical reactivity of the solvent, its ability to stabilize π -anion or π -cation radicals and its overall potential range for both oxidation and reduction, the latter of which will depend in part on the type of electrode material. For

example, Hg cannot be utilized for oxidations while Ag and Au both have a limited positive range in solvents containing halide anions. Other practical factors include the cost of the solvent, its toxicity and its general ease of handling.

In addition, the most common nonaqueous solvent utilized for metalloporphyrins reductions have been DMF, DMSO, PhCN, and MeCN. With appropriate supporting electrolyte, the range of these solvents may be extended to -3.0 V by using a Hg electrode. This easily allows for the electrogeneration of π -anion radicals and dianions as well as other electrode reactions involving protonated species which may be observed at potentials between -2.2 and -2.7 V.¹⁻³ As indicated above, anion radicals are easily stabilized in DMF for investigation by ESR techniques.

Most electrooxidations of porphyrins to give the π -cation radicals and dications have been carried out in CH₂Cl₂, PhCN, or MeCN. Although the anodic-potential range of these solvents does not extend much above +1.5 V, this is often sufficient to view the first two oxidations of most porphyrin complexes. Although many electrogenerated dications may be attacked by nucleophiles to yield an isoporphyrin,⁴⁻⁷ the solvent of choice is often CH₂Cl₂. This solvent has been utilized by numerous laboratories, although reactions of some low valent metalloporphyrins with CH₂Cl₂ to give sigmabonded complexes are known with the best examples being in the case of Fe¹ and Co¹ complexes. One advantage of CH₂Cl₂ as a solvent in that comparisons may be made directly between electrochemical results obtained in this chlorinated solvent and chemical results obtained in other nonboning solvents such as CCl₄ or CHCl₃.

One disadvantage of CH_2Cl_2 is its low boiling point. Depending on the cell design, this may present special problems in normal cells upon deoxygenation as well as

in thin-layer spectroelectrochemistry, where time-resolved measurements of small solution volumes might lead to solvent evaporation under the influence of an applied light source. In order to get around this problem one can easily switch to the solvent, 1,2-dichloroethane in place of dichloromethane, CH_2Cl_2 because of its higher boiling point (83.4 °C), fewer problems are encountered due to solvent evaporation. The electrochemical mechanisms and ligand-binding properties appear to be similar in these two solvents, so that results can be used interchangeably. However, there are slight differences in absolute potential measurements between the two solvents, after correction for liquid junction potential. The two solvents also have different dielectric contants of 8.93 (CH_2Cl_2) and 10.37 ($C_2H_4Cl_2$).

2.4.2 Selection of Appropriate Supporting Electrolyte

Almost all electrochemical studies of metalloporphyrins in nonaqueous media have utilized tetraalkylammonium salts as a supporting electrolyte, because its higher solubility and commercial availability. The most common salts have been the tetrabutyland tetraethylammonium percholorates (abbreviated TBAP and TEAP). Several studies have also utilized tetraalkylammonium salts of BF_4^- or PF_6^- .

Selection of a given supporting electrolyte will depend upon its cost, ease of purification and possible axial coordination of the counteranion. Usually ClO_4^- , BF_4^- and PF_6^- can be considered as non-binding anions. Tetraalkylammonium supporting electrolytes containing all three anions are commercially available or may be easily synthesized from the respective Br⁻ complexes.⁵ However, a ClO_4^- salt with either a tetraethylammonium (TEA⁺) or tetra-*n*-butylammonium (TBA⁺) cation has usually been the supporting electrolyte of choice. Results obtained are often interchangeable between

measurements made with TBAP and TEAP as supporting electrolytes and thus, given the choice (which depends on availability), TBAP has usually been selected because of its higher solubility.

Mann and Barnes⁶ reported data on the potential range of CH_2Cl_2 containing different supporting electrolytes. They indicate that salts of Γ , Br⁻ or Cl⁻ may be used for reductions but are not recommended for oxidations due to the fact that the anions are easily oxidized at potentials less than +1.0 V *vs* SCE. The anions might also coordinate to the central metal ion of the porphyrin, thus leading to redox potentials which could be quite different than when the measurements are made in solutions of TBAP. This is especially true for the case of (TPP)Co oxidation where $E_{1/2}$ for the Co(II)/Co(III) reaction ranges from 0.29 to 0.94 V, depending upon the specific anion of the supporting electrolyte.⁷

One must also consider the concentration of the supporting electrolyte. Due to changes in ionic strength, potentials measured with concentrations of 1.0 M TBAP are not identical to those measured with 0.10 or 0.01 M. The differences of potential may amount to several hundred millivolts and will vary as a function of the specific electrode reactions examined.

2.4.3 Measuring and Reporting Redox Potentials

The majority of metalloporphyrin redox reactions involve reversible electron transfers these potentials are reported as $E_{1/2}$ or E° versus a standard reference electrode, and which is most often a saturated calomel electrode (SCE).⁸ Some reversible potentials are reported versus the less used reference electrodes like Ag/AgCl or even versus a Pt pseudo-reference electrode which has an ill-defined potentials. Some values

of $E_{1/2}$ are also reported to versus the ferrocene/ferrocenium couple (Fc/Fc⁺) in the same nonaqueous solvent but others have been reported to versus the normal hydrogen electrode (NHE). The latter method of reporting potentials is not recommended in large part because it has involved a conversion from real, experimentally measured, potentials to potentials versus a not often used theoretical reference standard.

Also, it should be indicated that "irreversible" electrode reactions of a given metalloporphyrin must be labeled with respect to the experimental conditions and not just combined with $E_{1/2}$ values for reversible electrode reactions. This is because an "irreversible reaction" may be electrochemically irreversible due to slow electron transfer kinetics or it might be irreversible due to the occurrence of a coupled chemical reaction, in which case the experimentally observed potentials could be removed from the thermodynamic important values.^{8,9} As indicated earlier, no attempts were made in this review to convert potentials measured against one reference electrode to another standard reference system. Sometimes, Fc/Fc⁺ was used to measure the potentials. The approximate value of the Fc/Fc⁺ couple generally ranges from 0.45 to 0.55 V *vs* SCE depending on the solvent and the experimental setup, however these values need see what exact experimental conditions.^{10, 11}

2.4.4 Measuring and Reporting the Numbers of Electrons Transferred

Many of metalloporphyrin redox reactions involve one-electron transfer and the few examples of reported porphyrin multi-electron processes in the literature which are overlapping one-electron transfers where the two redox reactions occur at very similar potentials. There are actually very few cases of porphyrin two-electron transfer processes to the same redox site (one involves the conversion of Sn(II) to $Sn(IV)^{12}$ and

another the reduction of $[(TMpyP)M]^{4+}$ to $[(TMpyP)M]^{2+}$ where M = H₂, Cu, Zn, and VO).^{13, 14} Thus, we need pay attention when discussing what appears to be a multielectron transfer. In this regard, it should be indicated that cyclic voltammetry theory predicts a peak to peak separation of 59 mV for a reversible one-electron transfer process, while a true two-electron transition would have a peak to peak separation of approximately 30 mV.^{8, 9} The peak current for a real two-electron transfer by cyclic voltammetry would also be approximately 2.8 times higher than a one-electron transfer since this value is proportional to the 3/2 power of the number of electrons transferred.⁸

2.4.5 Assigning Site of Electron Transfer

The site of electron transfer in metalloporphyrins may be assigned on the basis of spectroscopic data or electrochemical criteria, or alternatively it may be assigned on the basis of comparison with the known chemistry and electrochemistry of related systems.

2.4.6 Selection of Appropriate Porphyrin Reference Compound

The most common used comparison compounds against which the results of newly synthesized metalloporphyrins are derivatives of TPP and OEP. For example, Zn (II) derivatives of tetramesitylporphyrin $(TMP)^{15}$ and octabromotetraphenylporphyrin $(Br_8TPP)^{16}$ are oxidized, respectively, at 0.86, 1.20 and 0.88, 1.14 V vs SCE in CH₂Cl₂ and all two potential values can be compared to $(TPP)Zn^{17}$ which is oxidized at potentials of 0.79, 1.07 V vs SCE in CH₂Cl₂ under very similar experimental conditions. However, TPP and OEP derivatives are not available to be reference compounds with all known metal ions, in cases when the data are available, it might only be in another solvent or supporting electrolyte system, which would require a new

measurement. In a word, TPP and OEP derivatives are good reference compounds for most cases, but other similar macrocycle systems are needed to take into account if TPP and OEP derivatives might not be comparison compounds.

2.4.7 Factors Influencing Half Wave Potentials

The factors which the most influence metalloporphyrin redox potentials can be concluded as which related to the properties of the solvent and supporting electrolyte and those which relate to the porphyrin itself. The properties of the porphyrin including such as the type and oxidation state of the central metal ion, (ii) type and number of axially coordinated ligands, and (iii) type and planarity of the conjugated macrocycle.

The simple way to investigate the relationship between redox potentials and axial ligation is to complex the porphyrin axially under known experimental solution conditions and to measure the redox potential under these conditions. Absolute values of $E_{1/2}$ may then be related to a given set of axial ligands or the spin state.

Examples of how changes in axial ligation will affect porphyrin ring- and metalcentered redox reactions have been demonstrated in many cases with one good example is provided by the Fe(III)/Fe(II) reactions of (TPP)Fe(L) which can vary over a range of 1.0 or more volts just as a function of the axial ligand.¹⁸⁻²¹

Changes in the nature of the axial ligand may lead to smaller changes in the macrocycle-centered reactions of a given metalloporphyrin but this also is depend on the degree of interaction between the metal center and the macrocycle. In contrast, the redox potentials for porphyrin π -anion or π -cation radical formation will vary with changes in the central metal ion. For example, (OEP)Ag(II) is converted to a π -anion radical at $E_{1/2} = -1.29$ V vs SCE as compared to (OEP)Co which is converted to a π -

anion radical at a reversible half wave potential of -1.68 V vs SCE.²²

Potential shifts in $E_{1/2}$ for formation of porphyrin π -cation or π -anion radicals can can also result from systematic changes in the macrocycle or systematic changes in the substituents on the macrocycle. For the electrochemical reactivity, the most studied correlations have been those involving substituent effects on half wave potentials. The type of substituent effects on metalloporphyrin redox potentials will depend on many parameters such as number and type of substituents, location of substituents, Hammett substituent constants, planarity of porphyrin macrocycle, properties and type of central metal ion, oxidation state of central metal ion, and site of electron transfer. For instance, the different type of substituents showed the different effect on redox potential shifts for $E_{1/2}$, because of different Hammett substituent constants of each substituent. The higher Hammett substituent constant is more positive shifts of redox potential shifts for $E_{1/2}$ due to the electron-deficient characteristics of its macrocyle with higher Hammett substituent constant substituent connected to macrocycle. Generally, the addition of electron-donating groups to the porphyrin macrocycle with facilitate oxidation and hinder reduction at either the metal center or the porphyrin π -ring system. In contrast, the addition of electron-withdrawing substituents to the porphyrin ring will remove electron density from the reaction site and lead to easier reductions and harder oxidations.

A large range of redox potentials can be obtained for a variety of metalloporphyrins with the same macrocycle but different central metal ions or with the same metal ion and different metal ions. In these cases, $E_{1/2}$ can often be predicted on the basis of linear free relationships. It should be indicated that many factors of central

metal ion might affect the potential shifts of porphyrin macrocycle such as properties and type of central metal ion, changes in structure or metal oxidation state upon redox reaction, metal out of plane distance, oxidation state of central metal ion, coordination number of central metal ion.

Another factor which often less considered is that how systematic changes in an electrochemical solvent will lead to systematic shifts in potentials for oxidation or reduction of a given metalloporphyrin complex. For example, the oxidation of (TPP)Zn has been examined in more than a dozen different nonaqueous solvents, with values of $E_{1/2}$ in the case of the Zn complex ranging from 0.66 V vs SCE in PhCN²³ and 0.78 V vs SCE in CH₂Cl₂.²⁴ Shifts of similar magnitude are seen for other metalloporphyrins, necessitating a compilation of data under numerous experimental conditions or an understanding of how changes in redox potentials upon changing solvents might be predicted by knowing the nature of the porphyrin-solvent interaction.

A number of correlations have been made in the literature between half-wave potentials of a given compounds and the donor or acceptor properties of the electrochemical solvent. The most often utilized solvent parameter has been the Gutmann donor numbers (DN) or acceptor numbers (AN).²⁵ The specific correlation between $E_{1/2}$ and a given solvent will depend upon the nature of the solvent-porphyrin interaction as well as upon the charge of the reactant from the product. For example, values of $\Delta E_{1/2}$ for the reduction of (OEP)M where M = Zn, Ni, Co, and Cu are linear related to the Gutmann donor number,²⁶ but this is not the case for all type of porphyrin macrocycles.

2.5 References

- 1. <u>http://www.filemaker.com/products/</u>.
- Prosser, S.; Coffey, G., In *FileMaker Pro 10- The missing manual*, Pogue Press
 O' Reilly Media, Inc.: Sebastopol,CA, 2009.
- 3. http://www.cas.org/products/sfacad/index.html
- Kadish, K. M.; Royal, G.; Caemelbecke, V. E.; Gueletti, E. In *The Porphyrin Handbook: Metalloporphyrins in Nonaqueous Media: Database of Redox Potentials*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, **2000**; Vol. 9. Page 1-212.
- 5. House, H. O.; Feng, E.; Peet, N. P. J. Org. Chem. 1971, 36, 2371.
- Mann, C. K.; Barnes, R. K. "Electrochemical Reactions in Nonaqueous Systems"; Marcel Dekker, New York, 1970; Vol. 3.
- 7. Truxillo, L. A.; Davis, D. G. Anal. Chem. 1975, 47, 2260.
- 8. Bard, A. J.; Faulker, L. R. "*Electrochemical Methods*"; Wiley, New York, **1980**.
- 9. Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706.
- 10. Gagné, R. R.; Koval, C. A.; Lisensky, G. C., Inorg. Chem. 1980, 19, 2854.
- 11. Gritzner, G.; Kuta, J. Pure Appl. Chem. 1982, 54, 1527.
- 12. Kadish, K. M.; Dubois, D.; Barbe, J.-M.; Guilard, R. *Inorg. Chem.* **1991**, *30*, 4498.
- Kadish, K. M.; Araullo, C.; Maiya, G. B.; Sazou, D.; Barbe, J.-M.; Guilard, R. *Inorg. Chem.* 1989, 28, 2528.
- Shamin, A.; Hambright, P.; Williams, R. F. X. *Inorg. Nucl. Chem. Lett.* 1979, *15*, 243.

- Iehl, J.; Vartanian, M.; Holler, M.; Nierengarten, J.-F.; Delavaux-Nicot, B.;
 Strub, J.-M.; Van Dorsselaer, A.; Wu, Y.; Mohanraj, J.; Yoosaf, K.; Armaroli,
 N., J. Mater. Chem. 2011, 21, 1562.
- 16. Bhyrappa, P.; Purushothaman, B., J. Chem. Soc., Perkin Trans. 2 2001, 238.
- Kadish, K. M.; Chen, P.; Enakieva, Y. Y.; Nefedov, S. E.; Gorbunova, Y. G.;
 Tsivadze, A. Y.; Bessmertnykh-Lemeune, A.; Stern, C.; Guilard, R., J. *Electroanal. Chem.* 2011, 656, 61.
- 18. Feng, D.; Schultz, F. A., Inorg. Chem. 1988, 27, 2144.
- 19. Bottomley, L. A.; Kadish, K. M. Inorg. Chem. 1981, 20, 1348.
- 20. Kadish, K. M.; Bottomley, L. A. Inorg. Chem. 1980, 19, 832.
- 21. Bottomley, L. A.; Rhodes, R. K.; Kadish, K. M. "*Electron Transport and Oxygen Utilization*"; Ho, C Ed.; Elsevier, New-York, **1982**, p 117-123.
- 22. Fuhrhop, J. -H.; Kadish, K. M.; Davis, D. G. J. Am. Chem. Soc. 1973, 95, 5140
- Kanematsu, M.; Naumov, P.; Kojima, T.; Fukuzumi, S., *Chem.--Eur. J.* 2011, *17*, 12372.
- Venkatraman, S.; Prabhuraja, V.; Mishra, R.; Kumar, R.; Chandrashekar, T. K.; Teng, W.; Senge, K. R., *Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem.* 2003, 42A, 2191.
- 25. Gutmann, V. In *The Donor-Acceptor Approach to Molecular Interactions*; Plenum Press: New York, **1978**
- Zhu, W.; Zhao, X.; Ou, Z.; Zhou, F.; Wang, X.; Kadish, K. M., *J. Porphyrins Phthalocyanines.* 2009, *13*, 1233.

CHAPTER THREE

How to Use the Database and What You Can Find?

3.1 How To Use the Database?

3.1.1 Paper Copy

A two-dimensional presentation of the electronic database prepared as part of this M.S. thesis is given in Chapter 4. This hard copy summarizes reported potentials for more than 3,000 compounds, each of which has multiple oxidations and/or reductions. The redox potentials are displayed in 24 different tables which have been arranged according to the structure of the macrocycle. The list of tables is given in Table 3.1 and is organized from the less complex macrocycle to the more complex molecules, starting with monomeric porphyrins and then progressing to porphyrin dimers, trimers, and oligomeric or polymeric systems. The data in these tables includes porphyrin-corrole dyads, porphyrin-fullerene dyads (including non-covalently bound systems), porphyrin-fullerene-ferrocene triads, porphyrin assemblies, and porphyrins with peripherally bonded inorganic metal complexes.

The two-dimensional paper copy of the database has 16 fields, as shown in Chapter 4, and the data has been sorted alphabetically by ring, metal, L1, L2, solvent, and supporting erlectrolyte (salt). The lists of macrocycles, ligands, solvents, and supporting electrolytes (salt) are given in Tables 4.1 to 4.4 of Chapter Four. The structures of the porphyrins are also included in the paper copy of the database and are shown in Figures 1 to 24 of Chapter Four. The original literature reference is given in the last column of each data entry and is labeled as "Ref.".

3.1.2 Electronic Copy

The electronic copy of the database provides more information on the electrochemical data and experimental conditions than does the paper copy. Additional

Table 3.1. List of Tables in the Database.

- Table 1.Tetraphenylporphyrin (TPP) macrocycles
- Table 2.
 Octaethylporphyrin (OEP) macrocycles
- Table 3. Tetramesitylporphyrin (TMP) and substituted TMP macrocycles
- Table 4.
 meso-substituted OEP and porphinone macrocycles
- Table 5.meso-substituted TPP macrocycles

Table 5a. Picket-fence porphyrins and related derivatives

Table 5b. meso-Tetraalkylporphyrins

Table 5c. meso-Tetraarylporphyrins

Table 6. β -substituted TPP macrocycles

Table 6a. β -alkyl and β -aryl-substituted TPP macrocycles

Table 6b. β -pyrrole halogenated porphyrins

Table 6c. TPP with mixed β -pyrrole substituents

Table 6d. Nitro-substituted TPP and tetraarylporphyrin (TArP) derivatives

Table 6e. Porphiones

Table 6f. Mono β -pyrrole-substituted porphyrins

- Table 7.
 Dodecaphenylporphyrin (DPP) and substituted DPP macrocycles
- Table 8. Porphyrins with fused groups

Table 8a. Quinoxalinoporphyrins

Table 8b. TPP macrocycles with fused groups

Table 3.1. List of Tables in the Databse. (Continued)

Table 9.	Core-substituted porphyrins			
	Table 9a. N-substituted tetraarylporphyrins			
	Table 9b. Heteroporphyrins			
TT 1 1 10		1		D)

- Table 10.Tetrabenzoporphyrins (TBP) and tetraazaporphyrins (TArP)
- Table 11. Porphyrins with charged peripheral groupsTable 11a. Tetraarylporphyrins with charged peripheral groupsTable 11b. Octaethylporphyrins with charged peripheral groups
- Table 12. Porphyrin dimers
- Table 13. Porphyrin trimers
- Table 14. Porphyrin-corrole dyads
- Table 15. Porphyrin dendrimers, and oligimeric or polymeric porphyrins
- Table 16. Porphyrin metal sandwich complexes
- Table 17. Porphyrins with mixed meso- and/or β -pyrrole substituents

Table 17a. A₃B meso-substituted porphyrins

Table 17b. *cis* and *trans*-A₂B₂ *meso*-substituted porphyrins

Table 17c. cis and trans-A₂B meso-substituted porphyrins

Table 17d. trans-A2BC meso-substituted porphyrins

Table 17e. A2 meso-substituted porphyrins

- Table 17f. β -pyrrole-substitued porphyrins with less than four *meso*-substituents
- Table 18. Porphyrin-ferrocene conjugates

Table 3.1. List of Tables in the Databse. (Continued)

- Table 19.
 Porphyrin-fullerene conjugates and porphyrin-fullerene complexes
- Table 20. Porphyrin-C60-ferrocene triads
- Table 21.
 Supramolecular porphyrin assemblies
- Table 22.
 Porphyrins containing peripheral metal complexes

Table 22a. Porphyrins with covalently bonded peripheral metal complexes

Table 22b Porphyrins with non-covalently bonded peripheral metal complexes

Table 23.Natually occurring porphyrins

Table 23a. Heme and related macrocycles

Table 23b. meso-substituted etioporphyrin II macrocycles

Table 23c. β-alkyl and *meso*-substituted porphyrins

 Table 24.
 Porphyrins and porphyin-C₆₀ conjugates adsorbed on electrode surfaces

information includes the HOMO-LUMO gap, the type of working electrode, the gas over the solution (N_2 , Ar, CO, etc) and number of macrocyclic rings. Obviously, the biggest advantage of the electronic database is its searching function. The electronic database allows one to search particular information within the whole database by keywords. These keywords are given in Table 3.2. The user is able to search redox potentials and experimental conditions by each "field" in the electronic database, examples being ring, metal, ligand, solvent, type of working electrode, and so on. The electronic copy of the database is available upon request from Professor Karl Kadish in the Department of Chemistry at the University of Houston. The information in the electronic database can be printed in several different formats. The user determines how they wish to represent the information and sort the data according to any chosen parameters in the database.

3.2 What Can You Find?

The database allows one to examine a number of correlations which might not be evident from a single paper or review. The key factors that influence porphyrin redox potentials are:

(i) Type of macrocycles

(ii) Location and number of substituents

(iii) Type and oxidation state of central metal ion

(iv) Type and number of axial ligands

(v) Nature of the solvent and the supporting electrolyte

Several examples of correlations between redox potentials and the above factors are given on the following pages. Numerous other correlations are possible, depending on the information desired by the reader. Table 3.2. The List of Key Words/Abbreviations in Electronic Database

(Br4)TPP-TriPP (CF3)12TPP (CF3)4TPP (CH3)4(Ph)4TPP(CH3)4Ph5Cor (CH3)6Et2Ph5P (ClO4)2DPP (CN)4(Ph)4TPP (CN)4(Ph)4TPP (CO2CH3)8TBTPP (i-Bu)8TPP (NH2)P(NH2)TPP (NO2)2TPP (NO2)3TPP (NO2)4DPP (OCH3)4DPP (OCH3)4DPP - Keggin type POM (Ph)8DPP (Ph)8T(3-Thienyl)P (Ph)8T(4-OCH3 P)P (Ph)8TPP (Ph)8TPPC112 (R)P(R)TPP (RHN)P (Ru(bpy)2Cl)2-Por-Pt(Cl2)DMSO complex (SC6H13)8TAP [Br8T(4-NCH3 Py)P]4+ [Br8TNMePyP]4+ [Br8TPPS]4-[F16TPPS]4-[NMePyP]4+ [Por-Cu(Phen)2 dyad]2 [T(2-NCH3 Py)P]4+ [T(2-NEt Py)P]4+ [T(4-Py)P-[Ru(bpy)2C1]4]2O [TNCH3PyP]3+ [TNEtPyP]4+

[TPPS]4-C60-por dyad Porphyrin tetramer PQ(5NH2) (2-Py)2A3 pyridylporphyrin (3-Py)(4-t-butylP)P tetramer selfassembly (3-Py)Tri(4-CH3P)P tetramer self assembly (3-Py)Tri(4-HexP)P tetramer selfassembly (a³,b-NHCOFc)TPP (a⁴-NHCOFc)TPP (a⁴-piv)TPP (Alkyl)P (bisthiophene)4TPP (meso) (Boron dipyrromethene)3porphyrin-C60 pentad (Br8)TPP-TriPP (CF3)4DPP (CH3)4Ph5P (CH3)4TMP (CH3)4TPP (CH3)6Et2PhP (CH3)NCTPP (CN)4(CH3)4TPP (CO2CH3)8TBTPP (CO2H)DPP (DAPS)OEP (DAS)OEP (DATS)OEP (Et)8T(Ar)P(Fc)2-Por-(Fc)2 triad (ImUP)T(3,5-D-TBuP)P (ImUP)T(3,5-D-TBuP)P.PUPC₆₀ (N-Alkoxycarbozolyl P)P (NO2)4DPP (NO2)4OEP (NO2)P(NO2)PQ

(O)Cl₈TPPone (O)TMPone (OCH3)20DPP (OEP)₂-1,3-DAP (OEP)₂-1,4-DAP (OEP)₂-1,5-AT (OEP)₂-DA (OEP)₂-DAV (OEP)₂-DVDA (OEP)₂-TA (OEP)2DAT (Ph)4TPP (Ph)4TPP (Ph)8TPP (R)OEP (T(4-NCH3Py)P)2-T(35-DCP)P trimer (TAS)OEP (TCHP)4-(TTF)4TPP (TTF)TPP [(bipy)4OEP]4+ [(bpy)OEP]+ [(Et)4(NCH3 Py)4P]4+ [(Py)4OEP]4+[Br8TPPS]4-[Et8(Py)]4+ [F16TPP(NCH3)4]5+ [F8TPPS]4-[OEP(Py)2]2+[OEP(Py)4]4+[T(2-N(alkyl Im) P]5+ [T(2-N(butyl) Py)P]5+[T(2-N(Et) Py)P]5+[T(2-N(hexyl) Py)P]5+[T(2-N(MOE) Py)P]5+[T(2-N(octyl) Py)P]5+[T(2-N(propyl) Py)P]5+[T(2-N(TDE)Im) P]5+[T(2-N(TDTEG)Im) P]5+ [T(2-N(TEG) Py)P]5+

[T(2-NCH3 Py)P]5+ [T(2-NEt Py)P]4+[T(3-NCH3 Py)P]4+ [T(4-NCH3 Py)P]4+ [T(4-NCH3 Py)P]5+ [T(4-NCH3 Py]4+ [T(4-NEt Py)P]4+[T(4-NV P)P]4+ [T(4-TriMAP)P]5+ [T(DiN-CH3 Im)P]4+ [T(DiN-Et Im)P]4+ [T(DiN-Pr Im)P]4+ [T3NMePyP]4+ [TDM-2-ImP]5+ [TNCH3PyP]4+ [Tri(2-NCH3 Py)PyP]3+ 1,3-diacetynyl phenyl bridged porphyrin dimmer 1,4-diacetynyl phenyl bridged porphyrin dimmer 1,5-diacetynyl thienyl bridged porphyrin dimmer 1R-T(methoxy bismethanooctahydroanthtacene-9-yl)P 1S-T(trifluoromethyl bis methanooctahydroanthtacene-9-yl)P 2-PvTri(4-t-ButvlP)P 2,5-diacetynyl thienyl bridged porphyrin dimer 4-Pyridyl Fc carboxylate assembly 4-PyTri(4-CH3P)P 5-phenyl-10,15,20-tris(Nmethylpyridinum-2-yl)porphyrin a-diketoporphyrin A2 A2B A2B2 A3 a³,b-(NHCOFc)₄TPP A₃B a⁴-(NHCOFc)₄TPP aaaa-T(2-MPAM)P aaab-TTFCPP

ABC

ABCD Acene-modified porphyrin Acredinium inclusion complex Anthracene fused porphyrin Anthracenylporphyrin assembly Axially bonded porphyrin dimer b-alkylated corrole b-alkylated mesotetraphenylporphyrin b-alkylated porphyrin b-brominated porphyrin b-brominated tetraphenylporphyrin b-brominated-TPP b-lakylated chlorin b-mixed substituted porphyrin b-mixed substituted TPP b-octaalkylated porphyrin b-octaaryl meso-tetraarylporphyrin b-octabrominated TPP b-octabromo b-octabromo meso-pyridylporphyrin b-octabromo mesotetraarvlporphyrin b-octabromo meso-tetrakis (sulphonatophenyl)porphyrin b-octabromo mesotetramesitylporphyrin b-octabromo mesotetrapyridylporphyrin b-octabromo TPP b-octachloro mesotetraarylporphyrin b-octachloro mesotetraphenylporphyrin b-octachloro tetraphenylporphyrin b-octaethyl mesotetraarylporphyrin, b-octaethyl mesotetrabipyridiniumporphyrin b-octaethyl mesotetranitroporphyrin

b-octaethyl mesotetraphenylporphyrin b-octaethyl meso-tetrapyridinium porphyrin b-octaethyl tetraazaporphyrin b-octaethyl TPP b-octafluoro b-octafluoro meso-tetrakis (sulphonatophenyl)porphyrin b-octafluoro-TPP b-octanitroporphyrin b-octaphenyl mesotetraarylporphyrin b-octaphenyl mesotetraphenylporphyrin b-perbrominated porphyrin b-pyridyl porphyrin b-pyrrole b-pyrrole alkylated porphyrin b-pyrrole substituted b-substituted mesotetraphenylporphyrin b-substituted porphyrin b-substituted tetraarylporphyrin b-substituted TPP b-substituted TPP b-tetrabrominated TPP b-tetrabromo mesotetraarylporphyrin b-tetrabromo mesotetraphenylporphyrin b-tetrabromo mononitro mesotetraphenylporphyrin b-tetrabromo tetraphenylporphyrin b-tetraethvl tetra-Nmethylpyridiniumporphyrin b-tetraethyl-N-methyl pyridylporphyrin baaa-thiolate tripivalamido porphyrin BCA BCB BCO BCS

BCX bicyclooctadiene fused porphyrin Bis-u-oxo porphyrin dimer bisporphyrin Bisstrap-C₁₀ Bisstrap-C₁₂ Bisstrap-C₈Ph Boron-dipyrrin-por crown ether-C60 triad assembly Boron-dipyrrin-zinc por crown ether dyad Boron-dipyrromethane bridge boron-dipyrromethane complex Br16T(35-DMP)P Br1TPP meso-tetraphenylporphyrin Br20TPP Br2TPP Br3TPP Br4(CH3)4TPP Br4(NO2)TPP Br4(Ph)4TPP Br4DPP Br4T(4-butyloxy P)P **Br4TPP** Br4TPP-TriPP **Br5TPP** Br6(NO2)TPP Br6T(4-CO2CH3 P)P **Br6TPP** Br7(NO2)TPP **Br7TPP** Br8F20TPP Br8T(2-CH3 P)P Br8T(2-Py)P Br8T(3-CH3 P)P Br8T(3-Py)P Br8T(4-Br P)P Br8T(4-CH3 P)P Br8T(4-CO2CH3 P)P Br8T(4-CO2Et P)P Br8T(4-CO2H P)P

Br8T(4-FP)P

Br8T(4-NCH3 Py)P4+ Br8T(4-NO2 P)P Br8T(Ar)P Br8T(naphthyl)P Br8T2PvP Br8T3PyP Br8TCPP Br8TMP **Br8TPP** brominated porphyrin brominated-TPPS C-(P-tetraone) C60 C60-bisporphyrin-C60 triad C60-oligopor-C60 rods, C60-por dimer-C60 triad C60-por-C60 triad C60-por-Cu(phen)2-(Fc)2 aggregates C60-Por-Fc triad C60-Por-TTF triad C60(Py)2 assembly C60Im assembly C70 assembly Calix[4]phyrin Calixphyrins carbaporphyrin carboxyl CD CH3CO2-Chalcogenaporphyrin Chiral porphyrin Chiral porphyrin dimmers Chlorin Chlorin-C60 dyad cis-(a²,b²-NHCOFc)TPP cis-A2B cis-A2B2 cis-A2BC Cl12DPP Cl16TPP Cl2(bpy)OEP+

Cl20TPP Cl20TPP Cl2OEP Cl4(Ph)4TPP Cl4F4TPP Cl4TPP Cl8(NO2)7TPP Cl8(NO2)8TPP $Cl_8[T(3'-SO_3^{-}P)P]^{4-}$ C18DPP Cl8F20TPP C18T(4-CF3 P)P C18T(4-CH3 P)P Cl8T(4-CO2Et P)P Cl8T(4-F P)P Cl8T(4-NO2 P)P C18TPP ClO4-**CNOTPP** co-facial co-facial porphyrin dimer Corrole dimer Cross-conjugated bisporphyrin Crown ether porphyrin Crown ether porphyrin / K+ Cyclic porphyrin hexamer Cyclic-Por-6, Cyclic-Por-6.T6 cyclodextrin, D(spirobifluoren-2-yl)P DAP DCPTMPP Dendrimer appended porphyrin Deuteroporphyrin IX dimethyl ester diacetynyl bridged porphyrin dimer diacetynyl vinyl bridged porphyrin dimer Diaza crown appended porphyrin diazaheme-III dimer dinitro porphyrin Dioxocyclam appended porphyrin

diphenylporphyrin divinyl diacetynyl bridged porphyrin dimmer DNA DNP-TTF-por-C60 tetrad dodecaarylporphyrin dodecaphenylporphyrin doped polypyrrole film, double decker sandwich complex Doubly anthracene fused porphyrin DPEP b-alkylated porphyrin DPP DPyTBPP-Ir(cod) DPyTBPP-IrCl₂(OH₂) Et2(CH3)6Cor dimer Et2(CH3)6EP Et2(CH3)6PhP Et2Me6EP Et4(CH3)4PP b-alkylated porphyrin Et6(CH3)2Cor dimer Et8F20TPP Et8TPP Etioporphyrin F12DPP F12TPP F16DPPCO2H F20DPP F20OETPP F20TPP F28DPP F28TPP F36DPP F4DPP F6TPP-Cu(I)(tmpa) dyad F6TPP(tmpa) F8DPP F8TPP Fc amido-4-pyridine assembly Fc-por dimer-C60 triad Fc-por-C60 triad Fc-por-Fc triad Fc-porphyrin tetramer-C60 triad

ferrocenyl ferrocenyl calix[4]phyrin ferrocenyl porphyrin Ferromicroperoxidase FTMPP fullerene Fullerene inclusion complex Fullerene-porphyrin-ferrocene triad Fulleropyrrolidine fulleropyrrolitidine assembly furylporphyrin fused porphyrin dimer Graphene oxide appended porphyrin H2PO4-Heme Heteroporphyrin Hexaporphyrinato tricyclophosphazene host-guest complex hydroquinone Imidazole fused porphyrin Iron(III) protoporphyrin IX L-(P-tetraone) La@C82 La2@C80 lipoic acid Lipoic acid appended porphyrin liquid crystals M(spirobifluoren-2-yl)P Mes2PhCor meso tetrakis(N-ethylpyridinium-2vl)porphyrin meso-alkylated porphyrin meso-bipyridyl meso-cyclohexadienyl-idene meso-diarylporphyrin meso-diphenylporphyrin meso-meso linked meso-substituted meso-substituted porphyrin meso-substtiuted OEP meso-tetra(2-furyl)porphyrin

meso-tetra(2-thienyl)porphyrin Meso-tetra(dimethyl pyrozolium-4yl)porphyrin meso-tetra(N-(alkylpyridinium-2yl)porphyrin meso-tetraalkylporphyrin meso-tetraalkylporphyrinogen meso-tetraarylporphyrin meso-tetrabenzoyl-OEP meso-tetracyclophane porphyrin meso-tetraethynylarylporphyrin meso-tetraferrocenylporphyrin meso-tetrafurylporphyrin meso-tetrakis(1,3-di-Nmethylimidazolium-2-yl)porphyrin meso-tetrakis(N-methyl-4pyridyl)porphyrin meso-tetrakis(N-n-butylpyridinium-2(3,4)-yl)porphyrin meso-tetrakis(N-n-hexylpyridinium-2(3,4)-yl)porphyrin meso-tetrakis(N-n-octylpyridinium-2(3,4)-yl)porphyrin meso-tetrakis (sulphanatophenyl) porphyrin meso-tetraphenylporphyrin meso-tetraphosphonic acid porphyrin mesoheme-III mesoheme-XIII mixed b-pyrrole substituted mixed b-pyrrole substituted mesotetraphenylporphyrin mixed b-substituted mesotetraphenylporphyrin mixed b-substituted porphyrin mixed meso-substituted heteroporphyrin mixed meso-substituted porphyrin Mo(trisDMPHB)-por-Mo(trisDMPHB) triad modified protoporphyrin IX monoazaheme-XIII Monophosphaporphyrin

MWNT, N-alkyl porphyrin N-alkyl porphyrinogen N-alkylated pyridylporphyrin N-benzyl N-benzyl substituted N-Confused porphyrin N-fused porphyrin N-methyl meso-tetraphenylprphyrin N-methyl N-confused mesotetraphenylprphyrin N-methylpyridiniumporphyrin N-methylpyridylporphyrin N-naphth-2-ylmethyl N(CH3)NCTPP N(CH3)TPP N2O2-core N2OS-core N2S2-core N2SO-core N3O-core N3S N3S-core N4-N2OS core N4-N2S2 core N4-N2SO-core N4-N3S core **NCTPP** NFP **NMePyP** NMPyP NO3-**OBrTPP** octa-iso-butyl mesotetraphenylporphyrin octacarboxy-TPP octaethyl mesodipyridiniumporphyrin octaethyl mesopetrapyridiniumporphyrin octaethyl mesopyridiniumporphyrin octaethyl meso-tetranitroporphyrin

octaethyl mesotetrapyridiniumporphyrin octaethylporphyrin octaethyltetra(3-thienyl)porphyrin octaethyltetrakis(pentafluoro phenyl)porphyrin octaethyltetranitroporphyrin octaphenylporphyrin **OEP** OEP-u-oxo dimer OEP(2,3-dione) OEP(2,4-dione) OEPdione **OEPone** OET(3-Thienyl)P OET(Ar)P **OETAP OETPP OETPyP** Oligoaniline-porphyrin hybrid Oxacalix arene Oxoporphyrinogen OxP-(bz)2 OxP-(bz)4OxP-(Pm)2 OxP-(Pm)4 OxP-(Pp)2 OxP-(Pp)4 P-dione P-TA-P pac-man porphyrin PAOEP Pc-Eu-Pc-Ce-Por triple decker sandwich complex Pc-Eu-Pc-Eu-Por Pc-Eu-Pc-Eu-Por triple decker sandwich complex Pc-Eu-Por-Eu-Pc triple-decker sandwich complex Pc-por pentamer Pc-Por-Pc oxo-bridged triple decker complex PCA

PCB PCO PCOx perfluorinated porphyrin Perfluorinated-TPP phenylene diamine appended porphyrin Phosphaporphyrin phosphoic acid phosphonate porphyrin phosphonic acid porphyrin Picket-fence porphyrin PMes2CA PMes2CO PMes2COx PMes2CX Poly-D(spirobifluoren-2-yl)P film Poly-M(spirobifluoren-2-yl)P film Poly-T(spirobifluoren-2-yl)P film Polyoxometalate-por copolymer Polyoxometalate-porphyrin copolymer Polythiophene appended porphyrin POM Pophyrin dimer Por dimer-C60 dyad Por-(Ru(bpy)2)2 conjugates Por-(Ru(bpy)2Cl)2 triad Por-(Ru(bpy)2Cl)3 complex Por-(Ru(bpy)2Cl)3 tetrad Por-(Ru(bpy)2Cl)4 pentad Por-[(Ru3O)]4 pentad Por-[Ru(bpy)2(Cl)]4 complex Por-[Ru(bpy)2Cl]2 assembleis Por-[Ru(bpy)2Cl]2 dyad, Por-[Ru(NH3)5]4 assembly Por-[Ru(terpy)2]2 dyad trans-A2B2 Por-[Ru3O]4 assembly Por-[Ru3O]4 pentad, Por-binaph-C60 triad Por-C60 assembly Por-C60 dyad

Р

Por-C60-por triad assembly Por-calixarene assembly. Por-Ce-Nc double-decker sandwich complex Por-Ce-Pc-Ce-por triple decker sandwich complex Por-Ce-Por double-decker sandwich complex Por-crown ether dyad Por-Cu(Phen)2 dyad Por-Cu(phen)2-(Fc)2 Por-Cu(phen)2-(Fc)2 aggregate Por-Cyclodextrin host-guest complex Por-cyclophane-C60 triad Por-DNA assembly Por-Dy-Pc double decker sandwich complex Por-Er-Pc double decker sandwich complex Por-Eu-Pc double decker complex Por-Eu-Pc-Ce-por triple decker sandwich complex Por-Eu-Pc-Eu-Pc sandwich complex Por-Eu-Pc-Eu-Pc triple decker complex Por-Eu-Pc-Eu-Pc triple decker sanwich complex Por-Eu-Pc-Eu-Por sandwich complex Por-Eu-Pc-Eu-Por triple decker sandwich complex Por-Eu-Pc(15C5)4-Eu-Pc(15C5)4 Por-Fc aggregates Por-Fc dyad Por-Fe(bpy)3 hexamer Por-Fe(terpy)2-por triad Por-fullerene dyad Por-Gd-Pc double decker sandwich complex Por-Ho-Pc double decker sandwich complex Por-IDB conjugates, A3B, mixed mesosubstituted porphyrin

 $Por-Ir(py)_2Cl_2(H_2O)$ dyad Por-Ir(terpy)2 dyad Por-La-Pc double decker sandwich complex Por-La@C82 dvad Por-Lu-Pc double decker sandwich complex Por-Nd-Pc double decker sandwich complex Por-oPPV-C60 triad Por-Os(terpy)2-por triad Por-oxopor-por triad Por-PDI-por triad Por-perylene diimide dyad Por-perylene dyad Por-POM-Por triad por-por-C60 triad Por-porphyrinogen dyad Por-Pr-Pc double decker sandwich complex Por-Pt(II)Cl complex pyridylporphyrin Por-Pt(IV)Cl3 Complex pyridylporphyrin Por-Pt(terpy) dyad Por-PtCl2(DMSO) complex Por-pyromellitimide-C60 triad Por-quinone dyad Por-Re(bpy)(CO)3Cl dyad Por-Re(CO)3(bpy) dyad Por-Re(CO)3(bpy) tetrad Por-Ru(bpy)2 conjugates Por-Ru(bpy)2Cl dyad Por-Ru(bpy)3 dyad Por-Ru(bpy)3 hexamer Por-Ru(II)(bpy)3 dyad Por-Ru(terpy)2 dyad Por-Ru2O conjugates Por-Ru3 cluster coglomerates Por-Ru3O cluster coglomerates Por-Sm-Pc double decker sandwich complex Por-Tb-Pc double decker sandwich

complex Por-tetrathiophene-C60 triad Por-Tm-Pc double decker sandwich complex Por-Y-Pc double decker sandwich complex Por-Yb-Pc double decker sandwich complex Porphinone Porphodimethene Porphyirn catenanes porphvirn polymer Porphyrin appended (Pc-Eu-Pc) double decker sandwich complex Porphyrin appended dendrimer Porphyrin assembly porphyrin belts Porphyrin dimer Porphyrin dimer assembly Porphyrin dimer+ SWNTs Porphyrin double decker sandwich complex Porphyrin hexamer Porphyrin nonamer Porphyrin pentamer Porphyrin pentamer assembly Porphyrin phenanthrenequinone Porphyrin polymer Porphyrin sandwich complex Porphyrin tetramer Porphyrin tetramer assembly Porphyrin trimer Porphyrin trimeric assembly porphyrin with conjugated groups porphyrin with fused groups Porphyrin-azulene dyad Porphyrin-borondipyrromethane dyad Porphyrin-corrole dyad Porphyrin-Eu-Pc(15C5)4-Eu-Pc(15C5)4 Porphyrin-ferrocene dyad: Porphyrin-fullerene catenanes

Porphyrin-fulleropyrrolidine (1.6 eq) assembly Porphyrin-imide dyad Porphyrin-modified gold nanocluster Porphyrin-perylene dyad Porphyrin-Pt(II)(terpy) dyad Porphyrin-pyromellitimide-C60 triad Porphyrin-sapphyrin dyad Porphyrin-smaragdyrin dyad Porphyrin-viologen dyad Porphyrin: Fulleropyrrolidine assembly Porphyrinogen porphyrinogen pentamer Portoporphyrin IX dimethyl ester PO PQ + Sc(OTf)3PO-PO PQ-QP PO(5NO2) **PQ(6NO2)** PQ(NO2)(NH2) **PQ(NO2)2** PQ(OCH3)2 PQ2 PQBr POCl2 protoporphyrin IX Protoporphyrin IX dimethyl ester PvC60 pyrenylporphyrin pyridylporphyrin OAP OCP QPQ Quinaxalinoporphyrin rac-T(bis methanooctahydroanthtacene-9-yl)P Rotaxanes Ru(bpy)2Cl-Por-Ru(bpy)2Cl complex

Ru(bpy)3-por-Re(bpy)(CO)3Cl triad S-T(4'-CH₃P)P sandwich complex sanwich double decker complex Sc3N@C80 self-assembly silvlated porphyrin single walled nanotube Strapped porphyrin Subpc-por dyad sulphonic acid supramolecular assembly supramolecular triad **SWNT** T(2-Furyl)P T(2-furyl)P meso-tetraarylporphyrin T(Ar)PT(2-NH2 P)P T(2-NO2P)P T(2-Py)PT(2-Py)P, mesotetrapyridylporphyrin T(2-Thienyl)P T(2-thienyl)P(TE)4 T(2-Thienyl)P(TES)4 T(2-thienyl)P)PBr4 T(2,4-OCH3 P)P T(2,4,6-OCH3 P)P T(2,5-OCH3 P)P T(2,6-Cl2-3-SO3-P)P me T(2,6-DM-4CP)P m T(2,6-F2-3-SO3P)P T(2,6-OCH3 P)P T(2,6-OCH3 P)P T(3-CP)P T(3-NH2 P)P T(3-PP)P T(3-Py)PT(3-Thienyl)P T(3,4-OCH3 P)P T(3,4,5-OCH3 P)P

T(3,4,5-OCH3 P)P T(3,5-DBuEP)P T(3,5-DCEP)P T(3,5-DCP)PT(3,5-DFP)PT(3,5-DMP)PT(3,5-OCH3 P)P T(3'-ClP)PT(4-Br P)P T(4-CF3 PE)P T(4-CH3 P)P T(4-CH3 PE)P T(4-Cl P)PT(4-Cl PE)P T(4-CN P)P T(4-CO2CH3 P)P T(4-CO2Et P)P T(4-CO2H P)P T(4-CP)PT(4-CPPy)P film T(4-DEPP)P T(4-DPAP)P T(4-Et2N P)P T(4-FP)PT(4-FPE)P T(4-1 P)P T(4-NCH3 Py)P]4+ T(4-NEt2 P)P T(4-NH2 P)P T(4-OCH3 P)P T(4-OCH3 PE)P T(4-octayloxy P)PBr4 T(4-Octyloxy P)P T(4-OH P)P T(4-Pentyl P)P T(4-PP)P T(4-propylthiolato phenyl)P T(4-Py)PT(4-Py)P-(Ru3O) assembly T(4-Py)P-[Ru(bpy)2Cl]4 complex T(4-Py)P-[Ru(bpy)2H2O]4complex

T(4-Py)P-[Ru3O]4 complex T(4-t-Butyl P)P T(4-TMAP)P $T(4-CF_3P)P$ T(Alkyl)P T(Ar)P T(benzoyl)OEP T(Benzoyl)P T(Bz)OEP T(C3F7)P T(CH3)P T(Cyclohexyl)P T(E)PT(EAr)P T(EP)P T(Et)P T(Fc)P T(H OCH3 P)P T(i-Propyl)P T(NEC)P T(NEtC)P T(PCP)P, T(pentyl)P T(PFP)P T(Propyl)P T(spirobifluoren-2-yl)P T(spirobifluorene)P T(spirobifluorene)P-polymer film T(t-Butyl)P T(TFPPO)P T(TFTMA)P T(TipSi)P T(TipSi)P T(tridecyl)P T2PyP T3PyP T4PyP TAOEP TAP TAPP TATAP TBP

TC6TPP TCF3AP TCHP TCPP **TDTBOPP** tetra-N-methylpyridylporphyrin tetra(dimethyl imidazolium-2yl)porphyrin tetra(imidazolium 2-yl)porphyrin tetra(N-ethyl pyridinium)porphyrin tetra(N-methylpyridinium)porphyrin tetraacetynyl bridged porphyrin dimer Tetraanthrace fused porphyrin Tetraanthracenylporphyrin Tetraarylporphyrin tetraazaporphyrin tetrabenzoporphyrin tetracarboxyporphyrin tetrafurylporphyrin tetrakis(sulphonatophenyl)porphyrin tetramer Tetranucleosides appended porphyrin tetrapyridylporphyrin **TFMTMPP** TMP **TNMePyP** TPP TPP-C60 dyad TPP-fulleropyrrolidine complex TPP-MV dyad TPPS trans-(a²,b²-NHCOFc)TPP trans-(Et)4(TTF)2TPP

trans-(TTF)2TPP trans-A2 trans-A2B trans-A2B2 trans-A2BC trans-A3B trans-A3B2 trans-AB trans-OPO trimer trinitro porphyrin Triple decker dyad triple decker sandwich complex triple-decker Triply anthracene fused porphyrin Triply fused porphyrin dimer Trisporphyrin TTF-Por-C60 triad TThP **TTP-BDP-S-TTP** TTP-BDP-S₂-TTP TUP Twin coronet porphyrin b-alkylated porphyrin unsymmetrical porphyrin dimer Unsymmetrical porphyrin triad Viologen linked porphyrin With TiO2 Thin Film ZnPor + 0.5 equiv of Py-C60 ZnPor + 0.5 equiv of Py-SWNT ZnPor + 1.0 equiv of Py-C60 ZnPor + 1.0 equiv of Py-SWNT ZnPor + 1.5 equiv of Py-C60 ZnPor + 1.5 equiv of Py-SWNT

3.2.1 Examples of Correlations

Example 1. How do changes in the type and position of macrocyclic substituents effect the redox potentials?

To answer this question, data are analyzed for three types of macrocycles having electron-donating or electron-withdrawing substituents at different locations. These macrocycles are shown in Figure 3.1 and a summary of the data for the first oxidation and first reduction is given in Table 3.3. The $E_{1/2}$ values for both redox processes are shifted positively with increasing electron-withdrawing ability of the substituents (as shown in Figure 3.2 for two sets of compounds). The higher the Hammett constants, the stronger the electron-withdrawing effect of the substituents. As reductions become easier, the oxidations become harder (a positive shift of potentials).

The effect of substituents on redox potentials was analyzed using Equation 3.1 where is the reversible half wave potential for the compound having the substituent parameter σ , $E_{1/2}$ H is the potential of the unsubstituted compound, ρ is the slope of the line in the plot of $E_{1/2}$ vs σ .

$$E_{1/2} = E_{1/2}\mathbf{H} + \Sigma\sigma\rho \tag{3.1}$$

Examples of correlations for the Group B and Group C porphyrins are shown in Figure 3.2 for both the first oxidation (labeled as Ox 1) and the first reduction (labeled as Red 1). A much larger effect is seen for the first reduction of the Group C compounds ($\rho = 0.32$ V) as compared to the first reduction ($\rho = 0.16$ V), which indicates that the reduction is twice as sensitive to the substituents than the oxidation. This behavior differences for that of the Group B compounds where a similar substituent effect is seen

Figure 3.1. Three types of macrocycles with different locations of the substituents.

Structure ^a	Substituents	σ^{b}	Σσ	$E_{1/2}$ Ox 1 (V)	$E_{1/2}$ Red 1 (V)
Group A	t-Bu	-0.20	-0.80	0.60	-1.48
	CH ₃	-0.17	-0.68	0.83	-1.36
	C_2H_5	-0.15	-0.60	0.85	-1.39
	C_3F_7	0.48	1.92	1.54	-0.72
Group B	Н	0.00	0.00	0.84	-1.36
	OCH ₃	0.12	0.96	0.84	-1.36
	F	0.34	2.72	1.00	-1.22
	NO ₂	0.71	5.68	1.21	-0.86
Group C	CH ₃	-0.17	-0.68	0.38	-1.50
	Н	0.00	0.00	0.74	-1.39
	Br	0.23	0.92	0.72	-1.06
	CN	0.66	2.64	1.02	-0.46

 Table 3.3. Data for compounds in Figure 3.1

^a See Figure 3.1

^b Hammett substituent constant σ and taken from the literature.¹

Figure 3.2. Plot of $E_{1/2}$ vs Hammett parameters of substituents for the Group C and Group B porphyrins shown in Figure 3.1. Values of σ and $E_{1/2}$ are given in Table 3.3.

for the oxidation ($\rho = 0.07$ V) and reduction ($\rho = 0.08$ V). Similar values of are also seen for the first oxidation and first reduction of the Group A compounds and the data for the three series of compounds is summarized in Figure 3.3. From a structural point of view, it is also expected that the closer substituents are to the conjugated π -ring system, the larger will be the effect on the electron density of the macrocycle and this is what is observed.

Example 2. How does planarity of the macrocycles affect the HOMO-LUMO gap?

Planarity of the porphyrin ring can have a considerable influence on both the reversible oxidation potentials and the electrochemically measured HOMO-LUMO gap which is given by the difference in $E_{1/2}$ between the first oxidation and the first reduction at the conjugated π -ring system of the macrocycle. An example of how the HOMO-LUMO gap changes with planarity is given for six Ni(II) derivatives whose macrocyclic structures are shown in Figure 3.4. Two of the compounds are planar (OEP and TPP) and four are non-planar as described in the literature.² Data on the six compounds in Figure 3.4 is shown in Figure 3.5. The HOMO-LUMO gap of planar Ni(TPP) is 2.32 V while that of Ni(OEP) is 2.24 V. However, the non-planar DPP and substituted DPP macrocycles have smaller HOMO-LUMO gaps. Which results from an easier oxidation in each case.

Example 3. How fused groups effect the redox potentials of macrocycle?

In order to probe the effect of additional fused groups redox potentials, a plot of redox potentials vs the macrocycles with fused groups was constructed for the compounds shown in Figure 3.6. The measured HOMO-LUMO gap for these six compounds is shown in Figure 3.7 and ranged from 1.41 V for trans-MAFP to 2.17 V for

 $E_{1/2} = E_{1/2} H + \Sigma \sigma \rho$

Figure 3.3. Different ρ values for three types of macrocycles.

Planar Macrocycles

Non-Planar Macrocycles

Figure 3.4. Structures of various macrocycles.²

Figure 3.5. Summary of HOMO-LOMO gap for the six Ni(II) porphyrins whose structures are shown in Figure 3.4. The values of $E_{1/2}$ are taken from the database and can be found in Chapter 4.

Figure 3.6. Structures of porphyrins with different fused groups on the macrocycles. The potentials for oxidation and reduction are given in the indicated Table of the database and the HOMO-LUMO gap is illustrated in Figure 3.7.

Figure 3.7. Summary of $E_{1/2}$ and HOMO-LUMO gap with additional fused ring systems. An abbreviation for the macrocycle and location of data is shown in Figure 3.6.

(Im)T(4'-tBuP)P. In general, the HOMO-LUMO gap decreases with increase in the number of fused groups conjugated with the porphyrin macrocycle.

Example 4. How different central metal ions effect redox potentials of macrocycle?

The porphyrin ring oxidation and reduction potentials influenced by the central metal ions and its oxidation state. An example of this is shown in Figure 3.8 where $E_{1/2}$ for oxidation is linearly related to the electronegativity of the central metal ion. The data of redox potentials and electronegativity of metals are given in Table 3.4. The positive shift of potentials with increase in electronegativity also occurs for other metal complexes, one example of which is given in Figure 3.9 for quinoxalinoporphyrins.

Figure 3.8. Plot of the first oxidation of (TPP)M complexes in CH_2Cl_2 vs the electronegativity of the central metal ions. The half wave potentials are taken from Table 1 and are summarized in Table 3.4 along with the Allred electronegativity.

Metal	Electronegativity ³	$E_{1/2}$ Ox 1 (V)	$E_{1/2}$ Red 1 (V)
Cu	1.90	1.04	-1.28
Mg	1.31	0.65	-1.57
Ni	1.91	1.13	-1.12
Pd	2.20	1.01	-1.45
Pt	2.28	1.20	-1.30
Zn	1.65	0.82	-1.32

Table 3.4. Potentials for oxidation and reduction of (TPP)M compounds in CH2Cl2. Datataken from Table 1.

Figure 3.9. Plot of the first oxidation of (PQ)M derivatives in CH_2Cl_2 vs the Allred electronegativity of the central metal ions. The redox potentials are taken from Table 8a of the database and are summarized in Table 3.5.

Metal	Electronegativity ³	$E_{1/2}$ Ox 1 (V)	$E_{1/2}$ Red 1 (V)
Zn	1.65	0.72	-1.31
Cu	1.90	0.97	-1.19
Ni	1.91	0.95	-1.12
Pd	2.20	1.06	-1.16

Table 3.5. Potentials for oxidation and reduction of (PQ)M compounds in CH2Cl2. Datataken from Table 8a.

3.3 References

- 1. H. H. Jaffe, *Chem. Rev.* **1953**, *53*, 191.
- Mathias O. Senge. In *The Porphyrin Handbook: Highly Substituted Porphyrins*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 1, Chapter 6. Pages 255-256, 265-267.
- 3. A. L. Allred, J. Inorg. Nucl. Chem. 1961, 17, 215.

CHAPTER FOUR

Database of Porphyrin Redox Potentials

4.1 Organization of the Database

4.1.1 Basic Structure of the Database

The database given in this thesis contains not only the redox potentials of various porphyrin macrocycle types (TPP, OEP, etc), but also includes fields with information on type of central metal ion and its oxidation state, axial ligands, solvent, salt (supporting electrolyte, its concentration), reference electrode (or redox couple), working electrode, temperature, atmosphere over the solution (N2 or Ar for example), and electrochemical technique employed to gather the data. The listed potentials were in most cases measured by cyclic voltammetry (CV) but other techniques were sometimes used such as differential pulse voltammetry (DPV) and Osteryoung square wave voltammetry (SWV). When this was the case, it is so indicated in a footnote to the table where the potentials are listed. The database is compiled to include potentials for up to three oxidations (Ox. 1, Ox. 2, and Ox. 3) and three reductions (red. 1, red. 2, and red. 3) if these occur. We also indicate irreversible reactions with an asterisk next to the potential. In general, simple free-base or Zn(II) porphyrins with TPP or OEP macrocycles exhibit two, one-electron oxidations and two, one-electron reductions at the conjugated macrocycle. In some cases, the site of electron transfer is at the metal center or other electroactive groups. When this occurs, the values of $E_{1/2}$ or E_p are given in a field labeled as "metal/other" and located between that of the porphyrin ringcentered oxidations and ring-centered reductions. Most potentials were measured at ambient (RT) temperature conditions but sometimes measurements were made at other temperatures quite different from room temperature. If so the temperature is indicated next to the solvent. The salt or supporting electrolyte concentration employed was

usually 0.1 M, but sometimes different concentrations were used and when this occurs the concentration is indicated next to the supporting electrolyte.

In summary, the database summarizes the reported redox potentials along with the experimental conditions for electrochemical oxidations and reductions of porphyrins, metalloporphyrins and their derivatives in both aqueous and non-aqueous media. The compiled data lists values of $E_{1/2}$ or E_p given in the literature and no attempt was made to modify the reported values from one set of experimental conditions to another (for example, by conversion of the potential from one reference electrode to another). Furthermore, no attempt was been made to eliminate selected data, although in some cases duplication of data occurs under similar or identical conditions when a compound was examined by different authors in different laboratories. In some cases, the summarized redox data or experimental conditions in the tables is incomplete as to the utilized salt, RE, WE or atmospheric conditions. These fields are then left blank. The database has been organized to first include monomeric porphyrins and this is followed by data on porphyrin dimers, trimers and oligomeric or polymeric systems. The summarized data includes porphyrin-corrole dyads, porphyrin-fullerene dyads (including non-covalently bound systems), porphyrin-fullerene-ferrocene triads. porphyrin assemblies, and porphyrins with peripherally bonded inorganic metal complexes. Because of the structural diversity of porphyrins reported in the literature, one of the tables (Table 17) incorporates a variety of substitution patterns of the macrocycle. Finally, the data for naturally occurring porphyrins and their derivatives are listed in Table 24.

76

4.2 Abbreviations Used in the Database

Most of the utilized abbreviations in the database are easy to understand and are given along with the chemical structures shown in Table 4.1. The database contains not only redox potentials of synthetic analogues but also potentials for oxidation or reduction of some naturally occurring porphyrins. Due to the complex structural pattern of the porphyrins, in some tables, the chemical structure of the macrocycle is given along with the redox data.

4.2.1 Macrocycle (Ring)

The "type of macrocycle" (TPP, OEP etc.) is generally listed as the first entry in column 1 of each table, with examples of representative structures being shown in Figures 4.1 to 4.8. Redox data for porphyrins which are covalented or non-covalently linked to other macrocycles are included in the column for "type of macrocycle". Examples for this are given by complexes of porphyrins with linked fullerenes (C_{60} or C_{70}), graphenes, and single or multiwalled carbon nanotubes. Data on corroles, porphycenes, chlorines, and bacteriochlorins, (all of which are macrocycle related to porphyrins) are excluded from the database.

4.2.2 Central Metal Ion

The type and oxidation state of the central metal ion is given in each table. In some cases, additional metal ions are also present in the compound but these not included in this column which is exclusive for central metal ions. Porphyrin sandwich complexes where metal ions are the bridging ligands are so indicated in the table. The central metal ion influences the redox potentials of the porphyrin π -ring system. Moreover, the redox potentials of the metal ion will vary with the structure of the

Table	Abbreviation	Common name
1	ТРР	tetraphenylporphyrin
2	OEP	octaethylporphyrin
3	ТМР	tetramesitylporphyrin
4	OETPP	octaethyltetraphenylporphyrin
5	T(o-piv)PP	meso-a, a, a, a -tetrakis(o-pivamidophenyl)porphyrin
5	F ₂₀ TPP	tetrakis-(pentaphenyl)porphyrin
6	Br ₈ TPP	octabromotetraphenylporphyrin
6	(NO ₂)TPP	2-nitro-tetraphenyloporphyrin
7	DPP	dodecaphenylporphyrin
8	(Q)T(3',5'-D-tBuP)P	5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)
		quinoxalino[2,3-b]porphyrin
9	(N-Ph)TPP	(N-phenyl)-tetraphenylporphyrin
10	TBP	tetrabenzoporphyrin
11	$\left[\mathrm{TPPS}(4)\right]^{4+}$	tetrakis(p-(sodiosulfonato)-phenyl)porphyrin
11	$[TMpy(4)P]^{4+}$	tetrakis(1-methylpyridinium-4-yl)porphyrin
12	[(TPP)Fe] ₂ O	(µ-oxo)bis[5,10,15,20-tetraphenylporphyrinatoiron]
13	$[OEP]_3$ - $(Vn)_2$	(E,E)-5,15-bis[2,3,7,8,12,13,17,18-octaethyl-5-
		porphyrinyl)vinyl]-2,3,7,8,17,18-octaethylporphyrin
14	DEHMP-Ae-MesCorr	1-[(5,15-dimesitylcorrol-10-yl)]-8-[(13,17-diethyl-
		2,3,7,8,12,18-hexamethylporphyrin-5-yl)]-anthracene
15	Pc-(Por) ₄	phthalocyanine-tetrakis(tetrakis(5-phenoxy-10,15,20-
		triphenylporphyrin))
16	(TriTP) ₂ -C ₈ -M	1,8-bis{4-[10,15,20-tris(4-methylphenyll)porphyrin-
		5-yl]-phenoxy}octanatocerium
17	3'-PATBPP	5-(3-ethynylphenyl)-10,15,20-tris-(3,5-di-tert-
		butylphenyl) porphyrin
18	T(Fc)PP	tetraferrocenylphenylporphyrin
23	DPIXDME	deuterioporphyrin IX dimethyl ester
23	Etio	etioporphyrin
23	MPIX	mesoporphyrin IX
23	MPIXDME	mesoporphyrin IX dimethyl ester

Table 4.1 Abbreviation for selected macrocycles used in the tables of electrochemical data.

Numbering scheme meso-Tetraphenylporphyrin, TPP Octaethylporphyrin, OEP and abbreviation of selected Table 1 Table 2 porphyrin ring atoms

Figure 4.1 Numbering scheme and representative structures of selected porphyrins given in Tables 1-5.

 $\begin{array}{ll} \mbox{Tetra}(alkyl \ or \ aryl) porphyrin & R = Ph, \ TPP(NO_2)_n, \ n = 2,3 \ Octa(halo) tetraphenyl porphyrin, \ TPPX_8 \\ R = Alkyl, \ T(Alkyl)P; & R = Ar, \ T(Ar)P(NO_2)_n, \ n = 1-8 & X = Br, \ Cl \\ R = Aryl, \ T(Ar)P & Table \ 6a & Table \ 6b \end{array}$

Figure 4.2 Representative structures of porphyrin macrocycles in Tables 5-7.

Figure 4.3 Representative structures of selected dodecaphenylporphyrins (DPP) and substituted DPP porphyrin macrocycles with fused groups. Taken from Tables 7 and 8.

Figure 4.4 Representative structure of selected monomeric (neutral or charged), dimeric and trimeric porphyrin macrocycles in Tables 9-12.

Figure 4.5 Representative structures of selected dimeric and trimeric porphyrin macrocycles in Tables 12 and 13.

Figure 4.6 Representative structures of selected porphyrin macrocycles in Tables 14-16.

Mixed meso-substituted porphyrin $R_1 = R_2 = R_3 = A; R_4 = B; A_3B$ $R_1 = R_2 = A; R_3 = R_4 = B; A_2B_2$ $R_1 = R_2 = A; R_3 = B; R_4 = H = A_2B$ $R_1 = R_4 = A; R_3 = B; R_4 = C; A_2BC$ Table 17

n = 1-4; T(Fc)_nP Porphyrin-ferrocene conjugates Table 18

Figure 4.7 Representative structures of selected porphyrin macrocycles in Tables 17-22.

Figure 4.8 Representative structures of selected synthetic porphyrins and natural porphyrins in Tables 22 and 23.

macrocycle and the coordinating axial ligands. Close to 70 different metal ions, (some in multiple oxidation states) which have been shown to bind to the central nitrogen of metalloporphyrins (see the "Periodic Table of Metallophyrins" in Figure 4.9).

4.2.3 Axial Ligands

Each table lists the axial ligands as reported in the cited manuscript. The ligands at the fifth and sixth axial positions on the metal (denoted as L1 and L2) are neutral or anionic groups. The names and abbreviations of the listed axial ligands are given in Table 4.2. Structures of some complex ligands are given when the abbreviation is not clear.

4.2.4 Solvents

Each table indicates the solvent in which the listed potentials were measured. Names and abbreviations of the solvents in the database are listed alphabetically in Table 4.3.

4.2.5 Supporting Electrolytes (Salts)

The supporting electrolyte used in the original reference is given in each table. Table 4.4 summaries the different supporting electrolytes given in the original references. In most of cases, the concentration of the supporting electrolyte was 0.1 M, but some variations do exist.

4.2.6 Reference Electrodes (or Reference Redox Couples)

The reference electrode or electrode couple (such as Fc/Fc^+) to which the redox potentials are referred are also given in each table. The abbreviations of the reference electrodes and the reference couples employed in the different solutions are summarized in Table 4.5.

1	_																18
Н	2											13	14	15	16	17	He
Li	Be											В	С	N	0	F	Ne
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	s	Cl	Ar
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
	Lantha	anides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
	Act	inides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Figure 4.9 Periodic Table of Metalloporphyrins. Shaded elements indicate specific elements which have been incorporated into a given porphyrin macrocycle. Taken from ref. "The Porphyrin Handbook" volume 8, page 4 which published in 2000.

EtS⁻	O ²⁻
EtSH	ONO ⁻
F	O ₂ NO ⁻
H ₂ O	OH-
HCO ₂ -	P(OCH ₃) ₃
ľ	PF ₃
Im	PH ₂ Ph
n-Bu ⁻	Ph ₃ PO
N ₃	PHPh ₂
NH(CH ₃) ₂	PPh ₃
NH ₂ OH	Ру
NCS ⁻	SbF ₆
NH ₃	SCN
NO	SH
NO ₂ ⁻	THF
NOsO3	
NS	
	EtS [¬] EtSH F [¬] H ₂ O HCO ₂ [¬] I [¬] Im n-Bu [¬] N-Bu [¬] N ₃ [¬] NH(CH ₃) ₂ NH ₂ OH NCS [¬] NH ₃ NO NO ₂ [¬] NO ₃ NS

Table 4.2 Axial Ligands Used in the Database.

Abbreviation/Formula	Name of solvent
(BMIM)Tf ₂ N	1-butyl-3-methylimidazolium bis(tri-
	fluoromethanesulfonyl)imide)
n-BuCN	Butyronitrile
C ₆ H ₆	Benzene
CDCl ₃	Chloroform-d
CH ₃ CN	Acetonitrile
CH ₃ OH	Methanol
CHCl ₃	Trichloromethane (chloroform)
DCB	1,2-dichlorobenzene
DCE	1,2-dichloroethane
DCM	Dichloromethane
DFB	1,2-difluorobenzene
DG	Di(2-methoxyethyl) ether
DME	1,2-dimethoxyethane
DMF	N,N- dimethylformamide
DMSO	Dimethylsulfoxide
EtOH	Ethanol
H ₂ O	Water
N-MP	N-methyl pyrrolidone
PC	Propylene carbonate
PhCN	Benzonitrile
Ру	Pyridine
TCE	1,1,2,2-tetrachloroethane
THF	Tetrahydrofuran
Tol.	Toluene

Table 4.3 Solvents Used in the Database.

Abbreviation/ Formula	Cation	Anion	Name of Supporting Electrolyte
H_2SO_4	$2\mathrm{H}^+$	SO_4^{2-}	Sulfuric acid
HC1	H^{+}	Cl	Hydrochloric acid
HClO ₄	H^+	ClO ₄ -	Perchloric acid
KCl	K^+	Cl ⁻	Potassium chloride
KNO ₃	K^+	NO ₃ -	Potassium nitrate
КОН	K^+	OH	Potassium nydroxide
KPF ₆	K^+	PF ₆	Potassium hexafluorophosphate
Li_2SO_4	2Li ⁺	SO_4^-	Lithium sulfate
LiClO ₄	Li ⁺	ClO ₄ ⁻	Lithium perchlorate
[BMIM]BF ₄	$[BMIM]^+$	BF_4	1-butyl-3-methylimidazolium
			tetrafluoroborate
[BMIM]Tf ₂ N	$[BMIM]^+$	Tf_2N^2	1-butyl-3-methylimidazolium bis-
			(trifluoromethanesulfonyl)imide
Na ₃ PO ₄	3Na ⁺	PO ₄ ³⁻	Sodium phosphate
Na_2SO_4	$2Na^+$	SO_4^{2-}	Sodium sulfate
NaCl	Na ⁺	Cl	Sodium chloride
NaClO ₄	Na ⁺	ClO ₄ -	Sodium perchlorate
NaOH	Na ⁺	OH	Sodium hydroxide
NaPF ₆	Na ⁺	PF ₆	Sodium hexafluorophosphate
P(Ph) ₄ BF ₄	$\left[P(Ph)_4\right]^+$	BF_4^-	Tetraphenylphosphonium
			tetrafluoroborate
PB			Phosphate buffer

 Table 4.4 Supporting Electrolytes (Salts) Used in the Database.

Abbreviation/ Formula	Cation	Anion	Name of Supporting Electrolyte
TBAAsF ₆	$[TBA]^+$	AsF_6	Tetra-n-butylammonium
			hexafluoroarsenate
TBABF ₄	$[TBA]^+$	BF_4^-	Tetra-n-butylammonium
			tetrafluoroborate
TBABPh ₄	$[TBA]^+$	BPh_4^-	Tetra-n-butylammonium
			tetraphenylborate
TBACl	$\left[\mathrm{TBA}\right]^{+}$	Cl	Tetra-n-butylammonium chloride
TBAOAc	$\left[\mathrm{TBA}\right]^{+}$	OAc ⁻	Tetra-n-butylammonium acetate
ТВАОН	$\left[\mathrm{TBA}\right]^{+}$	OH-	Tetra-n-butylammonium hydroxide
TBAP	$\left[\mathrm{TBA}\right]^{+}$	ClO ₄ -	Tetra-n-butylammonium
			perchlorate
TBAPF ₆	$\left[\mathrm{TBA}\right]^{+}$	PF ₆	Tetra-n-butylammonium
			hexafluorophosphate
TBASbF ₆	$\left[\mathrm{TBA}\right]^{+}$	SbF ₆	Tetra-n-butyl-ammonium
			hexafluoroantimonate
$TEAB(C_6F_5)_4$	$[TEA]^+$	$[B(C_6F_5)_4]^{-1}$	Tetraethylammonium tetrakis-
			(pentafluorophenyl)borate
TEABF ₄	$[TEA]^+$	BF_4^-	Tetraethylammonium
			tetrafluoroborate
N(Et ₃)(Ph)Cl ⁻	$\left[N(Et_3)(Ph)\right]^+$	Cl	Triethylphenylammonium chloride
TEACl	$[TEA]^+$	Cl	Tetraethylammonium chloride
TEAP	$[TEA]^+$	ClO ₄ -	Tetraethylammonium perchlorate

Table 4.4 Supporting Electrolytes (Salts) Used in the Database. (Continued)

Abbreviation/	Cation	Anion	Name of Supporting Floatrolyte		
Formula	Cation Allon		Name of Supporting Electrolyte		
TEAPF ₆	$[TEA]^+$	PF ₆	Tetraethylammonium		
			hexafluorophosphate		
TFAB	$[TBA]^+$	$[B(C_6F_5)_4]^-$	Tetra-n-butylammonium tetrakis-		
			(perfluorophenyl)borate		
THAP	$[THA]^+$	ClO ₄ ⁻	Tetra-n-hexylammonium		
			perchlorate		
THAPF ₆	$[THA]^+$	PF ₆	Tetra-n-hexylammonium		
			hexafluorophosphate		
THTDPPF ₆	$[THP]^+$	PF ₆	Trihexyl(tetradecyl)phosphonium		
			hexafluorophosphate		
ТМАОН	$[TMA]^+$	OH	Tetramethylammonium hydroxide		
TPrAP	$[TPrA]^+$	ClO ₄ -	Tetrapropylammonium perchlorate		

Table 4.4 Supporting Electrolytes (Salts) Used in the Database. (Continued)

Abbreviation/Formula	Reference electrode
Ag/Ag^+	Silver-silver ion electrode
Ag/AgCl	Silver-silver chloride electrode
Ag/AgClO ₄	Silver-silver perchlorate electrode
Ag/AgNO ₃	Silver-silver nitrate electrode
Ag/AgPF ₆	Silver-silver hexafluorophosphate electrode
CuTPP ^{0/+}	Copper tetraphenylporphy/ copper
	tetraphenylporphyrin cation
Fc/Fc ⁺	Ferrocene/ferrocinium
NHE	Normal hydrogen electode
Pt Wire	Platinum wire electrode
SCE	Saturated calomel electrode
SSCE	Saturated sodium chloride electrode
SHE	Saturated hydrogen electrode

 Table 4.5 Reference Electrodes Used in the Database
4.2.7 Working Electrodes (WE)

The working electrodes used in measurements of $E_{1/2}$ or E_p values are listed in Table 4.6.

Abbreviation/Formula	Name
Au	Gold
Au Wire	Gold wire
Au-SAM	Gold modified self-assembled monolayer
Boron-doped Diamond Disk	Boron-doped diamond disk
EPG	Edge-plane graphite
GCE	Glass carbon
Gold Modified Co(II)-Porphyrin	Gold modified Co(II) porphyrin
In ₂ O ₃	Indium oxide
ITO	Indium tin oxide
ITO Coated Electrode	Indium tin oxide coated
ITO Glass Electrode	Indium tin oxide glass
MWCNT Modified-Au	Multi-walled carbon nanotubes modified gold
OPG	Ordinary pyrolytic graphite
PGE	Pyrolytic graphite
Poly CoTAPP Modified GC	Poly CoTAPP modified glass carbon
Pt	Platinum
VCD	Vitreous carbon disk

Table 4.6 Working Electrodes Used in the Database

			Axial	Ligand				Porp	hryin	ð	Metal /	Porp	hyrin Re	q	
Ring 5	Structur	e Metal	L1	L2	Solvent	Salt	RE	3	5	 	Other		2	3	lef.
ТРР	-	2H			CH ₃ CN	NR	SCE		1.34	1.10		-1.10	-1.48		393
ТРР	-	2H			CH ³ CN/DCE	TEAPF ₆	SCE		1.34	1.10		-1.10	-1.48		154
ТРР	-	2H			CHCI ₃	TBAP (0.2M)	SCE		1.30	1.05		-1.38*			318
ТРР	÷	2H			DCB	TBAP	Fc/Fc⁺		0.79	0.53		-1.75	-2.05		57
ТРР	÷	2H			DCB	TBAPF ₆	Fc/Fc⁺			0.53		-1.54			410 (SWV)
ТРР	÷	2H			DCB	TBAPF ₆ (0.05M)	Fc/Fc⁺	1.16	0.94	0.52		-1.75	-2.07		369
ТРР	÷	2H			DCB	TBAPF ₆ (0.05M)	SCE		1.48	1.05		-1.24	-1.55		13
ТРР	÷	2H			DCM	TBABF₄	Ag/AgCI					-1.37	-1.61		192
ТРР	÷	2H			DCM	TBABF ₄ (0.2M)	Fc/Fc⁺			0.98		-1.33	-1.66		382
ТРР	÷	2H			DCM	TBAP	SCE			1.02		-1.20			61
ТРР	-	2H			DCM	TBAP	SCE		1.25	1.00		-1.23	-1.69		302
ТРР	÷	2H			DCM	TBAP	SCE		1.21	1.05		-1.15	-1.50		318
ТРР	£	2H			DCM	TBAPF ₆	Ag/AgCI		1.34	1.00		-1.23	-1.54		23
ТРР	£	2H			DCM	TBAPF ₆	Fc/Fc⁺		0.82	0.52		-1.67	-1.98		26
ТРР	-	2H			DCM	TBAPF ₆	Fc/Fc⁺		1.01	0.55		-1.67	-2.00		229
ТРР	£	2H			DCM	TBAPF ₆	Ag/AgCI		1.34	1.00		-1.23	-1.54		322
ТРР	£	2H			DCM	TBAPF ₆	Fc/Fc⁺			0.58		-1.73	-2.06		376
ТРР	-	2H			DCM	TBAPF ₆	Fc/Fc⁺			0.49		-1.72			525
ТРР	-	2H			DCM	TBAPF ₆	SCE			1.03		-1.23	-1.55		555
ТРР	-	2H			DCM	THPPF ₆	Ag/AgCI		1.54	1.20		-1.01	-1.32		317

			Axial	Ligand				Porph	ryin (Ă	Metal /	Por	phyrin R	ed	
Ring	Structur	e Metal	1	L2	Solvent	Salt	RE	3	2	-	Other	-	2	3	Ref.
ТРР	-	2H			DMSO	TBAP	Ag/AgCI					-0.77	-1.20		210
ТРР	-	2H			PhCN	TBAPF ₆ (0.2M)	Fc/Fc⁺	0	.93	09.0		-1.61	-2.00		349
ТРР	-	2H			THF	TBAP	Fc/Fc⁺		U	09.0		-1.70			293
ТРР	-	2H			THF	TBAPF ₆ (0.5M)	Fc/Fc⁺		C	0.71*		-1.58	-1.98		560
ТРР	ł	AI(II)	THF	THF	THF	TBAPF ₆	Fc/Fc ⁺					-1.39			232
ТРР	ł	AI(III)			PhCN	TBAPF ₆	SCE		U	0.75		-1.08			565 (DPV)
ТРР	ł	AI(III)	ū		DCM	TBAPF ₆	Fc/Fc ⁺					-1.56			232
ТРР	ł	Bi(III)	CF ₃ SO ₃ ⁻		DCM	TBAP	SCE	~	.51	1.15					54
ТРР	ł	Bi(III)	NO ³⁻		DCM	TBAP	SCE	~	.50	1.16					54
ТРР	ł	Bi(III)	NO ³⁻		PhCN	TBAP	SCE	-	.52	1.15					54
ТРР	ł	Co(II)			DCM	TBAPF ₆	SCE	-	.30	1.20	0.76				53
ТРР	ł	Co(II)			DCM	TBAPF ₆	SCE	~	.30	1.10	0.90 -0.85				53
ТРР	ł	Co(II)			DCM	TBAPF ₆ (0.2M)	SCE	~	.30	1.10	06.0				73
ТРР	ł	Co(II)			DCM	TBAPF ₆ (0.2M)	SCE	-	.30	1.20	0.76				73
ТРР	ł	Co(II)			DMF	TBAP	SCE				-0.74				384
ТРР	ł	Co(II)			DMF	TBAP	Ag/AgCI				-0.70				384
ТРР	ł	Co(II)			DMF	TEAP	SCE				-0.77	-1.87			584
ТРР	ł	Co(II)			DMSO	TBAP	Ag/AgCI			1.47	0.35 -0.64	-1.68			210
ТРР	I	Co(II)			DMSO	TBAP	SCE				0.02 -0.96	-2.02			263
ТРР	ł	Co(II)			<i>n</i> -BuCN	TBAP	SCE				-0.86	-2.02			266

			Axial	Ligand				Porphryin	ð	Metal /	Porphyrin Red	
ting 5	Structure	e Metal	[1]	L2	Solvent	Salt	RE	3 2	-	Other	1 2 3	Ref.
d.	ı	Co(II)			PhCN	TBAP	SCE			0.90 -0.84		41
с	ł	Co(II)			PhCN	TBAP	SCE	1.38	1.20	0.56* -0.84	-	43
с С	ı	Co(II)			PhCN	TBAP	SCE	1.37	1.19	0.56 -0.84	-	59
٩.	I	Co(II)			PhCN	TBAPF ₆	^gA/Ag⁺	1.15	0.88	0.15 -1.17	2.29	212
<u>م</u>	ł	Co(III)	CH ₃		CH ₃ CN/CHCl ₃	TBAP	SCE		1.20	0.84		20
٩.	ı	Co(III)	CH ₃ -		DCM	TBAP	SCE			0.95		75
٩	ł	Co(III)	CH ³		DCM (-70°C)	TBAP	SCE			0.85		75
۵.	ł	Co(III)	CH ₃	Py	DCM	TBAP	SCE			0.76		75
٩	7	Co(III)	CH ³	See Fig.	DCM	TBAP	SCE			0.91		75
<u>م</u>	e	Co(III)	CH ₃ ⁻	See Fig.	DCM	TBAP	SCE			0.88		75
<u>م</u>	4	Co(III)	CH ₃ -	See Fig.	DCM	TBAP	SCE			0.84		75
٩	S	Co(III)	CH ³	See Fig.	DCM	TBAP	SCE			0.76		75
٩	9	Co(III)	CH ³⁻	See Fig.	DCM	TBAP	SCE			0.73		75
٩	7	Co(III)	CH ₃ -	See Fig.	DCM	TBAP	SCE			0.66		75
٩	ı	Co(III)	Ш		CH3CN/CHCI3	TBAP	SCE		0.97	0.84*		70
٩	ł	Co(III)	Ш		CH ₃ CN/CHCl ₃	TBAP	SCE			0.84		75
۵	ł	Co(III)	ц		CH ₃ CN/CHCl ₃	TBAP	SCE			0.83*		75
٩	ł	Co(III)	ц		CH ₃ CN/CHCl ₃	TBAP	SCE		0.97	0.83*		70
٩	ł	Co(III)	ц		DCM (-70°C)	TBAP	SCE			0.84		75
٩	ł	Co(III)	ц	Py	DCM (-70°C)	TBAP	SCE			0.68		75

			Axial	Ligand			Po	rphryin	ð	Metal /	Porphyrin Red	
Ring	Structure	e Metal	L1	L2	Solvent	Salt	RE 3	5	-	Other	1 2 3	Ref.
ТРР	8	Co(III)	ц	See Fig.	DCM (-70°C)	TBAP	SCE			0.77		75
ТРР	6	Co(III)	Ш	See Fig.	DCM (-70°C)	TBAP	SCE			0.74		75
ТРР	10	Co(III)	Ш	See Fig.	DCM (-70°C)	TBAP	SCE			0.72		75
ТРР	4	Co(III)	Ш	See Fig.	DCM (-70°C)	TBAP	SCE			0.69		75
ТРР	12	Co(III)	Ш	See Fig.	DCM (-70°C)	TBAP	SCE			0.65		75
ТРР	13	Co(III)	ш	See Fig.	DCM (-70°C)	TBAP	SCE			0.63		75
ТРР	I	Co(III)	<i>n</i> -Bu		DCM	TBAP	SCE			.96*		75
ТРР	I	Co(III)	<i>n</i> -Bu		DCM (-70°C)	TBAP	SCE			0.81		75
ТРР	I	Co(III)	<i>n</i> -Bu		DMF	TEAP	SCE		0.91		-1.35	584
ТРР	ı	Co(III)	<i>n</i> -Bu		DMSO	TBAP	SCE			-1.45		263
ТРР	ı	Co(III)	NH ₂ OH	NH ₂ OH	DCM	TBAP	SCE			-0.78*		578
ТРР	I	Co(III)	NO2 ⁻	Py	CH ₃ CN	TBAPF ₆	Ag/AgNO ₃	1.21	06.0	0.69		396
ТРР	14	Co(III)	NO2	See Fig.	CH ³ CN	TBAPF ₆	Ag/AgNO ₃	1.28	1.07	0.71		396
ТРР	15	Co(III)	NO2	See Fig.	CH ³ CN	TBAPF ₆	Ag/AgNO ₃	1.27	1.01	0.67		396
ТРР	16	Co(III)	NO2 ⁻	See Fig.	CH ₃ CN	TBAPF ₆	Ag/AgNO ₃	1.11	0.92	0.63		396
ТРР	ı	Co(III)	Ph		CH ₃ CN/CHCl ₃	TBAP	SCE		1.11	0.79		70
ТРР	ı	Co(III)	Ph		CH ₃ CN/CHCl ₃	TBAP	SCE			0.79		75
ТРР	I	Co(III)	Ph		DCM	TBAP	SCE			0.98		75
ТРР	I	Co(III)	Ph		DCM (-70°C)	TBAP	SCE			0.89		75
ТРР	ı	Co(III)	Ph	Py	CH ₃ CN/CHCl ₃	TBAP	SCE			0.75		75

			Axial	jaand				ornhrvin Ox	Metal /	Porphyrin Red	
Ring	Structure	. Metal		L2	Solvent	Salt	RE 3	2 1	Other	1 2 3	Ref.
ТРР	ı	Co(III)	Ph	Py	DCM	TBAP	SCE		0.78		75
ТРР	17	Co(III)	Ph	See Fig.	CH ₃ CN/CHCl ₃	TBAP	SCE		0.79		75
ТРР	18	Co(III)	Ph	See Fig.	CH ₃ CN/CHCl ₃	TBAP	SCE		0.78		75
ТРР	19	Co(III)	Ph	See Fig.	CH ₃ CN/CHCl ₃	TBAP	SCE		0.75		75
ТРР	20	Co(III)	Ph	See Fig.	CH ₃ CN/CHCl ₃	TBAP	SCE		0.75		75
ТРР	21	Co(III)	Ph	See Fig.	CH ₃ CN/CHCl ₃	TBAP	SCE		0.73		75
ТРР	22	Co(III)	Ph	See Fig.	CH ₃ CN/CHCl ₃	TBAP	SCE		0.69		75
ТРР	17	Co(III)	Ph	See Fig.	DCM	TBAP	SCE		0.91		75
ТРР	18	Co(III)	Ph	See Fig.	DCM	TBAP	SCE		0.89		75
ТРР	19	Co(III)	Ph	See Fig.	DCM	TBAP	SCE		0.86		75
ТРР	20	Co(III)	Ph	See Fig.	DCM	TBAP	SCE		0.78		75
ТРР	21	Co(III)	Ph	See Fig.	DCM	TBAP	SCE		0.76		75
ТРР	52	Co(III)	Ph	See Fig.	DCM	TBAP	SCE		0.72		75
ТРР	23	Co(III)	See Fig.		DMF	TEAP	SCE	0.91		-1.30	584
ТРР	24	Co(III)	See Fig.		DMF	TEAP	SCE	0.74		-1.25	584
ТРР	25	Co(III)	See Fig.		DMF	TEAP	SCE	0.76		-1.30	584
ТРР	26	Co(III)	See Fig.		DMF	TEAP	SCE	0.74		-1.32	584
ТРР	27	Co(III)	See Fig.		DMF	TEAP	SCE	0.80		-1.17	584
ТРР	28	Co(III)	See Fig.		DMSO	TBAP	SCE			-1.38	263
ТРР	ł	Cu(II)			CH ₃ CN	TBAP	Fc/Fc⁺	09.0			448

			Axial	Liaand				Porphrvin	ð	Met	/ le	Porp	hyrin Red		
Ring 5	Structure	Metal	L	L2	Solvent	Salt	RE -	3 2	-	Oth	er		2 3	Ref	
ТРР	ł	Cu(II)			CH ₃ CN/DCE	TEAPF ₆	SCE	1.33	1.06			-1.22	-1.68	154	_
ТРР	ł	Cu(II)			DCM	TBAP	SCE	1.29	1.04		·	-1.28	-1.70	38	~
ТРР	ł	Cu(II)			DCM	TBAP	SCE	1.27	1.03		·	-1.29	-1.72	302	01
ТРР	ł	Cu(II)			DCM	TBAPF ₆	Ag/AgCI	1.35	0.97		·	-1.30	-1.70	23	~
ТРР	ł	Cu(II)			DCM	TBAPF ₆	Ag/AgCI	1.35	0.97		·	-1.33		322	01
ТРР	ł	Cu(II)			DCM	TBAPF ₆	SCE	1.21	0.98		·	-1.33	-1.80	555	10
ТРР	ł	Cu(II)			DCM	TBAPF ₆	CuTPP ^{0/+}		0.00					579	•
ТРР	ł	Cu(II)			DCM	THPPF ₆	Ag/AgCI	1.42	1.08		·	-1.23	-1.64	317	
ТРР	ł	Cu(II)			PhCN	TBAP	SCE	1.35	1.04		·	-1.27	-1.72	38	~
ТРР	ł	Cu(II)			PhCN	TBAP	SCE	1.31	1.02		·	-1.28	-1.73	43	~
ТРР	ł	Cu(II)			PhCN	TBAP	SCE	1.31	1.02		·	-1.28	-1.74	56	•
ТРР	ł	Fe(II)			DMF	TEAP	SCE				·	-1.04	-1.65	584	-
ТРР	ł	Fe(II)	ON		THF	TBAP	SCE			-1.44		-2.26		583	~
ТРР	ł	Fe(III)			DCM	$TBABF_4$	Ag/AgCI			-0.34	1.16	-1.72	-1.90	192	01
ТРР	ł	Fe(III)	CH ₃ -		DMF	TEAP	SCE				·	-0.77		584	+
ТРР	ł	Fe(III)	ġ		DCM	TBAP	SCE	1.43	1.14					62	01
ТРР	ł	Fe(III)	ū		DCM	TBAPF ₆	SCE	1.55	1.11	-0.36		-1.12		362	01
ТРР	ł	Fe(III)	ū		DG/CH ₃ OH	TBAPF ₆	Ag/AgCI			- 0.07	1.10			188	~
ТРР	I	Fe(III)	ū		DMF	TBAP	Ag/AgNO ₃			- 09.0-	1.48			189	•
ТРР	ł	Fe(III)	ū		N-MP	TEAP	SCE			-0.15				451	_

Str			Ligariu				PorpuryIL	Š	NIELAI /	5	hiijiii Neu	
	ucture Metal	L1	L2	Solvent	Salt	RE	3 2	-	Other	-	2 3	Ref.
	Fe(III)	ū		PhCN	TBAP	SCE		1.20	-0.29			41
-	Fe(III)	ū		PhCN	TBAP	SCE			-0.29	-1.06	-1.73 -1.73	62
-	Fe(III)	ō		PhCN	TBAPF ₆	SCE	1.57	1.13	-0.32	-1.08		362
-	Fe(III)	ō		Py	TBAP	SCE			0.17	-1.45		62
-	Fe(III)	<u></u>	E	CH ₃ CN	TBAPF ₆	Fc/Fc⁺			-0.59			434
-	Fe(III)	<i>n</i> -Bu		DMF	TEAP	SCE				-0.78		584
-	Fe(III)	NH ³	NH_3	THF	TBAP	SCE			-0.09*			578
	29 Fe(III)	See Fig.		DMF	TEAP	SCE				-0.80		584
-	30 Fe(III)	See Fig.		DMF	TEAP	SCE				-0.78		584
-	31 Fe(III)	See Fig.		DMF	TEAP	SCE				-0.74		584
-	32 Fe(III)	See Fig.		DMF	TEAP	SCE				-0.76		584
•	Ge(II)			THF	$TEAB(C_6F_5)_4$	Fc/Fc⁺				-1.65	-2.09	236
-	Ge(IV)	Py	Py	Py	$TEAB(C_6F_5)_4$	Fc/Fc⁺				-0.77	-1.24	236
-	Mg(II)			DCB	TBAP	Fc/Fc⁺	0.46	0.07		-2.03*	-2.12	164
-	Mg(II)			DCB	TBAP	Fc/Fc⁺	0.46	0.07				166
-	Mg(II)			DCM	TBAP	SCE	0.94	0.65		-1.57		78
-	Mn(III)	ū		CH ₃ CN	TBAP	SCE			-0.22			348
-	Mn(III)	ū		CH ₃ CN	TBAPF ₆	NHE			1.49 -0.03	-1.33	-1.90	171
-	Mn(III)	ū		DCM	TBAP	SCE	1.55	1.16	-0.29	-1.68		302
-	Mn(III)	ö		NR	NR	NR			-0.23			477

			Axial Ligar	р			Porphryin	ŏ	Metal /	Porp	ohyrin Re	q	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2	-	Other	-	2	3 Ref.	
ТРР	1	(III) Mn(III)	Ċ	PhCN	TBAP	SCE		1.17	-0.29			41	
ТРР	ı	(III)	ū	PhCN	TBAP	SCE			-0.22			68	
ТРР	33	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.36			174 (D	(PP)
ТРР	34	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.36			174 (D	(Ad(
ТРР	35	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.34			174 (D	(dd(
ТРР	36	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.38			174 (D	(PP)
ТРР	37	(III)	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.33			174 (D	(PP)
ТРР	38	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.34			174 (D	(PP)
ТРР	39	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.31			174 (D	(dd(
ТРР	40	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.34			174 (D	(Ad(
ТРР	41	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.34			174 (D	(PP)
ТРР	42	(III)uM	See Fig.	DCM	TBAPF ₆	Ag/AgCI			-0.31			174 (D	(PP)
ТРР	ł	Ni(II)		DCM	TBAP	SCE		1.05		-1.28		61	
ТРР	ł	Ni(II)		DCM	TBAP	SCE		1.13		-1.12		226	
ТРР	ı	Ni(II)		DCM	TBAP	SCE	1.31	1.01		-1.31		302	
ТРР	ł	Ni(II)		DCM	TBAPF ₆	Ag/AgCI	1.32	1.02		-1.28	-1.72	23	
ТРР	ł	Ni(II)		DCM	TBAPF ₆	SCE	1.32	1.01				226	
ТРР	ı	Ni(II)		PhCN	TBAP	SCE	1.15	1.08		-1.28	-1.81	59	
ТРР	ı	Pd(II)		DCM	TBAP	SCE	1.41	1.01		-1.45		302	
ТРР	ł	Pd(II)		DCM	TBAPF	Fc/Fc⁺		0.65		-1.81		544	

\sim	
``	
Figure	
.⊆	
see structures	
<u>ت</u>	
vcles	
) macroc	
(TPP)	
/rin	
ĥ	
Jo Jo	
10	
hen	
etrap	
Ĕ.	
Table	

		Axial Li	gand				Porphryin	ŏ	Metal /	Porphy	rin Red	
Struct	ure Metal	L1	L2	Solvent	Salt	RE	3 2	-	Other	- -	3	Ref.
I	Pt(II)			DCM	TBAP	SCE	1.52	1.20		-1.30 -1.	32	301
I	Pt(II)			DCM	TBAPF ₆	Ag/AgNO ₃		0.97		-1.51		228
I	Pt(II)			DMF	TBAP	Fc/Fc⁺				-1.65		483
I	Pt(IV)	Br	Ĕ	DCM	TBAPF ₆	Fc/Fc⁺		0.89	-0.75	-1.84		229
I	Rh(III)	ū		DMF	TEAP	SCE			-1.02*	-1.81		581
I	Rh(III)	ū		DMSO	TEAP	SCE			-0.97*	-1.86		581
I	Rh(III)	<u>.</u>		DMF	TEAP	SCE			-1.09*	-1.85		581
I	Rh(III)	<u>.</u>		DMSO	TEAP	SCE			-0.90*	-1.83		581
I	Rh(III)	÷		<i>n</i> -BuCN	TBAP	SCE			-1.23*	-1.96		581
I	Rh(III)	÷		<i>n</i> -BuCN	TBAP	SCE			-1.03	-1.74		581
I	Rh(III)	<u>. </u>		<i>n</i> -BuCN	TBAP	SCE			-1.08	-1.57*		581
I	Rh(III)	<u>-</u>		<i>n</i> -BuCN	TBAP	SCE			-0.89*	-1.99		581
I	Rh(III)	NH(CH ₃) ₂ (ö	DMF	TEAP	SCE			-1.16*	-1.82		581
I	Ru(II)	CO		CH ₃ CN	TBAPF ₆	Ag/AgCI	1.10	0.75				196
I	Ru(II)	СО		DCE/CH ₃ CN	TBAPF ₆	SCE	1.25	0.83		-1.48 -1.	06	438
I	Ru(II)	CO		DCM (20°C)	TBAPF ₆	Fc/Fc⁺	0.77	0.37				198
I	Ru(II)	CO	EtOH	DCM	TBAP	SCE	1.25	0.84		-1.41 -1.	2	503
I	Ru(II)	CO	۲	THF	TBAPF ₆	SCE	1.32	0.97		-1.51 -2.	23	283
I	Ru(II)	NO	H ₂ O	DCM	TBAP	Fc/Fc ⁺	1.14*	0.78				421
I	Ru(II)	NO	γ	DCM	TBAP	Fc/Fc⁺				-0.79		421
I	111/11/1		Y	2	_				ינייני ועוט		-0.0	

			Axial	Ligand				Porphryin	ð	Metal /	Porp	bhyrin Red	
Ring (Structure	etal	L1	L2	Solvent	Salt	RE	3 2	-	Other	-	2 3	. Ref.
ТРР	43	Ru(II)	ON	See Fig.	DCM	TBAP	Fc/Fc⁺				-0.68		421
ТРР	44	Ru(II)	Q	See Fig.	DCM	TBAP	Fc/Fc⁺				-0.90		421
ТРР	ł	Ru(II)	PPh3	PPh ₃	DCM	TBAPF ₆	Fc/Fc⁺		0.78	-0.11	-2.08*		440
ТРР	45	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆	SCE	1.37	0.58				206
ТРР	46	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆	SCE	1.31*	0.58				206
ТРР	ł	Ru(VI)	02-	02-	DCM	TBAPF ₆	Fc/Fc⁺		09.0	-0.97*	-1.72		440
ТРР	ł	Sb(V)	HO	HO	CH ₃ CN	$TEABF_4$	SCE		1.40		-0.51	-0.95	243
ТРР	47	Sb(V)	HO	See Fig.	CH ₃ CN	TEABF₄	SCE		1.50	0.93	-0.46	-0.87	243
ТРР	48	Sb(V)	HO	See Fig.	CH ₃ CN	TEABF₄	SCE		1.55	1.39	-0.46	-0.87	243
ТРР	49	Sb(V)	HO	See Fig.	CH ₃ CN	$TEABF_4$	SCE		1.76	1.59	-0.46	-0.85	243
ТРР	ł	Sn(IV)	ū	ū	DCM	TBAP	SCE		1.44		-0.79	-1.25*	25
ТРР	ł	Sn(IV)	ū	ū	DCM (-75°C)	TBAP	SCE	1.88	1.42		-0.73	-1.15	25
ТРР	ı	Sn(IV)	HO	HO	DCM	TBAP	SCE		1.46		-0.94	-1.35	25
ТРР	ı	Sn(IV)	HO	HO	THF	TBAPF ₆ (0.2M)	Fc/Fc⁺				-1.42	-1.85	237
ТРР	50	Sn(IV)	See Fig.	See Fig.	DCM	TBAPF ₆	SCE		1.40		-0.90		286
ТРР	ı	Zn(II)			CDCI ₃	TBAP (0.2M)	SCE	1.09	0.78				318
ТРР	ł	Zn(II)			CH ₃ CN	TBAP	Fc/Fc ⁺		0.39				448
ТРР	ł	Zn(II)			CH ₃ CN/DCE	TEAPF ₆	SCE	1.16	0.80		-1.37	-1.75	154
ТРР	ł	Zn(II)			DCB	TBAP	Ag/AgCI	1.08	0.82		-0.46	-1.23	138
ТРР	I	Zn(II)			DCB	TBAP	Fc/Fc⁺	0.62	0.28		-1.92	-2.23	57

			Axial	Ligand				Porphryin	ŏ	Metal /	Porp	hyrin Red	
Ring	Structur	e Metal	L1	L2	Solvent	Salt	RE	3 2		Other	-	2 3	. Ref.
ТРР	ł	Zn(II)			DCB	TBAP	Fc/Fc⁺	0.62	0.28				166
ТРР	ł	(II)			DCB	TBAPF ₆ (0.05N	M) SCE	1.25	0.91		-1.45		13
ТРР	ł	(II)			DCB	TBAPF ₆ (0.05N	<pre>M) Fc/Fc⁺</pre>		0.26		-2.09		312
ТРР	ł	Zn(II)			DCB	TBAPF ₆ (0.05N	<pre>M) Fc/Fc⁺</pre>	0.65	0.39		-1.94	-2.27	320
ТРР	ł	(II)			DCB/CH ₃ CN	TBAP	SCE	1.23	0.84		-1.42	-1.78	441
ТРР	ł	(II)			DCB/DMF	TBABF₄	Ag/AgNO ₃	0.88	0.57				313
ТРР	ł	(II)			DCM	TBABF₄	Fc/Fc⁺	0.66	0.34		-1.85	-2.28*	130
ТРР	ł	(II)			DCM	TBAP	SCE	1.11	0.78		-1.39	-1.84*	53
ТРР	ł	(II)			DCM	TBAP	SCE		0.78		-1.38		61
ТРР	ł	(II)			DCM	TBAP	Ag/AgCI	1.13	0.82		-1.31	-1.82*	295
ТРР	ł	Zn(II)			DCM	TBAP	SCE	1.14	0.82		-1.33		302
ТРР	ł	(II)			DCM	TBAP	SCE	1.07	0.79		-1.34	-1.78*	318
ТРР	ł	(II)			DCM	TBAP	SCE	1.10	0.79		-1.32	-1.68	88
ТРР	I	(II)			DCM	TBAP	SCE	1.08	0.77		-1.35	-1.71	415
ТРР	ł	(II)			DCM	TBAP	SCE		0.82		-1.20		494
ТРР	ł	(II)			DCM	TBAP	SCE	1.11	0.78		-1.39	-1.84*	17
ТРР	ł	(II)			DCM	TBAPF ₆	Ag/AgCI	1.15	0.84		-1.36	-1.77	23
ТРР	I	Zn(II)			DCM	TBAPF ₆	Fc/Fc ⁺	0.71	0.42		-1.79	-2.17*	26
ТРР	I	Zn(II)			DCM	TBAPF ₆	Ag/Ag⁺		0.56				163
ТРР	I	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.65	0.34		-1.80		211

			Axial Ligand				Porphryin	ŏ	Metal /	Porph	yrin Red	
Ring ?	Structur	e Metal	L1 L2	- Solvent	Salt	RE .	3 2	- -	Other	-	2 3	Ref.
ТРР	I	Zn(II)		DCM	TBAPF ₆	Ag/Ag⁺	1.16	0.80		-1.33	1.66	212
ТРР	ł	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.24	0.83		-1.36	1.71	322
ТРР	I	Zn(II)		DCM	TBAPF ₆	SCE		0.80		-1.38		386
ТРР	ı	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.29		-1.91		390
ТРР	ł	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.69	0.39		-1.77	2.16	392
ТРР	ł	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.36		-1.87		525
ТРР	I	Zn(II)		DCM	TBAPF ₆	SCE	1.11	0.78		-1.39	1.84	555
ТРР	ł	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.71	0.42		-1.79		590
ТРР	ł	Zn(II)		DCM	THPPF ₆	Ag/AgCI	1.37	0.89		-1.38	1.59	317
ТРР	ł	(II)		DCM/THF	TBABF₄	Ag/Ag⁺		0.50				46
ТРР	ł	Zn(II)		<i>n</i> -BuCN	TBAPF ₆	Fc/Fc⁺		0.56		-1.58		424
ТРР	ł	Zn(II)		PhCN	TBAP	SCE	1.14	0.82		-1.32	1.74	17
ТРР	ł	Zn(II)		PhCN	TBAP	SCE		0.82		-1.32		41
ТРР	ł	Zn(II)		PhCN	TBAP	SCE	1.14	0.82		-1.32	1.70	66
ТРР	ł	Zn(II)		PhCN	TBAPF ₆	Fc/Fc⁺	0.75	0.35		-1.80	2.20	211
ТРР	I	Zn(II)		PhCN	TBAPF ₆	SCE	1.05	0.66				565 (DPV)
ТРР	ł	Zn(II)		THF	TBAP	Fc/Fc⁺		0.40		-1.93		293
ТРР	ł	Zn(II)	PPh ₃ O	CDCI ₃	TBAP (0.2M)	SCE	1.15	0.74				318
ТРР	ł	Zn(II)	Py	DCM	TEAP (0.05M)	NR		0.57				398
ТРР	51	Zn(II)	See Fig.	DCB	TBAP	Ag/AgCI	1.03	0.79	0.69 0.35	-0.46	1.23	138

			- viv	Pacei I I				Dornhviri	^O	/ letal /	D	rnhvrin Rad	
Structure Metal L1 L2 S	Metal L1 L2 S	L1 L2 S	II LIGANO L2 S	S	olvent	Salt	RE	3 2		Other			_ Ref.
52 2H D0	2H DO		DQ	ă	W	TBAP	SCE	1.40	0.89		-1.44	-1.90	17
52 2H DCI	2H DCI	DCI	DC	DC	5	TBAP	SCE	1.44	0.94				274
52 2H DCN	2H DCN	DCN	DCN	DCN	V	TBAP	SCE	1.30	0.81		-1.46	-1.89	302
52 2H PhCI	2H PhCI	PhCI	PhCI	PhCI	7	TBAPF ₆ (0.2M)	Fc/Fc⁺	0.89	0.39		-1.90	-2.31	349
AI(III) CH ₃ ⁻ DCM	AI(III) CH ₃ ⁻ DCM	CH ₃ ⁻ DCM	DCM	DCM		TBAP	SCE		0.75		-1.49		55
AI(III) Ph ⁻ DCM	Al(III) Ph ⁻ DCM	Ph ⁻ DCM	DCM	DCM		TBAP	SCE		0.75*		-1.44		55
As(V) CH ₃ ⁻ CH ₃ ⁻ DCM	As(V) CH ₃ ⁻ CH ₃ ⁻ DCM	CH ₃ ⁻ CH ₃ ⁻ DCM	CH ₃ ⁻ DCM	DCM		TBAP	SCE	1.71	1.45		-0.96	-1.48	34
As(V) CH ₃ ⁻ CH ₃ ⁻ DCM	As(V) CH ₃ ⁻ CH ₃ ⁻ DCM	CH ₃ ⁻ CH ₃ ⁻ DCM	CH ₃ ⁻ DCM	DCM		TBAP	SCE		1.45		-0.96		55
As(V) CH ₃ ⁻ CH ₃ ⁻ PhCN	As(V) CH ₃ ⁻ CH ₃ ⁻ PhCN	CH ₃ ⁻ CH ₃ ⁻ PhCN	CH ₃ ⁻ PhCN	PhCN		TBAP	SCE	1.62	1.40		-0.86	-1.35	34
As(V) CH ₃ CH ₃ O DCM	As(V) CH ₃ ⁻ CH ₃ O ⁻ DCM	CH ₃ ⁻ CH ₃ O ⁻ DCM	CH ₃ O ⁻ DCM	DCM		TBAP	SCE	1.80	1.49		-0.86	-1.37	34
- As(V) CH ₃ CH ₃ O PhCN	As(V) CH ₃ ⁻ CH ₃ O ⁻ PhCN	CH ₃ ⁻ CH ₃ O ⁻ PhCN	CH ₃ O ⁻ PhCN	PhCN		TBAP	SCE	1.74	1.45		-0.81	-1.30	34
- As(V) CH ₃ ⁻ Et ⁻ DCM	As(V) CH ₃ ⁻ Et ⁻ DCM	CH ₃ ⁻ Et ⁻ DCM	Et ⁻ DCM	DCM		TBAP	SCE	1.70	1.45		-0.96	-1.51	34
As(V) CH ₃ ⁻ Et ⁻ DCM	As(V) CH ₃ ⁻ Et ⁻ DCM	CH ₃ ⁻ Et ⁻ DCM	Et ⁻ DCM	DCM		TBAP	SCE		1.45		-0.96		55
As(V) CH ₃ ⁻ Et ⁻ PhCN	As(V) CH ₃ ⁻ Et ⁻ PhCN	CH ₃ ⁻ Et ⁻ PhCN	Et PhCN	PhCN		TBAP	SCE	1.62	1.39		-0.88	-1.38	34
As(V) CH ₃ ⁻ Eto ⁻ DCM	As(V) CH ₃ ⁻ EtO ⁻ DCM	CH ₃ ⁻ EtO ⁻ DCM	EtO [.] DCM	DCM		TBAP	SCE	1.79	1.48		-0.87	-1.40	34
- As(V) CH ₃ ⁻ EtO ⁻ PhCN	As(V) CH ₃ EtO PhCN	CH ₃ ⁻ EtO ⁻ PhCN	EtO [.] PhCN	PhCN		TBAP	SCE	1.74	1.45		-0.81	-1.29	34
- As(V) CH ₃ ⁻ OH ⁻ DCM	As(V) CH ₃ ⁻ OH ⁻ DCM	CH ₃ ⁻ OH ⁻ DCM	OH ⁻ DCM	DCM		TBAP	SCE	1.78	1.44		-0.86	-1.36	34
- As(V) CH ₃ OH DCM	As(V) CH ₃ ⁻ OH ⁻ DCM	CH3 ⁻ OH ⁻ DCM	OH ⁻ DCM	DCM		TBAP	SCE		1.44		-0.86		55
- As(V) CH ₃ OH PhCN	As(V) CH ₃ ⁻ OH ⁻ PhCN	CH3 ⁻ OH ⁻ PhCN	OH ⁻ PhCN	PhCN		TBAP	SCE	1.75	1.43		-0.84	-1.27	34
53 As(V) CH ₃ See Fig. DCM	As(V) CH ₃ See Fig. DCM	CH3 ⁻ See Fig. DCM	See Fig. DCM	DCM		TBAP	SCE	1.77	1.44		-0.94	-1.48	34

Axial Liga	Axial Liga	Axial Liga	Liga	pu				Porphyrir	Ň	Me	tal /	Por	phyrin Red	
structure Metal L1 L2 Solve	Metal L1 L2 Solve	L1 L2 Solve	L2 Solve	Solve	'nt	Salt	RE	3 2	-	ŧ	ler	- -	2 3	
54 As(V) CH ₃ See Fig. DCM	As(V) CH ₃ See Fig. DCM	CH ₃ See Fig. DCM	See Fig. DCM	DCM		TBAP	SCE	1.80	1.48			-0.88	-1.42	34
53 As(V) CH ₃ ⁻ See Fig. PhCN	As(V) CH ₃ See Fig. PhCN	CH3 ⁻ See Fig. PhCN	See Fig. PhCN	PhCN		TBAP	SCE	1.70	1.41			-0.86	-1.36	34
54 As(V) CH ₃ See Fig. PhCN	As(V) CH ₃ ⁻ See Fig. PhCN	CH3 ⁻ See Fig. PhCN	See Fig. PhCN	PhCN		TBAP	SCE	1.74	1.45			-0.82	-1.31	34
As(V) Et Et DCM	As(V) Et Et DCM	Et Et DCM	Et ⁻ DCM	DCM		TBAP	SCE	1.73	1.47			-0.97	-1.54	34
As(V) Et Et DCM	As(V) Et Et DCM	Et Et DCM	Et ⁻ DCM	DCM		TBAP	SCE		1.47			-0.97		55
As(V) Et Et PhCN	As(V) Et Et PhCN	Et Et PhCN	Et ⁻ PhCN	PhCN		TBAP	SCE	1.67	1.42			-0.89	-1.40	34
As(V) F F DCM	As(V) F ⁻ F ⁻ DCM	F [.] F [.] DCM	F ⁻ DCM	DCM		TBAP	SCE					-0.58*	-1.39	34
As(V) F ⁻ F ⁻ DCM	As(V) F ⁻ F ⁻ DCM	F [.] F [.] DCM	F ⁻ DCM	DCM		TBAP	SCE					-0.58*		55
- As(V) F ⁻ F ⁻ PhCN	As(V) F [.] F [.] PhCN	F [.] F [.] PhCN	F ⁻ PhCN	PhCN		TBAP	SCE	2.02	1.70			-0.57*	-1.38	34
Bi(III) CF ₃ SO ₃ ⁻ DCM	Bi(III) CF ₃ SO ₃ ⁻ DCM	CF ₃ SO ₃ ⁻ DCM	DCM	DCM		TBAP	SCE	1.41	1.15					54
- Co(II) DCM	Co(II) DCM	DCM	DCM	DCM		TBAP	SCE	1.17	0.86	0.67	-1.01	-1.63*		ω
- Co(II) DMF	Co(II) DMF	DMF	DMF	DMF		TBAP	SCE		0.96	0.35*	-0.98	-2.23		ω
- Co(II) DMSO	Co(II) DMSO	DMSO	DMSO	DMSO		TBAP	SCE		1.01	0.20*	-1.00	-2.20		ω
- Co(II) PhCN	Co(II) PhCN	PhCN	PhCN	PhCN		TBAP	SCE	1.30	1.01	0.37	-1.07			59
- Co(II) Py	Co(II) Py	Ρy	Ρy	Py		TBAP	SCE			0.20*	-0.56*	-1.53*		80
- Co(III) DCM	Co(III) DCM	DCM	DCM	DCM		TBAP	^g/Ag⁺		0.31*					588
- Cu(II) CH ₃ CN	Cu(II) CH ₃ CN	CH ₃ CN	CH ₃ CN	CH ₃ CN		TBAP	Fc/Fc ⁺		0.48					448
- Cu(II) DCM	Cu(II) DCM	DCM	DCM	DCM		TBAP	SCE	1.34*	0.78			-1.56		80
- Cu(II) DCM	Cu(II) DCM	DCM	DCM	DCM		TBAP	SCE	1.29	0.80			-1.52		302
- Cu(II) DCM	Cu(II) DCM	DCM	DCM	DCM		TBAPF ₆	CuTPP ^{0/+}		-0.24					579

	Axial Ligand				Porpnyri	ХОЧ	INIETAI /	Б Г	phyrin R	ed
•	L1 L2	Solvent	Salt	RE	3	-	Other	-	7	3
		DMF	TBAP	SCE	0.93	0.81		-1.44	-2.04*	
		DMSO	TBAP	SCE	0.99*	0.88*		-1.43	-1.98*	
		PhCN	TBAP	SCE	1.26	0.78		-1.53		
		Py	TBAP	SCE		0.80		-1.50		
	1-(CH ₃)Im 1-(CH ₃)Im	DCM	TBAPF ₆	Pt Wire			-0.70			(1)
	ON	DCM	TBAP	SCE		1.10	0.71	-1.02		U)
	ON	THF	TBAP	SCE	1.15*	0.66*		-1.07	-1.94	τ,
	AsF ₆ -	DCM	TBAAsF ₆	SCE	1.65	1.22	-0.23	-1.16		-
	BF₄⁻	DCM	TBABF₄	SCE	1.68	1.24	-0.22	-1.15		-
	Ċ	DCM	TBAP	SCE	1.40	1.00	-0.64*	-1.28		
	Ċ	DCM	TBAP	SCE	1.30	1.08				
	Ċ	DMF	TBAP	SCE			-0.38	-1.24	-1.95	
	Ċ	DMSO	TBAP	SCE			-0.22	-0.80*	-1.32 -1	.90
	Ċ	M-MP	TEAP	SCE			-0.34			V
	Ċ	PhCN	TBAP	SCE			-0.54	-1.26		
	Ċ	Py	TBAP	SCE			-0.01	-1.94		
	Ċ	Py	TBAP	SCE			-0.02	-1.80		
	<i>n</i> -Bu ⁻	DMF	TEAP	SCE				-1.05		L)
	ON	THF	TBAP	Ag/AgNO ₃			-1.07			
	Ph ⁻	DCM	TBAP (0.2M)	SCE			0.45			

									/ I-T-IA			
			Axial Ligand				Porpnyrii	XOL	Netal /	Porpnyri	Dex L	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2	.	Other	- 1	с	Ref.
OEP	ł	Fe(III)	Ph ⁻	DCM (-50 °C)	TBAP (0.2M)	SCE	1.68	1.27	0.47 -0.86			67
OEP	ł	Fe(III)	Ph	DCM/Py (-50 °C)	TBAP (0.2M)	SCE			0.31			67
OEP	ł	Fe(III)	SbF ₆ -	DCM	TBASbF ₆	SCE	1.67	1.22	-0.22	-1.15		181
OEP	55	Fe(III)	See Fig.	DCM	TBAP (0.2M)	SCE		1.31	0.64			67
OEP	56	Fe(III)	See Fig.	DCM	TBAP (0.2M)	SCE		1.23	0.73			67
OEP	57	Fe(III)	See Fig.	DCM	TBAP (0.2M)	SCE		1.22	0.81			67
OEP	55	Fe(III)	See Fig.	DCM (-50 °C)	TBAP (0.2M)	SCE	1.70	1.28	0.62 -0.70			67
OEP	56	Fe(III)	See Fig.	DCM (-50 °C)	TBAP (0.2M)	SCE	1.73	1.14	0.68 -0.74			67
OEP	57	Fe(III)	See Fig.	DCM (-50 °C)	TBAP (0.2M)	SCE	1.83	1.10	0.76 -0.65			67
OEP	58	Fe(III)	See Fig.	DCM (-50 °C)	TBAP (0.2M)	SCE	1.83	1.11	0.80 -0.63			67
OEP	55	Fe(III)	See Fig.	DCM/Py (-50 °C)	TBAP (0.2M)	SCE			0.49			67
OEP	56	Fe(III)	See Fig.	DCM/Py (-50 °C)	TBAP (0.2M)	SCE			0.57			67
OEP	57	Fe(III)	See Fig.	DCM/Py (-50 °C)	TBAP (0.2M)	SCE			0.73			67
OEP	59	Fe(III)	See Fig.	DMF	TEAP	SCE				-1.08		584
OEP	60	Fe(III)	See Fig.	DMF	TEAP	SCE				-1.08		584
OEP	61	Fe(III)	See Fig.	DMF	TEAP	SCE				-1.07		584
OEP	55	Fe(III)	See Fig.	PhCN	TBAP (0.2M)	SCE		1.31	0.66			67
OEP	56	Fe(III)	See Fig.	PhCN	TBAP (0.2M)	SCE		1.19	0.76			67
OEP	I	Ga(III)	C	DCM	TBAP	SCE		1.00		-1.38		55
OEP	I	Ga(III)	Ĺ	DCM	TBAP	SCE		1.00		-1.38		55

Table 2. Octaethylporphyrin (OEP) macrocycles. (see structures in Figure 2)

Axial Ligand	Axial Ligand	Axial Ligand	ıl Ligand	Ι.				Por	phyrin	ŏ	Metal /	Por	rphyrin Rec	
g Stru	loture	Metal	L1	L2	Solvent	Salt	RE	ε	7	~	Other	-	2	Ref.
i		ln(III)	ö		DCM	TBAP	SCE			1.05		-1.29		55
i		(III)uM	ö		DCM	TBAP	SCE		1.46	1.07	-0.71	-0.80*	-1.97	Ø
, ,		(III)uM	ö		DCM	TBAP	SCE		1.46	1.07	-0.71*	-1.97		302
i 0		(III)uM	ö		DMF	TBAP	SCE				-0.37	-1.59	-2.11*	œ
, 0		(III)uM	ö		DMSO	TBAP	SCE				-0.43	-1.57	-2.08	Ø
•		(III)uM	ö		Py	TBAP	SCE				-0.54*	-1.60		Ø
•		Mn(V)	Z ^{3,}		DCM	TBAP	Ag/AgCI		1.36	06.0		-1.43		474
•		Ni(II)			CHCI ₃	TBAP	SCE			1.09				221
, 0		Ni(II)			CHCI ₃ (40 °C)	TBAP	SCE			1.10				221
, ,		Ni(II)			DCM	TBAP	SCE		1.29	0.78		-1.46		Ø
, ,		Ni(II)			DCM	TBAP	SCE		1.32	0.86				274
, ,		Ni(II)			DCM	TBAP	SCE		1.24	0.77		-1.46		302
1		Ni(II)			DCM	TBAPF ₆ (0.5M)	Ag/AgCI			0.95		-1.06		278
1		Ni(II)			DCM (-40 °C)	TBAPF ₆ (0.5M)	Ag/AgCI		0.97	0.68		-1.04	-1.54	278
i		Ni(II)			DMF	TBAP	SCE		1.00	0.89		-1.39	-2.14*	Ø
i		Ni(II)			DMSO	TBAP	SCE			0.93		-1.36	-2.09	Ø
		Ni(II)			PhCN	TBAP	SCE	1.94*	1.23	0.79		-1.49		59
i		Ni(II)			Py	TBAP	SCE			0.63		-1.42		Ø
		(II)sO	ON	EtO	DCM	TBAPF ₆	Fc/Fc ⁺			0.42				200
•		(II)sO	0N N	EtS	DCM	TBAPF ₆	Fc/Fc ⁺	0.84*	0.66	0.42*		-2.02		200

	Ref.	51	55	51	51	51	55	51	51	55	51	51	51	51	51	51	51	51	51	51	55
Porphyrin Red	1 2 3	-0.90 -1.37	-0.90	-0.80 -1.29	-0.81 -1.34	-0.77* -1.22	-0.77*	-0.83* -1.31	-0.84 -1.33*,	-0.84	-0.86 -1.26	-0.81 -1.28*	-0.77 -1.28	-0.78 -1.34	-0.80* -1.32	-0.74 -1.15	-0.78 -1.17	-0.74* -1.31	-0.77 -1.28	-0.84 -1.30*	-0.84
Metal /	Other																				
Porphyrin Ox	3 2 1	1.39	1.39	1.41	1.51	1.54	1.54	1.40	1.38	1.38	1.37	1.41	1.44	1.58	1.50	1.54	1.52	1.58	1.46	1.35	1.35
	RE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE	SCE
	Salt	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP	TBAP
	Solvent	DCM	DCM	PhCN	DCM	DCM	DCM	PhCN	DCM	DCM	DCM (-70 °C)	PhCN	PhCN	DCM	DCM	DCM	DCM (-70 °C)	PhCN	PhCN	DCM	DCM
al Ligand	L2	CH ₃ -	CH ₃	CH ₃ -	CH ₃ O ⁻	Ĺ	ĹĹ	ĹĹ	HO	HO	HO	HO	CH ₃ -	CH ₃ O ⁻	Ĺ	Ĺ	Ĺ	Ĺ	CH ₃ O ⁻	.HO	.HO
Axia	1	CH ₃ ⁻	CH ₃	CH ₃	CH ^{3,}	CH ³	CH ³⁻	CH ^{3,}	CH ³	CH ³⁻	CH ^{3,}	CH ³	CH ₃ O	CH ₃ O ⁻	CH ₃ O	CH ₃ O	CH ₃ O ⁻	CH ₃ O	ц	μ	Ш
	Metal	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)	P(V)
	Structure	1	ł	I	ł	I	ł	ł	I	ł	ł	I	ł	ł	I	ł	ł	I	ł	ł	I
	Ring	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP	OEP

			Avio	pueni le				Pornhv	rin Ox	Metal /	DOT	nhvrin Red	
Ring	Structure	Metal	L1	L2	Solvent	Salt	RE	3 2	-	Other	- -	2 3	_Ref.
OEP	ł	P(V)	山	-HO	DCM (-70 °C)	TBAP	SCE		1.35		-0.85	-1.27	51
OEP	ł	P(V)	Ш	·HO	PhCN	TBAP	SCE		1.42		-0.84	-1.36*	51
OEP	ł	P(V)	Ph	CH ₃ O ⁻	DCM	TBAP	SCE		1.64		-0.70	-1.27	51
OEP	ł	P(V)	Ph	CH ₃ O ⁻	PhCN	TBAP	SCE		1.46		-0.77	-1.29	51
OEP	ł	P(V)	Ph	·HO	DCM	TBAP	SCE		1.43		-0.82	-1.33*	51
OEP	ł	P(V)	Ph	HO	DCM	TBAP	SCE		1.43		-0.82		55
OEP	ł	P(V)	Ph	HO	DCM (-70 °C)	TBAP	SCE		1.39		-0.83	-1.28	51
OEP	I	P(V)	Ph	-HO	PhCN	TBAP	SCE		1.43		-0.82	-1.32	51
OEP	ł	(II)pd			DCM	TBAP	SCE	1.78	3 1.04				274
OEP	ł	Pd(II)			DCM	TBAP	SCE	1.54	t 0.82		-1.52		302
OEP	I	Pt(II)			DCM	TBAP	SCE	1.8	1.09				274
OEP	ł	Rh(III)	ö		DMSO	TEAP	SCE			-1.18*	-2.17		581
OEP	ł	Ru(II)	8		CH ³ CN	TBAPF ₆	Ag/AgCI	0.90	0.50				196
OEP	ł	Ru(II)	8	Py	DCM	TBAPF ₆ (0.2M)	SCE	1.18	3 0.59				197
OEP	ł	Ru(II)	0 N	CF ₃ SO ₃ -	DCM	TBAPF ₆	Fc/Fc⁺		0.68		-0.93*		208
OEP	I	Ru(II)	0 N	Eto	DCM	TBAPF ₆	Fc/Fc⁺ 1	.01* 0.67	7 0.43		-1.83		200
OEP	I	Ru(II)	0 N	EtS	DCM	TBAPF ₆	Fc/Fc⁺	0.66	3 0.37*		-1.64		200
OEP	ł	Ru(II)	0 N	H ₂ O	DCM	TBAP	Fc/Fc⁺	1.13	3 0.71				421
OEP	I	Ru(II)	0 N	Py	DCM	TBAP	Fc/Fc⁺				-0.95		421
OEP	62	Ru(II)	0 N	See Fig.	DCM	TBAP	Fc/Fc⁺				-0.67		421

			Axial	Liaand				Porphyrir	XO	Metal /	Por	phyrin Red	
Ring	Structure	Metal		L2	Solvent	Salt	RE	3	-	Other	-	3	- Ref.
OEP	63	Ru(II)	N	See Fig.	DCM	TBAP	Fc/Fc⁺				-1.00		421
OEP	64	Ru(II)	0N N	See Fig.	DCM	TBAPF ₆	Fc/Fc⁺		0.55	-1.11*	-1.33	-1.77*	208
OEP	65	Ru(II)	0N N	See Fig.	DCM	TBAPF ₆	Fc/Fc⁺	0.75	0.49	-1.11*	-1.25*		208
OEP	99	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆	Fc/Fc⁺		1.11	0.11			261
OEP	I	Sb(V)	CH ₃ ⁻	CH ₃ .	DCM	TBAP	SCE		1.66*		-0.86		55
OEP	I	Sb(V)	Щ	HO	DCM	TBAP	SCE		1.60*		-0.74		55
OEP	I	Si(IV)	HO	HO	DCM	TBAP	SCE				-1.40		55
OEP	I	Sn(IV)	HO	.HO	DCM	TBAP	SCE				-1.18	-1.59	315
OEP	I	Zn(II)			CH ₃ CN	TBAP	Fc/Fc ⁺		0.31				448
OEP	I	Zn(II)			CH ₃ CN/DCE	TEAPF ₆	SCE	0.94	0.68		-1.60		159
OEP	I	Zn(II)			CH ₃ CN/DCE	TEAPF ₆	SCE	0.94	0.68		-1.60		275
OEP	I	Zn(II)			DCE/CH ₃ CN	TBAPF ₆	SCE	0.94	0.68		-1.60		112
OEP	I	Zn(II)			DCM	TBAP	SCE	1.00	0.66		-1.60		8
OEP	I	Zn(II)			DCM	TBAP	SCE	1.02	0.63		-1.61		53
OEP	I	Zn(II)			DCM	TBAP	SCE		0.63		-1.61		55
OEP	I	Zn(II)			DCM	TBAP	SCE	1.02	0.63		-1.61		302
OEP	I	Zn(II)			DMF	TBAP	SCE		0.68		-1.59	-2.00	8
OEP	I	Zn(II)			DMSO	TBAP	SCE	1.03*	0.69		-1.60	-1.95	8
OEP	I	Zn(II)			PhCN	TBAP	SCE	1.02	0.67		-1.58		99
OEP	ł	Zn(II)			Py	TBAP	SCE		0.73		-1.64		ω

(see structures in Figure 2)	
Table 2. Octaethylporphyrin (OEP) macrocycles.	

	Ref.	398
Red	3	
ohyrin	2	
Porp	-	
Metal /	Other	
Ň	-	0.61
phyrin	2	
Por	3	
	RE	NR
	Salt	TEAP (0.05M)
	Solvent	DCM
ial Ligand	L2	
Ax	L1	Py
	Metal	Zn(II)
	Structure	ł
	Ring	OEP

			Axial I	_igand				Porphyri	in Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal	L1	[2]	Solvent	Salt	RE	3	-	Other	1 2 3	Ref.
TMP	67	2H			DCM	TBAPF ₆	Fc/Fc⁺	0.98	0.48		-1.88 -2.36	199
TMP	67	2H			DCM	TBAPF ₆	SCE		0.90			582
TMP	:	Bi(III)	CF ₃ SO ₃		DCM	TBAP	SCE	1.57	1.14			54
TMP	:	Bi(III)	NO ^{°-}		DCM	TBAP	SCE	1.58	1.08			54
TMP	:	Bi(III)	NO ^{°-}		PhCN	TBAP	SCE	1.59	1.17			54
TMP	:	Cu(II)			DCM	TBAPF ₆	CuTPP ^{0/+}		-0.02			579
TMP	:	Fe(III)	CF ₃ CO ₂ ⁻		DCM (-60 °C)	TBAP	SCE		1.09			374
TMP	1	Fe(III)	CH ₃ CO ₂ ⁻		DCM (-60 °C)	TBAP	SCE		1.06			374
TMP	:	Fe(III)	CI		CH ³ CN	$TBABF_4$	Ag/Ag⁺			-0.64		194
TMP	:	Fe(III)	CI		DCM	TBAPF ₆	SCE		0.92			582
TMP	1	Fe(III)	CI		DCM (-60 °C)	TBAP	SCE		1.10			374
TMP	:	Fe(III)	CIO4 ⁻		CH3CN (-35 °C)	TBAP	SCE		1.12			374
TMP	:	Fe(III)	CIO4		DCM (-60 °C)	TBAP	SCE		1.09			374
TMP	:	Fe(III)	Ŀ		DMF (-60 °C)	TBAP	SCE		1.10			374
TMP	:	Fe(III)	NO3-		DCM (-60 °C)	TBAP	SCE		1.11			374
TMP	68	Fe(III)	See Fig.		DCM (-60 °C)	TBAP	SCE		1.05			374
TMP	69	Fe(III)	See Fig.		DCM (-60 °C)	TBAP	SCE		1.16			374
TMP	:	Fe(IV)	02-	1-(CH ₃)Im	DCM (-60 °C)	TBAP	SCE	1.02	0.77			374
TMP	:	Fe(IV)	02-	1-(CH ₃)Im	DCM (-60 °C)	TBAP	SCE	0.98	0.76			374
TMP	:	Fe(IV)	0 ²⁻	CF ₃ CO ₂ -	DCM (-60 °C)	TBAP	SCE	1.25	0.96			374

Table 3. Tetramesitylporphyrin (TMP) and substituted TMP macrocycles. (see structures in Figure 3)

			Axial	Ligand				Porphy	'in Ox	Metal /	Porphyrin F	Sed	
Ring	Structure	Metal	L1	[7]	Solvent	Salt	RE	3	~	Other	1 2	с	Ref.
TMP	:	Fe(IV)	02-	CH ₃ CO ₂	DCM(-60 °C)	TBAP	SCE	1.26	1.04				374
TMP	:	Fe(IV)	02-	ū	DCM(-60 °C)	TBAP	SCE	1.26	0.97				374
TMP	:	Fe(IV)	02-	CIO ^{4⁻}	DCM(-60 °C)	TBAP	SCE	1.18	0.88				374
TMP	:	Fe(IV)	02-	ĹL	DCM(-60 °C)	TBAP	SCE	1.25	0.96				374
TMP	:	Fe(IV)	02-	Ē	DCM(-60 °C)	TBAP	SCE		0.80				374
TMP	:	Fe(IV)	02-	NO ³⁻	DCM(-60 °C)	TBAP	SCE	1.21	0.95				374
TMP	70	Fe(IV)	02-	See Fig.	DCM(-60 °C)	TBAP	SCE	1.25	0.99				374
TMP	71	Fe(IV)	02-	See Fig.	DCM(-60 °C)	TBAP	SCE	1.25	0.96				374
TMP	:	Ru(II)	CO		CH ₃ CN	TBAPF ₆	Fc/Fc⁺	0.91	0.50		-1.90 -2.30		199
TMP	:	Ru(II)	S		DCM	TBAPF ₆	Fc/Fc⁺	0.87	0.49		-1.89		199
TMP	72	Ru(II)	See Fig.		DCM	NR	Fc/Fc⁺	0.98	0.19				203
TMP	73	Ru(II)	See Fig.		DCM	NR	Fc/Fc⁺	0.92	0.32				203
TMP	:	Ru(III)	CO		THF	TBAPF ₆	Fc/Fc⁺		0.53		-2.11 -2.81		199
TMP	:	Ru(VI)	02-	02-	DCM	TBAP	Ag/AgCI	1.24	0.70*	-0.48*			207
TMP	:	Ru(VI)	0 ²⁻	0 ²⁻	DCM	TBAPF ₆	Fc/Fc⁺		0.71	-1.15*	-0.60 -1.67		440
TMP	:	(II)			DCM	$TBABF_4$	SCE	1.20	0.86		-1.40 -1.62		310 (SWV)
TMP	1	Zn(II)			DCM	TBAP	Ag/AgCI	1.11	0.79				114
TMP	:	Zn(II)			DCM	TBAPF	Ag/Ag⁺		0.51				163
TMP	:	Zn(II)	<u></u>		DCM	TBAP	Ag/AgCI	1.32	0.67				114

Table 3. Tetramesitylporphyrin (TMP) and substituted TMP macrocycles. (see structures in Figure 3)

			Axial	Ligand				Porphy	rin Ox	Metal /	Porphyrin Red	
Ring	Structu	ire Metal	L1	L2	Solvent	Salt	RE	3 2	-	Other	1 2 3	Ref.
(3'-Thienyl)₄OEP	74	Ni(II)			DCM	TBAP	SCE	0.89	0.68		-1.59	33
(3'-Thienyl)₄OEP	74	Ni(II)			DCM	TBAPF ₆	SCE	1.00	0.67		-1.60	33
(AP)₄OEP	75	Zn(II)			DCM	TBAP	Fc/Fc⁺	0.67*	0.25		-1.46	493
Cl ₂ OEP	76	Zn(II)			CH ₃ CN/DCE	TEAPF	SCE	0.95	0.73		-1.41*	275
(DAD3HBT)OEP	11	Ni(II)			CHCI ₃	TBAP	SCE		0.98			221
(DAD3HBT)OEP	11	Ni(II)			CHCI ₃ (40°C)	TBAP	SCE		66.0			221
(DAD4HBT)OEP	78	Ni(II)			CHCI ₃	TBAP	SCE		1.14			221
(DAD4HBT)OEP	78	Ni(II)			CHCI ₃ (40°C)	TBAP	SCE		1.15			221
(DAPS)OEP	79	Ni(II)			DCM	TBAP (0.5M)	Ag/AgCI		0.91		-1.15	585
(DAS)OEP	80	Ni(II)			DCM	TBAP (0.5M)	Ag/AgCI		0.96		-1.05	585
(DATS)OEP	81	Ni(II)			DCM	TBAP (0.5M)	Ag/AgCI		0.91		-1.05	585
F ₂₀ OETPP	82	Ni(II)			DCM	TBAP	SCE				-1.19	33
F ₂₀ OETPP	82	Ni(II)			DCM	TBAPF ₆	SCE	1.44	1.04		-1.19	33
(Malonate)OEP	83	2H			DCM	TBAPF ₆	Fc/Fc ⁺	0.56	0.27		-2.01*	42
(Malonate)OEP	ł	Zn(II)			DCM	TBAPF ₆	Fc/Fc ⁺	0.39	0.08		-2.18*	42
(NO ₂)4OEP	84	Fe(II)	Py	Py	DCM	TBAP	Ag/AgCI			0.75		85
(NO ₂)4OEP	I	Ni(II)			DCM	TBAP	SCE		1.41		-0.64*	33
(NO ₂)₄OEP	ł	Ni(II)			DCM	TBAPF ₆	SCE		1.54		-0.48*	33
(NO ₂)4OEP	ł	V(IV)	0 ^{2;}		DCM	TBAP	Ag/AgCI	1.55*	1.39*	-1.32*	-0.20 -1.04	168
(NO ₂)₄OEP	I	V(IV)	02-	PV	DCM	TBAP	Aq/AqCI	1.53*	1.34*	-1.46	-0.25 -1.14	168

Table 4. meso-Substituted OEP and porphinone macrocycles. (see structures in Figure 4)

			Axial	Ligand				Porphy	rin Ox	Metal /	Porphyrin F	ed
Ring	Structu	ire Metal		L2	Solvent	Salt	RE	3 2	-	Other	1 2	3 Ref.
(NO ₂)4OEP	1	V(IV)	02 ²	THF	THF	TBAP	Ag/AgCI		1.50*	-1.35	-0.17 -1.06	168
OEP(2,3-dione)	85	Fe(II)	ON		THF	TBAP	SCE	1.05	0.83		-0.66 -1.68	583
OEP(2,4-dione)	86	Fe(II)	ON		DCM	TBAP	SCE	1.20	0.76		-0.69	583
OEP(2,4-dione)	86	Fe(II)	ON		THF	TBAP	SCE	1.02	0.80		-0.80 -1.80	583
OEPdione	87	Fe(III)	ö		THF	TBAP	Ag/AgNO ₃			-0.16 -1.15		80
OEPdione	87	Fe(III)	ON		THF	TBAP	Ag/AgNO ₃				-0.80	80
OEPone	88	Fe(II)	ON		DCM	TBAP	SCE	1.25	0.77		-0.81	583
OEPone	88	Fe(II)	ON		THF	TBAP	SCE	1.19	0.76		-0.86 -1.83	583
OEPone	88	Fe(III)	ū		THF	TBAP	Ag/AgNO ₃			-0.35 -1.23		80
OEPone	88	Fe(III)	ON		THF	TBAP	Ag/AgNO ₃				-0.86	80
OETPP	68	Cu(II)			CH ₃ CN	TBAP	Fc/Fc ⁺		-0.01			448
OETPP	I	Fe(III)			PhCN	TBAP	SCE		0.93	0.39		20
OETPP	I	Fe(III)	Ph		PhCN	TBAP	SCE		1.06	0.27		20
OETPP	06	Fe(III)	See Fig.		PhCN	TBAP	SCE		0.80	0.56		20
OETPP	91	Fe(III)	See Fig.		PhCN	TBAP	SCE		0.93	0.39		344
OETPP	92	Fe(III)	See Fig.		PhCN	TBAP	SCE		0.84	0.48		344
OETPP	I	Ni(II)			DCM	TBAP	SSCE	0.90	0.63			32
OETPP	ł	Ni(II)			DCM	TBAPF ₆	SSCE	06.0	0.54			32
OETPP	I	Zn(II)			CH ³ CN	TBAP	Fc/Fc ⁺		-0.09			448
PAOEP	93	Ni(II)			DCM	TBAP (0.5M	I) Ag/AgCI		0.91		-1.16	585

Table 4. meso-Substituted OEP and porphinone macrocycles. (see structures in Figure 4)

			Axial Liç	gand				Porphyr	in Ox	Metal /	Porphyrin	Red
Ring	Structure	e Metal	L1	L2	Solvent	Salt	RE	3 2	1	Other	1 2	3 Ref
T(Bz)OEP	94	Ni(II)			DCM	TBAP	SCE	1.20	0.94		-1.23	33
T(Bz)OEP	94	Ni(II)			DCM	TBAPF ₆	SCE	1.21	0.93		-1.24	33
TAOEP	95	Ni(II)			DCM	TBAP (0.5M)	Ag/AgCI		0.91		-1.09	585
(TAS)OEP	96	Ni(II)			DCM	TBAP (0.5M)	Ag/AgCI		0.96		-1.00	585
<i>trans</i> -(2'-OPrOH P) ₂ 0	EP 97	2H			DCM	TBAPF ₆	Fc/Fc ⁺				-1.96*	42
<i>trans</i> -(2'-OPrOH P) ₂ O	н ЕР	Zn(II)			DCM	TBAPF ₆	Fc/Fc ⁺				-2.21*	42

Table 4. meso-Substituted OEP and porphinone macrocycles. (see structures in Figure 4)

			Axial Ligand				Porphyrin Ox	Metal /	Por	phyrin Red	
Ring	tructur	eMetal	L1 L2	Solvent	Salt	RE	3 2 1	Other		2	Ref.
Bis-strap-C ₁₀	98	Rh(III)	Ċ	DMF	TEAP	SCE		-0.25* -1.03	* -1.81		581
Bis-strap-C ₁₂	66	Rh(III)	Ċ	DMF	TEAP	SCE		-0.40* -1.34	* -2.07		581
Bis-strap-C ₈ Ph	100	Rh(III)	Ċ	DMF	TEAP	SCE		-0.14* -1.08	* -1.83		581
Bis-strap-T(Ar)P	101	2H		DCM	TBAPF ₆	Fc/Fc⁺	0.46				101
Bis-strap-T(Ar)P	:	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.39				101
Bis-strap-TBTMP	102	2H		CH ₃ CN	LiClO ₄	SCE	0.73		-0.91	-1.31	450
Bis-strap-TBTMP	1	Fe(III)	See Fig.	CH ₃ CN	LiClO ₄	SCE	0.84	-1.10	-1.55		450
Strap-DCPP	103	Fe(III)	See Fig.	DMF	LiClO4	SCE	1.01	-0.28	-1.42	-1.90	556
Strap-DMP	104	Fe(III)	See Fig.	DMF	LiClO ₄	SCE	0.92	-0.34	-1.48	-1.97	556
Strap-TBTMP	105	2H		CH ₃ CN	LiClO ₄	SCE	0.68		-1.07		450
StrapP-3	106	Zn(II)		DCM	TBAP	SCE	1.08 0.79		-1.31	-1.59 -1.71	88
TCNP	107	Fe(III)		CH ₃ CN	$TBABF_4$	Ag/Ag⁺		-1.03			194
(lpha,eta,lpha,eta,eta-DPA)TNP	108	2H		THF	TBAP	Fc/Fc⁺		0.28	-1.63		499
(lpha,eta,lpha,eta-PPDA)TNP	109	2H		THF	TBAP	Fc/Fc⁺		0.25 -0.10	-1.64		499
(lpha,eta,lpha,eta-PrA)TNP	110	2H		THF	TBAP	Fc/Fc⁺			-1.60		499
$(lpha^3$ -NHCOCF $_3)(eta$ -Ru(bpy) $_3)^2$ +TPP	111	2H		DCM	TBAP	Ag/AgCI	0.56	1.19	-0.47		145
$(\alpha^3$ -NHCOCF $_3)(\beta$ -Ru $(bpy)_3)^{2*}$ TPP	1	(III)nM	ū	DCM	TBAP	Ag/AgCI	0.92	-0.39 1.11			145
$(lpha^3$ -NHCOCF $_3)(eta$ -Ru(bpy) $_3)^{2*}$ TPP	1	Zn(II)		DCM	TBAP	Ag/AgCI	0.62	1.18	-0.62		145
$(lpha^3$ -NMIm)(eta -F $_3$ Im)TPP	112	Fe(II)		H_2O	NaClO₄	NHE	0.27* 0.18*				420
$(\alpha^3$ -NMIm)(β -F ₃ Im)TPP	112	Fe(II)		H ₂ O	NaClO₄ (0.25M) NHE	0.26* 0.17*				420

Table 5a. Picket-Fence porphyrins and related derivatives. (see structures in Figure 5a)

			Axial L	igand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structur	eMetal	5	2	Solvent	Salt	ВЯ	3 2 1	Other	1 2 3	Ref.
($lpha^3$ -NMIm)(eta -F $_3$ Im)TPP	112	Fe(II)			H ₂ O	NaCIO4 (0.5M)	NHE	0.24* 0.15*			420
$(\alpha^3$ -NMIm)(β -F $_3$ Im)TPP	112	Fe(II)			H ₂ O	NaClO4 (1.0M)	NHE	0.23* 0.14*			420
$(\alpha^3$ -piv) $(\alpha'$ -SR)TPP	113	Fe(III)			DCM	TBAP	Ag/Ag⁺		0.94 -0.53		193
$(\alpha^3$ -piv) $(\alpha'$ -SR)TPP	:	Fe(III)	ON		DCM	TBAP	Ag/Ag⁺		0.81 -0.43		193
$(\alpha^3$ -Prim)(β -F $_3$ Im)TPP	114	Fe(II)			H ₂ O	KNO ₃	NHE	0.17* 0.06*			420
(α³-Prlm)(β-F₃lm)TPP	114	Fe(II)			H ₂ O	KPF ₆	NHE	0.13* 0.03*			420
(α³-Prlm)(β-F₃lm)TPP	114	Fe(II)			H ₂ O	N(Et) ₃ (Ph)Cl	NHE	0.25* 0.14*			420
(α³-Prlm)(β-F₃lm)TPP	114	Fe(II)			H ₂ O	NaClO₄	NHE	0.17* 0.07*			420
(α³-Prlm)(β-F₃lm)TPP	114	Fe(II)			H ₂ O	TBACI	NHE	0.28* 0.16*			420
(α³-Prlm)(β-F₃lm)TPP	114	Fe(II)			H ₂ O	TEACI	NHE	0.21* 0.10*			420
$(\alpha^3,\beta$ -NHCOCF $_3$)TPP	115	2H			DCM	TBAP (0.5M)	Ag/AgCI	0.28		-0.93	145
$(\alpha^3,\beta$ -NHCOCF $_3$)TPP	:	(III)nM	ū		DCM	TBAP	Ag/AgCI	0.92	-0.42		145
$(\alpha^3,\beta$ -NHCOCF $_3$)TPP	:	Zn(II)			DCM	TBAP	Ag/AgCI	0.74		-0.95	145
$lpha^4$ -(piv) $_4$ TPP	116	Fe(III)			CH ₃ CN	TPrAP (0.05M)	SHE		-0.71		580
$lpha^4$ -(piv) $_4$ TPP	:	Fe(III)	ON		CH ³ CN	TPrAP (0.05M)	SHE		0.38		580
$\alpha^4-(piv)_4TPP$:	Fe(III)	ON	NO_2^{-1}	CH ³ CN	TPrAP (0.05M)	SHE		0.54		580
$lpha^4$ -(piv) $_4$ TPP	:	Fe(III)	NO2		CH ₃ CN	TPrAP (0.05M)	SHE		-0.68		580
$lpha^4$ -(piv) $_4$ TPP	:	Fe(III)	NO2	NO_2^{-1}	CH ₃ CN	TPrAP (0.05M)	SHE		-0.96		580
(α^4 -DPA)TNP	117	2H			THF	TBAP	Fc/Fc⁺		0.28	-1.65	499 (I
$(\alpha^4$ -MPMF)TPP	118	2H			DCM	TBAP	Ag/AgCI	0.70		-0.81	108

Table 5a. Picket-Fence porphyrins and related derivatives. (see structures in Figure 5a)

			Axial L	-igand				Porphyr	in Ox	Metal /	Porphy	rin Red	
Ring	Structur	eMetal	L1	L2	Solvent	Salt	RE	3 2	- -	Other	1 2	3	_Ref.
($lpha^4$ -MPMF)TPP	119	Co(II)			DCM	TBAP	Ag/AgCI		0.89		-0.90		108
($lpha^4$ -MPMF)TPP	:	Cu(II)			DCM	TBAP	Ag/AgCI		0.83		-0.91		108
($lpha^4$ -MPMF)TPP	:	Ni(II)			DCM	TBAP	Ag/AgCI		0.80		-1.03		108
$[(lpha^4\text{-}NMPy)P]^{4*}$	120	(III)uM	H₂O		H ₂ O	NaCI	NHE		Ŷ	0.03			563
(α^4 -PPDA)TNP	121	2H			THF	TBAP	Fc/Fc⁺		0).24 -0.12	-1.66		499
(α^4 -PrA)TNP	122	2H			THF	TBAP	Fc/Fc ⁺				-1.63		499

Table 5a. Picket-Fence porphyrins and related derivatives. (see structures in Figure 5a)

									č	1 - 1 - 1 - 1			
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	5 - (m	2	5 -	Other		2 3	Ref.
T(C ₆ H ₁₁)P	123	2H		DCM	TBAP	SCE		1.44*	0.83*		-1.30	-1.67	61
T(C ₆ H ₁₁)P	:	Ni(II)		DCM	TBAP	SCE	1.56	1.17*	0.81		-1.49		61
T(C ₆ H ₁₁)P	:	Zn(II)		DCM	TBAP	SCE		0.80	0.57		-1.52		61
T(CH ₃)P	124	Ni(II)		DCM	TBAP	SCE		1.15	0.83		-1.36		302
T(Et)P	125	Ni(II)		DCM	TBAP	SCE		1.15	0.85		-1.39		302
T(i-Pr)P	126	Ni(II)		DCM	TBAP	SCE		1.18	0.81		-1.44		33
T(i-Pr)P	126	Ni(II)		DCM	TBAPF ₆	SCE		1.20	0.83		-1.46		33
$T(n-C_3F_7)P$	127	Ni(II)		DCM	TBAP	SCE		1.54	1.54		-0.72		33
$T(n-C_3F_7)P$	127	Ni(II)		DCM	TBAPF ₆	SCE		1.67	1.54		-0.73		33
T(Pn)P	128	Zn(II)		DCM	TBAP	SCE			0.67				86
T(t-Bu)P	129	Ni(II)		DCM	TBAP	SCE		0.93	09.0		-1.48		33
T(t-Bu)P	129	Ni(II)		DCM	TBAPF ₆	SCE		0.93	0.64		-1.50		33
T(TD)P	130	Zn(II)		DCM/THF	TBABF₄	[≁] gA/Ag			0.25				46
TUP	131	2H		DCM	TBAP	SCE		1.26*	0.85		-1.28	-1.69	302
TUP	131	2H		PhCN	TBAP	SCE		1.28*	0.91		-1.25	-1.62	302
TUP	1	Cu(II)		DCM	TBAP	SCE		1.19	0.82		-1.42		302
TUP	1	Cu(II)		PhCN	TBAP	SCE		1.17	0.81		-1.43	-1.91	302
TUP	:	Mn(III)	ū	DCM	TBAP	SCE		1.48*	0.97	-0.53*	-1.75		302
TUP	:	Mn(III)	ū	PhCN	TBAP	SCE		1.45*	0.95	-0.48*	-1.53	-1.68	302
TUP	1	Ni(II)		DCM	TBAP	SCE		1.18	0.87		-1.40		302

Table 5b. meso-Tetraalkylporphyrins. (see structures in Figure 5b)

			Axial L	igand				Porpl	Jyrin (Ň	Metal /	Porpl	hyrin F	ked	1
Ring	Structure	Metal	5	2	Solvent	Salt	RE	с С	2	 _	Other	÷	2	ς Γ	Ref.
TUP	:	Ni(II)			PhCN	TBAP	SCE	.	.12 (06.0		-1.43	-1.93		302
TUP	ł	Pd(II)			DCM	TBAP	SCE	-	.66* (.88		-1.40			302
TUP	:	Pd(II)			PhCN	TBAP	SCE	-	52* (.86		-1.42	-1.93		302
TUP	:	Zn(II)			DCM	TBAP	SCE	-	010).64		-1.46			302
TUP	ł	Zn(II)			PhCN	TBAP	SCE	-	03 (.64		-1.47	-1.91		302

Table 5b. meso-Tetraalkylporphyrins. (see structures in Figure 5b)

			Axial Ligand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal	L1 L2	- Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
1R-T(CF ₃ BMOA)P	132	Ru(II)	S	THF	TBAPF ₆	Fc/Fc⁺	1.01 0.50		-2.16 -2.88	199
1R-T(CH ₃ OBMOA)I	- 133	2H		DCM	TBAPF ₆	Fc/Fc⁺	0.86 0.39		-1.90 -2.20	199
1R-T(MOBMOA)P	134	Ru(II)	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.78 0.20			199
1S-T(CF ₃ BMOA)P	135	2H		DCM	TBAPF ₆	Fc/Fc⁺	1.06 0.63		-1.76 -2.08	199
1S-T(CF ₃ BMOA)P	ł	Ru(II)	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.99 0.40			199
1S-T(CF ₃ BMOA)P	ł	Ru(II)	CO	THF	TBAPF ₆	Fc/Fc⁺	0.63		-2.05 -2.78	199
1S-T(CH ₃ BMOA)P	136	2H		DCM	TBAPF ₆	Fc/Fc⁺	0.88 0.38		-1.91 -2.36	199
1S-T(MBMOA)P	137	Ru(II)	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.79 0.18			199
1S-T(MBMOA)P	137	Ru(II)	CO	THF	TBAPF ₆	Fc/Fc⁺	0.44		-2.24	199
Cl ₂₀ TPP	138	Mn(III)	ū	NR	NR	NR		0.01		477
Cl ₄ F ₄ TPP	139	Mn(III)	CH ₃ CO ₂ ⁻	CH ₃ CN	TBAPF ₆	NHE		1.71 0.09	-1.15 -1.49	171
Cl ₈ TPP	140	2H		DCM	TBAPF ₆	SCE	1.25			582
Cl ₈ TPP	ł	Co(III)	<i>n</i> -Bu	DMF	TEAP	SCE	0.91		-1.20	584
Cl ₈ TPP	ł	Cu(II)		DCM	TBAPF ₆	CuTPP ^{0/+}	0.03			579
Cl ₈ TPP	ł	Fe(III)	G	DCM	TBAPF ₆	SCE	1.30			582
CI ₈ TPP	I	Fe(III)	CIO4	CH3CN (-35°C) TBAP	SCE	1.46			374

Table 5c. meso-Tetraarylporphyrins. (see structures in Figure 5c)

			Avial I	pueni				Porphyrin Ox	Metal /	Pornhvrin Red	
Ring	Structure	Metal		L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
Cl ₈ TPP	1	Fe(III)	<i>n</i> -Bu ⁻		DMF	TEAP	SCE	0.41		-0.75	584
CI ₈ TPP	141	Fe(III)	See Fig.		DMF	TEAP	SCE	0.34		-0.72	584
CI ₈ TPP	142	Fe(III)	See Fig.		DMF	TEAP	SCE			-0.70	584
CI ₈ TPP	I	Fe(IV)	CIO4	0 ²⁻	CH3CN (-35°C)	TBAP	SCE	1.25 0.88			374
CI ₈ TPP	I	Fe(IV)	CIO4	0 ²⁻	CH ₃ CN (-35°C)	TBAP	SCE	1.59 1.28			374
CI ₈ TPP	I	(II)nM			CH ³ CN	TBAP	SCE		-0.08	-1.33 -1.68	267
CI ₈ TPP	I	(III)nM	CH ₃ CO ₂ ⁻		CH ³ CN	TBAPF ₆	NHE		1.70 0.07	-1.26 -1.56	171
CI ₈ TPP	I	(III)nM	ū		NR	NR	NR		-0.12		477
CI ₈ TPP	I	Ni(II)			DCM	TBAPF ₆	SCE			-1.22	505
CI ₈ TPP	143	Ru(II)	See Fig.		DCM	NR	Fc/Fc⁺	0.32		-1.88*	203
CI ₈ TPP	144	Ru(II)	See Fig.		DCM	NR	Fc/Fc ⁺	0.42		-1.73	203
CI ₈ TPP	I	Zn(II)			DCM	TBAPF ₆	SCE			-1.29	505
F ₁₂ TPP	145	Co(II)			<i>n</i> -BuCN	TBAP	SCE		-0.79	-1.89	266
F ₂₀ TPP	146	2H			DCM	NR	SCE	1.54 1.20		-0.97 -1.40	393
F ₂₀ TPP	146	2H			DCM	TBAPF ₆	Fc/Fc ⁺	1.08		-1.23*	406
F ₂₀ TPP	I	Co(II)			CH ₃ CN	TBAPF ₆	Fc/Fc⁺		0.40* -1.00		547

Table 5c. meso-Tetraarylporphyrins. (see structures in Figure 5c)

Ring	Structure	Metal	AXIAI LIGAND	Solvent	Salt	RE	3 2 1	Netal / Other	1 2 3	Ref.
F ₂₀ TPP		Co(II)		n-BuCN	TBAP	SCE		-0.61	-1.61	266
F ₂₀ TPP	ł	Co(II)		PhCN	TBAPF ₆	Ag/Ag⁺	1.52 1.29	0.31 -0.94	-1.94	212
F ₂₀ TPP	ł	Cu(II)		DCM	TBAPF ₆	CuTPP ^{0/+}	0.44			579
F ₂₀ TPP	ł	Fe(II)		DMF	TEAP	SCE			-0.84 -1.32	584
F ₂₀ TPP	147	Fe(II)	See Fig.	DCM	NR	Fc/Fc⁺	0.35		-1.52	203
F ₂₀ TPP	148	Fe(II)	See Fig. 1-(CH ₃)	DCM	NR	Fc/Fc⁺	0.13		-1.67	203
F ₂₀ TPP	I	Fe(III)	CIO4-	DCM/CH ₃ CN	TBAP	SCE	1.56			374
F ₂₀ TPP	ł	Fe(III)	<i>n</i> -Bu ⁻	(-60-C) DMF	TEAP	SCE	0.54		-0.56	584 (UF V)
F ₂₀ TPP	149	Fe(III)	See Fig.	DMF	TEAP	SCE	0.55		-0.53	584
F ₂₀ TPP	150	Fe(III)	See Fig.	DMF	TEAP	SCE			-0.54	584
F ₂₀ TPP	151	Fe(III)	See Fig.	DMF	TEAP	SCE	0.47		-0.55	584
F ₂₀ TPP	152	Fe(III)	See Fig.	DMF	TEAP	SCE			-0.54	584
F ₂₀ TPP	I	Fe(IV)	CIO4 ⁻ 0 ²⁻	DCM/CH ₃ CN	TBAP	SCE	1.39			374
F ₂₀ TPP	153	ln(III)	See Fig.	(-00-C) DCM	TBAP	Ag/AgNO ₃	1.20*		-0.99 -1.51	234
F ₂₀ TPP	I	(III)	CH ₃ CO ₂ ⁻	CH ₃ CN	TBAPF ₆	NHE		1.75 0.05	-1.04 -1.47	171
F ₂₀ TPP	I	Mn(III)	ū	NR	NR	NR		0.04		477

Table 5c. meso-Tetraarylporphyrins. (see structures in Figure 5c)
			Axial I	igand				Porphyrin (Dx Metal /	Porphyrin Red	
Ring	Structure	Metal			Solvent	Salt	RE	3 2	1 Other	. 1 . 2 3	Ref.
F ₂₀ TPP	I	Ni(II)			DCM	TBAP	SCE	1.41	.41	-0.85	33
F ₂₀ TPP	ı	Ni(II)			DCM	TBAPF ₆	SCE	1.67 1	.42	-0.90	33
F ₂₀ TPP	154	Os(II)	See Fig.	1-(CH ₃)	CH ₃ CN	NR	Fc/Fc⁺	1.07 0	.06	-1.71	203
F ₂₀ TPP	ı	Pt(II)			DCM	TBAPF ₆	Ag/AgNO ₃	-	.33	-1.06 -1.55	228
F ₂₀ TPP	155	Ru(II)	CH ₃ OH	See Fig.	DCM	NR	Fc/Fc⁺	0	.63	-1.46	203
F ₂₀ TPP	156	Ru(II)	CH ₃ OH	See Fig.	DCM	NR	Fc/Fc ⁺	0	.65	-1.47	203
F ₂₀ TPP	I	Ru(II)	CO		DCM	NR	Fc/Fc ⁺	0	.84	-1.61	203
F ₂₀ TPP	I	Ru(II)	PH_2Ph	PH₂Ph	DCM	TBAPF ₆	Fc/Fc ⁺	0	.39	-1.89	201
F ₂₀ TPP	I	Ru(II)	$PHPh_2$	$PHPh_2$	DCM	TBAPF ₆	Fc/Fc ⁺	0	.31	-2.02	201
F ₂₀ TPP	I	Ru(II)	PPh ₃	PPh3	DCM	TBAPF ₆	Fc/Fc ⁺	~	.33	-1.83	440
F ₂₀ TPP	157	Ru(II)	See Fig.		DCM	NR	Fc/Fc ⁺	0	.46	-1.53	203
F ₂₀ TPP	158	Ru(II)	See Fig.		DCM	NR	Fc/Fc ⁺	0	.57	-1.50	203
F ₂₀ TPP	159	Ru(II)	See Fig.		DCM	NR	Fc/Fc ⁺	0	.44	-1.55	203
$F_{20}TPP$	160	Ru(II)	See Fig.		DCM	NR	Fc/Fc⁺	0	.77	-1.25	203
$F_{20}TPP$	161	Ru(II)	See Fig.		DCM	NR	Fc/Fc⁺	0	.50	-1.51	203
$F_{20}TPP$	162	Ru(II)	See Fig.	1-(CH ₃)	CH ₃ CN	NR	Fc/Fc⁺	0	.33	-1.63	203

				.							
Ring	Structure	Metal	AXIAI L	L2	Solvent	Salt	RE	3 2 1	Metal / Other	1 2 3	Ref.
F ₂₀ TPP	163	Ru(II)	See Fig.	(Et) ₂ S	DCM	NR	Fc/Fc⁺	0.52		-1.53	203
F ₂₀ TPP	164	Ru(II)	See Fig.	EtSH	DCM	NR	Fc/Fc⁺	0.52		-1.53	203
F ₂₀ TPP	165	Ru(II)	See Fig.	See Fig.	DCM	NR	Fc/Fc⁺	0.42		-1.90*	203
F ₂₀ TPP	ł	Ru(VI)	02 ²	0 ²⁻	DCM	TBAPF ₆	Fc/Fc⁺	1.25	-0.64*	-0.25 -1.30	440
F ₂₀ TPP	ł	Sn(IV)	HO	.HO	DCM	TBAP	SCE			-0.46 -0.96	315
F ₂₀ TPP	ł	Zn(II)			DCM	$TBABF_4$	Ag/Ag⁺	1.02			509
F ₂₀ TPP	ł	(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.81		-1.49	406
F ₂₀ TPP	ł	(II)	Py		C ₆ H ₆	THAP	SCE			-0.97	142
F ₂₀ TPP	ł	(II)	Py		CH ₃ CN	TBAP	SCE			-1.04	142
F ₂₀ TPP	ł	(II)	Py		DCM	TBAP	SCE			-1.03	142
F ₈ TPP	166	Co(II)			PhCN	TBAPF ₆	Ag/Ag⁺	1.37 1.21	0.33 -0.85	-1.89	212
F ₈ TPP	ł	Fe(II)			CH ₃ CN	TBAPF ₆	Fc/Fc⁺		-0.14		183
F ₈ TPP	ł	Fe(III)	ū		CH ₃ CN	TBAPF ₆	Fc/Fc⁺		-0.53		183
F ₈ TPP	ł	(III)nM	CH ₃ CO ₂ ⁻		CH ₃ CN	TBAPF ₆	NHE		1.72 0.09	-1.19 -1.59	171
F ₈ TPP	ł	Zn(II)			DCM	TBAPF ₆	Ag/Ag⁺	1.36 1.26		-1.03	212
<i>rac</i> -T(BMOA)P	167	2H			DCM	TBAPF	Fc/Fc⁺	0.89 0.42		-1.89 -2.35	199

			Axial	Liaand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal		L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
<i>rac</i> -T(BMOA)P	1	Ru(II)	8		CH3CN	TBAPF ₆	Fc/Fc ⁺	0.83 0.41		-1.97 -2.52	199
<i>rac</i> -T(BMOA)P	ł	Ru(II)	8		DCM	TBAPF ₆	Fc/Fc⁺	0.96 0.29			199
<i>rac</i> -T(BMOA)P	ł	Ru(II)	8		DMF	TBAPF ₆	Fc/Fc⁺	0.88* 0.44		-1.97 -2.71	199
<i>rac</i> -T(BMOA)P	ł	Ru(II)	8		THF	TBAPF ₆	Fc/Fc⁺	0.50		-2.20 -2.87	199
<i>rac</i> -T(BMOA)P	I	Ru(II)	$PF_{_3}$		DCM	TBAPF ₆	Fc/Fc⁺	0.99 0.30			199
<i>rac</i> -T(BMOA)P	I	Ru(II)	$PF_{_3}$		THF	TBAPF ₆	Fc/Fc⁺	0.50		-2.22 -2.66	199
S-T(4'-CH ₃ P)P	168	т			THF	TBAPF ₆	SCE	1.03		-1.06	574
T(2'-Furyl)P	169	2H			DCM	TBAP	SCE	0.80		-0.98 -1.39	498
T(2'-Furyl)P	I	(II) Mg(II)			DCM	TBAP	SCE	0.68*		-1.40	78
T(2'-Furyl)P	I	Sn(IV)	HO	HO	DCM	TBAP	SCE			-0.45 -0.86	315
T(2'-NH ₂ P)P	170	2H			DMF	TBAP	Ag/AgCI			-1.09 -1.45	481
T(2'-NH ₂ P)P	I	Co(II)			H ₂ O	NaOH	SCE		-0.70 -0.70		478
T(2'-NH ₂ P)P	I	Fe(II)			DMF	TBAP	Ag/AgCI		-0.24, -1.06		481
T(2'-NO ₂ P)P	171	2H			DCM	$TBABF_4$	Ag/AgCI		80.1 -	-0.91* -1.28*	192
T(2'-NO ₂ P)P	I	Fe(III)			DCM	$TBABF_4$	Ag/AgCI		-0.21* -0.57*	-1.03* -1.17*	192
Т(2'-Рv)Р	172	(III) Mn(III)	ū		DCM	TBAPF	SCE		-0.19		2

			Axial I	iaand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal		57	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
Т(2'-Ру)Р	172	(III)	ū		DCM	TBAPF ₆	Fc/Fc ⁺		-0.62		511
T(2'-Thienyl-5'-A)P	173	Zn(II)			DCM	$TBABF_4$	Fc/Fc⁺	0.66 0.49		-1.68 -2.03*	130
T(2'-Thienyl-5'-Br)P	174	Zn(II)			DCM	$TBABF_4$	Fc/Fc⁺	0.52 0.61		-1.66* -1.94*	130
T(2'-Thienyl-5'-TA)P	175	Zn(II)			DCM	$TBABF_4$	Fc/Fc⁺	0.69 0.49		-1.70* -2.18*	130
T(2'-Thienyl)P	176	2H			DCM	TBAPF ₆	Ag/AgCI	1.13 0.89		-1.09 -1.42	322
T(2'-Thienyl)P	I	Cu(II)			DCM	TBAPF ₆	Ag/AgCI	1.35 0.99		-1.19 -1.58	322
T(2'-Thienyl)P	I	(II) Mg(II)			DCM	TBAP	SCE	0.98 0.78		-1.42	78
T(2'-Thienyl)P	I	Sn(IV)	HO	HO	DCM	TBAP	SCE			-0.56 -0.96	315
T(2'-Thienyl)P	I	Zn(II)			DCM	$TBABF_4$	Fc/Fc ⁺	0.63 0.43		-1.71 -2.05	130
T(2'-Thienyl)P	I	Zn(II)			DCM	TBAPF ₆	Ag/AgCI	1.09 0.89		-1.23 -1.43	322
T(2',4'-OCH ₃ P)P	177	Ni(II)			DCM	TBAP	Ag/AgCI	1.13 0.91		-1.38	297
T(2',4',6'-CF ₃ P)P	178	Co(II)			<i>n</i> -BuCN	TBAP	SCE		-0.75	-1.81	266
T(2',4',6'-OCH ₃ P)P	179	Ni(II)			DCM	TBAP	Ag/AgCI	1.22 0.85		-1.49	297
T(2',4',6'-OCH ₃ P)P	I	Pt(II)			DMF	TBAP	Fc/Fc ⁺	0.67		-1.94	483
T(2',5'-OCH ₃ P)P	180	Ni(II)			DCM	TBAP	Ag/AgCI	1.20 1.00		-1.33	297
T(2',6'-0(CH ₃) ₃ CO ₃ E	(P)P 181	Pt(II)			DMF	TBAP	Fc/Fc⁺	0.70		-1.91	483

			Axial Ligand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal		Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(2',6'-OCH ₃ P)P	182	Pt(II)		DMF	TBAP	Fc/Fc⁺	0.70		-1.91	483
T(2',6'-OCH ₃ P)P	183	Ru(II)	See Fig. See Fig.	DCM	TBAPF ₆	SCE	0.92 0.28			206
T(3,5-OCH ₂ CO ₂ EtP)F	р 184	Pt(II)		DMF	TBAP	Fc/Fc⁺	0.86*		-1.66	483
T(3,5-OCH ₃ P)P	185	Pt(II)		DMF	TBAP	Fc/Fc⁺	0.86*		-1.66	483
T(3'-CIP)P	186	Fe(II)	ON	THF	TBAP	SCE			-1.33 -2.15	583
T(3'-NH ₂ P)P	187	2H		DMF	TBAP	Ag/AgCI			-0.72 -1.04 -1.50	481
T(3'-NH ₂ P)P	ł	Co(II)		DMF	TBAP	Ag/AgCI	1.09*	-0.74		115
T(3'-NH ₂ P)P	ł	Co(II)		H_2O	NaClO₄	Ag/AgCI		-0.84		115
T(3'-NH ₂ P)P	ł	Fe(II)		DMF	TBAP	Ag/AgCI		-0.24, -1.06		481
Т(3'-РР)Р	188	2H		DCM	TBAPF ₆	SCE	1.08	- 1./4	-0.80	11
Т(3'-Ру)Р	189	2H		H_2O	КОН	Ag/AgCI		-1.00	-0.54 -0.71	462
Т(3'-Ру)Р	ł	Co(II)		H_2O	КОН	Ag/AgCI		0.21 -0.98	-0.53 -0.73	462
Т(3'-Ру)Р	ł	Cu(II)		H_2O	КОН	Ag/AgCI		-0.97	-0.44 -0.70	462
Т(3'-Ру)Р	ł	(III)uM	G	DMF	TBAP	Fc/Fc⁺		-0.54		N
Т(3'-Ру)Р	I	(III)uM	CI	DMF	TBAP	SCE		-0.07		0
Т(3'-Ру)Р	I	Zn(II)		H ₂ O	КОН	Ag/AgCI		-0.99	-0.41 -0.72	462

Ring	Structure	Metal	Axial Ligand L1 L2	Solvent	Salt	RE	Porphyrin Ox 3 2 1	Metal / Other	Porphyrin Red 1 2 3	Ref.
T(3'-Thienyl)P	190	2H		DCM	TBAPF ₆	Ag/AgCI	1.21 0.95		-1.23 -1.53	322
T(3'-Thienyl)P	ł	(II)		DCM	TBAPF ₆	Ag/AgCI	1.09 0.81		-1.39 -1.70	322
T(3'-Thineyl)P	ł	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.30 0.92		-1.35 -1.75	322
T(3',4'-OCH ₃ P)P	191	Co(II)		H ₂ O/EtOH	NaCI (0.5M)	Ag/AgCI	0.42	0.13		468
T(3',4'-OCH ₃ P)P	ł	Ni(II)		DCM	TBAP	Ag/AgCI	1.08 0.98		-1.30	297
T(3',4',5'-OCH ₃ P)P	192	Ni(II)		DCM	TBAP	Ag/AgCI	1.05 1.05		-1.26	297
T(3',4',5'-OCH ₃ P)P	ł	Pt(II)		DMF	TBAP	Fc/Fc⁺			-1.68	483
T(3',4',5'-OCH ₃ P)P	193	Ru(II)	See Fig.	DCM	NR	Fc/Fc⁺	0.81 0.25			203
T(3',5'-CF ₃ P)P	194	2H		DCM	TBAPF ₆	Fc/Fc⁺	1.08 0.92		-1.42 -1.75	443
T(3',5'-D-tBuHP)P	195	2H		DCB	TBAP	Fc/Fc⁺	0.43* 0.31*		-1.82 -2.19	353
T(3',5'-D-tBuP)P	196	2H		DCM	$P(Ph)_4BF_4$	SCE	1.07 0.95		-1.05 -1.29	121
T(3',5'-D-tBuP)P	196	2H		DCM	TBAP	SCE	0.95		-1.22 -1.55	38
T(3',5'-D-tBuP)P	196	2H		DCM	TBAP (0.5M)	Ag/AgNO ₃			-1.46 -1.87	215 (DDV)
T(3',5'-D-tBuP)P	196	2H		DCM	TBAPF ₆	SCE	0.86		-1.28	2
T(3',5'-D-tBuP)P	196	2H		DCM	TBAPF ₆	Fc/Fc⁺	0.78 0.48		-1.69 -2.02	26
T(3',5'-D-tBuP)P	196	2H		DCM	TBAPF ₆	Fc/Fc⁺	0.47		-1.76	406

			Avial License				Dornhvvrin Ov		Pornhyrin Pad	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(3',5'-D-tBuP)P	196	2H		PhCN	TBAP	SCE	1.25 0.99		-1.19 -1.56	38
T(3',5'-D-tBuP)P	196	2H		Py	TBAP	SCE			-1.13 -1.50	38
T(3',5'-D-tBuP)P	I	Ag(II)		DCM	TBAP	SCE	1.58	0.58		22
T(3',5'-D-tBuP)P	I	Ag(II)		Py	TBAP	SCE		0.64 -0.94	-1.77*	22
T(3',5'-D-tBuP)P	I	(II)nY		PhCN	TBAP	SCE			-1.09 -1.81	571
T(3',5'-D-tBuP)P	I	(III)nK		CH ₃ CN	TBAPF ₆	SCE		-0.63	-1.02	7
T(3',5'-D-tBuP)P	I	(III)nK		DCM	TBAP	SCE	1.59	-0.64	-1.15	231
T(3',5'-D-tBuP)P	I	(III)nK		DCM	TBAP	SCE		-0.64		571
T(3',5'-D-tBuP)P	I	(III)nK		DCM	TBAPF ₆	SCE		-0.70	-1.23	7
T(3',5'-D-tBuP)P	I	(III)nK		DCM	TBAPF	SCE		-0.68	-1.23	131
T(3',5'-D-tBuP)P	I	(III)nK		DMF	(N. TBAP	SCE	1.06*	-0.49	-0.99 -1.74	231
T(3',5'-D-tBuP)P	I	(III)nK		DMSO	TBAP	SCE		-0.54*	-1.24* -1.68*	231
T(3',5'-D-tBuP)P	I	(III)nK		PhCN	TBAP	SCE		-0.56	-1.09 -1.81	29
T(3',5'-D-tBuP)P	I	(III)		PhCN	TBAP	SCE	1.66	-0.56	-1.09 -1.81	231
T(3',5'-D-tBuP)P	I	Au(III)		Py	TBAP	SCE		-0.52	-1.08 -1.76	231
T(3',5'-D-tBuP)P	I	Au(III)		THF	TBAP (0.4M)) SCE		-0.40	-1.10 -1.77	231

							Pornhvrin Ov		Dornhvrin Rad	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE .	3 2 1	Other	1 2 3	Ref.
T(3',5'-D-tBuP)P	:	Co(II)		PhCN	TBAP	SCE	1.35 1.13	0.64* -0.04*	-0.87	9
T(3',5'-D-tBuP)P	I	Co(III)	ū	PhCN	TBAP	SCE	1.27 0.90	0.64* -0.26*	-0.87	9
T(3',5'-D-tBuP)P	I	Cu(II)		DCM	TBAP	SCE	1.23 0.94		-1.36 -1.88*	28
T(3',5'-D-tBuP)P	I	Cu(II)		DCM	TBAP	SCE	1.28* 0.92		-1.36 -1.92*	38
T(3',5'-D-tBuP)P	I	Cu(II)		PhCN	TBAP	SCE			-1.28 -1.75	29
T(3',5'-D-tBuP)P	I	Cu(II)		PhCN	TBAP	SCE	1.26 0.96		-1.28 -1.75	38
T(3',5'-D-tBuP)P	I	Cu(II)		Py	TBAP	SCE			-1.25 -1.69	38
T(3',5'-D-tBuP)P	197	(III)ul	See Fig.	DCM	TBAP	Ag/AgNO ₃	0.94*		-1.44 -2.01	234
T(3',5'-D-tBuP)P	I	Ni(II)		DCM	TBAP	SCE	0.93 0.93		-1.31	38
T(3',5'-D-tBuP)P	I	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.80 0.46		-1.85	406
T(3',5'-D-tBuP)P	I	Ni(II)		PhCN	NR	Fc/Fc⁺	0.61		-1.73	517
T(3',5'-D-tBuP)P	I	Ni(II)		PhCN	TBAP	SCE	1.08 1.08		-1.26 -1.81	38
T(3',5'-D-tBuP)P	I	Ni(II)		Py	TBAP	SCE			-1.22 -1.75	38
T(3',5'-D-tBuP)P	I	Pd(II)		DCM	TBAP	SCE	1.52* 1.05		-1.32 -1.95*	38
T(3',5'-D-tBuP)P	I	Pd(II)		PhCN	TBAP	SCE	1.46 1.12		-1.25 -1.75	38
T(3'.5'-D-tBuP)P	1	(II)Pd		Pv	TBAP	SCE			-1.22 -1.68	38

			Axial	Ligand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal		2	Solvent	Salt	BR	3 2 1	Other	1 2 3	Ref.
T(3',5'-D-tBuP)P	198	Rh(III)	See Fig.		DCM	TBAP (0.5M)	Ag/AgNO ₃			2.00	215 (1000)
T(3',5'-D-tBuP)P	I	Sn(IV)	ö	ū	DCM	TBAP	SCE	1.36	Υ. Υ	0.83 -1.34*	25 25
T(3',5'-D-tBuP)P	I	Sn(IV)	ö	ū	DCM (-75°C)	TBAP	SCE	1.36	Υ. Υ	0.75 -1.21	25
T(3',5'-D-tBuP)P	ł	Sn(IV)	HO	HO	DCM	TBAP	SCE	1.36	Ţ	0.99 -1.42	25
T(3',5'-D-tBuP)P	I	Zn(II)			DCB	TBAP	Ag/AgNO ₃	0.82 0.50			408
T(3',5'-D-tBuP)P	ı	Zn(II)			DCB	TBAPF ₆	Ag/AgNO ₃	0.79			334
T(3',5'-D-tBuP)P	ł	Zn(II)			DCB/CH ₃ CN	TBAP	SCE	1.23 0.84	ì	1.42 -1.78	76
T(3',5'-D-tBuP)P	I	Zn(II)			DCM	P(Ph)4BF4	SCE	1.04 0.71	'n	1.35 -1.58	121
T(3',5'-D-tBuP)P	I	Zn(II)			DCM	TBABF₄	Ag/Ag⁺	0.83 0.45			509
T(3',5'-D-tBuP)P	I	Zn(II)			DCM	TBAP	SCE	1.06 0.72	'n	1.42	38
T(3',5'-D-tBuP)P	I	Zn(II)			DCM	TBAP	SCE	1.03* 0.70*	'n	1.40*	447
T(3',5'-D-tBuP)P	I	Zn(II)			DCM	TBAPF ₆	SCE	1.09 0.68			7
T(3',5'-D-tBuP)P	I	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.62 0.30	'n	1.89	26
T(3',5'-D-tBuP)P	I	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.59 0.31	'n	1.87 -2.26	128
T(3',5'-D-tBuP)P	ı	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.67 0.35	'n	1.85 -2.25	153
T(3',5'-D-tBuP)P	I	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.64 0.33	ì	1.91	406

			Axial Ligand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(3',5'-D-tBuP)P	I	Zn(II)		DCM	TBAPF ₆ (0.45M)	SCE	0.74			131
T(3',5'-D-tBuP)P	ł	Zn(II)		PhCN	(WICI) TBAP	SCE	1.09 0.77		-1.34 -1.73	38
T(3',5'-D-tBuP)P	ł	Zn(II)		Py	TBAP	SCE			-1.38 -1.66*	38
T(3',5'-D-tBuP)P	ł	Zn(II)		THF	TBAP	Ag/AgNO ₃	0.54		-1.83 -2.22	408
T(3',5'-DCBuP)P	199	Pt(II)		DMF	TBAP	Fc/Fc⁺			-1.35	483
T(3',5'-DCEP)P	200	2H		DCM	TBAPF ₆	Ag/AgCI	1.48 1.20		-1.06 -1.36	324
T(3',5'-DCEP)P	ı	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.47 1.17		-1.20 -1.58	324
T(3',5'-DCEP)P	ı	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.31 1.00		-1.21 -1.58	324
T(3',5'-DFP)P	201	2H		DCM	TBAPF ₆	Ag/AgCI	1.47 1.24		-1.07 -1.39	324
T(3',5'-DFP)P	I	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.42 1.20		-1.19 -1.54	324
T(3',5'-DFP)P	I	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.25 1.01		-1.22 -1.63	324
T(3',5'-DMP)P	202	2H		DCM	TBABF₄	Fc/Fc⁺	1.32 1.00		-0.99 -1.19	282
T(3',5'-DMP)P	202	2H		DCM	TBAPF ₆	Ag/AgCI	1.32 1.01		-1.23 -1.52	324
T(3',5'-DMP)P	I	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.31 0.98		-1.35 -1.64	324
T(3',5'-DMP)P	ı	Zn(II)		DCM	TBABF₄	Fc/Fc⁺	1.12 0.82		-1.06 -1.31	282
T(3',5'-DMP)P	I	Zn(II)		DCM	TBAPF	Ag/AgCI	1.09 0.84		-1.36 -1.71	324

			Axial Ligand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(3',5'-DNP)P	203	2H		DCM	TBAPF ₆	Ag/AgCI	1.44		-0.81* -1.46*	324
T(3',5'-DNP)P	I	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.54 1.47		-0.82* -1.24*	324
T(3',5'-DNP)P	I	(II)		DCM	TBAPF ₆	Ag/AgCI	1.38 1.21		-0.86* -1.30*	324
T(4'-AcSPPA)P	204	(II)		DCM/EtOH	TBAPF ₆	Ag/Ag⁺	0.71 0.49			436
T(4'-BrP)P	205	Ru(II)	See Fig.	CH ₃ CN	NR	Fc/Fc⁺	0.96 0.30		-1.89*	203
T(4'-CF ₃ P)P	206	Fe(II)	ON	THF	TBAP	SCE			-1.32 -2.08	583
T(4'-CF ₃ PA)P	207	(II)		THF (-40°C)	TBAPF ₆	Ag/AgCI	1.08		-0.73 -1.12	125
T(4'-CH ₃ P)P	208	2H		DCM	TBAP	SCE	1.37 1.13		-1.03 -1.35	233
T(4'-CH ₃ P)P	208	2H		DCM	TBAP	SCE	1.30 1.03		-1.23 -1.55	306
T(4'-CH ₃ P)P	208	2H		DCM	TBAP	SCE	1.03		-1.32 -1.55	498
T(4'-CH ₃ P)P	I	AI(III)	.HO	DCM	TBAP	SCE	1.62 1.30 1.07		-1.01 -1.40	233
T(4'-CH ₃ P)P	I	Bi(III)	CF ₃ SO ₃ -	DCM	TBAP	SCE	1.49 1.10			54
T(4'-CH ₃ P)P	I	Bi(III)	NO ³⁻	DCM	TBAP	SCE	1.51 1.05			54
T(4'-CH ₃ P)P	I	Bi(III)	NO ³⁻	PhCN	TBAP	SCE	1.42 1.11			54
T(4'-CH ₃ P)P	I	Cu(II)		DCM	TBAP	SCE	1.48 1.19		-1.08 -1.50	233
T(4'-CH ₃ P)P	ł	Fe(II)	ON	THF	TBAP	SCE			-1.44 -2.27	583

Ring	Structure	Metal	Axial Ligand L1 L2	Solvent	Salt	RE	Porphyrin Ox 3 2 1	Metal / Other	Porphyrin Red 1 2 3	Ref.
т(4'-СН ₃ Р)Р	209	ln(III)	See Fig.	DCM	TBAPF ₆	SCE			-1.36 -1.82*	235
T(4'-CH ₃ P)P	210	lıı(III)	See Fig.	DCM	TBAPF ₆	SCE			-1.28 -1.72*	235
T(4'-CH ₃ P)P	I	Mn(III)	B,	NR	NR	Ag/AgCI	-	-0.23		464
T(4'-CH ₃ P)P	ł	Mn(III)	Br'	NR	NR	Ag/AgCI	-	-0.23		504
T(4'-CH ₃ P)P	ł	Mn(III)	CH ₃ CO ₂ ⁻	NR	NR	Ag/AgCI		-0.28		464
T(4'-CH ₃ P)P	ł	Mn(III)	CH ₃ CO ₂ ⁻	NR	NR	Ag/AgCI		-0.28		504
T(4'-CH ₃ P)P	ł	Mn(III)	ū	NR	NR	Ag/AgCI		-0.26		464
T(4'-CH ₃ P)P	ł	Mn(III)	ū	NR	NR	Ag/AgCI		-0.26		504
T(4'-CH ₃ P)P	ł	Mn(III)	ĹĹ	NR	NR	Ag/AgCI	-	-0.32		464
T(4'-CH ₃ P)P	ł	Mn(III)	ĹĹ	NR	NR	Ag/AgCI	-	-0.32		504
T(4'-CH ₃ P)P	ł	Mn(III)	<u></u>	NR	NR	Ag/AgCI		0.07		464
T(4'-CH ₃ P)P	ł	Mn(III)	<u></u>	NR	NR	Ag/AgCI		0.07		504
T(4'-CH ₃ P)P	ł	Mn(III)	HO	NR	NR	Ag/AgCI		-0.26		464
T(4'-CH ₃ P)P	ł	Mn(III)	HO	NR	NR	Ag/AgCI		-0.26		504
T(4'-CH ₃ P)P	ł	Mn(V)	Z ³⁻	DCM	TBAP	Ag/AgCI	1.31 1.09		-1.21	474
T(4'-CH ₃ P)P	ı	Pt(IV)	Br' Br	DCM	TBAPF	Fc/Fc⁺	0.85	-0.80	-1.87	229

			Avial	puepi				Pornhvrin Ox	Matal /	Pornhvrin Red	
Ring	Structure	Metal	[] []	L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(4'-CH ₃ P)P	I	Rh(III)	ū	Py	DCM	TBAPF ₆	Ag/AgCI	0.96			217
Т(4'-СН ₃ Р)Р	I	Ru(II)	CO	Py	DCM	TBAPF ₆	SCE	1.28 0.73		-1.62	197
T(4'-CH ₃ P)P	I	Ru(II)	ON	H ₂ O	DCM	TBAPF ₆	Fc/Fc⁺	1.53 1.10		-0.82*	587
T(4'-CH ₃ P)P	211	Ru(II)	0 N	See Fig.	DCM	TBAPF ₆	Fc/Fc⁺	0.72	-0.88* -1.22		208
T(4'-CH ₃ P)P	I	Ru(II)	SN	ū	DCM	TBAPF ₆	[⁺] gA/8A	1.41 0.94		-0.66	576
Т(4'-СН ₃ Р)Р	212	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆	SCE	1.20* 0.51			206
Т(4'-СН ₃ Р)Р	I	Ru(III)	ON	CH ₃ O ⁻	DCM	TBAPF ₆	Fc/Fc⁺	1.52 1.22		-0.89*	587
Т(4'-СН ₃ Р)Р	I	Ru(III)	ON	Ċ	DCM	TBAPF ₆	Ag/Ag⁺	1.49 1.02		-0.79	576
Т(4'-СН ₃ Р)Р	I	Ru(III)	ON	Ċ	DCM	TBAPF ₆	Fc/Fc ⁺	1.49 1.02		-0.79*	587
Т(4'-СН ₃ Р)Р	I	Ru(III)	ON	HCO ₂	DCM	TBAPF ₆	Fc/Fc ⁺	1.52 1.15		-0.79*	587
Т(4'-СН ₃ Р)Р	I	Ru(III)	ON	NCS	DCM	TBAPF ₆	Fc/Fc ⁺	1.52 1.05		-0.86*	587
Т(4'-СН ₃ Р)Р	I	Ru(III)	ON	HO	DCM	TBAPF ₆	Fc/Fc ⁺	1.53 1.23		-0.88*	587
Т(4'-СН ₃ Р)Р	I	Ru(III)	ON	ONO-	DCM	TBAPF ₆	Fc/Fc ⁺	1.33 1.15		-0.99*	587
Т(4'-СН ₃ Р)Р	I	Ru(III)	ON	-ONO	DCM	TBAPF ₆	Fc/Fc ⁺	1.53 1.09		-0.85*	587
Т(4'-СН ₃ Р)Р	I	Ru(III)	0N N	SH	DCM	TBAPF ₆	Fc/Fc⁺	1.54 1.24		-0.99*	587
T(4'-CH ₃ P)P	ł	Ru(VI)	02-	0 ^{2;}	DCM	TBAPF ₆	Fc/Fc⁺	0.70	-0.94*	-0.49 -1.58	440

			Axial L	-igand				Porphyrin Ox	Metal /	Porphyrin Re	٦
Ring	Structure	Metal	1	5	Solvent	Salt	RE	3 7	Uther	- 2	Ref.
Т(4'-СН ₃ Р)Р	I	Sn(II)			THF	$TEAB(C_6F_5)_4$	Fc/Fc⁺			-1.64 -2.06	236
T(4'-CH ₃ P)P	I	Sn(IV)	HO	.HO	DCM	TBAP	SCE	1.39		-0.96 -1.36	96
T(4'-CH ₃ P)P	ł	Sn(IV)	HO	.HO	DCM	TBAP	SCE	1.39*		-0.88 -1.02	56
T(4'-CH ₃ P)P	I	Sn(IV)	HO	.HO	DCM	TBAP	SCE			-0.96 -1.36	315
T(4'-CH ₃ P)P	ł	Sn(IV)	Py	Py	Py	$TEAB(C_6F_5)_4$	Fc/Fc⁺			-0.76 -1.20	236
T(4'-CH ₃ P)P	213	Sn(IV)	See Fig.	See Fig.	CH ₃ CN	TBAP	SCE	0.92			238
T(4'-CH ₃ P)P	214	Sn(IV)	See Fig.	See Fig.	CH ³ CN	TBAP	SCE	0.92			238
T(4'-CH ₃ P)P	215	Sn(IV)	See Fig.	See Fig.	CH ₃ CN	TBAP	SCE	1.12			238
T(4'-CH ₃ P)P	216	Sn(IV)	See Fig.	See Fig.	CH ₃ CN	TBAP	SCE	1.35			238
T(4'-CH ₃ P)P	217	Sn(IV)	See Fig.	See Fig.	CH ³ CN	TBAP	SCE	1.33			238
T(4'-CH ₃ P)P	213	Sn(IV)	See Fig.	See Fig.	DCM	TBAP	SCE			-0.99 -1.49	238
T(4'-CH ₃ P)P	214	Sn(IV)	See Fig.	See Fig.	DCM	TBAP	SCE			-1.00 -1.33	238
T(4'-CH ₃ P)P	215	Sn(IV)	See Fig.	See Fig.	DCM	TBAP	SCE			-0.91 -1.37	238
T(4'-CH ₃ P)P	216	Sn(IV)	See Fig.	See Fig.	DCM	TBAP	SCE			-0.91 -1.04 -1.	41 238
T(4'-CH ₃ P)P	217	Sn(IV)	See Fig.	See Fig.	DCM	TBAP	SCE			-0.84 -1.31 -1.	40 238
T(4'-CH ₃ P)P	218	Ti(IV)	See Fig.		DCM	TBAP	SCE	1.19* 0.35*		-1.18 -1.59	58

			Avial Liciad					Natal /	Pornhvrin Red	
Ring	Structure	Metal		Solvent	Salt	- I BR	3 2 1	Other	1 2 3	Ref.
T(4'-CH ₃ P)P	219	Ti(IV)	See Fig.	DCM	TBAP	SCE	1.04*		-1.20 -1.59	58
T(4'-CH ₃ P)P	ł	Zn(II)		DCM	TBAP	SCE	1.21 0.90		-1.37 -1.54	233
T(4'-CH ₃ P)P	ł	Zn(II)		DCM	TBAP	SCE	1.09 0.80		-1.25 -1.67	306
T(4'-CH ₃ P)P	ł	Zn(II)		DCM	TBAP	SCE	0.74		-1.22	494
T(4'-CH ₃ P)P	ł	Zn(II)		DMF	TBAPF ₆	SCE	0.87		-1.31	298
T(4'-CH ₃ P)P	I	Zn(II)		PhCN	TBAPF ₆	Ag/AgNO ₃	0.75 0.35			445
T(4'-CH ₃ PA)P	220	Zn(II)		THF (-40°C)	TBAPF ₆	Ag/AgCI	0.99		-0.89 -1.33	125
T(4'-CIP)P	221	Co(II)		CHCI ₃	H_2SO_4 (0.5M)	Ag/AgCI			-0.19	104
T(4'-CIP)P	222	Fe(II)	NO	THF	TBAP	SCE			-1.35 -2.18	583
T(4'-CIP)P	I	Mn(III)	ū	NR	NR	RN		-0.18		477
T(4'-CIP)P	223	Ru(II)	See Fig.	DCM	NR	Fc/Fc⁺	0.96 0.32		-1.88*	203
T(4'-CIPA)P	224	Zn(II)		THF (-40°C)	TBAPF ₆	Ag/AgCI	1.05		-0.79 -1.20	125
T(4'-CNP)P	225	2H		DCM	TBAPF ₆	Fc/Fc⁺	1.02 0.78		-1.51 -1.83	229
T(4'-CNP)P	I	Co(II)		DME	TBAPF ₆	Ag/AgCI		0.63 -0.62		214
T(4'-CNP)P	I	Cu(II)		DCM	TBAPF ₆	CuTPP ^{0/+}	0.11			579
T(4'-CNP)P	ı	Pt(II)		DCM	TBAPF	Fc/Fc⁺	0.91		-1.64 -2.04	229

			Axial	ligand				Porphvrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal	[1]	L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(4'-CNP)P	I	Pt(IV)	Ъ,	Br	CH ₃ CN	TBAPF ₆	Fc/Fc ⁺	1.14	-0.50	-2.04	229
T(4'-CNP)P	ł	Sb(V)	HO	HO	CH ₃ CN	TEABF₄	SCE	1.41		-0.52 -0.95	243
T(4'-CNP)P	ł	(II)			DCM	TBABF₄	^gA/Ag⁺	0.98 0.68			509
T(4'-CNP)P	ł	(II)			DCM	TBAP	SCE	0.89		-1.16	494
T(4'-CO ₂ CH ₃ P)P	226	2H			PhCN	TBAPF ₆	Ag/AgNO ₃	0.73 0.50		-1.46	337
T(4'-CO ₂ CH ₃ P)P	ł	Co(II)			PhCN	TBAPF ₆	Ag/AgNO3	1.14	0.86 -1.23		337
T(4'-CO ₂ CH ₃ P)P	:	Cu(II)			PhCN	TBAPF ₆	Ag/AgNO ₃	0.66		-1.64	337
T(4'-CO ₂ CH ₃ P)P	ł	(III)nM	ū		DCM	TBABF₄	NHE		-0.16*		173
T(4'-CO ₂ CH ₃ P)P	ł	Pt(II)			DMF	TBAP	Fc/Fc ⁺			-1.53	483
T(4'-CO ₂ CH ₃ P)P	ł	(II)			PhCN	TBAPF ₆	Ag/AgNO3	0.35		-1.35 -1.85	337
T(4'-CO ₂ EtP)P	227	2H			PhCN	TBAPF ₆	Ag/AgNO3	0.73 0.52		-1.50	337
T(4'-CO ₂ EtP)P	ł	Cu(II)			PhCN	TBAPF ₆	Ag/AgNO3	0.70		-1.60	337
T(4'-CO ₂ EtP)P	ł	Ni(II)			PhCN	TBAPF ₆	Ag/AgNO3	0.79		-1.62	337
T(4'-CO ₂ EtP)P	ł	(II)			PhCN	TBAPF ₆	Ag/AgNO3	0.87 0.50		-1.69	337
T(4'-CO ₂ HP)P	228	2H			DCM	TBAPF ₆	SCE	1.10		-0.74	11
T(4'-CO ₂ HP)P	ł	Co(II)			DMF	TBAP	SCE		-0.75		384

			Axial I	iaand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring Sti	ructure	Metal		L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(4'-CO ₂ HP)P	1	Co(II)			DMF	TBAP	SCE		-0.75		384
T(4'-CO ₂ HP)P	ı	Co(III)	ū		DMSO	TBAPF ₆	Fc/Fc⁺		-0.56		506
T(4'-CO ₂ HP)P	ı	(II)sO	8	THF	DMF	TBAPF ₆	SCE		0.66		360
T(4'-CO ₂ HP)P	ı	(II)sO	DMSO	1-(CH ₃)	DMF	TBAPF ₆	SCE		0.30		360
T(4'-CO ₂ HP)P	229	(II)	See Fig.	See Fig.	DMF	TBAPF ₆	SCE		0.36		360
T(4'-CO ₂ HP)P- TiO ₂ film	230	Co(III)	ū		DMSO	TBAPF ₆	Fc/Fc⁺		-0.78		506
T(4'-CPPyr)P-Film	231	(II)nM			CH ₃ CN	TBAOH	Ag/AgCI	0.95	0.60		177
T(4'-DecyloxyP)P	232	Ni(II)			DCM	TBAPF ₆	Ag/AgCI	1.27 0.95			550
T(4'-DEtPP)P	233	2H			CHCI ₃	TBAP (0.2M)	SCE	1.18		-1.09	318
T(4'-DEtPP)P	233	2H			DCM	TBAP	SCE	1.35 1.18		-1.08 -1.38	318
T(4'-DEtPP)P	ł	(II)			CDCI ₃	TBAP (0.2M)	SCE	1.15 0.86		-1.35*	318
T(4'-DEtPP)P	ł	(II)			DCM	TBAP	SCE	1.20 0.90		-1.23 -1.58*	318
T(4'-DEtPP)P	ł	(II)	Ph ₃ PO		CDCI ₃	TBAP (0.2M)	SCE	1.25 0.89		-1.45	318
T(4'-DMPAP)P	234	(II)			DCM	TBAP	Ag/AgCI	0.96, 0.87* 0.66* 1 35		-1.36 -1.81*	295
T(4'-DPAP)P	235	2H			DCE	TBAPF ₆	SCE	1.28* 0.75		-1.25 -1.63*	97
T(4'-DPAP)P	I	Pd(II)			DCE	TBAPF ₆	SCE	1.35* 1.05*		-0.97	97

							Dorohyrin Ov		Dornhvirin Dod	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(4'-DPAP)P-Film	236	2H		DCE	TBAPF ₆	SCE	0.95 0.75			67
T(4'-DPAP)P-Film	I	Pd(II)		DCE	TBAPF ₆	SCE	0.95 0.75			67
Т(4'-FP)Р	237	Fe(II)	ON	THF	TBAP	SCE			-1.34 -2.19	583
Т(4'-FP)Р	238	Ru(II)	See Fig.	DCM	NR	Fc/Fc⁺	0.94 0.26			203
Т(4'-FP)Р	239	Ru(II)	See Fig. See Fig.	PhCN	TBAPF ₆	Fc/Fc⁺	1.56* 0.33	0.86	-2.02*	284
Т(4'-FРА)Р	240	Zn(II)		THF (-40°C)	$TBAPF_6$	Ag/AgCI	1.03		-0.82 -1.25	125
Т(4'-IР)Р	241	Co(II)		CHCI ₃	H ₂ SO ₄ (0.5M)	Ag/AgCI			-0.17	104
T(4'-NH ₂ P)P	242	2H		DMF	TBAP	Ag/AgCI			-1.12 -1.55	481
T(4'-NH ₂ P)P	I	Co(II)		DMF	H_2SO_4 (0.5M)	Ag/AgCI			0.09	104
T(4'-NH ₂ P)P	I	Fe(II)		DMF	TBAP	Ag/AgCI		-0.17, -1.02		481
T(4'-OCH2CO2EtP)P	243	Pt(II)		DMF	TBAP	Fc/Fc⁺	0.79	- 1.0G	-1.68	483
T(4'-OCH ₃ P)P	244	2H		DCM	TBAP	SCE	0.94		-1.14	494
T(4'-OCH ₃ P)P	I	Co(II)		CHCI ₃	H ₂ SO ₄ (0.5M)	Ag/AgCI			0.22	104
T(4'-OCH ₃ P)P	I	Co(II)		DMF	TEAP	SCE			-0.79 -1.93	584
T(4'-OCH ₃ P)P	I	Co(III)	<i>n</i> -Bu ⁻	DMF	TEAP	SCE	0.85		-1.36	584
T(4'-OCH ₃ P)P	245	Co(III)	See Fia.	DMF	TEAP	SCE	0.80		-1.35	584

Ring	Structure	Metal	Axial L1	Ligand L2	Solvent	Salt	RE	Porphyrin Ox 3 2 1	Metal / Other	Porphyrin Red 1 2 3	Ref.
T(4'-OCH ₃ P)P	I	Cu(II)			DCM	TBAPF ₆	CuTPP⁰/⁺	-0.17			579
T(4'-OCH ₃ P)P	ł	Fe(II)			DMF	TEAP	SCE			-1.07 -1.67	584
T(4'-OCH ₃ P)P	I	Fe(II)	Q		THF	TBAP	SCE			-1.45 -2.32	583
T(4'-OCH ₃ P)P	I	Fe(III)	1-(CH ₃)	1-(CH ₃)	DMF	TBAP	SCE		-0.14		589
T(4'-OCH ₃ P)P	ł	Fe(III)	ū		DMF	TBAP	SCE		-0.08		589
T(4'-OCH ₃ P)P	I	Fe(III)	<i>n</i> -Bu		DMF	TEAP	SCE	0.30		-0.82	584
T(4'-OCH ₃ P)P	246	Fe(III)	See Fig.		DMF	TEAP	SCE	0.20		-0.84	584
T(4'-OCH ₃ P)P	247	Fe(III)	See Fig.		DMF	TEAP	SCE			-0.85	584
T(4'-OCH ₃ P)P	248	Fe(III)	See Fig.		DMF	TEAP	SCE	0.20		-0.83	584
T(4'-OCH ₃ P)P	249	Fe(III)	See Fig.		DMF	TEAP	SCE	0.21		-0.78	584
T(4'-OCH ₃ P)P	I	Ni(II)			DCM	TBAP	Ag/AgCI	1.12 0.97		-1.30	297
T(4'-OCH ₃ P)P	I	Pt(II)			DMF	TBAP	Fc/Fc⁺	0.79		-1.68	483
T(4'-OCH ₃ P)P	I	Pt(IV)	Ŗ	Br	DCM	TBAPF ₆	Fc/Fc⁺	0.76	-0.81	-1.86	229
T(4'-OCH ₃ P)P	250	Ru(II)	See Fig.		CH ₃ CN	NR	Fc/Fc⁺	1.03 0.80 0.20			203
T(4'-OCH ₃ P)P	I	Sb(V)	HO	HO	CH ₃ CN	$TEABF_4$	SCE	1.40		-0.51 -0.99	243
T(4'-OCH ₃ P)P	251	Sb(V)	-HO	See Fig.	CH ₃ CN	TEABF₄	SCE	1.64	0.70	-0.54 -0.90	243

Ring	Structure	Metal	Axial Ligand L1 L2	Solvent	Salt	RE	Porphyrin Ox 3 2 1	Metal / Other	Porphyrin Red 1 2 3	Ref.
T(4'-OCH ₃ P)P	:	Zn(II)		DCM	TBAP	SCE	0.72		-1.24	494
T(4'-OCH ₃ P)P	252	Ru(II)	See Fig. See Fig.	PhCN	TBAPF ₆	Fc/Fc⁺	1.30* 0.25	0.71	-2.01*	284
T(4'-OCH ₃ PA)P	253	Zn(II)		THF (-40°C)	TBAPF ₆	Ag/AgCI	0.89		-0.89 -1.32	125
T(4'-OctyloxyP)P	254	Zn(II)		DCM	$TBABF_4$	Ag/Ag⁺	0.77 0.40			509
T(4'-OHP)P	255	2H		CH ₃ CN	TBAP	Ag/AgCI	1.28 0.71 0.52			218
Т(4'-ОНР)Р	ł	Co(II)		H ₂ O	KOH (1M)	Ag/AgCI			0.08	104
T(4'-ОНР)Р-(СD-	256	2H		DMF	TBAP	Ag/AgCI	1.16		-0.55 -0.66	534
T(4'-OHP)P-CD	257	2H		DMF	TBAP	Ag/AgCI	1.19		-0.60 -0.69	534
T(4'-PnP)P	258	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.16 0.87		-1.42* -1.87*	251
T(4'-PnP)P-PBI	259	Zn(II)	See Fig.	DCM	TBAPF ₆	Ag/AgCI	1.24 0.76		-1.50 -1.90	251
Т(4'-РР)Р	260	2H		DCM	TBAPF ₆	SCE	1.13		-0.76	11
T(4'-PrSRP)P	261	Co(II)		DCM	TBAPF ₆	SCE	1.10	0.44 -0.70		81
T(4'-PrSRP)P	262	Co(II)		DCM (-60°C)	TBAPF ₆	SCE	1.29 1.09	0.79 -0.80	-1.30	81
T(4'-PrSRP)P	262	Co(II)		H ₂ O	KNO ₃	SCE	06.0	0.40 -0.79		81
T(4'-PrSRP)P	ł	Co(II)	ON	DCM	TBAPF ₆	SCE	0.94 0.86		-1.01	81
T(4'-PrSRP)P	ł	Co(II)	N	DCM (-60°C)	TBAPF ₆	SCE	1.14 0.89		-1.14 -1.41	81

			Axia	I l igand				Porphyrin Ox	Metal	L L	orphvrin Red	
Ring	Structure	Metal		L2	Solvent	Salt	RE	3 2 1	Other	- .	2 3	Ref.
T(4'-PrSRP)P	I	Co(II)	Q		H ₂ O	KNO ₃	SCE	0.83		9:O-	98	81
Т(4'-Ру)Р	263	2H			H ₂ O	КОН	Ag/AgCI			7.O-	t5 -0.71 -1.12	462
Т(4'-Ру)Р	I	(III)nY	ā		DCM	TBAPF ₆	SCE		-0.41			330
Т(4'-Ру)Р	ł	Co(II)			H ₂ O	КОН	Ag/AgCI		0.20 -1.1	-0.4	-0.80	462
Т(4'-Ру)Р	I	Cu(II)			H ₂ O	КОН	Ag/AgCI		-1.11	-0-	82.0- 81	462
Т(4'-Ру)Р	ł	Mn(V)	Š		DCM	TBAP	Ag/AgCI		1.22*	-1.(1.40	474
Т(4'-Ру)Р	I	Sn(IV)	HO	HO	DCM	TBAP	SCE			0-	52 -0.92	315
Т(4'-Ру)Р	I	Zn(II)			CH ₃ CN	TBABF₄	Fc/Fc ⁺	1.16 0.83 0.41		4	28 -1.92	551
Т(4'-Ру)Р	I	Zn(II)			H ₂ O	КОН	Ag/AgCI			-0-	1.17 -0.79 -1.17	462
T(4'-Py)P-Sc ₃ N	264	Zn(II)			CH ₃ CN	TBABF₄	Fc/Fc ⁺	0.85 0.40	-1.20 -1.6	39 -1. ^e	57 -1.91	551
T(4'-f-BuP)P	265	2H			DCM	TBAP	SCE	1.34, 1.18 0.94 1.60		4	21 -1.56	520
T(4'-f-BuP)P	I	Co(II)			CHCI ₃	H ₂ SO ₄ (0.5M)	Ag/AgCI	00		-0.0	33	104
T(4'- <i>t</i> -BuP)P	I	Co(II)			DCM	TBAPF ₆	Fc/Fc ⁺	0.79 0.53	0.28 -1.3	35		211
T(4'-t-BuP)P	I	Co(II)			PhCN	TBAPF ₆	Fc/Fc ⁺	0.95 0.67	0.00 -1.3	35		211
T(4'- <i>t</i> -BuP)P	I	Ru(II)	8	Py	DCM	TBAPF ₆	SCE	0.79		7	76	286
Т(4'- <i>t</i> -ВиР)Р	ł	Ru(II)	8	Py	DCM	TBAPF ₆	Fc/Fc⁺	1.25 0.67				261

				70000				Dornhvirin Ov	NACHOL /	Dornhvirin Dad	
Ring	Structure	Metal			Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(4'- <i>t</i> -BuP)P	I	Ru(II)	Py	Py	DCM	TBAPF ₆	Fc/Fc⁺	1.12	0.08		261
T(4'- <i>t</i> -BuP)P	266	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆	Fc/Fc⁺	1.13	0.33		261
T(Benzoyl)P	267	Mn(III)	ū		DMF/H ₂ O	NaCI	Ag/AgCI		0.06		ю
T(Benzoyl)P	267	Mn(III)	ō		DMF/H ₂ O	NaCI	NHE		0.09		т
т(втр)р	268	Zn(II)			CH ₃ CN	TBAP	SCE	0.81		-1.24	287
T(CrownP)P	269	2H			PhCN	TBAP	Fc/Fc⁺	0.26		-1.82 -2.20	354
T(CrownP)P	I	Ag(II)			PhCN	TBAP	Fc/Fc⁺		0.04 -1.45	-1.64	354
T(CrownP)P	I	Co(II)			PhCN	TBAP	Fc/Fc⁺		-0.22 -1.34		354
T(CrownP)P	ł	Cu(II)			PhCN	TBAP	Fc/Fc⁺	0.43		-1.74	354
T(CrownP)P	ł	(II) Mg(II)			PhCN	TBAP	Fc/Fc⁺	0.12		-1.92 -2.11	354
T(CrownP)P	ł	Ni(II)			PhCN	TBAP	Fc/Fc⁺	0.56		-1.69	354
T(CrownP)P	ł	V(IV)	02;		PhCN	TBAP	Fc/Fc⁺	0.56		-1.58 -1.78	354
T(CrownP)P	ł	Zn(II)			PhCN	TBAP	Fc/Fc⁺	0.25		-1.80	354
T(CrownP)P	ł	Pd(II)			PhCN	TBAP	Fc/Fc⁺	0.61		-1.68	354
T(D(4'-CIP)APA)P	270	Zn(II)			THF	TBAPF ₆	Ag/AgCI	1.12 0.90		-0.90 -1.32	106
T(DAPTTP)P	271	Zn(II)			CH _S CN	TBAP	SCE	1.20		-1.27	287

	Ctrincturo		Axial Ligan	g	1 ()	L		Other		je
RING	olluciule	Metal	L1 L2	Solvent	Salt	뷮	3 2 1		1 2 3	Төх
T(DMCP)P	272	Co(II)		DME	TBAPF ₆	Ag/AgCI		0.61 -0.70		214
T(DMOA)P	273	Ni(II)		THF	TBAPF ₆	Ag/AgNO ₃	0.61		-1.81	356
T(DPAPA)P	274	Zn(II)		THF	TBAPF ₆	Ag/AgCI	1.09 0.87		-0.94 -1.37	106
T(EDDP)P	275	2H		DMF	TBAP	Ag/Ag⁺			-1.17 -1.66	528
т(енор)р	276	2H		DMF	TBAP	Ag/Ag⁺			-1.17 -1.68	526
т(енор)р	276	2H		DMF	TBAP	Ag/Ag⁺			-1.17 -1.65	526
т(енор)р	276	2H		DMF	TBAP	^gA/Ag⁺			-1.17 -1.65	528
т(енор)р	I	Er(III)	·HO	DMF	TBAP	^gA/Ag⁺		-2.02*	-1.41 -1.61	526
T(ENCP)P	277	2H		DMF	TBAP	^gA/ag⁺			-1.56 -2.07	527
т(етоср)р	278	2H		DMF	TBAP	^gA/Ag⁺			-1.62 -2.05	527
т(етор)р	279	2H		DMF	TBAP	^gA/Ag⁺			-1.17 -1.66	526
т(етор)р	279	2H		DMF	TBAP	Ag/Ag⁺			-1.17 -1.68	528
т(етор)р	I	Ho(III)	.HO	DMF	TBAP	Ag/Ag⁺		-1.90	-0.93 -1.63	528
T(EUDP)P	280	2H		DMF	TBAP	Ag/Ag⁺			-1.55 -2.04	527
T(N-HCP)P	281	Zn(II)		DCM	TBAPF ₆	Ag/Ag⁺	0.79 0.53			372
T(NEtC)P	282	2H		DCM	TBABF₄	SCE	1.01* 0.86*		-1.19*	327

			Axial	Ligand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal	5		Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
T(NEtC)P	282	2H			DCM	TBAPF ₆	SCE	1.26* 0.83* 0.67*		-1.33*	303
T(NEtC)P	ı	Cu(II)			DCM	TBABF₄	SCE	1.25 0.88		-1.29	321
T(NEtC)P	ı	Mn(III)			DCM	TBABF₄	SCE	1.04	-0.26		326
T(NuAP)P	283	2H			DCM	TBAPF ₆	Fc/Fc⁺	0.89 0.61		-1.58 -1.96	143
T(OCH ₃ OHP)P	284	Fe(III)	ö		DMF	TBAPF ₆	Ag/AgCI		-0.54	-1.11	105
T(OHDMA)P	285	Ru(VI)	03	0 ^{2.}	DCM	TBAPF ₆	Fc/Fc⁺	0.62	-1.11	-0.62 -1.65	440
T(OHOCH ₃ P)P	286	2H			DMF	TBAPF ₆	Ag/AgCI	0.84*		-1.12*	105
T(OHOCH ₃ P)P	ı	Co(II)			DMF	TBAPF ₆	Ag/AgCI		-0.15 -0.82		105
T(OHOCH ₃ P)P	I	Cu(II)			DMF	TBAPF ₆	Ag/AgCI			-1.20	105
T(OHOCH ₃ P)P	I	Ni(II)			DMF	TBAPF ₆	Ag/AgCI			-1.20	105
T(PA)P	287	Zn(II)			THF (-40°C)	TBAPF ₆	Ag/AgCI	1.03		-0.84 -1.28	125
T(PCP)P	288	2H			DCE	TBAP	SCE	1.32 0.90 0.58			586 (DPV)
T(PCP)P	ł	Co(II)			DCE	TBAP	SCE	1.21 1.10 0.94			586 586
T(PCP)P	I	Fe(II)			DCE	TBAP	SCE	1.37 1.28 1.00			586 586 (DPV)
T(PCP)P	I	Mn(II)			DCE	TBAP	SCE	1.32 1.01 0.90			586 586 (DPV)
T(PCP)P	I	Ni(II)			DCE	TBAP	SCE	1.18 0.96 0.77			586 (DPV)

ŝ
ę.
Figur
.⊑
ures
귱
stru
ee
ŝ
rins.
hy d
Iod
≧
etraa
Ţ
mesc
5c.
Table

			Axial Ligand				Porphyrin Ox	Metal /	Porp	hyrin Red	
Ring 5	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2 1	Other	-	2 3	Ref.
T(SB)P	289	2H		DCM	TBAPF ₆	Fc/Fc⁺	1.50 0.90 0.60				180
T(SB)P	ı	(III)uM	ū	DCM	(0.2M) TBAPF ₆ (0.2M)	Fc/Fc⁺	1.18	0.66 1.33*			176
T(SB)P	I	Mn(III)	<u>c</u>	DCM	TBAPF ₆	Fc/Fc⁺	1.30 1.20 0.65				180
т(терор)р	290	(III)uM	<u>c</u>	CH3CN	TBAP	Ag/AgCI	1.20* 1.00*	-0.34		-1.46 -1.87	170
т(терор)р	ı	Zn(II)		CH ₃ CN	TBAP	Ag/AgCI	1.10* 0.98*		-1.41	-1.77	170
T(TMSiA)P	291	(II)		THF	TBAPF ₆	Ag/AgCI	1.24		-0.90	-1.38	106
T[D(4'-CNP)APA]P	292	Zn(II)		THF	TBAPF ₆	Ag/AgCI	1.42* 1.06		-0.78	-1.23	106
T[D(4'-OCH ₃ P)APA]P	293	Zn(II)		THF	TBAPF ₆	Ag/AgCI	0.94 0.76	1.03	-0.97	-1.35	106
T[D(4'-Tol)APA]P	294	Zn(II)		THF	TBAPF ₆	Ag/AgCI	0.99 0.84	1.26	-0.92	-1.34	106

e 6a)
Figure
ures in
structu
. (see
acrocycles
TPP m
substituted
β-aryl
yl and
. β-alk
Table 6a

			Axial Ligand				Porp	hvrin	ð	Metal /	Porphvrin F	Red
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE -	e C	5	-	Other	1 2	3 Ref.
(CF ₃)₄TPP	295	Fe(III)	ū	DCM	TBAPF ₆	SCE			1.18	-0.04	-0.92	362
(CF ₃)₄TPP	295	Fe(III)	ū	PhCN	TBAPF ₆	SCE		1.63	1.15	0.05	-0.54 -0.90	362
(CH ₃) ₄ TPP	296	2H		DCM	TBAPF ₆	Ag/AgCI	-	0.96	0.83		-1.27 -1.54	23
(CH ₃) ₄ TPP	1	Cu(II)		DCM	TBAPF ₆	Ag/AgCI		1.16	0.72		-1.35 -1.75	23
(CH ₃) ₄ TPP	ł	Ni(II)		DCM	TBAPF ₆	Ag/AgCI		1.15	0.82		-1.34 -1.80	23
(CH ₃) ₄ TPP	ł	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	-	0.85	0.72		-1.46	23
(<i>i</i> -Bu) ₈ TPP	297	2H		DCM	TBAP	SCE	1.27	0.86	0.45		-1.47 -1.99	77
(<i>i</i> -Bu) ₈ TPP	298	See Fig.		DCM	TBAP	SCE			1.66	-1.02	-1.49 -1.99	77
(PA) ₈ TPP	299	2H		THF	TBAPF ₆ (0.5M)	Fc/Fc⁺			0.56*		-1.11 -1.27	560
(Рһ)₄ТРР	300	2H		DCM	TBAPF ₆	Ag/AgCI	-	0.95	0.83		-1.19	23
(Рһ)₄ТРР	ł	Cu(II)		DCM	TBAPF ₆	Ag/AgCI		1.26	0.75		-1.33 -1.57	23
(Рһ)₄ТРР	ł	Ni(II)		DCM	TBAPF ₆	Ag/AgCI		1.19	0.91		-1.32 -1.71	23
(Рһ)₄ТРР	ł	V(IV)	02-	DCM	TBAP	SCE		1.07	0.92		-1.24 -1.56	476
(Ph) ₄ TPP	ł	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	-	0.88	0.74		-1.39 -1.79	23
(Ph) ₈ T(3'-Thienyl)P	301	Ni(II)		DCM	TBAP	SCE	-	0.81	0.81		-1.35	33
TC ₆ TPP	302	Ni(II)		DCM	TBAP	SCE	-	0.98	0.66		-1.56	33

(see structures in Figure 6
porphyrins.
role halogenated
Table 6b. β-pyr

			Axial Ligand				Porphyrir	XOL	Metal /	Porphyrin Red	
Ring 5	Structure	Metal	L1 L2	Solvent	Salt	RE	3	-	Other	1 2 3	-Ref.
Br ₁₆ T(3',5'-DMP)P	303	2H		DCM	TBAPF ₆	Ag/AgCI		1.34*		-0.74* -0.99	323
Br ₁₆ T(3',5'-DMP)P	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI		1.21		-0.84 -1.16	323
Br ₁₆ T(3',5'-DMP)P	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.37	1.15		-0.87 -1.25	323
Br _i TPP	304	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.31	1.12	0.91		73
Br _i TPP	304	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.31	1.22	0.79		73
Br _i TPP	304	Co(II)		PhCN	TBAP	SCE			0.91 -0.79		41
Br _i TPP	:	Fe(III)	Ċ	PhCN	TBAP	SCE		1.24	-0.26		41
Br _i TPP	:	Zn(II)		DCM	TBAP	SCE	1.10	0.82		-1.26 -1.68*	17
Br _i TPP	:	Zn(II)		PhCN	TBAP	SCE	1.18	0.88		-1.25 -1.68	17
Br,TPP	:	Zn(II)		PhCN	TBAP	SCE		0.88		-1.25	41
Br ₂ TPP	305	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.33	1.14	0.92		73
Br ₂ TPP	305	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.33	1.22	0.80		73
Br ₂ TPP	305	Co(II)		PhCN	TBAP	SCE			0.92 -0.73		41
Br ₂ TPP	:	Fe(III)	Ċ	PhCN	TBAP	SCE		1.28	-0.18		41
Br ₂ TPP	:	(III)uM	Ċ	PhCN	TBAP	SCE		1.26	-0.20		41
Br ₂ TPP	:	Zn(II)		DCM	TBAP	SCE	1.09	0.84		-1.18 -1.56*	17
Br ₂ TPP	:	Zn(II)		PhCN	TBAP	SCE	1.17	0.91		-1.19 -1.58	17
Br ₂ TPP	:	Zn(II)		PhCN	TBAP	SCE		0.91		-1.19	41
Br ₃ TPP	306	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.33	1.15	0.94		73
Br ₃ TPP	306	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.33	1.23	0.85		73

			Axial Ligand				Porphyrin	ŏ	Metal /	Porphyrin Red	
Ring	Structure	e Metal	L1 L2	Solvent	Salt	RE	3	-	Other	1 2 3	Ref.
Br ₃ TPP	306	Co(II)		PhCN	TBAP	SCE			0.94 -0.67		41
Br ₃ TPP	1	Fe(III)	C	PhCN	TBAP	SCE		1.27	-0.13		41
Br ₃ TPP	:	(III)nM	C	PhCN	TBAP	SCE		1.29	-0.09		41
Br ₃ TPP	:	Zn(II)		DCM	TBAP	SCE	1.09	0.86		-1.11 -1.47*	17
Br ₃ TPP	:	Zn(II)		PhCN	TBAP	SCE	1.16	0.93		-1.10 -1.42	17
Br ₃ TPP	:	Zn(II)		PhCN	TBAP	SCE		0.93		-1.10	41
Br₄T(4'-CO ₂ HP)P	307	2H		DCM	TBAPF ₆	Ag/AgCI	1.61	1.27		-0.75	558
Br₄T(4'-CO ₂ HP)P	:	Co(II)		DCM	TBAPF ₆	Ag/AgCI	1.47	1.29	0.97 -0.48		558
Br₄T(4'-CO₂HP)P	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.51	1.20		-0.88 -1.05	558
Br₄T(4'-CO ₂ HP)P	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.22	1.04		-1.05 -1.27	558
Br₄T(4'-OC ₁₀ P)P	308	2H		DCM	TBAPF ₆	Ag/AgCI	0.99	0.84		-0.90 -1.04	89
Br ₄ T(4'-OC ₁₀ P)P	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.37	0.90		-1.02* -1.29	89
Br ₄ T(4'-OC ₁₀ P)P	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.02	0.80		-1.14* -1.33	89
Br₄T(4'-OC₄P)P	309	2H		DCM	TBAPF ₆	Ag/AgCI	0.98	0.85		-0.91 -1.05	89
Br₄T(4'-OC₄P)P	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.36*	0.86		-0.99 -1.08	89
Br₄T(4'-OC₄P)P	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.02	0.80		-1.07 -1.35	89
$Br_4T(4'-OC_8P)P$	310	2H		DCM	TBAPF ₆	Ag/AgCI	0.99	0.84		-0.89 -1.02	89
Br₄T(4'-OC₀P)P	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.05	0.83		-1.06 -1.24	89
Br₄T(4'-OC ₈ P)P	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.10	0.79		-1.10 -1.36	89
Br ₄ T(4'-OCH ₃ P)P	311	2H		DCM	TBAPF ₆	Ag/AgCI	1.04	0.89		-0.85 -0.95	558

			Axial Ligand				Porphyrin	ŏ	Me	tal /	Porp	hyrin Red	
Ring S	tructure	Metal	L1 L2	- Solvent	Salt	RE	3	-	히	ler	-	3	Ref.
Br₄T(4'-OCH₃P)P	:	Co(II)		DCM	TBAPF ₆	Ag/AgCI	1.31	1.19	0.88	-0.58			558
Br₄T(4'-OCH₃P)P	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.42	0.87			-1.01	-1.28	558
Br₄T(4'-OCH₃P)P	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.09	0.85			-1.23	-1.41	558
Br₄T(4'-tBuP)P	312	2H		DCM	TBAPF ₆	Ag/AgCI	1.13	0.99			-0.84	-0.94	558
Br₄T(4'-tBuP)P	ł	Co(II)		DCM	TBAPF ₆	Ag/AgCI	1.32	1.18	06.0	-0.56			558
Br ₄ T(4'-tBuP)P	ł	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.44	0.94			-0.98	-1.26	558
Br₄T(4'-tBuP)P	ł	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.12	0.87			-1.18	-1.42	558
Br₄TPP	313	2H		DCM	TBAPF ₆	Ag/AgCI	1.16	1.06			-0.90		89
Br₄TPP	313	2H		DCM	TBAPF ₆	Ag/AgCI	1.20	0.98			-0.86	-1.40	558
Br₄TPP	313	2H		THF	TBAP	SCE		1.05			-1.02		423
Br₄TPP	ł	Co(II)		DCM	TBAP	SCE	1.21	1.02	0.81	-0.56	-1.61		45
Br₄TPP	ł	Co(II)		DCM	TBAPF ₆	Ag/AgCI		1.20	0.86	-0.55			558
Br₄TPP	ł	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.36	1.20	0.95				73
Br₄TPP	:	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.36	1.24	0.86				73
Br₄TPP	1	Co(II)		PhCN	TBAP	SCE			0.95	-0.61			41
Br₄TPP	:	Co(II)		PhCN	TBAP	SCE	1.39	1.29	0.68*	-0.61	-1.66*	-1.80*	43
Br₄TPP	:	Co(II)	ON	DCM	TBAP	SCE		1.26	1.06	-1.10	-1.60		45
Br₄TPP	1	Co(II)	Py	DCM	TBAP	SCE			-0.14	-0.81	-1.57		45
Br₄TPP	1	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.45	1.02			-1.01	-1.24	89
Br₄TPP	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.47	1.08			-0.92	-1.16	558

			Axial Ligand				Porphyi	in Ox	Metal /	Porphyrin Red	
Ring	Structure	e Metal	L1 L2	Solvent	Salt	RE	3	-	Other	1 2 3	Ref.
Br₄TPP	:	Cu(II)		PhCN	TBAP	SCE	1.41	1.08		-0.96 -1.26	43
Br₄TPP	:	Fe(III)	C	DCM	TBAPF ₆	SCE	1.6(1.13	-0.20		362
Br₄TPP	:	Fe(III)	CI	PhCN	TBAP	SCE		1.26	-0.07		41
Br₄TPP	:	Fe(III)	CI	PhCN	TBAPF ₆	SCE	1.5:	1.18	-0.13		362
Br₄TPP	:	(III)uM	C	PhCN	TBAP	SCE		1.30	-0.06		41
Br₄TPP	1	Ni(II)		PhCN	TBAP	SCE		1.17		-0.96 -1.27	43
Br₄TPP	:	Tb(III)	CH ₃ CO ₂ ⁻	THF	TBAP	SCE 1	.49 1.10	0.81		-0.93 -1.03	423
Br₄TPP	:	(II)		DCM	TBAP	SCE	1.12	0.90		-1.09 -1.36*	17
Br₄TPP	1	(II)		DCM	TBAPF ₆	Ag/AgCI	1.10	0.93		-1.08 -1.30	89
Br₄TPP	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.15	0.97		-1.15 -1.35	558
Br₄TPP	:	(II)		PhCN	TBAP	SCE	1.15) 0.95		-1.03 -1.32	17
Br₄TPP	ł	Zn(II)		PhCN	TBAP	SCE		0.95		-1.03	41
Br₄TPP	:	Zn(II)		PhCN	TBAP	SCE	1.15) 0.95		-1.03 -1.32	43
Br ₅ TPP	314	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.37	1.22	0.99		73
Br ₅ TPP	314	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.37	1.26	0.93		73
Br ₅ TPP	314	Co(II)		PhCN	TBAP	SCE			0.99 -0.52		41
Br ₅ TPP	:	Fe(III)	C	PhCN	TBAP	SCE		1.26	-0.02		41
Br ₅ TPP	ł	Zn(II)		DCM	TBAP	SCE	1.05	3 0.87		-1.04 -1.28*	17
Br ₅ TPP	ł	Zn(II)		PhCN	TBAP	SCE	1.15	0.96		-0.97 -1.28	17
Br ₅ TPP	1	Zn(II)		PhCN	TBAP	SCE		0.96		-0.97	41

			Axial Ligand				Porphyrin	ŏ	Metal /	Porphyrin Red	
Ring S [:]	tructure	e Metal	L1 L2	Solvent	Salt	RE	3	-	Other	1 2 3	Ref.
Br ₆ T(4'-CO ₂ CH ₃ P)P	315	(III)nM	CI	DCM	$TBABF_4$	NHE			0.17		173
Br ₆ TPP	316	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.40	1.27	0.99		73
Br ₆ TPP	316	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.39	1.28	0.95		73
Br ₆ TPP	316	Co(II)		PhCN	TBAP	SCE			0.99 -0.46		41
Br ₆ TPP	:	Fe(III)	CI	PhCN	TBAP	SCE		1.24	0.04		41
Br ₆ TPP	:	Mn(III)	CI	PhCN	TBAP	SCE		1.37	0.02		41
Br ₆ TPP	:	Zn(II)		DCM	TBAP	SCE	1.08	0.85		-0.95 -1.24*	17
Br ₆ TPP	:	Zn(II)		PhCN	TBAP	SCE	1.11	0.96		-0.93 -1.20	17
Br ₆ TPP	:	Zn(II)		PhCN	TBAP	SCE		0.96		-0.93	41
Br ₇ T(3',5'-D-t-BuP)P	317	ln(III)	See Fig.	DCM	TBAP	Ag/AgNO ₃		1.06*		-1.00 -1.34	234
Br ₇ TPP	318	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.44	1.32	0.97		73
Br ₇ TPP	318	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.44	1.32	0.97		73
Br ₇ TPP	318	Co(II)		PhCN	TBAP	SCE			0.97 -0.42		41
Br ₇ TPP	:	Fe(III)	CI	PhCN	TBAP	SCE		1.21	0.06		41
Br ₇ TPP	:	(III)nM	CI	PhCN	TBAP	SCE		1.36	0.05		41
Br ₇ TPP	:	Zn(II)		DCM	TBAP	SCE	1.07	0.86		-0.90 -1.13*	17
Br ₇ TPP	:	Zn(II)		PhCN	TBAP	SCE	1.14	0.97		-0.92 -1.15	17
Br ₇ TPP	:	Zn(II)		PhCN	TBAP	SCE		0.97		-0.92	41
$Br_{8}F_{20}TPP$	319	Fe(II)	NO	DCM	TBAPF ₆	Fc/Fc⁺				-0.65 -1.33	412
$Br_8F_{20}TPP$	319	Fe(III)	ON	DCM	TBAPF ₆	Fc/Fc⁺		0.92*	-0.20*	-0.65* -1.33*	370

			Axial Liga	put				Porphyrin	ŏ	Metal /	Porphyrin Red	
Ring 8	Structure	Metal	L1 Ľ	2	Solvent	Salt	RE	3 2	-	Other	1 2 3	Ref.
Br ₈ F ₂₀ TPP	:	Mn(III)	CI		NR	NR	NR			0.27		477
$Br_8F_{20}TPP$:	Ni(II)		_	DCM	TBAP	SCE	1.50	1.50		-0.42	33
$Br_8F_{20}TPP$:	Ni(II)		-	DCM	TBAPF ₆	SCE	1.66	1.66		-0.43	33
Br _s T(2'-CH ₃ P)P	320	2H		_	DCM	TBABF₄	Ag/AgCI	1.37	1.07		-1.02	485
Br ₈ T(2'-CH ₃ P)P	:	Zn(II)		-	DCM	TBABF₄	Ag/AgCI	1.11	0.88		-0.94	485
Br ₈ T(2'-Py)P	321	Mn(III)	ū	-	DCM	TBAPF ₆	SCE			0.21		7
Br _s T(2'-Py)P	321	(III) Mn(III)	ū	_	DCM	TBAPF ₆	Fc/Fc⁺			-0.25		511
Br ₈ T(3'-CH ₃ P)P	322	2H		_	DCM	TBABF₄	Ag/AgCI	1.36	0.99		-1.04	485
Br ₈ T(3'-CH ₃ P)P	1	Zn(II)		_	DCM	TBABF₄	Ag/AgCI	1.08	0.85		-1.03	485
Br _s T(3'-Py)P	323	(III) Mn(III)	ū	_	DMF	TBAP	Fc/Fc⁺			0.12		5
Br _s T(3'-Py)P	323	(III)	ū	_	DMF	TBAP	SCE			0.59		5
Br _s T(4'-BrP)P	324	Ni(II)		_	DCM	TBAP	SCE		1.21		-0.80 -1.10	50
Br ₈ T(4'-CF ₃ P)P	325	Cu(II)		_	DCM	TBAP	SCE	1.49	1.10		-0.69 -0.96	50
$Br_{s}T(4'-CF_{3}P)P$	1	Ni(II)		_	DCM	TBAP	SCE		1.25	-1.60	-0.73 -1.03	50
Br _s T(4'-CH ₃ P)P	326	2H		_	DCM	TBABF₄	Ag/AgCI	1.35	0.97		-1.03	485
Br ₈ T(4'-CH ₃ P)P	:	Cu(II)		_	DCM	TBAP	SCE	1.45	0.94		-0.83 -1.09	50
Br _s T(4'-CH ₃ P)P	1	Ni(II)		_	DCM	TBAP	SCE		1.17		-0.87 -1.26	50
Br ₈ T(4'-CH ₃ P)P	1	Zn(II)		_	DCM	$TBABF_4$	Ag/AgCI	1.10	0.83		-1.04	485
Br ₈ T(4'-CO ₂ CH ₃ P)F	327	Mn(III)	Ċ	_	DCM	TBABF₄	NHE			0.27		173
Br ₈ T(4'-CO ₂ CH ₃ P)P	1	Ni(II)		-	DCM	TBAP	SCE		1.23	-1.43	-0.75 -0.94	50

			Axial Lig	and				Porphyrin	ŏ	Metal /	Porphy	yrin Red	
Ring Stı	ucture	Metal		2	Solvent	Salt	RE	3 .	-	Other		3	Ref.
Br ₈ T(4'-CO ₂ EtP)P	328	Ni(II)			DCM	TBAP	SCE		1.23	-1.43	-0.74 -0.	.94	50
Br ₈ T(4'-CO ₂ HP)P	329	Mn(III)	Ċ		H ₂ O	NaCI	NHE			0.13			561
Br ₈ T(4'-FP)P	330	Cu(II)			DCM	TBAP	SCE	1.48	0.99		-0.74 -1.	.05	50
Br ₈ T(4'-FP)P	:	Ni(II)			DCM	TBAP	SCE		1.19		-0.80 -1.	12	50
[Br ₈ T(4'-NMPy)P] ⁴⁺	331	2H			H₂O	NaCI	NHE				-0.01 -1.	*60	562
[Br ₈ T(4'-NMPy)P] ⁴⁺	:	Co(II)			H₂O	NR	Ag/AgCI				-0.29*		352
[Br _s T(4'-NMPy)P] ⁴⁺	;	Co(II)			H₂O	NaCI	Ag/AgCI			0.53* -0.31			260
[Br ₈ T(4'-NMPy)P] ⁴⁺	:	Cu(II)			H₂O	NaCI	NHE				-0.13 -0.	.35*	562
[Br ₈ T(4'-NMPy)P] ⁴⁺	:	(II)uM			H₂O	NaCI	NHE			0.48	-0.36 -1.	11*	562
$Br_8T(4'-NO_2P)P$	332	Cu(II)			DCM	TBAP	SCE	1.55	1.18		-0.58 -0.	.85	50
$Br_8T(4'-NO_2P)P$:	Ni(II)			DCM	TBAP	SCE		1.27		-0.54 -1.	04	50
Br ₈ T(a-Naphthyl)P	333	2H			DCM	$TBABF_4$	Ag/AgCI	1.38	1.13		-0.98		485
Br ₈ T(a-Naphthyl)P	:	Zn(II)			DCM	$TBABF_4$	Ag/AgCI	1.15	0.92		-0.89		485
Br ₈ T(b-Naphthyl)P	334	2H			DCM	$TBABF_4$	Ag/AgCI	1.36	1.03		-1.05		485
Br ₈ T(b-Naphthyl)P	:	Zn(II)			DCM	TBABF₄	Ag/AgCI	1.09	0.86		-0.96		485
Br ₈ TMP	335	Ru(VI)	0 ²⁻ 0	, S	DCM	TBAPF ₆	Fc/Fc⁺		1.02	-0.76*	-0.35 -1.	30	440
Br ₈ TPP	336	2H			DCM	TBAPF ₆	Ag/AgCI	1.59*	0.95*		-0.73* -1.	.11*	323
Br ₈ TPP	336	2H			DCM	TBAPF ₆	SCE		0.96*		-0.68 -1.	.07	325
Br ₈ TPP	336	2H			THF	TBAP	SCE	1.17	0.93		-0.77 -1.	.18	423
Br _s TPP	1	Co(II)			DCM	TBAPF ₆ (0.2M)	SCE	1.47	1.33	0.98			73

ures in Figure 6b)
(see struct
porphyrins.
halogenated
. β-pyrrole
Table 6b

			Axial Ligand				Porphyrin	ŏ	Metal /	Porphyrin Red	
Ring	Structure	e Metal	L1 L2	- Solvent	Salt	RE	3 2	-	Other	1 2 3	- Ref.
Br ₈ TPP	:	Co(II)		DCM	TBAPF ₆ (0.2M)	SCE	1.47	1.34	0.97		73
Br _s TPP	:	Co(II)		PhCN	TBAP	SCE			0.98 -0.37		41
Br _s TPP	:	Co(II)		PhCN	TBAP	SCE	1.29	1.41	0.74 -0.32	-1.60* -1.78*	43
Br _s TPP	:	Cu(II)		DCM	TBAP	SCE	1.45	0.96		-0.82 -1.07	50
Br _s TPP	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.55	0.97		-0.85 -1.09	323
Br _s TPP	:	Cu(II)		DCM	TBAPF ₆	SCE	1.51	0.91		-0.87 -1.09	325
Br _s TPP	:	Cu(II)		PhCN	TBAP	SCE	1.52	1.01		-0.75 -1.10	43
Br _s TPP	:	Fe(III)	Ċ	PhCN	TBAP	SCE		1.19	0.10		41
Br _s TPP	1	(III) Mn(III)	Ċ	PhCN	TBAP	SCE		1.38	0.09		41
Br ₈ TPP	:	Ni(II)		DCM	TBAP	SCE	1.20	1.20		-0.80	33
Br _s TPP	:	Ni(II)		DCM	TBAP	SCE		1.18		-0.82 -1.14	50
Br _s TPP	1	Ni(II)		DCM	TBAPF ₆	SCE	1.25	1.25		-0.87*	33
3 _{r₈TPP}	:	Ni(II)		PhCN	TBAP	SCE	1.30	1.08		-0.96 -1.26	43
3r ₈ TPP	:	Tb(III)	CH ₃ CO ₂	THF	TBAP	SCE		0.86		-0.86 -1.04	423
3 _{r8} TPP	:	Zn(II)		DCM	TBAP	SCE	1.11	0.85		-0.85 -1.10*	17
3 _{r8} TPP	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.17	0.89		-0.92 -1.12	323
Br _s TPP	:	(II)		DCM	TBAPF ₆	SCE	1.14	0.88		-0.94* -1.09 -1.34	325
Br _s TPP	:	(II)		PhCN	TBAP	SCE	1.15	0.96		-0.82 -1.15	17
Br _s TPP	:	(II)		PhCN	TBAP	SCE		0.96		-0.82	41
3r _s TPP	:	Zn(II)		PhCN	TBAP	SCE	1.15	0.96		-0.82 -1.15	43

			Axial Linand				Porp	hvrin 0		Meta		Porph	ivrin Red	
Ring	Structure	: Metal	L1 L2	. Solvent	Salt	BR	ε	5	-	Othe			2 3	Ref.
[Br ₈ TPPS]⁴	337	Co(II)		H ₂ O	NaCl	Ag/AgCI				0.50* -(0.49			260
Cl ₁₄ F ₅ TPP	338	(II)		CH ₃ CN	TBAPF ₆	NHE				1.86 (0.61	-0.72 -`	.03	171
Cl ₁₆ TPP	339	Mn(III)	CI	NR	NR	NR				0.11				477
Cl ₂₀ TPP	340	Fe(III)	CI	PhCN	TBAPF ₆	SCE	,	.53	0.80	0.10		-1.31		362
Cl₄TPP	341	2H		THF	TBAP	SCE			1.12			-1.10		423
Cl₄TPP	:	Tb(III)	CH ₃ CO ₂	THF	TBAP	SCE	1.57	.19	0.98			-1.00 -`	.22	423
Cl ₈ T(4'-CF ₃ P)P	342	Ni(II)		DCM	TBAP	SCE			1.24	-1.55		69.0-	.01	50
Cl ₈ T(4'-CH ₃ P)P	343	Ni(II)		DCM	TBAP	SCE			1.16	-1.56		-0.83 -`	.15	50
Cl ₈ T(4'-CO ₂ EtP)P	344	Ni(II)		DCM	TBAP	SCE			1.23	-1.39		-0.73 -(.99	50
Cl ₈ T(4'-FP)P	345	Ni(II)		DCM	TBAP	SCE			1.18			-0.79	.14	50
Cl ₈ T(4'-NO ₂ P)P	346	Ni(II)		DCM	TBAP	SCE			1.26			-0.55 -`	.03	50
CI ₈ TPP	347	2H		THF	TBAP	SCE	,	.26	1.04			-0.83 -`	.11	423
CI ₈ TPP	:	Co(II)		DMF	TEAP	SCE						-0.73 -`	.77	584
CI ₈ TPP	:	Fe(II)		DMF	TEAP	SCE						-0.97	.54	584
CI ₈ TPP	:	Ni(II)		DCM	TBAP	SCE			1.17			-0.82 -`	.17	50
CI ₈ TPP	:	Tb(III)	CH ₃ CO ₂	THF	TBAP	SCE	1.63	.26	1.03			-0.87	.17	423
[F ₁₆ TPPS] ⁴⁻	348	Rh(III)		H ₂ O	NaPF ₆ (0.5M)	NHE				-0.20*		-1.17*		465
[F ₁₆ TPPS] ⁴⁻	:	Zn(II)		H ₂ O	NaCI (0.5M)	Ag/AgCI			1.20			-0.89		146 (SM
F ₂₈ TPP	349	Co(II)		PhCN	TBAPF ₆	^gA/g4			1.68	0.56 -(0.58	-1.49		212
F ₂₈ TPP	1	Pt(II)		DCM	TBAPF ₆	Ag/AgNO ₃						-0.75 -`	.18	228

			Axial I	Ligand				Porphyrin	ð	Metal /	Porphyr	in Red	
Ring	Structure	e Metal	5	2	Solvent	Salt	RE	3 2	-	Other	1 2	с	Ref.
F ₂₈ TPP	:	Rh(II)			C ₆ H ₆	THAPF ₆ (1.0M)	Fc/Fc⁺			-0.16			216
F ₂₈ TPP	:	Rh(II)			DFB	TBACI	Fc/Fc⁺		-0.34	-1.27			216
F ₂₈ TPP	1	Rh(II)			DFB	TBAPF ₆	Fc/Fc⁺			-0.21	-1.63		216
F ₂₈ TPP	:	Ru(II)	CO		DCM	TBAPF ₆	Fc/Fc⁺				-1.30 -1.79	•	440
F ₂₈ TPP	1	Ru(II)	PPh_3	PPh3	DCM	TBAPF ₆	Fc/Fc⁺			0.59	-1.52 -1.92		440
F ₂₈ TPP	ł	Ru(VI)	02-	02-	DCM	TBAPF ₆	Fc/Fc⁺			-0.31*	-1.20*		440
F ₂₈ TPP	1	Zn(II)			DCM	TBAPF ₆	[≁] gA/Ag		1.70		-0.63 -1.04	_	212
F ₂₈ TPP	ł	Zn(II)			DCM	TBAPF ₆	Ag/AgCI		1.70		-0.63 -1.04	_	361
F ₈ TPP	350	Zn(II)			DCM	TBAPF ₆	Ag/AgCI	1.36	1.26		-1.03		361
[F ₈ TPPS] ⁴⁻	351	Rh(III)			H ₂ O	NaPF ₆ (0.5M)	NHE			-0.30*	-1.39*		465
[F ₈ TPPS] ⁴⁻	:	Zn(II)			H_2O	NaCI (0.5M)	Ag/AgCI		1.00		-1.08		146 (SWV)
							Dornhvirin	Z			Doroh	Virin Dod	
-----------------------------	-----------	--------	-------	-----------	--------------------	---------	------------	------	------	-------	--------	-------------	-----------
Ring	Structure	Metal	L1 L2	- Solvent	Salt	BR	3 2	5 -				2 3	- Ref.
Br₄(CH₃)₄TPP	352	2H		DCM	TBAPF ₆	Ag/AgCI	1.46	0.85			-0.91	-1.20	23
Br₄(CH₃)₄TPP	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.34	0.72			-1.03	-1.32	23
Br₄(CH₃)₄TPP	:	Ni(II)		DCM	TBAPF ₆	Ag/AgCI		1.14			-1.03	-1.40	23
Br₄(CH₃)₄TPP	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	0.96	0.73			-0.96	-1.31	23
Br₄(NO₂)TPP	353	Co(II)		DCM	TBAP	SCE	1.36	1.12	0.89	-0.37	-1.16		45
Br₄(NO₂)TPP	:	Co(II)	ON	DCM	TBAP	SCE	1.39	1.19	1.19	-0.77	-1.01		45
$Br_4(NO_2)TPP$:	Co(II)	Py	Py	TBAP	SCE			00.0	-0.62	-1.16		45
Br₄(Ph)₄TPP	354	2H		DCM	TBAPF ₆	Ag/AgCI	0.93	0.82			-0.88	-1.25	23
Br₄(Ph)₄TPP	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.29	0.77			-1.03	-1.32	23
Br₄(Ph)₄TPP	:	Ni(II)		DCM	TBAPF ₆	Ag/AgCI	1.17	1.02			-1.03	-1.32	23
Br₄(Ph)₄TPP	:	(II)		DCM	TBAPF ₆	Ag/AgCI	06.0	0.72			-1.06	-1.27	23
$Br_6(NO_2)TPP$	355	2H		DCM	TBAPF ₆	SCE	1.29	1.06			-0.65*	-0.96	325
$Br_6(NO_2)TPP$:	Cu(II)		DCM	TBAPF ₆	SCE		1.06			-0.73	-0.97	325
$Br_6(NO_2)TPP$:	(II)		DCM	TBAPF ₆	SCE	1.22	0.96			-0.75*	-0.96 -1.22	325
$Br_7(NO_2)TPP$	356	2H		DCM	TBAPF ₆	SCE	1.31	1.05			-0.58*	-0.95	325
$Br_7(NO_2)TPP$:	Cu(II)		DCM	TBAPF ₆	SCE	1.55	1.04			-0.72	-0.93	325
$Br_7(NO_2)TPP$:	(II)		DCM	TBAPF ₆	SCE	1.24	0.96			-0.74*	-0.95 -1.18	325
(CH ₃)₄(Ph)₄TPP	357	2H		DCM	TBAPF ₆	Ag/AgCI	0.84	0.59			-1.20		23
(CH ₃)₄(Ph)₄TPP	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.04	0.46			-1.36	-1.70	23
(CH ₃)₄(Ph)₄TPP	:	Ni(II)		DCM	TBAPF ₆	Ag/AgCI	1.03	0.72			-1.40	-1.74	23

Table 6c. TPP with mixed $\beta\mbox{-}py\mbox{rrole}$ substituents. (see structures in Figure 6c)

6c)
Figure
.⊑
uctures
str
(see
lents.
ubstitu
s S
-pyrrol
Ч Р
mixec
with
ТРР
ole 6c.
Tat

			Axial Ligan	q			Porphy	rin Ox	Metal /	Porph	ıyrin Red	
Ring	Structure	Metal		Solvent	Salt	RE	3	-	Other	-	2 3	_ Ref.
(CH ₃)₄(Ph)₄TPP	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	0.6	s 0.38		-1.50	-1.67*	23
Cl₄(Ph)₄TPP	358	2H		DCM	TBAPF ₆	Ag/AgCI	0.9	3 0.86		-0.91	-1.03	23
Cl₄(Ph)₄TPP	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.2	9 0.78		-1.03	-1.38	23
Cl₄(Ph)₄TPP	:	Ni(II)		DCM	TBAPF ₆	Ag/AgCI	1.1	7 1.05		-1.04	-1.42	23
Cl₄(Ph)₄TPP	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	0.8	3 0.74		-1.06	-1.27	23
(CN)₄(CH ₃)₄TPP	359	2H		DCM	TBAPF ₆	Ag/AgCI	1.3	4 1.11		-0.36	-0.61	23
(CN)₄(CH ₃)₄TPP	:	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.5	9 1.17		-0.45	-0.85	23
(CN)₄(CH₃)₄TPP	:	Ni(II)		DCM	TBAPF ₆	Ag/AgCI		1.35		-0.44	-0.85	23
(CN)₄(CH ₃)₄TPP	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.3	1 1.00		-0.49	-0.88	23
(CN)₄(Ph)₄TPP	360	2H		DCM	TBAPF ₆	Ag/AgCI	1.3	3 1.13		-0.28	-0.56	23
(CN)₄(Ph)₄TPP	ł	Cu(II)		DCM	TBAPF ₆	Ag/AgCI	1.3	3 1.16		-0.38	-0.80	23
(CN)₄(Ph)₄TPP	ł	Ni(II)		DCM	TBAPF ₆	Ag/AgCI		1.36		-0.42	-0.86	23
(CN)₄(Ph)₄TPP	:	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.3	5 1.02		-0.46	-0.82	23

			Axial Lig	and				Porphyrin	ŏ	Metal /	P	rphyrir	n Red	
Ring	Structure	Metal	L1	2	Solvent	Salt	RE	3	-	Other	-	0	с	Ref.
(2',12'-NO ₂) ₂ TPP	361	2H			DCM	TBAPF ₆	Fc/Fc⁺		0.69		-1.12			316
(2', 12'-NO ₂) ₂ TPP	I	Cu(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.07	0.71		-1.23	-1.32	-1.53	316
(2',13'-NO ₂) ₂ TPP	362	2H			DCM	TBAPF ₆	Fc/Fc⁺	0.89	0.70		-1.15			316
(2',13'-NO ₂) ₂ TPP	I	Cu(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.07	0.72		-1.22	-1.31	-1.52	316
(2',7'-NO ₂) ₂ TPP	363	2H			DCM	TBAPF ₆	Fc/Fc⁺		0.70		-1.20	-1.30	-1.82	316
(2',7'-NO ₂) ₂ TPP	I	Cu(II)			DCM	TBAPF	Fc/Fc⁺	1.08	0.72		-1.21	-1.36		316
(2',7',13'-NO ₂) ₃ TPP	364	2H			DCM	TBAPF	Fc/Fc⁺		0.75		-1.01	-1.13	-1.61	316
(2',7',13'-NO ₂) ₃ TPP	I	Cu(II)			DCM	TBAPF	Fc/Fc⁺		0.81		-1.09	-1.33		316
(2',8'-NO ₂) ₂ TPP	365	2H			DCM	TBAPF	Fc/Fc⁺	0.87	0.69		-1.24	-1.47	-1.76	316
(2',8'-NO ₂) ₂ TPP	I	Cu(II)			DCM	TBAPF	Fc/Fc⁺	1.03	0.72		-1.28	-1.52		316
(3',7'-NO ₂) ₂ TPP	366	2H			DCM	TBAPF ₆	Fc/Fc⁺		0.70		-1.16	-1.29	-1.92	316
(3',7'-NO ₂) ₂ TPP	I	Cu(II)			DCM	TBAPF	Fc/Fc⁺	1.11	0.72		-1.26	-1.45		316
(3',7',12'-NO ₂) ₃ TPP	367	2H			DCM	TBAPF ₆	Fc/Fc⁺		0.77		-1.12	-1.38	-1.61	316
(3',7',12'-NO ₂) ₃ TPP	I	Cu(II)			DCM	TBAPF	Fc/Fc⁺		0.80		-1.09	-1.28		316
(3',7',13'-NO ₂) ₃ TPP	368	2H			DCM	TBAPF ₆	Fc/Fc⁺	0.91	0.73		-0.98	-1.07	-1.65	316
(3',7',13'-NO ₂) ₃ TPP	I	Cu(II)			DCM	TBAPF ₆	Fc/Fc⁺		0.80		-1.07	-1.28		316
Cl ₈ (NO ₂) ₅ TPP	369	(II) UNI			DCM	TBAPF	SCE			0.75				540
Cl ₈ (NO ₂),TPP	370	(II) UM			DCM	$TBABF_4$	SCE			0.94	0.04	-0.22	-0.75	267
Cl ₈ (NO ₂) ₈ TPP	371	Fe(II)			DCM	TBAPF	SCE			1.03				380
Cl ₈ (NO ₂) ₈ TPP	ł	(II) Mn(II)			DCM	TBAPF ₆	SCE			1.15				540

Table 6d. Nitro substituted TPP and tetraarylporphyrin (TArP) derivatives. (see structure in Figure 6d)

			Axial L	-igand				Porpl	nyrin (X	Metal /	Pol	rphyrir	ר Red	
Ring	Structure	Metal		L2	Solvent	Salt	RE	3	2	-	Other	-	2	3	Ref.
(NO ₂) ₁₂ Cl ₈ TPP	372	Ni(II)			DCM	TBAPF ₆	SCE					0.47	0.11	-0.42, -0.56	505
(NO ₂) ₁₂ Cl ₈ TPP	I	Zn(II)			DCM	TBAPF ₆	SCE					0.37	-0.64	-0.82	505
(NO ₂)T(4'-OC ₁₀ P)P	373	Ni(II)			DCM	TBAPF ₆	Ag/AgCI	,	1.21	1.04		-1.19			550

Table 6d. Nitro substituted TPP and tetraarylporphyrin (TArP) derivatives. (see structure in Figure 6d)

														1
			Axial Ligand				Porphyri	лОх	Met	al /	Porpl	nyrin Rec	-	
Ring Stru	louture	Metal	L1 L2	Solvent	Salt	RE	3 2	-	Ğ	ы Г	~	2	L Ref	
(O)Cl ₈ TPPone	374	2H		DCM	TBAPF ₆	SCE		1.37					582	
(O)Cl ₈ TPPone	ı	Fe(III)	ū	DCM	TBAPF ₆	SCE		1.37					582	~
(O)TMPone	375	2H		DCM	TBAPF ₆	SCE		1.12					582	~
(O)TMPone	ı	Fe(III)	G	DCM	TBAPF ₆	SCE		1.19					582	~
T(3',5'-D-tBuP)P-C-tetraone	376	2H		DCM	TBAP	SCE		1.06	-0.28	0.79	- 1.09	1.60	28	~
T(3',5'-D-tBuP)P-C-tetraone	ı	Cu(II)		DCM	TBAP	SCE		1.16*	-0.33	0.67	-1.37*		28	~
T(3',5'-D-tBuP)P-C-tetraone	ı	Ni(II)		DCM	TBAP	SCE		1.22	-0.32	0.69	-1.62*		28	~
T(3',5'-D-tBuP)P-C-tetraone	ı	Pd(II)		DCM	TBAP	SCE		1.29	-0.33	0.69	-1.46*		28	~
T(3',5'-D-tBuP)P-C-tetraone	ı	Zn(II)		DCM	TBAP	SCE		0.96	-0.46	0.76	-1.47*		28	~
T(3',5'-D-tBuP)P-dione	377	2H		DCM	TBAP	SCE		1.06	-0.59		-0.95	1.86*	28	~
T(3',5'-D-tBuP)P-dione	ı	Cu(II)		DCM	TBAP	SCE		1.10	-0.49		-1.21	1.62	28	~
T(3',5'-D-tBuP)P-dione	ł	Ni(II)		DCM	TBAP	SCE		1.17	-0.51		- 1.24	1.61	28	~
T(3',5'-D-tBuP)P-dione	ı	Pd(II)		DCM	TBAP	SCE	1.44	1.19	-0.50		- 1.26	1.61	28	~
T(3',5'-D-tBuP)P-dione	ı	Zn(II)		DCM	TBAP	SCE	1.00	0.85	-0.57		- 1.25* -	1.68	28	~
T(3',5'-D-tBuP)P-L-tetraone	378	2H		DCM	TBAP	SCE		1.09	-0.47	0.72	- 1.01	1.80	28	~
T(3',5'-D-tBuP)P-L-tetraone	ı	Cu(II)		DCM	TBAP	SCE		1.11	-0.26	0.70	- 1.34* -	1.85	28	~
T(3',5'-D-tBuP)P-L-tetraone	ı	Ni(II)		DCM	TBAP	SCE		1.20	-0.25 -	0.68	-1.38	1.84	28	~
T(3',5'-D-tBuP)P-L-tetraone	ı	Pd(II)		DCM	TBAP	SCE	1.49	1.29	-0.29	0.64	- 1.34* -	1.81	28	~
T(3',5'-D-tBuP)P-L-tetraone	I	Zn(II)		DCM	TBAP	SCE		0.95	-0.34	0.73	- 1.36* -	1.84	28	~

Table 6e. Porphiones. (see structures in Figure 6e)

č	-	۹ I - -	vxial Liganc	-	-	I L	Porphyrin	ŏ	Metal / Other	Porphyrin Rec	
King St	ructure	e Metal	L1 L2	Solvent	Salt	КЕ	3 2	-	OIIIEI	- 1 2 3	Ket.
(3'-CP)T(3',5'-D-tBuP)P	379	Zn(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI		0.95		-1.35	132
(3'-CPA)T(3',5'-D-tBuP)P	380	Zn(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI		66.0		-1.40*	132
(4'-CP)T(3',5'-D-tBuP)P	381	Zn(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI		1.04*		-1.41	132
(4'-CPA)T(3',5'-D-tBuP)P	382	Zn(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI		1.00		-1.36*	132
(4'-NO ₂ PA)TPP	383	2H		DCM	TBAP	SCE	1.26	1.11		-1.17* -1.53*	74
(4'-NO ₂ PA)TPP	ı	Zn(II)		DCM	TBAP	SCE	1.16*	0.86		-1.02	74
(4'-NO ₂ PE)TPP	384	2H		DCM	TBAP	SCE	1.23*	1.08		-0.96* 1.18*	74
(4'-NO ₂ PV)TPP	385	Zn(II)		DCM	TBAP	SCE	1.11	0.85		-1.10 -1.51*	74
(А)ТРР	386	2H		DCM	TBAP	SCE	1.41	1.01		-1.12 -1.40	94
(А)ТРР	ı	Zn(II)		DCM	TBAP	SCE	1.08	0.78		-1.48 -1.65	94
(APA)TPP	387	(II)		DMF	TBAPF ₆	SCE		0.91		-1.18	298
(CCV)T(3',5'-D-tBuP)P	388	(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI		0.98		-1.36*	132
(DBAPV)TPP	389	Zn(II)		DCM	TBAP	SCE	0.79	0.63		-1.28* -1.68*	74
(DBAV)TPP	390	2H		DCM	TBAP	SCE	1.01	0.66		-1.04* -1.55*	74
(DPEA)TPP	391	2H		DCB	TBAPF ₆ (0.05M)	SCE	1.45	1.12	-1.74*	-1.10 -1.33	120
(DPEA)TPP	ı	Zn(II)		DCB	TBAPF ₆ (0.05M)	SCE	1.26	96.0	-1.87*	-1.31 -1.47	120
(HTA)T(3',5'-D-tBuP)P	392	Ni(II)		CH ³ CN	TBAPF ₆	^g/Ag⁺	0.97	0.69			249
(N ₃)T(3',5'-D-tBuP)P	393	Ni(II)		CH ³ CN	TBAPF ₆	^g/Ag⁺	0.97	0.75			249
(NH ₂)T(3',5'-D-tBuP)P	394	Au(III)		DCM	TBAP	SCE		1.25*	-0.69	-1.23	231
(NH ₂)T(3',5'-D-tBuP)P	394	Au(III)		P	TBAP	SCE			-0.60	-1.15 -1.83	231

Table 6f. Mono $\beta\text{-}pyrrole$ substituted porphyrins. (see structures in Figure 6f)

of
ല
Inf
; <u></u> ,
Ē
.=
ĕ
Ľ.
ਠੂ
Ę
ŝ
e
s)
ю.
.≘
ž
Ч
ъ
d
eq
Ť
Ë
ps
su
Ű
ō
Ľ,
ġ.
ά
2
ō
\geq
Эf.
e
q
Га

			Axial Ligar	pL			Porp	hyrin (ŏ	Metal /	Porpl	hyrin Re	p	L
Ring	Structure	Metal ⁻	L1 L2	- Solvent	Salt	RE	ო	7	. –	Other	.	2	<u>س</u>	Ref.
(NO ₂)T(3',5'-D-tBuP)P	395	Au(III)		DCM	TBAP	SCE				-0.38	-0.80	-1.40		231
(NO ₂)T(3',5'-D-tBuP)P	395	Au(III)		Py	TBAP	SCE				-0.32	-0.72	-1.40		231
(NO ₂)T(3',5'-D-tBuP)P	395	Au(III)		THF	TBAP (0.4M)	SCE				-0.24	-0.77	-1.42		231
(PAA)TPP	396	2H		DCB	TBAPF ₆ (0.05M)	SCE		1.43	1.10		-1.10	-1.34		13
(PAA)TPP	I	Zn(II)		DCB	TBAPF ₆ (0.05M)	SCE		1.21	0.95		-1.28			13
(RHN)T(3',5'-D-tBuP)F	397	2H		DCM	TBAPF ₆	Fc/Fc⁺	1.10*	0.76*	0.48		-1.70	-2.03		26
(RHN)T(3',5'-D-tBuP)F	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.95	0.56	0.30		-1.86	-2.16*		26
[T(PA)A]TPP	398	2H		DCB	TBAPF ₆ (0.05M)	SCE		1.45	1.11	-1.60	-1.10	-1.34	¢-	120
[T(PA)A]TPP	I	Zn(II)		DCB	TBAPF ₆ (0.05M)	SCE		1.24	0.98		-1.30	-1.59	¢-	120
(ТА)ТРР	399	2H		DCB	TBAPF ₆ (0.05M)	SCE		1.44	1.08		-1.16	-1.44		13
(ТА)ТРР	I	Zn(II)		DCB	TBAPF ₆ (0.05M)	SCE		1.17	0.93		-1.33			13

			Axial	Ligand				Porphyr	'in Ox	Metal /	Porphyrin Rec	_
Ring	Structure	e Metal	L1	[2]	Solvent	Salt	RE	3 2	-	Other	1 2 3	Ref.
Br₄DPP (meso)	400	(III)	ö		DCM	TBAP	SCE		0.97			60
Br₄DPP (meso)	400	(III)uM	ū		PhCN	TBAP	SCE			-0.25	-1.46* -1.54* -1.8	2* 60
Br₄DPP (meso)	400	(III)uM	ū		Py	TBAP	SCE			-0.33	-1.12 -1.50	60
(CF₃)₄DPP (meso)	401	(III)uM	ū		DCM	TBAP	SCE		1.03			60
(CF ₃)₄DPP (meso)	401	(III)uM	ū		PhCN	TBAP	SCE			-0.24	-1.46* -1.75*	60
(CF ₃) ₄ DPP (meso)	401	(III)uM	ū		Py	TBAP	SCE			-0.28	-1.05 -1.52*	60
Cl ₁₂ DPP (meso)	402	(III)uM	ū		DCM	TBAP	SCE		1.18			60
Cl ₁₂ DPP (meso)	402	(III)uM	Ċ		PhCN	TBAP	SCE			-0.15	-1.37* -1.52* -1.7	4* 60
Cl ₁₂ DPP (meso)	402	(III)uM	ū		PhCN	TBAP	SCE			-0.15		68
Cl ₁₂ DPP (meso)	402	(III)	Ċ		Py	TBAP	SCE			-0.20	-1.02 -1.43	60
Cl ₈ DPP	403	(III)uM	Ċ		DCM	TBAP	SCE		1.10			60
Cl ₈ DPP	403	(III)uM	ū		PhCN	TBAP	SCE			-0.33	-1.30* -1.63* -1.7	2* 60
Cl _s DPP (meso)	404	(III)uM	ū		Py	TBAP	SCE			-0.40	-1.22	60
DDP-Ru ₃ O(L _n)(4'-PyC ⁱ	O ₂ ⁻) 405	Sn(IV)	See Fig.	See Fig.	PhCN	TBAPF ₆	SCE			1.06 0.03	-0.91	92
DDP-Ru ₃ OL ₆ (4'-PyCO	²) ₃ 406	Sn(IV)	See Fig.	See Fig.	PhCN	TBAPF ₆	SCE			1.06 0.11	-0.90	92
DDP-Ru ₃ OL _n (3'-PyCO	²) 407	Sn(IV)	See Fig.	See Fig.	PhCN	TBAPF ₆	SCE			1.04 -0.11	-0.91	92
DDP-Ru ₃ OL _n (4'-PyCO	2 ⁻) 408	Sn(IV)	See Fig.	See Fig.	PhCN	TBAPF ₆	SCE			1.04 -0.13	-0.89	92
DPP	409	2H			DCM	TBAPF ₆	Ag/AgNO ₈	~	0.32*		-1.57*	364 (
DPP	I	4H			DCM	TBAPF ₆	Ag/AgNO ₈	1.40	1.11		-0.59	364
DPP	I	[(111)]			PhCN	TBAPF	SCE		0.55		-1.09	565 (

			Axial	Ligand				Porphyr	in Ox	Metal /	Porphy	rin Red	
Ring	Structur	e Metal	5	[7]	Solvent	Salt	RE	3 2	-	Other	-	2	Ref.
DPP	1	[(III)]			PhCN	TBAPF ₆	SCE	0.72	0.60				565 (DPV)
DPP	I	Cu(II)			PhCN	TBAP	SCE				-1.22 -1.	.61	62
DPP	I	Fe(III)	ū		DCM	TBAP	SCE	1.19	0.73				62
DPP	I	Fe(III)	ū		PhCN	TBAP	SCE			-0.35	-0.99 -1.	.76	62
DPP	I	Fe(III)	ū		PhCN	TBAP	SCE				-0.99 -1.	.76	62
DPP	I	Fe(III)	ū		Py	TBAP	SCE			-0.01	-1.58 -1.	.85	62
DPP	I	(III)	Ċ		DCM	TBAP	SCE		0.92				60
DPP	I	(III)	Ċ		PhCN	TBAP	SCE			-0.36	-1.55* -1.	.64* -1.89*	60
DPP	I	(III)	Ċ		PhCN	TBAP	SCE			-0.36			68
DPP	I	(III)	Ċ		PhCN	TBAP	SCE			-0.36			348
DPP	I	(III)	Ċ		Py	TBAP	SCE			-0.41	-1.24 -1.	.64	60
DPP	I	(III)	DMSO	DMSO	PhCN	TBAP	SCE			-0.40			348
DPP	I	(III)	Рy	Py	PhCN	TBAP	SCE			-0.41			348
DPP	I	Ni(II)			DCM	TBAP	SCE	0.83	0.75		-1.37		33
DPP	I	Ni(II)			DCM	TBAPF ₆	SCE	1.01	0.71		-1.42		33
DPP	I	Ni(II)			PhCN	TBAP	SCE				-1.24 -1.	.72	62
DPP	I	Sn(IV)	·HO	-HO	PhCN	TBAPF ₆	SCE		1.06		-0.90		331
DPP	I	V(IV)	02-		DCM	TBAP	SCE		0.79		-1.33 -1.	.66	476
DPP	I	Zn(II)			DCM	TBAPF ₆	Ag/AgNO) ₃ 0.40	0.29		-1.65		364
DPP	I	Zn(II)			PhCN	TBAP	SCE				-1.34 -1.	*02	62

			Axial L	-igand				Porphy	rin Ox	Metal /	Porphyrin Red	
Ring	Structure	e Metal	L1	L2	Solvent	Salt	BR	3 2	-	Other	1 2 3	Ref.
DPP	1	[(II)uZ]			PhCN	TBAPF ₆	SCE	0.51	0.35			565 (DPV)
DPP(CO ₂ ⁻)	410	2H			DCM	TBAPF ₆	Ag/AgNO ₃		0.26*		-1.55*	364 (DPV)
DPP(CO ₂ ⁻)	I	4H			DCM	TBAPF ₆	Ag/AgNO ₃		1.18		-0.55	364
DPP(CO ₂ H)	411	Zn(II)			DCM	TBAPF ₆	Ag/AgNO ₃	0.42	0.31		-1.61*	364 (DPV)
F ₁₂ DPP	412	Fe(III)	ū		DCM	TBAP	SCE	1.18	0.84			62
F ₁₂ DPP	412	Fe(III)	ū		PhCN	TBAP	SCE			-0.28*	-1.24* -1.58	62
F ₁₂ DPP	412	Fe(III)	ū		Py	TBAP	SCE			0.07	-1.44 -1.74	62
F ₁₂ DPP	I	Ni(II)			DCM	TBAP	SCE	0.89	0.89		-1.17	33
F ₁₂ DPP	I	Ni(II)			DCM	TBAPF ₆	SCE	1.08	0.88		-1.24	33
F₁6DPP(CO2H)	413	2H			PhCN	TBAPF	SCE		0.63		-0.93	331
F ₁₆ DPP(CO ₂ H)	I	$[2H]_2$			PhCN	TBAPF ₆	SCE				-0.34	331
F ₂₀ DPP	414	Fe(III)	ū		PhCN	TBAP	SCE			-0.10*	-1.14* -1.37	62
F ₂₀ DPP	414	Fe(III)	ū		Py	TBAP	SCE			0.45	-1.19 -1.53	62
F ₂₀ DPP	I	(III)uM	ū		DCM	TBAP	SCE	1.36*	1.11*			60
F ₂₀ DPP	I	(III)uM	ū		Py	TBAP	SCE			0.02	-0.88 -1.35	60
F ₂₀ DPP	I	Ni(II)			DCM	TBAP	SCE	1.25	1.25		-0.92	33
F ₂₀ DPP	I	Ni(II)			DCM	TBAPF ₆	SCE	1.52	1.30		-0.96	33
F ₂₀ DPP	I	Fe(III)	ū		DCM	TBAP	SCE	1.64	1.36			62
F ₂₀ DPP	I	Fe(III)	ū		PhCN	TBAP	SCE				-1.14* -1.37	62
F ₂₀ DPP	1	Fe(III)	Ċ		P	TBAP	SCE			0.45	-1.19 -1.53	62

			Axial Ligand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	e Metal	L1 L2	Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
F ₂₀ DPP	1	(III) Mn(III)	CI	PhCN	TBAP	SCE		0.04	-1.19* -1.31* -1.44*	60
F ₂₀ DPP	I	(III)uM	CI	PhCN	TBAP	SCE		0.04		68
F ₂₀ DPP	I	(III)uM	CI	PhCN	TBAP	SCE		-0.04		348
$F_{20}DPP$	ł	Ni(II)		PhCN	TBAP	SCE			-0.96 -1.45	62
F ₂₀ DPP	I	Ni(II)		Py	TBAP	SCE			-0.83 -1.39	62
$F_{20}DPP$	I	Zn(II)		PhCN	TBAP	SCE			-1.04 -1.43	62
F ₂₀ DPP	ł	(II)		Py	TBAP	SCE			-0.93 -1.38	62
F ₂₈ DPP	415	Fe(III)	CI.	DCM	TBAP	SCE	1.45			62
F ₂₈ DPP	415	Fe(III)	CI	PhCN	TBAP	SCE		-0.04*	-1.12* -1.28	62
F ₂₈ DPP	415	Fe(III)	CI	Py	TBAP	SCE		0.53	-1.07 -1.44	62
F ₂₈ DPP	I	(III)uM	CI.	DCM	TBAP	SCE	1.46*			60
F ₂₈ DPP	I	(III)uM	CI	PhCN	TBAP	SCE		0.10	-1.08* -1.23* -1.46*	60
F ₂₈ DPP	I	(III)uM	CI	Py	TBAP	SCE		0.02	-0.91 -1.35	60
F ₂₈ DPP	I	Ni(II)		DCM	TBAP	SCE	1.31 1.31		-0.80	33
F ₂₈ DPP	I	Ni(II)		DCM	TBAPF ₆	SCE	1.57 1.38		-0.82	33
F ₃₆ DPP	416	Fe(III)	CI	DCM	TBAP	SCE	1.40*			62
F ₃₆ DPP	416	Fe(III)	CI	PhCN	TBAP	SCE		0.12*	-0.88* -1.10	62
F ₃₆ DPP	416	Fe(III)	CI	Py	TBAP	SCE		0.58	-0.88 -1.27	62
F ₃₆ DPP	I	Ni(II)		DCM	TBAPF ₆	SCE	1.58 1.58		09.0-	33
F₄DPP	417	(III)uM	c	DCM	TBAP	SCE	0.95			60

5	
ר Figure	
uctures ii	
(see str	
ocycles.	
PP macı	
ituted D	
nd subst	
(DPP) a	
orphyrin	
ohenylpo	
Dodecal	
Table 7.	
Ц	

			Axial Ligand				Porphyr	in Ox	Metal /	Porphyrin Red	
Ring	Structure	e Metal	L1 L2	Solvent	Salt	RE	3 2	-	Other	1 2 3	Ref.
F₄DPP	417	(III)uM	CI	PhCN	TBAP	SCE			-0.33	-1.50* -1.60* -1.90*	60
F₄DPP	ł	Ni(II)		DCM	TBAP	SCE	0.86	0.86		-1.30	33
F₄DPP	ł	Fe(III)	CI	DCM	TBAP	SCE	1.16	0.78			62
F₄DPP	ł	Fe(III)	C	PhCN	TBAP	SCE			-0.34	-1.31* -1.66	62
F₄DPP	ł	Fe(III)	C	Py	TBAP	SCE			0.06	-1.50 -1.76	62
F₄DPP	ł	(III)uM	CI	Py	TBAP	SCE			-0.37	-1.18 -1.66*	60
F₄DPP	I	Ni(II)		DCM	TBAPF	SCE	1.06	0.81		-1.34	33
F _s DPP	418	Fe(III)	C.	DCM	TBAP	SCE	1.19	0.82			62
F ₈ DPP	418	Fe(III)	CI	PhCN	TBAP	SCE			-0.33*	-1.41* -1.63	62
F ₈ DPP	418	Fe(III)	C	Py	TBAP	SCE			0.09	-1.48 -1.75	62
F _s DPP	I	Ni(II)		DCM	TBAP	SCE	0.85	0.85		-1.26	33
F ₈ DPP	I	Ni(II)		DCM	TBAPF	SCE	1.04	0.84		-1.30	33
F ₈ DPP (meso)	419	Fe(III)	C	DCM	TBAP	SCE	1.41	1.06			62
F ₈ DPP (meso)	419	Fe(III)	CI	PhCN	TBAP	SCE			-0.27*	-1.42* -1.67	62
F ₈ DPP (meso)	419	Fe(III)	ū	Py	TBAP	SCE			0.12	-1.49 -1.76	62
F ₈ DPP (meso)	I	(III)uM	C	DCM	TBAP	SCE		1.14			60
F ₈ DPP (meso)	I	(III)uM	CI	PhCN	TBAP	SCE			-0.27	-1.30* -1.51* -1.67*	60
F _s DPP (meso)	I	(III)uM	CI	Py	TBAP	SCE			-0.28	-1.16 -1.58	60
F ₈ DPP (meso)	I	Ni(II)		DCM	TBAP	SCE	1.16	1.02		-1.19	33
F ₈ DPP (meso)	I	Ni(II)		DCM	TBAPF	SCE	1.34	0.96		-1.26	33

								1	.						ŀ	
			Axial	Ligand				Por	phyrin	ŏ	Metal	_	Porph	yrin R	fed	
Ring	Structure	e Metal	L1	L2	Solvent	Salt	RE	ю	5	.	Other			5	ო	Ref.
(NO ₂) ₄ DPP	420	Ni(II)			DCM	TBAPF ₆	SCE	-	.16	0.98						33
(NO ₂)4DPP	420	Ni(II)			DCM	TBAP	SCE	0	.98	0.98			1.13*			33
(OCH ₃) ₂₀ DPP	421	Ni(II)			DCM	TBAP	SCE	0	.87	0.75			1.38			33
(OCH ₃) ₂₀ DPP	421	Ni(II)			DCM	TBAPF ₆	SCE	0	.91	0.73			1.38			33
(OCH₃)₄DPP (meso)	422	Sn(IV)	ū	ū	PhCN	TBAPF ₆	SCE	-	1	0.86		т	- 76.0	1.24		308
(OCH₃)₄DPP (meso)-PC	M 423	Sn(IV)	ū	ū	PhCN	TBAPF ₆	SCE	-	1	0.86	-0.50 -1.	05 -	0.97			308
(OCH₃)₄DPP (meso)-PC	۲ ۲	Sn(IV)	CH ₃ O ⁻	CH ₃ O ⁻	PhCN	TBAPF ₆	SCE			0.69	-0.48 -1.	4	1.43			308

										1	· (·	
		Axi	al Ligan	q			Porphyrir	XO L	Metal /	юч	rphyrin Ked	1
Ring	Structure	Metal L	1 L2	Solvent	Salt	RE	3 2	~	Other	~	2 3	Ref.
cis-(Q) ₂ T(3',5'-D-tBuP)P	424	2H		DCM	TBAP	SCE		1.00*	-1.60*, -1.78*	-0.97	-1.23	24
cis-(Q) ₂ T(3',5'-D-tBuP)P	I	Ag(II)		DCM	TBAP	SCE		1.40	0.75			22
cis-(Q) ₂ T(3',5'-D-tBuP)P	I	Ag(II)		Py	TBAP	SCE			0.80, -0.65	-1.47		22
cis-(Q) ₂ T(3',5'-D-tBuP)P	I	Co(III) CI-		PhCN	TBAP	SCE	1.10	0.85	-0.36*, -0.64	-1.65	-1.88*	9
cis-(Q) ₂ T(3',5'-D-tBuP)P	I	Cu(II)		DCM	TBAP	SCE	1.03	0.92	-1.68*, -1.96*	-1.13	-1.58*	24
cis-(Q) ₂ T(3',5'-D-tBuP)P	I	Ni(II)		DCM	TBAP	SCE		0.93	-1.76*,	-1.07	-1.64*	24
cis-(Q) ₂ T(3',5'-D-tBuP)P	I	Pd(II)		DCM	TBAP	SCE	1.38	0.99	-1.66*, -1.90*	-1.14	-1.56*	24
cis-(Q) ₂ T(3',5'-D-tBuP)P	I	Zn(II)		DCM	TBAP	SCE	1.08*	0.77	-1.73*, -1.91*	-1.29	-1.58*	24
(MClip-Q)T(3',5'-D-tBuP)P	425	2H		DCM	TBAPF ₆	Fc/Fc⁺		0.40		-1.61	-1.79	273
(MClip-Q)T(3',5'-D-tBuP)P	425	2H		DCM	TBAPF ₆	Fc/Fc⁺		0.42	-1.86	-1.44	-1.67	273
(MClip-Q)T(3',5'-D-tBuP)P	I	Au(III)		DCM	TBAPF ₆	Fc/Fc⁺			-0.91			273
(MClip-Q)T(3',5'-D-tBuP)P	I	Cu(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.52	-2.02	-1.62	-2.00	273
(MClip-Q)T(3',5'-D-tBuP)P	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0:30		-1.69		273
(MClip-Q)T(3',5'-D-tBuP)P	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.30		-1.78		273
(MClip-Q)T(3',5'-D-tBuP)P	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.30		-0.93		273
(MClip-Q)T(3',5'-D-tBuP)P	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.28		-2.06		273
(MClip-Q)T(3',5'-D-tBuP)P	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.56	0.29		-2.04		273
(MClip-Q)T(3',5'-D-tBuP)P	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.56		-1.77		273
(NQ)T(3',5'-D-tBuP)P	426	2H		DCM	TBAP	SCE		0.98*		-1.08	-1.19	447
(NQ)T(3',5'-D-tBuP)P	ł	Zn(II)		DCM	TBAP	SCE	1.04*	0.72*		-1.11	-1.40*	447

			pue			Pornhvrir	Ŏ	Matal /	Porc	hvrin Red	
Ring Stru	cture	Metal L1 L2	Solvent	Salt	RE	3 2	-	Other		2 3	Ref.
(Q(CN)(CO ₂ H))TMP	427	Zn(II)	DCM	TBAPF ₆	NHE		1.06		-0.54		294
(Q(CO2H))T(3',5'-D-tBuP)P(CO2H) 428	Zn(II)	DCM	TBAPF ₆	NHE		0.97		-1.14		294
(Q(CO ₂ H))TMP	429	Zn(II)	DCM	TBAPF ₆	NHE		0.98		-1.13		294
Q(NO ₂)(NH ₂)T(3',5'-D-tBuP)P	430	2H	DCM	TBAP	SCE	1.50*	1.00*	-0.82	-1.06	-1.59* -1.90*	27
Q(NO ₂)(NH ₂)T(3',5'-D-tBuP)P	ı	Cu(II)	DCM	TBAP	SCE	1.08	0.93	-0.78	-1.17	-1.59* -1.67*	27
Q(NO ₂)(NH ₂)T(3',5'-D-tBuP)P	ł	Cu(II)	DCM	TBAP	SCE	1.21	1.04	-0.84	-1.18	-1.72*	27
Q(NO ₂)(NH ₂)T(3',5'-D-tBuP)P	1	Pd(II)	DCM	TBAP	SCE	1.14	1.04	-0.78	-1.18	-1.47* -1.67*	27
Q(NO ₂)(NH ₂)T(3',5'-D-tBuP)P	1	Zn(II)	DCM	TBAP	SCE	0.95	0.74	-0.81	-1.20*	-1.41* -1.71*	27
Q(NO ₂) ₂ T(3',5'-D-tBuP)P	431	2H	DCM	TBAP	SCE	1.39*	1.09	-0.68 -1.48*	-1.03	-1.36*	27
Q(NO ₂) ₂ T(3',5'-D-tBuP)P	1	Cu(II)	DCM	TBAP	SCE	1.14	1.04	-0.64 -1.58*	-1.05	-1.44*	27
Q(NO ₂) ₂ T(3',5'-D-tBuP)P	ł	Ni(II)	DCM	TBAP	SCE	1.08	1.08	-0.65 -1.68*	-1.07	-1.46	27
Q(NO ₂) ₂ T(3',5'-D-tBuP)P	ł	Pd(II)	DCM	TBAP	SCE	1.48*	1.20	-0.66 -1.70*	-1.08	-1.40	27
Q(NO ₂) ₂ T(3',5'-D-tBuP)P	ı	Zn(II)	DCM	TBAP	SCE	1.17*	0.86	-0.70 -1.66*	-1.13	-1.66*	27
Q(NO ₂)T(3',5'-D-tBuP)P	432	2H	DCM	TBAP	SCE		1.06*	-0.89	-1.10	-1.50 -1.94*	27
Q(NO ₂)T(3',5'-D-tBuP)P	ı	Ni(II)	DCM	TBAPF ₆	Ag/AgCI	1.23	1.07		-1.02	-1.34	550
Q(NO ₂)T(3',5'-D-tBuP)P	1	Zn(II)	DCM	TBAP	SCE	1.03	0.80	-0.88	-1.20*	-1.40*	27
(Q(OCH ₃) ₂)T(3',5'-D-tBuP)P	433	2H	DCM	TBAP	SCE	1.36*	1.02*		-1.18	-1.42	27
(Q(OCH ₃) ₂)T(3',5'-D-tBuP)P	433	2H	DCM	TBAPF ₆	Fc/Fc⁺		0.32		-0.78		273
(Q(OCH ₃) ₂)T(3',5'-D-tBuP)P	ı	Cu(II)	DCM	TBAP	SCE	1.14	0.94		-1.22	-1.62	27
(Q(OCH ₃) ₂)T(3',5'-D-tBuP)P	ı	Zn(II)	DCM	TBAP	SCE	0.98	0.75		-1.34	-1.70	27

						Dorohuni	Į	/ I - T - I - V		bod aim da	
				±	L		<u>5</u> ,	Other	2	pilyilli reu	
KING	Structure	Metal L1 L2	Solvent	Salt	Ц	3	. –	Oniei	. –	2 3	Чет.
(Q(OCH ₃) ₂)T(3',5'-D-tBuP)F	I	Zn(II)	DCM	TBAPF ₆	Fc/Fc⁺		0.57	-1.75, -1.86	-1.45	-1.67	273
(Q)T(3',5'-D-tBuP)P	434	2H	DCM	TBAP	SCE	0.99	0.99		-1.13	-1.33	38
(Q)T(3',5'-D-tBuP)P	434	2H	PhCN	TBAP	SCE	1.06	1.06		-1.08	-1.31	38
(Q)T(3',5'-D-tBuP)P	434	2H	Py	TBAP	SCE				-1.05	-1.27	38
(Q)T(3',5'-D-tBuP)P	I	Ag(II)	DCM	TBAP	SCE		1.50	0.67			22
(Q)T(3',5'-D-tBuP)P	ł	Ag(II)	Py	TBAP	SCE			0.74, -0.78	-1.59		22
(Q)T(3',5'-D-tBuP)P	ł	Au(II)	DCM	TBAP	SCE				-0.97	-1.82*	571
(Q)T(3',5'-D-tBuP)P	ł	Au(II)	PhCN	TBAP	SCE				-1.11	-1.83	571
(Q)T(3',5'-D-tBuP)P	ł	Au(III)	DCM	TBAP	SCE		1.54	-0.47	-0.97	-1.80*	231
(Q)T(3',5'-D-tBuP)P	I	Au(III)	PhCN	TBACI (0.05M)	Ag/AgCI		1.73	-0.35			63
(Q)T(3',5'-D-tBuP)P	I	Au(III)	PhCN	TBAP	SCE		1.64	-0.39	-0.88		18
(Q)T(3',5'-D-tBuP)P	I	Au(III)	PhCN	TBAP	SCE			-0.39	-0.88	-1.81	231
(Q)T(3',5'-D-tBuP)P	ł	Au(III)	PhCN	TBAP	SCE			-0.36*			571
(Q)T(3',5'-D-tBuP)P	I	Au(III)	PhCN	TBAP	SCE			-0.60			571
(Q)T(3',5'-D-tBuP)P	I	Au(III)	PhCN	TBAPF ₆	Ag/AgCI		1.68	-0.40			63
(Q)T(3',5'-D-tBuP)P	I	Au(III)	PhCN	TBAPF ₆	Ag/AgCI	1.81	1.68	-0.40	-0.90	-1.65	246
(Q)T(3',5'-D-tBuP)P	I	Au(III)	PhCN	TBAPF ₆	SCE			-0.45	-0.95	-1.63	338
(Q)T(3',5'-D-tBuP)P	I	Au(III)	PhCN	TBAPF ₆	SCE		0.22	-0.67	-1.18	-1.63	338
(Q)T(3',5'-D-tBuP)P	I	Au(III)	Py	TBAP	SCE			-0.35	-0.87	-1.69	231
(Q)T(3',5'-D-tBuP)P	I	Au(III)	THF	TBACI (0.05M)	Ag/AgCI		1.77*	-0.20, -2.22, -2.71	-0.88	-1.65	246

							į				
		Axial Liç	jand			Porpnyri	Ň	Metal /	Ъог	рпугіп кеа	
Ring	Structure	Metal L1 L	2 Solvent	Salt	RE	3 2	-	Other	-	2 3	Ref.
(Q)T(3',5'-D-tBuP)P	1	Au(III)	THF	TBAP (0.4M)	SCE			-0.25	-0.87	-1.67	231
(Q)T(3',5'-D-tBuP)P	I	Au(III)	Tol.	THAP (0.6M)	SCE			-0.30	-0.91	-1.75	231
(Q)T(3',5'-D-tBuP)P	I	Au(III)	Tol.	THAPF ₆ (0.6M)	Ag/AgCI		1.74*	-0.18	-0.85	-1.68	246
(Q)T(3',5'-D-tBuP)P	I	Au(III)	Tol. (40°C)	TBACI (0.05M)	Ag/AgCI		1.76	-0.18			63
(Q)T(3',5'-D-tBuP)P	I	Au(III)	Tol. (40°C)	THAPF ₆ (0.6M)	Ag/AgCI		1.74	-0.18			63
(Q)T(3',5'-D-tBuP)P	I	Au(III)	Tol. (45°C)	THAP (0.6M)	SCE			-0.30	-0.91	-1.75	18
(Q)T(3',5'-D-tBuP)P	I	Co(II)	PhCN	TBAP	SCE	1.19	1.19	0.75*, -0.01*	-0.70	-1.82*	9
(Q)T(3',5'-D-tBuP)P	I	Cu(II)	DCM	TBAP	SCE	1.30*	0.97		-1.19	-1.72*	38
(Q)T(3',5'-D-tBuP)P	I	Cu(II)	PhCN	TBAP	SCE	1.14	0.98		-1.09	-1.55	38
(Q)T(3',5'-D-tBuP)P	I	Cu(II)	PhCN	TBAP	SCE				-1.31	-1.75	25
(Q)T(3',5'-D-tBuP)P	I	Cu(II)	Py	TBAP	SCE				-1.10	-1.51	38
(Q)T(3',5'-D-tBuP)P	I	Ni(II)	DCM	TBAP	SCE	1.34	0.95		-1.12	-1.59*	27
(Q)T(3',5'-D-tBuP)P	I	Ni(II)	DCM	TBAP	SCE	0.95	0.95		-1.12	-1.59*	38
(Q)T(3',5'-D-tBuP)P	I	Ni(II)	PhCN	TBAP	SCE	1.03	1.03		-1.08	-1.56	38
(Q)T(3',5'-D-tBuP)P	I	Ni(II)	PhCN	TBAP	SCE				-1.31	-1.81	25
(Q)T(3',5'-D-tBuP)P	I	Ni(II)	Py	TBAP	SCE				-1.02	-1.48	38
(Q)T(3',5'-D-tBuP)P	I	Pd(II)	DCM	TBAP	SCE	1.46*	1.06		-1.16	-1.62*	38
(Q)T(3',5'-D-tBuP)P	I	Pd(II)	PhCN	TBAP	SCE		1.11		-1.09	-1.56	38
(Q)T(3',5'-D-tBuP)P	I	Pd(II)	Py	TBAP	SCE				-1.07	-1.52	38
(Q)T(3',5'-D-tBuP)P	ł	Sn(IV) CI- CI	DCM	TBAP	SCE		1.42		-0.67	-1.15*	25

					 7			Dornhvri	è			nhvrin Rad	
Ring	Structure	Metal.			- Solvent	Salt	RE	3 2	5 -	Other		2 3	- Ref.
5			i					,				I	
(Q)T(3',5'-D-tBuP)P	I	Sn(IV)	ö	ū	DCM(-75°C)	TBAP	SCE		1.39		-0.59	-1.03	25
(Q)T(3',5'-D-tBuP)P	I	Sn(IV)	HO	-HO	DCM	TBAP	SCE	1.56*	1.37		-0.84	-1.27	25
(Q)T(3',5'-D-tBuP)P	I	(II)			DCM	TBAP	SCE	1.10*	0.72		-1.31	-1.75*	38
(Q)T(3',5'-D-tBuP)P	I	Zn(II)			PhCN	TBACI (0.05M)	Ag/AgCI		0.65		-1.21		63
(Q)T(3',5'-D-tBuP)P	I	Zn(II)			PhCN	TBAP	SCE	1.04	0.84		-1.19	-1.55	18
(Q)T(3',5'-D-tBuP)P	ł	Zn(II)			PhCN	TBAP	SCE	1.04	0.84		-1.19	-1.58*	38
(Q)T(3',5'-D-tBuP)P	ł	Zn(II)			PhCN	TBAPF ₆	Ag/AgCI		0.79		-1.23		63
(Q)T(3',5'-D-tBuP)P	I	Zn(II)			PhCN	TBAPF ₆	Ag/AgCI	1.07	0.79		-1.23	-1.57	246
(Q)T(3',5'-D-tBuP)P	I	(II)			PhCN	TBAPF ₆	SCE	1.04	0.78				338
(Q)T(3',5'-D-tBuP)P	I	Zn(II)			PhCN	TBAPF ₆	SCE	1.06 0.82*	0.02*		-0.24*		338
(Q)T(3',5'-D-tBuP)P	I	(II)			PhCN	TBAPF ₆	SCE	1.11	0.82*		-0.31*		338
(Q)T(3',5'-D-tBuP)P	I	(II)			PhCN	TBAPF ₆	Ag/AgCI		0.78				63
(Q)T(3',5'-D-tBuP)P	I	(II)			PhCN	TBAPF ₆	Ag/AgCI		0.72				63
(Q)T(3',5'-D-tBuP)P	I	Zn(II)			PhCN	TBAPF ₆	SCE	1.06 0.82	0.02*		-0.24*		338
(Q)T(3',5'-D-tBuP)P	I	(II)			Py	TBAP	SCE				-1.20	-1.70*	38
(Q)T(3',5'-D-tBuP)P	I	(II)			THF	TBACI (0.05M)	Ag/AgCI	1.18*	1.02	-2.27, -2.95	-1.18	-1.55	246
(Q)T(3',5'-D-tBuP)P	I	(II)			Tol.	THAPF ₆ (0.6M)	Ag/AgCI		1.02		-1.16	-1.55	246
(Q)T(3',5'-D-tBuP)P	I	(II)			Tol. (40°C)	TBACI (0.05M)	Ag/AgCI		0.65		-1.19		63
(Q)T(3',5'-D-tBuP)P	I	Zn(II)			Tol. (40°C)	THAPF ₆ (0.6M)	Ag/AgCI		1.02		-1.16		63
(Q)T(3',5'-D-tBuP)P	I	Zn(II)			Tol. (45°C)	THAP (0.6M)	SCE	1.03	0.83		-1.14	-1.56	18

			.									I
		Axial Lig	and		- 1	orpnyrir	Ň	Metal /	Ъ	pnyrin	рех	
Ring	Structure	Metal L1 L2	Solvent	Salt	RE	3 2		Other	٢	2	3	Ref.
(Q)T(3',5'-D-tBuP)P(NO ₂)	435	2H	DCM	TBAP	SCE	1.39	1.08		-0.84	-0.94	-1.88*	27
(Q)T(3',5'-D-tBuP)P(NO ₂)	I	Cu(II)	DCM	TBAP	SCE	1.20	1.03		-0.92	-1.19	-1.92*	27
(Q)T(3',5'-D-tBuP)P(NO ₂)	I	Pd(II)	DCM	TBAP	SCE	1.56*	1.22		-0.93	-1.22	-1.90*	27
(Q)T(3',5'-D-tBuP)P(NO ₂)	I	Zn(II)	DCM	TBAP	SCE	1.04	0.84		-0.98	-1.16		27
(QBr)T(3',5'-D-tBuP)P	436	2H	DCM	TBAP	SCE	1.38*	1.05*		-1.12	-1.30		27
(QBr)T(3',5'-D-tBuP)P	I	Cu(II)	DCM	TBAP	SCE	1.15	1.00	.1.84*	-1.14	-1.52		27
(QBr)T(3',5'-D-tBuP)P	I	Zn(II)	DCM	TBAP	SCE	0.99	0.76		-1.23	-1.66		27
(QCl ₂)T(3',5'-D-tBuP)P	437	2H	DCM	TBAP	SCE	1.40*	1.07*		-1.10	-1.25		27
(QCl ₂)T(3',5'-D-tBuP)P	I	Cu(II)	DCM	TBAP	SCE	1.15	1.02		-1.11	-1.49		27
(QCl ₂)T(3',5'-D-tBuP)P	I	Ni(II)	DCM	TBAP	SCE	1.35	0.97		-1.06	-1.43		27
(QCl ₂)T(3',5'-D-tBuP)P	I	Zn(II)	DCM	TBAP	SCE	1.13*	0.77		-1.20	-1.59		27
(QNH ₂)T(3',5'-D-tBuP)P	438	2H	DCM	TBAP	SCE	1.23*	1.03*		-1.12	-1.32		27
(QNH ₂)T(3',5'-D-tBuP)P	I	Cu(II)	DCM	TBAP	SCE	1.14	0.92* -	.1.84*	-1.17	-1.56		27
(QNH ₂)T(3',5'-D-tBuP)P	I	Zn(II)	DCM	TBAP	SCE	1.02*	0.78		-1.31	-1.61		27
(QNO ₂)T(3',5'-D-tBuP)P	439	2H	DCM	TBAP	SCE	1.09	1.02		-1.06	-1.19	-1.66*	27
(QNO ₂)T(3',5'-D-tBuP)P	I	Cu(II)	DCM	TBAP	SCE	1.16	1.02		-1.03	-1.38*	-1.74*	27
(QNO ₂)T(3',5'-D-tBuP)P	I	Zn(II)	DCM	TBAP	SCE	1.01	0.79		-1.08	-1.32*	-1.62*	27
trans-(Q) ₂ T(3',5'-D-tBuP)P	440	2H	DCM	TBAP	SCE		1.02*		-1.03	-1.32*		24
trans-(Q) ₂ T(3',5'-D-tBuP)P	440	2H	THF	TBACI (0.05M)	Ag/AgCI		1.19* -	.2.17, -2.67	-0.92	-1.24*		246
trans-(Q) ₂ T(3',5'-D-tBuP)P	440	2H	Tol.	THAPF	Ag/AgCI		1.17* -	2.12, -2.38	-0.85	-1.15*		246

		4	Axial Li	igand				Porpt) Urin C	č	Metal /	Por	rphyrir	n Red	
Ring	Structure	Metal ⁻		_2 Solve	ent	Salt	RE	ю	5		Other	-	2	с	Ref.
trans-(Q) ₂ T(3',5'-D-tBuP)P	440	2H		Tol. (4(0°C)	TBACI (0.05M)	Ag/AgCI		-	.19		-0.87			63
trans-(Q) ₂ T(3',5'-D-tBuP)P	440	2H		Tol. (4(0°C)	THAPF ₆ (0.6M)	Ag/AgCI		-	.17		-0.85			63
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Ag(II)		DCM		TBAP	SCE		-	.40	0.77				22
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Ag(II)		Py		TBAP	SCE				0.81, -0.60	-1.54			22
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Au(II)		DCM		TBAP	SCE					-1.19			571
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Au(II)		DCM		TBAP	SCE					-0.84	-1.64		571
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Au(III)		DCM		TBAP	SCE				-0.29*				571
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Au(III)		DCM		TBAP	SCE				-0.48				571
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Au(III)		DCM		TBAP	SCE				-0.72				571
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Co(III)	ū	PhCN		TBAP	SCE	,	08 0	- 06	-0.24*, -0.63	-1.61	-1.91*		9
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Cu(II)		DCM		TBAP	SCE	,	04	.91		-0.99	-1.40		24
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Ni(II)		DCM		TBAP	SCE		0	.92		-1.00	-1.40		24
trans- $(Q)_2T(3',5'-D-tBuP)P$	I	Pd(II)		DCM		TBAP	SCE	, 	41	01		-1.00	-1.43		24
trans-(Q) ₂ T(3',5'-D-tBuP)P	I	Zn(II)		DCM		TBAP	SCE	0.	93 0	.76		-1.14	-1.42		24

		A	xial Liganc				Por	phyrin (ŏ	Metal /	Por	phyrin R	led	
Ring St	ructure	Metal [–]	L1 L2	- Solvent	Salt	RE	ო	7	-	Other		2	- 	Ref.
(1-(CH ₃)Im)T(4'-tBuP)P	441	Ni(II)		DCM	TBAPF ₆	Fc/Fc ⁺		0.73	0.43		-1.76	-2.22		291
AD(BEM)P	442	2H		PhCN	TBAPF ₆	Fc/Fc ⁺			0.21		-1.89			332
AFP	443	Zn(II)		THF	$TBAPF_{\scriptscriptstyle 6}$	Fc/Fc ⁺			0.02		-1.23			134
AZFP	444	Ni(II)		PhCN	NR	Fc/Fc ⁺		0.55	0.38		-1.20	-1.58		517
BEDKP-1	445	Ni(II)		DCM	TBAPF ₆	Fc/Fc ⁺		0.83	0.40	-1.37 -1.67	-2.01	-2.23		219
BEDKP-1	446	Ni(II)		DCM	TBAPF ₆	Fc/Fc ⁺		0.69	0.39	-1.21 -1.52	-2.00	-2.19		219
BEDKP-3	447	Ni(II)		DCM	$TBAPF_{\mathrm{6}}$	Fc/Fc ⁺	1.26*	0.81	0.40	-1.15 -1.49	-2.37*			219
BEDKP-4	448	Ni(II)		DCM	$TBAPF_{\scriptscriptstyle 6}$	Fc/Fc ⁺		0.69	0.38	-1.16 -1.51	-2.38*			219
BEDKP-5	449	Ni(II)		DCM	$TBAPF_{\scriptscriptstyle 6}$	Fc/Fc⁺	0.83	0.52	0.41	-1.31 -1.66	-2.41			219
cis-BCDP	450	Zn(II)		DCM	$TBABF_4$	Fc/Fc ⁺		0.53	0.20					137
DBP	451	Zn(II)		DCM	$TBABF_4$	Fc/Fc ⁺		0.42	0.14					137
(DFEA)TPP	452	2H		DCM	TBAPF ₆	Fc/Fc ⁺		0.83	0.53		-1.11	-1.46		314
(DFEA)TPP	ł	Cu(II)		DCM	TBAPF ₆	Fc/Fc ⁺	0.81	0.61	0.38		-1.17	-1.55		314
(DFEA)TPP	ł	Ni(II)		DCM	$TBAPF_{6}$	Fc/Fc ⁺	1.21*	0.58	0.42		-1.20	-1.60		314
(DFEA)TPP	ł	Pd(II)		DCM	TBAPF ₆	Fc/Fc ⁺	1.03*	0.68	0.44		-1.18	-1.58		314
DK-D(BEM)P	453	2H		PhCN	$TBAPF_{\mathrm{6}}$	Fc/Fc ⁺			0.36		-1.59	-1.89		332
DK-D(BEM)P	ł	Pd(II)		PhCN	$TBAPF_{\scriptscriptstyle 6}$	Fc/Fc ⁺		0.35	0.20		-1.50	-2.00		332
DKP-1	454	Ni(II)		DCM	TBAPF	Fc/Fc ⁺		1.12*	0.71	-0.99 -1.33	-1.84	-2.12		219
DKP-2	455	Ni(II)		DCM	TBAPF ₆	Fc/Fc ⁺	1.05	0.73	0.64	-1.00 -1.35	-1.77	-2.15		219
DKP-3	456	Ni(II)		DCM	TBAPF	Fc/Fc⁺		1.12*	0.70	-0.78 -1.17*	-1.73	-2.18		219

		IcivV	Pueri				Por	hvrin	č	NACtol /	Por	nhvrin Re		
		AMAI	LIYAIIU				5		5	Metal /	5		,	
Ring	Structure	Metal L1	L2	Solvent	Salt	RE	3	2	٢	Other	-	2	R	ef.
DKP-4	457	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		1.08*	0.72	-1.01 -1.32	-1.82			219
DKP-5	458	Ni(II)		DCM	TBAPF	Fc/Fc⁺	1.04	0.75	0.64	-0.88 -1.16				219
DKP-6	459	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺			0.94	-0.95 -1.29	-2.11			219
DOH-D(BEM)P	460	2H		PhCN	TBAPF	Fc/Fc⁺			0.29		-1.89		.,	332
DOH-D(BEM)P	I	Pd(II)		PhCN	TBAPF ₆	Fc/Fc⁺		0.28	0.15		-1.98		.,	332
EA-TPP	461	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.63	0.32	1.20	-1.64	-2.04		222
EAA-TPP	462	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.62	0.32	1.18	-1.62	-2.05*		222
EADTKP-1	463	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.97*	0.62*	0.37*	-1.17 -1.40	-1.74	-2.13*		219
EADTKP-2	464	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.81	0.66*	0.39*	-1.05 -1.33	-1.75	-2.11*		219
EADTKP-3	465	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.89	0.65*	0.42*	-0.96 -1.23	-2.00	-2.15*		219
EADTKP-4	466	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	1.00*	0.65*	0.36*	-0.95 -1.24	-2.04	-2.15*		219
EAK-P	467	2H		DCM	TBAPF	Fc/Fc⁺		0.72	0.46		-1.36	-1.65		223
EAK-P	I	Cu(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.71	0.39		-1.51	-1.85		223
EAK-P	I	Ni(II)		DCM	TBAPF	Fc/Fc⁺		0.79	0.45		-1.44	-1.80		223
EAK-P	I	Pd(II)		DCM	TBAPF ₆	Fc/Fc⁺			0.46		-1.45			223
EAK-TPP	468	Cu(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.76	0.46		-1.38	-1.76		223
EAK-TPP	I	Ni(II)		DCM	TBAPF	Fc/Fc⁺		0.78	0.37		-1.44	-1.79		222
EAK-TPP	I	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.95	09.0		-1.26	-1.63		223
EATK-TPP	469	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.80	0.44*		-1.26	-1.61		222
EATKP-2	470	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.87*	0.72*	0.37*	-1.07 -1.40	-1.87*	-2.25*		219

				-					Ż			1	700	
			Axial Liga	and			JOL	pnyrın	Ň	Metal /	юг	pnyrin r	tea	
Ring	Structure	Metal	L1 L2	2 Solvent	Salt	RE	3	2	-	Other	-	2	3	Ref.
EATKP-3	471	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.80	0.68	0.39*	-1.15 -1.38	-1.91	-2.19		219
EATKP-4	472	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.76	0.65	0.41*	-1.05 -1.35	-2.19			219
EATKP-5	473	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.84	0.69	0.39*	-1.00 -1.32	-2.23			219
ETKP-1	474	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.68	0.38*	-1.25 -1.52	-1.92*	-2.20*		219
(lm)T(4'-tBuP)P	475	2H		DCM	TBAPF ₆	Fc/Fc⁺		0.69	0.47		-1.65	-2.05*		291
(lm)T(4'-tBuP)P	I	Cu(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.77	0.44		-1.74	-2.14		291
(lm)T(4'-tBuP)P	I	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.65	0.44		-1.73	-2.27		291
(lm)T(4'-tBuP)P	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.61	0.28		-1.81	-2.15		291
[(lm)T(4'-tBuP)P] ⁺	476	2H		DCM	TBAPF ₆	Fc/Fc⁺		0.75	0.57	0.38* 0.00*	-1.48	-1.73		291
[(lm)T(4'-tBuP)P] ⁺	I	Cu(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.90	0.54	0.35* 0.00*	-1.59	-1.99		291
[(lm)T(4'-tBuP)P] ⁺	I	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺			0.64	0.33 -0.01	-1.54	-2.03* -	2.18	291
[(lm)T(4'-tBuP)P] ⁺	I	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺			0.66		-1.56	-2.01		291
[(lm)T(4'-tBuP)P] ⁺	I	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.66	0.36	0.28* -0.04*	-1.69	-1.93* -	2.24	291
(МРТТЕ)ТРР	477	2H		THF	TBAPF ₆	Fc/Fc⁺				0.50 0.28	-1.34	-1.64		244
NF-T(3',5'-CF ₃ P)P	478	Re(I)	00	DCM	TBAPF ₆	Fc/Fc⁺			0.75		-0.91	-1.41		430
NF-T(3',5'-D-tBuP)P	479	Re(I)	00	DCM	TBAPF ₆	Fc/Fc⁺			0.33		-1.31	-1.73		430
NF-T(4'-CF ₃ P)P	480	Re(I)	CO	DCM	TBAPF ₆	Fc/Fc⁺			0.61		-1.08	-1.55		430
NF-T(4'-CH ₃ P)P	481	Re(I)	CO	DCM	TBAPF ₆	Fc/Fc⁺			0.36		-1.26	-1.70		430
NF-T(4'-CIP)P	482	Re(I)	CO	DCM	TBAPF ₆	Fc/Fc⁺			0.50		-1.15	-1.60		430
NF-T(4'-CO ₂ CH ₃ P)P	483	Re(I)	00	DCM	TBAPF	Fc/Fc⁺			0.56		-1.08	-1.51		430

			Axial Ligar	p			Porphyrin Ox	Metal /	Por	phyrin Red	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2 1	Other	-	2 3	- Ref.
NF-T(4'-NO ₂ P)P	484	Re(I)	со	DCM	TBAPF ₆	Fc/Fc⁺	0.65		-0.95	-1.30	430
NF-T(4'-OCH ₃ P)P	485	Re(I)	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.33		-1.21	-1.65	430
NF-T(4'-tBuP)P	486	Re(I)	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.35		-1.28	-1.70	430
NF-TPP	487	(I)nM	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.34		-1.32	-1.76	373
NF-TPP	ł	Re(I)	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.47		-1.21	-1.67	430
NF-TPP(Benzoyl)	488	(I)nM	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.42		-1.25	-1.67	373
NF-TPP(Benzoyl)	ł	Re(I)	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.50		-1.15	-1.59	430
NF-TPP(Benzyl)	489	(I)nM	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.29		-1.38	-1.83	373
NF-TPP(Br)	490	Mn(I)	СО	DCM	TBAPF	Fc/Fc⁺	0.37		-1.25	-1.66	373
NF-TPP(C ₃ H ₇)	491	Mn(I)	СО	DCM	TBAPF ₆	Fc/Fc⁺	0.28		-1.36	-1.80	373
NF-TPP(CH ₃)	492	Mn(I)	СО	DCM	TBAPF ₆	Fc/Fc ⁺	0.24		-1.40	-1.80	373
NF-TPP(CHO)	493	Mn(I)	СО	DCM	TBAPF ₆	Fc/Fc ⁺	0.52		-1.15	-1.54	373
NF-TPP(CHO)	I	Re(I)	СО	DCM	TBAPF ₆	Fc/Fc⁺	0.60		-1.06	-1.46	430
NF-TPP(CI)	494	Mn(I)	СО	DCM	TBAPF ₆	Fc/Fc*	0.35		-1.27	-1.68	373
NF-TPP(CN)	495	Re(I)	СО	DCM	TBAPF ₆	Fc/Fc⁺	0.69		-0.99	-1.43	430
NF-TPP(iBu)	496	Mn(I)	СО	DCM	TBAPF ₆	Fc/Fc ⁺	0.25		-1.41	-1.86	373
NF-TPP(iPr)	497	Mn(I)	СО	DCM	TBAPF	Fc/Fc ⁺	0.28		-1.42	-1.85	373
NF-TPP(NO ₂)	498	Mn(I)	СО	DCM	TBAPF ₆	Fc/Fc ⁺	0.66		-1.05	-1.43	373
NF-TPP(NO ₂)	I	Re(I)	СО	DCM	TBAPF ₆	Fc/Fc⁺	0.71		-0.95	-1.34	430
(PhIm) ₂ T(3',5'-D-tBuP)F	499	Zn(II)		DCB	TBAPF ₆	Ag/AgNO3	0.77				334

			Vxial Lige	and			Por	phyrin	ð	Metal /	Po	rphyrin	Red	
Ring St	ructure	Metal -		2 Solven	t Salt	RE	с	2	-	Other	←	2	с	Ref.
(PhIm) ₂ T(3',5'-D-tBuP)P	499	Zn(II)		PhCN	TBAPF ₆	Ag/AgNO ₃			0.76					334
d(д-IMЧ)	500	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.77	0.43	0.20		-1.15			311
PMI)P	501	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.77	0.37		-1.15			311
РQ-ТРР	502	2H		DCM	TBAPF ₆	Fc/Fc⁺		0.47	0.17		-1.65	-1.98		559
РQ-ТРР	ł	Cu(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.53	0.14		-1.79	-2.15		559
РQ-ТРР	ł	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	1.15	0.57	0.16		-1.78	-2.17		559
РQ-ТРР	ł	Pd(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.65	0.24		-1.71	-2.12		559
(TAF)P	503	Ni(II)		THF	TBAPF ₆	Ag/AgNO ₃			-0.44		-1.05			356
TAZFP	504	Ni(II)		PhCN	NR	Fc/Fc⁺		0.13	0.33		-0.88	-1.05		517
TEAA-TPP	505	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.64	0.35*		-1.55	-1.88		222
(TFMA)P	506	Zn(II)		THF	TBAPF ₆	Fc/Fc⁺			00.00		-1.19			134
<i>trans</i> -(Et) ₄ (TTF) ₂ TPP	507	2H		THF	TBAPF ₆	Fc/Fc⁺				0.27 0.03	-1.51	-1.77		244
trans-(TTF) ₂ TPP	508	2H		THF	TBAPF ₆	Fc/Fc⁺				0.36 0.15	-1.57	-1.81		244
trans-DAFP	509	Ni(II)		THF	TBAPF ₆	Fc/Fc⁺			0.07		-1.20			254
trans-DAZFP	510	Ni(II)		PhCN	NR	Fc/Fc⁺		0.47	0.25		-0.98	-1.27		517
trans-MAFP	511	Ni(II)		THF	TBAPF ₆	Fc/Fc⁺			0.08		-1.33			254
(TTF)₄TPP	512	2H		THF	TBAPF ₆	Fc/Fc⁺				0.51 0.08	-1.32	-1.66		244

			Axial Lig	and			ď	orphyri	Ň	Š	etal /	Porp	hyrin F	Sed	
Ring S	tructure	Metal		2 Solve	ent Salt	RE	ς	7	-	ō	ther	-	7	ю	Ref.
НМР	513	Fe(II)		CH ₃ CN	N TBABF	^{oh₄} (0.04M) NHE				0.99					381
НМР	513	Fe(III)		CH ₃ CN	N TBABF	^{oh₄} (0.04M) NHE				- *77.0	.0.57				381
НМР	513	Zn(II)		CH ₃ CN	N TBABF	^{oh₄} (0.04M) NHE			0.63			0.21			381
N(CH ₃)TPP	514	Re(I)	8	DCM	TBAPF	E ₆ Fc/F	⁺⊃			0.36 -	.1.64 , -2.06				522
OxoP	515	2H		DCB	TBAP	Fc/F	⁺⊃	0.48	0.27			-1.33*			353
OxoP(Bz)	516	[Naphth-2-ylmethyl], 3H		DCB	TBAP	Fc/F	⁺o	0.56	0.37			-1.29*	-1.44	-2.06*	353
OxoP(Bz) ₂	517	2H, [Benzyl] ₂		DCB	TBAPF	e ₆ Fc/F	⁺o	0.69	0.52						351
OxoP(Bz) ₂	517	2H, [Benzyl] ₂		DCB	TBAPF	e ₆ Fc/F	⁺u	0.16*	-0.08						351
OxoP(Bz) ₂	517	2H, [Benzyl] ₂		DCB	TBAPF	E ₆ Fc/F	⁺u	0.23*	-0.06						351
OxoP(Bz) ₂	517	2H, [Benzyl] ₂		DCB	TBAPF	E ₆ Fc/F	⁺u	0.48*	-0.05						351
OxoP(Bz) ₂	517	2H, [Benzyl] ₂		DCB	TBAPF	e ₆ Fc/F	⁺u	0.70	0.45						351
OxoP(Bz) ₂	517	2H, [Benzyl] ₂		DCB	TBAPF	E ₆ Fc/F	⁺u	0.66	0.46						351
OxoP(Bz) ₂	ł	[Naphth-2-ylmethyl] ₂ , 2H		DCB	TBAP	Fc/F	⁺o	0.69	0.47			-1.36*	-1.46	-1.95*	353
OxoP(NM) ₃	518	[Naphth-2-ylmethyl] ₃ , H		DCB	TBAP	Fc/F	⁺o	0.81	0.54			-1.30*	-1.46	-1.75	353
OxoP(NM)4	519	[Naphth-2-ylmethyl]₄		DCB	TBAP	Fc/F	⁺o		0.71			-1.32	-1.41	-1.85*	353
OxoP(PM)	520	$H_{3,}$ Pyren-2-ylmethyl		DCB	TBAP	Fc/F	⁺u	0.56	0.35			-1.33*	-1.44*		47
OxoP(PM) ₂	521	2H [Pyren-2-ylmethyl]2		DCB	TBAP	Fc/F	⁺u	0.68	0.49			-1.36*	-1.46		47
OxoP(PM) ₃	522	H, [Pyren-2-ylmethyl]₃		DCB	TBAP	Fc/F	⁺u		0.54			-1.31*	-1.47		47
OxoP(PM)₄	523	[Pyren-2-ylmethyl]₄		DCB	TBAP	Fc/F	⁺u		0.76*			-1.35	-1.46		47
OxP-(Bz) ₂	524	2H, [benzyl] ₂		DCB	TBAP	Fc/F	⁺o		0.48			-1.38			71

Table 9a. N-substituted tetraarylporphyrins. (see structures in Figure 9a)

			Axial L	igand			L.	orphyri	n Ox	Metal /	Porp	hyrin Red	
Ring Stru	ucture	Metal	2	2	Solvent	Salt	RE E	5	-	Other	-	3	Ref.
OxP-(Bz)4	525	[benzyl]₄			DCB	TBAP	Fc/Fc⁺		0.73		-1.34		71
TCHP	526	Co(II)	<u>. </u>	C	CH ₃ CN	TBAP	Ag/AgCI	0.80*	0.56*	-0.72*	-0.19*	-0.73*	66
(TCHP) ⁴⁻	527	Co(III)		C	CH ₃ CN	TBAP	Ag/AgCI	1.19*	0.46*	-0.50			66
(TCHP) ⁴⁻	527	Co(III)			DCM	TBAP	Ag/AgCI		0.52*		-0.56*	-0.69*	66
(TCHP) ⁴⁻	527	Co(III)			DMF	TBAP	Ag/AgCI	1.26*	0.41*		-0.49		66
(TCHP) ⁴⁻	527	Co(III)			OSMC	TBAPF ₆	Ag/AgCI		0.39*		-0.40		66
(TCHP) ⁴⁻	527	Co(III)		·	Ë	TBAPF ₆	Ag/AgCI		0.40*		-0.68		66

Table 9a. N-substituted tetraarylporphyrins. (see structures in Figure 9a)

			Axial Li	aand				Porphvrin Ox	Metal /	Pon	phvrin Red	
Ring Stru	loture	Metal	2		Solvent	Salt	RE	3 2 1	Other	-	2 3	Ref.
(CH ₃)NC-TPP	528	Cu(II)			THF	TBAP	SCE	0.34		-1.09		281
(CH ₃)NC-TPP	528	Cu(II)	ū		THF	TBAP	SCE	0.56		-1.10		281
(CH ₃)NC-TPP	528	Cu(II)	ū	-	THF	TBAP	SCE	0.71	-0.22	-1.09		281
F ₂₀ NC-TPP	529	Cu(III)			DCM	TBACI	Fc/Fc⁺		0.03			405 (DPV)
F ₂₀ NC-TPP	529	Cu(III)			DCM	TBAP	Fc/Fc ⁺		0.14			405 (DPV)
F ₂₀ NC-TPP	529	Cu(III)			DCM	TBAPF ₆	Fc/Fc ⁺		0.15			405 (DPV)
IPSiAPDPP	530	H, S			DCM	TBAP	SCE	1,04		-1.06	-1.27	502
N(CH ₃)NC-TPP	531	Re(I)	CO		DCM	TBAPF ₆	Fc/Fc ⁺		0.02 -1.46, -1.94			522
NC-TPP	532	2H			DMF	TBAPF ₆	Fc/Fc ⁺	0.65		-1.42	-2.10	394
NC-TPP	532	2H			Tol.	TBAPF ₆	Fc/Fc ⁺	09.0		-1.64	-2.10	394
NC-TPP	I	Cu(II)			THF	TBAP	SCE	0.39		-1.07		281
O-BBPDPP	533	Cu(II), O	ū		DCM	TBAP	SCE		-0.24			264
O-BMDPP	534	Cu(II), O	ū		DCM	TBAP	SCE		-0.25			264
O-DTDPP	535	Cu(II), O	ū		DCM	TBAP	SCE		-0.24			264
O-TIPHMEPP	536	Н, О			DCM	TBAP	SCE	1.10		-1.20		129
O-TPP	537	Cu(II), O	ū		DCM	TBAP	SCE		-0.22			264
O-TPP	I	Ni(II), O	ū		DCM	TBAP	SCE		-0.42			264
O,S-TPP	538	Cu(II), O, S	ū	ū	DCM	TBAP	SCE		-0.11			264
O,S-TTAPP	539	0, S			DCM	TBAP	SCE	1.42 1.07		-0.95	-1.18	113
O,S-TTBP	540	O, S		÷	DCM	TBAP	SCE			-1.18*	-1.50*	305

Table 9b. Heteroporphyrins. (see structures in Figure 9b)

			Avial	Presi				Pornhvri	Ň	Metal /	Dor	Jhvrin Red	
			AXIAI	LIYallu			•		5	Othor	5		
Ring	Structure	Metal	L	L2	Solvent	Salt	RE	3 2	-		-	2 3	Ref.
O,S-TTMBP	541	0, S			DCM	TBAP	SCE				-1.18	-1.50	94
O,S-TTP	542	0, S			DCM	TBAP	SCE				-0.78*	-1.31*	305
O ₂ -TPP	543	Cu(II), 2O	ū	ū	DCM	TBAP	SCE			-0.37			264
O ₂ -TPP	ł	Ni(II), 2O	ū	ū	DCM	TBAP	SCE			-0.36			264
P,S-BPP	544	P, S, C ₆ H _{5.}			DCM	TBAPF ₆	Fc/Fc⁺		0.45		-1.36	-1.56	376
P(III)-BPP	545	H, P, C ₆ H ₅			DCM	TBAPF ₆	Fc/Fc ⁺		0.38		-1.51	-1.74	376
P(III)-BPP	545	H, P, C ₆ H ₅			DCM	TBAPF ₆	Fc/Fc ⁺		0.38		-1.51		488
P(III),S-BPP	546	H, P, C ₆ H ₅ , S			DCM	TBAPF ₆	Fc/Fc⁺		0.45		-1.36		488
P(III),S-BPP	ł	Pd(II), P, C ₆ H ₅ , S			DCM	TBAPF ₆	Fc/Fc ⁺		-0.26		-2.07		488
P(III),S-BPP	ł	Pt(II), P, C ₆ H ₅ , S			DCM	TBAPF ₆	Fc/Fc ⁺		-0.24		-2.07		488
P(V)-BPP	547	2H, P, C ₆ H ₅ , O			DCM	TBAPF ₆	Fc/Fc⁺		0.44		-1.21	-1.49	376
S-BFDTP	548	H, S			DCM	TBAP	SCE	1.27	0.94		-0.99	-1.34	498
S-BTDPP	549	H, S			THF	TBAPF ₆	Fc/Fc⁺		0.68		-1.73		358
S-BTDPP	ı	Li, S			THF	TBAPF ₆	Fc/Fc⁺	0.70	0.37*		-1.74		358
S-FTTP	550	т			DCM	TBAP	SCE	1.34	1.00		-1.03	-1.38	498
S-T(2'-Furyl)	P 551	H, S			DCM	TBAP	SCE	1.13	0.87		-0.91	-1.24	498
S-T(4'-CH ₃ P)P 552	н			DCM	TBAP	SCE		1.04		-1.06	-1.38	498
S-T(4'-CH ₃ P)P 553	Ru(IV), S	ū	ū	THF	$TBAPF_6$	SCE		1.08	-0.12	-1.48*		574
S-TFTP	554	H, S			DCM	TBAP	SCE	1.17	0.93		-0.92	-1.28	498
S-TIPHMEP	P 555	H, S			DCM	TBAP	SCE	1.28	1.11		-1.03	-1.35	129

Table 9b. Heteroporphyrins. (see structures in Figure 9b)

			Axial Ligand				orphyrii	ХОЧ	Metal /	Por	phyrin F	ted	
Ring	Structure	Metal	L1 L2	. Solvent	Salt	Ш Ш Ц	3 2	-	Other	-	2	т Г	ef.
S-TPP	556	Cu(II), S	C	DCM	TBAP	SCE			-0.05				264
S-TPP	I	H, S		DCM	TBABF ₄ (0.2M)	Fc/Fc⁺		1.02		-1.15	-1.42		382
S-TPP	I	H, S		DCM	TBAP	SCE	1.51	1.11		-1.03	-1.35		307
S-TPP	I	Ni(II), S	C	DCM	TBAP	SCE			-0.06				264
S-TTAPP	557	H, S		DCM	TBAP	SCE	1.43	1.06		-1.03	-1.38		113
S-TTBEPP	558	H, S		DCM	TBAP	SCE	1.53*	1.16*		-0.97	-1.39		305
S-TTIPP	559	H, S		DCM	TBAP	SCE	1.51	1.11		-1.03	-1.35		503
S-TTMBP	560	H, S		DCM	TBAP	SCE	1.53	1.15		-0.96	-1.39		94
S-TTMHP	561	H, S		DCM	TBAP	SCE	1.51	1.11		-1.03	-1.35		96
S_2 -BFBTP	562	2S		DCM	TBAP	SCE	1.35	96.0		-0.87	-1.20		198
S ₂ -BIPDTP	563	2S		DCM	TBAP	SCE		1.18		-0.95	-1.17		502
S ₂ -BTAPPyP	564	2S		DCM	TBAP	SCE		1.18		-0.94	-1.23		503
S_2 -HTriTP	565	2S		DCM	TBAP	SCE	1.06	0.57		-0.75	-1.38		570
S ₂ -T(2'-Furyl)F	566	2S		DCM	TBAP	SCE	1.18	0.88		-0.79	-1.14		198
S ₂ -T(4'-CH ₃ P)	P 567	2S		DCM	TBAP	SCE		1.18		-0.94	-1.23		198
S_2 -TFTP	568	2S		DCM	TBAP	SCE	1.24	0.92		-0.82	-1.18		198
S ₂ -TIPHMEPP	569	2S		DCM	TBAP	SCE		1.18		-0.94	-1.23		129
S_2 -TPP	570	2S		DCM	TBAP	SCE		1.18		-0.94	-1.23	2.12	307
S_2 -TPP	570	2S		DCM	TBABF ₄ (0.2M)	Fc/Fc⁺		1.10		-1.07	-1.37		382
S_2 -TTAPP	571	2S		DCM	TBAP	SCE	1.53	1.14		-0.93	-1.26		113

Table 9b. Heteroporphyrins. (see structures in Figure 9b)

Ring S S ₂ TTBEPP			Axial L	-igand				Porphyr	n Ox	Metal /	Por	phyrin R	ted
S ₂₋ TTBEPP	structure	Metal	[1]	L2	Solvent	Salt	RE	3 2	-	Other	 	2	3 Ref
	572	2S			DCM	TBAP	SCE	1.56*	1.18*		-1.15	-1.27	305
S ₂ -TTFP	573	2S			DCM	TBAP	SCE	1.40	1.03		-0.91	-1.21	496
S ₂ -TTMBP	574	2S			DCM	TBAP	SCE	1.58	1.19		-1.14	-1.25	76
S ₂ -TTMHP	575	2S			DCM	TBAP	SCE		1.18		-0.94	-1.23	96
S ₂ -TTP	576	2S			DCM	TBAP	SCE	1.50*	1.36*		-0.73	-1.05	305
S ₂ -TTP	:	H, S			DCM	TBAP	SCE	1.60*	1.30*		-0.83	-1.13	305
S ₂ -TTPE-BDPN	A 577	2S			DCM	TBAP	SCE		1.34	-0.64	-0.90	-1.13	471
Se-TPP	578	H, Se			DCM	TBABF₄ (0.2	M) Fc/Fc⁺		1.09*		-1.10	-1.42	382
Se,S-TPP	579	S, Se			DCM	TBABF4 (0.2	M) Fc/Fc⁺		1.09		-1.04	-1.33	382
Se_{2} -TPP	580	2Se			DCM	TBABF₄ (0.2	M) Fc/Fc⁺		1.10*		-1.01	-1.28	382
Te-TPP	581	H, Te			DCM	TBABF₄ (0.2	M) Fc/Fc⁺		0.81*		-1.00	-1.61	382
Te,S-TPP	582	S, Te			DCM	TBABF4 (0.2	M) Fc/Fc⁺		0.69*		-1.00	-1.26	382

			Axial L	igand				Porphy	rin Ox	Me	tal /	Porpl	hyrin F	Sed	
Ring Str	ucture	Metal	[1]	[7]	Solvent	Salt	RE	3 2	-	ġ	ler	-	2	ю	Ref.
(C ₆ H ₁₃ S) ₆ TAP	583	2H			DCE	TBAP	SCE	1.36	1.15			-0.46	-0.79	-1.12	21
(C ₆ H ₁₃ S) ₆ TAP	:	Zn(II)			DCE	TBAP	SCE	1.26	0.94			-0.62	-0.92	-1.27	21
(CO ₂ CH ₃) ₈ TB-T(4'-CO ₂ CH ₃)P	584	Pt(II)			DMF	TBAP	Fc/Fc⁺		09.0			-1.23			483
(CO ₂ CH ₃) ₈ TBTPP	585	Fe(II)	Py	Py	DCM	TBAP	SCE	1.40	1.11	0.45					40
(CO ₂ CH ₃) ₈ TBTPP	585	Fe(II)	Py	Py	PhCN	TBAP	SCE	1.58	1.10	0.42					40
(CO ₂ CH ₃) ₈ TBTPP	585	Fe(II)	Py	Py	Py	TBAP	SCE			0.51					40
OETAP	586	Fe(II)	1-(CH ₃)Im	1-(CH ₃)Im	DCM	TBAPF ₆	Pt Wire			-0.31					385
OHTETB-TPAP	587	Zn(II)			DCM	TBAP	Fc/Fc⁺	0.56	0.34			-1.46			493
(Ph) ₆ TAP	588	Co(II)			DCB	TBAP	Fc/Fc⁺		0.94	0.68	-0.81	-1.77			399
(Ph) ₈ TAP(A)	589	Co(II)			DCB	TBAP	Fc/Fc⁺	0.75	0.28	0.50	-0.86	-1.81			399
(Ph) ₆ TAP(DA)	590	Co(II)			DCB	TBAP	Fc/Fc⁺	0.70	0.01	0.31	-0.88	-2.01			399
(Ph) ₈ TAP(DA)	:	Ni(II)			DCB	TBAP	Fc/Fc⁺		0.46			-1.24	-1.56		399
(Ph) ₈ TAP(DA)	:	Ni(II)			DCB	TBAP	Fc/Fc⁺	0.57	0.20			-1.45	-1.81		399
(Ph) ₆ TAP(DB)	591	Co(II)			DCB	TBAP	Fc/Fc⁺		0.25	0.50	-0.87	-1.97			399
(Ph) ₈ TAP(DNaph)	592	Co(II)			DCB	TBAP	Fc/Fc⁺		0.09	-0.86		-1.96			399 (/D
(Ph) ₈ TAP(MB)	593	Co(II)			DCB	TBAP	Fc/Fc⁺		0.48	0.48	-0.85	-1.85			399
(Ph) ₈ TAP(MNaph)	594	Co(II)			DCB	TBAP	Fc/Fc⁺		0.32	0.48	-0.86	-1.83			399
TATAP	595	Fe(II)	1-(CH ₃)Im	1-(CH ₃)Im	DCM	TBAPF ₆	Pt Wire			60.0-					385
TB-T(3',5'-CO ₂ Bu)P	596	Pt(II)			DMF	TBAP	Fc/Fc⁺		0.50			-1.55			483
TB-T(4-CO ₂ CH ₃)P	597	Pt(II)			DMF	TBAP	Fc/Fc⁺		0.37			-1.61			483

Table 10. Tetrabenzoporphyrins (TBP) and tetraazaporphyrins (TArP). (see structures in Figure 10)

			pacei lei				Dorohy	rin Ov	Notol /	Doroh	Vrin Be	5	
		Ż	ыаі гіуани						ועוכומו /	2		Ş	
Ring	Structure	Metal <u>L1</u>	L2	- Solvent	Salt	RE	3 2	-	Other	-	2	- ო	Ref.
ТВ(ТРА)Р	598	Zn(II)		DCM	TBAP	Fc/Fc⁺	0.40	0.08		-1.47			493
TBP	599	Ru(II) CO		DCM	TBAP	SCE	0.93	0.49					577
TBP	599	Ru(II) CO	Py	DCM	TBAP	SCE	1.10	0.56					577
ТВР	599	Ru(II) Py	Py	DCM	TBAP	SCE	0.94	0.36					577

Table 10. Tetrabenzoporphyrins (TBP) and tetraazaporphyrins (TArP). (see structures in Figure 10)

			Axial Ligand				Porphyr	in Ox	Metal /	Porpl	hyrin Rec	
Ring	Structure	Metal	L1 L2	- Solvent	Salt R	' щ	3 2	-	Other	-	2	Ref.
3'-MVPTriPP	600	Fe(III)	CI	DG/CH ₃ OH	TBAPF ₆ A	g/AgCI			-0.09, -0.55, -0.81 -1.09			188
4'-MVPTriPP	601	Fe(III)	CI.	DG/CH ₃ OH	TBAPF ₆ A	g/AgCI			-0.05, -0.37, -0.85 -1.09			188
BNCDTBP	602	2H		CH ₃ OH	TBAPF ₆ S	CE		0.52*				230
BNCDTMP	603	2H		CH ₃ OH	TBAPF ₆ S	핑		0.49*				230
BNCDTMP	603	2H		CH ₃ OH	TBAPF ₆ S	빙		0.46*				230
BNCDTMP	603	2H		DCM	TBAPF ₆ S	IJ	1.34	0.98				230
BNCDTMP	ł	Cu(II)		CH ₃ OH	TBAPF ₆ S	빙		0.44*				230
BNCDTMP	1	Zn(II)		CH ₃ OH	TBAPF ₆ S	핑		0.29*				230
BNCDTMP	ł	Zn(II)		DCM	TBAPF ₆ S	IJ		0.74*				230
[(C=C)TPP] ²⁺	604	C=C		THF	TBAPF ₆ F.	c/Fc⁺	-0.55	-0.26		-1.91	-2.17	548
cis-[D(2'-NMP D(2'-Pv)P1 ²⁺	y) 605	(III)	H₂O	H ₂ O	NaCIN	뽀			0.05			563
Cl ₈ [T(3'-SO ₃ -P)P] ⁴⁻ 606	Fe(III)	H ₂ O	H ₂ O	NaCIN	뽀			0.13			563
Cl ₈ [T(3'-SO ₃ -P)P] ⁴⁻	Fe(III)	·HO	H ₂ O	NaCIN	뽀			60.0			563
Cl ₈ [T(3'-SO ₃ -P)P] ⁴⁻	(III)	H ₂ O	H ₂ O	NaCI	里			60.0			563
Е ₁₆ [Т(4'-ТМАР)P] ⁴⁺ 607	Fe(III)	H ₂ O	H ₂ O	NaCIN	뽀			0.24			563

Table 11a. Tetraarylporphyrins with charged peripheral groups. (see Figure 11a)

			Axial Li	igand				Porphyrin Ox	Me	tal /	Porph	yrin Red	
Ring S	tructure	Metal	L1	L2	Solvent	Salt	RE	3 2 1	5 	ler	-	2 3	- Ref.
F ₁₆ [T(4'-TMAP)P]	4+	Fe(III)	·HO		H ₂ O	NaCl	NHE		0.28				563
F ₁₆ [T(4'-TMAP)P]	++	(III)nM	H ₂ O		H ₂ O	NaCI	NHE		0.06				563
[F ₁₆ TPP(TMA)₄] ⁴⁺	608	Cr(III)			H ₂ O	RN	Ag/AgCI		1.10	-0.68			467
[F ₁₆ TPP(TMA)₄] ⁴⁺	608	Cr(III)			H ₂ O	RN	Ag/AgCI		1.01	-0.69			467
[F ₁₆ TPP(TMA)₄] ⁴⁺	608	Cr(III)			H ₂ O	RN	Ag/AgCI		0.91	-0.69			467
[F ₁₆ TPP(TMA)₄] ⁴⁺	608	Cr(III)			H ₂ O	RN	Ag/AgCI		0.60	-0.71			467
[F ₁₆ TPP(TMA)₄] ⁴⁺	608	Cr(III)			H ₂ O	RN	Ag/AgCI		0.43	-0.76			467
[F ₁₆ TPP(TMA)₄] ⁴⁺	608	Cr(III)			H ₂ O	RN	Ag/AgCI		0.31	-0.88			467
F ₈ T(3'-SO ₃ P)P	609	(III)nM	H ₂ O		H ₂ O	NaCI	NHE		0.01				563
[(NMPyDMAP) ₂₀ TDD1 ²⁰⁺	610	2H			CH ₃ CN	R	SCE	1.9	C		-0.26 -(.72	393
[(РРћ ₂) ₂ А)ТРР] ⁺	611	Zn(II)			CH ₃ CN/DCE	TEAPF	SCE	1.18 0.8	9 -1.04	-1.22	-1.41		154 (CV/P)
[(PPh ₂) ₂ A]TPP	612	2H			CH ₃ CN/DCE	TEAPF	SCE	1.1	1* -0.93		-1.18		154
(SO ₃) ₈ TMP	613	Fe(III)	H ₂ O		H ₂ O	NaCI	NHE		0.11				563
(SO ₃) ₈ TMP	ł	Fe(III)	HO		H ₂ O	NaCI	NHE		0.05				563
(SO ₃ ⁻) ₈ TMP	1	(III) Mn(III)	H ₂ O		H ₂ O	NaCI	NHE		-0.10				563

Table 11a. Tetraarylporphyrins with charged peripheral groups. (see Figure 11a)

			Axial Ligand				Porphyrin Ox	Metal /	Porphyrin Red	
Ring Stri	ucture	Metal	L1 L2	- Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
[T(2'-N(butyl)Py)P]⁵	614	Mn(III)	Ċ	H ₂ O	NaCI	NHE		0.25		460
[T(2'-N(hexyl)Py)P] [{]	÷ 615	(III)uM	Ġ	H_2O	NaCI	NHE		0.31		460
[T(2'-N(MOE) ₂ Im) p1 ⁵⁺	616	(III)uM		H ₂ O	NaCI	Ag/AgCI		0.37		461
L [T(2'-N(MOE)MIm) PI⁵+	617	(III)uM		H ₂ O	NaCI	Ag/AgCI		0.36		461
T(2'-N(MOE)Py)P] [£]	÷ 618	(III)uM		H ₂ O	NaCI	Ag/AgCI		0.25		461
[T(2'-N(octyl)Py)P] ^{5,}	619	(III) uM	Ġ	H ₂ O	NaCI	BHN		0.37		460
[T(2'-N(Pr)Py)P] ⁵⁺	620	(III) uM	Ċ	H ₂ O	NaCI	NHE		0.24		460
[T(2'-N(TDE)Im)P] ⁴⁺	621	(III) uM	Ġ	H ₂ 0	NaCI	BHN		0.35		459
[T(2'-N(TDTEG)Im) Pl ⁴⁺	622	(III) Mn(III)	Ġ	H ₂ O	NaCI	NHE		0.41		459
T(2'-N(TEG)Py)P]⁴	623	(III)uW	Ġ	H ₂ O	NaCI	NHE		0.25		459
[T(2'-NEtPy)P] ⁴⁺	624	Fe(III)	1-(CH ₃)Im 1-(CH ₃)I	m H ₂ O	NaCI	NHE		0.44		563
[T(2'-NEtPy)P] ⁴⁺	:	Fe(III)	H ₂ O	H ₂ O	NaCI	BHN		0.38		563
[T(2'-NEtPy)P] ⁴⁺	:	Fe(III)	·HO	H ₂ O	NaCI	NHE		0.22		563
[T(2'-NEtPy)P] ⁴⁺	:	(III)uM		CH ₃ OH/H ₂ C) NaCl	Ag/AgCI		0.13		б
[T(2'-NEtPy)P]⁴⁺	1	Mn(III)		CH ₃ OH/H ₂ C) NaCl	NHE		0.23		ო

Table 11a. Tetraarylporphyrins with charged peripheral groups. (see Figure 11a)
			Axial Ligand			Porph	yrin Ox	Metal /	Porphyrin Red	
Ring St	tructure	Metal	L1 L2	- Solvent	Salt	RE 3	2	Other	1 2 3	Ref.
[T(2'-NEtPy)P] ⁴⁺	:	Mn(III)		DMF/H ₂ O	NaCl	NHE		0.23		с
[T(2'-NEtPy)P] ⁴⁺	:	(III)uM	H ₂ O	H ₂ O	NaCI	NHE		0.23		563
[T(2'-NEtPy)P] ⁴⁺	:	(III)nM		DMF/H ₂ O	NaCI	Ag/AgCI		0.20		с
[T(2'-NEtPy)P] ⁵⁺	:	(III)uM		H ₂ O	NaCI	Ag/AgCI		0.29		461
[T(2'-NEtPy)P] ⁵⁺	:	(III)nM	CI	H ₂ O	NaCI	NHE		0.23		460
[(T(2'-NMPy)P)P] ³	+ 625	(III)nM	H ₂ O	H ₂ O	NaCI	NHE		0.11		563
[T(2'-NMPy)P] ⁴⁺	626	Fe(III)	1-(CH ₃)Im 1-(CH ₃)Im	Η ₂ Ο	NaCI	NHE		0.43		563
[T(2'-NMPy)P] ⁴⁺	:	Fe(III)	H ₂ O	H ₂ O	NaCI	NHE		0.36		563
[T(2'-NMPy)P] ⁴⁺	:	Fe(III)	·HO	H ₂ O	NaCI	NHE		0.21		563
[T(2'-NMPy)P] ⁴⁺	:	(III)uM		CH ₃ OH/H ₂ O	NaCI	Ag/AgCI		0.13		С
[T(2'-NMPy)P] ⁴⁺	:	(III)nM		CH ₃ OH/H ₂ O	NaCI	NHE		0.22		С
[T(2'-NMPy)P] ⁴⁺	:	(III)uM	C.	H ₂ O	NaCI	NHE		0.22		460
[T(2'-NMPy)P] ⁴⁺	:	(III)uM	H ₂ O	H ₂ O	NaCI	NHE		0.22		563
[T(2'-NMPy)P] ⁴⁺ - [Sclx8] ⁴⁻	627	2H		H ₂ O	PB (0.07M)	Ag/AgCI		0.94	-0.37	518
{[T(2'-NMPy)P] ⁴⁺ }	628	2H		H ₂ O	PB (0.07M)	Ag/AgCI		0.84	-0.37	518

			Axial Ligand				Porphyrin (×	Metal /	Porphyrir	Red	
Ring Stru	icture	Metal		- Solvent	Salt	RE	3 2	- -	Other	1 2	с	Ref.
{[T(2'-NMPy)P] ⁴⁺ } [Sclx61 ⁴⁻	628	2H		H ₂ O	PB (0.07M)	Ag/AgCI		0	.92	-0.37		518
[T(2'-NMPy)PyP] ³⁺	629	(III)uM	H ₂ O	H ₂ O	NaCI	NHE		0	.12			563
[T(3'-CO ₂ P)P]	630	(III) MN		H ₂ O	KCI (0.2M)	Ag/AgCI	0	.0- *69.1	.44 -0.45			259
[T(3'-CO₂P)P] [T(4'-NMPyP]⁴⁺	630	(III)uM		H ₂ O	KCI (0.2M)	Ag/AgCI		0	.25 -0.18			259
[T(3'-NMPy)P] ⁴⁺	631	Fe(III)	1-(CH ₃)Im 1-(CH ₃)Im	H ₂ O	NaCI	NHE		0	.26			563
[T(3'-NMPy)P] ⁴⁺	:	Fe(III)	H ₂ O	H ₂ O	NaCI	NHE		0	.26			563
[T(3'-NMPy)P] ⁴⁺	:	Fe(III)	·HO	H ₂ O	NaCI	NHE		0.	.12			563
[T(3'-NMPy)P] ⁴⁺	:	Mn(III)	H ₂ O	H ₂ O	NaCI	NHE		0	.05			563
{[T(3'-NMPy)P] ⁴⁺ } [Sclx4] ⁴⁻	632	2H		H ₂ O	PB (0.07M)	Ag/AgCI		Ö	.84	-0.46		518
{[T(3'-NMPy)P] ⁴⁺ } [Sclx6] ⁴⁻	632	2H		H ₂ O	PB (0.07M)	Ag/AgCI		0	.92	-0.46		518
[Т(3',5'-DCP)P] ^{в-}	633	(III) Mn(III)	C	H ₂ O	KNO ₃ (0.2M)	Ag/AgCI	ć	· 0.30 ~ .	-0.50			179
T(4'-CO ₂ -P)P	634	Fe(III)	1-(CH ₃)Im 1-(CH ₃)Im	H ₂ O	NaCI	NHE		Ō	.03			563
T(4'-CO ₂ P)P	:	Mn(III)	H ₂ O	H ₂ O	NaCI	NHE		Ŷ	.19			563
[T(4'-N(Butyl)Py)P] ^{4,}	635	Zn(II)		H ₂ O	KCI (0.2M)	Ag/AgCI	0	96.				454
[T(4'-N(hexyl)Py)P] ⁴	• 636	Zn(II)		H ₂ O	KCI (0.2M)	Ag/AgCI	0	.96				454

Table 11a. Tetraarylporphyrins with charged peripheral groups. (see Figure 11a)

			Axial Lig	Jand				Porphyri	n Ox	Met	al /	Porphyr	in Red	
Ring Stri	ucture	Metal	בן בן		Solvent	Salt	RE	3 2	-	0 the	er	-	n	- Ref.
[T(4'-N(Pn)Py)P] ⁴⁺	637	Zn(II)			H ₂ O	KCI (0.2M)	Ag/AgCI		0.96					454
[T(4'-N(Pr)Py)P] ⁴⁺	638	Zn(II)			H ₂ O	KCI (0.2M)	Ag/AgCI		0.96					454
[T(4'-NEtPy)P] ⁴⁺	639	(III)nM			H ₂ O	NaCI	NHE			0.07				178
[T(4'-NMPy)P)] ⁴⁺ [(Sclx4) ⁴⁻] ₄	640	Cu(II)			H ₂ O	NaCI	Ag/AgCI			-0.80		-0.76		533
[(T(4'-NMPy)P) ⁴⁺] ₂ [T(3',5'-DCP)P] ⁸⁻	641	[Mn(III)] ₃			H ₂ O	KNO ₃ (0.2M)	Ag/AgCI			0.22	-0.20	-0.63		179
[(T(4'-NMPy)P) ⁴⁺] ₂ [T(3',5'-DCP)P] ⁸⁻	:	[2H] ₂ , Mn(III)	•		H ₂ O	KNO ₃ (0.2M)	Ag/AgCI			-0.59				179
[(T(4'-NMPy)P) ⁴⁺] ₂ [T(3',5'-DCP)P] ⁸⁻	:	[Mn(III)]2, 2H	Ŧ		H ₂ O	KNO ₃ (0.2M)	Ag/AgCI			0.25	-0.20			179
[(T(4'-NMPy)P) ⁴⁺] ₂ [(Sclx4) ⁴⁻] ₄	642	Cu(II)			H ₂ O	NaCI	Ag/AgCI			-0.76, ·	-0.78,	-0.74		533
[(T(4'-NMPy)P) ⁴⁺] ₂ [(Sclx4) ⁴⁻] ₄	:	Zn(II)			H ₂ O	NaCI	Ag/AgCI			-0.84,	-0.85	-0.82		533
[T(4'-NMPy)P] ⁴⁺	643	2H			O₂H	NaCI	NHE					-0.33 -1.1	*4	562
[T(4'-NMPy)P] ⁴⁺	:	Au(II)			DMF	TBAP	SCE			-0.20, . -0.60 -	-0.36, -0.70			44
[T(4'-NMPy)P] ⁴⁺	1	Cd(II)			DMF	TBAP	SCE			-0.94*, . -1.12	-1.05	-0.65		44
[T(4'-NMPy)P] ⁴⁺	1	Co(II)			DMF	TBAP	SCE			0.49, . -0.89 -	-0.49, -0.98	-0.71		44
[T(4'-NMPy)P] ⁴⁺	:	Co(II)			H ₂ O	ЪВ	Ag/AgCI					-0.67		352
[T(4'-NMPy)P] ⁴⁺	:	Cu(II)			DMF	TBAP	SCE			-0.87	-0.97	-0.60		44

			Axial Li	gand				Porphy	/rin Ox	Me	tal /	Porp	hyrin Rec	
Ring	Structure	Metal	L1	L2	Solvent	Salt	RE	8	-	₹ 	ler	-	3	 Ref
[T(4'-NMPy)F		Cu(II)			H ₂ O	NaCI	NHE					-0.48	-0.63*	562
[T(4'-NMPy)F		Cu(II)			H ₂ O	NaCI	Ag/AgCI			-0.65		-0.60		533
[T(4'-NMPy)F		Fe(II)			DMF	TBAP	SCE			0.00, -1.01	-0.93	-0.74		4
[T(4'-NMPy)F		Fe(III)	1-(CH ₃)Im 1	1-(CH ₃)Im	H ₂ O	NaCI	NHE			0.27				563
[T(4'-NMPy)F		Fe(III)	H ₂ O		H ₂ O	NaCI	NHE			0.20				563
[T(4'-NMPy)F		Fe(III)	ON		H ₂ O	NR	Ag/AgCI			0.45*				202
[T(4'-NMPy)F		Fe(III)	HO		H ₂ O	NaCI	NHE			0.11				563
[T(4'-NMPy)F	 	Ga(III)	ū		DMF	TBAP	SCE			-0.77	-0.83	-0.46		44
[T(4'-NMPy)F		(III)	G		DMF	TBAP	SCE			-0.82	-1.01	-0.44		44
[T(4'-NMPy)F		(II)			DMF	TBAP	SCE			-1.02, -1.31	-1.08*	-0.63		44
[T(4'-NMPy)F] ⁴⁺	(II) Mn(II)			DMF	TBAP	SCE			0.08, -1.07	-0.91, -1.18	-0.71		44
[T(4'-NMPy)F] ⁴⁺	(III) Mn(III)			H ₂ O	NaCI	NHE			00.0				561
[T(4'-NMPy)F		(III)			H ₂ O	NaCI	NHE			0.06		-0.51	-1.19*	562
[T(4'-NMPy)F		(III)	H ₂ O		H ₂ O	NaCI	NHE			0.06				563
IT(4'-NMPv)F	או ⁴⁺	Ni(II)			DMF	TBAP	SCE			-0.78	-0.91	-0.45		44

			Axial Li	gand				Porphyri	in Ox	Mei	al /	Porphyrin F	Sed	
Ring	Structure	Metal		L2	- Solvent	Salt	B	3 2	-	€	er	1	З	Ref.
[T(4'-NMPy)P] ⁴⁺	:	Pb(II)			DMF	TBAP	SCE			-0.92*		-0.53		44
[T(4'-NMPy)P] ⁴⁺	;	Pd(II)			DMF	TBAP	SCE			-0.83	-0.95	-0.56		44
[T(4'-NMPy)P] ⁴⁺	:	Pt(II)			DMF	TBAP	SCE			-0.92	-1.02	-0.67		44
[T(4'-NMPy)P] ⁴⁺	:	V(IV)	0 ²⁻		DMF	TBAP	SCE			-0.83	-0.97	-0.48		44
[T(4'-NMPy)P] ⁴⁺	:	Zn(II)			DMF	TBAP	SCE			-1.02	-1.10*	-0.65		44
[T(4'-NMPy)P] ⁴⁺	:	Zn(II)			H ₂ O	Na₂SO₄ (0.5M)	SCE	1.22	0.91	-0.87				83
[T(4'-NMPy)P] ⁴⁺	:	Zn(II)			H ₂ O	NaCI	Ag/AgCI			-1.00	-1.10	-0.87		533
[T(4'-NMPy)P] ⁴⁺	:	Fe(III)			H ₂ O	NR	Ag/AgCI			-0.15				202
[T(4'-NMPy)P] ⁴⁺	:	Fe(III)	ō		H_2O	NaCl (3M)	Ag/AgCI			-0.18		-0.11		191
[T(4'-NMPy)P] ⁴⁺	:	Fe(III)	ON		H ₂ O	NaCl (3M)	Ag/AgCI		0.33	-0.05				191
[T(4'-NMPy)P] ⁴⁺	:	Zn(II)			DMF	TBAP	Ag/AgCI		>1.00			-0.61		52
[T(4'-NMPy)P] ⁴⁺	:	Zn(II)			H ₂ O	Na₂SO₄ (0.5M)	SCE	1.24	0.91	-0.81				83
T(4'-NMPy)P] ⁴⁺ -	DNA 644	Fe(III)			H ₂ O	NR	Ag/AgCI			-0.13				516
T(4'-NMPy)P] ⁴⁺ -	- PNA	Fe(III)	ON		H ₂ O	NR	Ag/AgCI			-0.61*				516
[T(4'-NMPy)P] ⁴⁺ [(Sclx4) ⁴ 1 ₄]₃ 645	Zn(II)			H ₂ O	NaCI	Ag/AgCI			-0.81, -0.85	-0.84	-0.80		533

Table 11a. Tetraarylporphyrins with charged peripheral groups. (see Figure 11a)

			Axial Ligand				Porphyrin Ox	Metal /	Porphyrin Re	
Ring Str	ucture	Metal	L1 L2	- Solvent	Salt	BR	3 2 1	Other	1 2	Ref.
{[T(4'-NMPy)P] ⁴⁺ } [Sclx4] ⁴⁻	646	2H		H ₂ O	PB (0.07M)	Ag/AgCI		0.84	-0.37	518
{[T(4'-NMPy)P] ⁴⁺ } [Sclx6] ⁴⁻	647	2H		H ₂ O	PB (0.07M)	Ag/AgCI		0.92	-0.37	518
{[T(4'-NMPy)P] ⁴⁺ } [Sclx8] ⁴⁻	648	2H		H ₂ O	PB (0.07M)	Ag/AgCI		0.94	-0.37	518
{[T(4'-NMPy)P] ⁴⁺ } [Sclx8] ⁴⁻	649	2H		H ₂ O	PB (0.07M)	Ag/AgCI		0.94	-0.46	518
T(4'-NMPy)P ⁴⁺	650	(III)nM	Ċ	H ₂ O	KNO ₃ (0.2M)	Ag/AgCI		0.20 -0.18		179
[T(4'-NMPyP] ⁴⁺ [TPPS] ⁴⁻	651	(III)nM		H ₂ O	KCI (0.2M)	Ag/AgCI		0.25, -0.20 -0.68		259
[T(4'-NMPyP] ⁴⁺	652	Co(II)		H ₂ O	NaCI	Ag/AgCI		0.45* -0.68		260
[T(4'-NMPyP] ⁴⁺	:	(III) MM		H ₂ O	KCI (0.2M)	Ag/AgCI		0.20, -0.13, -0.18 -0.68	-0.60*	259
[T(4'-TMAP)P] ⁴⁺	653	Fe(III)	1-(CH ₃)Im 1-(CH ₃)In	n H₂O	NaCI	NHE		0.10		563
[T(4'-TMAP)P] ⁴⁺	:	Fe(III)	H ₂ O	H ₂ O	NaCI	NHE		0.05		563
[T(4'-TMAP)P] ⁴⁺	:	Fe(III)	НО	H ₂ O	NaCI	NHE		-0.03		563
[T(4'-TMAP)P] ⁴⁺	:	(III)nM	H ₂ O	H ₂ O	NaCI	NHE		-0.10		563
[T(D(Pr)Im)P] ⁴⁺	654	(III)nM	C	H ₂ O	NaCI	NHE		0.32		496
[T(DEtIm)P] ⁴⁺	655	(III)nM	C	H ₂ O	NaCI	NHE		0.35		496
[T(DMIm)P] ⁴⁺	656	Co(III)	CI	H ₂ O	NaCI	NHE		0.28		496

			Axial Ligand				Porphyri	хОи	Metal /	Porp	ohyrin Red	
Ring	Structure	Metal	L1 L2	- Solvent	Salt	RE	3	-	Other		2 3	- Ref.
[T(DMIm)P] ⁴⁺	:	(III)	c	H ₂ O	NaCI	NHE			0.32			496
[TDMPz] ⁴⁺	657	(III)uM	<u>c</u>	H ₂ O	NaCI	NHE			0.32			515
[TDMPzP] ⁴⁺	658	(III)uM	ū	H ₂ O	NaCI	NHE			00.0			515
[TP4'-NBzMBf	P] ⁺ 659	Zn(II)		DCM	TBABF₄ (0.2M)	SCE	1.46* 1.25*	1.01*		-0.84*	-1.72*	156
[TP4'-NMVP] ⁺	660	Zn(II)		CH ₃ CN	TBABF₄ (0.2M)	SCE	1.21*	*96.0	-0.32 -0.73	3 -0.95	-1.78*	156
[TP4'-NMVP] ⁺	660	Zn(II)		DCM	TBABF₄ (0.2M)	SCE	1.46*	0.97*	-0.67*	-0.18	-0.88* -1.62	156
[TPC₄MVP] ²⁺	661	Zn(II)		N	[BMIM] BF₄	Fc/Fc⁺		0.38	-0.81			549
[TPC ₆ MVP] ²⁺	662	Zn(II)		NR	[BMIM] BF₄	Fc/Fc⁺		0.39	-0.81			549
[TPC ₈ MVP] ²⁺	663	Zn(II)		NR	[BMIM] BF₄	Fc/Fc⁺		0.39	-0.83			549
[TPPS] ⁴⁻	664	Co(II)		H ₂ O	NaCI	SCE			0.16			475
[TPPS] ⁴⁻	664	Co(II)		H ₂ O	NaOH	SCE			0.05			478
[TPPS] ⁴⁻	664	Co(II)		H ₂ O	NaCI	Ag/AgCI			0.35* -0.90			260
[TPPS] ⁴⁻	:	Fe(III)	1-(CH ₃)Im 1-(CH ₃)Ir	n H₂O	NaCI	NHE			0.04			563
[TPPS] ⁴⁻	:	Fe(III)	H ₂ O	H ₂ O	NaCI	NHE			0.02			563
[TPPS]⁴	1	Mn(III)	H ₂ O	H ₂ O	NaCl	NHE			-0.16			563

			Axial L	-igand				Porphyri	n Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal	L L	L2	Solvent	Salt	RE	3 2	-	Other	1 2 3	Ref.
[TPPS] ⁴⁻	:	Mn(III)	H_2O	·HO	H ₂ O/NaOH	Na₂SO₄	Ag/AgCI			0.18		538
[TPPS] ⁴⁻	:	Os(II)	DMSO	1-(CH ₃)Im	DMF	TBAPF ₆	SCE			0.26		500
[TPPS] ⁴⁻	ł	Os(II)	DMSO	DMSO	DMF	TBAPF ₆	SCE			0.58		500
[TPPS] ⁴⁻	:	Os(III)	1-(CH ₃)Im	1-(CH ₃)Im	DMF	TBAPF ₆	SCE			-0.24		500
[TPPS] ⁴⁻	665	Os(III)	1-(CH ₃)Im	See Fig.	DMF	TBAPF ₆	SCE			-0.07		500
[TPPS] ⁴⁻	1	Os(III)	P(OCH ₃) ₃	1-(CH ₃)Im	DMF	TBAPF ₆	SCE			0.11		500
[TPPS] ⁴⁻	:	Os(III)	P(OCH ₃) ₃	P(OCH ₃) ₃	DMF	TBAPF ₆	SCE			0.15		500
[TPPS] ⁴⁻	:	Os(III)	Py	Py	DMF	TBAPF ₆	SCE			0.01		500
[TPPS] ⁴⁻	666	Os(III)	See Fig.	See Fig.	DMF	TBAPF ₆	SCE			0.00		500
[TPPS] ⁴⁻	667	Os(III)	See Fig.	See Fig.	DMF	TBAPF ₆	SCE			0.14		500
[TPPS] ⁴⁻	ł	Rh(III)			H ₂ O	NaPF ₆ (0.5M)	NHE			-0.34*	-1.59*	465
[TPPS] ⁴⁻	:	Zn(II)			DMF	TBAP	Ag/AgCI		0.79		-1.24	52
[TPPS] ⁴⁻ [T(4'-NMPy)P] ⁴	l ±	[Zn(II)]2			DCE	Li ₂ SO₄ (0.01M)	SHE				-0.60	378 (HME)
[TPPS] ⁴⁻	:	2H			H ₂ O	KCI (0.2M)	Ag/AgCI		1.10			454
[TPPS] ⁴⁻	:	(III)nM			H ₂ O	KCI (0.2M)	Ag/AgCI			-0.39 -0.41		259

			Axial	Ligand				Porphy	/rin Ox	Metal /	Porphy	rin Red	
Ring Stru	ucture	Metal	L1	L2	Solvent	Salt	RE	3 2	-	Other	-	2 3	- Ref.
[TPPS] ⁴⁻ -CD	668	(III)nM	H ₂ O	HO	H ₂ O/NaOH	Na₂SO₄	Ag/AgCI			0.23			538
trans-[((2'-NMPyA) DP)P] ⁺	699	Ni(II)			DMF	TBAP	SCE				-0.72* -0	.94 -1.24	227
trans-[((3'-NMPyA) DP)P]⁺	670	Ni(II)			DMF	TBAP	SCE				-0.87* -1	11	227
trans-[((4'-NMPyA) DP)P]⁺	671	Ni(II)			DMF	TBAP	SCE				-0.68	.89 -1.11	227
trans-[(2'- NMPyADP)P]⁺	672	2H			DMF	TBAP	SCE				-0.63 -0	88	20
trans-[(2'- NMPyADP)P]⁺	:	(III)uM	ū		DMF	TBAP	SCE			-0.09	-0.81		20
trans-[(3'- NMPyADP)P]⁺	673	2H			DMF	TBAP	SCE				-0.85* -1	.05	20
trans-[(3'- NMPyADP)P]⁺	:	(III)nM	ö		DMF	TBAP	SCE			-0.13	-1.01* -1	27	20
trans-[(4'- NMPyADP)P]⁺	674	2H			DMF	TBAP	SCE				-0.64 -0	85	20
trans-[(4'- NMPyADP)P]⁺	:	(III)uW	ū		DMF	TBAP	SCE			-0.11	-0.82 -1	00	20
trans-[B(2'- NMPyAP)P] ²⁺	675	2H			DMF	TBAP	SCE				-0.32 -0	50	20
trans-[B(2'- NMPyAP)P] ²⁺	:	(III)uM	ū		DMF	TBAP	SCE			0.02	-0.52 -0	.68 -1.43	20
trans-[B(3'- NMPyAP)P] ²⁺	676	2H			DMF	TBAP	SCE				-0.61* -0.	.96*	20
trans-[B(3'- NMPyAP)P] ²⁺	:	(III) MN	ö		DMF	TBAP	SCE			-0.04	-0.81*		20
trans-[B(3'- NMPyAP)P] ²⁺	:	Ni(II)			DMF	TBAP	SCE				-0.82* -0	.99* -1.14	227

			Axis	al Ligand				Por	phyrin	Ň	Metal /	Porp	hyrin I	Red	
Ring	Structur	e Met	tal <u>L1</u>	L2	Solvent	Salt	RE	3	2	-	Other	-	2	3	Ref.
trans-[B(4'- NMPyAP)P] ²⁺	67.	7 2H			DMF	TBAP	SCE					-0.40	-0.55		20
trans-[B(4'- NMPyAP)P] ²⁺	ł	Mn(II	II)		DMF	TBAP	SCE				-0.02	-0.57	69.0-	-1.40	20
trans-[B(4'- NMPyAP)P] ²⁺	I	Ni(II)			DMF	TBAP	SCE					-0.50	-0.63	-1.23	227
trans-[B(TFTN	1A)P] ²⁺ 67	8 Mn(II	II) CF ₃ SO ₆	- m	CH ₃ OH/H ₂ O	NaCI	Ag/AgCI				-0.22				ę

			Axial	Ligand				Porp	hyrin	ŏ	Me	tal /	Porp	hyrin F	Sed	
Ring S	tructure	Metal	L L	2	Solvent	Salt	RE	n N	2	-	ŧ	ler	-	2	с	Ref.
[(bpy)₄OEP] ⁴⁺	679	Zn(II)			CH ₃ CN/DCE	TEAPF	SCE		1.47*	1.27*	-0.34, -0.71	-0.48	-0.82	-1.26	-1.41	159 (CV/P)
[(bpy)OEP] ⁺	680	Zn(II)			CH ₃ CN/DCE	TEAPF	SCE	1.37	1.20*	0.91	-0.65		-1.31			275
EtioP Cat-4	681	Zn(II)			CH ₃ CN	TBAPF ₆ (0.05M)	SCE	1.67*	1.06*	0.72	-0.34	-0.56	-0.85	-1.70		446
EtioP Cat-5	682	Zn(II)			CH ₃ CN	TBAPF ₆ (0.05M)	SCE	1.87*	0.88*	0.66	-0.32	-0.39	-0.82			446
EtioP Cat-6	683	Zn(II)			CH ₃ CN	TBAPF ₆ (0.05M)	SCE	1.59*	0.88*	0.68	-0.35	-0.45	-0.76	-0.86	-1.68	446
[OEP(Py) ₄] ⁴⁺	684	Zn(II)			H ₂ O	Na ₂ SO₄ (0.5M)	SCE	0.95, 1.10	0.81	0.47	-0.58, -0.80	-0.67, -0.85				83
[OEP(Py) ₄] ⁴⁺	684	Zn(II)			H ₂ O	Na ₂ SO₄ (0.5M)	SCE		1.12	0.52	-0.59,	-0.82				83
-(POM-OEP-POM),-	685	Zn(II)			DCE/CH ₃ CN	TBAPF	SCE		1.22*	0.79*	-0.90*					112
-(POM-OEP-POM) _n -	686	Zn(II)			DCE/CH ₃ CN	TBAPF	SCE			1.49*	-0.95*					112
[(Py)₄OEP] ⁴⁺	687	Fe(II)	<u></u>	<u></u>	CH ³ CN	TBAP	Ag/AgCI				0.38					182
[(Py)₄OEP] ⁴⁺	I	Fe(II)	Py	Py	CH ³ CN	TBAP	Ag/AgCI				0.62					182
[(T(Et-4'-NMPy)) ⁴⁺] ₂ [T(3',5'-DCP)P] ⁸⁻	688	[Mn(III)]2 2H			H ₂ O	KNO ₃ (0.2M)	Ag/AgCI				0.20	-0.22				179
[(T(Et-4'-NMPy)) ⁴⁺] ₂ [T(3',5'-DCP)P] ⁸⁻	I	[Mn(III)] ₃			H ₂ O	KNO ₃ (0.2M)	Ag/AgCI				0.19	-0.23		-0.60		179
[(T(Et-4'-NMPy)) ⁴⁺] ₂	689	Mn(III)	ö		H ₂ O	KNO ₃ (0.2M)	Ag/AgCI				0.18	-0.17				179
[(T(Et-4'-NMPy)P) ⁴⁺] ₂ [T(3'-CO ₂ ⁻ P)P]	069	Mn(III)			H ₂ O	KCI (0.2M)	Ag/AgCI				0.23, -0.87*	-0.15				259

Table 11b. Octaethylporphyrins with charged peripheral groups. (see structures in Figure 11b)

			Axial L	-igand				Porp	hyrin	ŏ	Metal /	4	rphyrin	Red	
Ring	Structure	Metal	5	[2]	Solvent	Salt	RE	e	2	-	Other	 	2	e	Ref.
[(T(Et-4'-NMPy)P) ⁴⁺] [TPPS] ⁴⁻	² 691	Mn(III)			H ₂ O	KCI (0.2M)	Ag/AgCI				0.30*, -0.35* -0.77	*			259
[T(Et-4'-NMPy)P] ⁴⁺	692	Mn(III)			H ₂ O	KCI (0.2M)	Ag/AgCI				0.18, -0.11, -0.17 -0.74			-0.74	259
[T(Et-4'-NMPy)P] ⁴ 2 [T(3',5'-DCP)P] ⁸⁻	693	[2H] ₂ , Mn(III)			H ₂ O	KNO ₃ (0.2M)	Ag/AgCI				-0.59				179
[T(Py)OEP] ⁴⁺	694	(III)nM/(II)nM			CH ³ CN	TEAPF ₆	SCE				0.35				466
trans-[Cl₂(bpy)OEP]	695	Zn(II)			CH ₃ CN/DCE	TEAPF ₆	SCE			0.97*	-0.58	-1.2	*		275
trans-[OEP(Py) ₂] ²⁺	969	Zn(II)			DCE/CH ₃ CN	TBAPF	SCE		1.50*	1.23*		-0.8	8* -1.44		112

Table 11b. Octaethylporphyrins with charged peripheral groups. (see structures in Figure 11b)

										/ 1070 V V				
Ring	Structure	Metal	L1 L2	- Solvent	Salt	RE	Other Ox	2	, 	Other	۲ -		Other Red	Ref.
[B(BCP)P]2	697	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	0.80*,0.74* (0.49*	0.40*		-1.71	-1.83	-2.18, -2.37	128
[B(BCP)P] ₂	697	[Zn(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺	1.10, 0.78, (0.51	0.38		-1.75	-1.86	-2.20	439
[B(BDCP)P]2	698	[2H] ₂		DCM	TBAPF ₆	Fc/Fc⁺	C	77.0	0.63		-1.55	-1.66		128
[B(BDCP)P]2	ł	Cu(II), 2H		DCM	TBAPF ₆	Fc/Fc⁺	C	.77	0.63		-1.62	-1.82		128
[B(BDCP)P]2	ł	[Cu(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	C	0.79	0.64		-1.64	-1.77		128
[B(BDCP)P]2	ł	Zn(II), 2H		DCM	TBAPF ₆	Fc/Fc⁺	1.00, 0.77	.67	0.44		-1.62	-1.82	-2.06	128
[B(BDCP)P]2	I	Zn(II), Cu		DCM	TBAPF ₆	Fc/Fc⁺	0.95, 0.77, (0.66	0.46		-1.67*	-1.79*	-2.12	128
[B(BDCP)P]2	ł	(") [Zn(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺	1.16* 1.16*).53	0.43		-1.68	-1.80	-2.09, -2.31	128
[B(DBMP)P]2	669	[Zn(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺	1.09, 0.78 (0.51	0.36		-1.79	-1.89	-2.26	455
[B(DBMP)P] ₂	669	[Zn(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺	1.06, 0.76 (0.47	0.31		-1.79	-1.91		455
(BDTPP) ₂ -PA	P 700	Zn(II), Au(III)		DCM	TBAPF ₆ (0.15M)	SCE	·	1.16	0.76	> 1.50, -0.58 -1.28	-1.05			160
(BDTPP) ₂ -PA	P 700	Zn(II), Au(III)		DCM	TBAPF ₆ (0.15M)	SCE	·	1.18	0.74	>1.40 -0.58	-1.05			160
(BDTPP) ₂ -TP	AP 701	Au(III), Zn(II)		DCM	TBAPF ₆ (0.15M)	SCE	·	1.14	0.74	-0.56 -1.50*	-1.05			160
[BODP] ₂	702	[Zn(II)]2		DCM	TBABF₄	Fc/Fc⁺	0.66, 0.54 (0.28	0.12					137
Br₄TPP-TriPF	703	[Co(II)] ₂		PhCN	TBAP	SCE	1.40	1.29	1.21	0.70*, 0.56*, -0.58 -0.85	-1.68*	-1.82*		43
Br₄TPP-TriPF	I	[Cu(II)]2		PhCN	TBAP	SCE	1.44	1.35	1.06		-0.94	-1.24	-1.32, -1.85*	43

			Axial Ligar	p			Porp	ohyrin C	×	Metal /	Po	rphyrir	n Red	
Ring Stru	ucture	Metal	L1 L2		Salt	RE	Other C	X 2		Other	-	2	Other Red	Ref.
Br₄TPP-TriPP	I	[Ni(II)]2		PhCN	TBAP	SCE			1.15		-0.95	-1.22	-1.36, -1.94*	43
Br₄TPP-TriPP	ł	[Zn(II)] ₂		PhCN	TBAP	SCE	1.21	0.95	0.81		-1.05	-1.31*	-1.45*, -1.90*	43
[Br₄TPP]2-O	704	[Fe(III)] ₂	022	PhCN	TBAP	SCE	1.61	1.24	1.04		-0.78	-1.09	-1.39, -1.60	72
Br ₆ TPP-3'-DEG-3 TPP	705	4H		DCM	TBAPF ₆	Ag/AgCI	1.40	1.19	1.08*		-0.57	-1.01	-1.33	564
Br ₈ TPP-3'-DEG-3 TPP	1	[Cu(II)]2		DCM	TBAPF ₆	Ag/AgCI	1.58	1.37	1.17		-0.67	-0.91	-1.18, -1.52	564 (DPV)
Br ₈ TPP-3'-DEG-3 TPP	1	[Zn(II)] ₂		DCM	TBAPF ₆	Ag/AgCI		1.21	0.94		-0.92	-1.23	-1.41	564
Br ₈ TPP-3'-EG-3'- TPP	706	4H		DCM	TBAPF ₆	Ag/AgCI	1.40*	1.18	1.05*		-0.62	-1.04	-1.40	564
Br ₈ TPP-3'-EG-3'- TPP	I	[Cu(II)]2		DCM	TBAPF ₆	Ag/AgCI	1.62	1.42	1.17*		-0.63	-0.88	-1.14, -1.53	564 (DPV)
Br ₈ TPP-3'-EG-3'- TPP	I	[Zn(II)] ₂		DCM	TBAPF ₆	Ag/AgCI		1.19	0.93		-0.86	-1.36		564
Br ₈ TPP-4'-EG-4'- TPP	707	[Zn(II)] ₂		DCM	TBAPF ₆	Ag/AgCI		1.25	0.98		-0.91	-1.30	-1.65	564 (DPV)
Br ₈ TPP-4'-EG-4'- TPP1	I	[Cu(II)]2		DCM	TBAPF ₆	Ag/AgCI	1.62	1.40	1.10		-0.63	-0.90	-1.03, -1.40	564 (DPV)
Br ₈ TPP-TriPP	708	[Co(II)] ₂		PhCN	TBAP	SCE	1.43	1.29	1.16	0.74, 0.55*, 0.33 -0.84	-1.60*	-1.76*		43
Br ₈ TPP-TriPP	I	[Cu(II)] ₂		PhCN	TBAP	SCE	1.56	1.36	1.06		-0.71	-1.06	-1.29, -1.85	43
Br ₈ TPP-TriPP	ł	[Ni(II)] ₂		PhCN	TBAP	SCE		1.32	1.14		-0.74	-1.11	-1.29, -1.92*	43
Br ₈ TPP-TriPP	I	[Zn(II)] ₂		PhCN	TBAP	SCE	1.25	1.00	0.82		-0.83	-1.15	-1.43, -1.70	43
cis-(TPP) ₂ -(OC ₅) ₂	709	$[2H]_2$		DCE	TBAP	Fc/Fc⁺	1.02	0.82	0.51		-1.78	-2.06		523

			- Viol				Jarod	C circ					
Ring Struc	sture	Metal		Solvent	Salt	RE	Other Ox	2	< -	Other	5	2 Other Red	Ref.
cis-(TPP) ₂ -(OC ₅) ₂	1	[Zn(II)] ₂		DCE	TBAP	Fc/Fc⁺		0.60	0.26				523
[D(PyP)P] ₂ -B(DA)	710	[2H] ₂		CH ₃ CN	TBAP	Fc/Fc⁺			0.81				329 (DPV)
[D(PyP)P] ₂ -B(DA)	ı	[Ni(II)] ₂		DCB/Py	TBAP	Fc/Fc⁺			0.88				329
[D(PyP)P] ₂ B(DA)	ı	[Ni(II)] ₂		TCE	TBAPF ₆	Fc/Fc⁺			0.86				335
[D(PyP)P] ₂ ⁻ B(DA). C	711	[2H] ₂		CH ³ CN	TBAP	Fc/Fc ⁺			0.83				329 (DPV)
C₀₀ [D(PyP)P]₂ ⁻ B(DA). C₀₀	I	[2H] ₂		DCB/Py	TBAP	Fc/Fc⁺					-1.00		329
[D(PyP)P] ₂ -B(DA). C ₆₀	ı	[Ni(II)] ₂		TCE	TBAPF ₆	Fc/Fc⁺			0.88		-1.10		335
(DArP) ₂ -Indanyl	712	[Zn(II)] ₂		PhCN	TBAP	SCE	1.25, 1.07	0.75	0.62		-1.72		150
[DArP] ₂ -Ede	713	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	0.82	0.45	0.25		-1.50	-2.10	255
	714	[Zn(II)]2		DCM	TBABF ₄	Fc/Fc ⁺	0.57, 0.50	0.23	0.08				137
(DBPP) ₂ -A	715	Au(III), Zn(II)		DCM	NR	SCE		1.16	0.81	-0.57	-1.07		65
(DBPP) ₂ -A	I	[Au(III)]2		DCM	NR	SCE				-0.38	-0.54		65
(DBPP) ₂ -A		[Zn(II)]2		DCM	NR	SCE		0.77	0.57				65
(DBPP) ₂ -A	ı	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgCI	1.30	0.76	0.63		-1.12	-1.21	102
(DBPP) ₂ -A	ı	[Zn(II)] ₂		THF	$TBABF_4$	Fc/Fc⁺			0.29		-1.69		357
(DBPP) ₂ -C,	716	[Zn(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺			0.33				161

				Axial Lig	Jand				Porphyrin (X	Meta	al /	Porphy	rin Red	
Ring	Structu	ar	Metal			Solvent	Salt	RE	Other Ox 2	-	Othe	er 	1	Other Red R	ef.
(DBPP) ₂ -C ₁	- 1.	17	[Zn(II)]2			DCM	TBAPF ₆	Fc/Fc⁺		0.22				-	51
(DBPP) ₂ -C ₁	٥ ۲	18	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc ⁺		0.28				-	31
(DBPP) ₂ -C ₁	₀- <i>m</i> 7.	19	[Zn(II)]2			DCM	TBAPF ₆	Fc/Fc ⁺		0.33				÷	31
(DBPP) ₂ -C ₂	2	20	[Zn(II)]2			DCM	TBAPF ₆	Fc/Fc ⁺		0.29				÷	51
(DBPP) ₂ -C ₂	- ¹	51	[Zn(II)]2			DCM	TBAPF ₆	Fc/Fc ⁺		0.27				-	31
(DBPP) ₂ -C ₃	2	52	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc ⁺		0.29				-	31
(DBPP) ₂ -C ₃	- 7	23	[Zn(II)]2			DCM	TBAPF ₆	Fc/Fc ⁺		0.28				-	31
(DBPP) ₂ -C₄	2	24	[Zn(II)]2			DCM	TBAPF ₆	Fc/Fc ⁺		0.30				-	31
(DBPP)₂-C₄	- 1	25	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc ⁺		0.30				-	31
(DBPP) ₂ -C ₆	2	26	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc ⁺		0.26				-	31
(DBPP) ₂ -C ₆	- 1	27	[Zn(II)]2			DCM	TBAPF ₆	Fc/Fc ⁺		0.31				-	31
(DBPP) ₂ -C ₆	2	28	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc ⁺		0.27				-	31
(DBPP) ₂ -C ₈	- 1	29	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc ⁺		0.32				-	31
(DBPP) ₂ -D/	7	30	[Zn(II)] ₂			DCM 40°C)	TBAPF ₆ (0.5M)	Ag/AgCI	0.83	0.72		ì	1.13 -1.23	4	57
(DBPP) ₂ -D/	ž	30	[Zn(II)]2			HF	TBABF₄	Fc/Fc⁺	0.56	0.40		ì	1.50 -1.62	4	33
(DBPP) ₂ -D/	А ОТ 7 :	31	Au(III), Zn(II)		L	DCM	TBAPF ₆ (0.15M)	SCE		0.64	0.89 -(0.58 -`	1.04	÷	31

Table 12. Porphyrin dimers. (see structures in Figure 12)

							-				
			Axial Ligan(7			Porphyrin (ň	Metal /	Porphyrin Ked	
Ring Stru	icture	Metal	L1 L2	Solvent	Salt	RE	Other Ox 2	-	Other	- 1 2 Other Rec	Ref.
(DBPP) ₂ -PDI	732	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	0.34	0.19		-1.00 -1.19 -1.37	103
(DBPP) ₂ -Vn	733	[Zn(II)]2		THF	TBABF₄	Fc/Fc ⁺		0.39		-1.53	357
[DBPP] ₂	734	[Zn(II)]2		DMF	TBAPF ₆	Fc/Fc ⁺		0.27		-1.75	346
[DBPP] ₂	734	[Zn(II)]2		PhCN	TBAPF ₆	Fc/Fc ⁺		0.33		-1.79	346
[DBPP]2	734	[Zn(II)]2		THF	TBAPF ₆	Fc/Fc ⁺		0.38		-1.91	346
(DBPPAP) ₂ -Pt	735	(II) Zn(II)		DMF	TBAPF ₆	SCE		0.89		-0.77	298
DBPPP-DBPP	736	[2H] ₂		DCB	TBAPF ₆ 0.04M)	^gA/af	0.90	0.66		-1.57	300
[DEHMP] ₂ -Carb	737	[Zn(II)] ₂		DCM	TBACI	SCE				-1.55* -1.70*	296
[DEHMP] ₂ -Carb	737	[Zn(II)]2		DCM	TBACI	SCE			-0.60*	-1.41 -1.60*	296
[DEHMP] ₂ -Carb	737	[Zn(II)]2		DCM	TBAOAc	SCE				-1.68* -1.75*	296
[DEHMP] ₂ -Carb	737	[Zn(II)]2		DCM	TBAOAc	SCE			-0.90	-1.45 -1.72*	296
[DEHMP] ₂ -Carb	737	[Zn(II)]2		DCM	TBAP	SCE				-1.57	296
[DEHMP] ₂ -Carb	737	[Zn(II)]2		DCM	TBAP	SCE			-1.00*	-1.53 -1.67*	296
(DEHMPP) ₂ -TZ	738	[Zn(II)]2		DCM	TBAP	SCE	1.03	0.71			95
(DEHMPP) ₂ -TZ	738	[Zn(II)] ₂		PhCN	TBAP	SCE	0.87	0.52			95
DMP-DPC- TriHFPP	739	2H		PhCN	TBAPF ₆	SCE		1.06	0.52	-0.62 -1.18	397

			Avial Licia				Dorroh	, in the second s						
Ring St	ructure	Metal		- Solvent	Salt	RE	Other Ox	2	< -	Other		2 (Other Red	Ref.
[DTPPyP] _z D (MPA)	740	Zn(II)		PhCN	TBAPF ₆	Ag/AgNC	33	0.78	0.42		-1.17	-1.49*		445
(MEA) [DTPPyP] ₂ D	ł	[Zn(II)]2		PhCN	TBAPF ₆	Ag/AgNO) ₃ 1.03	0.67	0.41	-0.74*	-1.10	-1.60*		445
(IVIEA) [(EA)TPP] ₂ -Pd ²⁴	741	[Ni(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.60	0.36	0.25	1.25	-1.39	-1.70	-1.83, 2.10*	222
[(EK)T(Ar)P] ₂ -P ₁	j²⁺ 742	[2H] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.65	0.45	0.32		-1.50		0	223
[(EK)T(Ar)P] ₂ -P ₁	3 ²⁺ 1	[Cu(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.72	0.42	0.26		-1.52			223
[(EK)T(Ar)P] ₂ -P ₁	3 ²⁺	[Pd(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.50	0.50	0.34		-1.48	-1.90	-2.10	223
[(EK)TPP] ₂ -Cu ^{2,}	743	[Ni(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.82	0.47	0.30	-1.22	-1.74	-2.25		223
[(EK)TPP] ₂ -Ni ²⁺	744	[Ni(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.67	0.48	0.32		-1.37	-1.80	-1.90	223
[(EK)TPP] ₂ -Pd ²⁴	745	[Cu(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.75	0.45	0.29		-1.50			223
[(EK)TPP] ₂ -Pd ²⁴	I	[Ni(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.82	0.48	0.32		-1.45	-1.86	-1.94	222
[(EK)TPP] ₂ -Pd ²⁴	ł	[Ni(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.82	0.48	0.32		-1.45	-1.86	-1.94	223
[(EK)TPP] ₂ -Pd ²⁴	-1 746	[Ni(II)] ₂		DCM	TBAPF ₆	Fc/Fc ⁺	0.81	0.55	0.41		-1.46	-1.82		222
(F ₁₅ TriPP) ₂ -Ph	747	[Zn(II)] ₂		DCM	TBAPF ₆	Ag/Ag⁺		1.20	0.99					258
[F ₁₅ TriPP] ₂	748	[Zn(II)] ₂		DCM	TBABF₄	Ag/Ag⁺		0.98	0.84					509
[F ₁₅ TriPP] ₂ -Ph	749	2H, Zn(II)		DCM	TBAPF ₆	Ag/Ag⁺	1.41, 1.23*	1.18*	0.99					258
Fused [AP] ₂ -Ae	750	[Zn(II)] ₂		THF	TBAPF	Fc/Fc⁺			-0.24		-1.01			254

Table 12. Porphyrin dimers. (see structures in Figure 12)

		¥.	kial Ligand				Porpl	Jyrin O	×	etal /	Porph	iyrin Red		
Ring Stru	cture	Metal <u>L</u>	1 L2	Solvent	Salt	RE	Other Ox	2	0 -	ther 1		2 Other F	ked Re	ef.
Fused-[B(BCP)P] ₂	751	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	0.89	0.38	0.01	-1.(07 -1.	26 -2.17	12	8
Fused-[B(BCP)P] ₂	751	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	1.10, 0.83	0.37	0.09	-1.(11.	26 -2.18	()	36
Fused-[B(BCP)P] ₂	751	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	1.10, 0.78	0.51	0.38	7	75 -1.	86 -2.20	[36
Fused-[B(BCP)P] ₂	751	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	1.10, 0.83	0.37	0.09	-1.(11.	26 -2.18	43	6
Fused-[B(BCP)P] ₂	751	[Zn(II)]2		THF	TBAPF ₆	Fc/Fc⁺	0.92	0.47	0.15	-1.0	.1- J	40 -2.29, -2	2.59 13	36
Fused-[B(BCP)P] ₂	751	[Zn(II)]2		THF	TBAPF ₆	Fc/Fc⁺	0.92	0.47	0.15	-1.(.1- J	40 -2.29, -2	2.59 43	6
Fused-[B(BDCP) P] ₂	752	[2H] ₂		DCM	TBAPF ₆	Fc/Fc⁺		0.83	0.43	-0-	76 -1.	03	1	8
Fused-[B(BDCP) P] ₂	I	Cu(II), 2H		DCM	TBAPF ₆	Fc/Fc⁺	1.34	0.74	0.40	8·0-	33 -1.	08 -2.04	[58
Fused-[B(BDCP) P] ₂	I	[Cu(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺	1.16	0.73	0.40	3.0-	33 -1.	08 -2.02	[8
Fused-[B(BDCP) P] ₂	I	Zn(II), 2H		DCM	TBAPF ₆	Fc/Fc⁺	0.99	0.52	0.25	-1.(00 -1.	24 -2.19	1	8
Fused-[B(BDCP) P] ₂	I	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	1.08, 0.86	0.33	0.13	0-0-	97 -1.	21 -2.14	[8
Fused-[B(BDCP) P] ₂	I	Zn(II), Cu(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.94	0.49	0.22	0.0	92 -1.	21 -2.13	12	8
Fused-[B(BMP)P] ₂	753	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	1.03, 0.77	0.29	-0.01	<u>-</u>	12 -1.	36	5	36
Fused-[DBP] ₂	754	[Zn(II)]2		DCM	TBABF ₄	Fc/Fc⁺	0.75, 0.58	0.10	-0.11				(37
Fused-[DBPP (PyI)] ₂	755	[Pb(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺		0.15	-0.18	-0.	95 -1.	18	37	6
Fused-[DBPP (PyI)] ₂	ł	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	0.89	0.35	-0.01	<u>-</u>	10 -1.	27	37	6

							Doroh	ciri.			cin don		
Ring Stru	cture	Metal	L1 L2	Solvent	Salt	RE	Other OX		1 Other	2 - _	2 O	ther Red	Ref.
Fused-[DBPP (PVI)] ₃		[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺		0.18	-0.13	-0.97	-1.14		379
Fused-[DBPVCP] ₂	756	[Zn(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺			0.35	-0.65			359
Fused-[DBPVCP]2	757	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc ⁺			0.10*	-0.43*			359
Fused-[TDTBP]2	758	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc ⁺	1.03, 0.75	0.25	0.03	-1.07	-1.33	-2.28	128
Fused-[TriBPP] ₂	759	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	1.03, 0.77	0.28	-0.03	-1.13			406
Fused-TBPP- F ₁₅ TriPP	760	[Zn(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺	1.20, 0.94	0.47	0.22	-0.97	-1.21		406
IPDArP-A-DArP	761	[Zn(II)]2		PhCN	TBAP	SCE	1.26	0.79	0.57	-1.24	-1.34		150
O,S-TriTP-TZ- TriTP	762	Zn(II), O, S		DCM	TBAP	SCE		1.08	0.78	-0.92	-1.14	-1.58	113
O,S-TriTPP-TriTP	763	2H, O, S		DCM	TBAP	SCE			1.38*	-1.16*	-1.37	-1.56*	305
O,S-TriTPP-TriTP	1	Zn(II), O, S		DCM	TBAP	SCE		1.08	0.78	-1.14	-1.16	-1.55, -1.73*	305
(OEP) ₂ -(CH ₂) ₂	764	[Fe(III)] ₂	ū	DCM	TBAPF ₆	Ag/AgCI	1.44	1.15	0.88	-1.34			93
[(OEP) ₂ -(CH ₂) ₂]O	765	[Fe(III)] ₂	02	DCM	TBAPF ₆	Ag/AgCI	1.39, 1.27	0.87	0.57	-1.39			93
(OEP) ₂ -1,3-DAP	766	[Ni(II)]2		DCM	TBAPF ₆ (0.5M)	Ag/AgCI			0.96	-1.10			585
(OEP) ₂ -1,3-DAP	766	[Ni(II)] ₂		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI		1.01	0.89	-1.10			585
(OEP) ₂ -1,4-DAP	767	[Ni(II)] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI		0.96	0.91	-1.10			585
(OEP) ₂ -1,4-DAP	767	[Ni(II)] ₂		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI		1.00	0.83	-1.08			585

Table 12. Porphyrin dimers. (see structures in Figure 12)

			Axial Ligand				Porphyrin	ŏ	Metal /	Porphyrin Rec	
Ring Sti	ructure	Metal	L1 L2	- Solvent	Salt	RE	Other Ox 2	-	Other	1 2 Other	Red Ref.
(OEP) ₂ -2,5-AT	768	[Ni(II)] ₂		DCM	TBAP (0.5M)	Ag/AgCI	0.99	0.89		-1.05	585
(OEP) ₂ -DA	769	[Ni(II)] ₂		DCM	TBAP (0.5M)	Ag/AgCI	1.04	0.92		-1.01	585
(OEP) ₂ -DA	769	[Ni(II)] ₂		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI	1.03	0.86		-0.93 -1.03	585
(OEP) ₂ -DAV	770	[Ni(II)] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI	1.00	0.93		-0.95	585
(OEP) ₂ -DAV	170	[Ni(II)] ₂		DCM (-40°C)	TBAP (0.5M)	Ag/AgCI	1.01	0.87		-0.90 -0.95	585
(OEP) ₂ -DVA	771	[Ni(II)] ₂		DCM	TBAP (0.5M)	Ag/AgCI	0.94*	0.79		-0.81	585
(OEP) ₂ -DVDA	772	[Ni(II)] ₂		DCM	TBAP (0.5M)	Ag/AgCI	0.96*	0.91		-0.82	585
(OEP) ₂ -O	773	[Fe(III)] ₂		DCM	TBAPF ₆	Ag/AgCI	1.54, 1.30 0.93	0.65		-1.35	93
(OEP) ₂ -TA	774	[Ni(II)] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI	0.97	0.89		-0.92	585
(OEP) ₂ -TA	774	[Ni(II)] ₂		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI	1.05	0.84		-0.92	585
(OEP) ₂ -VA	775	[Ni(II)] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI	1.04*	0.87		-0.88	585
(OEP) ₂ DAT	776	[Ni(II)] ₂		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI	1.10	0.85		-1.00	585
[OEP] ₂ -DA	111	[2H] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI		0.96*		-0.93 -0.98	278
[OEP] ₂ -DA	111	[2H] ₂		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI	1.06	0.92		-0.89 -0.96	278
[OEP] ₂ -DA	I	Co(II), Ni(II)		DCM	TBAPF ₆ (0.5M)	Ag/AgCI		1.13	0.99 -0.74	-1.11	278
[OEP] ₂ -DA	I	Co(II), Ni(II)		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI		1.09	0.96 -0.75	-1.13	278

			Axial Ligano				Porphyrin	ŏ	Metal /	Pod	rphyrin Red	
Ring	Structure	Metal	L1 L2	- Solvent	Salt	RE	Other Ox 2	-	Other	-	2 Other Red	Ref.
[OEP] ₂ -DA	I	[Co(II)]2		DCM	TBAPF ₆ (0.5M)	Ag/AgCI			0.87* -0.77			278
[OEP] ₂ -DA	I	[Co(II)] ₂		DCM	TBAPF ₆	Ag/AgCI		1.20	0.95 -0.74			278
				(-40°C)	(0.5M)							
[OEP] ₂ -DA	I	[Cu(II)]2		DCM	TBAPF ₆ (0.5M)	Ag/AgCI	1.05	0.87		-1.08	-1.08	278
[OEP] ₂ -DA	I	[Cu(II)]2		DCM	TBAPF ₆ (0.5M)	Ag/AgCI	1.01	0.81		-1.04	-1.07	278
[OEP] ₂ -DA	I	Ni(II),		DCM	TBAPF	Ag/AgCI	1.02	06.0		-1.03	-1.03	278
		Cu(II)			(0.5M)							
[OEP] ₂ -DA	I	Ni(II), Cu(II)		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI	1.03	0.85		-0.97	-1.03	278
[OEP] ₂ -DA	ł	Ni(II), Zn(II)		DCM	TBAPF ₆ (0.5M)	Ag/AgCI	1.00	0.66		-1.07	-1.32	278
[OEP] ₂ -DA	I	Ni(II),		DCM	TBAPF	Ag/AgCI	0.94	0.68		-1.06	-1.33	278
		Zn(II)		(-40°C)	(0.5M)							
[OEP] ₂ -DA	I	[Ni(II)] ₂		DCM	NR	SCE	1.35 1.01	0.86				224
[OEP] ₂ -DA	I	[Ni(II)] ₂		DCM	TBAPF ₆	Ag/AgCI	1.04	0.92		-1.00	-1.00	278
[OEP] ₂ -DA	ł	[Ni(II)] ₂		DCM		Ag/AgCI	1.03	0.86		-0.93	-1.03	278
				(-40°C)	(0.5M)							
[OEP] ₂ -DA	I	[Pd(II)] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI	1.08	0.96		-1.01	-1.06	278
[OEP] ₂ -DA	ł	[Pd(II)] ₂		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI	1.04	06.0		-0.98	-1.04	278
[OEP] ₂ -DA	I	[Pt(II)] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI	1.12	1.03		-0.98	-1.04	278
[OEP] ₂ -DA	I	[Pt(II)] ₂		DCM	TBAPF	Ag/AgCI	1.05	0.92		-1.00	-1.07	278
				()-140-() ()-140-()	(IMIC-U)					:		
[OEP] ₂ -DA	I	[Zn(II)]2		DCM	TBAPF ₆ (0.5M)	Ag/AgCI		0.65*		-1.41	-1.41	278

			Axial Ligan	q			Porph	yrin O	×	Metal /	Porphyrin Red	
Ring Str	ucture	Metal	L1 L2	- Solvent	Salt	RE	Other Ox	5	 	Other	1 2 Other Re	d Ref.
[OEP] ₂ -DA		[Zn(II)]2		DCM (-40°C)	TBAPF ₆ (0.5M)	Ag/AgCI		0.74	0.67		-1.30 -1.30	278
[OEP] ₂ -DPE	778	[2H] ₂		PhCN	TBAPF	SCE			0.58			336
[OEP] ₂ -DPE	677	[2H] ₂		PhCN	TBAPF ₆	SCE			0.71 -0.5	22		336
[OEP] ₂ -Vn	780	[Ni(II)]2		DCM	NR	SCE	1.23	0.70	0.62			224
[OEP] ₂ -Vn(E)	781	[2H] ₂		DCM	TBAP	SCE	1.49	0.72	0.59			274
[OEP] ₂ -Vn(E)	I	[Ni(II)] ₂		DCM	TBAP	SCE	1.23	0.70	0.62			274
[OEP] ₂ -Vn(E)	ł	[Pd(II)]2		DCM	TBAP	SCE	1.41	06.0	0.72			274
[OEP] ₂ -Vn(E)	ł	[Pt(II)] ₂		DCM	TBAP	SCE	1.52	1.04	0.86			274
[OEP] ₂ -Vn(Z)	782	[2H] ₂		DCM	TBAP	SCE	1.42	0.67	0.56			274
[OEP] ₂ -Vn(Z)	ł	[Ni(II)] ₂		DCM	TBAP	SCE	1.26	0.76	0.57			274
[OEP] ₂ -Vn(Z)	ł	[Pd(II)]2		DCM	TBAP	SCE	1.47	0.94	0.61			274
[OEP] ₂ -Vn(Z)	I	[Pt(II)] ₂		DCM	TBAP	SCE	1.47	0.98	0.61			274
Por-Bezyl-OxoP	783	3H, F ⁻ , Zn(II)		DCB	TBAP	Fc/Fc⁺			0.49		-0.10	532
Por-Bezyl-OxoP	784	4H, Zn(II)		DCB	TBAP	Fc/Fc⁺			0.59		0.35	532
S-TriTP-TZ-TriTF	o 785	3H, S		DCM	TBAP	SCE		1.45	1.07		-1.03 -1.17 -1.34	113
S-TriTP-TZ-TriTF	1	Zn(II), H, S		DCM	TBAP	SCE	1.47	1.07	0.77		-1.02 -1.35 -1.55	113

										/ 1 - T - T V				
			Axial Ligand				Porph	Jrin C	×	Metal /	ĭ	orphyrir	Led L	
Ring Stru	Icture	Metal -	L1 L2	Solvent	Salt	RE	Other Ox	2		Other	 	2	Other Red	Ref.
S-TriTPP-TriTP	786	3H, S		DCM	TBAP	SCE	1.38*	1.16*	0.99*		-0.88	-1.18	-1.53	305
S-TriTPP-TriTP	I	Zn(II), H, S		DCM	TBAP	SCE	1.47*	1.08	0.77		-0.98	-1.34	-1.73*	305
S ₂ -DTPyP-DPA- (S-TriTP)	787	H, 3S		DCM	TBAP	SCE		1.22	1.11		-0.89	-1.04	-1.29, -1.36	503
S ₂ -TriTP-TZ-TriTP	788	2H, 2S		DCM	TBAP	SCE	1.38	1.12	1.05		-0.82	-1.12	-1.48	113
S ₂ -TriTP-TZ-TriTP	I c	Zn(II), 2S		DCM	TBAP	SCE	1.31	1.06	0.77		-0.83	-1.19	-1.52	113
(S ₂ -TriTP)-TZ-(S- TriTP)	789	H, 3S		DCM	TBAP	SCE	1.59	1.40	1.08		-0.89	-1.02	-1.33	113
S ₂ -TriTPP-S-TriTF	062 0	H, 3S		DCM	TBAP	SCE		1.48*	1.26*		-1.00*	-1.30*		305
S ₂ -TriTPP-TriTP	791	2H, 2S		DCM	TBAP	SCE	1.38*	1.16*	0.99*		-0.88	-1.18	-1.54	305
S ₂ -TriTPP-TriTP	ı	Zn(II), 2S		DCM	TBAP	SCE	1.55*	1.08	0.78		-0.92	-1.19	-1.56, -1.75*	305
S ₂ -TTP-TZ-TTP	792	2H, 2S		DCM	TBAP	SCE	1.28	1.14	0.95		-0.92	-1.20	-1.54	415
S ₂ -TTP-TZ-TTP	ł	Zn(II), 2S		DCM	TBAP	SCE		1.02	0.72		-0.99	-1.19	-1.70	415
(T(Ar)P) ₂ -(Q) ₂	793	Co(II)		PhCN	TBAP	SCE		1.18	1.18	0.67* 0.10	-0.69	-1.69	-1.84*	9
(T(Ar)P) ₂ -(Q) ₂	ı	Zn(II), Au(III)		PhCN	TBAP	SCE		1.02	0.81	-0.40	-0.88	-1.23,	-1.55, -1.71	18
(T(Ar)P) ₂ -(Q) ₂	ł	Zn(II), Au(III)		Tol. (45°C)	THAP (0.6M)	SCE		1.02	0.81	-0.30	-0.87	-1.17	-1.57, -1.81	18
(T(Ar)P) ₂ -DP	794	Co(II)		PhCN	TBAP	SCE		1.30	1.10	0.75* -0.05	* -0.59	-0.73,	-1.42, -1.91*	9
[T(Ar)P] ₂ -1,2-PV	795	2H, Zn(II)		DCM	$TBABF_4$	Fc/Fc⁺	1.36, 1.11	0.97	0.80		-1.01	-1.11	-1.21, -1.35	282

				-									ſ	-	-	
Rind	Struct	e ll'	Metal	AXIAI LIÇ		Solvent	Salt	ЦЦ			× +	Other	д -		Ther Pad	Ref
Biiki	0000		INICIAI		4		Car	2		4	-		-	1	חוופו אפת	
[T(Ar)P] ₂ -1,2	۶ ۲	I	[2H] ₂			DCM	TBABF₄	Fc/Fc⁺		1.35	0.98		-1.01	-1.20		282
[T(Ar)P] ₂ -1,2	⊳d-	ı	[Zn(II)] ₂			DCM	$TBABF_4$	Fc/Fc⁺		1.11	0.79		-1.10	-1.36		282
[T(Ar)P] ₂ -1,3	2 2 4-	796	2H, Zn(II)			DCM	$TBABF_4$	Fc/Fc⁺	1.30, 1.11	1.03	0.83		-0.96	-1.09	-1.18, -1.35	282
[T(Ar)P] ₂ -1,3	⊳d-	ı	[2H] ₂			DCM	$TBABF_4$	Fc/Fc⁺		1.29	1.00		-1.03	-1.20		282
[T(Ar)P] ₂ -1,3	ЪЧ-	ł	[Zn(II)] ₂			DCM	$TBABF_4$	Fc/Fc⁺		1.09	0.81		-1.09	-1.34		282
[T(Ar)P] ₂ -1,4	>d-	797	2H, Zn(II)			DCM	$TBABF_4$	Fc/Fc⁺	1.35, 1.14	0.98	0.80		-0.95	-1.07	-1.15, -1.35	282
[T(Ar)P] ₂ -1,4	⊳d-	ı	[2H] ₂			DCM	$TBABF_4$	Fc/Fc⁺		1.29	0.98		-1.02	-1.17		282
[T(Ar)P] ₂ -1,4	ЪЧ-	ł	[Zn(II)] ₂			DCM	$TBABF_4$	Fc/Fc⁺		1.09	0.78		-1.04	-1.33		282
[T(Ar)P] ₂ -DM	ģ	798	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc⁺	0.94	0.59	0.30		-1.85			26
[T(Ar)P] ₂ -DM	щ	ı	[2H] ₂			DCM	TBAPF ₆	Fc/Fc⁺	1.10*	0.86*	0.45		-1.74	-2.05		26
[T(Ar)P] ₂ -TA,	۵	799	[Mn(III)] ₂	ū	÷	DCM	TBABF₄	Fc/Fc⁺				-0.27*	-0.86	-1.03	-1.30	456
[T(Ar)P] ₂ -TA	Z	800	[2H] ₂			DCM	TBAP	SCE			0.98*		-1.09	-1.19		447
[T(Ar)P] ₂ -TA	Z	1	[Zn(II)] ₂			DCM	TBAP	SCE		0.97*	0.73		-1.14	-1.30		447
[T(Ar)P] ₂ -TA	z	801	[Zn(II)]2	See Fig.		DCM	TBAP	SCE			0.74*		-0.44*	-0.93*	-1.18, -1 45*	447
(Τ(EM)PP) ₂₋₁	Calix4	802	[Zn(II)] ₂			DCM	TBAP (0.5M)	Fc/Fc⁺		0.32	0.14		-0.46		2	148
[T(EM)PP] ₂ -(Calix4	Ċ	803	[Zn(II)]2	See Fig.		DCM	TBAPF ₆	Fc/Fc⁺			0.24					444

Table 12. Porphyrin dimers. (see structures in Figure 12)

			Avial Lice	pue				Porof		2	M	tal /	D	nhvrin Re		
Ring Stru	cture	Metal			Solvent	Salt	RE	Other Ox	5		8	ler		2 Oth	er Red F	Ref.
[T(EM)PP] ₂ -Calix4	804	[Zn(II)]2			DCM	TBAP (0.5M)	Ag/Ag⁺	0.76	0.49	0.27						469
[T(EM)PP] ₂ -Calix4	805	[Zn(II)] ₂	See Fig.		DCM	TBAP (0.5M)	Ag/Ag⁺		0.74	0.30						469
(TBPP) ₂ -POM	806	$[2H]_2$			DCM	P(Ph) ₄ BF ₄	SCE		1.08	0.95	-0.28	-0.74	-1.07	-1.30		121
(ТВРР) ₂ -РОМ	ı	[Zn(II)]2			DCM	P(Ph)4BF4	SCE		1.01	0.72	-0.18	-0.75	-1.35	-1.55		121
(TBPP) ₂ -POM(2)	807	[Zn(II)]2			DCM	P(Ph) ₄ BF ₄	SCE		1.03	0.71	-0.30	-0.82	-1.29	-1.55		121
(TBPP) ₂ -POM(2)-1	808	[Zn(II)]2			DCM	P(Ph)4BF4	SCE		1.00	0.70	-0.68	-1.04	-1.33	-1.60		121
[TBPP] ₂	809	[Zn(II)] ₂			DCM	TBAPF ₆	Ag/AgCI	1.33*	0.86	0.75			-1.39	-1.52		133
(TDBP) ₂	810	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc⁺	1.03, 0.82	0.40	0.19			-1.86	-1.96 -2.2	58	128
[(TEA)TPP] ₂ -Pd ²⁺	811	[Ni(II)] ₂			DCM	TBAPF ₆	Fc/Fc⁺	0.60	0.41	0.27			-1.42*	-1.58 -1.6	30, -2.02	222
[(TEK)TPP] ₂ -Pd ²⁺	812	[Ni(II)] ₂			DCM	TBAPF ₆	Fc/Fc⁺	0.80	0.49	0.30			-1.35	-1.45 ≈ -1	I.85, ≈	222
TETMP-A-TETMP	813	Zn(II),	0 °0	, Цо Ц	DCM	TBAP	Ag/AgCI	1.47	0.96	0.49	-0.20		-0.78	<u>,</u>	ç	10
(TETMP) ₂ -DB	814	[Pd(II)]2	ر) Ľ	DCM	TBAP	Ag/AgCI			0.91			-1.49			402
(TETMP) ₂ -Xan	815	[Pd(II)] ₂			DCM	TBAP	Ag/AgCI		0.92	0.65			-1.70			402
THTMP-Phen- THTMP	816	[Zn(II)] ₂			<i>n</i> -BuCN	TBABF₄	Fc/Fc⁺			0.17						401
(TMPP) ₂ -2C- Calix4	817	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc⁺		0.70	0.36						444
(TMPP) ₂ -C-Calix4	818	[Zn(II)] ₂			DCM	TBAPF ₆	Fc/Fc⁺		0.70	0.36						444

Table 12. Porphyrin dimers. (see structures in Figure 12)

								Jarod	, rin		V	\ c+		- in the second s		
Ring Stru	cture	Metal			Solvent	Salt	RE	Other Ox	2	<	₹§	jer	5	2	Other Red	Ref.
(TMPP) ₂ -C-Calix4	819	[Zn(II)]2	See Fig.		DCM	TBAPF ₆	Fc/Fc⁺			0.19						444
(TMPP) ₂ -C-Calix4	820	[Zn(II)]2			DCM	TBAPF ₆	Fc/Fc⁺		0.70	0.31						444
TPP-DEHMP	821	[Co(II)] ₂			PhCN	TBAP	SCE	1.37	1.21	0.99	0.60*, 0.66	0.44*, 1.06				59
TPP-DEHMP	I	[Cu(II)] ₂			PhCN	TBAP	SCE	1.32, 1.16	1.04	0.77	00.0-	00. -	-1.27	-1.54	-1.74	59
TPP-DEHMP	ł	[Ni(II)]2			PhCN	TBAP	SCE	1.86*	1.15	0.79			-1.27	-1.44	-1.81	59
TPP-DEHMP	ł	[Zn(II)] ₂			PhCN	TBAP	SCE	1.17, 0.97	0.84	0.67			-1.32	-1.58	-1.70	66
TPP-T _{ri} PP	822	[Cu(II)] ₂			PhCN	TBAP	SCE		1.32	1.04			-1.28	-1.74		59
TPP-T _{ri} PP	ł	[Ni(II)]2			PhCN	TBAP	SCE			1.13			-1.25	-1.76		59
(TPP) ₂ -B(DPP)A	823	[2H] ₂			CH ₃ CN/DCE	TEAPF ₆	SCE			1.32*	-0.73	-1.02	-1.30	-1.52		154 (CV/P)
(TPP) ₂ -B(DPP)A	ł	[Zn(II)] ₂			CH ₃ CN/DCE	TEAPF ₆	SCE	1.35	1.25	1.03	-0.73	-1.12	-1.30			154 (CV/P)
(TPP) ₂ -B(DPPTM)	824	$[2H]_2$			CH ₃ CN/DCE	TEAPF	SCE			1.34*	-0.62		-1.01			154 (CV/P)
(ТРР) ₂ -В(DPPTM)	ł	[Zn(II)] ₂			CH ₃ CN/DCE	TEAPF	SCE		1.29	1.00	-0.92	-1.10	-1.38	-1.68		154 (CV/P)
(TPP) ₂ -BDC	825	Zn(II), Mc(XI)	05	Ő	DMF	TEAP	Ag/Ag⁺		0.74*	0.39	-0.45		-0.91*	-1.48	-1.86	126
(TPP) ₂ -BDC	I	Zn(II), 2H			DMF	TEAP	Ag/Ag⁺			0.37*			-0.90*	-1.30	-1.88	126
(TPP) ₂ -BDPBuP	826	[2H] ₂			CH ₃ CN/DCE	TEAPF ₆	SCE			1.31*	-0.70		-1.05	-1.73		154 (CV/P)
(TPP) ₂ -BDPBuP	827	[Zn(II)] ₂			CH ₃ CN/DCE	TEAPF ₆	SCE		1.19	06.0	-0.94	-1.10	-1.35	-1.68		154 (CV/P)

Table 12. Porphyrin dimers. (see structures in Figure 12)

			Avial					Dornhvirin	2				rohv.rin	Too o	
Ring Stru	ucture	Metal			Solvent	Salt	RE	ther Ox 2	5	ō	her		2	Other Red	Ref.
(TPP) ₂ -BDPPE	828	[2H] ₂			CH ₃ CN/DCE	TEAPF	SCE		1.28*	-0.74		-1.10	-1.55		154 (CV/P)
(TPP) ₂ -BDPPE	I	[Zn(II)] ₂			CH ₃ CN/DCE	TEAPF	SCE	1.23	1.02	-0.99	-1.17	-1.38	-1.76		154 (CV/P)
(TPP) ₂ -BDPPM	829	$[2H]_2$			CH ₃ CN/DCE	TEAPF ₆	SCE		1.22*	-0.74		-1.10	-1.55		154 (CV/P)
(TPP) ₂ -BDPPM	I	[Cu(II)] ₂			CH ₃ CN/DCE	TEAPF	SCE	1.22	0.98	-0.97	-1.14	-1.72			154 (CV/P)
(TPP) ₂ -BDPPM	830	[Zn(II)] ₂			CH ₃ CN/DCE	TEAPF	SCE	1.17	0.97	-1.04	-1.16	-1.42	-1.77		154 (CV/P)
(TPP) ₂ -BDPPrP	831	[2H] ₂			CH ₃ CN/DCE	TEAPF	SCE		1.32*	-0.73		-1.08			154 (CV/P)
(TPP) ₂ -BDPPrP	I	[Zn(II)] ₂			CH ₃ CN/DCE	TEAPF ₆	SCE	1.40	1.10	-1.00	-1.11	-1.37	-1.75		154 (CV/P)
(TPP) ₂ -BIP	832	Zn(II),	022	O ^{2.}	DMF	TEAP	Ag/Ag⁺	0.70	0.43	-0.44		-0.89*	-1.45	-1.86	126
(TPP) ₂ -CNP	833	(v)) [2H] ₂			DMF	TBAP	Ag/AgNO ₃		0.73			-1.48	-1.94		124
(TPP) ₂ -CNP	I	Zn(II), 2H			DMF	TEAP	Ag/Ag⁺	0.68	0.38			-0.71*	-1.30	-1.91	126
(TPP) ₂ -CNP	I	[Zn(II)] ₂			DMF	TBAP	Ag/AgNO ₃		0.40			-1.74	-2.16		124
(TPP) ₂ -DPPAsM	834	[2H] ₂			CH ₃ CN/DCE	TEAPF	SCE		1.34*	-0.63		-0.98	-1.38		154 (CV/P)
(TPP) ₂ -PDPAsM	835	[Zn(II)] ₂			CH ₃ CN/DCE	TEAPF	SCE	1.32	1.07	-0.97	-1.12	-1.34	-1.66	-2.08	154 (CV/P)
(TPP) ₂ -succinyl	836	[2H] ₂			DMF	TBAP	Ag/Ag⁺		0.75*			-1.46	-1.91		44
(TPP) ₂ -succinyl	I	[Co(II)] ₂			DMF	TBAP	Ag/Ag⁺		0.77*	0.04*	-1.22	-1.60			44
(TPP) ₂ -succinyl	I	[Cu(II)]2			DMF	TBAP	Ag/Ag⁺		0.66*			-1.56	-2.08		14

			- - -				-					-	-	
			Axial Ligand				Porpr	nyrın O	X	Metal	-	orphyri	n Ked	
Ring Str	ucture	Metal	L1 L2	- Solvent	Salt	RE	Other Ox	2	-	Other	 	2	Other Red	Ref.
(TPP) ₂ -succinyl	1	[Fe(III)] ₂	Ċ	DMF	TBAP	Ag/Ag⁺			0.60*	-0.57	-1.43	3 -2.14		4
(TPP) ₂ -succinyl	I	[Mn(III)] ₂	Ċ	DMF	TBAP	Ag/Ag⁺			0.65*	-0.60	-1.72	2 -2.19		4
(TPP) ₂ -succinyl	I	[Ni(II)] ₂		DMF	TBAP	Ag/Ag⁺			0.65*		-1.56	3 -2.14		4
(TPP) ₂ -succinyl	ł	[Zn(II)]2		DMF	TBAP	Ag/Ag⁺		0.51*	0.48		-1.72	2 -2.11		14
[TPP] ₂ -(OC ₂ Se) ₂	837	[2H] ₂		H ₂ O	РВ	SCE					-0.68	3* -0.97*		530
[TPP] ₂ -(OC ₂ Se) ₂	837	[2H] ₂		H ₂ O	РВ	SCE					-0.72	2* -0.79*	-0.90*	530
[TPP] ₂ -(OC ₂ Se) ₂	837	[2H] ₂		H ₂ O	РВ	SCE					-0.72	2* -0.80*	-0.94*	530
[TPP] ₂ -Anh	838	[2H] ₂		DMF	TBAP	SCE			0.62		-1.38	3 -1.63	-2.08, -2.92, -3.20	247
[TPP] ₂ -Anh	I	[Zn(II)]2		DMF	TBAP	SCE		0.57	0.37		-1.89	9 -2.31	-2.61*, -3.15*	247
[TPP] ₂ -Glu	839	$[2H]_2$		DMF	TBAP	Ag/Ag⁺			0.56*		-1.58	~		463
[TPP]2-Glu	ł	[Co(II)]2		DMF	TBAP	Ag/Ag⁺		0.60*	0.56*	-0.45 -1.2	29 -1.56	3 -1.93		463
[TPP] ₂ -0	840	[Fe(III)] ₂	02	PhCN	TBAP	SCE	1.59, 1.48	1.11	06.0		-1.06	9 -1.60		72
trans-(TPP) ₂ -	841	[2H] ₂		DCE	TBAP	Fc/Fc⁺	1.07	0.85	0.49		-1.65	10		523
trans-(TPP) ₂ -	ł	[Zn(II)]2		DCE	TBAP	Fc/Fc ⁺		0.65	0.31		-2.03	~		523
(Tri(Ar)P) ₂ -DAA	842	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺		0.64	0.32	0.95* -2.1	10 -1.86	3 -2.30		153
(Tri(Ar)P) ₂ -DAA	843	[Zn(II)] ₂	See Fig.	DCM	TBAPF	Fc/Fc⁺	0.75	0.40	0.28	0.96 -1.9	95 -1.87		-2.07	153

			Axial Ligan	p			Porphy	rin O	×	Metal /	Porphyrin F	Red	
Ring Stru	icture	Metal ⁻	L1 L2	- Solvent	Salt	RE	Other Ox	2	-	Other	10	her Red R	tef.
TriBPP-(Py) ₂ - TriBPP	844	[Ni(II)] ₂		DCM	TBAPF ₆	Ag/AgCIO4			0.75		-1.52	4	.22
TriBPP-(Py) ₂ Pd ²⁺ - TriBPP	845	[Ni(II)] ₂		DCM	TBAPF ₆	Ag/AgCIO4			0.52		-1.40	4	22
TriBPP-DPC- TriBAPP	846	2H, Zn(II)		PhCN	TBAPF ₆	Fc/Fc⁺	Ö	.59	0.30			7	.03 (DPV)
TriBPP-F ₁₅ TriPP	847	2H, Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺			0.57		-1.38	4	90
TriBPP-F ₁₅ TriPP	ł	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	Ö	.55	0.34		-1.57	ч	90
(TriBPP) ₂	848	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	Ö	.43	0.32		-1.89	4	-06
(TriBPP) ₂ -BVQT	849	2H, Zn(II)		DCM	TBAPF ₆ (0.5M)	Ag/AgCI			0.70			0	28
(TriBPP) ₂ -BVQT	I	[Zn(II)] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI			0.70			(,)	28
(TriBPP) ₂ -DAQT	850	Zn(II), 2H		DCM	TBAPF ₆ (0.5M)	Ag/AgCI			0.75			(,)	28
(TriBPP) ₂ -DAQT	I	[Zn(II)] ₂		DCM	TBAPF ₆ (0.5M)	Ag/AgCI			0.77			(1)	28
[TriBPP] ₂ -DAP	851	[Ni(II)]2		DCM	TBAPF ₆	Ag/AgCI	1.27 0.	66.	0.90			ч	49
[TriBPP] ₂ -DAQ	852	[Ni(II)] ₂		DCM	TBAPF ₆	Ag/AgCI	£-	.27	1.08 -	0.26 -0.72	-1.37	ч	49
[TriCNP] ₂	853	[Zn(II)] ₂		DCM	$TBABF_4$	Ag/Ag⁺	Ö	11.	0.62			U)	60
(TriDBP) ₂ -DA	854	[Ni(II)]2		DCM	TBAPF ₆	Ag/AgCI	1.30 1.	.10	0.93		-1.14*		20
(TriDBP) ₂ -DA	ł	[Zn(II)] ₂		DCM	TBAPF ₆	Ag/AgCI	1.24 0.	.78	0.69		-1.22	~	20
(TriDBP) ₂ -PtDA	855	[Ni(II)] ₂		DCM	TBAPF ₆	Ag/AgCI	1.19 0.	.83	0.70		-1.37*	(A	120

Table 12. Porphyrin dimers. (see structures in Figure 12)

			Axial Ligand				Porphyr	XO u	Met	al /	Porphyrin Red	
Ring Struc	cture	Metal	L1 L2	Solvent	Salt	RE	Other Ox 2		Oth	ъ	1 2 Other Red	Ref.
(TriDBP) ₂ -PtDA	1	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgCI	1.01 0.5	56 0.5	0		1.47	220
[TriDBPP] ₂	856	[Zn(II)]2		DCM	TBABF₄	Ag/Ag⁺	0.6	58 0.4	4			509
(TriDP) ₂ -DPA	857	2H, Zn(II)		DCM/THF	TBABF₄	Ag/Ag⁺		0.3	4			46
(TriDP) ₂ -DPA	ı	[Zn(II)]2		DCM/THF	TBABF ₄	Ag/Ag⁺		0.3	4			46
TriMP-PE-DTTAP	858	[Zn(II)]2		CH ₃ CN	TBAPF ₆	Ag/Ag⁺		0.5	4			39
(TriMP) ₂ -DADMP	859	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgNO ₃	0.6	5 9 0 .5	0			157
(TriMP) ₂ -DAP	860	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgNO ₃		0.5	6			157
(TriMP) ₂ -MADA	861	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgNO ₃	0.6	32 0.5	e			157
(TriMP) ₂ -MCH	862	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgNO ₃	0.6	35 0.5	e			157
(TriMP) ₂ -Ph	863	[Zn(II)]2		DCM	TBAPF ₆	Ag/Ag⁺	0.6	90 0.5	6			258
(TriMP) ₂ -tBP	864	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgNO ₃		0.5	80			157
[TriMP] ₂ -Ph	865	2H, Zn(II)		DCM	TBAPF ₆	Ag/Ag⁺	1.19, 0.88* 0.7	72* 0.5	80			258
TriMPP-TriMP	866	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgNO ₃		0.5	6			157
(TriMPP) ₂ -DAP	867	[Zn(II)]2		DCM	TBAPF ₆	Ag/AgNO ₃		0.5	6			157
[TriOPP] ₂	868	[Zn(II)]2		DCM	TBABF₄	Ag/Ag⁺	0.6	55 0.4	3			509
$(TriPCP)_2 - (Rh^{2+}L_n)_2$	869	[2H] ₂		DCE	TBAPF ₆ (0.05M)	SCE		1.1	7* 1.38	0.37 -	1.19*	442

			Axial Ligand				Porph	iyrin C	×	Metal /	Ē	orphyrin	Red	
Ring Stru	icture	Metal	L1 L2	Solvent	Salt	RE	Other Ox	2	-	Other	- 	50	ther Red	Ref.
[TriPCP] ₂ -(Ru ₃ O)	870	[Zn(II)]2		DMF	TBAPF ₆	Ag/AgPF ₆		0.73	0.51	-1.16 -1.70	-2.08			507
(TriPP) ₂ -Calix4	871	[2H] ₂		DCM	THPPF ₆	Ag/AgCI		1.33	1.20		-1.06	-1.45		317
(TriPP) ₂ -Calix4	ł	[Cu(II)]2		DCM	THPPF	Ag/AgCI		1.62	1.27		-0.97	-1.50		317
(TriPP) ₂ -Calix4	I	[Zn(II)]2		DCM	THPPF	Ag/AgCI		1.32	0.81		-1.43	-1.51		317
(TriPP) ₂ -DPA	872	2H, Zn(II)		DCM/THF	$TBABF_4$	Ag/Ag⁺			0.37					46
(TriPP) ₂ -DPA	ł	[Zn(II)] ₂		DCM/THF	$TBABF_4$	Ag/Ag⁺			0.36					46
TriTP-DPA- DTTAP	873	2H, Zn(II)		DCM	TBAP	SCE	1.30	1.02	0.74		-1.18	-1.34	-1.55, -1.74	502
(TtBPP) ₂ -POM(2)	874	$[2H]_2$		DCM	P(Ph)4BF4	SCE		1.08	0.93	-0.67 -1.00	-1.04	-1.30		121
TTP-A-(O,S-TriTP) 875	2H, O, S		DCM	TBAP	SCE		1.40	1.09		-1.11	-1.42	-1.48	94
TTP-A-(O,S-TriTP	-	Zn(II), O, S		DCM	TBAP	SCE		1.10	0.80		-1.17	-1.49	-1.63	94
TTP-A-(S-TriTP)	876	о 2H, H, S		DCM	TBAP	SCE		1.42	1.10		-1.00	-1.11	-1.40	94
TTP-A-(S-TriTP)	ł	Zn(II), H, S		DCM	TBAP	SCE	1.52	1.11	0.80		-1.03	-1.37	-1.55, -1.68	94
TTP-A-(S ₂ -TriTP)	877	с 2Н, 2S		DCM	TBAP	SCE		1.43	1.01		-1.10	-1.32	-1.44	94
TTP-A-(S ₂ -TriTP)	ł	Zn(II), 2S		DCM	TBAP	SCE	1.55	1.11	0.80		-1.22	-1.50	-1.62	94
TTP-AI-O-TriTP	878	2H, Al(III)		DCM	TBAP	SCE	1.49, 1.31	1.10	1.01		-1.06	-1.42		233
TTP-BDP-(S ₂ - TTP)	879	2H, 2S		DCM	TBAP	SCE		1.44	1.19	-0.79	-0.98	-1.16	-1.32, -1.51	570

			Axial L	-igand				Porp	hyrin C	×	Metal /	Port	ohyrin	Red	
Ring Struct	iure	Metal	L	Г2	Solvent	Salt	RE	Other O	< 2	1	Other	-	2	Other Red	Ref.
TTP-BDP-S-TTP 8	880	3H, S			DCM	TBAP	SCE		1.46	0.94	-0.92	-0.92	1.38	-1.53	570
TTPAI ³⁺ -TriTP 8	881	Cu(II), AI(III)			DCM	TBAP	SCE	1.58	1.37	1.08		-1.19	1.41		233
TTPAl ³⁺ -TriTP	1	Zn(II), Al(III)			DCM	TBAP	SCE	1.46, 1.32	1.07	0.88		-1.22	1.43	-1.61	233

Table 12. Porphyrin dimers. (see structures in Figure 12)

			Axial Ligand			Por	phyrir	Ň	Metal /	Porp	hyrin F	Sed	
Ring Struc	cture	Metal	L1 L2 Solvent	Salt	RE	ω	2	-	Other	-	10	ε	Ref.
D(BPBP)P-Cu ⁺ L _n (THMP) ₂	882	Au(III), [Zn(II] ₂	n-BuCN	TBABF₄	Fc/Fc⁺			0.18	0.43 -1.04				401
DArP-Indanyl-(DArP) ₂	883	Zn(II)	PhCN	TBAP	SCE	1.27	0.77	0.56		-1.42			150
(DArP) ₂ -OxP	884	2H, [Zn(II)] ₂	DCB	TBAP	Fc/Fc⁺			0.29		-1.35			71
(DArP1) ₂ -OxP	885	2H, [Zn(II)]2	DCB	TBAP	Fc/Fc⁺			0.28		-1.37			71
(DBPCPP) ₃	886	[Zn(II)] ₃	PhCN	TBAPF ₆	Fc/Fc ⁺			0.32		-1.83			341
(DBPCPP) ₃	886	[Zn(II)] ₃	THF	TBAPF ₆	Fc/Fc ⁺			0.33		-1.96			341
(DBPP) ₃	887	[Zn(II)] ₃	DCM	TBAPF ₆	Fc/Fc ⁺	0.79, 1.10	0.55	0.38		-1.78	-1.93	-2.27	455
(DCPDBPP) ₃	888	[Zn(II)] ₃	DMF	TBAPF ₆	Fc/Fc ⁺	2		0.33		-1.94			341
(F ₁₆ DPP) ₂ -DPP	889	Sn(IV), [2H] ₂	PhCN	TBAPF ₆	SCE			0.63		-0.97			331
(F ₁₆ DPP) ₂ -DPP	890	Sn(IV), [4H] ₂	PhCN	TBAPF ₆	SCE			1.03		-0.27			331
Fused-[TBPP] ₂ -F ₁₀ DBPP	891	2H, [Ni(II)] ₂	DCM	TBAPF ₆	Fc/Fc ⁺		0.39	0.19		-0.71	-0.92	-1.66	406
Fused-[TBPP] ₂ -F ₁₀ DBPP	ı	[Ni(II)]2, Zn(II)	DCM	TBAPF ₆	Fc/Fc⁺	0.76, 0.95	0.39	0.14		-0.81	-0.99	-1.66, -1.99	406
Fused-[TBPP] ₂ -F ₁₀ DBPP	ı	[Zn(II)] ₃	DCM	TBAPF ₆	Fc/Fc⁺	0.53, 0.77	0.17	0.00		-0.81	-1.00	-1.66, -1.99	406
Fused-[TBPP] ₃	892	[Zn(II)] ₃	DCM	TBAPF ₆	Fc/Fc⁺	0.46, 0.70	0.05	-0.13		-1.11			406
[OEP] ₃ -(Vn) ₂	893	[2H] ₃	DCM	TBAP	SCE	1.19	0.56	0.36					274
[OEP] ₃ -(Vn) ₂	I	[Ni(11)] ₃	DCM	TBAP	SCE	1.25	1.05	0.49					274

		Axial Ligar	p			Por	phyrin	ŏ	Metal /	Port	phyrin	Red	
Ring	Structure	Metal L1 L2	-Solvent	Salt	RE	e	2	-	Other	-	7	ю	Ref.
[OEP] ₃ -(Vn) ₂	I	[Pd(II)] ₃	DCM	TBAP	SCE	1.48	1.14	0.65					274
[OEP] ₃ -(Vn) ₂	I	[Pt(II)] ₃	DCM	TBAP	SCE	1.56	1.17	0.75					274
Pc-T(4-OCH ₃ P)P-P(ດ 894	Ru(IV)	DCM (-42°C)	TBAPF ₆	Ag/AgCI	1.06, 1.33	0.76	0.40					205
Rotaxane-P	895	Au(III), [Zn(II)]2	PhCN	TBABF₄	Fc/Fc⁺	20.1		0.17	-1.05				401
(S-TriTP)2-TTP	896	Sn(IV), 2H	DCM	TBAP	SCE		1.28	0.93		-1.11	-1.40		96
(S ₂ -TriTP) ₂ -TTP	897	Sn(IV)	DCM	TBAP	SCE		1.53	1.00		-0.97	-1.29	-1.38	96
(ТВРР) ₂ -(Рd ²⁺) ₂ - ТВ4,ПВРР	898	[Ni(11)] ₃	DCM	TBAPF ₆	Ag/AgCIO4			0.38		-1.35			422 (DPV)
(TBPP) ₂ -A ₂ -DSiP	668	[Zn(II)] ₃	DCM	TBAPF ₆	Ag/AgCI	1.03, 1.26	0.77	0.68		-0.90	-1.08	-1.31, -1.45	102
(ТВРР) ₂ -DВРР	006	[Zn(II)] ₃	DCM	TBAPF ₆	Fc/Fc ⁺	0.72	0.50	0.35		-1.88		2	406
(TBPP) ₂ -F ₁₀ DBPP	901	2H, [Ni(II)] ₂	DCM	TBAPF ₆	Fc/Fc⁺			0.58		-1.46			406
(TBPP) ₂ -F ₁₀ DBPP	ł	[Ni(II)]2, Zn(II)	DCM	TBAPF ₆	Fc/Fc⁺			0.55		-1.60	-1.89		406
(TBPP) ₂ -F ₁₀ DBPP	ł	[Zn(II)] ₃	DCM	TBAPF ₆	Fc/Fc⁺		0.65	0.36		-1.61	-1.92		406
(ТВРР) ₂ -ТРуОВРР	902	[Ni(11)] ₃	DCM	TBAPF ₆	Ag/AgCIO₄			0.72		-1.48			422
(TPP-) ₂ -(EG) ₂ -TPP	903	Zn(II), Cu(II), Ag(II)	DCM	TBAPF ₆	SCE	1.10, 1.27	0.89	0.80	0.54				262
(TPP-EG) ₂ -TPP	904	2H, Cu(II), Ag(II)	DCM	TBAPF	SCE	17			-1.11	-1.29	-1.41	-1.64, -1.78	262
(TPP-EG) ₂ -TPP	ł	2H, Cu(II), Co(II)	DCM	TBAPF ₆	SCE				-0.95	-1.32	-1.41	-1.63, -1.85	262

		Axial Ligar	p			Porp	ohyrin	ð	Metal /	Porpl	Jyrin R	ed	
Ring Stri	ucture	Metal <u>L1 L2</u>	-Solvent	Salt	RE	e	2	-	Other	-	5	ς Γ	tef.
Trefoil DEHMP	905	[Zn(II)] ₃	DCM	TBAPF ₆	SCE		1.11	0.66	1.02				554
Tripod-TPP	906	[2H] ₃	CH ₃ CN/DCE	TEAPF	SCE			1.27*	-0.67	-0.94			154 (CV/P)
Tripod-TPP	ł	[Zn(II)] ₃	CH ₃ CN/DCE	TEAPF	SCE		1.37*	1.02	-0.93	-1.27	-1.65		154 (CV/P)
TripodP	206	[Zn(II)] ₃	DCM	TBAPF ₆	SCE			0.58					330
TripodP	907	[Zn(II)] ₃	DCM	TBAP	SCE		1.08	0.58 -0.73		-0.73			95
TripodP	907	[Zn(II)] ₃	PhCN	TBAP	SCE		06.0	0.49					95
TripodP.Pyr-C ₆₀	908	[Zn(II)] ₃	DCM/DCB	TBAPF ₆	SCE			0.63	-0.61				95
TripodP.T(4'-Py)P	606	[Zn(II)] ₃ , Au(III)	DCM	TBAPF ₆	SCE			0.61	-0.39				330
TriTP-BPP-(S-DPSiAP)	910	2H, Zn(II), H	DCM	TBAP	SCE		0.99	0.72		-1.11	- 1.44	.1.60	502
TriTP-BPP-(S ₂ -TriTP)	911	Zn(II), 2H	DCM	TBAP	SCE		1.02	0.72		-1.01	-1.20 -	.1.48, .1.73	502
(TriTP) ₂ -TTP	912	Ge(IV), [2H] ₂	DCM	TBAP	SCE	1.33	1.19*	0.86		-1.17	-1.35	1.60	-
(TriTP) ₂ -TTP	I	Ge(IV), [Zn(II)] ₂	DCM	TBAP	SCE	1.14, 1.35	1.02*	0.76		-1.12	-1.41*		
(TriTP) ₂ -TTP	I	P(V), [2H] ₂	DCM	TBAP	SCE		1.07	1.03		-0.46	- 0.98	-1.22, -1.60	.
(TriTP) ₂ -TTP	I	P(V), [Zn(II)]2	DCM	TBAP	SCE	1.28*	1.01	0.74		-0.45	-1.03	1.43	-
(TriTP) ₂ -TTP	ł	Sn(IV), [2H] ₂	DCM	TBAP	SCE		1.24*	0.93		-1.00	-1.32	.1.49, .1.64	-
(TriTP) ₂ -TTP	I	Sn(IV), [2H] ₂	DCM	TBAP	SCE		1.24*	0.93		-1.00	-1.32 -	.1.49*, .1.64	56
			vial Ligand			Por	phyrin	ŏ	Metal /	Porp	hyrin F	Red	
----------------------------	-----------	-----------------------------	---------------	------	--------------------	---------------	--------	-------	---------	-------------	---------	-----------------	------
Ring	Structure	Metal	L1 L2 Solvent	Salt	RE	с	7	י 	Other		7	ო	Ref.
(TriTP) ₂ -TTP	ł	Sn(IV), [Zn(II)]2	DCM	TBAP	SCE	1.33	0.94	0.65		-1.04	-1.48		-
(TTP) ₂ -D(TP)P	913	[Al(III)] ₂ , 2H	DCM	TBAP	SCE	1.29, 1.65	1.06	06.0		-1.13	-1.40		233
(ТТР) ₂ -D(ТР)Р	I	[Al(III)]2, Cu(II)	DCM	TBAP	SCE	1.57	1.41	1.16		-1.23	-1.52		233
(TTP) ₂ -D(TP)P	I	[Al(III)]2, Zn(II)	DCM	TBAP	SCE	1.31, 1.45	1.03	0.81		-0.96	-1.21	-1.50	233
(TTP) ₂ -0xP	914	2H, [Zn(II)] ₂	DCB	TBAP	Fc/Fc ⁺	0.64	0.50	0.28		-1.33	-1.48	-1.94, -2.29	91

Table 13. Porphyrin trimers. (see structure in Figure 13)

			Axial Li	gand			Porphyrin (×	Metal /	Por	bhyrin Red	
Ring St	tructure	Metal	L1	L2 Solver	nt Salt	RE	other Ox 2	-	Other	.	2 Other Rec	J Ref.
DEHMP-Ae-Corr	915	2H		DCM	TBAP	SCE 1.	.22*, 0.74 0.41	0.26	-0.20	-1.42 -	1.74	36
DEHMP-Ae-Corr	915	2H		PhCN	TBAP	SCE 1.	.22*, 0.72, 0.42	0.32	-0.26	-1.41	1.67 -1.77	36
DEHMP-Ae-Corr	915	2H	ū	Py	TBAP	SCE		0.26	-0.70	-1.36	1.64 -1.72, -1.9	35
DEHMP-Ae-Corr	:	Co(III)		PhCN	TBAP	SCE		0.28		-0.56	0.90 -1.05, -1.6	3 48
DEHMP-Ae-Corr	:	Fe(III)	ū	H_2O	HCIO4	SCE			0.39, -0.04			9 (RDV
DEHMP-Ae-Corr	:	Fe(III)	ū	PhCN	(TBAP	SCE			0.43, 0.14, -0.24, -0.57			185
DEHMP-Ae-Corr	:	Fe(III)	ū	Py	TBAP	SCE		0.31	-0.03, -0.72	-1.64		35
DEHMP-Ae-Corr	1	(III) Mn(III)	ū	PhCN	TBAP	SCE			0.44, 0.22, -0.22, -0.34 -0 65			185
DEHMP-Ae-Corr	:	Mn(III)	Ċ	Py	TBAP	SCE		0.33	-0.42, -0.72	-1.64		35
DEHMP-Ae-MesCor	r 916	(III)nM	Ċ	PhCN	TBAOAc	SCE			0.25,-0.44* -1.44	-1.70		304
DEHMP-BP-Corr	917	2H		DCM	TBAP	SCE 1.	10, 0.87 0.71	0.39	-0.38	-1.41	1.74*	36
DEHMP-BP-Corr	917	2H		PhCN	TBAP	SCE 1.	09, 0.83 0.69	0.40	-0.37	-1.41	1.59, -1.88*	36
DEHMP-BP-Corr	917	2H	ū	Py	TBAP	SCE		0.31	-0.59	-1.36	1.53 -1.76, -1.8	9 35
DEHMP-BP-Corr	:	Fe(III)	Ċ	H ₂ O	HCIO4	SCE			0.30, -0.06			9 (RDV
DEHMP-BP-Corr	:	Fe(III)	ū	PhCN	(TBAP	SCE			0.44, 0.07 -0.35, -0.44			185
DEHMP-BP-Corr	:	Fe(III)	ū	Py	TBAP	SCE		0.37	-0.02, -0.54* -0.71	-1.67		35

Table 14. Porphyrin-corrole dyads. (see structures in Figure 14)

			Axial L	igand			Porphy	rin Ox		Metal /	Po	rphyrin	Red	
Ring Stru	icture	Metal	2	L2 Solver	nt Salt	RE	Other Ox	2	-	Other	. 	50	ther Red I	Ref.
DEHMP-BP-Corr	:	Mn(III)	ö	H ₂ O	HCIO4	SCE				0.32, -0.14				9 (RDV)
DEHMP-BP-Corr	:	(III)nM	ū	PhCN	(I M) TBAP	SCE				0.10, 0.46 -0.29,-0.43				185
DEHMP-BP-Corr	:	(III)nM	ū	Py	TBAP	SCE		0	0.49*	-0.44, -0.62	-1.62			35
DEHMP-DB-Corr	918	2H	ū	Py	TBAP	SCE		C	0.28	-0.72	-1.32	-1.59	-1.83	35
DEHMP-DB-Corr	:	Co(II)		PhCN	TBAP	SCE	1.25 0	.91 (0.43		-0.19	-1.02	-1.64	31
DEHMP-DB-Corr	:	Fe(III)	ū	H ₂ O	HCIO4	SCE				0.35, -0.03				9 (RDV)
DEHMP-DB-Corr	:	Fe(III)	ū	PhCN	TBAP	SCE				0.15, 0.49 -0.17, -0.42				185
DEHMP-DB-Corr	:	Fe(III)	ū	Py	TBAP	SCE		C	0.35	-0.02, -0.68	-1.60			35
DEHMP-DB-Corr	:	(III)nM	ū	H ₂ O	HCIO4	SCE				0.36, -0.02				9 (RDV)
DEHMP-DB-Corr	:	(III)nM	ū	Py	(TBAP	SCE		C	0.35	-0.42, -0.70	-1.59			35
DEHMP-DB-MesCorr	919	Co(II)		PhCN	TBAP	SCE	1.25,0.98, 0 1.61	.57 (0.41		-0.16	-1.06	-1.75	15
DEHMP-DB-MesCorr	:	(III)nM	ū	Py	TBAOAc	SCE	- 0.			0.23,-0.68* -1.50	-0.82*	-1.72		304
DEHMP-DMX-Corr	920	2H		DCM	TBAP	SCE	0.87, 0.68 0	.41 (0.24	-0.39	-1.44*	-1.62	-1.80*	36
DEHMP-DMX-Corr	920	2H		PhCN	TBAP	SCE	0.85, 0.65 0	.41	0.31	-0.38	-1.41	-1.55	-1.73	36
DEHMP-DMX-Corr	920	2H	ū	Py	TBAP	SCE		C	0.23	-0.64	-1.36	-1.48	-1.68, -1.80	35
DEHMP-DMX-Corr	:	Co(II)		PhCN	TBAP	SCE	1.30 0	.98	0.38		-0.39	-1.09		15

Table 14. Porphyrin-corrole dyads. (see structures in Figure 14)

			Axial L	igand				Porph	yrin O		Metal /	PP	rphyrin Re	þ	ī
Ring Stru	cture	Metal		L2 Sol	vent Sa	alt F	SE SE	Other Ox	2	-	Other	-	2 Othe	er Red Ref.	
DEHMP-DMX-Corr	:	Fe(III)	Ċ	H ₂ C	HC 7	104	SCE				0.33, -0.08			9 (RI	ŝ
DEHMP-DMX-Corr	:	Fe(III)	ū	Ρy	TB/	AP 6	SCE			0.30	0.04,-0.54* -0.73	-1.69		35	
DEHMP-DMX-Corr	:	Mn(III)	ū	H ₂ C	H H C	0	SCE				0.33, -0.16			9 (RI	Ś
DEHMP-DMX-Corr	:	(III)nM	ū	Ph(CN TB	4P 6	SCE				0.46, 0.18 -0.17			185	
DEHMP-DMX-Corr	:	Mn(III)	ū	Ph(CN TB/	AP S	SCE				0.11, 0.43 -0.30			185	
DEHMP-DMX-Corr	:	Mn(III)	ū	Py	TB	AP S	SCE			0.32	-0.42, -0.72	-1.68		35	
DEHMP-DMX-MesCorr	921	Co(II)		Ph(CN TB/	AP S	SCE 1	1.25, 0.95	0.55	0.44		-0.26	-1.19 -1.9	0 15	
DEHMP-DMX-MesCorr	:	Mn(III)	ū	Ph(CN TB/	AOAc &	SCE				0.19,-0.60* -1.52		-1.80	304	
DEHMP-DPE-Corr	922	Co(II)		Ph(CN TB/	AP S	SCE 1	1.04, 0.83, 16, 1.25	0.52	0.45		-0.29	-1.15 -1.7	5 15	
DEHMP-DPE-MesCorr	923	Co(II)		Ph(CN TB/	AP S	SCE	1.10, 1.33 1.01, 0.89, 1.24, 1.66	0.53	0.38		-0.21	-1.13 -1.7	9 15	
DEHMP-DPE-MesCorr	:	Mn(III)	ū	Ph(CN TB/	AOAc &	SCE				0.27,-0.60* -1.41	-0.74*	-1.72	304	
DEHMP-DPE-MesCorr	:	(III)nM	ū	Ph(CN TB/	AOAc &	SCE				0.24,-0.68* -1.49	-0.76*	-1.72	304	
DEHMP-DPE-MesCorr	;	(III) Mn(III)	ū	Py	TB/	AOAc §	SCE				0.21,-0.69* -1.44	-0.92*	-1.63	304	

Table 14. Porphyrin-corrole dyads. (see structures in Figure 14)

			Axial I	ligan	g			Porp	hyrin (Ă	ž	etal /	۳ ۳	orphyr	in Red	
Ring Str	ucture	Metal	E	2	Solvent	Salt	RE	Other C	x 2	-	đ	her	-	7	Other Red	Ref.
Axially bonded (Por) ₆	924	[Sn(IV)] ₂ , [2H] ₄			DCM	TBAP	SCE		1.43*	0.90			-0.93	-1.25	-1.46*, -1.66	56
Axially bonded (Por) ₉	925	[Sn(IV)] ₃ , [2H] ₆			DCM	TBAP	SCE		1.37*	0.83			-0.96	-1.28	-1.47*, -1.68	56
Bis(por dimer)-SWNT	926	[2H]4			DCB	TBAPF ₆ (0.04M)	Ag/Ag⁺			0.32			-0.49			300
Bpy-(OEP) ₅	927	[[]] ⁵			CH ₃ CN/ DCE	TEAPF	SCE	1.35*	1.19*	0.97	-0.04	-0.57	-0.83	-1.10	-1.61, -1.80	159 (CV/P)
CP-(Por) ₆	928	[Sn(IV)]6			DCM	TBAP	SCE						-0.61	-1.01		319
CP-(Por) ₆	ł	[Co(II)]6			DCM	TBAP	SCE		1.26	1.10	0.83	-0.86	-1.28*			319
CP-(Por) ₆	ł	[Cu(II)]6			DCM	TBAP	SCE		1.23	0.97			-1.31	-1.58		319
CP-(Por) ₆	ł	[Ni(II)] ₆			DCM	TBAP	SCE			1.11			-1.15	-1.63*		319
CP-(Por) ₆	ł	[[Zn(II)] ₆			DCM	TBAP	SCE		1.06	0.79			-1.35	-1.64		319
Cyclic-(Por) ₆	929	[Zn(II)] ₃ ,			DCM	TBAPF ₆	Ag/Ag⁺	1.10*	0.87*	0.58*						431
Cyclic-(Por) ₆	929	[Zn(II)] ₃ , [Zu1]			DCM	TBAPF ₆	Ag/Ag⁺	1.27	1.10	0.68						431
Cyclic-Por-6	930	[حتا] [Zn(II)]ه			THF	TBAPF ₆	Fc/Fc⁺		0.68	0.33			-1.29	-1.65		573 (SWV)
Cyclic-Por-6.T6	931	[[Zn(II)]6			THF	TBAPF ₆	Fc/Fc⁺		0.64	0.25			-1.30	-1.80		573 (SWV)
DPA-(DtBuPP)4	932	[[]]4			THF	$TBABF_4$	Fc/Fc⁺	0.61	0.47	0.37			-1.43	-1.50	-1.66	433
DPA-(Por)4	933	2H, [Zn			DCM	TBAP	SCE	1.28	0.98	0.73			-1.18	-1.55	-1.75	129
Indanyl-[(Por) ₂]2	934	درسہ Zn(II)			PhCN	TBAP	SCE	1.28	0.77	0.54			-1.43			150

			Axial L	igand			Porphyri	хог	Metal /	₽.	orphyr	in Red	
Ring	Structure	Metal	L1	L2 Solvent	Salt	RE	Other Ox 2	-	Other	-	2	Other Red F	Ref.
<i>m-m</i> -(Por)₄	935	[Zn(II)]₄		DCM	TBAPF ₆	Ag/AgCI	1.30, 1.11 1.0	2 0.76		-1.34	-1.45		133
<i>m-m</i> -(Por)₄	935	[Zn(II)]4		DCM	TBAPF ₆	Fc/Fc⁺	1.12, 0.80 0.5	8 0.34		-1.82	-1.99	·	455
<i>m-m</i> -(Por) ₅	936	[Zn(II)]5		DCM	TBAPF ₆	Ag/AgCI	1.41 1.0	9 0.76		-1.34	-1.45		133
n-m-A-(Por)5	937	[Zn(II)]5		DCM	TBAPF ₆	Ag/AgCI	1.01, 0.86, 0.6 1.20, 1.43	6 0.56		-0.90	-1.08	-1.26, -1.34, -1.48	102
Vucleoside-(Por)5	938	2H, [Zn		DCM	TBAPF ₆	Fc/Fc ⁺	0.6	4 0.30		-1.88	-2.24	0 	143
)-TPP-DPA-(Por)	3 39	H, O, [Zr	Ē	DCM	TBAP	SCE	1.23 0.9	2 0.72		-1.16	-1.54	-1.75	129
)xP-Bz-(Por)₄	940	2H, [Zn (IIN)		DCB	TBAP	Fc/Fc⁺		0.29		-1.37			7
)xP-Bz-(Por)₄	941	2H, [Zn		DCB	TBAP	Fc/Fc⁺		0.29		-1.35			7
oc-(Por)₄	942	Co(II)		DMSO	TBAP	Ag/AgCI	1.10 0.7	2 0.40		-0.30	-0.52	-0.73, -1.13, 3	210
PEG1)P	943	Zn(II)		DCM	TBAP	Ag/AgCI	1.0	8 0.81				-1.30, -1.70	270
PEG1)P	943	Zn(II)		DMF	TBAP	Ag/AgCI				-1.22	-1.68		270
PEG2)P	944	Zn(II)		DCM	TBAP	Ag/AgCI	1.0	8 0.82					270
PEG2)P	944	Zn(II)		DMF	TBAP	Ag/AgCI				-1.37			270
PEG3)P	945	Zn(II)		DCM	TBAP	Ag/AgCI		1.12*					270
PEG3)P	945	Zn(II)		DMF	TBAP	Ag/AgCI				-1.55*			270
PEG4)P	946	Zn(II)		DMF	TBAP	Ag/AgCI				-1.61*			270

		Â	kial Lig	and			Porp	hyrin C		Metal /		orphyr	in Red	
Ring Stru	cture	Metal	, [] []	2 Solvent	Salt	RE	Other O	× 2	- -	Other	-	~	Other Red	Ref.
(Por) ₁₂ -gold nanocluster	947	[2H] ₁₂		PhCN	TBAPF ₆	SCE			0.94		-1.22			342
(Por) ₂ -DPA-(Het-Por) ₂	948	Zn(II), 2H, H		DCM	TBAP	SCE	1.28, 1.02	20.97	0.72		-0.96	-1.10	-1.24, -1.41, -1.60	502
(Por) ₃ -DPA-(Het-Por) ₂ -1	949	H, O, 2S, [Zn(II)] ₃		DCM	TBAP	SCE	1.24	0.91	0.72		-0.90	-1.29	-1.51, -1.74	129
(Por) ₃ -DPA-(Het-Por) ₂ -2	950	H, 3S, [Zn (II)] ₃		DCM	TBAP	SCE	1.29	1.02	0.70		-0.92	-1.10	-1.22, -1.40, -1.64	129
(Por)₄-DPA-(Het-Por)	951	2H, 2S, [Zn(II)] ₃		DCM	TBAP	SCE	1.31	1.03	0.72		-0.93	-1.18	-1.53, -1.75	129
(Por)₄-DPA-(Het-Por)	I	4S, [Zn (II)] ₃		DCM	TBAP	SCE	1.25	0.98	0.72		-0.80	-1.03	-1.27, -1.56, -1.73	129
PPID-(Por) -4-mer	952	[Zn(II)]4		DCM	TBAPF ₆	Fc/Fc⁺	1.00	0.70	0.30		-1.84			26
PPID-(Por)-12-mer	953	[Zn(II)] ₁₆		DCM	TBAPF ₆	Fc/Fc⁺	06.0	0.63	0.29		-1.80	-2.18*		26
PPID-(Por)-12-mer	ı	[2H] ₁₆		DCM	TBAPF ₆	Fc/Fc⁺		0.76*	0.44		-1.79	-2.19		26
PPID-(Por)-32-mer	954	[2H] ₃₂		DCM	TBAPF ₆	Fc/Fc⁺			0.41		-1.80	-2.13		26
PPID-(Por)-32-mer	ı	[Zn(II)] ₃₂		DCM	TBAPF ₆	Fc/Fc⁺	0.91	0.64	0.31		-1.79			26
PPID-(Por)-4-mer	955	[2H]₄		DCM	TBAPF ₆	Fc/Fc⁺	1.10*	0.72*	0.41		-1.78	-2.10		26
PPID-(Por)-64-mer	956	[2H] ₆₄		DCM	TBAPF ₆	Fc/Fc⁺			0.43		-1.78	-2.11		26
PPID-(Por)-64-mer	ı	[Zn(II)] ₆₄		DCM	TBAPF ₆	Fc/Fc⁺	1.09*	0.76	0.30		-1.80			26
PPID-(Por)-8-mer	957	[2H] ₈		DCM	TBAPF ₆	Fc/Fc⁺		0.76*	0.44		-1.77	-2.13		26
PPID-(Por)-8-mer	ł	[[Zn(II]]8		DCM	TBAPF ₆	Fc/Fc⁺	06.0	0.63	0.30		-1.80			26

			Axial Li	gand			Porphyr	'in Ox	Metal /	-	^o orphyrin Red	
Ring	Structure	Metal	L1	L2 Solvent	Salt	RE	Other Ox 2		1 Other	-	2 Other R	ed Ref.
S-TPP-DPA-(Por) ₃	958	H, S, [Zn (III)] _s		DCM	TBAP	SCE	1.39 1.	02 0	.72	-1.02	-1.46 -1.69	129
S ₂ -TPP-DPA-(Por)	959	2S, [Zn		DCM	TBAP	SCE	1.38 1.	01 0	.71	-0.98	-1.22 -1.72	129
T(4-MPAP)P	096	درسہ Zn(II)		DCM	TBAP	Ag/AgCI	1.43, 1.00 0.	73* 0	.42*	-1.36	-1.84*	295
T(4'-DPAM)P-G1	961	(II)		CHCI ³ /	TBAP	Fc/Fc⁺		0	.34			135
T(4'-DPAM)P-G1	961	(II)		THF	TBAP	Fc/Fc⁺				-1.19		135
T(4'-DPAM)P-G2	962	Zn(II)		CHCI ³	TBAP	Fc/Fc⁺		0	.33			135
T(4'-DPAM)P-G2	962	Zn(II)		THF	TBAP	Fc/Fc⁺		0	.39			135
T(4'-DPAM)P-G3	963	Zn(II)		CHCI ³ /	TBAP	Fc/Fc⁺		0	.32			135
T(4'-DPAM)P-G3	963	Zn(II)		CH ₃ CN THF	TBAP	Fc/Fc⁺		0	.37			135
T(4'-DPAM)P-G4	964	(II)		CHCI ³	TBAP	Fc/Fc⁺		0	.26			135
T(4'-DPAM)P-G4	964	Zn(II)		CH ₃ CN THF	TBAP	Fc/Fc⁺		0	.34			135
T(DEG)P	965	Fe(III)		CH ₃ CN	TBAPF ₆	SCE			-0.24			190
T(DEG)P	965	Fe(III)		DCM	TBAPF ₆	SCE			-0.21			190
T(DEG)P	965	Fe(III)		H ₂ O	TBAPF ₆	SCE			-0.29			190
T(TEG)P	996	Fe(III)		CH ₃ CN	TBAPF ₆	SCE			-0.01			190
T(TEG)P	996	Fe(III)		DCM	TBAPF	SCE			0.08			190

								1						
			Axial Lig	land				Porpt	Jyrin C	×	Metal /	ů.	orphyrin Red	
Ring Stru	ucture	Metal		2 Sol	vent	Salt	RE	Other Ox	(5 (-	Other	- 	2 Other Rec	Ref.
T(TEG)P	996	Fe(III)		H₂C		TBAPF	SCE				-0.25			190
T(TTEG)P	967	Fe(III)		сH	CN	TBAPF	SCE				0.09			190
T(TTEG)P	967	Fe(III)		DCI	Z	TBAPF ₆	SCE				0.10			190
T(TTEG)P	967	Fe(III)		H2C		TBAPF	SCE				0.09			190
(TPP)₄-graphene oxide	968	[2H]₄		DM	ц.	TBAPF ₆	SCE			0.68		-0.19*		473
Triphyne-(Por) ₆	696	[2H] ₆		ΉL	Ц	TBAPF ₆	Fc/Fc⁺			0.62*		-1.52	-1.74	546 (DPV)
Triphyne-(Por) ₆ -1	970	[2H] ₆		ΉH	Ц	TBAPF ₆	Fc/Fc⁺			0.64*		-1.49	-1.70	546 (DPV)
Vn-DA-(OEP)4	971	[Ni(II)]4		DCI	Σ	R	SCE	1.30	0.74	0.58				224

			Axial Ligand			Porphy	rin Ox		Metal /	Porph	iyrin Red	
Ring	Structure	Metal	L1 L2 Solven	t Salt	RE	Other Ox	7	-	Other 1	5	Other Red	Ref.
АТЕТМР-М-ОЕР	972	Ce(IV)	DCM	TBAP	SCE	1.90	0.91	0.35	-0	51 -0.8	7 -1.72	241
[ATETMP] ₂ -(M) ₂ -Pc	973	[Eu(III)] ₂	DCM	TBAP	SCE	1.31, 1.07, 0.87	0.65	0.50	-0-	31 -0.9	1 -1.11, -1.28, 1 6 1	241
(BTP) ₃ -(M) ₂	974	[Ce(III)] ₂	DCM	TBAPF ₆	Ag/Ag⁺	1.20	0.89*	0.39			- 0	529 529
[D(OC ₁₄ P)P] ₂ -M	975	Ce(IV)	DCB	TBAP	Ag/AgCI		0.96	0.64	0-	29 -1.7	.	242
$[D(OC_{14}P)P]_{3}-(M)_{2}$	976	[Ce(III)] ₂	DCB	TBAP	Ag/AgCI		0.99	0.63		26 -1.6	0 -1.94	242
[D(TMP)P] ₂ -M	677	Ce(IV)	DCM	TBAPF ₆	Fc/Fc⁺		0.61*	0.22*	."0-	74*		541
[DTP] ₂ -M	978	Ce(IV)	DCM	TBAPF ₆	Fc/Fc⁺		0.53	0.14				541
[DTP] ₂ -M	ł	Zr(IV)	DCM	TBAPF ₆	Fc/Fc⁺		0.43	00.0				541
[F ₁₀ D(PMP)P] ₂ -M	626	Ce(IV)	DCM	TBAPF ₆	Fc/Fc⁺		0.85*	0.49*	,0-	*		541
Nc-M-OEP	980	Ce(III)	DCM	TBAP	SCE	1.83, 1.55	0.71	0.20	0-	19 -1.4	5 -1.88	240
Nc-M-TtBPP	981	Ce(IV)	DCM	TBAP	SCE	1.69, 1.46	0.84	0.30	-0.	07 -1.3	8 -1.80, -1.93	(VTUTV) 240 240
(NF-TPP) ₂ -M	982	Fe(II)	DCM	TBAPF ₆	Fc/Fc⁺			-0.24	, L-	17		553 553
(OC5P)P-(M)2-[Pc(15C5	5)4]2 983	[Eu(III)] ₂	DCM	TBAP	SCE	1.31, 1.11	0.66	0.22	-0-	39 -1.2	7	245
OEP-M-OETAP	984	Zr(IV)	DCM	TBAPF ₆	Ag/AgCI			0.24				375
[OEP] ₂ -(M) ₂ -Pc(CH ₃) ₈	985	[Eu(III)] ₂	DCM	TBAPF ₆	Fc/Fc⁺	1.12, 0.84	0.24	-0.19				239
[OEP] ₂ -M	986	Zr(IV)	DCM	TBAPF	Ag/AgCI			~00.00				375

			Axial Ligand		Porphv	rin Ox		Metal / P	orphyr	in Red	
Ring	Structure	Metal	L1 L2 Solvent Salt	RE	Other Ox	2	-	Other 1	~	Other Red	Ref.
(OETAP) ₂ -M	987	Gd(III)	DCM TBAPF	Ag/AgCI			0.65	0.11			375
(OETAP) ₂ -M	I	Lu(III)	DCM TBAPF ₆	s Ag/AgCI			0.59	-0.04			375
Pc-M-T(CIP)P	988	Dy(III)	DCM TBAP	SCE	1.71	1.41	0.68	0.18	-1.28	-1.70	492
Pc-M-T(CIP)P	I	Er(III)	DCM TBAP	SCE	1.72	1.41	0.65	0.13	-1.32	-1.72	492
Pc-M-T(CIP)P	I	Eu(III)	DCM TBAP	SCE	1.69	1.39	0.72	0.21	-1.28	-1.66	492
Pc-M-T(CIP)P	ı	Gd(III)	DCM TBAP	SCE	1.71	1.42	0.73	0.22	-1.26	-1.66	492 492
Pc-M-T(CIP)P	I	Ho(III)	DCM TBAP	SCE	1.73	1.42	0.69	0.18	-1.28	-1.71	492 492
Pc-M-T(CIP)P	ı	La(III)	DCM TBAP	SCE		1.37	0.80	0.30	-1.26	-1.74	492 492
Pc-M-T(CIP)P	ı	Lu(III)	DCM TBAP	SCE	1.74	1.41	0.63	0.12	-1.32	-1.69	492 492
Pc-M-T(CIP)P	ł	(III)PN	DCM TBAP	SCE	1.61	1.41	0.77	0.29	-1.25	-1.66	492 492
Pc-M-T(CIP)P	ı	Pr(III)	DCM TBAP	SCE	1.59	1.36	0.80	0.27	-1.26	-1.72	492 CV/00///
Pc-M-T(CIP)P	ı	Sm(III)	DCM TBAP	SCE	1.61	1.36	0.70	0.20	-1.35		492
Pc-M-T(CIP)P	I	Tb(III)	DCM TBAP	SCE	1.71	1.42	0.72	0.21	-1.26	-1.71	492 CV/IDDV/
Pc-M-T(CIP)P	I	Tm(III)	DCM TBAP	SCE	1.75	1.43	0.66	0.15	-1.30	-1.68	492 492
Pc-M-T(CIP)P	I	Y(III)	DCM TBAP	SCE	1.74	1.41	0.69	0.18	-1.28	-1.69	492 492 7//DP//
Pc-M-T(CIP)P	I	(III)dY	DCM TBAP	SCE	1.77	1.43	0.66	0.17	-1.28	-1.69	492 492 CV/DPV)

		Axial Liga	pu			Porphyr	rin Ox		1etal /	Porphy	/rin Red	
Ring	Structure	Metal <u>L1 Ľ</u>	2 Solvent	Salt	RE	Other Ox	2	-	ther 1	<u> </u> ~	Other Red	Ref.
Pc-M-TPyP	686	Ce(IV)	DCM	TBAP	SCE	1.72	1.26	0.73	0.10	-1.24	· -1.56, -1.85 //	240
$[Pc(C_7)_8]_{2^-}(M)_{2^-}OEP$	066	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc ⁺	1.15, 0.89	0.31	0.06			2	239
[Pc(CH ₃) ₈] ₂ -(M) ₂ -T(C ₅)P	991	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc ⁺	1.13, 0.82	0.35	-0.05				239
[Pc(CH ₃) ₈] ₂ -(M) ₂ -TC ₅ P	992	[Eu(III)]2	<i>n</i> -BuCN	TBAPF ₆	Fc/Fc ⁺	1.14, 0.79	0.33	-0.02				239
[Pc(CH ₃) ₈] ₂ -(M) ₂ -TPP	993	[Eu(III)]2	DCM	TBAPF	Fc/Fc⁺	1.17, 0.89	0.43	-0.01				239
[Pc(OC ₈) ₈] ₂ -(M) ₂ -TTP	994	[Eu(III)] ₂	n-BuCN	TBAPF ₆	Fc/Fc ⁺		0.35	0.06	-1.1	7 -1.55		239
[(Pc(tBu) ₄) ₄ -(M) ₄ -Por1]	3 95	[Eu(III)]4	DCM	TBAPF ₆	^gA/g4	0.94, 0.55, 0.48, 1.05. ~1.28	0.07*	0.07*				495
[Pc(tBu) ₄] ₂ -(M) ₂ -T(C ₅)P	966	[Eu(III)] ₂	DCM	TBAPF ₆	Fc/Fc ⁺	1.28, 0.94	0.47	0.04				239
[Pc(tBu) ₄] ₂ -(M) ₂ -T(C ₅)P	266	[Eu(III)] ₂	n-BuCN	TBAPF ₆	^gA/g4	1.26, 0.89	0.45	0.09				495
[Pc(tBu)₄]₂-(M)₂-TTP	866	[Eu(III)] ₂	n-BuCN	TBAPF ₆	Fc/Fc ⁺	1.17, 0.93	0.46	0.27	-1.1	2 -1.44	- 1.81	239
[Pc(tBu) ₄] ₂ -(M) ₂ -TTP	I	[Eu(III)]2	<i>n</i> -BuCN	TBAPF	Ag/Ag⁺	1.01	0.56	0.13				495
[Pc(tBu)₄]₂-MM₁-TTP	666	Eu(III), Ce(III)	DCM	TBAPF ₆	Ag/Ag⁺	1.60, 1.25, 1.01	0.57	0.06				495
[Pc(tBu)₄]₃-(M)₃-TTP-M₁-F	or2] 1000	[Eu(III)]3, Ce(III)	DCM	TBAPF ₆	Ag/Ag⁺	~0.94, 0.61, 0.44, ~1.25, ~1.25	, 0.23	0.01				495
[Pc(tBu)₄]₃-(M)₃M₁-Por2]	1001	[Eu(III)] ₃ , Ce(III)	DCM	TBAPF ₆	Ag/Ag⁺	~0.58, ~0.58, ~0.99, ~0.99,	0.24	0.07				495
[Pc(tBu)₄]₃-(M)₃M₁-Por3]	1002	[Eu(III)] ₃ , Ce(III)	DCM	TBAPF ₆	Ag/Ag⁺	~0.58, ~0.58, ~0.99, ~0.99,	0.24	0.06				495
[Pc(tBu)₄]₃-(M)₃M₁-Por4]	1003	[Eu(III)]3, Ce(III)	DCM	TBAPF ₆	Ag/Ag⁺	~0.60, ~0.60, ~1.01, ~1.01,	0.25	0.07				495

		Axial Ligano				Pornhv	rin Ox		Metal /	Por	rohvri	n Red	
Ring	itructure	Metal L1 L2	Solveni	t Salt	RE	Other Ox	5		Other	-	2	Other Red	Ref.
(Pc) ₂ -(M) ₂ -TtBPP	1004	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.29, 0.94	0.47	0.25		-1.14			239
(Pc) ₃ -M ₁ -(M) ₂ -T(CIP)P	1005	[Y(III)]2, Cd(II)	DCM	TBAP	SCE	1.39*, 1.13*	0.68*	0.31*		-0.64* -	-0.98*	-1.34*	552
[Pc] ₂ -(M) ₂ -DTPP	1006	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.31, 1.01	0.61	0.16					239
[Pc] ₂ -(M) ₂ -M ₁ -Pc-T(CIP)P	1007	[Eu(III)]2, Cd(II)	DCM	TBAP	SCE	1.36*, 1.18*	0.70*	0.36*			-1.02*	-1.33*	552
[Pc] ₂ -(M) ₂ -T(CIP)P	1008	[Eu(III)]2	DCM	TBAPF	SCE	1.56, 1.28	0.82	0.34		-0.78 -	-1.22	-1.65	268
[Pc] ₂ -(M) ₂ -T(OCH ₃ P)P	1009	[Eu(III)]2	DCM	TBAPF ₆	SCE	1.29, 1.03	0.72	0.30		-0.84 -	-1.23	-1.64	268
[Pc] ₂ -(M) ₂ -T(P _n) ₃ HMSAc	1010	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.32, 0.93	0.46	0.09					239
[Pc] ₂ -(M) ₂ -T(tBu)P	1011	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.29, 0.97	0.59	0.16					239
[Pc] ₂ -(M) ₂ -TC ₅ P	1012	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.31, 0.92	0.45	0.05		-1.02			239
[Pc] ₂ -(M) ₂ -TPP	1013	[Eu(III)]2	DCM	TBAPF ₆	SCE	1.51, 1.19	0.75	0.30		-0.83	-1.25	-1.68	268
[Pc] ₂ -(M) ₂ -TtBPP	1014	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.27, 0.95	0.58	0.13		-1.02			239
[Pc] ₂ -(M) ₂ -TtBPP	1014	[Eu(III)]2	DCM	TBAPF ₆	SCE	1.45, 1.13	0.74	0.31		- 0.86	-1.27	-1.65	268
(Peryl)TBP-M-Pc(OC ₅)₄	1015	Eu(III)	DCM	TBAP	SCE	1.98, 1.51	0.88	0.34	-0.59,	-1.34			480 (////////////////////////////////////
[T(C ₁₀)P]-(M) ₂ -[Pc(15C5) ₄] ₂	1016	[Eu(III)]2	DCM	TBAP	SCE	1.37, 1.04	0.60	0.20	02.0-	-0.84 -	-1.23		(UFV) 245
[T(C ₅)P] ₂ -(M) ₂ -Nc	1017	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.07, 0.78	0.35	-0.12					239
[T(CIP)P] ₂ -(M) ₂ -Pc	1018	[Eu(III)] ₂	DCM	TBAPF	SCE	1.52, 1.26	0.94	0.57		-0.88 -	-1.37		268

		Axial Ligan	D D			Porphy	rin Ox		Metal /	orphy	rin Red	
Ring	Structure	Metal L1 L2	Solveni	t Salt	RE	Other Ox	2	-	Other 1	2	Other Red	Ref.
[T(OCH ₃ P)P] ₂ -(M) ₂ -Pc	1019	[Eu(III)]2	DCM	TBAPF ₆	SCE	1.24 ,1.03	0.71	0.41	-0.98	-1.36		268
T(Pyrenyl)P-(M) ₂ -(Pc) ₂	1020	[Eu(III)]2	DCM	TBAP	SCE		0.97	0.51	-0.62	-1.01		116
T(Pyrenyl)P-M-Pc	1021	Eu(III)	DCM	TBAP	SCE			0.71	0.19	-0.85	-1.29	116
(TBPP) ₂ Pc-M-Pc	1022	[Zn(II)]2, Eu(III)	DCM	TBAP	SCE	1.04, 0.77	0.59	0.16	-0.80	-1.06	-1.42	127 (DDV)
(TBPP)Pc-M-P-m	1023	Zn(II), Eu(III)	DCM	TBAP	SCE	1.30, 1.03, 0.73	0.54	0.13	-0.88	-1.10	-1.40, -1.57, -1.74	127
(TBPP)Pc-M-Pc-p	1024	Eu(III), Zn(II)	DCM	TBAP	SCE	1.31, 1.03, 0.74	0.55	0.12	-0.89	-1.13	-1.45, -1.59, -1.45, -1.59,	127
TC5P-(M)2-[Pc(tBu)4]2	1025	[Eu(III)]2	<i>n</i> -BuCN	TBAPF ₆	Fc/Fc ⁺	1.26, 0.89	0.45	0.09	-1.09	-1.51	t 	239
[TC ₅ P] ₂ -(M) ₂ -Pc	1026	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc ⁺	1.25, 0.85	0.44	0.02	-1.26			239
[TC ₅ P] ₂ -(M) ₂ -Pc(CH ₃) ₈	1027	[Eu(III)]2	<i>n</i> -BuCN	TBAPF	Fc/Fc ⁺	1.16, 0.80	0.40	-0.03				239
$[TC_5P]_2$ - $(M)_2$ - $Pc(tBu)_4$	1028	[Eu(III)]2	<i>n</i> -BuCN	TBAPF	Fc/Fc ⁺	1.21, 0.85	0.44	0.03	-1.29	-1.77		239
TPP-(M) ₂ -[Pc(15C5) ₄] ₂	1029	[Eu(III)]2	DCM	TBAPF	SCE	1.25, 0.96	0.39	-0.05	-1.19		ų	458 WDDW
TPP-M-Pc(15C5)₄	1030	Eu(IV)	DCM	TBAPF ₆	SCE	1.16	0.84	0.27	-0.21	-1.47	<u></u>	458 458
(TPP) ₂ -(M) ₂ -Pc	1031	[Eu(III)]2	DCM	TBAPF ₆	SCE	1.49, 1.20	0.85	0.47	-0.95	-1.40	2	268 268
(TPP) ₂ -(M) ₂ -Pc(15C5) ₄	1032	[Eu(III)]2	DCM	TBAPF ₆	SCE	1.16, 0.88	0.54	0.20	-1.27	-1.52	ç	458 ///DD///
(TPP) ₂ -(M) ₂ -Pc(CH ₃) ₈	1033	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc ⁺	1.20, 0.97	0.61	0.15			2	239
(TriTP-C ₁₀ -TriTP)-M	1034	Ce(IV)	DCM	TBAPF	SCE		1.02	0.63	-0.31			265

		Axial Lidar				Pornhvr	,in Ox		Metal /	Porph	vrin Red	
Ring	Structure	Metal L1 L2	Solven	t Salt	RE	Other Ox	5	-	Other -	1 2	Other Red	Ref.
(TriTP-C ₁₁ -TriTP)-M	1035	Ce(IV)	DCM	TBAPF ₆	SCE		1.02	0.63				265
(TriTP) ₂ -C ₈)-M	1036	Ce(IV)	DCM	TBAPF ₆	SCE		1.00	0.61	-0.30			265
(TriTP) ₂ -C ₉)-M	1037	Ce(IV)	DCM	TBAPF ₆	SCE		1.02	0.63	-0.30			265
[TtBPP] ₂ -(M) ₂ -Pc	1038	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.20, 0.93	0.62	0.22	-	1.21		239
[TtBPP] ₂ -(M) ₂ -Pc	1038	[Eu(III)]2	DCM	TBAPF ₆	SCE	1.40, 1.12	0.79	0.40	-	1.03 -1.4	7	268
TtBuAPP-M-Pc(OC ₅)4	1039	Eu(III)	DCM	TBAP	SCE	1.99, 1.67	0.98	0.43	<u>ب</u>	.89 -1.7	0	480 (140)
TTP-(M) ₂ -(Pc) ₂	1040	[Eu(III)]2	n-BuCN	TBAPF ₆	Fc/Fc⁺	1.29, 1.01	0.62	0.23	<u>ب</u>	.91 -1.3	7 -1.85	(UFV) 239
TTP-M-Pc(tBu)₄-M₁-B(1	TEPS)P 1041	Eu(III), Ce(III)	DCM	TBAPF ₆	⁺ Ag′Ag	1.48, 1.24, 1.00, 1.60	0.64	0.24				495
(TTP) ₂ -(M) ₂ -Pc	1042	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.06 1.18, 0.93	0.61	0.19				239
(TTP) ₂ -(M) ₂ -Pc(OC ₈) ₈	1043	[Eu(III)]2	n-BuCN	TBAPF ₆	Fc/Fc⁺	1.12, 0.91	0.53	0.19	-	1.21 -1.6	ω	239
(TTP) ₂ -M	1044	Ce(IV)	DCM	TBAPF	SCE		1.00	0.62	-0.29			265
α -(TTP) ₂ -(M) ₂ -Pc(tBu) ₄	1045	[Eu(III)]2	n-BuCN	TBAPF ₆	Fc/Fc⁺	1.27, 0.98	0.62	0.26	-	1.16 -1.6	2	239
α -TTP-(M) ₂ -[Pc(tBu) ₄] ₂	1046	[Eu(III)]2	n-BuCN	TBAPF ₆	Fc/Fc ⁺	1.01	0.56	0.13	-	1.03 -1.5	-	239
β-(TTP) ₂ -(M) ₂ -Pc(tBu) ₄	1047	[Ce(III)] ₂	DCM	TBAPF	Ag/Ag⁺	1.42, 1.17, 0.93, 1 70	0.67	0.26				495
β -(TTP) ₂ -(M) ₂ -Pc(tBu)	⁴	[Eu(III)] ₂	<i>n</i> -BuCN	TBAPF	Ag/Ag⁺	1.27, 0.98	0.62	0.26				495

			Axial Lig	gand				Porphyrir	хог	Metal /	Po	rphyrin	Red	
Ring Stru	cture	Metal	L1	L2	Solvent	Salt	RE	3	-	Other	 	2	с	Ref.
(15C5P)BDBTriTP	1048	Zn(II)			PhCN	TBAP	Fc/Fc⁺	0.58	0.25	0.78	-1.64	-1.90		545
2'-OQTriPP	1049	2H			DCM	TBAP	SCE	1.36	1.18	-0.22				453
2'-PerynylPATriMP	1050	Zn(II)			n-BuCN	TBAPF ₆	Ag/Ag⁺	0.96*	0.51*		-1.20	-1.76*		388
3'-FTZ3'-PTBPP	1051	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.67	0.30		-1.84	-2.15		365
3'-ImPTriTP	1052	2H			DCB	TBAP	Fc/Fc⁺		0.56		-1.72			109
3'-OQTriPP	1053	2H			DCM	TBAP	SCE	1.35	1.17	-0.36				453
3'-PATBPP	1054	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.68	0.32		-1.87	-2.22		365
3'-PerynylPATriMP	1055	Zn(II)			<i>n</i> -BuCN	TBAPF ₆	Ag/Ag⁺	0.96*	0.52*		-1.19	-1.73*		388
3'-PyTriBPP	1056	2H			DCM	TBAPF ₆	Fc/Fc⁺	1.14	0.83		-1.35	-1.69		261
4'-FTZ-3'-PTBPP	1057	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.65	0.30		-1.86	-2.10		365
4'-FTZ-4'-PTBPP	1058	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.67	0.31		-1.85	-2.09	-2.24	365
4'-FTZ-4'-PTBPP	1058	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.66	0.33		-1.81	-2.18		365
4'-PATBPP	1059	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.69	0.29		-1.87	-2.22		365
4'-PerynylPATriMP-3	1060	Zn(II)			<i>n</i> -BuCN	TBAPF ₆	Ag/Ag⁺	0.96*	0.52*		-1.13	-1.57		388
4'-PyTriBPP	1061	2H			DCM	TBAPF ₆	Fc/Fc⁺	1.31*	0.90		-1.65	-1.29		261
AcPTBPP	1062	2H			PhCN	TBAPF	SCE		0.94		-1.22			342

			Axial I	-igand				Porphyrir	хог	Metal /	Po	rphyrin F	Sed	
Ring	Structure	Metal	5	L2	Solvent	Salt	RE	3	-	Other		2	с	Ref.
ADPTriTP	1063	2H			DCM	TBAPF ₆	Fc/Fc ⁺	0.83	0.55		-1.65	-2.00*		19
AmPTBPP	1064	2H			THF	TBAP	Ag/Ag⁺	1.23	0.98		-1.57	-1.91		537
AmPTBPP	I	Zn(II)			THF	TBAP	Ag/Ag⁺	0.93	0.70		-1.80	-2.18		537
APrTriTP	1065	2H			DCM	TBAP	SCE	1.32	0.96		-1.19	-1.53		415
APTriCMPP	1066	2H			DCM	TBAP	Ag/AgNO ₃		0.85		-1.50	-1.81		524
APTriMP	1067	2H			DCM	TBAPF ₆	Fc/Fc ⁺		0.71		-1.61			427
APTriMP	I	Zn(II)			DCM	TBAPF ₆	Fc/Fc ⁺		0.59		-1.76			427
APTriPP	1068	2H			DMF	TEAP	Ag/Ag⁺	0.70	0.43		-1.49	-2.00		126
APTriPP	I	Mo(VI)	0 ²⁻	02-	DMF	TEAP	Ag/Ag⁺		0.51	-0.43	-1.16	-1.46	-1.86	126
APTriPP	I	Zn(II)			DMF	TEAP	Ag/Ag⁺	0.48	0.26		-1.45	-1.81		126
APTriTP	I	2H			DCM	TBAP	SCE	1.40	1.00		-1.18	-1.54		113
APTriTP	I	Zn(II)			DCM	TBAP	SCE	1.08	0.78		-1.26	-1.56		113
APTriTP	I	2H			DCM	TBAPF ₆	SCE		0.91		-1.19			377
APTriTP	I	Zn(II)			DCM	TBAP	SCE	1.08	0.77		-1.35	-1.71		129
APTriTP	I	Zn(II)			DCM	TBAP	SCE	1.11	0.77		-1.35	-1.73		502
AZTBPP	1069	Ni(II)			PhCN	NR	Fc/Fc⁺		0.65		-1.62			517

			Axial L	iaand				Porphyri	ŇŎ	Metal /	Por	phyrin Re	
Ring	Structure	Metal		L2	Solvent	Salt	BR	3 2	-	Other	-	, N	Ref.
BDFTAtriPP	1070	2H			DCM	TBAPF ₆	Fc/Fc⁺	0.76	0.52	0.76, -1.70	-1.70	-2.09	566
BDFTAtriPP	ł	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.71	0.35	0.71, -1.65	-1.80		566
BDP-TTP	1071	2H			DCM	TBAP	SCE	1.44	1.01	-0.86	-1.15	-1.57	570
(Benzoyl)TriTP	1072	(III)nM	CI		CH ₃ OH/H ₂ O	NaCI	Ag/AgCI			-0.33			ю
(Benzoyl)TriTP	1072	(III)nM	CI		CH ₃ OH/H ₂ O	NaCI	NHE			-0.23			ы
BODPITriTP	1073	2H			DCM	TBAP	SCE	1.57	1.11	-0.59	-1.09	-1.43	471
BODPITriTP	I	(II)			DCM	TBAP	SCE	1.21	0.91	-0.52	-1.18	-1.57	471
BQADCPTBPP	1074	(II)			PhCN	TBAPF ₆	SCE		0.79	-0.37			339
BQAHCPTBPP	1075	(II)			PhCN	TBAPF ₆	SCE		0.79	-0.38			339
BQAPrCPTBPF	076	(II)			PhCN	TBAPF ₆	SCE		0.79	-0.40			339
BQCAPTBPP	1077	(II)			PhCN	TBAPF ₆	SCE		0.77	-0.17			339
BQCPTBPP	1078	(II)			PhCN	TBAPF ₆	SCE		0.78	-0.36			339
BQMACPTBPF	1079	(II)			PhCN	TBAPF ₆	SCE		0.77	-0.46			339
BQTDPAPP	1080	(II)			PhCN	TBAP	Ag/AgCI	0.49	0.29	0.72, -0.81 -0.93	-1.80	-2.01	350
BQTriPP	1081	(II)			PhCN	TBAP	Fc/Fc⁺				-0.85		350 350
BQTriPP.DHQ	1082	2H			PhCN	TBAP	SCE		1.01	-0.51, -0.93	-1.41	-1.83*	355

			Axial Liç	gand				Por	phyrin	ŏ	Metal /	Porp	phyrin Rec	
Ring	Structure	Metal	L1	L2	Solvent	Salt	RE	ю	2	-	Other	–	2 3	Ref.
BQTriPP.HQ	1083	2H			PhCN	TBAP	Fc/Fc⁺		0.83	0.63	-0.89, -1.44	-1.71	-2.05	472
BQTriPP.HQ	I	(II)			PhCN	TBAP	Fc/Fc⁺		0.70	0.38	-0.85, -1.45	-2.10		472
(BTC ₅)TriTP	1084	2H			DCM	TBAPF ₆	Fc/Fc⁺	1.10	0.85	0.44		-1.71	-2.03	497
(BTC ₅)TriTP	I	Co(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.34	0.75	0.51	0.34, -1.44	-1.95		497
(BTC ₅)TriTP	ł	Fe(III)	ū		DCM	TBAPF ₆	Fc/Fc⁺	1.24	0.98	0.55	-0.87	-1.60		497
(BTC ₅)TriTP	ł	(III)nM	ū		DCM	TBAPF ₆	Fc/Fc⁺	1.28	1.06	0.63	-0.81, 0.90	-2.14		497
(BTC ₅)TriTP	ł	Ni(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.29	0.84	0.50		-1.81		497
(BTC ₅)TriTP	I	(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.76, 1.21	0.50	0.23	0.96	-1.92		497
(BTPn)TriTP	1085	2H			DCM	TBAPF ₆	Fc/Fc⁺	1.10	0.85	0.44		-1.71	-2.03	110
(BTPn)TriTP	ł	Co(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.34	0.75	0.51	0.34, -1.44	-1.95		110
(BTPn)TriTP	ł	Fe(III)	ū		DCM	TBAPF ₆	Fc/Fc⁺	1.24	0.98	0.55	-0.86	-1.60		110
(BTPn)TriTP	I	(III)nM	ū		DCM	TBAPF ₆	Fc/Fc⁺	1.28	1.06	0.63	-0.81	-2.14		110
(BTPn)TriTP	I	Ni(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.29	0.84	0.50		-1.81		110
(BTPn)TriTP	ł	(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.76	0.50	0.23		-1.92		110
CACTriTP	1086	(II)			<i>n</i> -BuCN	TBAPF ₆	Fc/Fc⁺			0.65		-1.21		424
CAHTPTriPP	1087	Ga(III)	SCN		DMF	TBAP	NHE			0.99		-1.36		521

							Dorohumi	Į				
Ring	Structure	Metal	L1 L2	_ Solvent	Salt	RE	3 2	5 -	Other	- ²		Ref.
CAHTPTriPP	I	(III)	NCS ⁻	DMF	TBAP	NHE		0.93		-1.26		521
CATBPP	1088	(II)uZ		THF (-20°C)	TBAPF	Ag/AgCI		1.03		-1.21*		132
CMEPTriTP	1089	(II)		DCM	TBAPF	SCE		0.79		-1.27		377
CPATBPP	1090	(II)uZ		ТНЕ	TBAP	SCE				-1.15		285
CPATBPP	1090	(II)		ТНЕ	TBAP	SCE			-1.51*	-1.13	-1.36	285
CPATBPP	1090	Zn(II)		ТНЕ	TBAPF ₆	NHE	1.48*	1.04		-1.36*		299
CPATBPP	1090	(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI		1.00		-1.19		132
СРРТВРР	1090	(II)		THF	TBAP	SCE				-1.16		285
СРРТВРР	1090	(II)		THF	TBAP	SCE			-0.92, -1.33	-0.85	-1.10	285
CPTBPP	1091	(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI		0.96		-1.36		132
CPTNPP	1092	2H		DCM	$TBABF_4$	Ag/AgCI				-1.11	-1.44	192
CPTNPP	I	Fe(III)		DCM	$TBABF_4$	Ag/AgCI			-0.26, -0.83	-1.04	-1.47	192
CPTriMP	1093	(II)		DCM	TBAPF ₆	NHE		1.00		-1.33		87
CPTriPP	1094	Co(II)		DMF	TBAPF ₆	SCE			-0.73			384
CPTriPP	1094	Co(II)		DMF	TBAPF ₆	Ag/AgCI			-0.68			384
CPTriPP	I	Zn(II)		DMF	TBAPF ₆	Ag/AgPF ₆	0.70	0.52		-1.69	-2.25	507

			Axial Ligé	and			ļ	Porphyrir	x0 r	Metal /	Pol	rphyrin Re	p
Ring	Structure	Metal	L1 L1	-2 Solv	vent	Salt	RE	3 2	-	Other	 	2	3 Re
CPTriPP	I	2H		DMF		TBAP	SCE		0.71*		-1.50	-1.94	27
CPTriPP	ł	Zn(II)		DMF	1.	TBAP	SCE	0.68	0.47		-1.76	-2.18	57
CPTriTP	ł	2H		DCM	÷-	TBAPF ₆	SCE		0.97		-1.18		37
CPTriTP	ł	Zn(II)		DCM	F	TBAPF ₆	SCE		0.82				37
CPTTBPP	1095	(II)uZ		THF		TBAP	SCE			-1.13	-0.99	-1.15	58
CTriBPP	1096	2H		DCM	-	TBAPF ₆	SCE		1.06		-0.79		¢-
DAPTBPP	1097	(II)uZ		DCM	-	TBAPF ₆	Fc/Fc⁺	0.65	0.35		-1.86	-2.25*	,
DBOQTriPP	1098	2H		DCM	F	TBAP	SCE		1.16	-0.52	-1.27		45
DBOQTriPP	ł	Zn(II)		DCM	F	TBAP	SCE		0.82	-0.58			45
DCNPPTriPP	1099	Co(II)		H ₂ O		TBAP	Ag/AgCI			-0.07			18
DCPATBPP	1100	(II)uZ		THF	(-20°C)	TBAPF ₆	Ag/AgCI		1.05*		-1.24		,
DCPATriTP	1101	Zn(II)		DCM	F	TBAPF ₆	Fc/Fc⁺		0.57				42
DCPATriTP	1102	(II)		n-Bu	Ņ	TBAPF ₆	Fc/Fc⁺				-1.62		42
DCPPTriPP	1103	2H		DMS	Q	TBAP	Ag/AgCI				-0.74	-1.15 -1.	29 21
DCPPTriPP	ı	Co(II)		DMS	õ	TBAP	Ag/AgCI		1.06	0.44, -0.55	-1.30	-1.62	5
DCPPTriPP	I	Fe(III)	ū	DMS	õ	TBAP	Ag/AgCI		0.20	-0.85, -1.35			18

			Axial	Ligand				Porphyr	in Ox	Metal /	Por	phyrin Re	g
Ring	Structure	Metal	5	L2	Solvent	Salt	RE	3 2	-	Other	 	2	Re Re
DCPPTriPP	I	Fe(III)	Ċ		H ₂ O	TBAP	Ag/AgCI			-0.34			31
DCPTMPP	1104	Fe(III)	1-(CH ₃)	1-(CH ₃)	DMF	TBAP	SCE			-0.10			22
DCPTMPP	1104	Fe(III)	C		DMF	TBAP	SCE			-0.07			22
DCTAtriPP	1105	2H			DCM	TBAPF ₆	Fc/Fc⁺		0.51	0.79	-1.71	-2.07	26
DCTAtriPP	I	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.68	0.37		-1.82		56
DDPTriPP	1106	2H			DMF	TBAP	Ag/Ag⁺				-1.59	-2.10	22
DDTTriPP	1106	2H			DCB	TBAPF ₆	Fc/Fc⁺		0.48	0.22, -1.56	-1.62		4
DHPTriPP	1107	Zn(II)			PhCN	TBAP	SCE	1.21	0.89				
DHPTriPP.BQ	1108	2H			PhCN	TBAP	Fc/Fc⁺	0.85	0.66	0.48*	-1.64	-2.00	4
DHPTriPP.BQ	ł	Zn(II)			PhCN	TBAP	Fc/Fc⁺	0.72	0.40	0.34	-1.81	-2.09	4
DMCPATriTP	1109	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺		0.50				4
DMCPATriTP	1109	Zn(II)			n-BuCN	TBAPF ₆	Fc/Fc⁺				-1.62		4
DMOQTriPP	1110	2H			DCM	TBAP	SCE	1.31	1.13	-0.27	-1.25		4
DMXBrF ₁₅ TriPF	1111	Co(II)			CH ₃ CN	TBAPF ₆	Fc/Fc⁺			-1.10	-2.14		ŝ
DMXBrF ₁₅ TriPF	I	Zn(II)			CH ³ CN	TBAPF ₆	Fc/Fc⁺				-1.52	-1.92	3
DMXCF ₁₅ TriPP	1112	Co(II)			CH ₃ CN	TBAPF	Fc/Fc⁺			-1.08	-1.94*		3.

								į	N 4 - 4 - 1 /	ć		
			Axial Ligan	Q			Porpnyrii	XO L	Netal /	9 2	irpnyrin Ke	a
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2	-	Other	-	2	3 Re
DPANTriPP	1113	2H		THF	TBAP	Fc/Fc⁺		0.38		-1.73		46
DPAPTPnP	1114	Zn(II)		DCM	TBAP	SCE		0.69				
DPSAcTriPP	1115	Zn(II)		DCM/EtOH	TBAPF ₆	Ag/Ag⁺	0.69	0.47				4
EtBrPTriTP	1116	2H		DCM	TBAP	SCE	1.17	0.95				
EtBrPTriTP	1116	2H		DMF	TBAP	SCE				-1.02	-1.47	
EtBrPTriTP	ł	Zn(II)		DCM	TBAP	SCE	1.06	0.75				
EtBrPTriTP	ł	Zn(II)		DMF	TBAP	SCE				-1.30	-1.70	
F ₁₅ APTriPP	1117	2H		H ₂ 0/DCE	TBAPF ₆	NHE	1.57	1.30		-0.76		20
F ₁₅ PyTriPP	1118	2H		DMF	TBAP	SHE				09.0-		ũ
F ₁₅ TMCXTriPP	1119	Co(II)		CH ₃ CN	TBAPF ₆	Fc/Fc ⁺			0.48*, -1.20			57
F ₅ PTriPyP	1120	2H		CH ₃ CN	TBAPF ₆	Ag/AgCI		>1.0		-0.89		2
F ₅ PTriPyP	1120	2H		CH ₃ CN	TBAPF ₆	Ag/AgCI		1.40*		-0.78		36
F ₅ PTriPyP	1120	2H		DMF	TBAP	SHE				-0.78	-1.24	ù
F ₅ PTriPyP	1120	2H		DMF	TBAPF ₆	Ag/AgCI				-0.79		÷
F ₅ PTriPyP	ı	Cu(II)		DMF	TBAPF ₆	Ag/AgCI		0.52		-0.91		÷
F ₆ TPP-tmpa	1121	Fe(III)	CI-	CH ₃ CN	TBAPF	Fc/Fc⁺			-0.56			4

			Axial	_igand				Porp	hyrin	ŏ	Metal /	Por	phyrin	Red	
Ring	Structure	Metal	2	L2	Solvent	Salt	RE	ю	2	-	Other	-	2	3	Ref.
F ₆ TPP-tmpa	1121	Fe(II)			CH ³ CN	TBAPF ₆	Fc/Fc⁺				-0.17				183
FPTAPTriPP	1122	Zn(II)			DCB	TBAP	Fc/Fc⁺			0.24		-1.92			288
FPTriMP	1123	Zn(II)			DCM	TBAPF ₆	⁺ gA/gA		0.91	09.0					12
FTMPP	1124	Fe(III)	1-(CH ₃)	1-(CH ₃)	DMF	TBAP	SCE				-0.11				589
FTMPP	1124	Fe(III)	ū		DMF	TBAP	SCE				-0.07				589
FTriTP	1125	2H			DCM	TBAP	SCE		1.33	0.95		-1.16	-1.52		498
HDPTriPP	1126	2H			DMF	TBAP	Ag/Ag⁺					-1.58	-2.07		528
НРТВРР	1127	Zn(II)			DCM	TBAP	SCE	1.27, 1 हह	1.02	0.72		-0.89	-1.66	-1.88	127
HPTriPP	1128	2H			DMF	TBAP	Ag/Ag⁺	<u>.</u>		0.65*		-1.50	-1.95		14
HPTriPP	I	Co(II)			DMF	TBAP	Ag/Ag⁺			0.64*	0.03*,-1.23	-1.64			14
HPTriPP	I	Cu(II)			DMF	TBAP	Ag/Ag⁺			0.57*		-1.59	-2.11		14
HPTriPP	I	Fe(III)	ū		DMF	TBAP	Ag/Ag⁺			0.49*	-0.58	-1.48	-1.85		14
HPTriPP	I	(III)nM	ū		DMF	TBAP	Ag/Ag⁺			0.75*	-0.62	-1.73	-2.04		4
HPTriPP	I	Ni(II)			DMF	TBAP	Ag/Ag⁺			0.60*		-1.60	-2.17		4
HPTriPP	I	Zn(II)			DMF	TBAP	Ag/Ag⁺			0.44*		-1.77	-2.18		14
НРТТР	1129	2H			DCM	TBAP	SCE		1.30	0.94		-1.24	-1.64*		56

			Axial Lig	and				Por	phyrin	Ň	Metal /	Por	phyrin Red	
Ring	Structure	Metal	L1		Solvent	Salt	RE	ю	2	-	Other		2 3	L Ref.
(ImP)TriPP	1130	2H			DCB	TBAP	Fc/Fc⁺			0.55		-1.67	-2.02	109
(ImP)TriTP	1130	2H			CB	TBAP	Fc/Fc⁺			0.51		-1.72		109
MCPTriPP	1131	2H			OMF	TBAP	SCE			0.72		-1.47	-1.92	82
MCPTriPP	I	Zn(II)			OMF	TBAP	SCE			0.43		-1.78	-2.23	82
MEPTriPP	1132	Zn(II)			MOC	TBAPF	Fc/Fc⁺		0.64	0.31		-1.88	-2.29*	158
MMEPTriPP	1133	Co(II)			MOC	TBAPF ₆	Fc/Fc ⁺		0.85	0.60	0.35, -1.34	-1.80*		211
MMEPTriPP	1133	Co(II)		ц	PhCN	TBAPF ₆	Fc/Fc ⁺	66.0	0.71	-0.21*	0.09*, -1.34			211
MOQTriPP	1134	2H			MOC	TBAP	SCE			1.13	-0.23			453
MOQTriPP	ł	Zn(II)			MOC	TBAP	SCE		1.18	0.88	-0.42			453
(NH ₂ P)TriPP	1135	2H			JMF	TBAP	SCE			0.70		-1.49	-2.00	82
(NicBu)TPP	1136	2H			MOC	TBAP	⁺ 9A/94		0.95*	0.71		-1.55	-1.86	98
(Nicdecyl)TPP	1137	2H			MOC	TBAP	⁺ 9A/94		1.19	0.71		-1.55	-1.90	98
(NicDecyl)TriC	PP 1138	2H			MOC	TBAP	⁺ 9A/94		1.14*	0.77		-1.38	-1.76	119
(NicDecyl)TriM	1PP 1139	2H			MOC	TBAP	⁺ 9A/94		0.81	0.65		-1.56	-1.88	119
(NicDecyl)TriP	P 1140	2H			MDC	TBAP	⁺ gA/gA		1.19*	0.71		-1.54	-1.90	119
(NicEt)TPP	1141	2H			DCM	TBAP	Ag/Ag⁺		0.97*	0.72		-1.53	-1.88	98

			Axial Lic	Jand				Porphyrir	XO	Metal /	Por	phyrin Red	
Ring Str	ructure	Metal			Solvent	Salt	RE	3 2	-	Other	 -	2 3	Ref.
(NicH)TPP	1142	2H			DCM	TBAP	Ag/Ag⁺	0.94*	0.70		-1.54	-1.87	86
(NicHex)TriPP	1143	2H		_	DCM	TBAP	Ag/Ag⁺	0.94	0.71		-1.54	-1.87	557
(NicHex)TriPP	ł	Cu(II)		-	DCM	TBAP	Ag/Ag⁺	0.92	0.67		-1.64		557
(NicHex)TriPP	ł	Fe(III) (ū	-	DCM	TBAP	Ag/Ag⁺	1.08	0.75	-0.51	-1.38		557
(NicHex)TriPP	ł	Mn(III)	ū	-	DCM	TBAP	Ag/Ag⁺	1.17	0.83	-0.76	-1.48		557
(NicHex)TriPP	ł	Ni(II)		-	DCM	TBAP	Ag/Ag⁺	0.87	0.72		-1.60		557
(NicHex)TriPP	ł	Zn(II)		-	DCM	TBAP	Ag/Ag⁺	0.81	0.46		-1.42		557
(NicPn)TPP	1144	2H		_	DCM	TBAP	Ag/Ag⁺	0.94*	0.71		-1.54	-1.90	98
(NicPr)TPP	1145	2H		_	DCM	TBAP	Ag/Ag⁺	1.03*	0.78		-1.51	-1.86	98
(NicPr)TPP	1145	2H		-	DMF	TBAP	Ag/Ag⁺		0.71		-1.50	-1.83	98
(NicPr)TPP	ł	Mn(III)	ū	-	DMF	TBAP	Ag/Ag⁺			-0.64	-1.73	-2.41*	98
(NicPr)TPP	ł	Zn(II)		_	DMF	TBAP	Ag/Ag⁺		0.43		-1.74	-2.14	98
NPTriPP	1146	2H		-	DMF	TBAP	Ag/Ag⁺				-1.70	-2.27	527
(O-Samag)-DPATriT	rP 1147	Zn(II)		_	DCM	TBAP	SCE	1.09	0.78	0.37, 0.78, -0.83, -1.16 -1.40	3 -1.16	-1.67	306
(O-Sapp)-DPATriTP	1148	2H		_	DCM	TBAP	SCE	1.43	1.00	0.58, 0.33 -1.16, -1.67	7 -1.16	-1.49	306
OPDPyTriPP	1149	2H			ТНЕ	TBAP	Fc/Fc ⁺			-0.14	-1.68		293 (DPV)

Table 17a. A_3B meso-substituted porphyrins. (see structures in Figure 17a)

			-									Loo Dod	
Ring	Structure	Metal	AXIAI LIC	Jand	Solvent	Salt	RE	3 2	5 -	Other	<u>-</u>	2 3	- Ref.
OPDPyTriPP	1	(II)			THF	TBAP	Fc/Fc⁺			-0.14	-1.93		293
OPDTPyTriPP	1150	2H			THF	TBAP	Fc/Fc⁺			-0.14	-1.68		293
OPDTPyTriPP	I	(II)			THF	TBAP	Fc/Fc⁺			-0.15	-1.90		293
OPTriPP	1151	2H			DMF	TBAP	Ag/AgNO ₃		0.63		-1.46		501
OPTriPP	ł	Co(II)			DMF	TBAP	Ag/AgNO ₃		0.73	-0.12, -1.21			501
OPTriPP	ł	Cu(II)			DMF	TBAP	Ag/AgNO ₃	0.79	0.37		-1.58		501
OPTriPP	ł	Mn(III)	Ċ		DMF	TBAP	Ag/AgNO ₃			-0.59	-1.73		501
OPTriPP	ł	Ni(II)			DMF	TBAP	Ag/AgNO ₃	0.56	0.39		-1.58		501
OPTriPP	I	(II)			DMF	TBAP	Ag/AgNO ₃		0.67				501
OTTriPP	1152	2H			DCB	TBAPF ₆	Fc/Fc⁺		0.55	0.32, -1.58	-1.60		410
PATriPP	1153	Zn(II)			CH ³ CN	TBAPF ₆	^g/Ag⁺		0.55		-1.45		(v vvc) 39
PBETriTP	1154	2H			DCM	TBAP	SCE	1.05	0.75		-1.33*	-1.61*	305
PBETriTP	I	Zn(II)			DCM	TBAP	SCE	1.34*	1.20		-1.19	-1.40	305
PDAPTriMPP	1155	(II) Mn(II)			CH ³ CN	TBAPF ₆	Ag/AgCI		1.20*				172
PerynyIDPATM	P 1156	(II)uZ			<i>n</i> -BuCN	TBAPF ₆	^g/Ag⁺	0.90	0.52	1.40, -0.77 -1.06	-1.71	-2.12	413
PerynylPATriMł	o 1157	Zn(II)			<i>n</i> -BuCN	TBAPF	⁺ Ag/Ag	0.88	0.50		-1.14	-1.60	(2000) 388

			Axial Lic	gand				Por	phyrir	Ň	Metal /	Por	phyrin Red	
Ring Stru	cture	Metal		L2	Solvent	Salt	RE	ю		-	Other	-	3	- Ref.
PerynyIPATriMP-1	1158	Zn(II)			<i>n</i> -BuCN	TBAPF ₆	Ag/Ag⁺		1.08	0.52		-1.19	-1.81*	388
PerynyIPATriMP-2	1159	Zn(II)			<i>n</i> -BuCN	TBAPF ₆	⁺gA/gA		0.96*	0.52*		-1.19	-1.73*	388
PerynyIPATriMP-4	1160	Zn(II)			<i>n</i> -BuCN	TBAPF ₆	^gA/Ag	1.19	0.92*	0.52*		-1.30	-1.76*	388
PerynylPTBPP	1161	2H			DCM	TBAP	SCE	1.58	1.31	0.96	-0.72, -0.88	-1.20	-1.56	480
Phen4QTriPP	1162	2H			DCM	TBAP	SCE		1.32	1.12	-0.55			(ULT V) 519
Phen4QTriPP	ł	Zn(II)			DCM	TBAP	SCE		1.36	0.86	-0.55	-1.25		519
Phen4QTriPP	ł	Zn(II)			DMF	TBAP	SCE			0.92	-0.59			519
Phen4QTriPP	ł	Zn(II)			DMF	TBAP	SCE			0.92	-0.52			519
Phen4QTriPP	ł	Zn(II)			DMF	TBAP	SCE			0.92	-0.49			519
Phen4QTriPP	I	Zn(II)			DMF	TBAP	SCE		1.14	0.92	-0.31			519
PhenQTriPP	1163	2H			DCM	TBAP	SCE			1.04	-0.58			519
PhenQTriPP	1163	2H			DMF	TBAP	SCE			1.02	-0.57			519
PhenQTriPP	1163	2H			DMF	TBAP	SCE			1.07	-0.52			519
PhenQTriPP	1163	2H			DMF	TBAP	SCE			1.03	-0.46			519
PhenQTriPP	ł	Zn(II)			DCM	TBAP	SCE		1.13	0.82	-0.60			519
PrCEPTBPP	1164	Zn(II)			DCM	TBAPF	Fc/Fc⁺		0.60	0.35		-1.76	-2.18	143

			Axial Lic	gand				Porp	hyrin	ŏ	Metal /	Pol	rphyrin	Red	
Ring S	structure	Metal		L2	Solvent	Salt	RE	e	5	-	Other	-	2	ю	Ref.
PyTriPP	1165	2H			DCM	TBABF ₄ /0.2/0/	SCE			1.16*		-1.05	-1.40		156
PyTriPP	ł	Zn(II)			DCM	(0.2M) TBABF ₄ (0.2M)	SCE	1.52*	1.24*	0.94*		-1.26	-1.55*		156
QTriPP	1166	Zn(II)			PhCN	TBAP	SCE					-0.51			4
QTTriPP	1167	2H			DCB	TBAPF ₆	Fc/Fc ⁺			0.66	-0.45, -1.59	-1.56		,	410 SMM
(S ₃ -Sapp)-DPATri	TP 1168	2H			DCM	TBAP	SCE		1.35	1.00	1.43, 1.00 , 0.78, -0.84 1.00 -1.54	-1.18	-1.51		306
(S₄-Rubn)-BDP-TT	⁻ P 1169	2H			DCM	TBAP	SCE			1.45	-1.09, -1.31 -0.95, -1.34 -1.50	-0.95	-1.05	-1.50	570
SAcPTriMP	1170	(II)			DCM	TBAPF ₆	Ag/Ag⁺		1.05	0.73		0.13			186
Subpc-TPAP	1171	(II)			DCM	TBAP	SCE			0.67	-1.11				86
T(TSiA)PP	1172	(II)			DCM	$TBABF_4$	Fc/Fc ⁺		0.66	0.44		-1.72*	-2.02*		130
ТАРТВРР	1173	2H			DCM	TBAPF	Ag/AgCI			1.02					276 (101/1
ТАРТВРР	ł	(II)			DCM	(∪.∠M) TBAPF₀	Fc/Fc ⁺		0.68	0.35		-1.89	-2.27*		(ULV) 139
ТАРТВРР	ł	(II)			DCM	TBAPF ₆	Ag/AgCI			0.88					276 (חפעו
TBPAAPP	1174	2H			PhCN	TBAPF ₆	Fc/Fc ⁺			0.49					403 (V) 403
TBPAAPP	I	(II)			PhCN	TBAPF ₆	Fc/Fc ⁺			0.29					403 403 100/10
TBPAZDPAP	1175	2H			DCM	TBAPF ₆	Fc/Fc ⁺			0.53*					411
TCDTAPP	1176	Zn(II)			DCM	TBABF ₄	Fc/Fc⁺		0.68	0.42		-1.82	-1.81*	-2.20*	130

			Axial I	idand				Pon	ohvrin (ŏ	Metal /	Porp	hvrin R	ed	
Ring	Structure	Metal		L2	Solvent	Salt	RE	e	5		Other	-	5	ر س	Ref.
[TCPCO ₂ -PP]	1177	(II)	1-(CH ₃)	1-(CH ₃)	DMF	TBAPF ₆	SCE				-0.14				360
[TCPCO ₂ -PP]	:	Os(II)	P(OCH ₃)	1-(CH ₃)	DMF	TBAPF ₆	SCE				0.25				360
[TCPCO ₂ -PP]	ł	Os(II)	P(OCH ₃)	P(OCH ₃)	DMF	TBAPF ₆	SCE				0.27				360
[TCPCO ₂ -PP]	1178	Os(II)	See Fig.	1-(CH ₃)	DMF	TBAPF ₆	SCE				0.06				360
[TCPCO ₂ -PP]	1179	Os(II)	See Fig.	See Fig.	DMF	TBAPF ₆	SCE				0.11				360
[TCPCO ₂ PP]	ı	(II)	Py	Py	DMF	TBAPF ₆	SCE				0.14				360
TDPTriPP	1180	2H			DMF	TBAP	Ag/Ag⁺					-1.58	-2.08		528
TF ₇ PrCMPP	1181	2H			PhCN	TBAPF ₆	SCE			1.59		-0.63			397
темтирр	1182	Fe(III)	1-(CH ₃)	1-(CH ₃)	DMF	TBAP	SCE				-0.11				589
темтирр	ı	Fe(III)	Ċ		DMF	TBAP	SCE				-0.07				589
ТІРНМАРР	1183	2H			DCM	TBAP	SCE		1.30	1.03		-1.11	-1.52		129
TMCXTriBPP	1184	Co(II)			CH ³ CN	TBAPF ₆	Fc/Fc ⁺				0.28*, -1.31				547
TMCXTriMP	1185	Co(II)			CH ³ CN	TBAPF ₆	Fc/Fc ⁺				0.11* -1.32				547
TMCXTriMPP	1186	Co(II)			CH ³ CN	TBAPF ₆	Fc/Fc ⁺				0.07*, -1.28				547
TMCXTriPnP	1187	Co(II)			CH ³ CN	TBAPF ₆	Fc/Fc ⁺				0.12*, -1.23				547
TMTPAPP	1188	Zn(II)			DCM	TBAP	Ag/AgCI	1.13	0.81		0.58				114

7a
Figure
.⊑
tures
Inc
S
(see
s.
'rin
£
Ър
ă
bstituted
su
meso-
Ъ В
17a. /
able
\vdash

			Axial Li	dand				Por	phyrin	ŏ	Metal /	Por	rphyrin Red	
Ring Struc	cture	Metal		L2	Solvent	Salt	RE	e	~~~	-	Other	-	2 3	- Ref.
TPAPTriMP	1189	Zn(II)	Ē		DCM	TBAP	Ag/AgCI	1.17	0.70		0.51			114
trans-APTBPP	1190	Zn(II)			DCM	TBAPF ₆	Fc/Fc ⁺		0.65	0.35		-1.91	-2.34*	139
trans-T(DPSAc)PP	1191	Zn(II)			DCM/EtOH	TBAPF ₆	^g/Ag⁺		0.70	0.49				436
trans-TSiAPTBPP	1192	Zn(II)			DCM	TBAPF ₆	Fc/Fc ⁺		0.63	0.35		-1.81	-2.06*	139
trans-TSiDAPTBPP	1193	Zn(II)			DCM	TBAPF ₆	Fc/Fc ⁺		0.66	0.36		-1.79		139
trans-TTDSAPP	1194	Zn(II)			DCM/THF	$TBABF_4$	^g/Ag⁺			0.33				46
TriAPCMPP	1195	2H			DCM	TBAP	Ag/AgNO ₃			0.37		-1.59	-1.92	524
Tridbtmsip	1196	Zn(II)			DCM	TBAPF ₆	Ag/AgCI		1.18	0.80		-1.29		102
TriFTP	1197	2H			DCM	TBAP	SCE		1.15	0.89		-1.04	-1.44	498
TSIATBPP	1198	Ni(II)			DCM	TBAPF ₆	Ag/AgCI		1.21	0.97		-1.26		220
TSiATBPP	I	Zn(II)			DCM	TBAPF ₆	Ag/AgCI		1.16	0.78		-1.31		220
TSiATTriPP	1199	Zn(II)			DCM	TBABF₄	Fc/Fc ⁺		0.67	0.42		-1.86*	-2.04*	130
TSiTAPTBPP	1200	Zn(II)			DCM	TBAPF ₆	Fc/Fc ⁺		0.63	0.35		-1.78	-2.13*	139
TTP-BDP-(O-Samag)	1201	2H			DCM	TBAP	SCE		1.44	1.05	1.05, 0.62 -0.92	-1.06	-1.56	570
(TTPn)TriTP	1202	2H			DCM	TBAPF ₆	Fc/Fc ⁺	1.10	0.87	0.46		-1.70	-2.05	110
(TTPn)TriTP	1202	2H			DCM	TBAPF	Fc/Fc⁺	1.10	0.87	0.46		-1.70	-2.05	497

Table 17a. A_3B meso-substituted porphyrins. (see structures in Figure 17a)

			Axial L	.igand				Por	ohyrin	ŏ	Metal /	Porp	ohyrin R	ed	
Ring	Structure	Metal	5	L2	Solvent	Salt	RE	ო	2	-	Other	. –	7	ы	Ref.
(TTPn)TriTP	1	Co(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.36	0.78	0.51	0.34, -1.44	-1.95			110
(TTPn)TriTP	I	Co(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.36	0.78	0.51	0.34, -1.41	-1.95			497
(TTPn)TriTP	I	Fe(III)	ū		DCM	TBAPF ₆	Fc/Fc⁺	1.26	0.99	0.55	-0.84	-1.57			110
(TTPn)TriTP	I	Fe(III)	ū		DCM	TBAPF ₆	Fc/Fc⁺	1.26	0.99	0.55	-0.84	-1.57			497
(TTPn)TriTP	ı	Ni(II)			DCM	TBAPF ₆	Fc/Fc ⁺	1.29	0.86	0.50		-1.80			110
(TTPn)TriTP	I	Ni(II)			DCM	TBAPF ₆	Fc/Fc⁺	1.29	0.86	0.50		-1.80			497
UPTriPP	1203	2H			DMF	TBAP	^4g/Ag					-1.72	-2.19		527

		Axial Liga	pu			Porphyrin	Ň	Metal /	P	rphyrin Rec		
Ring Stru	ucture	Metal L1 L2		Salt	RE	3	-	Other	- 	2 3	ы Ве	ų.
BTSiATDPP	1204	Zn(II)	DCM	$TBABF_4$	Fc/Fc⁺	0.67	0.44		-1.74	* -2.06*	13	0
cis-B(DPSAc)DPP	1205	Zn(II)	DCM/EtOH	TBAPF ₆	^gA/g4	0.74	0.48				43	9
<i>cis</i> -B(TACP)P	1206	Zn(II)	DCM	TBAPF ₆	NHE		0.77		-1.13		8	7
cis-BAPDCMPP	1207	2H	DCM	TBAP	Ag/AgNO		0.74		-1.48	-1.82	52	4
cis-DBPDP(phen)P	1208	Au(III)	<i>n</i> -BuCN	$TBABF_4$	Fc/Fc⁺			-1.03			40	÷
cis-DCPDNPP	1209	2H	DCM	$TBABF_4$	Ag/AgCI				-1.17	* -1.27*	19.	Ņ
cis-DCPDNPP	ł	Fe(III)	DCM	$TBABF_4$	Ag/AgCI			-0.29 -0.88	-1.18	* -1.33*	19.	Ņ
cis-F ₁₀ DPyDPP	1210	2H	DMF	TBAP	SHE				-0.74	-1.22	51	0
T(Tri-iPSi)P	1211	Zn(II)	DCM	TBAPF ₆	Ag/AgCI	1.46*	1.05*		-0.98	-1.31	10.	Ņ
trans-B(2'-MP)DMP	1212	2H	DCM	TBAPF ₆	SCE	1.36	0.94		-1.34	-1.71	47	0
trans-B(3'-MP)DMP	1213	2H	DCM	TBAPF ₆	SCE	1.40	0.96		-1.34	-1.68	47	0
trans-B(4'-MP)DMP	1214	2H	DCM	TBAPF ₆	SCE	1.37	0.92		-1.33	-1.66	47	6
trans-B(DCIPAPA)DMP	1215	Zn(II)	THF	TBAP	Fc/Fc⁺				-1.05		14	0
trans-B(DMPAPA)DMP	1216	Zn(II)	THF	TBAP	Fc/Fc⁺				-1.06		14	0
trans-B(DPSAc)DPP	1217	Zn(II)	DCM/EtOH	TBAPF ₆	Ag/Ag⁺	0.73	0.48				43	9
trans-BADBPP	1218	Zn(II)	THF	TBAPF ₆	SCE	1.31	0.96		-1.39	-1.80 -2.1	9 27.	2
trans-BAPDCMPP	1219	2H	DCM	TBAP	Ag/AgNO		0.75		-1.56	-1.92	52,	4
trans-BAPDMP	1220	Zn(II)	DCM	$TBABF_4$	SCE	1.19	0.91		-1.31	-1.71	31	0 (SWV)
trans-BBPDBPP	1221	Zn(II)	THF	$TBABF_4$	Fc/Fc ⁺		0.44		-1.64		43.	ю
trans-BCIPAPADMP	1222	Zn(II)	PhCN	TBAP	Fc/Fc⁺	1.03	0.77	1.50* 1.28	*.		14	0

			Axial	Liganc				Porphyri	XOL	Metal /	Por	phyrin R	be	
Ring Stru-	cture	Metal			Solvent	Salt	RE	3 2	-	Other	-	7	т г	lef.
trans-BCNPDBPP	1223	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.74	0.44		-1.71	-2.09		439
trans-BDPAPADMP	1224	Zn(II)			THF	TBAP	Fc/Fc⁺				-1.07			140
trans-BDPODPP	1225	2H			DCM	TBAPF ₆	Ag/Ag⁺		1.33		-0.73			387
trans-BDSiMHDEDPP	1226	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.75	0.36		-1.50	-1.96		255
trans-BFDTP	1227	2H			DCM	TBAP	SCE	1.26	0.94		-1.08	-1.49		498
trans-BMCPDMPP	1228	2H			DCM	TBAPF ₆	SCE	1.32	1.03		-1.18	-1.50	•	452
trans-BMPDPP	1229	2H			DCM	TBAPF ₆	Fc/Fc⁺	0.87	0.55		-1.67	-1.97		256
trans-BMPDPP	ł	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.67	0.37		-1.83			256
trans-BPADPP	1230	Zn(II)			CH ₃ CN	TBAPF ₆	Ag/Ag⁺		0.56		-1.23			39
trans-BPrADBPP	1231	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺		0.26		-1.91			390
trans-BTSiADBPP	1232	Zn(II)			THF	TBABF₄	Fc/Fc ⁺		0.53		-1.61		•	433
trans-D(Benzoyl)DTFMP	1233	(III)uM	ö		CH ₃ OH/H ₂ O	NaCI	Ag/AgCI			-0.05				с
trans-D(Benzoyl)DTFMP	1233	(III)uN	ö		CH ₃ OH/H ₂ O	NaCI	NHE			0.04				ო
trans-D(Benzoyl)DTFMP	1233	(III)uN	ö		DMF/H ₂ O	NaCI	Ag/AgCI			-0.05				ო
trans-D(PTFM)P	1234	(III)uM	ö		CH ₃ OH/H ₂ O	NaCI	NHE			-0.09				с
trans-D(TFMP)P	1235	(III)uN	ö		CH ₃ OH/H ₂ O	NaCI	Ag/AgCI			-0.19				с
trans-DAPDMP	1236	Zn(II)			DCM	TBAPF ₆	Ag/Ag⁺		0.68					163
trans-DCNPDBPP	1237	2H			DCM	TBAPF ₆	Fc/Fc⁺	06.0	0.69		-1.47	-1.81		128
trans-DCNPDBPP	ı	Cu(II)			DCM	TBAPF ₆	Fc/Fc⁺	0.95	0.68		-1.62	-2.00		128
trans-DCNPDBPP	I	Zn(II)			DCM	TBAPF	Fc/Fc⁺	0.75	0.47		-1.65	-1.98	2.34	128

			Axial Ligan	q			Porphyi	'in Ox	Metal /	Por	phyrin Re	ñ	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2	-	Other	-	2	3	Ref.
trans-DCNPDBPP	1	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.74	0.44		-1.71	-2.09		136
trans-DCNPDTBP	1238	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.69	9 0.41		-1.66	-2.03 -2	.24	128
trans-DEPDEPP	1239	Zn(II)	Ph ₃ PO	CDCI ₃	TBAP (0.2M)	SCE	1.26	3 1.07		-1.01			318
trans-DEPDEPPP	1240	2H		CHCI ₃	TBAP (0.2M)	SCE		1.36		-0.74	-1.23*		318
trans-DEPDEPPP	I	Zn(II)		CDCI ₃	TBAP (0.2M)	SCE	1.23	2 1.07		-0.92	-1.40*		318
trans-DEPDEPPP	1240	2H		DCM	TBAP	SCE		1.31		-0.74	-1.21 -1	.59	318
trans-DEPDEPPP	I	Zn(II)		DCM	TBAP	SCE	1.2	1.10		-0.96	-1.33* -1	.76	318
trans-DEPDPP	1241	Zn(II)		CDCI ₃	TBAP (0.2M)	SCE	1.18	3 1.00		-0.99			318
trans-DEPDPP	1241	Zn(II)	Ph ₃ PO	CDCI ₃	TBAP (0.2M)	SCE	1.24	66.0 1		-1.10	-1.50		318
trans-DEPDPP	I	2H		CHCI ₃	TBAP (0.2M)	SCE		1.27		-1.06	-1.34*		318
trans-DEPDPP	I	2H		DCM	TBAP	SCE		1.26		-0.81	-1.29 -1	.75	318
trans-DEPDPP	ł	Zn(II)		DCM	TBAP	SCE		1.02		-1.02	-1.44*		318
trans-DEPDTP	1242	Zn(II)		CDCI ₃	TBAP (0.2M)	SCE	1.16	3 0.97		-1.03	-1.51*		318
trans-DEPDTP	1242	Zn(II)	Ph ₃ PO	CDCI ₃	TBAP (0.2M)	SCE	1.23	86.0		-1.10	-1.50*		318
trans-DEPDTP	1242	Zn(II)		DCM	TBAP	SCE	1.14	96.0 1		-1.02	-1.37* -1	.70*	318
trans-DHPDPP	1243	2H		DCM	NR	Fc/Fc⁺	0.80	0.49		-1.72			169
trans-DMAADBPP	1244	Zn(II)		THF	TBAPF ₆	SCE		0.95		-1.39	-1.80 -2	19	272
trans-DMBTFMP	1245	Zn(II)		DCM	TBAPF ₆	Ag/Ag⁺		0.87					163
trans-DMCPDMPP	1246	2H		DCM	TBAPF ₆	SCE		1.04*		-1.25*			409
trans-DMCPDMPP	1246	2H		THF	TBAPF	SCE		1.31*		-1.23	-1.56		419

			Axial	Liganc	7			Porphy	rin Ox	Ψ	etal /	Por	ohyrin Re	~
Ring	structure	Metal	2	[7]	Solvent	Salt	RE	3 2	-	ă I	her	-	3	Ref
trans-DMDCMP	1247	2H			DCM	TBAPF ₆ /TMAOF	H SCE		1.05	*		-1.25*		409
trans-DMPAPADMP	1248	Zn(II)			PhCN	TBAP	Fc/Fc⁺	0.8;	3 0.67	1.32*	0.99*			140
trans-DMPDPP	1249	Zn(II)			DCM	TBAPF ₆	Ag/Ag⁺		0.53					163
trans-DND(Pn)P	1250	Mn(III)	ö		CH ₃ OH/H ₂ O	NaCI	Ag/AgCI			-0.04				ო
trans-DND(Pn)P	1250	Mn(III)	ō		CH ₃ OH/H ₂ O	NaCI	NHE			0.06				ო
trans-DPADMP	1251	Zn(II)			PhCN	TBAP	Fc/Fc ⁺	1.2(3 0.87					140
trans-DPADMP	1251	Zn(II)			THF	TBAP	Fc/Fc⁺					-1.01		140
trans-DPAPADMP	1252	Zn(II)			PhCN	TBAP	Fc/Fc⁺	0.9	3 0.74	1.50*	1.23*			140
trans-DPBTDP	1253	Zn(II)			DCM/THF	$TBABF_4$	Ag/Ag⁺		0.38					46
trans-DPDPP	1254	2H			DCM	TBAPF ₆	SCE		1.04			-0.83		1
trans-DPyDPP	1255	2H			DCM	NR	Fc/Fc⁺	0.8	5 0.39			-1.75		169
trans-DTPDTP	1256	2H			DCM	TBAPF ₆	SCE	1.3(0 1.00					395
trans-DTPDTP	ł	Zn(II)			DCM	TBAPF ₆	SCE	1.16	3 0.88					395
trans-F ₁₀ DPADPP	1257	Zn(II)			CH ₃ CN	TBAPF ₆	Ag/Ag⁺		0.77			-1.20		36
trans-F ₁₀ DPDPyP	1258	2H			DMF	TBAPF ₆	Ag/AgCI					-0.74	-1.21	508
trans-F ₁₀ DPyDPP	1259	2H			DMF	TBAP	SHE					-0.74	-1.22	510
<i>trans</i> -F ₁₀ TPP	1260	Mg(II)			DCM	TBAPF ₆	Ag/Ag⁺		0.66					163
trans-TMADBPP	1261	Ni(II)			THF	TBAPF ₆	Fc/Fc⁺		0.63			-1.47		254
			Axial Ligan	p			Porpl	nyrin Ox	Metal /	Por	phyrin Red			
-------------------	-----------	------------------	-------------	-------------------------------------	--------------------------------	----------	-------	----------	---------	-------	------------	-----------		
Ring	Structure	Metal	L1 L2	- Solvent	Salt	RE	ю	2	Other	-	2 3	Ref.		
DNTFMP	1262	Mn(III)	ū	CH ₃ OH/H ₂ O	NaCI	Ag/AgCI			0.11			e		
DNTFMP	1262	(III) Mn(III)	ū	CH ₃ OH/H ₂ O	NaCI	NHE			0.21			ç		
trans-APADBPP	1263	(II) Mg(II)		DMF	$TBAPF_{\scriptscriptstyle 6}$	SCE		0.71		-1.24		165		
trans-APADBPP	ł	Zn(II)		DMF	TBAPF ₆	SCE		0.84		-1.19		165		
trans-APDBPP	1264	Zn(II)		DMF	TBAPF ₆	SCE		0.89		-1.33		298		
trans-BDSiMHDEDPP	1265	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	Ö	.70 0.35		-1.66	-2.10	255		
trans-BrDPP	1266	Zn(II)		PhCN	TBAP	Ag/AgNO3		0.56				269		
trans-CAPDBPP	1267	2H		THF	TBAPF ₆	Fc/Fc⁺		0.63*		-1.51	-1.73	546 (DPV)		
trans-CIPHDBPP	1268	Zn(II)		DMF	NR	Fc/Fc⁺		0.44	-1.64			389 (DPV)		
trans-CPDPADPP	1269	Zn(II)		THF	TBAP	SCE		1.07*		-1.19		118		
trans-CPEDPP	1270	Zn(II)		THF	TBAP	SCE		1.07*		-1.23		118		
trans-CPPEDPP	1271	Zn(II)		THF	TBAP	SCE		1.07*		-1.18		118		
trans-CPTPADPP	1272	Zn(II)		THF	TBAP	SCE		1.07*		-1.20		118		
trans-D(iPr)TFMP	1273	(III) Mn(III)	ū	CH ₃ OH/H ₂ O	NaCI	Ag/AgCI			-0.39			ç		
trans-D(iPr)TFMP	1273	Mn(III)	ū	CH ₃ OH/H ₂ O	NaCI	NHE			-0.30			ę		
trans-DCPHDBPP	1274	Zn(II)		DMF	NR	Fc/Fc⁺		0.48	-1.56			389 (DPV)		
trans-DMADBPP	1275	Zn(II)		THF	$TBAPF_{\scriptscriptstyle 6}$	Fc/Fc⁺		0.44		-1.56		254		
trans-DPODPP	1276	2H		DCM	TBAPF ₆	Ag/Ag⁺		1.24		-0.96		387		
trans-IPDBMPP	1277	Zn(II)		PhCN	TBAP	SCE	~	.01 0.71		-1.50		150		
trans-MPHDBPP	1278	Zn(II)		DMF	NR	Fc/Fc⁺		0.46	-1.69			389 (DPV)		

Table 17c. cis and trans-A₂B meso-substituted porphyrins. (see structures in Figure 17c)

			Axial Ligar	pr			Por	phyrin	Ň	Metal /	Porphyrir	ר Red	
Ring	Structure	Metal	L1 L2	- Solvent	Salt	RE	с	2	-	Other	1 2	ო	Ref.
trans-ND(Pn)P	1279	Mn(III)	ū	CH ₃ OH/H ₂ O	NaCI	Ag/AgCI				-0.25			£
trans-ND(Pn)P	1279	(III) Mn(III)	ū	CH ₃ OH/H ₂ O	NaCI	NHE				-0.15			ę
trans-NIDBPP	1280	Zn(II)		DMF	NR	Fc/Fc⁺			0.43	-0.89			389 (DPV)
trans-NPHDBPP	1281	Zn(II)		DMF	NR	Fc/Fc⁺			0.48	-1.08			389 (DPV)
trans-PHDBPP	1282	Zn(II)		DMF	NR	Fc/Fc⁺			0.45	-1.69			389 (DPV)
trans-PIDBPP	1283	Zn(II)		DMF	NR	Fc/Fc⁺			0.45	-1.14			389 (DPV)
trans-PIDPP	1284	Zn(II)		DCM	TBAP	SCE			0.88	-0.86			535
trans-PyrenyIDBPP	1285	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	1.26	0.81	0.52	·	-1.78 -2.18		379
trans-TCIPHDBPP	1286	Zn(II)		DMF	NR	Fc/Fc⁺			0.49	-1.35			389 (DPV)

Table 17c. cis and trans-A₂B meso-substituted porphyrins. (see structures in Figure 17c)

			Axial Liga	pu			Porphy	rin Ox	Metal /	Porph	yrin Red		
Ring	structure	Metal		2 Solvent	Salt	RE	33	~	Other	-	3	۳ ۲	ef.
trans-(15C5)PPDTP	1287	Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.2	9 0.1		-1.85			69
trans-APCMPDMP	1288	2H		PhCN	TBAPF ₆	SCE	, -	2 1.03	~	-1.19		.,	397
trans-APCMPDMP	I	Zn(II)		PhCN	TBAPF ₆	SCE		0.76		-1.34		.,	397
trans-APNMIPP	1289	2H		DCM	TBAPF ₆	Ag/AgCI	1.2	0 1.00		-1.20	1.59		06
trans-APNMIPP	ł	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	0.8	3 0.63	~	-1.55	1.70		06
trans-APNMIPP	ł	Zn(II)	1-(CH ₃)Im	DCM	TBAPF ₆	Ag/AgCI	1.1	0 0.60	0	-1.54			06
trans-BDP-18C6-CPD1	rP 1290	Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.3	6 0.17	-1.61	-1.71			69
trans-BIBPMCPDMP	1291	2H		DCM	TBAPF ₆	SCE		1.07	**	-1.29*		•	601
trans-BOPPerynyIDBP	P 1292	Zn(II)		THF	TBAPF ₆	NHE	1.	:9* 0.92	01	-0.72 -(0.93 -1.4	24	363
trans-BOPTSiADBPP	1293	Zn(II)		THF	TBAPF ₆	NHE	<u>+</u>	2* 0.92	01	-1.11		.,	363
trans-BPDBACPAP	1294	Zn(II)		THF (-20°C	;) TBAPF ₆	Ag/AgCI		0.87	**	-1.14			32
trans-BuDBPTMSiAP	1295	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.25	10	-1.73		·	03
trans-CEPPzDTP	1296	Zn(II)		DCM	$TBABF_4$	Ag/Ag⁺	0.7	4 0.38	3*			·	151
trans-CMBBPP	1297	Zn(II)		DCM	TBAPF ₆	Ag/Ag⁺	0.9	6 0.75	10				12 (SWV)
trans-CPABOPBMBP	1298	Zn(II)		THF	TBAPF ₆	NHE	1.	:7* 0.9		-1.08			663
trans-CPADHPADBPP	1299	Zn(II)		THF	TBAPF ₆	Ag/AgCI	1.2	.9* 0.86	*(-1.10		.,	391
trans-CPAMDBPP	1300	Zn(II)		DCM	TBAPF ₆	Ag/Ag⁺	0.8	1 0.55	1.26, 1.00				12 (SWV)
trans-CPBBPADMP	1301	Zn(II)		DCM	TBAPF ₆	NHE		0.83	~	-1.04		.,	367
trans-CPBHABPP	1302	Zn(II)		THF	TBAPF ₆	NHE	1.0	14 0.86	~	-1.06			667
trans-CPBHABPP	1302	Zn(II)		THF	TBAPF ₆	NHE 1	.15 0.9	8 0.8		-0.96			663

Table 17d. trans-A2BC meso-substituted porphyrins. (see structures in Figure 17d)

			Axial Liganc	7		ď.	orphyrir	XOL	Metal /	Porphyrin Re	p
Ring Sti	ructure	Metal ⁻	L1 L2	Solvent	Salt	RE 3	7	-	Other	1 2	3 Ref.
trans-CPDBPADBPP	1303	Zn(II)		DCM (-20°C)	TBAPF ₆	Ag/AgCI 1.73	1.05	0.79		-1.02	132
trans-CPDMDTAP	1304	Zn(II)		DCM	TBAPF ₆	NHE		0.83		-1.25	87
trans-CPDMPDBPP	1305	Zn(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI	1.02	0.86		-1.08	132
trans-CPDPADBPP	1306	Zn(II)		THF	TBAPF ₆	NHE	1.29*	0.89		-1.09	299
trans-CPMDBPDBPP	1307	Zn(II)		THF (-20°C)	TBAPF ₆	Ag/AgCI		0.98		-1.06	132
trans-CPMDTAP	1308	Zn(II)		DCM	TBAPF ₆	NHE		0.78		-1.18	87
trans-CPPBOPBBPAP	1309	Zn(II)		THF	TBAPF ₆	NHE	1.11	0.85		-1.08	299
Trans-DBPAPCPP	1310	Zn(II)		THF	TBAP	SCE	0.98	0.84		-1.14	84
trans-DBPBICPDMP	1311	2H		DCM	TBAPF ₆ /TMAOH	SCE	0.98*	0.26*		-1.30*	409
Trans-DBPCPCPP	1312	Zn(II)		THF	TBAP	SCE		1.06		-1.01	84
Trans-DBPMPCPP	1313	Zn(II)		THF	TBAP	SCE		0.98		-1.11	84
Trans-DBPNPCPP	1314	Zn(II)		THF	TBAP	SCE		1.04		-0.96 -1.05	84
trans-DHPACPADOPP	1315	Zn(II)		THF	TBAPF ₆	Ag/AgCI	1.37*	0.82		-1.29	391
trans-DIMDTP	1316	2H		PhCN	TBAPF ₆	SCE		0.98			428
trans-DOAPDBPP	1317	Zn(II)		THF	TBAPF ₆	Fc/Fc⁺		0.39		-1.21	134
trans-F ₁₀ APTriPP	1318	Zn(II)		CH ₃ CN	TBAPF ₆	Ag/Ag⁺		0.78		-1.34	39
trans-F ₁₀ TriPCEPP	1319	(II) Mg(II)		DCM	TBAPF ₆	Ag/Ag⁺		09.0			163
trans-F₄CPBBPADMP	1320	Zn(II)		DCM	TBAPF ₆	NHE		1.00		-0.86	367
trans-F ₅ DPDTP	1321	(II) Mg(II)		DCM	TBAPF ₆	Ag/Ag⁺		0.50			163
trans-IPTSiAPDTP	1322	2H		DCM	TBAP	SCE	1.32	0.96		-1.19 -1.53	502

Table 17d. trans-A2BC meso-substituted porphyrins. (see structures in Figure 17d)

17d)
Figure
. (see structures in
porphyrins.
o-substituted
trans-A₂BC mes
Table 17d. <i>t</i>

			Axial Liga	pu			Porpl) yrin (X	Metal /	Porphyrin Re	q
Ring	Structure	Metal		Solvent	Salt	RE	e	7		Other	1 2	3 Ref.
trans-MD(iPr)TFMP	1323	(III) Mn(III)	ġ	CH ₃ OH/H ₂ O	NaCI	Ag/AgCI				-0.44		£
trans-MD(iPr)TFMP	1323	(III)uM	ū	CH ₃ OH/H ₂ O	NaCI	NHE				-0.35		ę
trans-MFHPBPP	1324	(II)		DCM	TBAPF ₆	Ag/Ag⁺	0	.91	09.0			12 (SWV)
trans-NABOPADBPF	P 1325	Zn(II)		THF	TBAPF ₆	NHE	-	.32*	0.94		-0.81 -1.00	363
trans-ND(iPr)TFMP	1326	(III)uM	ū	CH ₃ OH/H ₂ O	NaCI	Ag/AgCI				-0.19		ε
trans-ND(iPr)TFMP	1326	(III)uM	ū	CH ₃ OH/H ₂ O	NaCI	NHE				-0.10		С
trans-QTAPDBPP	1327	(III)nY		DCM	TBAPF ₆ (0.15M)	SCE				-0.96	-1.04	131
trans-QTAPDBPP	I	(II)		DCM	TBAPF ₆ (0.15M)	SCE			0.64	0.86		131
trans-TDPDTP	1328	(II)uZ		DCM/THF	$TBABF_4$	Ag/Ag⁺			0.42			46
trans-TPAPDBP	1329	(II)uZ		DCM	TBAPF ₆ (0.15M)	SCE	<-	.18	0.76	1.32, <-1.30		160
trans-TPAPDBPP	1330	(III)nY		DCM	TBAPF ₆ (0.15M)	SCE				>1.50, <-1.40	-1.05	160
trans-TPAPDBPP	1330	(III)nK		DCM	TBAPF ₆ (0.15M)	SCE				1.35, <-1.40	-1.08	160
trans-TPAPDBPP	1330	(III)nY		DCM	TBAPF ₆ (0.15M)	SCE			1.28	< -1.50	-1.06	160
trans-TPAPDBPP	I	(II)uZ		DCM	TBAPF ₆ (0.15M)	SCE	~	.20	77.0	< -1.30		160
trans-TPAPDBPP	I	Zn(II)		DCM	TBAPF ₆ (0.15M)	SCE	-	4	0.73	1.27, < -1.50		160

			Axial Ligand				Por	ohyrin	ŏ	Metal /	Porp	ohyrin Reo	-
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3	2	-	Other	÷	2	L Ref
APNMIPP	1331	Zn(II)	1-(CH ₃)Im	DCM	TBAPF ₆	Ag/AgCI			0.56		-1.52		117
cis-PADMPMP	1332	Zn(II)		DCM	TBAPF ₆	⁺ gA/gA			0.54				163
DMPP	1333	Co(II)		H ₂ O/EtOH	NaCI (0.5M)	Ag/AgCI			0.45	0.16			468
IPMPMMSiAPP	1334	Zn(II)		DCM	TBAPF ₆	⁺ gA/gA			0.57				163
M(SB)P	1335	2H		DCM	TBAPF ₆ (0.2M)	Fc/Fc⁺	1.45	1.05	09.0				180
M(SB)P	:	Mn(III)	ū	DCM	TBAPF ₆ (0.2M)	Fc/Fc⁺		1.40	0.80				180
TDMPP	1336	Co(II)		H ₂ 0/EtOH	NaCI (0.5M)	Ag/AgCI			0.43	0.14			468
trans-B(SB)P	1337	(III)uM	Ċ	DCM	TBAPF ₆ (0.2M)	Fc/Fc ⁺		1.30	0.70				18(
trans-BBPP	1338	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.76	0.37		-1.83	-2.25	455
trans-BDENaphP	1339	2H		THF	TBAP	Fc/Fc⁺			0.61		-1.70		253
trans-BDENaphP	:	Zn(II)		THF	TBAP	Fc/Fc⁺			0.35		-1.97		253
trans-BDMPP	1340	Co(II)		H ₂ O/EtOH	NaCI (0.5M)	Ag/AgCI			0.44	0.15			468
trans-BDPP	1341	2H		DCB	TBAP	Ag/AgCI		1.32*	1.01		-1.28	-1.62	242
trans-BOAPyNaphP	1342	2H		THF	TBAP	Fc/Fc⁺				-0.14		-1.68	253
trans-BOAPyNaphP	1	Zn(II)		THF	TBAP	Fc/Fc⁺				-0.14		-1.90	253
trans-BOATPyNaphl	P 1343	2H		THF	TBAP	Fc/Fc⁺				-0.16		-1.66	253
trans-BOATPyNaphl	:	Zn(II)		THF	TBAP	Fc/Fc⁺				-0.16		-1.91	253
trans-BPP	1344	2H		DMF	TBAP	SCE					-1.12		50
trans-BPP	:	(III)nM	Ċ	DMF	TBAP	SCE				-0.23		-1.37 -1.8	30
trans-BPP	:	Ni(II)		DMF	TBAP	SCE					-1.16		227

Table 17e. A_2 meso-substituted porphyrins. (see structures in Figure 17e)

			Axial Ligand				Porphyri	хог	Metal /	Por	ohyrin R	pa	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2	-	Other	-	2	3	Ref.
trans-BPP	:	Zn(II)		THF	TBAP	SCE		66.0		1.40			118
trans-D(Pn)P	1345	(III) MN	Ċ	CH ₃ OH/H ₂ O	NaCI	Ag/AgCI			-0.45				с
trans-D(Pn)P	1345	(III)uM	Ċ	CH ₃ OH/H ₂ O	NaCI	NHE			-0.35				ო
trans-DBPP	1346	Zn(II)		DCM	TBABF₄	Fc/Fc⁺		0.39	·	1.87			357
trans-DBPP	1346	Zn(II)		PhCN	TBAP	Ag/AgNO ₃		0.54					269
trans-DCEPP	1347	(II)		PhCN	TBAP	Ag/AgNO ₃		0.68					269
trans-DEDPP	1348	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.71	0.37	·	1.85	-2.27		255
trans-F ₁₀ DPP	1349	Zn(II)		PhCN	TBAP	Ag/AgNO ₃		0.77					269

Table 17e. A_2 meso-substituted porphyrins. (see structures in Figure 17e)

			Axial Ligand				Porphyrin	Ň	Metal /	Porp	hyrin Red	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3 2	-	Other	~	2 3	Ref.
APTETMP	1350	Co(II)		DCE	TBAPF ₆	SHE			0.69 -0.85			425
BPATBPP	1351	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.32		-1.65		390
BPDATBPP	1352	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.34		-1.58		390
BPrATBPP	1353	2H		DCM	TBAPF ₆	Fc/Fc⁺				-1.52		390
BPrATBPP	ł	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.33		-1.66		390
BrPTETMP	1354	Pd(II)		DCM	TBAP	Ag/AgCI		0.93		-1.51		402
BUQDEHMP	1355	2H		DCM	TBAP	NR		0.87		-0.52		416 (DPV)
DBFDEHMP	1356	Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.48	0.17		-2.08		64
DBPAPBBP	1357	Zn(II)		DCM	TBAPF ₆	NHE		0.84		-1.22		567
DBPAPDBAP	1358	Zn(II)		DCM	TBAPF ₆	NHE		0.86		-1.17		567
DBPAPPP	1359	Zn(II)		DCM	TBAPF ₆	NHE		0.84		-1.30		567
DBrTUCQDEHN	17 1360	2H		DCM	TBAP	NR		0.88		-0.49		416 (DPV)
DCITCUQDEHN	1P 1361	2H		DCM	TBAP	NR		0.88		-0.51		416 (DPV)
DEDETMP	1362	2H		PhCN	TBAPF ₆ (0.2M	1) Fc/Fc ⁺	0.92	0.44		-1.78	-2.14	349
DEHMPASP	1363	Zn(II)		DCM	TBAP	SCE	1.05	0.71				95
DEHMPASP	1363	Zn(II)		PhCN	TBAP	SCE	0.88	0.52				95
DEHMPP	1364	2H		DCM	TBAP	SCE	1.08*	0.90*		-1.39	-1.84*	36
DEHMPP	1364	2H		PhCN	TBAP	SCE	1.06*	0.92*		-1.42	-1.79	36
DEHMPP	1364	2H		Py	TBAP	SCE				-1.36	-1.73	35
DEHMPP	1	Co(II)		H ₂ O	HCIO4 (1M)	SCE			0.43			9 (RDV)

Table 17f. β-pyrrole substitued porphyrins with less than four *meso*-substituents. (see structures in Figure 17f)

			Axial Ligand	_			Porphyri	n Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal	L1 L2	- Solvent	Salt	RE	3 2	-	Other	1 2 3	Ref.
DEHMPP	1	Co(II)		PhCN	TBAP	SCE	1.25	1.01	0.36	-1.08	31
DEHMPP	ł	Co(II)		PhCN	TBAP	SCE	1.25	1.01	0.36 -1.08		48
DEHMPP	ł	Fe(III)	ū	H ₂ O	HClO₄ (1M)	SCE			0.01		9 (RDV)
DEHMPP	ł	Fe(III)	ū	PhCN	TBAP	SCE			-0.44		185
DEHMPP	ł	Fe(III)	ū	Py	TBAP	SCE			-0.04	-1.81*	35
DEHMPP	ł	(III) Mn(III)	ū	PhCN	TBAP	SCE			-0.34 -0.49		185
DEHMPP	I	(III)uM	ū	Py	TBAP	SCE			-0.43	-1.57	35
DEHMPP	ł	Zn(II)		DCM	TBAPF ₆	SCE	0.99	0.69			554
DMXDEHMP	1365	Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.45	0.16		-2.11	64
DPAPDEHMP	1366	Zn(II)		DCM	TBAPF ₆	SCE	1.16	0.68	0.88		554
DPEDEHMP	1367	Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.47	0.17		-2.09	64
DPEP	1368	V(IV)	02-	DCM	TBAPF ₆	SCE	1.38	0.92		-1.36	167
DPyTBPP	1369	Ni(II)		DCM	TBAPF ₆	Fc/Fc ⁺		0.59*		-1.64	252
DPyTBPP	1369	Ni(II)		NR	NR	Fc/Fc⁺		0.59			572
PATBPP	1370	Zn(II)		DCM	TBAPF ₆	Fc/Fc ⁺		0.30		-1.75	390
PytBPP	1371	2H		DCM	TBAPF ₆	Fc/Fc ⁺		0.44			435
TEHMPP	1372	(III) Mn(III)	Ċ	PhCN	TBAOAc	SCE			-0.36	-1.75	304
TEHMPP	1372	(III) Mn(III)	Ċ	Py	TBAOAc	SCE			-0.38	-1.59	304
TETMPP	1373	Zn(II)		DCM	TBAP	Ag/AgCI		0.67			10
TMTMP	1374	Fe(III)	CIO4	DCM (-60°C) TBAP	SCE		1.07			374 (DPV)

Table 17f. β-pyrrole substitued porphyrins with less than four *meso*-substituents. (see structures in Figure 17f)

			- Iciv					Pornh	vrin		Metal /	Pornhvi	rin Re		
ā	_			Liyai u	c	-		12		<u>ڊ</u> .	Other -			, d	
King Str	ucture	Metal	Ľ	Γ3	Solvent	Salt	Ц	3	2	-		-	Z	r r	ter.
TMTMP	I	Fe(III)	NO ^{°-}		DCM (-60°C)) TBAP	SCE		<-	60.				.,	374 (DPV)
TMTMP	ı	Fe(IV)	E	0 ^{2;}	DCM (-60°C)) TBAP	SCE	0	66	.84				.,	374 (DPV)
TMTMP	ł	Fe(IV)	0 ²⁻	CIO4	DCM (-60°C)) TBAP	SCE	÷	22	.90				.,	374 (DPV)
TMTMP	ı	Fe(IV)	O ²⁻	NO ³	DCM (-60°C)) TBAP	SCE	÷	30	.95				.,	374 (DPV)
trans-TPrATBPP	1375	2H			DCM	TBAPF ₆	Fc/Fc⁺				ı	1.34		.,	390
trans-TPrATBPP	ł	Zn(II)			DCM	TBAPF ₆	Fc/Fc⁺		0	.44	,	1.51		.,	390
TSiAPDEHMP	1376	Zn(II)			DCM	TBAPF ₆	SCE		0	.71				.,	330

Table 17f. β-pyrrole substitued porphyrins with less than four *meso*-substituents. (see structures in Figure 17f)

			Axial Ligan	P			Porphy	rin Ox	Meta	/ [Porp	ohyrin Red	
Ring S	tructure	Metal	L1 L2	Solvent	Salt	RE	3 2	-	othe	- 	Ļ-	2 3	Ref.
cis-DFcDPP	1377	2H		DCM	TFAB (0.05M)	Fc/Fc ⁺		1.00	0.24 0	.04	.82	-2.20	79
cis- α^2 , β^2 -(NHCOFc) $_4$ TPI	- 1378	2H		DCM/CH ₃ CN	TBABF ₄ (0.2M)	^gA/g4		0.84	0.43	- -	1.21	-1.67	575
cis- α^2 , β^2 -(NHCOFc) $_4$ TPI	I	Zn(II)		DCM/CH ₃ CN	TBABF ₄ (0.2M)	Ag/Ag⁺		0.67	0.43	-	1.37	-1.78	575
F ₂₀ TPP	1379	Zn(II)	See Fig.	C ₆ H ₆	THAP	SCE		0.68					142
F ₂₀ TPP	1380	Zn(II)	See Fig.	C ₆ H ₆	THAP	SCE		0.67					142
F ₂₀ TPP	1379	Zn(II)	See Fig.	CH ³ CN	TBAP	SCE		0.63					142
F ₂₀ TPP	1380	Zn(II)	See Fig.	CH ₃ CN	TBAP	SCE		0.61					142
F ₂₀ TPP	1379	Zn(II)	See Fig.	DCM	TBAP	SCE		0.74					142
F ₂₀ TPP	1380	Zn(II)	See Fig.	DCM	TBAP	SCE		0.73					142
FcA-(S ₂ -TriTP)	1381			DCM	TBAP	SCE	1.45	1.22	0.65	Ŷ	0.86	-1.23	307
FcAP-(S-TriTP)	1382	т		DCM	TBAP	SCE		1.07	0.61	-	1.07	-1.40	307
FcAP-(S-TriTP)	I	т		DCM	TBAP	SCE	1.56	1.15	0.65	Ŷ	96.0	-1.36	307
FcAP-(S ₂ -TriTP)	1383			DCM	TBAP	SCE	1.37	1.14	0.61	Ŷ	.95	-1.27	307
FcCBPTBPP	1384	Zn(II)		DCM	TBAP	Ag/AgCI			0.40	-	I.52		490
FcPAP-PADMP-Pc	1385	Zn(II)		DCM	TBAPF ₆	Ag/Ag⁺	0.90	0.56	1.17 0	.19			162
FcPAPTMP	1386	2H		DCM	TBAPF	Ag/Ag⁺	1.16	0.68	0.23				162

				.				0		1 1 - 1 -			
			Axial Lig	and			Forphy		Ξ	etal /	JO L	pnyrin Ke	ō
Ring	Structure	Metal	L1	L2 Solvent	Salt	RE	3 2	1		ther	-	2 3	Ref.
FcPAPTMP	ł	Zn(II)		DCM	$TBAPF_6$	Ag/Ag⁺	0.8	8 0.59	0.23				162
FcPCPTBPP	1387	2H		DCM	TBAPF ₆ (0.2M)	Ag/AgCI		1.02	0.55				276 //00//
FcPCPTBPP	ł	Zn(II)		DCM	TBAPF ₆ (0.2M)	Ag/AgCI		0.86	0.53				(710) 276 276
FcPCPTriPP	1388	Zn(II)		DCB	TBAP	Fc/Fc⁺	0.6	6 0.3	0.00		-1.89	-2.21	(UPV) 141
FcTPP	1389	Zn(II)		DCB	TBAP	Fc/Fc ⁺	0.6	1 0.27	0.00		-1.93	-2.25	141
FcTriPP	1390	2H		DCM	TFAB (0.05M)	Fc/Fc ⁺	1.19	9 0.72	0.06		-1.79	-2.22	62
FcTZP(O,S-TriTP)	1391			DCM	TBAP	SCE		1.1	0.57		-0.93	-1.18	113
FcTZP(S-TriTP)	1392	2H		DCM	TBAP	SCE	1.4	7 1.03	0.57		-1.17	-1.49	113
FcTZP(S-TriTP)	ı	т		DCM	TBAP	SCE		1.08	0.53		-1.04	-1.36	113
FcTZP(S-TriTP)	ł	Zn(II)		DCM	TBAP	SCE	1.10	0 0.79	0.57		-1.50	-1.70	113
FcTZP(S ₂ -TriTP)	1393			DCM	TBAP	SCE			0.56		-0.89	-1.20	113
OEP	1394	Fe(III)	See Fig.	DCM	TBAP (0.2M)	Ag/Ag⁺			0.07	-0.77			184
OEP	1395	Fe(III)	See Fig.	DCM	TBAP (0.2M)	Ag/Ag⁺			0.06	-0.89			184
OEP	1396	Ga(III)	See Fig.	DCM	TBAP (0.2M)	Ag/Ag⁺			0.07				184
OEP	1397	Ga(III)	See Fig.	DCM	TBAP (0.2M)	Ag/Ag⁺			0.04				184
OEP	1398	Sn(IV)	See Fig.	DCM	TBAPF	SCE			0.48		-1.36		404

							Dorohur		M	\ \ \		nhwrin Dov	
i			AXIAI L		:	l			ΞĊ	י ומוי	5		, ۱ ا ـ
Ring	Structure	Metal	L1	L2 Solvent	Salt	RE	3 2	~	5		.	2	Ref.
T(Fc)P	1399	2H		(BMIM)Tf ₂ N	(BMIM)Tf ₂ N	Fc/Fc ⁺		0.91	0.08, -0.04	0.06 -0.16	-1.31	-1.60	568
T(Fc)P	1399	2H		CH ₃ CN	TBAP	Fc/Fc⁺			0.28				568
T(Fc)P	1399	2H		DCB	TBAP	Fc/Fc ⁺		0.63	0.03	-0.10	-1.86	-2.10	568
T(Fc)P	1399	2H		DCB	TFAB (0.05M)	Fc/Fc ⁺		1.30	0.40, 0.13	0.22, -0.14	-1.91	-2.18	568
T(Fc)P	1399	2H		DCM	TBAP	Fc/Fc⁺		1.03	0.25, 0.08	0.14, -0.01	-1.71	-2.00	568
T(Fc)P	1399	2H		DCM	TFAB (0.05M)	Fc/Fc ⁺		1.42	0.34, 0.15	0.24, 0.07	-1.78	-2.06	79
T(Fc)P	1399	2H		DCM	TFAB (0.05M)	Fc/Fc⁺		1.25	0.34, 0.15	0.24, 0.07	-1.78	-2.06	368
T(Fc)P	1399	2H		DCM	TFAB (0.05M)	Fc/Fc ⁺		1.25	0.34, 0.15	0.24, -0.07	-1.78	-2.06	568
T(Fc)P	1399	2H		DMF	TBAP	Fc/Fc⁺			0.32				568
T(Fc)P	1399	2H		THF	TBAP	Fc/Fc ⁺			0.34				568
T(Fc)P	I	Co(II)		DCM	TFAB (0.05M)	Fc/Fc⁺			0.29, 0.12	0.17, -0.09	-1.59	-2.01	368
T(Fc)P	ł	Cu(II)		DCM	TFAB (0.05M)	Fc/Fc ⁺		1.21	0.33, 0.14	0.20, -0.10	-1.89		368
T(Fc)P	ł	Ni(II)		DCM	TFAB (0.05M)	Fc/Fc⁺	1.22	0.78	0.26, 0.09	0.18, -0.05	-1.94		368
T(Fc)P	I	Zn(II)		DCM	TFAB (0.05M)	Fc/Fc ⁺		1.09	0.25, 0.09	0.17, -0.14	-2.03		368
T(Fc)PP	I	Cu(II)		DCM	TBAPF ₆	SCE	1.42	1.25	0.58	0.44	-1.46		555
TFcPP	1400	2H		DCM	$TBAPF_{\mathrm{e}}$	SCE	1.43	1.23	0.63	0.45	-1.35	-1.60	555

			Axial Ligar	pu			Porphyri	XOu	Metal /	Pol	rphyrin Re	م
Ring	Structure	Metal		2 Solvent	Salt	RE	3 2	-	Other	-	5	– Ref.
TFcPP	ı	(II)		DCM	TBAPF ₆	SCE		1.31	0.63 0.47	-1.39	-1.70	555
ТРР	1401	Sn(IV)	See Fig.	THF	TBAPF ₆ (0.2M)	Fc/Fc ⁺			0.11	-1.47	-1.89	237
trans-(Fc) ₂ TPP	1402	(II)		DCB	TBAP	Fc/Fc ⁺	0.61	0.28	0.00	-1.93	-2.25	141
trans-BAPFcEPMImP	1403	2H		DCM	TBAPF ₆	Ag/AgCI	1.20	0.91	0.45	-1.20	-1.57	06
trans-BAPFcEPMImP	I	(II)		DCM	TBAPF ₆	Ag/AgCI	0.83	0.63	0.45	-1.50	-1.67	06
trans-BAPFcEPMImP	I	(II)	1-(CH ₃)Im	DCM	TBAPF ₆	Ag/AgCI		0.61	0.43	-1.50		06
trans-BAPFcMImP	1404	2H		DCM	TBAPF ₆	Ag/AgCI		1.10	0.55	-1.21	-1.62	06
trans-BAPFcMImP	I	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	1.10	0.87	0.46	-1.50	-1.68	06
trans-BAPFcMImP	I	Zn(II)	1-(CH ₃)Im	DCM	TBAPF ₆	Ag/AgCI		0.77	0.44	-1.50		06
trans-BAPFcPMImP	1405	2H		DCM	TBAPF ₆	Ag/AgCI	1.21	0.90	0.39	-1.21	-1.63	06
trans-BAPFcPMImP	I	(II)		DCM	TBAPF ₆	Ag/AgCI	0.82	0.62	0.45	-1.55	-1.72	06
trans-BAPFcPMImP	I	(II)	1-(CH ₃)Im	DCM	TBAPF ₆	Ag/AgCI	1.10	0.60	0.40	-1.54		06
trans-BAPOMFcEPMIm	P 1406	2H		DCM	TBAPF ₆	Ag/AgCI	1.18	0.97	0.08	-1.23		06
trans-BAPOMFcEPMIm	۱ ط	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	0.84	0.65	0.08	-1.52	-1.69	06
trans-BAPOMFcMImP	1407	2H		DCM	TBAPF ₆	Ag/AgCI		1.10	0.12	-1.28	-1.64	06
trans-BAPOMFcMImP	I	Zn(II)		DCM	TBAPF ₆	Ag/AgCI	0.97	0.80	0.05	-1.57	-1.77	66

			Axial Ligar	pr			orphyrir	XOL	Me	tal /	Por	phyrin	Red	
Ring St	ructure	Metal		2 Solvent	Salt	RE 3	5	-	ŧ	ler		2	- 	Ref.
trans-BAPOMFcMImP	1	Zn(II)	1-(CH ₃)Im	DCM	TBAPF ₆	Ag/AgCI		0.73	0.02		-1.53			6
trans-BAPOMFcPEMImP	1408	Zn(II)	1-(CH ₃)Im	DCM	TBAPF ₆	Ag/AgCI		0.61	0.04		-1.49			06
trans-BDFcCPDBPP	1409	Zn(II)		DCM	TBAP	Ag/AgCI			0.40		-1.52			490
trans-DFcADPP	1410	Ni(II)		DCM	TBAP	Ag/AgNO	0.92	0.84	0.31		-1.42			225
trans-DFcCDPDBPP	1411	Zn(II)		DCM	TBAP	Ag/AgCI			0.40		-1.52			490
trans-DFcDPP	1412	2H		DCM	TFAB (0.05M)	Fc/Fc⁺		0.84	0.15	0.00	-1.78	-2.10	-2.30	79
trans-DFcTETMP	1413	(III)nM	CI	DCM	TBAP	Ag/AgCI		0.98*	0.47	0.30				279
trans-DFcTETMP	I	Ni(II)		DCM	TBAP	Ag/AgCI	1.11*	1.00*	0.50	0.11				279
trans-DFcTETMP	I	2H		DCM	TBAP	Ag/AgCI		1.00*	0.27	0.06				279
trans-FcPTETMP	1414	2H		DCM	TBAP	Ag/AgCI	1.05	0.61	0.29					280
trans-FcPTETMP	I	(III)nM	<u>C</u>	DCM	TBAP	Ag/AgCI		0.97	0.37					280
trans-FcPTETMP	I	(II)		DCM	TBAP	Ag/AgCI	0.83	0.45	0.29					280
trans- α^2 , β^2 -	1415	2H		DCM/CH ₃ CN	TBABF ₄ (0.2M)	Ag/Ag⁺		0.90	0.44		-1.22	-1.58		575
(NHCUFC) ₄ LPP trans- α^2 , β^2 -	I	(II)		DCM/CH ₃ CN	TBABF ₄ (0.2M)	Ag/Ag⁺		0.71	0.44		-1.18	-1.79		575
(NHCOFC)4 IPP TriFcPP	1416	2H		DCM	TFAB (0.05M)	Fc/Fc⁺		0.97	0.43, -0.02	0.17	-1.81	-2.13		79
α^3 , β -(NHCOFc) $_4$ TPP	1417	2H		DCM/CH ₃ CN	TBABF ₄ (0.2M)	Ag/Ag⁺		0.93	0.50	0.45	-1.08	-1.49		575

			Axial L	igand			Por	phyrin (XO	Met	al /	Por	phyrin	Red	
Ring	Structure	Metal	5	L2 Solvent	Salt	RE	ю	2	.		۳ 	-	2	с	Ref.
α^3,β -(NHCOFc) $_4$ TPP	I	Zn(II)		DCM/CH ₃ CN	TBABF ₄ (0.2M)	Ag/Ag⁺		0	.69	0.48	0.43	-1.08	-1.49		575
α^4 -(NHCOFc) $_4$ TPP	1418	2H		DCM/CH3CN	TBABF4 (0.2M)	Ag/Ag⁺		C	0.78	0.53		-1.26	-1.68		575
α^4 -(NHCOFc) $_4$ TPP	I	(II)		DCM/CH3CN	TBABF4 (0.2M)	Ag/Ag⁺		C	0.71	0.43		-1.26	-1.68		575

		Axial I	Ligand			Porph	/rin Ox		Metal /	Porphyrir	l Red	
Ring	Structure Metal	L1	L2 Solven	nt Salt	RE	3 2		 _	Other	1 2	3 Ref.	
ADEDBDMP-C ₆₀	1419 Zn(II)		PhCN	TBAP (0.05M)	Ag/AgNO ₃		0.3	5		-0.76	333	
ADEDBDMP-C ₆₀	1419 Zn(II)		Tol.	THAP	Ag/AgNO ₃		0.4			-0.99	333	
BDP-DCPDTPC18C	36.C ₆₀ 1420 Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.2	8 0.2	0 -1.0	0 -1.44, -1.62		69	
BMC ₆₀ -DMP-BMC ₆₀	1421 Zn(II)		DCM	$TBABF_4$	SCE	1.76 1.2	6 0.8	8 -0.5 -1.3	6, -0.86,-1.15 3 -1.56		310	(SWV)
C ₆₀ M-TPP-MC ₆₀	1422 2H		DCM	TBAPF ₆	Fc/Fc⁺		0.5	-1.0	5 -1.39	-1.62	256	
C ₆₀ M-TPP-MC ₆₀	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.7	2 0.3	.7 -1.0	9 -1.45		256	
DBFDEHMPC ₆₀	1423 Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.4	7 0.1	7 -1.2	0 -1.58, -2.11	-2.11	64	
DBPP-(3'-P)MEC ₆₀	1424 Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.7	4 0.3	6 -1.0	6 -1.41	-1.84	439	
DBPP-(3'-P)MEC ₆₀	1424 Zn(II)		DCM	TBAPF ₆	Fc/Fc ⁺	0.7	4 0.3	-1.0	6 -1.41	-1.84	455	
DBPP-(3'-P)MEC ₆₀	1424 Zn(II)		PhCN	TBAPF ₆	Fc/Fc⁺	0.7	4 0.3	6.0- 0.9	7 -1.37		455	
DBPP-(3'-P)MEC ₆₀	1425 [Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	0.73, 0.5 0.84	0.0	-0.9	8 -1.06, -1.41	-1.84	439	
DEDBDMAP-C ₆₀	1426 2H		PhCN	TBAP (0.05M)	Ag/AgNO ₃		0.5	Q		-0.78	333	
DEDBDMAP-C ₆₀	1426 2H		Tol.	THAP (1.2M)	Ag/AgNO ₃		0.6	ņ		-0.97	333	
DEHMSiAPP.(4-Py)	C ₆₀ 1427 Zn(II)	See Fig	g. DCM/ DCB	TBAPF	SCE		0.7		L		95	
DMXDEHMPC ₆₀	1428 Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.5	0.0	8 -1.2	3 -1.68, -2.21	-2.21	64	
DNP-TTF-Por-C60	1429 2H		THF	TBAPF ₆	SCE		.	5* 1.2 -0.5	3, 0.75, 0.46* 0 -1.05*	-1.71*	419	

			Axial Ligand				Porp	hyrin	ŏ	Σ	etal /	Por	phyrin	Red	
Ring Str	uctur∈	e Metal	L1 L2 S	solvent	Salt	RE	с	5	-	Ó	ther	,	5	ო	Ref.
DNP-TTF(rot)-Por-C ₆₀	1430	2H		DMF	TBAPF ₆	SCE			1.11*	1.37* -0.39	0.91*, -0.28 -0.51,-0.73	-1.39*	-1.48		419
DPEDEHMPC ₆₀	1431	Zn(II)	ш	hCN	TBAP	Fc/Fc⁺		0.46	0.15	-1.23	-1.60, -2.15	-2.15			64
DS-TTF-Por-Ceo	1432	2H		DCM	TBAPF	SCE			1.03	-0.40, -1.56	-0.67, -1.03	-1.20			452
(ImUP)T(3',5'-D-TBuP)P. PUPC ₆₀	1433	2H	F	분	TBAPF ₆	Fc/Fc⁺			0.34*	-1.12					591
(ImUP)T(3',5'-D-TBuP)P. PUPC ₆₀	ł	Zn(II)	F	뚜	TBAPF	Fc/Fc⁺			0.22	-1.12					591
OEP-BAB(2-Hex)TC ₆₀	1434	Ni(II)	U	CHCI3	TBAP	SCE			1.10						221
OEP-BAB(2-HexT)C ₆₀	1434	Ni(II)		CHCI ₃	TBAP	SCE			1.20						221
OEP-BAB(3-HexT)C ₆₀	1435	Ni(II)		CHCI [®]	TBAP	SCE			0.94						221
OEP-BAB(3-HexT)C ₆₀	1435	Ni(II)		CHCI ₃	TBAP	SCE			1.00						221
Por-C ₆₀	1436	2H	- Ц	hCN	TBAP	SCE			1.15	-0.57					49
Por-C ₆₀	1436	2H	ш	hCN	TBAP	SCE			1.15	-0.57					345
Por-C ₆₀	I	Zn(II)	Ľ	hCN	TBAP	SCE			0.93	-0.58					49
Por-C ₆₀	I	Zn(II)	ш	hCN	TBAP	SCE			0.93	-0.58					345
(Por) ₂ -(3'-P)MEC ₆₀	1437	[Zn(II)]2		DCM	TBAPF	Fc/Fc⁺	0.73, 0.84	0.50	0.37	-0.98	-1.06, -1.41	-1.84			455
Strap-OEP-MC ₆₀	1438	2H		0CM -35°C)	TBAPF	Fc/Fc⁺		0.56	0.30	-1.09, -2.25*	-1.45, -1.90*	-2.00*			42
Strap-OEP-MC ₆₀	I	Zn(II)	Ú Ú	0CM -35°C)	TBAPF	Fc/Fc⁺		0.39	0.13	-1.09, -2.28	-1.45, -1.91	-2.41			42 (SV

			Axial Li	gand			Por	phyrin	ŏ	2	letal /	PC	rphyrin	Red	
Ring	Structure	Metal	L1	L2 Solvent	Salt	RE	ო	2	-		ther	-	2	с	Ref.
Strap-TPP-DMC ₆₀	1439	Co(II)		PhCN	TBAPF ₆	Fc/Fc⁺	1.27	1.03	0.78	0.28, -1.90*	-0.93, -1.50	-1.77*			211
Strap-TPP-DMC ₆₀	ł	Zn(II)		DCM	TBAPF	Fc/Fc⁺		0.69	0.34	-1.10	-1.51, -1.90*	-2.05*			211
Strap-TPP-DMC60	I	Zn(II)		PhCN	TBAPF	Fc/Fc⁺	1.26	0.77	0.37	-1.02, -2.03	-1.40, -1.82				211
Strap-TPP-MC ₆₀	1440	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.71	0.38	-1.13	-1.54				256
Strap-TPP-MMC ₆₀	1441	2H		DCM	TBAPF	Fc/Fc⁺		0.94	0.57	-1.11	-1.54				256
Strap-TPPBMC ₆₀	1442	Co(II)		DCM	TBAPF	Fc/Fc⁺		0.96	0.82	0.40	-1.01, -1.57	-1.78*			211
SubpcPor.C ₆₀	1443	Zn(II)	See Fig.	DCM	TBAP	SCE			0.58	-0.69	-1.08	-0.69			86
TBDP-TPP-C ₆₀	1444	Zn(II)		PhCN	TBAP	SCE		1.20	0.72			-0.58	- 86.0-	1.45	309
TBP(2'-P)C ₆₀ P	1445	2H		PhCN	TBAPF	SCE			0.86	-0.71					429
TBP(2'-P)C ₆₀ P	ł	Zn(II)		PhCN	TBAPF ₆	SCE			0.69	-0.73					429
TBP(3'-P)C ₆₀ P	1446	2H		PhCN	TBAPF	SCE			0.89	-0.70					429
TBP(3'-P)C ₆₀ P	I	Zn(II)		PhCN	TBAPF	SCE			0.69	-0.71					429
TBPAmPP.CPC ₆₀	1447	2H		THF	TBAP	Ag/Ag⁺		1.22	0.99	-0.91	-1.48, -2.15	-1.54	-1.92		537
TBPAmPP.CPC ₆₀	ł	Zn(II)		THF	TBAP	Ag/Ag⁺		0.92	0.71	-0.91	-1.48, -2.14	-1.81	-2.21		537
TBPC ₆₀ P	1448	2H		PhCN	TBAPF	SCE			0.85	-0.71					429
TBPC ₆₀ P	ł	Zn(II)		PhCN	TBAPF ₆	SCE			0.68	-0.70					429

			Axial L	igand			orphyrir	Ň	2	letal /	PG	rphyrir	ר Red	
Ring Str	ucture	e Metal	<u>ت</u>	L2 Solvent	: Salt	RE 3	7	-	0	ther	-	0	с	Ref.
TBPP-3'-PTZPC60	1449	Zn(II)		DCM	TBAPF ₆	Fc/Fc ⁺	0.67	0.23	-1.16	-1.54	-1.93	-2.08		365
TBPP-3'-PTZPC ₆₀	1449	(II)		DCM	TBAPF ₆	Fc/Fc ⁺	0.69	0.29	-1.12	-1.49	-1.90	-2.02		365
TBPP-4-DPVCPPV-C ₆₀	1450	(II)		THF	TBAP	Ag/AgNO ₃		0.53	-0.85	-1.43, -2.05	-1.79			408
TBPP-4-DPVCPPVP-C ₆₀	1451	Zn(II)		THF	TBAP	Ag/AgNO ₃		0.53	-0.84	-1.42, -2.04	-1.80			408
TBPP-4-PVCP-C ₆₀	1452	(II)		THF	TBAP	Ag/AgNO ₃		0.53	-0.84	-1.43, -2.05	-1.80			408
TBPP-4'-PTzPC ₆₀	1453	(II)		DCM	TBAPF ₆	Fc/Fc ⁺	0.68	0.30	-1.12	-1.49	-1.67	-1.90	-2.04	365
TBPP-4'-PTzPC ₆₀ -1	1454	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.70	0.31	-1.13	-1.54	-1.02	-1.67	-1.87, 2.07	365
TBPP-BTPMC ₆₀	1455	Zn(II)		DCB	TBAP	Fc/Fc ⁺		0.18	0.18, 1.06	-1.12, -1.48, 2.30	-1.92		10.7-	288
TBPP-BzPI-PC60	1456	Zn(II)		DCM	TBAPF ₆	Fc/Fc*		0.32	-1.30 -1.14	-2.30 -1.26				347
TBPP-CPDBPP-PC ₆₀	1457	2H, Zn(II)		PhCN	TBAPF ₆	Fc/Fc*	0.59	0.30	-1.04					403 (DPV)
TBPP-DAPC ₆₀	1458	Zn(II)		DCM	TBAPF ₆	Fc/Fc*	0.69	0.36	-1.08	-1.43, -1.98*	-1.88			139
TBPP-Dendron-C ₆₀	1459	Zn(II)		DCE	TBAP	Fc/Fc*	0.59	0.25			-1.06	-1.44		400
TBPP-DPVCPPV-C60	1460	(II)		DCB	TBAP	Ag/AgNO ₃ 0.9	3, 0.77	0.49						408
TBPP-DPVCPPVP-C ₆₀	1461	Zn(II)		DCB	TBAP	Ag/AgNO ₃ 0.9	2 3, 0.77	0.49						408
TBPP-PC ₆₀	1462	2H		DCM	TBAPF	Ag/AgCI	N	1.04						340
TBPP-PC ₆₀	ı	Zn(II)		DCM	(0.2M) TBAPF ₆ (0.2M)	Ag/AgCI		0.87						340

		Axial Ligand		± C		Porphy	rin Ox	Metal / Other	Porphyrin F	Red
RING	Structure Metal	L1 L2	Solvent	Salt	ЦК	3 2	-		z	3 Ket.
TBPP-PCPC ₆₀	1463 2H		THF	TBAPF ₆	SCE		1.34*	-0.53 -1.07, -1.78	3 -1.26 -1.56	419
TBPP-PPI-BzC ₆₀	1464 Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.31	-1.13 -1.26		347
TBPP-PPI-PC ₆₀	1465 Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.31	-1.13 -1.21		347
TBPP-PVCP-C ₆₀	1466 Zn(II)		DCB	TBAP	Ag/AgNO ₃	1.20 0.80	0.48			408
TBPP-TAPC ₆₀	1467 Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.6	3 0.35	2.00* -1.04, -1.44	t -1.90* -2.20*	139
TBPP-TAPC ₆₀ -1	1468 Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺			-1.00 -1.35, -2.12	?* -1.56* -1.87*	139
TBPP-TPV-C∞	1469 Zn(II)		DCB/ CH ₃ CN	TBAP	SCE	1.24*, 1.0! 1.39*	5* 0.83*	-0.61*, -1.02*, -1.6. -2.05	2 -1.28 -1.79	441
TBPP-TPV-C ₆₀	1469 Zn(II)		DCB/ CH ₃ CN	TBAP	SCE	1.22*, 0.9⁄ 1.43*	4* 0.82*	-0.62*, -1.02*, -1.6 -2.10	5, -1.26 -1.90	441
ТВРР-ТРVСРРVР-(C ₆₀ 1470 Zn(II)		DCB	TBAP	Ag/AgNO ₃	0.93, 0.78 1.13	8 0.49			408
ТВРР-ТРVСРРVР-(C ₆₀ 1470 Zn(II)		THF	TBAP	Ag/AgNO ₃)	0.53	-0.85 -1.42, -2.04	-1.79	408
TBPPEBiNap-C ₆₀	1471 Zn(II)		DCB/ CH ₃ CN	TBAP	SCE	1.2	5 0.89	1.45, -0.65, -1.05 -1.60	5, -1.60 -1.79	76
TBPPP-CPC ₆₀	1472 2H		DCM	TBAPF ₆ (0.2M)	Ag/AgCI		1.04	-0.58		276 (DPV)
TBPPP-CPC ₆₀	1472 2H		PhCN	TBAPF	Fc/Fc⁺		0.55	-1.04		403 (DPV)
TBPPP-CPC ₆₀	- Zn(II)		DCM	TBAPF ₆	Ag/AgCI		0.86	-0.58		276 (DPV)
TBPPP-CPC ₆₀	Zn(II)		PhCN	(0.2IM) TBAPF ₆	Fc/Fc ⁺		0.34	-1.04		403 (DPV)
TDAPPP.ImPC ₆₀	1473 Zn(II)	See Fig.	DCB	TBAP	Fc/Fc⁺				-0.70* -1.30*	426

		Axial Li	gand			Porphy	rin Ox		Metal /	P	orphyrin Re	
Ring	Structure Metal		L2 Solver	nt Salt	RE	3	-	°	Other		2 3	
TDPAPP-CPC ₆₀	1474 2H		DCM	TBAPF ₆	Fc/Fc⁺		0.58	-1.06	-1.44	-1.65	-1.99*	19
TDPAPP-CPC ₆₀	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.6	3 0.35	-1.07	-1.44	-1.78	-1.99*	19
TDPAPP-CPC60	Zn(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.6	9 0.34	-1.07	-1.45	-1.82	-1.99*	19
TDPAPPCPC ₆₀	1475 2H		DCB	TBAP	Fc/Fc⁺		0.37	-1.16				16
TDPAPPCPC ₆₀	1475 2H		PhCN	TBAP	Fc/Fc⁺		0.39	-1.01				16
TDPAPPCPC ₆₀	1476 Zn(II)		DCB	TBAP	Fc/Fc⁺		0.15	* -1.15				16
TDPAPPCPC ₆₀	1476 Zn(II)		PhCN	TBAP	Fc/Fc ⁺		0.18	* -1.02				16
ТРР	1477 Zn(II)	See Fig.	DCM	TBAPF ₆	Fc/Fc ⁺	0.2	4 0.52			-1.89	-2.23	392
TPP-(3-Py)MC ₆₀	1478 Zn(II)	See Fig.	DCB/ DMF	$TBABF_4$	Ag/AgNO		0.58					313
TPP-dendron-C60	1479 Zn(II)		DCE	TBAP	Fc/Fc ⁺					-1.12	-1.49	400
TPP-DPAC ₆₀	1480 2H		DCB	TBAPF ₆ (0.05M)	SCE	1.4	3 1.10	-0.63	-1.09	-1.39	-1.63	120
TPP-DPAC ₆₀	Zn(II)		DCB	TBAPF ₆ (0.05M)	SCE	1.2	3 0.96	-0.63	-1.02	-1.30	-1.59	120
TPP-ECPP(La2@C6	₅₀) 1481 Zn(II)		DCB	TBAPF ₆ (0.05M)	Fc/Fc⁺	0.65, 0.5; 0.88	2 0.33	-0.39	-1.79, -2.15			320
TPP-ECPPSc ₃ N@C	2 ₈₀ 1482 Zn(II)		DCB	TBAPF ₆ (0.05M)	Fc/Fc⁺	0.6	4 0.37	1.10	0.55*, -1.34	-1.92	-2.26	320
TPP-EMC ₆₀	1483 Co(II)		DCM	TBAPF	Fc/Fc⁺	0.8	5 0.61	0.37	-0.99, -1.42			211
TPP-MC ₆₀	1484 Co(II)		PhCN	TBAPF ₆	Fc/Fc⁺	1.22 0.9	3 0.72	0.06	-0.92, -1.41, -2.12			211

		Axial L	igand			Porphyr	in Ox	~	/letal /	ď	orphyrin	Red	
Ring	Structure Metal	5	L2 Solvent	: Salt	RE	3 2	-	°	Dther	-	2	ო	Ref.
TPP-PAC ₆₀	1485 2H		DCB	TBAPF ₆ (0.05M)	SCE	1.43	1.08	-0.66	-1.11, -1.67	-1.44			13
TPP-PAC ₆₀	Zn(II)		DCB	TBAPF	SCE	1.19	0.94	-0.66	-1.05	-1.32	-1.57		13
TPP-TPAC ₆₀	1486 2H		DCB	TBAPF ₆	SCE	1.52	1.20	-0.65	-1.08	-1.34	-1.59		120
TPP-TPAC ₆₀	Zn(II)		DCB	(0.05M) TBAPF ₆ (0.05M)	SCE	1.24	0.98	-0.64	-1.02	-1.31	-1.58		120
TPP.(3-Py) ₂ C ₆₀	1487 Zn(II)	See Fig	. DCB/ DMF	TBABF₄	Ag/AgNO ₃		0.62*						313
TPP.(3'-Py)C ₆₀	1488 Zn(II)	See Fig	DCB	TBAP	Fc/Fc⁺	0.62	0.28						277
TPP.(3'-PyC ₆₀)	1489 Zn(II)	See Fig	DCB	TBAP	Fc/Fc⁺	0.64	0.29	-1.10	-1.50, -1.96	-1.91	-2.20		149
TPP.(4-Py)C ₆₀	1490 Ru(II)	8	THF	TBAPF ₆	SCE	1.33	0.98	-0.49, -2.09	-1.07, -1.67, -2.90	-1.54	-2.08	-2.44	283
TPP.(4'-Py)C ₆₀	1491 Zn(II)	See Fig	DCM	TBAPF ₆	Fc/Fc⁺			-1.07	-1.45	-1.98			365
TPP.(4'-Py)IC ₆₀	1492 Zn(II)	See Fig	DCM	TBAPF	Fc/Fc⁺	0.32	0.72	-1.07	-1.46	-1.90			392
TPP.(4'-PyC ₆₀)	1493 Zn(II)	See Fig.	DCB	TBAP	Fc/Fc⁺	0.65	0.28	-1.11	-1.50, -1.97	-1.90	-2.20		149
TPP.(C₀Plm)₂/TPF C₀Plm	. 1494 Mg(II)	See Fig.	DCB	TBAP	Fc/Fc ⁺	0.46	0.17	-1.21					164
TPP.(Im-C ₆₀)	1495 Zn(II)	See Fig	DCB	TBAP	Fc/Fc⁺	0.67	0.29	-1.10	-1.49, -2.02	-1.91	-2.19		149
TPP.ImPC ₆₀	1496 Zn(II)	See Fig	DCB	TBAP	Fc/Fc ⁺	0.67	0.29	-1.10	-1.49, -2.02	-1.91	-2.19		141
(TPP) ₂ .(4'-Py) ₂ C ₆₀	1497 [Zn(II)] ₂	See Fig	DCB	TBAP	Fc/Fc⁺	0.67	0.29	-1.10	-1.49, -2.02	-1.91	-2.19		144
[TPP] ₂ -DAAP.Ur-C ₆	⁵⁰ 1498 [Zn(II)] ₂		DCB	TBAP	Fc/Fc⁺		0.21			-1.19			383

			Axial Lig	and			Por	ohyrin	ŏ	Ž	etal /	L A	rphyrir	ר Red	
Ring	Structur	e Metal	۲ ا	L2 Solver	nt Salt	RE	ы	2	-	Ó	ther	-	2	ო	Ref.
trans-APMP-PC ₆₀	1499	2H		DCM	TBAPF ₆	SCE		0.66*	0.46*	-0.99	-1.20	-0.61			292
trans-BCPPADBPP- PAPC ₆₀	1500	2H		DCM	TBAPF ₆	SCE		1.31	1.02	-0.67	-1.02, -1.55	-1.19			452
trans-C ₆₀ -(Por) ₂ -C ₆₀	1501	[Zn(II)]2		DCM	TBAPF ₆	Fc/Fc⁺	0.82, 1.09	0.34	0.03			-0.99 -1.09	-1.40	-1.87, -2.29	136
trans-C ₆₀ -(Por) ₂ -C ₆₀	1501	[Zn(II)] ₂		DCM	TBAPF ₆	Fc/Fc⁺	0.82, 1.09	0.34	0.03	-0.99	-1.09, -1.40	-1.87	-2.29		439
trans-C ₆₀ -(Por) ₂ -C ₆₀	1501	[Zn(II)] ₂		DCM	TBAPF	Fc/Fc⁺	0.85	0.49	0.35	-0.99	-1.07, -1.40	-1.85			455
trans-C ₆₀ -(Por) ₂ -C ₆₀	1501	[Zn(II)]2		PhCN	TBAPF ₆	Fc/Fc⁺	0.85	0.49	0.32	-0.95	-1.36				455
trans-C ₆₀ -(Por) ₃ -C ₆₀	1502	[Zn(II)]3		DCM	TBAPF ₆	Fc/Fc⁺	0.57, 0.83	0.44	0.35	-1.06	-1.42	-1.85			455
trans-C ₆₀ -(Por) ₄ -C ₆₀	1503	[Zn(II)]₄		DCM	TBAPF ₆	Fc/Fc⁺	0.61,	0.47	0.33	-1.04	-1.40	-1.85			455
trans-DBCAPEtP/C ₆₀	1504	2H		Tol.	NR	Fc/Fc⁺	1 0.0					0.30	-1.10		491
trans-DBCAPEtP/C ₇₀	1505	2H		Tol.	NR	Fc/Fc⁺						0.31	-1.05		491
TriP-QT-C ₆₀	1506	2H		DCB	TBAPF ₆	Fc/Fc⁺			0.68	0.43	-1.20, -1.58	-1.58			410 (SWV)
TriPP-C ₆₀ (4'-Py).TPP	1507	Zn(II), 2H	See Fig.	DCB	TBAP	Fc/Fc⁺	0.64, 0.81*	0.57	0.30	-1.10, -2.47*	-1.44, -2.00	-1.65	-1.90	-2.20	57
TriPP-DDT-C ₆₀	1508	2H		DCB	TBAPF ₆	Fc/Fc ⁺			0.49	0.21	-1.19, -1.56	-1.62			410 (SWV)
TriPP-ECPP(La@C ₈₂)	1509	2H		DCB	TBAPF ₆ (0.05M)	Fc/Fc⁺	0.89, 1.13	0.58	-0.03	-0.48	-1.41, -1.74	-2.07			369
TriPP-ECPP(La@C ₈₂)	1509	2H		DCB	TBAPF ₆ (0.05M)	Fc/Fc⁺	0.89, 1.06	0.57	-0.04	-0.48	-1.41, -1.75	-2.06			369
TriPP-ECPP(La@C ₈₂)	1509	2H		DCB	TBAPF ₆ (0.05M)	Fc/Fc⁺	0.89, 1.08	0.61	-0.02	-0.45	-1.36, -1.71	-2.07			369

Rind	Structure	Metal 4	Axial L	-igand 1.2 Solvent	ta C	Ц	Porphyrir	Ň	Meta Othe) .	۲ ا	rphyrin Red	Ref
			-					- 0			- 0	1	
	1510	∠n(II)		UCM (-50°C)	I BAPF ₆	FC/FC	0.66	0.33	-1.06 -1.4	14, -1.89	-2.05*		158
TriPP-OT-C60	1511	2H		DCB	TBAPF ₆	Fc/Fc⁺		0.56	0.29 -1.2	20, -1.58	-1.60		410 (SWV)
TriPP-PEMC ₆₀	1512	Zn(II)		DCM	TBAPF ₆	Fc/Fc ⁺	0.65	0.32	-1.69*		-2.13*	-2.32*	158
TriPP-PEMC ₆₀ 6G1	1513	Zn(II)		DCM	TBAPF ₆	Fc/Fc ⁺	0.66	0.32	-1.87		-2.15	-2.33	158
TriPP-PEMC ₆₀ 6G2	1514	Zn(II)		DCM	TBAPF ₆	Fc/Fc ⁺			-1.94*		-2.34*		158
TriPP(2'-EPC ₆₀)	1515	2H		DCB	TBAP	Fc/Fc ⁺	0.81	0.50	-1.18 -1.5	56, -2.10	-1.73		147
TriPP(2'-EPC ₆₀)	I	(II)		DCB	TBAP	Fc/Fc ⁺	0.43	0.06	-1.20				166
TriPP(2'-EPC ₆₀)	I	(II)		PhCN	TBAP	Fc/Fc ⁺	0.51	0.20	-1.04				166
TriPP(2'-EPC ₆₀)	I	(II) Mg(II)		Py/DCB	TBAP	Fc/Fc ⁺		0.18	-1.19				166
TriPP(2'-EPC ₆₀)	I	Zn(II)		DCB	TBAP	Fc/Fc⁺	0.63	0.29	-1.17 -1.5	55, -2.07	-1.90	-2.29	147
TriPP(2'-EPC ₆₀)	I	Zn(II)		DCB	TBAP	Fc/Fc⁺	0.63	0.29	-1.17				166
TriPP(2'-EPC ₆₀)	I	Zn(II)		PhCN	TBAP	Fc/Fc⁺	0.67	0.29	-1.04				166
TriPP(2'-EPC ₆₀)	I	Zn(II)		Py/DCB	TBAP	Fc/Fc⁺		0.23	-1.17				166
TriPP(2'-EPC ₆₀)	I	Zn(II)	Py	DCB	TBAP	Fc/Fc ⁺	0.61	0.26	-1.18 -1.5	56, -2.07	-1.91	-2.29	147
TriPP(4'-EPC ₆₀)	1516	2H		DCB	TBAP	Fc/Fc ⁺	0.80	0.51	-1.19 -1.5	55, -2.08	-1.74		147
TriPP(4'-EPC ₆₀)	ł	Zn(II)		DCB	TBAP	Fc/Fc⁺	0.61	0.27	-1.18 -1.5	55, -2.06	-1.91	-2.25	147

			Axial Li	gand			Porphyri	хОц	Metal /		Por	phyrin R	ed	
Ring	Structur	e Metal		L2 Solver	nt Salt	RE	3 2	-	Other		-	5	L R	ef.
TriPP(4'-EPC ₆₀)	I	Zn(II)	Py	DCB	TBAP	Fc/Fc⁺	0.60	0.26	-1.18 -1.56,	2.07	1.92	-2.26	-	47
TriPPC ₆₀ (3'-Py)	1517	2H		DCB	TBAP	Fc/Fc⁺	0.82*	0.56	-1.14, -1.52, -2.46*	-2.05	.1.68,			57
TriPPC ₆₀ (3'-Py).TPP	1518	Sn(II)	See Fig.	DCB	TBAP	Fc/Fc⁺	0.61	0.26	-1.20 -1.55,	2.07	2.01	-2.40	-	52
TriPPC ₆₀ (3'-Py).TPP	1519) Zn(II), 2H	See Fig.	DCB	TBAP	Fc/Fc⁺	0.65, 0.58 0.83*	0.29	-1.11, -1.45, -2.47*	2.01	1.67	-1.93		57
TriPPC ₆₀ (4'-Py)	1520	0 2H		DCB	TBAP	Fc/Fc⁺	0.80*	0.55	-1.14, -1.51, -2.45*	- 2.04	1.68			57
TriPPC ₆₀ (4'-Py).TPP	1521	(II) ZU(II)	See Fig.	DCB	TBAP	Fc/Fc⁺	0.61	0.26	-1.20 -1.55,	-2.07	1.97	-2.36	-	52
TriPyP-PC ₆₀	1522	2H		DCB	TBAPF ₆	Fc/Fc⁺					1.33	-1.77	ო	312
TriPyP-PC ₆₀ TPP	1523	3 2H, Zn(II)		DCB		Fc/Fc ⁺		0.28	-1.23 -1.63				ო	112
TriPyP-PC ₇₀	1524	t 2H		DCB	TBAPF ₆ (0.05M)	Fc/Fc ⁺					1.27	-1.68	ო	312
TriPyP-PC ₇₀ TPP	1525	5 Zn(II)		DCB	TBAPF ₆ (0.05M)	Fc/Fc⁺		0.27	-1.08 -1.47				ო	312
TriTP-AzPC ₆₀	1526	\$ 2H		DCM	TBAPF	Fc/Fc⁺	0.83	0.52	-1.09 -1.46		1.64	-2.	•90	19
TriTPP-BDP(18C6).C	60 152 7	Zn(II)		PhCN	TBAP	Fc/Fc ⁺	0.58	0.25	0.78 -1.03,	-1.45	1.64	-1.90	D)	345
TTF-Por-C ₆₀	1528	8 2H		THF	TBAPF ₆	SCE			0.80*, 0.53* -1.07 -1.55	, -0.51, -	1.23	-1.56	4	19

			Axial Ligan	P			Porphyri	NO N		Metal /	Porp	hyrin Rec		
Ring Struc	oture	Metal	L1 L2	-Solvent	Salt	RE	3 2	-		Other		2	ية سا	jf.
Fc-(Por) ₂ -C ₆₀	1529	[Zn(II)]2		PhCN	TBAPF ₆	Fc/Fc⁺		0.34	0.00	-1.05	-1.81		34	9
Fc-PImT(Ar)PImP-C ₆₀	1530	Zn(II)		DCB	TBAPF	Ag/AgNO ₃		0.77	0.66	-0.59			33	4
Fc-PImT(Ar)PImP-C ₆₀	1530	Zn(II)		PhCN	TBAPF	Ag/AgNO ₃		0.80	09.0	-0.53			33	4
FcP(USH)CP-(Por)-PCPC60	1531	2H		DCM	TBAPF ₆	Ag/AgCI		1.15	0.51	-0.62			27	9
FcP(USH)CP-(Por)-PCPC60	I	Zn(II)		DCM	(0.2.M) TBAPF ₆ (0.2.M)	Ag/AgCI		0.91	0.50	-0.62			27	9
FcPA-(Por) ₂ -APC ₆₀	1532	[Zn(II)] ₂		THF	(0.∠IVI) TBABF₄	Fc/Fc⁺	0.58	0.43	0.04	-1.00	-1.50	-1.63	43	ę
FcPA-(Por)4-APC60	1533	[Zn(II)]4		THF	$TBABF_4$	Fc/Fc⁺			0.04	-1.00	-1.44	-1.59 -1.	7 43	ę
FcPA-Por-APC60	1534	Zn(II)		THF	$TBABF_4$	Fc/Fc⁺		0.45	0.04	-1.00	-1.60		43	ę
FcPCP-(Por)-PCPC60	1535	2H		DCM	TBAPF ₆	Ag/AgCI		1.02	0.56	-0.57			27	6 (DPV)
FcPCP-(Por)-PCPC60	ł	Zn(II)		DCM	(U.ZIVI) TBAPF ₆	Ag/AgCI		0.86	0.52	-0.56			27	6 (DPV)
FcPCPTriPP.ImPC ₆₀	1536	Zn(II)	See Fig.	DCB	TBAP	Fc/Fc⁺	0.65	0.27	-0.01	-1.13, -1.52, -2.04	-1.91	-2.23	4	
FcPCPTriPP.PyC ₆₀	1537	Zn(II)	See Fig.	DCB	TBAP	Fc/Fc⁺	0.64	0.28	-0.01	-1.14, -1.55, -2.06	-1.91	-2.22	4	Ţ
FcPTriPP.ImC ₆₀	1538	Zn(II)	See Fig.	DCB	TBAP	Fc/Fc⁺	0.62	0.21	-0.03	-1.17, -1.56, -2.10	-1.93	-2.27	4 4	5
trans-DFcPDPP.ImC ₆₀	1539	Zn(II)	See Fig.	DCB	TBAP	Fc/Fc⁺	0.61	0.23	-0.12	-1.20, -1.57, -2.10	-1.94	-2.28	4	Ţ

Table 20. Porphyrin- C_{60} -ferrocene triads. (see structures in Figure 20)

			Axial L	igand				Porp	hyrin C	XC	Me	tal /	Porp	hyrin Red	
Ring	Structure	Metal	L	L2	Solven	t Salt	RE	Other Ox	2	-	₹	Jer	-	2 3	_Ref.
[(2'-Py)TBP] ₂	1540	[Ru(II)]2	co		DCM	TBAPF ₆	Fc/Fc⁺	1.48, 1.32	0.94	0.66					261
[(2'-Py)TBPP] ₂ . [(4'-Pv)TriTP]_	1541	[2H] ₂ , [Ru(II)] ₂			DCM	TBAPF ₆	Fc/Fc ⁺	1.48*	1.21	0.96	0.37	0.05	-1.23	-1.58	261
[(2'-Py)TriBP] ₂	1542	Rh(III)	Ċ		DCM	TBAPF ₆	Ag/AgCI		1.26	1.00					217
[(2'-Py)TriBP] ₂	1543	[Ru(II)]2	See Fig.		DCM	TBAPF ₆	Fc/Fc ⁺		1.35*	1.23*	0.38	0.12			261
[(2'-Py)TriTP] ₂	1544	[Ru(II)]2	CO		DCM	TBAPF ₆	Fc/Fc ⁺	1.46, 1.29	0.92	0.66					261
[(2'-Py)TriTP] ₂	I	[Ru(II)]2	Py		DCM	TBAPF ₆	Fc/Fc ⁺		1.49*	1.28*	0.32	0.02			261
[(3'-Py)TBP]₄	1545	Ru(II)	00	Py	DCM	TBAPF ₆	Fc/Fc+	0.57, 0.53, 1.02	0.47	0.38					198
[(3'-Py)TBP]₄	I	Ru(II)	Py		DCM	TBAPF ₆	Fc/Fc+			66.0	-0.02, -0.17	-0.06, -0.28			198
[(3'-Py)TBPP] ₂ . [(3'-Py)TriTP] ₂	1546	[2H] ₂ , [Ru(II)] ₂			DCM	TBAPF	Fc/Fc⁺	1.61*	1.28	0.99	0.34*	0.01	-1.36		261
[(3'-Py)TriHP]₄	1547	Ru(II)	00	Py	DCM	TBAPF ₆	Fc/Fc+	0.54, 0.53, 0.98	0.45	0.37					198
[(3'-Py)TriTP]4	ł	Ru(II)	CO		DCM	TBAPF	Fc/Fc⁺	0.57, 0.53, 1.02	0.46	0.38					198
[(4'-Py)TriTP]₄	1548	Rh(III)	Ċ		DCM	TBAPF ₆	Ag/AgCI	1.19, 1.14	1.08	1.01					217
(BAPMImPP) ₂	1549	Zn(II)	E		DCM	TBAPF ₆	Ag/AgCI			0.63			-1.52		117
[cis-D(4'-Py)DPP. (RhL _n) ²⁺] ₄	1550	[2H]₄			DCE	TBAPF ₆ (0.05M)	SCE			1.24*	1.60*	0.53	-1.10*		442
(D(PPy)P)2.(RuL _n) ²	²⁺ 1551	[2H] ₂			DCM	TBAPF ₆	SCE			1.04			-1.10		414
(D(PyP)P) ₂ .(RuL _n) ²	²⁺ 2 1551	$[2H]_2$			DCM	TBAPF	SCE			1.02			-1.07		414

				Axial Ligand				Porphyrin	ŏ	Ň	etal /	Por	phyrin	Red	
Ring	Structure	e Meta	-	L1 L2	Solvent	Salt	RE	Other Ox 2	-	ð	her	~	2	ε	Ref.
(EtCPPZDTP) ₃	1552	Zn(II)	0 0	see Fig.	DCM	$TBABF_4$	Ag/Ag⁺	0.53	0.39						151
((HP)TriPP) ₂	1553	[2H] ₂			DMF	TBAP	Ag/AgNO	°	0.63			-1.53	-1.97		124
[(ImUP)T(3',5'- D-TBuP)P] ₂	1554	[2H] ₂			THF	TBAPF ₆	Fc/Fc ⁺		0.34*						591
[(ImUP)T(3',5'- D-TBuP)P] ₂	ł	[Zn(II)	3		THF	TBAPF ₆	Fc/Fc⁺		0.22						591
(OEP) ₂ .(bpy)	1555	[I)so]] ₂ C	0	DCM	TBAPF ₆	Fc/Fc⁺		0.83	0.08					209 (DPV)
(OEP) ₂ .(DABCO)	1556	[I])so]] ₂ C	0	DCM	TBAPF ₆	Fc/Fc ⁺		0.83	0.15*					209 (DPV)
(OEP)2.(DABCO)	I	[Ru(II)	J_2 C	0	DCM	TBAP	Fc/Fc⁺		0.21	0.66					209
(OEP) ₂ .(DABCO)	I	[Ru(II)] ₂ C	0	DCM	TBAPF ₆	Fc/Fc ⁺		0.27	0.81					209 (DPV)
(OEP) ₂ .(Pz)	1557	[I]so]] ₂ C	0	DCM	TBAPF ₆	Fc/Fc⁺		0.83	0.26	0.18				209 (DPV)
(OEP) ₂ .(Pz)	I	[Ru(II]] ₂ C	0	DCM	TBAP	Fc/Fc⁺		0.27	0.70					209
(OEP) ₂ .(Pz)	I	[Ru(II]	J ₂ C	0	DCM	TBAPF ₆	Fc/Fc⁺		0.28	0.75					209 (DPV)
(OEP) ₆ .M((Py) ₂ -bpy	/) ₃ 1558	Ru(II)	U	0	DCM	TBAPF ₆ (0.2M)	SCE	1.12	0.59			-0.97	-1.10	-1.30	197
[PyTriPP] ₂ .(RuL _n) ²⁺	1559	[2H] ₂			DCM	TBAPF ₆	SCE		1.04			-1.17			414
ri[(2'-Py)TBP] ₂	1560	[Ru(II)]2 F	γ	DCM	TBAPF ₆	Fc/Fc⁺	1.46*	1.26*	0.31	0.02				261
(S ₂ -PyP)-(S-TP).TF	P 1561	H, Ru	(II) C	0	DCM	TBAP	SCE	1.58, 1.35 1.16	0.89			-1.23	-1.39	-1.69	503
[T(15C5P)P]₂.4K⁺	1562	[2H] ₂			PhCN	TBAP	Fc/Fc⁺		0.15			-1.87	-2.13		354

			- Toivy	- C C C C C C C C C C C C C C C C C C C				Dorof	hvrin	2	Me	c‡		hvrin I	Pac	
Ring	Structure	Metal			Solven	t Salt	RE	Other Ox	2	- ا-	3	Jer		2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	lef.
[T(15C5P)P]₂.4K⁺	I	[Ag(II)] ₂			PhCN	TBAP	Fc/Fc⁺			0.15	0.01	-1.48	-1.74			354
[T(15C5P)P]₂.4K⁺	I	[Co(II)]2			PhCN	TBAP	Fc/Fc⁺				-0.02	-1.38	-1.78			354
[T(15C5P)P]₂.4K⁺	I	[Cu(II)]2			PhCN	TBAP	Fc/Fc⁺		0.59	0.34			-1.79	-2.04		354
[T(15C5P)P]₂.4K⁺	I	[Mg(II)]2			PhCN	TBAP	Fc/Fc⁺		0.67	0.14			-1.89	-2.07		354
[T(15C5P)P] ₂ .4K ⁺	I	[Ni(II)]2			PhCN	TBAP	Fc/Fc⁺		0.40	0.27			-1.80	-2.04		354
[T(15C5P)P] ₂ .4K ⁺	I	[Pd(II)]2			PhCN	TBAP	Fc/Fc⁺			0.42			-1.79	-2.08		354
[T(15C5P)P] ₂ .4K ⁺	I	[V(IV)] ₂	0²-		PhCN	TBAP	Fc/Fc⁺			0.39			-1.54	-1.73		354
[T(15C5P)P] ₂ .4K ⁺	I	[Zn(II)] ₂			PhCN	TBAP	Fc/Fc⁺		0.29	0.18			-1.85	-2.07		354
T(4'-Py)P.(TBPP)4	1563	Sn(IV), [Ru(II))]₄ CO		DCM	TBAPF ₆	SCE			0.83			-0.62			286
ТРР.(ТВРР) ₂	1564	Sn(IV), [Ru(II)]	l₂ CO	See	DCM	TBAPF ₆	SCE			0.80			-0.90			286
[TPP] ₂ .(APy) ₂ POM	1565	[Ru(II)]2	СО		DCE/ CH ₃ CN	TBAPF ₆	SCE	1.61*	1.29	0.87	-0.68		-1.33*	-1.43		438
[TPP] ₂ .(APy) ₂ POM	1565	[Ru(II)] ₂	СО		DCE/ CH ₃ CN	TBAPF ₆	SCE	1.57*	1.29*	0.86	-0.69		-1.46			438
[TPP] ₂ .(APy) ₂ POM	1565	[Ru(II)] ₂	CO		DCE/ CH ₃ CN	TBAPF ₆	SCE		1.61*	0.92	-0.30		-1.44			438
[TPP] ₂ .(CPy) ₂ POM	1566	[Ru(II)]2	CO		DCE/ CH ₃ CN	TBAPF ₆	SCE			1.03*	-0.59		-1.37	-1.85	-1.99	438
[TriPPyP] ₂ .(Rh ²⁺) ₂	1567	[2H] ₂			DCE	TBAPF ₆ (0.05M)	SCE			1.17	1.54*	0.59	-1.11			442
(TTP) ₂ .(bpy)	1568	[Os(II)]2	СО		DCM	TBAPF ₆	Fc/Fc⁺			0.90	0.25)	209 DPV)

			Axial Ligan	o			Porphyrir	Ň	Me	tal /	Porp	hyrin F	Sed	
Ring	Structure	Metal	L1 L2	- Solven	ıt Salt	RE	Other Ox 2	-	ŧ	ner -	-	2	3 F	Ref.
(TTP) ₂ .(bpy)	I	[Ru(II)]2	со	DCM	TBAPF ₆	Fc/Fc⁺		0.30	0.80				0	209 (DPV)
(TTP) ₂ .(DABCO)	1569	[Os(II)]2	CO	DCM	TBAPF ₆	Fc/Fc ⁺		0.93	0.39	0.28			C	209 (DPV)
(TTP) ₂ .(DABCO)	ı	[Ru(II)]2	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.42	0.35	0.84				0	209 (DPV)
(TTP) ₂ .(Pz)	1570	[Os(II)]2	CO	DCM	TBAPF ₆	Fc/Fc⁺		0.92	0.44	0.36			0	209 (DPV)
(TTP) ₂ .(Pz)	I	[Ru(II)]2	CO	DCM	TBAPF ₆	Fc/Fc⁺	0.45	0.39	0.83				0	209 (DPV)
(TTP) ₂ .M(Py-terpy) ₂	1571	Ru(II)	СО	DCM	TBAPF ₆ (0.2M)	SCE	1.23	0.71		<u>,</u>	- 00.1	1.21	1.65	197
(TTP) ₂ .M(Py-terpy) ₂	1572	Ru(II)	CO	DCM	TBAPF ₆ (0.2M)	SCE	1.37 1.21	0.69		<u>,</u>	- 20.1	1.33	1.68	197
(TTP) ₂ .M(Py-terpy) ₂	1573	Ru(II)	CO	DCM	TBAPF ₆ (0.2M)	SCE	1.23 1.05	0.72		7	- 201	1.36	1.69	197
(TTP)₄.M((Py)₂-bpy))2 1574	Ru(II)	CO	DCM	TBAPF ₆ (0.2M)	SCE		1.26	0.74	<u>-</u>		1.55		197
(TTP) ₆ .M((Py) ₂ -bpy)) ₃ 1575	Ru(II)	CO	DCM	TBAPF ₆ (0.2M)	SCE	1.25	0.74		Ŷ	- 26.0	1.08	.1.30, 1.62	197
(TTP) ₆ .M((Py) ₂ -bpy)) ₃ 1576	Ru(II)	CO	DCM	TBAPF ₆ (0.2M)	SCE	1.24	0.75		Ŷ	- 94	1.05	.1.32, .1.66	197

			Axial Liga	Ind			Porphyri	хОи	M	etal /	Porp	hyrin Red	
Ring	Structure	Metal	L1 L2	Solvent	Salt	RE	3	-	ð	her	.	2	Ref.
(2'-Py) ₂ TBPP-[PtL _n] ²⁺	1577	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺		0.38			-1.63		252
(2'-Py) ₂ TBPP-[PtL _n] ²⁺	1577	Ni(II)		DCM	$TBAPF_{_6}$	Fc/Fc⁺		0.32*			-1.69		252
(2'-Py) ₂ TBPP-[PtL _n] ⁴⁺	1578	Ni(II)		DCM	TBAPF ₆	Fc/Fc⁺	0.87	0.61			-1.27*	-1.66	252
D(tterpy)DMP[(RuL _n) ²⁺] ₂	1579	2H		CH ₃ CN	TBAPF ₆	SCE	1.07	0.92	0.53	-1.55*	-1.20		5
D(tterpy)DMP[(RuL _n) ²⁺] ₂	:	Zn(II)		CH ₃ CN	TBAPF ₆	SCE	1.16	0.82	0.52		-1.38		5
DBPDAP-[Pt*(bpy)]	1580	Zn(II)		DMF	TBAPF ₆	SCE		0.83			-0.80	-1.20	298
DBPP-PA-[APt(DEPterpy)] ⁺	1581	(II) Mg(II)		DMF	TBAPF ₆	SCE		0.70	-0.58		-1.14		165
DBPP-PA-[APt(Hterpy)]*	1582	(II) Mg(II)		DMF	TBAPF	SCE		0.70	-0.93		-1.28		165
DBPP-PA-[APt(Hterpy)] ⁺	1	Zn(II)		DMF	TBAPF ₆	SCE		0.78	-0.94		-1.21		165
DBPP-PA-[APt(terpy)]*	1583	Zn(II)		DMF	$TBAPF_{\scriptscriptstyle 6}$	SCE		0.83	-0.80		-1.20		165
DBPP-PA-[APt(terpy)] ⁺	:	(II) ØM		DMF	TBAPF	SCE		0.70	-0.79		-1.29		165
DBPP-PA-[APt(terpy)] ⁺	1584	(II)		DMF	TBAPF	SCE		0.79	-0.59		-1.17		165
DPyTBPP-Ir(cod)	1585	Ni(II)		NR	NR	Fc/Fc⁺		-0.01					572
DPyTBPP-IrCl ₂ (OH ₂)	1586	Ni(II)		NR	NR	Fc/Fc⁺		0.22					572
MEAK-TPP	1587	Ni(II)		DCM	TBAPF	Fc/Fc⁺	0.78	0.40			-1.48	-1.85	222
SQTriPP-[Ru(bpy)₂]⁺	1588	2H		CH ₃ CN	$TBAPF_{\scriptscriptstyle 6}$	Fc/Fc⁺			1.07	0.23, -0.68			486
SQTriPP-[Ru(bpy) ₂] ⁺	ł	(II)		CH ₃ CN	TBAPF	Fc/Fc⁺			1.05	0.14, -0.66			486
TBPPA-(Pt(Et ₃ P) ₂ TSiA)	1589	Ni(II)		DCM	TBAPF ₆	Ag/AgCI	1.19	0.70			-1.44*		220
TBPPA-(Pt(Et ₃ P) ₂ TSiA)	1	Zn(II)		DCM	TBAPF	Ag/AgCI	0.95	0.48			-1.53*		220
TPPDP-Pt*(bpy)	1590	Zn(II)		DMF	TBAPF	SCE		0.88			-0.76		298

Table 22a. Porphyrins with covalently bonded peripheral metal complexes. (see structures in Figure 22a)

			Axial Ligand				Porp	hyrin	ð	Metal /	Porpl	Jyrin F	ted	
Ring Stru	ucture	Metal	L1 L2	Solvent	Salt	RE	3	2	-	Other	-	2	3	Ref.
trans-(OP) ₂ DPP-Mo(trisPHB) ²⁺] ₂	1591	2H		DCM	TBAPF ₆	Fc/Fc ⁺		0.82	0.48	-0.76	-1.71			169
trans-B(PSQ)DPP-[(Ru(bpy) ₂) ⁺] ₂	1592	2H		CH ₃ CN	TBAPF ₆	Fc/Fc⁺				1.02 0.14, -0.66				486
trans-D(PSQ)P-[(Ru(bpy) ₂) ⁺] ₂	1593	Zn(II)		CH ₃ CN	TBAPF ₆	Fc/Fc⁺				1.06 0.30, -0.66				486

Table 22a. Porphyrins with covalently bonded peripheral metal complexes. (see structures in Figure 22a)

			vxial Ligand				orphyrir	XO L	Metal	Pc	orphyrin	Red	
Ring	Structure Met	tal	L1 L2	Solvent	Salt	RE	5	-	Other		5	с	Ref.
(2'-Py)TBPP-[(RuL _n) ²⁺] 1594 2H			DCM	TBAPF ₆	Fc/Fc⁺	0.73	0.38					435
(2'-Py)TBPP-[(RuL _n) ²⁺] 1594 2H			DCM	TBAPF ₆	Fc/Fc⁺	0.72	0.32					435
(2'-Py)TBPP-[(RuL _n) ²⁺] 1594 2H			DCM	TBAPF ₆	Fc/Fc⁺	0.73	0.35					435
(2'-Py)TBPP-[(RuL _n) ²⁺] 1594 2H			DCM	TBAPF ₆	Fc/Fc⁺	0.77	0.40					435
(2'-Py)TBPP-[(RuL _n) ²⁺] 1594 2H			DCM	TBAPF ₆	Fc/Fc⁺	0.48	-0.08					435
(2'-Py)TBPP-[(RuL _n) ²⁺] Cu(li	Ê		DCM	TBAPF ₆	Fc/Fc⁺	0.71	0.35					435
(2'-Py)TBPP-[(RuL _n) ²⁺] Zn(II	Ē		DCM	TBAPF ₆	Fc/Fc⁺	0.46	0.21					435
(3'-Py)TriPP-[(ReL _n) ⁺]	1595 Zn(II	(DCM	TBAPF ₆	SCE		0.83		-1.17			386
(4'-Py)TriHMPP-[PtL _n]	²⁺ 1596 Co(II	Ê		H ₂ O	HCIO4 (1.0M)	Ag/AgCI 0.7	76* 0.59*	0.53					250
(4'-Py)TriPP-(RuL _n)*	1597 2H			DCM	TBAPF ₆	SCE		1.05		-1.22			414
(4'-Py)TriPP-[(ReL _n) ⁺]	1598 Zn(II	Ē		DCM	TBAPF ₆	SCE		0.83		-1.16			386
(4'-Py)TriPP-[(RuL _n) ²⁺] 1599 2H			CH ₃ CN	TBAP	SCE			0.92	-1.10			487
(4'-Py)TriPP-[(RuL _n) ²⁺	1600 2H			DMF	TEAP	SHE		1.26*	0.85	-0.90	-1.22	-1.56*	482
C ₆₀ Py.[<i>cis</i> -DMP(phen) (CuL _n)* ₂]) _z . 1601 Zn(ll	Ê		DCE	TBAPF ₆	Fc/Fc⁺	0.83	0.42	0.36, 0.2 -1.04, -1.4	21, -1.88 44			123 (DPV)
C ₆₀ Py.[TMP(phen)) ₄ - (CuL _n) ⁴]	1602 Zn(II	(DCE	TBAPF ₆	Fc/Fc⁺	0.81	0.40	0.28, 0. ⁻ -1.04 -1. ²	19, -1.85 44			123 (DPV)
C ₆₀ Py.[TMPP(phen)-((CuL _n) ⁺] 1603 Zn(II	(DCE	TBAPF ₆	Fc/Fc⁺	0.85	0.37	0.30, 0.5 -1.06 -1.4	20, -1.98 47			123 (DPV)

Table 22b. Porphyrins with non-covalently bonded peripheral metal complexes. (see structures in Figure 22b)

			Axial Ligar	р			orph)	/rin O)		Met	al /	Por	phyrin	Red	
Ring Stru-	cture Me	stal	L1 L2	Solvent	Salt	RE	0		I	Oth	ы	-	2	ю	Ref.
C ₆₀ Py.[trans-DMP(phen) ₂ - (CuL ₂)* ₂ 1	1604 Zn((E)		DCE	TBAPF ₆	Fc/Fc⁺	0	77 0.	39	0.33, -1.08	0.20, -1.50	-1.88			123 (DPV)
cis-D(4'-Py)DPP-[(RuL _n) ²⁺] ₂	1605 2H			DMF	TEAP	SHE		÷.	43*	0.86		-0.86	-1.19	-1.39	482
cis-DBPAP(bpy)-[ReL _n] ⁺	1606 Zn(i	(E)		DCM	TBABF ₄ (0.2M)	SCE	-	22 0.	81	1.53		-1.06			100
cis-DBPAP(bpy)-[RuL _n] ²⁺	1607 Zn(i	(E)		DCM	TBABF ₄ (0.2M)	SCE	Ĺ.	17 0.	78	1.68		-0.79	-1.07	-1.43	100
cis-DMP(phen) $_{2}$ -[(CuL $_{n})^{+}_{2}$]	1608 Zn(i	(II)		DCE	TBAPF ₆	Fc/Fc⁺	0	77 0.	41	0.41	0.20	-1.86			123 (DPV)
cis-F ₅ PTPyP-[(RuL _n) ²⁺] ₂	1609 2H			CH ₃ CN	TBAPF ₆	Ag/AgCI				0.84		-0.79			366
cis-F ₅ PTPyP-[(RuL _n) ²⁺] ₂	- Cu((II)		CH ₃ CN	TBAPF ₆	Ag/AgCI				0.82		-0.94			366
cis-F ₅ PTPyP-[(RuL _n) ²⁺] ₂	1610 Cu((II)		CH ₃ CN	TBAPF ₆	Ag/AgCI				0.82		-0.94			366
cis-F5PTriPyP-[(RuL1)*]2	1611 2H			CH ₃ CN	TBAPF ₆	Ag/AgCI	0	79		0.37		-0.84			248
D(BPBP)P(phen)-Cu ⁺ L _n)	1612 Au((III)		n-BuCN	$TBABF_4$	Fc/Fc⁺				0.37 -	-1.02				401
(DBIP)TriPP-[CoL] ⁺	1613 Co((II)		DMF	TBAP	SCE		Ö	33	-0.02					512
(DBIP)TriPP-[CuL] ⁺	1614 Co((II)		DMF	TBAP	SCE				0.17 -	-0.07				512
DTAPTBPP(Phen) ₂ -M-Cat1	1615 Zn(i	Ē		DCB	TBAP	Fc/Fc⁺		Ö	20	0.20	-2.30	-1.92			288
F ₁₀ D(4'-Py)DPP-[(RuL _n) ²⁺] ₂	1616 2H			DMF	TBAPF ₆	Ag/AgCI				0.88 -	-1.42	-0.68	-1.11		508
F ₅ PTriPyP[(RuL _n) ²⁺] ₃	1617 Cu((II)		DMF	TBAPF ₆	Ag/AgCI				0.88		-0.86			111
[F ₆ (tmpa)TPP-Cu⁺]	1618 Fe(I	Î	See Fig.	CH ₃ CN	TBAPF ₆	Fc/Fc⁺				-0.65					183

Table 22b. Porphyrins with non-covalently bonded peripheral metal complexes. (see structures in Figure 22b)

			Axial L	-igand				Porphyrir	Ň	Mei	tal /	Porp	hyrin Red	
Ring	Structur	e Metal	2		Solvent	Salt	RE	3 2	-	Oth	ler		3	Ref.
[F ₆ (tmpa)TPP-Cu ⁺]	161	9 Fe(II)	See Fig.	. See Fig.	CH ₃ CN	TBAPF ₆	Fc/Fc⁺			-0.49				183
[F ₆ (tmpa)TPP-Cu ⁺]	I	Fe(III)	ū	-	CH ₃ CN	TBAPF ₆	Fc/Fc⁺			-0.53				183
[(phen)TriMP-(CuL _n) $^{+}$] ₂	162	0 [Zn(II)] ₂		-	DCM	TBAPF ₆	SCE			0.63				122
[(phen)TriMP-Cu ⁺ (L _n)]	162	1 Zn(II)		-	DCM/Py	TBAPF ₆	SCE			0.64				122
[RuL _n] ²⁺ -DAPDBP-[ReL] ⁺ 162	2 2H		-	DCM	TBABF4 (0.2M)	SCE			1.72	1.47	-0.77	-1.14	100
[RuL _n] ²⁺ -DAPDBP-[ReL	ي [±]	Zn(II)		-	DCM	TBAPF ₆ (0.2M)	SCE	1.22	0.83	1.71	1.51	-0.76	-1.03	100
T(3'-Py)P-[(FeL _n) ²⁺] ₄	162	3 2H		-	H ₂ O	KCI (1.0M)	Ag/AgCI	0.70	0.50					531
T(3'-Py)P-[Ru ₃ L _n]₄	162	4 2H		-	CH ₃ CN	TEAP	SHE		1.55	1.19 -1.15	0.17, -2 21	-0.73	-1.03	484
$T(4'-CNP)P-[(RuL_n)^{2+}]_4$	162	5 Co(II)			DME	TBAPF ₆	Ag/AgCI			0.88, -0.61	0.48			214
[T(4'-Py)P-((RuL _n) ⁺)₄] ₂ C	162	6 Fe(III)	02-		DMF	TBAP	SHE			-1.34		-0.76*		195
T(4'-Py)P-[(ReL _n) ⁺]₄	162	(II) ZJ		-	DCM	TBAPF ₆	SCE		1.10			-1.15		386
T(4'-Py)P-[(RhL _n) ²⁺]₄	162	8 2H		-	DCE	TBAPF ₆ (0.05M)) SCE			1.50*	0.60	-1.02*		442
T(4'-Py)P-[(RuL _n)*]₄	162	9 Fe(III)		_	DMF	TBAP	SHE			0.91, -1.34*	0.16, -1.45*	-0.76*	-0.80* -1.20*	195
T(4'-Py)P-[(RuL _n) ⁺]₄	I	(III)nM		_	DMF	TEAPF ₆	SHE			0.94 -1.35*	-0.04	-0.90	-1.16*	175
T(4'-Py)P-[(RuL _n)*]₄	163	0 Mn(III)		_	DMF	TEAPF ₆	SHE		1.22	1.40, -1.32	0.00, -1.50	-1.03	-1.12	175
T(4'-Py)P-[(RuL _n) ²⁺] ₄	163	1 2H		-	DMF	TEAP	SHE			0.92		-0.68	-0.93 -1.42*	482

Table 22b. Porphyrins with non-covalently bonded peripheral metal complexes. (see structures in Figure 22b)
			Axial	Ligand				orphyrin	Ň	Me	tal /	Por	phyrin Red	
Ring	Structure	Metal	5	L2	Solvent	Salt	RE	3	-	Ō	Jer	-	2 3	Ref.
T(4'-Py)P-[(RuL _n) ²⁺]₄	1631	2H			CH ₃ CN	TEAP	SHE		1.60					482
T(4'-Py)P-[(RuL _n) ²⁺] ₄	1632	2H			DCM	TBAPF ₆	SCE		1.04			-0.91		414
T(4'-Py)P-[(RuL _n) ²⁺] ₄	1	Fe(III)	<u>ع</u>	E	DMF	TBAP	SHE			0.16		-0.76*	-1.15	195
T(4'-Py)P-[Ru ₃ L _n]₄	1633	2H			CH ₃ CN	TEAP	SHE		1.68	2.30, 0.16	1.23, -1.14	-0.72	-1.05	257
T(4'-Py)P-[Ru ₃ L _n]₄	1633	2H			CH ₃ CN	TEAP	SHE	2.30	1.68	1.23, -1.14	0.16, -2.30	-0.72	-1.05	484
T(4'-Py)P-[Ru ₃ L _n]₄	I	Co(II)			CH ₃ CN	TBAPF ₆	SHE			2.33, 0.19	1.25, -1.05			213
T(4'-Py)P-[Ru ₃ L _n]₄	ł	Co(II)	ġ		CH ₃ CN	TBAPF ₆	Ag/AgCI			0.85	0.37	-0.44	-1.10	290
T(4'-Py)P-[Ru ₃ L _n]₄	I	(II)			CH ₃ CN	TEAP	SHE	2.18*	1.19	0.15		-1.13		155
T(4'-Py)PP-[(RuL _n) ²⁺] ₃	1634	2H			DMF	TEAP	SHE		1.40*	0.86		-0.76*	-1.02* -1.39	482
T(DMCP)P-[(RuL _n) ²⁺] ₄	1635	Co(II)			DME	TBAPF ₆	Ag/AgCI			0.87, -0.69	0.46			214
TBPP-[(IrL _n) ³⁺]	1636	2H			CH ₃ CN	TBAPF ₆	SCE		0.96	-0.78	-0.94	-1.17		7
TBPP-[(IrL _n) ³⁺]	1636	2H			DCM	TBAPF ₆	SCE		0.88	-0.72	-0.88	-1.24		7
TBPP-[(IrL _n) ³⁺]	ł	Au(III)			CH ₃ CN	TBAPF ₆	SCE			-0.59, -0.91	-0.75	-1.11		7
TBPP-[(IrL _n) ³⁺]	I	Zn(II)			CH3CN	TBAPF ₆	SCE	0.95	0.62*	-0.79	-0.95			7
TBPP-[(IrL _n) ³⁺]	ł	Zn(II)			DCM	TBAPF ₆	SCE	1.08	0.68	-0.71	-0.87			7
TBPP-[lrL_] ³⁺	1637	Au(III)			DCM	TBAPF ₆	SCE			-0.66, -0.87	-0.72			7

Table 22b. Porphyrins with non-covalently bonded peripheral metal complexes. (see structures in Figure 22b)

			Axial L	-igand				Porphyrir	Ň	M	stal /	Por	phyrin	Red	
Ring	Structure	Metal	5	L2	Solvent	Salt	RE	3 2	-	ō	her	. 	0	е	Ref.
TBPP-[RuL _n] ²⁺	1638	2H			DCM	TBAPF ₆ (0.05M	1) SCE	1.18		1.47		-1.04	-1.56	-1.87	37
TBPP-[RuLn] ²⁺	I	(II)			DCM	TBAPF ₆ (0.05M	1) SCE	1.17	0.78	1.68		-0.79	-1.07	-1.43	37
(terpy) ₂ DMP[(RuL _n) ²⁺] ₂	2 1639	2H			CH ₃ CN	TBAPF ₆	SCE		1.18	1.31	-1.28	-0.92			ъ
(terpy) ₂ DMP[(RuL _n) ²⁺] ₂	I	(II)			CH ₃ CN	TBAPF ₆	SCE	1.19	0.93	1.33	-1.25	-1.14			£
[TMP(phen)-(CuL _n) ⁺]	1640	(II)			DCE	TBAPF ₆	Fc/Fc ⁺	0.74	0.41	0.41	0.21	-1.91			123 (DPV)
[TMP(phen)-(CuL _n) ⁺]	1640	Zn(II)			DCE	TBAPF ₆	Fc/Fc⁺	0.74	0.41	0.21					123 123
[TMP(phen)₄-[(CuL _n) ⁺]	4 1641	(II)			DCE	TBAPF ₆	Fc/Fc ⁺	0.77	0.41	0.41	0.20	-1.84			123 123
trans-(4'-Py) ₂ DPP-[Mc	o(L _n) ²⁺] ₂ 1642	2H			DCM	TBAPF ₆	Fc/Fc⁺	0.86	0.41	0.19	-1.88	-1.74			169
trans-D(4'-Py)DPP-[(F	RuL _n) ²⁺] ₂ 1643	2H			DMF	TEAP	SHE	1.42*	1.42*	0.85		-0.84	-1.14	-1.43	482
trans-DMP(phen) ₂ -[Cu	JL _n]⁺ ₂ 1644	(II)			DCE	TBAPF ₆	Fc/Fc⁺	0.74	0.41	0.41	0.21	-1.86			123 (DDV)
[TriMPA(phen)-(CuL _n)	1 ₂ 1645	[Zn(II)]2			DCM	TBAPF ₆	SCE		1.47*	0.64		-1.11			(ULV) 122
TriMPAP-[CuL_] ⁺	1646	(II)			DCM	TBAPF ₆	SCE	1.21*	1.14	0.70		-1.15			122
TriMPP-[RuL _n] ²⁺	1647	(II)			<i>n</i> -BuCN	TBAPF ₆	Ag/Ag⁺	06.0	0.56	1.19		-1.12	-1.31		162
TriPP-[ReL_] ⁺	1648	(II)Pd			DCM	TBAPF ₆	Fc/Fc⁺		0.63			-1.48			544
TriTP-[RuL _n] ²⁺	1649	2H			DCM	TBAP	SCE	1.23	0.97	1.23					30
TriTP-[RuL _n] ²⁺	1649	2H			DMF	TBAP	SCE			-1.17	-1.47	-1.00	-1.47		30

Table 22b. Porphyrins with non-covalently bonded peripheral metal complexes. (see structures in Figure 22b)

			Axial Li	gand				Por	ohyrin	ŏ	Metal /	Po	rphyrin	Red	
Ring	Structure	Metal	L1	L2	Solvent	Salt	RE	3	2	-	Uther	-	2	3	Ref.
TriTP-[RuL _n] ²⁺	I	Zn(II)			DCM	TBAP	SCE		1.05	0.76	1.22				30
TriTP-[RuL _n] ²⁺	I	(II)			DMF	TBAP	SCE			-1.47	-1.16 -1.31	-1.47			30
[TriTP]2-[RuLn] ²⁺	1650	[2H] ₂			DCM	TBAP	SCE	1.28	1.14	0.93	1.28				30
[TriTP] ₂ -[RuL _n] ²⁺	1650	$[2H]_2$			DMF	TBAP	SCE				-1.02, -1.13 -1.49	-1.02	-1.37	-1.49	30
[TriTP]2-[RuLn] ²⁺	I	Zn(II), 2H	-		DCM	TBAP	SCE	1.15	0.91	0.67	1.26				30
[TriTP] ₂ -[RuL _n] ²⁺	I	Zn(II), 2H	-		DMF	TBAP	SCE				-1.16 -1.50	-1.04	-1.38	-1.73	30
[TriTP]2-[RuLn] ²⁺	I	[Zn(II)]2			DCM	TBAP	SCE		0.98	0.64	1.26				30
[TriTP] ₂ -[RuL _n] ²⁺	ł	[Zn(II)] ₂			DMF	TBAP	SCE				-1.16	-1.32	-1.72		30

Table 22b. Porphyrins with non-covalently bonded peripheral metal complexes. (see structures in Figure 22b)

				-						
			Axial Liga	pu			Porphyrin Ox	Metal /	Porphyrin Red	
Ring	Structure	Metal		Solvent	Salt	RE	3 2 1	Other	1 2 3	Ref.
DAH-III	1651	Fe(II)		CH ₃ OH	NaClO4	Ag/AgCI			-0.17	107
DAH-III	I	Fe(II)	<u></u>	CH ₃ OH	NaClO4	Ag/AgCI			-0.46	107
DAH-III	I	Fe(II)	<u></u>	CH ₃ OH	NaClO4	Ag/AgCI			-0.19	107
DP-IXDME	1652	Fe(III)	ū	M-MP	TEAP	SCE		-0.30		451
Etio-I	1653	Pd(II)		DCM	TBAP	Ag/AgCI	0.95		-1.51	402
Etio-I	I	Fe(III)	ö	N-MP	TEAP	SCE		-0.34		451
HP-IX	1654	(III) Mn	H ₂ O	H ₂ O	NaCI	NHE		-0.23		563
MAH-XIII	1655	Fe(II)		CH ₃ OH	NaClO4	Ag/AgCI			-0.24	107
MAH-XIII	I	Fe(II)	E	CH ₃ OH	NaCIO4	Ag/AgCI			-0.31	107
III-HW	1656	Fe(II)		CH ₃ OH	NaClO4	Ag/AgCI			-0.31	107
IIIX-HM	1657	Fe(II)		CH ₃ OH	NaClO4	Ag/AgCI			-0.33	107
IIIX-HM	I	Fe(II)	<u></u>	CH ₃ OH	NaClO4	Ag/AgCI			-0.46	107
IIIX-HMOM	1658	Fe(III)	ш ш	H ₂ O	HCI	SHE		-0.05		417
MP-IX	1659	Fe(III)	ш ш	H ₂ O	HCI	SHE		-0.29		417
XI-dd	1660	Fe(II)		H ₂ O	Na ₃ PO ₄ (0.03M)	Ag/AgCI			-0.05* -0.35*	539
XI-dd	I	Fe(III)	ö	DMSO	TBAPF ₆	Fc/Fc⁺		-0.73		506
XI-dd	I	Fe(III)	ö	H ₂ O	KCI	NHE		0.00		542
XI-dd	I	Fe(III)	<u>в</u>	H ₂ O	HCI	SHE		-0.24		417
PP-IX - TiO ₂ -Film	1661	Fe(III)	ū	DMSO	TBAPF ₆	Fc/Fc⁺		-1.06		506
PP-IXDME	1662	Fe(III)		H ₂ O	KCI	NHE		0.01		542

Table 23a. Heme and related macrocycles. (see structures in Figure 23a)

23a)
Figure
.⊆
e structures
ĕ
macrocycles. (
related
and
Heme
ole 23a.
Tak

		Ref.	451
	Red	3	
	ohyrin	2	
	Por	-	
a)	Metal /	Other	-0.26
ure 23;	и Ох	-	
in Fig	rphyri	2	
ctures	Ро	3	
s. (see stru		RE	SCE
macrocycle		Salt	TEAP
and related		Solvent	M-MP
leme a	-igand	L2	
: 23a. F	Axial L	[]	ö
Table		Metal	Fe(III)
		Structure	I
		Ring	PP-IXDME

			Axial I	Ligand				Porphyrin	ŏ	Me	tal /	Porphyrin	Red
Ring	Structure	Metal	L1	L2	Solveni	t Salt	RE -	3 2	-	ā	ler	1 2	3 Ref.
D(TADAP)TETMP	1663	Zn(II)			DCM	TBAP	SCE	1.13*	0.75			-1.52 -1.90*	53
trans-(AAP)TETMP	1664	Co(II)			DCM	TBAPF ₆	SCE		1.17*	0.49			53
trans-(AAP)TETMP	1664	Co(II)			DCM	TBAPF ₆	SCE		1.11*	0.55	-1.01		53
trans-(AAP)TETMP	I	Zn(II)			DCM	TBAP	SCE	1.10*	0.72			-1.62	53
trans-(APrAP)TETMP	1665	Co(II)			DCM	TBAPF ₆	SCE		1.21*	0.66			53
trans-(APrAP)TETMP	1665	Co(II)			DCM	TBAPF ₆	SCE		1.05*	0.71	-1.01		53
trans-(APrAP)TETMP	I	Zn(II)			DCM	TBAP	SCE	0.98*	0.70			-1.52	53
trans-(CIAP)TETMP	1666	Co(II)			DCM	TBAPF ₆	SCE	1.12	0.99	0.58			53
trans-(CIAP)TETMP	1666	Co(II)			DCM	TBAPF ₆	SCE	1.13	0.92	0.71	-1.05*		53
trans-(CIPrAP)TETMF	1667	Co(II)			DCM	TBAPF ₆	SCE	1.11	1.01	09.0			53
trans-B(3'-PP)TETMP	1668	2H			DCM	TBAPF ₆	SCE		0.86			-0.90	11
trans-B(4'-PP)TETMP	1669	2H			DCM	TBAPF ₆	SCE		0.87			-1.09	11
trans-B(DBP)TETMP	1670	(III)	BF₄		DCM	TBAP	Ag/Ag⁺			-1.05			432
trans-B(DBP)TETMP	I	Fe(III)	BF₄		DCM	TBAP	Ag/Ag⁺		0.64	-0.72			432
trans-B(DBP)TETMP	I	Ru(II)	00	сн _з он	DCM	TBAPF ₆ (0.2M)	SCE	1.00	0.61			-1.80*	204
trans-B(DBP)TETMP	1671	Ru(II)	00	See Fig.	DCM	TBAPF ₆ (0.2M)	SCE	0.98	0.48				204
trans-B(DBP)TETMP	1672	Ru(II)	CO	See Fig.	DCM	TBAPF ₆ (0.2M)	SCE	1.02	0.49			-2.00*	204
trans-B(DBP)TETMP	1673	Ru(II)	СО	See Fig.	DCM	TBAPF ₆ (0.2M)	SCE	1.05	0.51			-1.90*	204
trans-B(DBP)TETMP	1674	Ru(II)	CO	See Fig.	DCM	TBAPF ₆ (0.2M)	SCE	0.97	0.42			-1.80* -2.00*	204
trans-B(DBP)TETMP	1675	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆ (0.2M)	SCE	1.21	0.93*				204

Table 23b. meso-Substituted etioporphyrin II macrocycles. (see structures in Figure 23b)

	Porphyrin R
Figure 23b)	Metal /
(see structures in F	Porphyrin Ox
Table 23b. <i>meso</i> -Substituted etioporphyrin II macrocycles.	Axial Ligand

			Axial L	-igand				Porph	ıyrin (ň	Metal /	Porphy	rrin Red	
Ring	Structure	Metal	<u>[1</u>	L2	Solven	t Salt	BR	e	2	-	Other	-	3	Ref.
trans-B(DBP)TETMP	1676	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆ (0.2M)	SCE	0	.95	0.06				204
trans-B(DBP)TETMP	1677	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆ (0.2M)	SCE	0	.94	0.25				204
trans-B(DBP)TETMP	1678	Ru(II)	See Fig.	See Fig.	DCM	TBAPF ₆ (0.2M)	SCE	0	.82	0.11				204
trans-B(DBP)TETMP	I	Zn(II)			DCM	TBAP	Ag/Ag⁺			0.38				432
trans-B(DBP)TETMP	ł	Zn(II)			DCM	TBAP (0.5M)	Ag/Ag⁺	0	.53	0.28				469
trans-B(DBP)TETMP	ł	Zn(II)			THF	TBAP	Ag/Ag⁺			0.42				432
trans-B(DBP)TETMP	1679	Zn(II)	See Fig.		DCM	TBAP (0.5M)	Ag/Ag⁺	0	.52	0.29				469
trans-D(CIAP)TETMP	1680	Zn(II)			DCM	TBAP	SCE	0	.91	0.70		-1.51* -1	.84*	53
trans-D(CIPrAP)TETM	0 1681	Co(II)			DCM	TBAPF ₆	SCE	-	.12	0.91	0.72 -0.87			53
trans-D(CIPrAP)TETM	1	Zn(II)			DCM	TBAP	SCE	0	.86	0.64		-1.48 -1	.84*	53
trans-DPTETMP	1682	Fe(III)	ū		DCM	TBABF₄	Ag/Ag⁺			0.64	-0.72*			470
trans-DPTETMP	I	Zn(II)			DCM	TBABF₄	Ag/Ag⁺			0.38				470
trans-DPTETMP	ł	Zn(II)	Py		DCM	$TBABF_4$	Ag/Ag⁺			0.29*				470

			Axial Liga	pu			Porphy	rrin Ox	Metal /	Porph	iyrin Re	g
Ring	Structure	Metal		2 Solve	nt Salt	BR	e	4	Other	-	2	<u>3</u> Ref.
BHPrTMP	1683	Co(II)		РС	TBAP	SCE	0.9	8 0.38	3* 0.16* -0.03*	-1.01		289
D(AEtS)TMP	1684	Ru(II)		CH ₃ C	V Na ₂ SO ₄ (1.0M)	Ag/AgCI	0.6	8 0.40	0			489
trans-APDBPTHTMP	1685	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	~			543
trans-BEPDBPTHTMP	1686	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	01			543
trans-BEPDBPTHTMP/F ⁻	1687	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	01			543
trans-BNIPDBPTHTMP	1688	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	-0.98			543
trans-BPIPDBPTHTMP	1689	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	2 -1.24			543
trans-NIAPDBPTHTMP	1690	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	-0.94			543
trans-NIBPDBPTHTMP/F	1691	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	-0.94			543
trans-NIMEPDBPTHTMP	1692	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	-0.94			543
trans-NIMEPDBPTHTMP	/F ⁻ 1693	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	-0.95			543
trans-PIAPDBPTHTMP	1694	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	3 -1.18			543
trans-PIAPDBPTHTMP	1695	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	-1.18			543
trans-PIBPDBPTHTMP/F	1696	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	2 -1.24			543
trans-PIMEPDBPTHTMP.	/F ⁻ 1697	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	-1.19			543
trans-TMPDBPTHTMP	1698	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	01			543
trans-TMPDBPTHTMP/F	1699	Zn(II)		DMF	NR	Fc/Fc⁺		0.23	01			543

Table 23c. β -alkyl and meso-substituted porphyrins. (see structures in Figure 23c)

Rina	Structu	ire Metal	Axial I	_igand Solvent	Salt	L L L L L L L L L L L L L L L L L L L	Porphyr Other Ox	in Ox	,	Metal / Other	Porphyrir 1 2	n Red <u>3</u> Ref.
B(DTP)TMP	17	00 Co(II)	i	PC	TBAP	SCE		1.06*	0.33*		-0.97*	289
B(DTP)TMP	17	'00 Co(II)		РС	TBAP	SCE					-1.10	289
cis-B(SAPAP)DPP	17	.01 Zn(II)		DCM/EtOH	TBAPF ₆	Ag/Ag⁺		0.84	0.52			436
Cl ₈ [T(3'-SO ₃ P)P] ⁴⁻	17	102 Fe(III)		H ₂ O	PB (1.0 M)	SCE			1.30	1.00		569
D(AC ₁₀ S)PP-IX	17	'03 Fe(II)		H ₂ O	Na ₃ PO4	Ag/AgCI					-0.35*	539
D(AC ₂ S)PP-IX	17	'04 Fe(II)		H ₂ O	Na ₃ PO ₄	Ag/AgCI					-0.35*	539
D(AEtS)TMP	1	.05 Co(II)		РС	TBAP	SCE					-0.89	289
D(AEtS)TMP	I	Ru(II)	00	H ₂ O	Na ₂ SO ₄	Ag/AgCI			0.32			489
Furyl-(Por),	17	.06 Zn(II)		CH ₃ CN	(1.0M) TBAPF ₆	Ag/AgNO ₃			0.40		-1.20	407
ITO/(O')3SiPr-C60-CPTE	3PP 17	07 2H		DCM	TBAPF ₆	Ag/AgCI			1.08			340
ITO/(O')3SiPr-C60-CPTE	3PP :	Zn(II)		DCM	TBAPF ₆	Ag/AgCI			0.91			340
ITO/(O ⁻) ₃ SiPr-C ₆₀ -Por-F	⁻ c 17	08 2H		DCM	TBAPF ₆	Ag/AgCI			1.08	0.57		340
ITO/(0 ⁻) ₃ SiPr-C ₆₀ -Por-F	ا د	Zn(II)		DCM	TBAPF ₆	Ag/AgCI			0.88	0.56		340
ITO/(O ⁻) ₃ SiPr-C ₆₀ -PTBF	op 17	09 2H		DCM	TBAPF ₆	Ag/AgCI			1.06			340
ITO/(O ⁻) ₃ SiPr-C ₆₀ -PTBF	н Ч	Zn(II)		DCM	TBAPF ₆	Ag/AgCI			0.91			340
ITO/(O') ₃ SiPrAP-(Por)	17	10 2H		DCM	(0.2M) TBAPF ₆ (0.2M)	Ag/AgCI			0.95		-1.16	343

)						I			
		Axial	Ligand			Porphyrir	Ň	2	/letal /	Porph	yrin R	ed
Ring Stru	ucture	Metal L1	L2 Solvent	Salt	RE	Other Ox	7	-	Other	-	2	Ref.
ITO/(O ⁻) ₃ SiPrAP-(Por) ₂	1711	[2H] ₂	DCM	TBAPF ₆ (0.2M)	Ag/AgCI			1.04		-1.11		343
ITO/(O ⁻) ₃ SiPrAP-(Por) ₄	1712	[2H] ₈	DCM	TBAPF ₆ (0.2M)	Ag/AgCI			1.08		-1.03		343
ITO/(O ⁻) ₃ SiPrAP-CPTBPP	1713	2H	DCM	TBAPF ₆ (0.2M)	Ag/AgCI			1.05				340
ITO/(O ⁻) ₃ SiPrAP-CPTBPP	ł	Zn(II)	DCM	TBAPF ₆ (0.2M)	Ag/AgCI			0.81				340
PA-(Por),	1714	[2H],	DCM	TBAPF ₆	SCE			0.85		-0.63	-0.97	292
[Pc(CH ₃) ₈] ₂ -(M) ₂ -TPnP	1715	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.34, 0.99	0.52	0.12				239
[(Pc(tBu)₄) ₂ -(M) ₂ -Por2)] ₃	1716	[Eu((III)]s	DCM	TBAPF ₆ (1.0M)	Ag/Ag⁺	1.48, 1.23	0.76	0.31				418
[(Pc(tBu)₄)₃-(M)₃-M₁- (Bis-por3)]₂	1717	[Eu(III)] ₃ , Ce(III)	DCM	TBAPF ₆	Ag/Ag⁺	~1.14, ~0.78, ~0.78, ~1.14, ~1.40, ~1.40	0.46	0.26				495
[(Pc(tBu)₄)₃-(M)₃-M₁-TTP- (Bis-por4]	1718	[Eu(III)]₃, Ce(III)	DCM	TBAPF ₆	Ag/Ag⁺	~0.91, ~0.53, ~0.53, ~0.91, ~1.16, ~1.16	0.20	0.05				495
[(Pc(tBu)₄)₄-(M)₄-(Bis-por)]	1719	[Eu(III)]₄	DCM	TBAPF ₆	Ag/Ag⁺	0.98, 0.61, 0.52, 1.05, 1.08, ~1.31,	~0.15*	~0.15*				495
[Pc(tBu)₄]₂-(M)₂-DTDPA	1720	[Eu((III)] ₂	DCM	TBAPF ₆ (1.0M)	Ag/Ag⁺	1.34, 1.13	0.68	0.24				418
[Pc(tBu)₄]₂-(M)₂-M-TPnPS	1721	[Eu(III)] ₂	DCM	TBAPF ₆	Fc/Fc⁺	1.43, 1.03	0.52	0.11				239
[(Pc) ₂ -(M) ₂ -(Por1)] ₂	1722	[Eu((III)]4	DCM	TBAPF ₆ (1.0M)	Ag/Ag⁺	1.44, 1.23	0.77	0.30				418
(Pc) ₂ -(M) ₂ -DTPP	1723	[Eu(III)] ₂	DCM	TBAPF ₆	Fc/Fc⁺	1.44, 1.15	0.76	0.34				239
[(Pc) ₂ -(M) ₂ -Por3]	1724	[Eu((III)] ₂	DCM	TBAPF ₆ (1.0M)	Ag/Ag⁺	1.39, 1.18	0.72	0.27				418
(Pc) ₂ -(M) ₂ -TriPnPS	1725	[Eu(III)]2	DCM	TBAPF ₆	Fc/Fc⁺	1.57, 1.16	0.74	0.40				239

			Axial Lic	gand				Porphyrir	Ň		Metal /	Porph	iyrin R	ed
Ring	Structure	e Metal			Solvent	Salt	RE	Other Ox	2	-	Other	-	2	3 Ref.
(Pc) ₂ -(M) ₂ -TtBPP	1726	6 [Eu(III)]2			DCM	TBAPF ₆	Fc/Fc⁺	1.58, 1.25	0.85	0.42				239
[(Pc) ₂ -M-Por4] _n	1727	7 [Eu((III)]2			DCM	TBAPF ₆ (1.0M)	Ag/Ag⁺	1.68, 1.46	0.99	0.52				418
[(Pc) ₃ -(M) ₃ -M ₁ -TTP- (Bis-por2)] ₂	1728	8 [Eu(III)] ₃ , Ce(III	~		DCM	TBAPF ₆	Ag/Ag⁺	~1.05, 0.72, 0.57, ~1.05, ~1.35, ~1.35	0.38	0.20				495
[(Pc) ₃ -(M) ₃ -M ₁ -TTP- (Bis-por2]	1729	9 [Eu(III)]3, Ce(III	~		DCM	TBAPF ₆	Ag/Ag⁺	~1.04, ~0.67, ~0.67, ~1.04, ~1.29, ~1.29	0.35	0.16				495
Poly-M(SB)P-film	1730	0 2H			DCM	TBAPF ₆ (0.2M)	Fc/Fc⁺		1.40	0.80				180
Poly-M(SB)P-film	I	(III) Wu	Ċ		DCM	TBAPF ₆ (0.2M)	Fc/Fc⁺		1.20	0.70				180
Poly-T(SB)P-Film	1731	1 2H			DCM	TBAPF ₆ (0.2M)	Fc/Fc⁺		1.40	1.15				180
Polyyne-(Por) _n	1732	2 Zn(II)		-	CH ₃ CN	TBAPF ₆	Ag/AgCI			0.86		-1.08		437
Polyyne-thienyl-(Por),	1733	3 Zn(II)		-	CH ³ CN	TBAPF ₆	Ag/AgCI			0.81		-1.01		437
Polyyne-thienyl-(Por),	1734	4 Zn(II)		-	CH ³ CN	TBAPF ₆	Ag/AgCI			0.90		-0.99		437
PP-IXDME	1735	5 Os(VI)	02-		H ₂ O	KCI (1.0 M)	Ag/AgCI				0.18			514
PP-IXDME	I	Os(VI)	0 ²⁻		H ₂ O	KCI (1.0M)	Ag/AgCI				0.10			514
SAPAPTriPP	1736	6 Zn(II)			DCM/EtOH	TBAPF ₆	Ag/Ag⁺		0.82	0.54				436
[T(4-Py)P][PdCl ₂]₄ - LB film	1737	7 Mn(III)	CH ₃ CO ₂	' N	H ₂ O	Na₃PO₄ (0.05M)	Ag/AgCI				0.28			513
[T(4-Py)P][PtCl ₂]₄-LB	film 1738	8 Mn(III)	CH ₃ CO ₂	' 8	H ₂ O	Na ₃ PO ₄ (0.05M)	Ag/AgCI				0.62			513
T(SAMPAP)P	1735	6 Zn(II)		-	DCM/EtOH	TBAPF ₆	Ag/Ag⁺		0.96	0.62				436

			leiv				Porphyri	XO		Metal /	Porphy	/rin R	pe
Ring	Structure	Metal		L2 Solvent	Salt	RE	Other Ox	7	-	Other	-	R	Ref.
T(SB)P-Film	1740	(III)	G	DCM	TBAPF ₆	Fc/Fc ⁺		1.20	0.90				176
T(SB)P-Film	1740	(III)nM	ū	DCM	(U.ZM) TBAPF ₆	Fc/Fc⁺	1.20	0.90	0.60				180
Thienyl-(Por) _n	1741	Zn(II)		CH ₃ CN	(U.ZIVI) TBAPF ₆	Ag/AgNO	<u>.9</u>		0.50		-1.20		407
trans-[D(SB)P] _n	1742	(III) uM	ū	DCM	TBAPF ₆	Fc/Fc⁺		1.30	0.70				180
trans-B(SAPAP)DPP	1743	Zn(II)		DCM/EtOH	(U.ZM) I TBAPF ₆	^gA/g4		0.89	0.53				436
Tri(SAPAP)PP	1744	Zn(II)		DCM/EtOH	I TBAPF ₆	^gA/g4		0.97	0.62				436
[TTC₄VPP]⁺	1745	Zn(II)		H ₂ O	NaClO₄	Ag/AgCI			0.76				271
[TTC ₆ VPP] ⁺	1746	Zn(II)		H ₂ O	NaClO₄	Ag/AgCI			0.78				271
[TTC ₈ VPP] ⁺	1747	Zn(II)		H ₂ O	NaClO ₄	Ag/AgCI			0.78				271

Figure 1. Structures of tetraphenylporphyrin (TPP) macrocycles in Table 1

Figure 1. Structures of tetraphenylporphyrin (TPP) macrocycles in Table 1

Figure 2. Structures of octaethylporphyrin (OEP) macrocycles in Table 2

Figure 2. Structures of octaethylporphyrin (OEP) macrocycles in Table 2

Figure 3. Structures of tetramesitylporphyrin (TMP) and substituted TMP macrocycles in Table 3

Figure 4. Structures of meso-Substituted OEP and porphinone macrocycles in Table 4

Figure 4. Structures of meso-Substituted OEP and porphinone macrocycles in Table 4

Figure 4. Structures of meso-Substituted OEP and porphinone macrocycles in Table 4

Figure 5a. Structures of Picket-Fence porphyrins and related derivatives in Table 5a

106

 R_1

Figure 5a. Structures of Picket-Fence porphyrins and related derivatives in Table 5a

O CF3

112

Figure 5a. Structures of Picket-Fence porphyrins and related derivatives in Table 5a

Figure 5a. Structures of Picket-Fence porphyrins and related derivatives in Table 5a

Figure 5b. Structures of meso-Tetraalkylporphyrins in Table 5b

Figure 5b. Structures of meso-Tetraalkylporphyrins in Table 5b

134

ΗŅ

136

NH N

145

F

F

١F

ŃНŇ

NH N≍

тмз

TMS

CI

252

256

OH

ţBu

267

288

ĥ ΗŃ

ŅΗ Ņ=

289

Figure 6a. Structures of $\beta\text{-alkyl}$ and $\beta\text{-aryl}$ substituted TPP macrocycles in Table 6a

Figure 6a. Structures of $\beta\text{-alkyl}$ and $\beta\text{-aryl}$ substituted TPP macrocycles in Table 6a

304

Mixture of 2,3 / 2,12 and 2,13-isomers

Figure 6b. Structures of $\beta\mbox{-pyrrole}$ halogenated porphyrins in Table 6b

Figure 6b. Structures of $\beta\mbox{-pyrrole}$ halogenated porphyrins in Table 6b

Figure 6b. Structures of $\beta\mbox{-pyrrole}$ halogenated porphyrins in Table 6b

Figure 6c. Structures of TPP with mixed $\beta\mbox{-pyrrole}$ substituents in Table 6c

Figure 6c. Structures of TPP with mixed $\beta\mbox{-pyrrole}$ substituents in Table 6c

Figure 6d. Structures of nitro substituted TPP and tetraarylporphyrin (TArP) derivatives in Table 6d

Figure 6d. Structures of nitro substituted TPP and tetraarylporphyrin (TArP) derivatives in Table 6d

Figure 6d. Structures of nitro substituted TPP and tetraarylporphyrin (TArP) derivatives in Table 6d

Figure 6e. Structures of porphiones in Table 6e

-H

o

Figure 7. Structures of dodecaphenylporphyrin (DPP) and substituted DPP macrocycles in Table 7

∕,S

Figure 9a. Structures of N-substituted tetraarylporphyrins in Table 9a

tBu tBu tBu tBu tBu N N tBu tBu

Ν

ö

523

tBu

∠tBu

ဂူ

tBu

tBu

tBu

tBú

0

Figure 9a. Structures of N-substituted tetraarylporphyrins in Table 9a

,tBu

tBu

C

Figure 9a. Structures of N-substituted tetraarylporphyrins in Table 9a

Figure 9b. Structures of heteroporphyrins in Table 9b

Figure 9b. Structures of heteroporphyrins in Table 9b

Figure 9b. Structures of heteroporphyrins in Table 9b

547

548

K

NH

550

Ś

N:

C

Figure 9b. Structures of heteroporphyrins in Table 9b

Figure 9b. Structures of heteroporphyrins in Table 9b

Figure 9b. Structures of heteroporphyrins in Table 9b

Figure 9b. Structures of heteroporphyrins in Table 9b

Figure 9b. Structures of heteroporphyrins in Table 9b

Figure 9b. Structures of heteroporphyrins in Table 9b

Figure 10. Structures of tetrabenzoporphyrins (TBP) and tetraazaporphyrins (TArP) in Table 10

Figure 10. Structures of tetrabenzoporphyrins (TBP) and tetraazaporphyrins (TArP) in Table 10

 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$

Figure 11a. Structures of tetraarylporphyrins with charged peripheral groups in Table 11a

3Cl-

Figure 11a. Structures of tetraarylporphyrins with charged peripheral groups in Table 11a

-02C

631

Figure 11a. Structures of tetraarylporphyrins with charged peripheral groups in Table 11a

Figure 11a. Structures of tetraarylporphyrins with charged peripheral groups in Table 11a

OCH

OCH₃

Figure 11a. Structures of tetraarylporphyrins with charged peripheral groups in Table 11a

Figure 11a. Structures of tetraarylporphyrins with charged peripheral groups in Table 11a

Figure 11b. Structures of octaethylporphyrins with charged peripheral groups in Table 11b

Figure 11b. Structures of octaethylporphyrins with charged peripheral groups in Table 11b

Figure 12. Structures of porphyrin dimers in Table 12

R = - 0 tBu

711

Figure 12. Structures of porphyrin dimers in Table 12

tΒι

tB

B

,tBu

ťBu

Figure 12. Structures of porphyrin dimers in Table 12

Pł

Figure 12. Structures of porphyrin dimers in Table 12

Figure 12. Structures of porphyrin dimers in Table 12

Figure 13. Structures of porphyrin trimers in Table 13

Figure 14. Structures of porphyrin-corrole dyads in Table 14

Figure 14. Structures of porphyrin-corrole dyads in Table 14

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 15. Structures of porphyrin dendrimers, and oligimeric or polymeric porphyrins in Table 15

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

tBu tBu

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

Figure 16. Structures of porphyrin metal sandwich complexes in Table 16

C

Figure 17a. Structures of A_3B meso-substituted porphyrins in Table 17a

tBu

tBu

tBu

tBu

∽tBu

`tBu

⁺tBu

tBu

1074

1075

1076

C

∽tBu

tBu⊾

∠tBu

tBu

1090

CO₂H

HO₂C

ΗŃ

E

F

 $N \xrightarrow{F} F$

Ń н'n-

NH

N:

1130

Figure 17a. Structures of A_3B meso-substituted porphyrins in Table 17a

Figure 17a. Structures of $A_{\scriptscriptstyle 3}B$ meso-substituted porphyrins in Table 17a

Figure 17a. Structures of A_3B meso-substituted porphyrins in Table 17a

1174

tBu

ΗŃ

,tBu

Figure 17a. Structures of A_3B meso-substituted porphyrins in Table 17a

`tBu

∽tBu

ĊΝ

tBu

tBu

1224

Figure 17b. Structures of |*cis* and *trans*-A₂B₂ *meso*-substituted porphyrins in Table 17b

Figure 17b. Structures of *cis* and *trans*- A_2B_2 *meso*-substituted porphyrins in Table 17b

Figure 17c. Structures of *cis* and *trans*- A_2B *meso*-substituted porphyrins in Table 17c

Figure 17c. Structures of cis and trans-A₂B meso-substituted porphyrins in Table 17c

Figure 17d. Structures of *trans*-A₂BC *meso*-substituted porphyrins in Table 17d

Figure 17d. Structures of *trans*-A₂BC *meso*-substituted porphyrins in Table 17d

Figure 17d. Structures of *trans*-A₂BC *meso*-substituted porphyrins in Table 17d

Figure 17d. Structures of *trans*-A₂BC *meso*-substituted porphyrins in Table 17d

tBu

C₈⊦

tBu

сно

Figure 17d. Structures of *trans*-A₂BC *meso*-substituted porphyrins in Table 17d

tBu

tBu

tBu

∽tBu

Figure 17e. Structures of $A_{\scriptscriptstyle 2}$ meso-substituted porphyrins in Table 17e

Figure 17e. Structures of A_2 meso-substituted porphyrins in Table 17e

Figure 17f. Structures of β -pyrrole substitued porphyrins with less than four *meso*-substituents in Table 17f

Figure 17f. Structures of β -pyrrole substitued porphyrins with less than four *meso*-substituents in Table 17f

Figure 17f. Structures of β -pyrrole substitued porphyrins with less than four *meso*-substituents in Table 17f

Figure 17f. Structures of β -pyrrole substitued porphyrins with less than four *meso*-substituents in Table 17f

Fe OFeO

Figure 19. Structures of porphyrin-fullerene conjugates and porphyrin-fullerene complexes in Table 19

Figure 19. Structures of porphyrin-fullerene conjugates and porphyrin-fullerene complexes in Table 19

 $\begin{array}{c} \overset{tBu}{\underset{tBu}{\overset{}}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{tBu}{\overset{}} \overset{tBu}{\underset{tBu}{\overset{}} \overset{tBu}{\overset{tBu}{\overset{tBu}{\overset{}} \overset{tBu}{\overset{tBu}{\overset{tBu}{\overset{}} \overset{tBu}{\overset$

tBu

∠tBu

Figure 19. Structures of porphyrin-fullerene conjugates and porphyrin-fullerene complexes in Table 19

Figure 19. Structures of porphyrin-fullerene conjugates and porphyrin-fullerene complexes in Table 19

Figure 19. Structures of porphyrin-fullerene conjugates and porphyrin-fullerene complexes in Table 19

Figure 19. Structures of porphyrin-fullerene conjugates and porphyrin-fullerene complexes in Table 19

Figure 19. Structures of porphyrin-fullerene conjugates and porphyrin-fullerene complexes in Table 19

нŅ

Figure 19. Structures of porphyrin-fullerene conjugates and porphyrin-fullerene complexes in Table 19

Figure 20. Structures of porphyrin-C_{\rm 60}-ferrocene triads in Table 20

Figure 21. Structures of supramolecular porphyrin assemblies in Table 21

Figure 21. Structures of supramolecular porphyrin assemblies in Table 21

Figure 21. Structures of supramolecular porphyrin assemblies in Table 21

∠tBu

Figure 22a. Structures of porphyrins with covalently bonded peripheral metal complexes in Table 22a

Figure 22b. Structures of porphyrins with non-covalently bonded peripheral metal complexes in Table 22b

Figure 22b. Structures of porphyrins with non-covalently bonded peripheral metal complexes in Table 22b

Figure 22b. Structures of porphyrins with non-covalently bonded peripheral metal complexes in Table 22b

Figure 22b. Structures of porphyrins with non-covalently bonded peripheral metal complexes in Table 22b

1625

Figure 22b. Structures of porphyrins with non-covalently bonded peripheral metal complexes in Table 22b

Figure 22b. Structures of porphyrins with non-covalently bonded peripheral metal complexes in Table 22b

Figure 22b. Structures of porphyrins with non-covalently bonded peripheral metal complexes in Table 22b

Figure 22b. Structures of porphyrins with non-covalently bonded peripheral metal complexes in Table 22b

Figure 23a. Structures of heme and related macrocycles in Table 23a

Figure 23a. Structures of heme and related macrocycles in Table 23a

Figure 23b. Structures of meso-Substituted etioporphyrin II macrocycles in Table 23b

Figure 23b. Structures of meso-Substituted etioporphyrin II macrocycles in Table 23b

 L_1

Figure 23b. Structures of meso-Substituted etioporphyrin II macrocycles in Table 23b

Figure 23c. Structures of $\beta\text{-alkyl}$ and meso-substituted porphyrins in Table 23c

1683

1685

tBu

tBú

1687

F

∠tBu tBu

∕tBu

tBu

Figure 24. Structures of porphyrins and porphyin- $C_{\scriptscriptstyle 60}$ conjugates adsorbed on electrode surfaces in Table 24

Figure 24. Structures of porphyrins and porphyin- $C_{\rm 60}$ conjugates adsorbed on electrode surfaces in Table 24

1724

Figure 24. Structures of porphyrins and porphyin- $C_{\scriptscriptstyle 60}$ conjugates adsorbed on electrode surfaces in Table 24

Figure 24. Structures of porphyrins and porphyin- C_{60} conjugates adsorbed on electrode surfaces in Table 24

Figure 24. Structures of porphyrins and porphyin- C_{60} conjugates adsorbed on electrode surfaces in Table 24

References

- 1. Giribabu, L.; Rao, T. A.; Maiya, B. G., *Inorg. Chem.* **1999**, *38*, 4971-4980.
- Silva, G. d. F.; Carvalho da Silva, D.; Guimaraes, A. S.; do Nascimento, E.; Reboucas, J. S.; Peres de Araujo, M.; Dai de Carvalho, M. E. M.; Idemori, Y. M., J. Mol. Catal. A: Chem. 2007, 266, 274-283.
- Lahaye, D.; Muthukumaran, K.; Hung, C.-H.; Gryko, D.; Reboucas, J. S.; Spasojevic, I.; Batinic-Haberle, I.; Lindsey, J. S., *Bioorg. Med. Chem.* 2007, 15, 7066-7086.
- 4. D'Souza, F.; Deviprasad, G. R., J. Org. Chem. 2001, 66, 4601-4609.
- 5. Dixon, I. M.; Collin, J.-P., J. Porphyrins Phthalocyanines 2001, 5, 600-607.
- Zhu, W.; Sintic, M.; Ou, Z.; Sintic, P. J.; McDonald, J. A.; Brotherhood, P. R.; Crossley, M. J.; Kadish, K. M., *Inorg. Chem.* 2010, 49, 1027-1038.
- Dixon, I. M.; Collin, J.-P.; Sauvage, J.-P.; Flamigni, L., *Inorg. Chem.* 2001, 40, 5507-5517.
- Zhu, W.; Zhao, X.; Ou, Z.; Zhou, F.; Wang, X.; Kadish, K. M., *J. Porphyrins Phthalocyanines* 2009, *13*, 1233-1242.
- Kadish, K. M.; Fremond, L.; Burdet, F.; Barbe, J.-M.; Gros, C. P.; Guilard, R., J. Inorg. Biochem. 2006, 100, 858-868.
- Fujihara, T.; Tsuge, K.; Sasaki, Y.; Kaminaga, Y.; Imamura, T., *Inorg. Chem.* 2002, 41, 1170-1176.
- Odobel, F.; Blart, E.; Lagree, M.; Villieras, M.; Boujtita, H.; El Murr, N.;
 Caramori, S.; Alberto Bignozzi, C., J. Mater. Chem. 2003, 13, 502-510.

- Sazanovich, I. V.; Balakumar, A.; Muthukumaran, K.; Hindin, E.; Kirmaier, C.;
 Diers, J. R.; Lindsey, J. S.; Bocian, D. F.; Holten, D., *Inorg. Chem.* 2003, 42, 6616-6628.
- Lembo, A.; Tagliatesta, P.; Guldi, D. M., J. Phys. Chem. A 2006, 110, 11424-11434.
- Cheng, X.; Li, Y.; Shi, Y.; Shi, T., Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2006, 36, 673-679.
- Kadish, K. M.; Fremond, L.; Shen, J.; Chen, P.; Ohkubo, K.; Fukuzumi, S.; El Ojaimi, M.; Gros, C. P.; Barbe, J.-M.; Guilard, R., *Inorg. Chem.* 2009, *48*, 2571-2582.
- D'Souza, F.; Gadde, S.; Islam, D. M. S.; Wijesinghe, C. A.; Schumacher, A. L.;
 Zandler, M. E.; Araki, Y.; Ito, O., *J. Phys. Chem. A* 2007, *111*, 8552-8560.
- D'Souza, F.; Zandler, M. E.; Tagliatesta, P.; Ou, Z.; Shao, J.; Van Caemelbecke,
 E.; Kadish, K. M., *Inorg. Chem.* **1998**, *37*, 4567-4572.
- Ohkubo, K.; Sintic, P. J.; Tkachenko, N. V.; Lemmetyinen, H.; E, W.; Ou, Z.;
 Shao, J.; Kadish, K. M.; Crossley, M. J.; Fukuzumi, S., *Chem. Phys.* 2006, 326, 3-14.
- Schuster, D. I.; Li, K.; Guldi, D. M.; Palkar, A.; Echegoyen, L.; Stanisky, C.; Cross, R. J.; Niemi, M.; Tkachenko, N. V.; Lemmetyinen, H., *J. Am. Chem. Soc.* 2007, *129*, 15973-15982.
- Lin, C.-Y.; Chen, Y.-C.; Yao, C.-W.; Huang, S.-C.; Cheng, Y.-H., *Dalton Trans.* 2008, 793-799.

- Zhou, Y.; Wang, Z.; Wang, D.; Sugiura, K.; Sakata, Y., J. Porphyrins Phthalocyanines 2001, 5, 523-527.
- Fukuzumi, S.; Ohkubo, K.; Zhu, W.; Sintic, M.; Khoury, T.; Sintic, P. J.; E, W.;
 Ou, Z.; Crossley, M. J.; Kadish, K. M., *J. Am. Chem. Soc.* 2008, 130, 9451-9458.
- 23. Bhyrappa, P.; Sankar, M.; Varghese, B., Inorg. Chem. 2006, 45, 4136-4149.
- E, W.; Kadish, K. M.; Sintic, P. J.; Khoury, T.; Govenlock, L. J.; Ou, Z.; Shao, J.; Ohkubo, K.; Reimers, J. R.; Fukuzumi, S.; Crossley, M. J., *J. Phys. Chem. A* 2008, *112*, 556-570.
- Ou, Z.; E, W.; Zhu, W.; Thordarson, P.; Sintic, P. J.; Crossley, M. J.; Kadish, K.
 M., *Inorg. Chem.* 2007, 46, 10840-10849.
- Hogan, C. F.; Harris, A. R.; Bond, A. M.; Sly, J.; Crossley, M. J., *Phys. Chem. Chem. Phys.* 2006, *8*, 2058-2065.
- Kadish, K. M.; E, W.; Sintic, P. J.; Ou, Z.; Shao, J.; Ohkubo, K.; Fukuzumi, S.;
 Govenlock, L. J.; McDonald, J. A.; Try, A. C.; Cai, Z.-L.; Reimers, J. R.;
 Crossley, M. J., J. Phys. Chem. B 2007, 111, 8762-8774.
- Kadish, K. M.; E, W.; Zhan, R.; Khoury, T.; Govenlock, L. J.; Prashar, J. K.; Sintic, P. J.; Ohkubo, K.; Fukuzumi, S.; Crossley, M. J., *J. Am. Chem. Soc.* 2007, 129, 6576-6588.
- Kadish, K. M.; E, W.; Ou, Z.; Shao, J.; Sintic, P. J.; Ohkubo, K.; Fukuzumi, S.; Crossley, M. J., *Chem. Commun.* 2002, 356-357.
- Poddutoori, P. K.; Poddutoori, P.; Maiya, B. G., *J. Porphyrins Phthalocyanines* 2006, *10*, 1049-1060.

- Kadish, K. M.; Ou, Z.; Shao, J.; Gros, C. P.; Barbe, J.-M.; Jerome, F.; Bolze, F.;
 Burdet, F.; Guilard, R., *Inorg. Chem.* 2002, *41*, 3990-4005.
- Sibilia, S. A.; Hu, S.; Piffat, C.; Melamed, D.; Spiro, T. G., *Inorg. Chem.* 1997, 36, 1013-1019.
- Kadish, K. M.; Lin, M.; Van Caemelbecke, E.; De Stefano, G.; Medforth, C. J.;
 Nurco, D. J.; Nelson, N. Y.; Krattinger, B.; Muzzi, C. M.; Jaquinod, L.; Xu, Y.;
 Shyr, D. C.; Smith, K. M.; Shelnutt, J. A., *Inorg. Chem.* 2002, *41*, 6673-6687.
- Kadish, K. M.; Ou, Z.; Tan, X.; Satoh, W.; Yamamoto, Y.; Akiba, K.-Y., J. Porphyrins Phthalocyanines 2002, 6, 325-335.
- Kadish, K. M.; Shao, J.; Ou, Z.; Zhan, R.; Burdet, F.; Barbe, J.-M.; Gros, C. P.;
 Guilard, R., *Inorg. Chem.* 2005, 44, 9023-9038.
- Kadish, K. M.; Shao, J.; Ou, Z.; Fremond, L.; Zhan, R.; Burdet, F.; Barbe, J.-M.;
 Gros, C. P.; Guilard, R., *Inorg. Chem.* 2005, 44, 6744-6754.
- Liu, X.; Liu, J.; Jin, K.; Yang, X.; Peng, Q.; Sun, L., *Tetrahedron* 2005, 61, 5655-5662.
- Ou, Z.; E, W.; Shao, J.; Burn, P. L.; Sheehan, C. S.; Walton, R.; Kadish, K. M.; Crossley, M. J., *J. Porphyrins Phthalocyanines* 2005, *9*, 142-151.
- 39. Hindin, E.; Kirmaier, C.; Diers, J. R.; Tomizaki, K.-y.; Taniguchi, M.; Lindsey,
 J. S.; Bocian, D. F.; Holten, D., *J. Phys. Chem. B* 2004, *108*, 8190-8200.
- Kadish, K. M.; Finikova, O. S.; Espinosa, E.; Gros, C. P.; De Stefano, G.;
 Cheprakov, A. V.; Beletskaya, I. P.; Guilard, R., *J. Porphyrins Phthalocyanines*2004, 8, 1062-1066.

- 41. Ou, Z.; Shao, J.; D'Souza, F.; Tagliatesta, P.; Kadish, K. M., J. Porphyrins Phthalocyanines 2004, 8, 201-214.
- 42. Schuster, D. I.; Cheng, P.; Jarowski, P. D.; Guldi, D. M.; Luo, C.; Echegoyen,
 L.; Pyo, S.; Holzwarth, A. R.; Braslavsky, S. E.; Williams, R. M.; Klihm, G., J. *Am. Chem. Soc.* 2004, *126*, 7257-7270.
- 43. Ou, Z.; Tagliatesta, P.; Senge, M. O.; Shao, J.; Kadish, K. M., *J. Porphyrins Phthalocyanines* **2003**, *7*, 595-609.
- Van Caemelbecke, E.; Derbin, A.; Hambright, P.; Garcia, R.; Doukkali, A.;
 Saoiabi, A.; Ohkubo, K.; Fukuzumi, S.; Kadish, K. M., *Inorg. Chem.* 2005, 44, 3789-3798.
- Kadish, K. M.; Ou, Z.; Tan, X.; Boschi, T.; Monti, D.; Fares, V.; Tagliatesta, P., *J. Chem. Soc., Dalton Trans.* 1999, 1595-1602.
- Thamyongkit, P.; Speckbacher, M.; Diers, J. R.; Kee, H. L.; Kirmaier, C.;
 Holten, D.; Bocian, D. F.; Lindsey, J. S., *J. Org. Chem.* 2004, *69*, 3700-3710.
- 47. Hill, J. P.; Ariga, K.; Schumacher, A. L.; Karr, P. A.; D'Souza, F., *J. Porphyrins Phthalocyanines* **2007**, *11*, 390-396.
- 48. Guilard, R.; Jerome, F.; Gros, C. P.; Barbe, J.-M.; Ou, Z.; Shao, J.; Kadish, K.
 M., C. R. Acad. Sci., Ser. IIc: Chim. 2001, 4, 245-254.
- 49. Fukuzumi, S.; Ohkubo, K.; Imahori, H.; Shao, J.; Ou, Z.; Zheng, G.; Chen, Y.;
 Pandey, R. K.; Fujitsuka, M.; Ito, O.; Kadish, K. M., *Proc. Electrochem. Soc.*2001, 2001-11, 60-71.

- Ghosh, A.; Halvorsen, I.; Nilsen, H. J.; Steene, E.; Wondimagegn, T.; Lie, R.; van Caemelbecke, E.; Guo, N.; Ou, Z.; Kadish, K. M., *J. Phys. Chem. B* 2001, *105*, 8120-8124.
- Akiba, K.-y.; Nadano, R.; Satoh, W.; Yamamoto, Y.; Nagase, S.; Ou, Z.; Tan,
 X.; Kadish, K. M., *Inorg. Chem.* 2001, 40, 5553-5567.
- Sandanayaka, A. S. D.; Chitta, R.; Subbaiyan, N. K.; D'Souza, L.; Ito, O.;
 D'Souza, F., J. Phys. Chem. C 2009, 113, 13425-13432.
- 53. Kadish, K. M.; Shao, J.; Ou, Z.; Comte, C.; Gros, C. P.; Guilard, R., J. Porphyrins Phthalocyanines 2000, 4, 639-648.
- Michaudet, L.; Fasseur, D.; Guilard, R.; Ou, Z.; Kadish, K. M.; Dahaoui, S.;
 Lecomte, C., J. Porphyrins Phthalocyanines 2000, 4, 261-270.
- Kadish, K. M.; Ou, Z.; Adamian, V. A.; Guilard, R.; Gros, C. P.; Erben, C.;
 Will, S.; Vogel, E., *Inorg. Chem.* 2000, *39*, 5675-5682.
- Kumar, A. A.; Giribabu, L.; Reddy, D. R.; Maiya, B. G., *Inorg. Chem.* 2001, 40, 6757-6766.
- 57. D'Souza, F.; Deviprasad, G. R.; Zandler, M. E.; El-Khouly, M. E.; Fujitsuka, M.; Ito, O., *J. Phys. Chem. B* 2002, *106*, 4952-4962.
- Gray, S. D.; Thorman, J. L.; Adamian, V.; Kadish, K. M.; Woo, L. K., *Inorg. Chem.* 1998, 37, 1-4.
- Kadish, K. M.; Guo, N.; Van Caemelbecke, E.; Paolesse, R.; Monti, D.; Tagliatesta, P., *J. Porphyrins Phthalocyanines* 1998, *2*, 439-450.
- Guilard, R.; Perie, K.; Barbe, J.-M.; Nurco, D. J.; Smith, K. M.; Van Caemelbecke, E.; Kadish, K. M., *Inorg. Chem.* **1998**, *37*, 973-981.

- Veyrat, M.; Ramasseul, R.; Turowska-Tyrk, I.; Scheidt, W. R.; Autret, M.; Kadish, K. M.; Marchon, J.-C., *Inorg. Chem.* **1999**, *38*, 1772-1779.
- Kadish, K. M.; Van Caemelbecke, E.; D'Souza, F.; Lin, M.; Nurco, D. J.; Medforth, C. J.; Forsyth, T. P.; Krattinger, B.; Smith, K. M.; Fukuzumi, S.; Nakanishi, I.; Shelnutt, J. A., *Inorg. Chem.* 1999, 38, 2188-2198.
- Hutchison, J. A.; Sintic, P. J.; Brotherhood, P. R.; Scholes, C.; Blake, I. M.;
 Ghiggino, K. P.; Crossley, M. J., *J. Phys. Chem. C* 2009, *113*, 11796-11804.
- 64. D'Souza, F.; Maligaspe, E.; Karr, P. A.; Schumacher, A. L.; El Ojaimi, M.;
 Gros, C. P.; Barbe, J.-M.; Ohkudo, K.; Fukuzumi, S., *Chem.--Eur. J.* 2008, 14, 674-681.
- Fortage, J.; Scarpaci, A.; Viau, L.; Pellegrin, Y.; Blart, E.; Falkenstroem, M.; Hammarstroem, L.; Asselberghs, I.; Kellens, R.; Libaers, W.; Clays, K.; Eng, M.
 P.; Odobel, F., *Chem.--Eur. J.* 2009, *15*, 9058-9067.
- Kadish, K. M.; Guo, N.; Van Caemelbecke, E.; Froiio, A.; Paolesse, R.; Monti,
 D.; Tagliatesta, P.; Boschi, T.; Prodi, L.; Bolletta, F.; Zaccheroni, N., *Inorg. Chem.* 1998, 37, 2358-2365.
- Kadish, K. M.; Van Caemelbecke, E.; Gueletii, E.; Fukuzumi, S.; Miyamoto, K.;
 Suenobu, T.; Tabard, A.; Guilard, R., *Inorg. Chem.* 1998, *37*, 1759-1766.
- Fukuzumi, S.; Nakanishi, I.; Barbe, J.-M.; Guilard, R.; Van Caemelbecke, E.;
 Guo, N.; Kadish, K. M., Angew. Chem., Int. Ed. 1999, 38, 964-966.
- 69. Maligaspe, E.; Tkachenko, N. V.; Subbaiyan, N. K.; Chitta, R.; Zandler, M. E.; Lemmetyinen, H.; D'Souza, F., *J. Phys. Chem. A* **2009**, *113*, 8478-8489.

- 70. Fukuzumi, S.; Nakanishi, I.; Tanaka, K.; Tabard, A.; Guilard, R.; Van Caemelbecke, E.; Kadish, K. M., *Inorg. Chem.* **1999**, *38*, 5000-5006.
- Xie, Y.; Hill, J. P.; Schumacher, A. L.; Sandanayaka, A. S. D.; Araki, Y.; Karr,
 P. A.; Labuta, J.; D'Souza, F.; Ito, O.; Anson, C. E.; Powell, A. K.; Ariga, K., J. *Phys. Chem. C* 2008, *112*, 10559-10572.
- Kadish, K. M.; Autret, M.; Ou, Z.; Tagliatesta, P.; Boschi, T.; Fares, V., *Inorg. Chem.* 1997, 36, 204-207.
- Kadish, K. M.; Li, J.; Van Caemelbecke, E.; Ou, Z.; Guo, N.; Autret, M.;
 D'Souza, F.; Tagliatesta, P., *Inorg. Chem.* 1997, *36*, 6292-6298.
- 74. Annoni, E.; Pizzotti, M.; Ugo, R.; Quici, S.; Morotti, T.; Bruschi, M.; Mussini,
 P., *Eur. J. Inorg. Chem.* 2005, 3857-3874
- Fukuzumi, S.; Miyamoto, K.; Suenobu, T.; Van Caemelbecke, E.; Kadish, K.
 M., J. Am. Chem. Soc. 1998, 120, 2880-2889.
- Guldi, D. M.; Giacalone, F.; de la Torre, G.; Segura, J. L.; Martin, N., *Chem.--Eur. J.* 2005, *11*, 7199-7210.
- Yamamoto, Y.; Hirata, Y.; Kodama, M.; Yamaguchi, T.; Matsukawa, S.; Akiba,
 K.-y.; Hashizume, D.; Iwasaki, F.; Muranaka, A.; Uchiyama, M.; Chen, P.;
 Kadish, K. M.; Kobayashi, N., J. Am. Chem. Soc. 2010, 132, 12627-12638.
- Ghosh, A.; Mobin, S. M.; Froehlich, R.; Butcher, R. J.; Maity, D. K.; Ravikanth, M., *Inorg. Chem.* 2010, 49, 8287-8297.
- Nemykin, V. N.; Rohde, G. T.; Barrett, C. D.; Hadt, R. G.; Sabin, J. R.; Reina,
 G.; Galloni, P.; Floris, B., *Inorg. Chem.* 2010, 49, 7497-7509.
- 80. Wei, Z.; Ryan, M. D., Inorg. Chem. 2010, 49, 6948-6954.

- Suarez, S. A.; Fonticelli, M. H.; Rubert, A. A.; de la Llave, E.; Scherlis, D.;
 Salvarezza, R. C.; Marti, M. A.; Doctorovich, F., *Inorg. Chem.* 2010, 49, 6955-6966.
- Zhuang, C. F.; Zhang, Y. J.; Xia, A. Q.; Lian, W. H.; Wang, Y. F.; Zhang, P.;
 Shi, T. S., *Chin. Chem. Lett.* 2010, *21*, 769-773.
- Karakostas, N.; Schaming, D.; Sorgues, S.; Lobstein, S.; Gisselbrecht, J. P.; Giraudeau, A.; Lampre, I.; Ruhlmann, L., J. Photochem. Photobiol., A 2010, 213, 52-60.
- Lo, C.-F.; Hsu, S.-J.; Wang, C.-L.; Cheng, Y.-H.; Lu, H.-P.; Diau, E. W.-G.;
 Lin, C.-Y., J. Phys. Chem. C 2010, 114, 12018-12023.
- Patra, R.; Bhowmik, S.; Ghosh, S. K.; Rath, S. P., *Dalton Trans.* 2010, *39*, 5795-5806.
- El-Khouly, M. E.; Ju, D. K.; Kay, K.-Y.; D'Souza, F.; Fukuzumi, S., Chem.--Eur. J. 2010, 16, 6193-6202, S6193/1-S6193/6.
- Imahori, H.; Matsubara, Y.; Iijima, H.; Umeyama, T.; Matano, Y.; Ito, S.;
 Niemi, M.; Tkachenko, N. V.; Lemmetyinen, H., *J. Phys. Chem. C* 2010, *114*, 10656-10665.
- 88. Lee, C.-H.; Galoppini, E., J. Org. Chem. 2010, 75, 3692-3704.
- 89. Bhyrappa, P.; Arunkumar, C., J. Chem. Sci. 2010, 122, 233-238.
- 90. Kalita, D.; Morisue, M.; Kobuke, Y., New J. Chem. 2006, 30, 77-92.
- 91. Hill, J. P.; Sandanayaka, A. S. D.; McCarty, A. L.; Karr, P. A.; Zandler, M. E.; Charvet, R.; Ariga, K.; Araki, Y.; Ito, O.; D'Souza, F., *Eur. J. Org. Chem.* 2006, 595-603.

- 92. Kojima, T.; Hanabusa, K.; Ohkubo, K.; Shiro, M.; Fukuzumi, S., *Chem.--Eur. J.*2010, *16*, 3646-3655, S3646/1-S3646/10.
- 93. Ghosh, S. K.; Patra, R.; Rath, S. P., Inorg. Chem. 2010, 49, 3449-3460.
- Yedukondalu, M.; Maity, D. K.; Ravikanth, M., *Eur. J. Org. Chem.* 2010, 1544-1561, S1544/1-S1544/42.
- 95. Takai, A.; Chkounda, M.; Eggenspiller, A.; Gros, C. P.; Lachkar, M.; Barbe, J.M.; Fukuzumi, S., *J. Am. Chem. Soc.* 2010, *132*, 4477-4489.
- 96. Shetti, V. S.; Ravikanth, M., Inorg. Chem. 2010, 49, 2692-2700.
- 97. Gervaldo, M.; Funes, M.; Durantini, J.; Fernandez, L.; Fungo, F.; Otero, L., *Electrochim. Acta* 2010, 55, 1948-1957.
- Sun, E.; Cheng, X.; Wang, D.; Zhuang, C.; Xia, A.; Shi, T., J. Coord. Chem.
 2009, 62, 1584-1593.
- Bhattacharya, D.; Maji, S.; Pal, K.; Sarkar, S., *Inorg. Chem.* 2009, 48, 6362-6370.
- 100. Liu, X.; Liu, J.; Pan, J.; Chen, R.; Na, Y.; Gao, W.; Sun, L., *Tetrahedron* 2006, 62, 3674-3680.
- Sugiyasu, K.; Takeuchi, M., Chem.--Eur. J. 2009, 15, 6350-6362, S6350/1 S6350/7.
- Huang, T.-H.; Chen, Y.-J.; Lo, S.-S.; Yen, W.-N.; Mai, C.-L.; Kuo, M.-C.; Yeh,
 C.-Y., *Dalton Trans.* 2006, 2207-2213.
- Odom, S. A.; Kelley, R. F.; Ohira, S.; Ensley, T. R.; Huang, C.; Padilha, L. A.;
 Webster, S.; Coropceanu, V.; Barlow, S.; Hagan, D. J.; Van Stryland, E. W.;

Bredas, J.-L.; Anderson, H. L.; Wasielewski, M. R.; Marder, S. R., *J. Phys. Chem. A* 2009, *113*, 10826-10832.

- Zhutaeva, G. V.; Tarasevich, M. R.; Radina, M. V.; Chernyshova, I. S., *Russ. J. Electrochem.* 2009, 45, 1080-1088.
- 105. Richards, G.; Swavey, S., Eur. J. Inorg. Chem. 2009, 5367-5376.
- Yen, W.-N.; Lo, S.-S.; Kuo, M.-C.; Mai, C.-L.; Lee, G.-H.; Peng, S.-M.; Yeh,
 C.-Y., Org. Lett. 2006, 8, 4239-4242.
- Mie, Y.; Sonoda, K.; Neya, S.; Funasaki, N.; Taniguchi, S., *Bioelectrochem. Bioenerg.* 1998, 46, 175-184.
- Rajesh, K.; Rahiman, A. K.; Bharathi, K. S.; Sreedaran, S.; Gangadevi, V.; Narayanan, V., Spectrochim. Acta, Part A 2010, 77A, 652-660.
- Maligaspe, E.; Kumpulainen, T.; Lemmetyinen, H.; Tkachenko, N. V.;
 Subbaiyan, N. K.; Zandler, M. E.; D'Souza, F., *J. Phys. Chem. A* 2010, *114*, 268-277.
- 110. Boyle, N. M.; Rochford, J.; Pryce, M. T., Coord. Chem. Rev. 2010, 254, 77-102.
- 111. Craver, E.; McCrate, A.; Nielsen, M.; Swavey, S., *Inorg. Chim. Acta* 2010, *363*, 453-456.
- Schaming, D.; Allain, C.; Farha, R.; Goldmann, M.; Lobstein, S.; Giraudeau, A.;
 Hasenknopf, B.; Ruhlmann, L., *Langmuir* 2010, *26*, 5101-5109.
- 113. Shetti, V. S.; Ravikanth, M., *Eur. J. Org. Chem.* **2010**, 494-508, S494/1-S494/44.
- 114. Chiu, K. Y.; Su, Y. O., Chem. Commun. 2009, 2884-2886.

- Fuenzalida, F.; Dreyse, P.; Villagra, D.; Matsuhiro, B.; Mendoza, L.; Aguirre,
 M. J.; Isaacs, M., J. Coord. Chem. 2009, 62, 130-140.
- 116. Sheng, N.; Zhu, P.-H.; Ma, C.-Q.; Jiang, J.-Z., Dyes Pigm. 2009, 81, 91-96.
- 117. Ito, F.; Ishibashi, Y.; Khan, S. R.; Miyasaka, H.; Kameyama, K.; Morisue, M.;
 Satake, A.; Ogawa, K.; Kobuke, Y., *J. Phys. Chem. A* 2006, *110*, 12734-12742.
- Lin, C.-Y.; Lo, C.-F.; Luo, L.; Lu, H.-P.; Hung, C.-S.; Diau, E. W.-G., J. Phys. Chem. C 2009, 113, 755-764.
- Wang, D.; Cheng, X.; Shi, Y.; Sun, E.; Tang, X.; Zhuang, C.; Shi, T., Solid State Sci. 2009, 11, 195-199.
- Lembo, A.; Tagliatesta, P.; Guldi, D. M.; Wielopolski, M.; Nuccetelli, M., J. Phys. Chem. A 2009, 113, 1779-1793.
- 121. Harriman, A.; Elliott, K. J.; Alamiry, M. A. H.; Le Pleux, L.; Severac, M.;
 Pellegrin, Y.; Blart, E.; Fosse, C.; Cannizzo, C.; Mayer, C. R.; Odobel, F., J. *Phys. Chem. C* 2009, *113*, 5834-5842.
- 122. Kishore, R. S. K.; Kalsani, V.; Schmittel, M., Chem. Commun. 2006, 3690-3692.
- 123. Schmittel, M.; Kishore, R. S. K.; Bats, J. W., Org. Biomol. Chem. 2007, 5, 78-86.
- 124. Li, D.; Shi, Y.; Fa, H.; Zheng, W.; Shan, N.; Yang, M.; Wang, D.; Cheng, X.;
 Wang, X., J. Porphyrins Phthalocyanines 2006, 10, 1392-1397.
- 125. Kuo, M.-C.; Li, L.-A.; Yen, W.-N.; Lo, S.-S.; Lee, C.-W.; Yeh, C.-Y., *Dalton Trans.* **2007**, 1433-1439.

- Song, S.-N.; Li, D.-M.; Wu, J.-F.; Zhuang, C.-F.; Ding, H.; Song, W.-B.; Cui,
 L.-F.; Cao, G.-Z.; Liu, G.-F., *Eur. J. Inorg. Chem.* 2007, 1844-1853.
- 127. Bian, Y.; Chen, X.; Wang, D.; Choi, C.-F.; Zhou, Y.; Zhu, P.; Ng, D. K. P.; Jiang, J.; Weng, Y.; Li, X., *Chem.--Eur. J.* **2007**, *13*, 4169-4177.
- Fendt, L.-A.; Fang, H.; Plonska-Brzezinska, M. E.; Zhang, S.; Cheng, F.; Braun,
 C.; Echegoyen, L.; Diederich, F., *Eur. J. Org. Chem.* 2007, 4659-4673.
- 129. Rai, S.; Ravikanth, M., J. Org. Chem. 2008, 73, 8364-8375.
- Rochford, J.; Botchway, S.; McGarvey, J. J.; Rooney, A. D.; Pryce, M. T., J. Phys. Chem. A 2008, 112, 11611-11618.
- Fortage, J.; Boixel, J.; Blart, E.; Becker, H. C.; Odobel, F., *Inorg. Chem.* 2009, 48, 518-526.
- 132. Lee, C.-W.; Lu, H.-P.; Lan, C.-M.; Huang, Y.-L.; Liang, Y.-R.; Yen, W.-N.;
 Liu, Y.-C.; Lin, Y.-S.; Diau, R. W.-G.; Yeh, C.-Y., *Chem.--Eur. J.* 2009, 15, 1403-1412.
- Wu, C.-A.; Chiu, C.-L.; Mai, C.-L.; Lin, Y.-S.; Yeh, C.-Y., Chem.--Eur. J. 2009, 15, 4534-4537.
- 134. Davis, N. K. S.; Pawlicki, M.; Anderson, H. L., Org. Lett. 2008, 10, 3945-3947.
- Imaoka, T.; Tanaka, R.; Arimoto, S.; Sakai, M.; Fujii, M.; Yamamoto, K., J. Am. Chem. Soc. 2005, 127, 13896-13905.
- Bonifazi, D.; Accorsi, G.; Armaroli, N.; Song, F.; Palkar, A.; Echegoyen, L.;
 Scholl, M.; Seiler, P.; Jaun, B.; Diederich, F., *Helv. Chim. Acta* 2005, 88, 1839-1884.

- Inokuma, Y.; Ono, N.; Uno, H.; Kim, D. Y.; Noh, S. B.; Kim, D.; Osuka, A., Chem. Commun. 2005, 3782-3784.
- Xiao, X.; Xu, W.; Zhang, D.; Xu, H.; Lu, H.; Zhu, D., J. Mater. Chem. 2005, 15, 2557-2561.
- 139. Vail, S. A.; Krawczuk, P. J.; Guldi, D. M.; Palkar, A.; Echegoyen, L.; Tome, J.
 P. C.; Fazio, M. A.; Schuster, D. I., *Chem.--Eur. J.* 2005, *11*, 3375-3388.
- 140. Chang, J.-C.; Ma, C.-J.; Lee, G.-H.; Peng, S.-M.; Yeh, C.-Y., *Dalton Trans.*2005, 1504-1508.
- 141. D'Souza, F.; Smith, P. M.; Gadde, S.; McCarty, A. L.; Kullman, M. J.; Zandler, M. E.; Itou, M.; Araki, Y.; Ito, O., *J. Phys. Chem. B* 2004, *108*, 11333-11343.
- 142. Kashiwagi, Y.; Imahori, H.; Araki, Y.; Ito, O.; Yamada, K.; Sakata, Y.;
 Fukuzumi, S., J. Phys. Chem. A 2003, 107, 5515-5522.
- Solladie, N.; Aubert, N.; Gisselbrecht, J.-P.; Gross, M.; Sooambar, C.; Troiani, V., *Chirality* 2003, 15, S50-S56.
- El-Khouly, M. E.; Gadde, S.; Deviprasad, G. R.; Fujitsuka, M.; Ito, O.; D'Souza,
 F., J. Porphyrins Phthalocyanines 2003, 7, 1-7.
- Lintuluoto, J. M.; Borovkov, V. V.; Hembury, G. A.; Inoue, Y., Bull. Chem. Soc. Jpn. 2003, 76, 309-316.
- 146. Biffinger, J. C.; Sun, H.; Nelson, A. P.; DiMagno, S. G., Org. Biomol. Chem.
 2003, 1, 733-736.
- 147. D'Souza, F.; Gadde, S.; Zandler, M. E.; Arkady, K.; El-Khouly, M. E.;
 Fujitsuka, M.; Ito, O., J. Phys. Chem. A 2002, 106, 12393-12404.

- Arimura, T.; Nishioka, T.; Suga, Y.; Murata, S.; Tachiya, M., Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 2002, 379, 413-418.
- D'Souza, F.; Deviprasad, G. R.; Zandler, M. E.; Hoang, V. T.; Klykov, A.; Van Stipdonk, M.; Perera, A.; El-Khouly, M. E.; Fujitsuka, M.; Ito, O., *J. Phys. Chem. A* 2002, *106*, 3243-3252.
- 150. Fletcher, J. T.; Therien, M. J., Inorg. Chem. 2002, 41, 331-341.
- 151. Ikeda, C.; Tanaka, Y.; Fujihara, T.; Ishii, Y.; Ushiyama, T.; Yamamoto, K.;Yoshioka, N.; Inoue, H., *Inorg. Chem.* 2001, 40, 3395-3405.
- D'Souza, F.; Deviprasad, G. R.; El-Khouly, M. E.; Fujitsuka, M.; Ito, O., J. Am. Chem. Soc. 2001, 123, 5277-5284.
- Brettar, J.; Gisselbrecht, J.-P.; Gross, M.; Solladie, N., Chem. Commun. 2001, 733-734.
- 154. Ruhlmann, L.; Giraudeau, A., Eur. J. Inorg. Chem. 2001, 659-668.
- Dovidauskas, S.; Araki, K.; Toma, H. E., J. Porphyrins Phthalocyanines 2000, 4, 727-735.
- Barton, M. T.; Rowley, N. M.; Ashton, P. R.; Jones, C. J.; Spencer, N.; Tolley,
 M. S.; Yellowlees, L. J., *Dalton* 2000, 3170-3175.
- Shultz, D. A.; Lee, H.; Kumar, R. K.; Gwaltney, K. P., J. Org. Chem. 1999, 64, 9124-9136.
- 158. Camps, X.; Dietel, E.; Hirsch, A.; Pyo, S.; Echegoyen, L.; Hackbarth, S.; Roder,
 B., *Chem.--Eur. J.* 1999, *5*, 2362-2373.
- Ruhlmann, L.; Lobstein, S.; Gross, M.; Giraudeau, A., J. Org. Chem. 1999, 64, 1352-1355.

- Fortage, J.; Boixel, J.; Blart, E.; Hammarstrom, L.; Becker, H. C.; Odobel, F., Chem.--Eur. J. 2008, 14, 3467-3480.
- 161. Aratani, N.; Osuka, A., Bull. Chem. Soc. Jpn. 2001, 74, 1361-1379.
- 162. Ambroise, A.; Wagner, R. W.; Rao, P. D.; Riggs, J. A.; Hascoat, P.; Diers, J. R.; Seth, J.; Lammi, R. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S., *Chem. Mater.* 2001, *13*, 1023-1034.
- 163. Loewe, R. S.; Lammi, R. K.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten,
 D.; Lindsey, J. S., *J. Mater. Chem.* 2002, *12*, 1530-1552.
- 164. D'Souza, F.; El-Khouly, M. E.; Gadde, S.; McCarty, A. L.; Karr, P. A.; Zandler, M. E.; Araki, Y.; Ito, O., *J. Phys. Chem. B* 2005, *109*, 10107-10114.
- Monnereau, C.; Gomez, J.; Blart, E.; Odobel, F.; Wallin, S.; Fallberg, A.;
 Hammarstroem, L., *Inorg. Chem.* 2005, 44, 4806-4817.
- 166. El-Khouly, M. E.; Araki, Y.; Ito, O.; Gadde, S.; McCarty, A. L.; Karr, P. A.; Zandler, M. E.; D'Souza, F., *Phys. Chem. Chem. Phys.* **2005**, *7*, 3163-3171.
- 167. Doukkali, A.; Saoiabi, A.; Ferhat, M.; Mugnier, Y.; Vallat, A.; Guilard, R., New
 J. Chem. 2006, 30, 997-1003.
- 168. Ghosh, S. K.; Patra, R.; Rath, S. P., Inorg. Chem. 2008, 47, 9848-9856.
- Jose, D. A.; Shukla, A. D.; Ramakrishna, G.; Palit, D. K.; Ghosh, H. N.; Das, A., J. Phys. Chem. B 2007, 111, 9078-9087.
- Carvalho de Medeiros, M. A.; Gorgy, K.; Deronzier, A.; Cosnier, S., *Mater. Sci. Eng.*, C 2008, 28, 731-738.

- 171. Friedermann, G. R.; Halma, M.; Castro, K. A. D. d. F.; Benedito, F. L.; Doro, F. G.; Drechsel, S. M.; Mangrich, A. S.; Assis, M. d. D.; Nakagaki, S., *Appl. Catal., A* 2006, *308*, 172-181.
- 172. Diab, N.; Oni, J.; Schuhmann, W., Bioelectrochemistry 2005, 66, 105-110.
- do Nascimento, E.; Silva, G. d. F.; Caetano, F. A.; Fernandes, M. A. M.; da Silva, D. C.; de Carvalho, M. E. M. D.; Pernaut, J. M.; Reboucas, J. S.; Idemori, Y. M., *J. Inorg. Biochem.* 2005, *99*, 1193-1204.
- Safari, N.; Notash, B.; Nezhad, J. M.; Chiniforoshan, H.; Hadadzadeh, H.;
 Rezvani, A. R., *Inorg. Chim. Acta* 2005, 358, 2967-2974.
- Araki, K.; Winnischofer, H.; Viana, H. E. B.; Toyama, M. M.; Engelmann, F. M.; Mayer, I.; Formiga, A. L. B.; Toma, H. E., *J. Electroanal. Chem.* 2004, 562, 145-152.
- Poriel, C.; Ferrand, Y.; le Maux, P.; Raul-Berthelot, J.; Simonneaux, G., Chem. Commun. 2003, 1104-1105.
- 177. Diab, N.; Schuhmann, W., *Electrochim. Acta* 2001, 47, 265-273.
- 178. Spasojevic, I.; Batinic-Haberle, I., Inorg. Chim. Acta 2001, 317, 230-242.
- 179. Ruhlmann, L.; Zimmermann, J.; Fudickar, W.; Siggel, U.; Fuhrhop, J. H., J. *Electroanal. Chem.* 2001, 503, 1-14.
- Poriel, C.; Ferrand, Y.; Le Maux, P.; Rault-Berthelot, J.; Simonneaux, G., *Inorg. Chem.* 2004, *43*, 5086-5095.
- Khorasani-Motlagh, M.; Noroozifar, M.; Moodi, A., J. Porphyrins Phthalocyanines 2007, 11, 691-696.

- 182. Renner, M. W.; Bochot, C.; Heroux, A.; Mansuy, D.; Battioni, P., *Eur. J. Inorg. Chem.* 2007, 2426-2433.
- 183. Fry, H. C.; Lucas, H. R.; Zakharov, L. N.; Rheingold, A. L.; Meyer, G. J.; Karlin, K. D., *Inorg. Chim. Acta* 2008, 361, 1100-1115.
- Okamura, T.-a.; Iwamura, T.; Yamamoto, H.; Ueyama, N., J. Organomet. Chem. 2007, 692, 248-256.
- Guilard, R.; Burdet, F.; Barbe, J.-M.; Gros, C. P.; Espinosa, E.; Shao, J.; Ou, Z.;
 Zhan, R.; Kadish, K. M., *Inorg. Chem.* 2005, 44, 3972-3983.
- Roth, K. M.; Lindsey, J. S.; Bocian, D. F.; Kuhr, W. G., *Langmuir* 2002, 18, 4030-4040.
- Ozoemena, K. I.; Zhao, Z.; Nyokong, T., *Inorg. Chem. Commun.* 2006, *9*, 223-227.
- 188. Koga, H.; Hamada, T.; Sakaki, S., Dalton Trans. 2003, 1153-1160.
- 189. Crawford, P. W.; Ryan, M. D., Inorg. Chim. Acta 2002, 328, 13-22.
- Weyermann, P.; Diederich, F.; Gisselbrecht, J.-P.; Boudon, C.; Gross, M., *Helv. Chim. Acta* 2002, 85, 571-598.
- 191. Chen, J.; Ikeda, O., *Electroanalysis* 2001, 13, 1076-1081.
- Schiavon, M. A.; Iwamoto, L. S.; Ferreira, A. G.; Iamamoto, Y.; Zanoni, M. V. B.; Assis, M. d. D., *J. Braz. Chem. Soc.* 2000, *11*, 458-466.
- 193. Suzuki, N.; Higuchi, T.; Urano, Y.; Kikuchi, K.; Uchida, T.; Mukai, M.;
 Kitagawa, T.; Nagano, T., J. Am. Chem. Soc. 2000, 122, 12059-12060.
- Matsu-Ura, M.; Tani, F.; Nakayama, S.; Nakamura, N.; Naruta, Y., Angew.
 Chem., Int. Ed. 2000, 39, 1989-1991.

- 195. Araki, K.; Toma, H. E., *Electrochim. Acta* 1999, 44, 1577-1583.
- 196. Bolin, A.; Richter, M. M., Inorg. Chim. Acta 2009, 362, 1974-1976.
- 197. Fabrizi de Biani, F.; Grigiotti, E.; Laschi, F.; Zanello, P.; Juris, A.; Prodi, L.; Chichak, K. S.; Branda, N. R., *Inorg. Chem.* 2008, 47, 5425-5440.
- Funatsu, K.; Yasuda, N.; Ichimura, A.; Santo, R.; Sasaki, Y.; Imamura, T., Bull. Chem. Soc. Jpn. 2007, 80, 1556-1562.
- Berkessel, A.; Erturk, E.; Kaiser, P.; Klein, A.; Kowalczyk Radoslaw, M.;
 Sarkar, B., *Dalton Trans.* 2007, 3427-34.
- 200. Carter, S. M.; Lee, J.; Hixson, C. A.; Powell, D. R.; Wheeler, R. A.; Shaw, M. J.; Richter-Addo, G. B., *Dalton Trans.* 2006, 1338-1346.
- 201. Xie, J.; Huang, J.-S.; Zhu, N.; Zhou, Z.-Y.; Che, C.-M., Chem.--Eur. J. 2005, 11, 2405-2416.
- Trofimova, N. S.; Safronov, A. Y.; Ikeda, O., *Inorg. Chem.* 2003, 42, 1945-1951.
- 203. Li, Y.; Huang, J.-S.; Xu, G.-B.; Zhu, N.; Zhou, Z.-Y.; Che, C.-M.; Wong, K.-Y., *Chem.--Eur. J.* 2004, 10, 3486-3502.
- Stulz, E.; Sanders, J. K. M.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Fabrizi de Biani, F.; Grigiotti, E.; Zanello, P., *Inorg. Chem.* 2002, *41*, 5269-5275.
- 205. Zobi, F.; Stynes, D. V., Can. J. Chem. 2001, 79, 795-801.
- 206. Galardon, E.; Le Maux, P.; Paul, C.; Poriel, C.; Simonneaux, G., J. Organomet. Chem. 2001, 629, 145-152.
- 207. Chen, C. Y.; Cheng, S. H.; Su, Y. O., J. Electroanal. Chem. 2000, 487, 51-56.

- 208. Leung, W.-H.; Chim, J. L. C.; Lai, W.; Lam, L.; Wong, W.-T.; Chan, W. H.; Yeung, C.-H., *Inorg. Chim. Acta* **1999**, *290*, 28-35.
- Bando, C.; Furukawa, A.; Tsuge, K.; Takaishi, K.; Sasaki, Y.; Imamura, T., Bull. Chem. Soc. Jpn. 2007, 80, 1955-1964.
- Zhao, Z.; Ozoemena, K. I.; Maree, D. M.; Nyokong, T., *Dalton Trans.* 2005, 1241-1248.
- Sutton, L. R.; Scheloske, M.; Pirner, K. S.; Hirsch, A.; Guldi, D. M.;
 Gisselbrecht, J.-P., J. Am. Chem. Soc. 2004, 126, 10370-10381.
- 212. Sun, H.; Smirnov, V. V.; DiMagno, S. G., Inorg. Chem. 2003, 42, 6032-6040.
- Araki, K.; Dovidauskas, S.; Winnischofer, H.; Alexiou, A. D. P.; Toma, H. E., J. Electroanal. Chem. 2001, 498, 152-160.
- 214. Steiger, B.; Anson, F. C., J. Porphyrins Phthalocyanines 1999, 3, 159-165.
- 215. Sato, H.; Senbara, E.; Ogawa, T., Int. J. Nanosci. 2002, 1, 489-494.
- 216. Sun, H.; Xue, F.; Nelson, A. P.; Redepenning, J.; DiMagno, S. G., *Inorg. Chem.*2003, 42, 4507-4509.
- 217. Fukushima, K.; Funatsu, K.; Ichimura, A.; Sasaki, Y.; Suzuki, M.; Fujihara, T.;
 Tsuge, K.; Imamura, T., *Inorg. Chem.* 2003, *42*, 3187-3193.
- Blanco, L. M.; Gonzalez, L. T.; Kharisov, B. I.; Aguilera, E. N.; Garnovskii, A. D.; Longoria, F. E.; Costamagna, J.; Borodkin, G. S.; Korobov, M. S., Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2008, 38, 503-513.
- Richeter, S.; Jeandon, C.; Gisselbrecht, J.-P.; Ruppert, R.; Callot, H. J., *Inorg. Chem.* 2007, 46, 10241-10251.

- 220. Chen, Y.-J.; Chen, S.-S.; Lo, S.-S.; Huang, T.-H.; Wu, C.-C.; Lee, G.-H.; Peng,
 S.-M.; Yeh, C.-Y., *Chem. Commun.* 2006, 1015-1017.
- Hayashi, N.; Naoe, A.; Miyabayashi, K.; Miyake, M.; Higuchi, H., *Tetrahedron Lett.* 2005, 46, 6961-6965.
- 222. Richeter, S.; Jeandon, C.; Gisselbrecht, J.-P.; Graff, R.; Ruppert, R.; Callot, H.
 J., *Inorg. Chem.* 2004, *43*, 251-263.
- 223. Richeter, S.; Jeandon, C.; Gisselbrecht, J.-P.; Ruppert, R.; Callot, H. J., *J. Am. Chem. Soc.* 2002, *124*, 6168-6179.
- 224. Higuchi, H.; Maeda, T.; Miyabayashi, K.; Miyake, M.; Yamamoto, K., *Tetrahedron Lett.* 2002, *43*, 3097-3100.
- Poon, K.-W.; Liu, W.; Chan, P.-K.; Yang, Q.; Chan, T. W. D.; Mak, T. C. W.;
 Ng, D. K. P., J. Org. Chem. 2001, 66, 1553-1559.
- 226. Campbell, C. J.; Rusling, J. F.; Brueckner, C., J. Am. Chem. Soc. 2000, 122, 6679-6685.
- 227. Lin, C.-Y.; Chuang, L.-C.; Lin, Y.-C.; Lin, C.-L., *Dalton Trans.* 2004, 4006-4009.
- Lai, S.-W.; Hou, Y.-J.; Che, C.-M.; Pang, H.-L.; Wong, K.-Y.; Chang, C. K.;
 Zhu, N., *Inorg. Chem.* 2004, 43, 3724-3732.
- Mink, L. M.; Voce, J. W.; Ingersoll, J. E.; Nguyen, V. T.; Boggess, R. K.;
 Washburn, H.; Grove, D. I., *Polyhedron* 2000, 19, 1057-1062.
- Harmjanz, M.; Gill, H. S.; Scott, M. J., J. Am. Chem. Soc. 2000, 122, 10476-10477.

- Ou, Z.; Kadish, K. M.; E, W.; Shao, J.; Sintic, P. J.; Ohkubo, K.; Fukuzumi, S.;
 Crossley, M. J., *Inorg. Chem.* 2004, 43, 2078-2086.
- 232. Cissell, J. A.; Vaid, T. P.; Rheingold, A. L., Inorg. Chem. 2006, 45, 2367-2369.
- 233. Prashanth Kumar, P.; Maiya, B. G., New J. Chem. 2003, 27, 619-625.
- 234. Takagi, S.; Furuta, H.; Yagi, T.; Yamada, H., Bull. Chem. Soc. Jpn. 2005, 78, 101-106.
- 235. Yang, G. Y.; Ang, S. G.; Chng, L. L.; Lee, Y. W.; Lau, E. W.-P.; Lai, K. S.;
 Ang, H. G., *Chem.--Eur. J.* 2003, 9, 900-904.
- Cissell, J. A.; Vaid, T. P.; Yap, G. P. A., J. Am. Chem. Soc. 2007, 129, 7841-7847.
- 237. Kim, H. J.; Jeon, W. S.; Lim, J. H.; Hong, C. S.; Kim, H.-J., Polyhedron 2007, 26, 2517-2522.
- 238. Reddy, D. R.; Maiya, B. G., J. Porphyrins Phthalocyanines 2002, 6, 3-11.
- 239. Gryko, D.; Li, J.; Diers, J. R.; Roth, K. M.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S., *J. Mater. Chem.* 2001, *11*, 1162-1180.
- Bian, Y.; Jiang, J.; Tao, Y.; Choi, M. T. M.; Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.; Sun, X.; Arnold, D. P.; Zhou, Z.-Y.; Li, H.-W.; Mak, T. C. W.; Ng, D. K. P., J. Am. Chem. Soc. 2003, 125, 12257-12267.
- 241. Pan, N.; Bian, Y.; Yokoyama, M.; Li, R.; Fukuda, T.; Neya, S.; Jiang, J.;
 Kobayashi, N., *Eur. J. Inorg. Chem.* 2008, 5519-5523.
- 242. Miwa, H.; Kobayashi, N.; Ban, K.; Ohta, K., Bull. Chem. Soc. Jpn. 1999, 72, 2719-2728.

- 243. Shiragami, T.; Andou, Y.; Hamasuna, Y.; Yamaguchi, F.; Shima, K.; Yasuda, M., Bull. Chem. Soc. Jpn. 2002, 75, 1577-1582.
- 244. Nielsen, K. A.; Levillain, E.; Lynch, V. M.; Sessler, J. L.; Jeppesen, J. O., *Chem.--Eur. J.* 2009, 15, 506-516.
- 245. Ma, P.; Chen, Y.; Sheng, N.; Bian, Y.; Jiang, J., *Eur. J. Inorg. Chem.* 2009, 954-960.
- Hutchison, J. A.; Sintic, P. J.; Crossley, M. J.; Nagamura, T.; Ghiggino, K. P., *Phys. Chem. Chem. Phys.* 2009, 11, 3478-3489.
- 247. Fa, H.; Yin, W.; Hou, C.; Zheng, W.; Wang, D.; Wang, X., J. Coord. Chem.
 2009, 62, 1151-1161.
- 248. Cunningham, M.; McCrate, A.; Nielsen, M.; Swavey, S., *Eur. J. Inorg. Chem.*2009, 1521-1525.
- 249. Liu, H.; Duclairoir, F.; Fleury, B.; Dubois, L.; Chenavier, Y.; Marchon, J.-C., *Dalton Trans.* 2009, 3793-3799.
- 250. Knoll, J.; Swavey, S., Inorg. Chim. Acta 2009, 362, 2989-2993.
- Oliva, A. I.; Ventura, B.; Wurthner, F.; Camara-Campos, A.; Hunter, C. A.;
 Ballester, P.; Flamigni, L., *Dalton Trans.* 2009, 4023-4037.
- Yoshida, K.; Yamaguchi, S.; Osuka, A.; Shinokubo, H., Organometallics 2010, 29, 3997-4000.
- 253. Amaya, T.; Ueda, T.; Hirao, T., *Tetrahedron Lett.* **2010**, *51*, 3376-3379.
- Davis, N. K. S.; Thompson, A. L.; Anderson, H. L., Org. Lett. 2010, 12, 2124-2127.
- 255. Wytko, J.; Berl, V.; McLaughlin, M.; Tykwinski, R. R.; Schreiber, M.; Diederich, F.; Boudon, C.; Gisselbrecht, J.-P.; Gross, M., *Helv. Chim. Acta* 1998, 81, 1964-1977.
- Bourgeois, J.-P.; Diederich, F.; Echegoyen, L.; Nierengarten, J.-F., *Helv. Chim. Acta* 1998, 81, 1835-1844.
- 257. Toma, H. E.; Araki, K.; Silva, E. O., Monatsh. Chem. 1998, 129, 975-984.
- Yang, S. I.; Lammi, R. K.; Seth, J.; Riggs, J. A.; Arai, T.; Kim, D.; Bocian, D.
 F.; Holten, D.; Lindsey, J. S., *J. Phys. Chem. B* 1998, *102*, 9426-9436.
- 259. Ruhlmann, L.; Nakamura, A.; Vos, J. G.; Fuhrhop, J.-H., *Inorg. Chem.* 1998, 37, 6052-6059.
- D'Souza, F.; Hsieh, Y.-Y.; Deviprasad, G. R., J. Porphyrins Phthalocyanines 1998, 2, 429-437.
- 261. Funatsu, K.; Imamura, T.; Ichimura, A.; Sasaki, Y., *Inorg. Chem.* **1998**, *37*, 4986-4995.
- 262. Sen, A.; Anandhi, U.; Krishnan, V., Tetrahedron Lett. 1998, 39, 6539-6542.
- 263. Zheng, G.; Stradiotto, M.; Li, L., J. Electroanal. Chem. 1998, 453, 79-88.
- Sridevi, B.; Narayanan, S. J.; Srinivasan, A.; Chandrashekar, T. K.;
 Subramanian, J., J. Chem. Soc., Dalton Trans. 1998, 1979-1984.
- 265. Buchler, J. W.; Dippell, T., Eur. J. Inorg. Chem. 1998, 445-449.
- 266. Behar, D.; Dhanasekaran, T.; Neta, P.; Hosten, C. M.; Ejeh, D.; Hambright, P.;
 Fujita, E., *J. Phys. Chem. A* 1998, *102*, 2870-2877.
- 267. Ozette, K.; Battioni, P.; Leduc, P.; Bartoli, J.-F.; Mansuy, D., *Inorg. Chim. Acta* 1998, 272, 4-6.

- 268. Jiang, J.; Liu, W.; Law, W.-F.; Ng, D. K. P., *Inorg. Chim. Acta* 1998, 268, 49-53.
- 269. Ogawa, T.; Nishimoto, Y.; Yoshida, N.; Ono, N.; Osukua, A., *Chem. Commun.*1998, 337-338.
- Pollak, K. W.; Leon, J. W.; Frechet, J. M. J.; Maskus, M.; Abruna, H. D., *Chem. Mater.* 1998, 10, 30-38.
- 271. Yonemura, H.; Tahara, H.; Ohishi, K.; Lida, S.; Yamada, S., *Jpn. J. Appl. Phys.*2010, 49, 01AD04/1-01AD04/7.
- 272. Sooambar, C.; Troiani, V.; Bruno, C.; Marcaccio, M.; Paolucci, F.; Listorti, A.;
 Belbakra, A.; Armaroli, N.; Magistrato, A.; De Zorzi, R.; Geremia, S.; Bonifazi,
 D., Org. Biomol. Chem. 2009, 7, 2402-2413.
- 273. Reek, J. N. H.; Rowan, A. E.; Crossley, M. J.; Nolte, R. J. M., *J. Org. Chem.*1999, 64, 6653-6663.
- 274. Higuchi, H.; Shinbo, M.; Usuki, M.; Takeuchi, M.; Hasegawa, Y.; Tani, K.;
 Ojima, J., *Bull. Chem. Soc. Jpn.* **1999**, *72*, 1887-1898.
- Ruhlmann, L.; Schulz, A.; Giraudeau, A.; Messerschmidt, C.; Fuhrhop, J.-H., J.
 Am. Chem. Soc. 1999, 121, 6664-6667.
- Imahori, H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y., J. Phys. Chem. B 2000, 104, 2099-2108.
- 277. D'Souza, F.; Deviprasad, G. R.; Rahman, M. S.; Choi, J.-p., *Inorg. Chem.* 1999, 38, 2157-2160.
- Arnold, D. P.; Heath, G. A.; James, D. A., J. Porphyrins Phthalocyanines 1999, 3, 5-31.

- 279. Rhee, S. W.; Na, Y. H.; Do, Y.; Kim, J., Inorg. Chim. Acta 2000, 309, 49-56.
- 280. Rhee, S. W.; Park, B. B.; Do, Y.; Kim, J., Polyhedron 2000, 19, 1961-1966.
- Chmielewski, P. J.; Latos-Grazynski, L.; Schmidt, I., *Inorg. Chem.* 2000, 39, 5475-5482.
- Burrell, A. K.; Officer, D. L.; Reid, D. C. W.; Scott, S. M.; Gordon, K. C., J. Porphyrins Phthalocyanines 2000, 4, 626-633.
- 283. Da Ros, T.; Prato, M.; Carano, M.; Ceroni, P.; Paolucci, F.; Roffia, S.; Valli, L.;
 Guldi, D. M., *J. Organomet. Chem.* 2000, *599*, 62-68.
- 284. Lee, F. W.; Choi, M. Y.; Cheung, K. K.; Che, C. M., J. Organomet. Chem.
 2000, 595, 114-125.
- 285. Lin, C.-Y.; Wang, Y.-C.; Hsu, S.-J.; Lo, C.-F.; Diau, E. W.-G., J. Phys. Chem. C
 2010, 114, 687-693.
- 286. Indelli, M. T.; Chiorboli, C.; Ghirotti, M.; Orlandi, M.; Scandola, F.; Kim, H. J.; Kim, H.-J., J. Phys. Chem. B 2010, 114, 14273-14282.
- 287. Liu, Y.; Guo, X.; Xiang, N.; Zhao, B.; Huang, H.; Li, H.; Shen, P.; Tan, S., J. Mater. Chem. 2010, 20, 1140-1146.
- Megiatto, J. D.; Schuster, D. I.; Abwandner, S.; de Miguel, G.; Guldi, D. M., J.
 Am. Chem. Soc. 2010, 132, 3847-3861.
- 289. Eberle, C. S.; Viana, A. S.; Montforts, F.-P.; Abrantes, L. M., *J. Porphyrins Phthalocyanines* **2010**, *14*, 101-107.
- 290. Calfuman, K.; Aguirre, M. J.; Villagra, D.; Yanez, C.; Arevalo, C.; Matsuhiro,
 B.; Mendoza, L.; Isaacs, M., J. Solid State Electrochem. 2010, 14, 1065-1072.

- Lefebvre, J.-F.; Leclercq, D.; Gisselbrecht, J.-P.; Richeter, S., Eur. J. Org. Chem. 2010, 1912-1920, S1912/1-S1912/22.
- 292. Gervaldo, M.; Liddell, P. A.; Kodis, G.; Brennan, B. J.; Johnson, C. R.;
 Bridgewater, J. W.; Moore, A. L.; Moore, T. A.; Gust, D., *Photochem. Photobiol. Sci.* 2010, 9, 890-900.
- 293. Amaya, T.; Shimizu, Y.; Yakushi, Y.; Nishina, Y.; Hirao, T., *Tetrahedron Lett.*2010, *51*, 2416-2419.
- 294. Kira, A.; Matsubara, Y.; Iijima, H.; Umeyama, T.; Matano, Y.; Ito, S.; Niemi, M.; Tkachenko, N. V.; Lemmetyinen, H.; Imahori, H., *J. Phys. Chem. C* 2010, *114*, 11293-11304.
- 295. Huang, C.-Y.; Su, Y. O., Dalton Trans. 2010, 39, 8306-8312.
- Barbe, J.-M.; Habermeyer, B.; Khoury, T.; Gros, C. P.; Richard, P.; Chen, P.;
 Kadish, K. M., *Inorg. Chem.* 2010, 49, 8929-8940.
- 297. Maji, S.; Sarkar, S., Inorg. Chim. Acta 2010, 363, 2778-2785.
- 298. Goeransson, E.; Boixel, J.; Monnereau, C.; Blart, E.; Pellegrin, Y.; Becker, H.C.; Hammarstroem, L.; Odobel, F., *Inorg. Chem.* 2010, 49, 9823-9832.
- 299. Wu, S.-L.; Lu, H.-P.; Yu, H.-T.; Chuang, S.-H.; Chiu, C.-L.; Lee, C.-W.; Diau,
 E. W.-G.; Yeh, C.-Y., *Energy Environ. Sci.* 2010, *3*, 949-955.
- 300. He, L.; Zhu, Y.-Z.; Zheng, J.-Y.; Ma, Y.-F.; Chen, Y.-S., J. Photochem.
 Photobiol., A 2010, 216, 15-23.
- 301. Ou, Z.; Chen, P.; Kadish, K. M., Dalton Trans. 2010, 39, 11272-11276.
- 302. Kadish, K. M.; Ou, Z.; Zhan, R.; Khoury, T.; E, W.; Crossley, M. J., J. Porphyrins Phthalocyanines 2010, 14, 866-876.

- Durantini, J.; Otero, L.; Funes, M.; Durantini, E. N.; Fungo, F.; Gervaldo, M., Electrochim. Acta 2011, 56, 4126-4134.
- 304. Chen, P.; El Ojaimi, M.; Gros, C. P.; Richard, P.; Barbe, J.-M.; Guilard, R.; Shen, J.; Kadish, K. M., *Inorg. Chem.* 2011, 50, 3479-3489.
- Yedukondalu, M.; Maity, D. K.; Ravikanth, M., J. Porphyrins Phthalocyanines 15, 83-98.
- Rajeswara Rao, M.; Ravikanth, M., Eur. J. Org. Chem. 2011, 1335-1345, S1335/1-S1335/21.
- 307. Lakshmi, V.; Santosh, G.; Ravikanth, M., J. Organomet. Chem. 2011, 696, 925-931.
- Yokoyama, A.; Kojima, T.; Ohkubo, K.; Shiro, M.; Fukuzumi, S., J. Phys. Chem. A 2011, 115, 986-997.
- 309. Liu, J.-Y.; El-Khouly, M. E.; Fukuzumi, S.; Ng, D. K. P., Chem.--Eur. J. 17, 1605-1613, S1605/1-S1605/14.
- Iehl, J.; Vartanian, M.; Holler, M.; Nierengarten, J.-F.; Delavaux-Nicot, B.;
 Strub, J.-M.; Van Dorsselaer, A.; Wu, Y.; Mohanraj, J.; Yoosaf, K.; Armaroli,
 N., J. Mater. Chem. 2011, 21, 1562-1573.
- 311. Jiao, C.; Huang, K.-W.; Chi, C.; Wu, J., J. Org. Chem. 2011, 76, 661-664.
- Xu, W.; Feng, L.; Wu, Y.; Wang, T.; Wu, J.; Xiang, J.; Li, B.; Jiang, L.; Shu, C.;
 Wang, C., *Phys. Chem. Chem. Phys.* 2011, *13*, 428-433.
- 313. Santos, L. J.; CarvalhoDa-Silva, D.; Reboucas, J. S.; Alves, M. R. A.; Idemori,
 Y. M.; Matencio, T.; Freitas, R. P.; Alves, R. B., *Tetrahedron* 2011, 67, 228-235.

- 314. Jimenez, A. J.; Jeandon, C.; Gisselbrecht, J.-P.; Ruppert, R., *Eur. J. Org. Chem.*2009, 5725-5730, S5725/1-S5725/10.
- 315. Shetti, V. S.; Ravikanth, M., J. Porphyrins Phthalocyanines 2010, 14, 361-370.
- Dahal, S.; Krishnan, V.; Nethaji, M., Proc. Indian Acad. Sci., Chem. Sci. 1998, 110, 37-52.
- 317. Jiao, L.; Fang, Y.; Zhou, Y.; Wang, S.; Hao, E.; Vicente, M. G. H., J. Porphyrins Phthalocyanines 14, 523-530.
- 318. Kadish, K. M.; Chen, P.; Enakieva, Y. Y.; Nefedov, S. E.; Gorbunova, Y. G.; Tsivadze, A. Y.; Bessmertnykh-Lemeune, A.; Stern, C.; Guilard, R., J. Electroanal. Chem. 656, 61-71.
- 319. Rao, M. R.; Ghosh, A.; Ravikanth, M., Inorg. Chim. Acta 2011, 372, 436-441.
- 320. Feng, L.; Radhakrishnan, S. G.; Mizorogi, N.; Slanina, Z.; Nikawa, H.; Tsuchiya, T.; Akasaka, T.; Nagase, S.; Martin, N.; Guldi, D. M., *J. Am. Chem. Soc.* 2011, 133, 7608-7618.
- 321. Tidwell, C. P.; Dalila Fondren, L.; Nikles, D. E., *Molbank* 2011, M716.
- 322. Bhyrappa, P.; Bhavana, P., Chem. Phys. Lett. 2001, 349, 399-404.
- Bhyrappa, P.; Purushothaman, B.; Vittal, J. J., J. Porphyrins Phthalocyanines
 2003, 7, 682-692.
- Sankar, M.; Bhyrappa, P.; Varghese, B.; Praneeth, K. K.; Vaijayanthimala, G., J.
 Porphyrins Phthalocyanines 2005, 9, 413-422.
- 325. Bhyrappa, P.; Purushothaman, B., J. Chem. Soc., Perkin Trans. 2 2001, 238-242.
- 326. Tidwell, C. P.; Dalila Fondren, L.; Nikles, D. E., *Molbank*, No pp given.

- 327. Tidwell, C. P.; Alexander, L. A.; Fondren, L. D.; Belmore, K.; Nikles, D. E., Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2007, 46B, 1658-1665.
- Rondeau, D.; Rogalewicz, F.; Ohanessian, G.; Levillain, E.; Odobel, F.;
 Richomme, P., J. Mass Spectrom. 2005, 40, 628-635.
- 329. Nobukuni, H.; Shimazaki, Y.; Uno, H.; Naruta, Y.; Ohkubo, K.; Kojima, T.;
 Fukuzumi, S.; Seki, S.; Sakai, H.; Hasobe, T.; Tani, F., *Chem.--Eur. J.* 2010, *16*, 11611-11623, S11611/1-S11611/11.
- 330. Takai, A.; Gros, C. P.; Barbe, J.-M.; Fukuzumi, S., *Phys. Chem. Chem. Phys.*2010, *12*, 12160-12168.
- Honda, T.; Nakanishi, T.; Ohkubo, K.; Kojima, T.; Fukuzumi, S., J. Phys. Chem. C 2010, 114, 14290-14299.
- 332. Yamada, H.; Kuzuhara, D.; Ohkubo, K.; Takahashi, T.; Okujima, T.; Uno, H.;
 Ono, N.; Fukuzumi, S., *J. Mater. Chem.* 2010, *20*, 3011-3024.
- 333. Yamada, H.; Ohkubo, K.; Kuzuhara, D.; Takahashi, T.; Sandanayaka, A. S. D.;
 Okujima, T.; Ohara, K.; Ito, O.; Uno, H.; Ono, N.; Fukuzumi, S., *J. Phys. Chem. B* 2010, *114*, 14717-14728.
- Curiel, D.; Ohkubo, K.; Reimers, J. R.; Fukuzumi, S.; Crossley, M. J., *Phys. Chem. Chem. Phys.* 2007, *9*, 5260-5266.
- 335. Nobukuni, H.; Tani, F.; Shimazaki, Y.; Naruta, Y.; Ohkubo, K.; Nakanishi, T.;
 Kojima, T.; Fukuzumi, S.; Seki, S., *J. Phys. Chem. C* 2009, *113*, 19694-19699.
- Tanaka, M.; Ohkubo, K.; Gros, C. P.; Guilard, R.; Fukuzumi, S., J. Am. Chem. Soc. 2006, 128, 14625-14633.
- 337. Chen, W.; Fukuzumi, S., Eur. J. Inorg. Chem. 2009, 5494-5505.

- Ohkubo, K.; Garcia, R.; Sintic, P. J.; Khoury, T.; Crossley, M. J.; Kadish, K. M.;
 Fukuzumi, S., *Chem.--Eur. J.* 2009, *15*, 10493-10503, S10493/1-S10493/8.
- 339. Okamoto, K.; Fukuzumi, S., J. Phys. Chem. B 2005, 109, 7713-7723.
- Imahori, H.; Kimura, M.; Hosomizu, K.; Sato, T.; Ahn, T. K.; Kim, S. K.; Kim, D.; Nishimura, Y.; Yamazaki, I.; Araki, Y.; Ito, O.; Fukuzumi, S., *Chem.--Eur. J.* 2004, *10*, 5111-5122.
- Imahori, H.; Sekiguchi, Y.; Kashiwagi, Y.; Sato, T.; Araki, Y.; Ito, O.; Yamada,
 H.; Fukuzumi, S., *Chem.--Eur. J.* 2004, *10*, 3184-3196.
- Fukuzumi, S.; Endo, Y.; Kashiwagi, Y.; Araki, Y.; Ito, O.; Imahori, H., *J. Phys. Chem. B* 2003, *107*, 11979-11986.
- 343. Hasobe, T.; Imahori, H.; Ohkubo, K.; Yamada, H.; Sato, T.; Nishimura, Y.; Yamazaki, I.; Fukuzumi, S., *J. Porphyrins Phthalocyanines* **2003**, *7*, 296-312.
- Fukuzumi, S.; Nakanishi, I.; Tanaka, K.; Suenobu, T.; Tabard, A.; Guilard, R.;
 Van Caemelbecke, E.; Kadish, K. M., *J. Am. Chem. Soc.* 1999, *121*, 785-790.
- 345. Fukuzumi, S.; Ohkubo, K.; Imahori, H.; Shao, J.; Ou, Z.; Zheng, G.; Chen, Y.; Pandey, R. K.; Fujitsuka, M.; Ito, O.; Kadish, K. M., *J. Am. Chem. Soc.* 2001, *123*, 10676-10683.
- Imahori, H.; Tamaki, K.; Araki, Y.; Sekiguchi, Y.; Ito, O.; Sakata, Y.;
 Fukuzumi, S., J. Am. Chem. Soc. 2002, 124, 5165-5174.
- 347. Imahori, H.; Tamaki, K.; Araki, Y.; Hasobe, T.; Ito, O.; Shimomura, A.; Kundu,
 S.; Okada, T.; Sakata, Y.; Fukuzumi, S., *J. Phys. Chem. A* 2002, *106*, 2803-2814.

- Nakanishi, I.; Fukuzumi, S.; Barbe, J.-M.; Guilard, R.; Kadish, K. M., *Eur. J. Inorg. Chem.* 2000, 1557-1562.
- 349. Inisan, C.; Saillard, J.-Y.; Guilard, R.; Tabard, A.; Le Mest, Y., New J. Chem.
 1998, 22, 823-830.
- Wijesinghe, C. A.; Niemi, M.; Tkachenko, N. V.; Subbaiyan, N. K.; Zandler, M. E.; Lemmetyinen, H.; D'Souza, F., J. Porphyrins Phthalocyanines 2011, 15, 391-400.
- 351. Schumacher, A. L.; Hill, J. P.; Ariga, K.; D'Souza, F., *Electrochem. Commun.*2007, 9, 2751-2754.
- Yellappa, S.; Seetharamappa, J.; Rogers, L. M.; Chitta, R.; Singhal, R. P.;
 D'Souza, F., *Bioconjugate Chem.* 2006, 17, 1418-1425.
- 353. Hill, J. P.; Schmitt, W.; McCarty, A. L.; Ariga, K.; D'Souza, F., *Eur. J. Org. Chem.* 2005, 2893-2902.
- 354. Chitta, R.; Rogers, L. M.; Wanklyn, A.; Karr, P. A.; Kahol, P. K.; Zandler, M. E.; D'Souza, F., *Inorg. Chem.* 2004, 43, 6969-6978.
- 355. D'Souza, F.; Deviprasad, G. R.; Hsieh, Y.-Y., Chem. Commun. 1997, 533-534.
- 356. Davis, N. K. S.; Thompson, A. L.; Anderson, H. L., *J. Am. Chem. Soc. 133*, 30-31.
- 357. Frampton, M. J.; Akdas, H.; Cowley, A. R.; Rogers, J. E.; Slagle, J. E.; Fleitz, P. A.; Drobizhev, M.; Rebane, A.; Anderson, H. L., *Org. Lett.* 2005, *7*, 5365-5368.
- 358. Gebauer, A.; Schmidt, J. A. R.; Arnold, J., Inorg. Chem. 2000, 39, 3424-3427.
- 359. Blake, I. M.; Krivokapic, A.; Katterle, M.; Anderson, H. L., *Chem. Commun.*2002, 1662-1663.

- 360. Buchler, J. W.; Simon, J. R., J. Porphyrins Phthalocyanines 2001, 5, 500-502.
- 361. Woller, E. K.; DiMagno, S. G., J. Org. Chem. 1997, 62, 1588-1593.
- 362. Terazono, Y.; Dolphin, D., Inorg. Chim. Acta 2003, 346, 261-264.
- Lee, C.-W.; Lu, H.-P.; Reddy, N. M.; Lee, H.-W.; Diau, E. W.-G.; Yeh, C.-Y., Dyes Pigm. 91, 317-323.
- Sankar, M.; Ishizuka, T.; Wang, Z.; Ma, T.; Shiro, M.; Kojima, T., J. Porphyrins Phthalocyanines 2011, 15, 421-432.
- 365. de Miguel, G.; Wielopolski, M.; Schuster, D. I.; Fazio, M. A.; Lee, O. P.; Haley,
 C. K.; Ortiz, A. L.; Echegoyen, L.; Clark, T.; Guldi, D. M., *J. Am. Chem. Soc.*2011, 133, 13036-13054.
- 366. Xu, Z.; Swavey, S., Dalton Trans. 2011, 40, 7319-7326.
- Mathew, S.; Iijima, H.; Toude, Y.; Umeyama, T.; Matano, Y.; Ito, S.;
 Tkachenko, N. V.; Lemmetyinen, H.; Imahori, H., *J. Phys. Chem. C* 2011, *115*, 14415-14424.
- Rohde, G. T.; Sabin, J. R.; Barrett, C. D.; Nemykin, V. N., New J. Chem. 2011, 35, 1440-1448.
- 369. Feng, L.; Slanina, Z.; Sato, S.; Yoza, K.; Tsuchiya, T.; Mizorogi, N.; Akasaka, T.; Nagase, S.; Martin, N.; Guldi, D. M., *Angew. Chem., Int. Ed.* 2011, *50*, 5909-5912, S5909/1-S5909/20.
- Pellegrino, J.; Huebner, R.; Doctorovich, F.; Kaim, W., *Chem.--Eur. J.* 2011, *17*, 7868-7874, S7868/1-S7868/9.
- 371. Lee, C. H.; Dogutan, D. K.; Nocera, D. G., J. Am. Chem. Soc. 133, 8775-8777.

- 372. Li, M.; Ishihara, S.; Akada, M.; Liao, M.; Sang, L.; Hill, J. P.; Krishnan, V.; Ma,
 Y.; Ariga, K., *J. Am. Chem. Soc.* 2011, *133*, 7348-7351.
- 373. Ikeda, S.; Toganoh, M.; Furuta, H., Inorg. Chem. 2011, 50, 6029-6043.
- 374. Takahashi, A.; Kurahashi, T.; Fujii, H., Inorg. Chem. 2011, 50, 6922-6928.
- Collman, J. P.; Kendall, J. L.; Chen, J. L.; Collins, K. A.; Marchon, J.-C., *Inorg. Chem.* 2000, *39*, 1661-1667.
- 376. Matano, Y.; Nakashima, M.; Nakabuchi, T.; Imahori, H.; Fujishige, S.; Nakano, H., Org. Lett. 2008, 10, 553-556.
- 377. Fungo, F.; Otero, L.; Durantini, E. N.; Silber, J. J.; Sereno, L. E., *J. Phys. Chem. B* 2000, *104*, 7644-7651.
- Eugster, N.; Fermin, D. J.; Girault, H. H., J. Phys. Chem. B 2002, 106, 3428-3433.
- 379. Diev, V. V.; Hanson, K.; Zimmerman, J. D.; Forrest, S. R.; Thompson, M. E., Angew. Chem., Int. Ed. 2010, 49, 5523-5526.
- Barkigia, K. M.; Palacio, M.; Sun, Y.; Nogues, M.; Renner, M. W.; Varret, F.;
 Battioni, P.; Mansuy, D.; Fajer, J., *Inorg. Chem.* 2002, *41*, 5647-5649.
- 381. Bachmann, J.; Nocera, D. G., J. Am. Chem. Soc. 2005, 127, 4730-4743.
- 382. Abe, M.; Hilmey, D. G.; Stilts, C. E.; Sukumaran, D. K.; Detty, M. R., Organometallics 2002, 21, 2986-2992.
- 383. Gadde, S.; Islam, D. M. S.; Wijesinghe, C. A.; Subbaiyan, N. K.; Zandler, M. E.; Araki, Y.; Ito, O.; D'Souza, F., *J. Phys. Chem. C* 2007, *111*, 12500-12503.
- 384. Fritsch, J. M.; McNeill, K., Inorg. Chem. 2005, 44, 4852-4861.

- 385. Fitzgerald, J. P.; Lebenson, J. R.; Wang, G.; Yee, G. T.; Noll, B. C.; Sommer, R. D., *Inorg. Chem.* 2008, 47, 4520-4530.
- Casanova, M.; Zangrando, E.; Iengo, E.; Alessio, E.; Indelli, M. T.; Scandola,
 F.; Orlandi, M., *Inorg. Chem.* 2008, 47, 10407-10418.
- 387. Atefi, F.; McMurtrie, J. C.; Turner, P.; Duriska, M.; Arnold, D. P., *Inorg. Chem.*2006, 45, 6479-6489.
- 388. Kirmaier, C.; Song, H.-e.; Yang, E.; Schwartz, J. K.; Hindin, E.; Diers, J. R.; Loewe, R. S.; Tomizaki, K.-y.; Chevalier, F.; Ramos, L.; Birge, R. R.; Lindsey, J. S.; Bocian, D. F.; Holten, D., *J. Phys. Chem. B* 2010, *114*, 14249-14264.
- 389. Yoshida, N.; Ishizuka, T.; Yofu, K.; Murakami, M.; Miyasaka, H.; Okada, T.; Nagata, Y.; Itaya, A.; Cho, H. S.; Kim, D.; Osuka, A., *Chem.--Eur. J.* 2003, 9, 2854-2866.
- 390. Park, J. K.; Lee, H. R.; Chen, J.; Shinokubo, H.; Osuka, A.; Kim, D., J. Phys. Chem. C 2008, 112, 16691-16699.
- 391. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Graetzel, M., *Science* 2011, *334*, 629-634.
- 392. Alvaro, M.; Atienzar, P.; De la Cruz, P.; Delgado, J. L.; Troiani, V.; Garcia, H.; Langa, F.; Palkar, A.; Echegoyen, L., J. Am. Chem. Soc. 2006, 128, 6626-6635.
- Weiss, R.; Puhlhofer, F.; Jux, N.; Merz, K., Angew. Chem., Int. Ed. 2002, 41, 3815-3817.
- 394. Aleman, E. A.; Manriquez Rocha, J.; Wongwitwichote, W.; Godinez Mora-Tovar, L. A.; Modarelli, D. A., J. Phys. Chem. A 2011, 115, 6456-6471.

- Abdelrazzaq, F. B.; Kwong, R. C.; Thompson, M. E., J. Am. Chem. Soc. 2002, 124, 4796-4803.
- 396. Goodwin, J.; Bailey, R.; Pennington, W.; Rasberry, R.; Green, T.; Shasho, S.;
 Yongsavanh, M.; Echevarria, V.; Tiedeken, J.; Brown, C.; Fromm, G.; Lyerly,
 S.; Watson, N.; Long, A.; De Nitto, N., *Inorg. Chem.* 2001, 40, 4217-4225.
- 397. Gould, S. L.; Kodis, G.; Palacios, R. E.; de la Garza, L.; Brune, A.; Gust, D.;
 Moore, T. A.; Moore, A. L., *J. Phys. Chem. B* 2004, *108*, 10566-10580.
- Harada, K.; Fujitsuka, M.; Sugimoto, A.; Majima, T., J. Phys. Chem. A 2007, 111, 11430-11436.
- 399. Kobayashi, N.; Fukuda, T., J. Am. Chem. Soc. 2002, 124, 8021-8034.
- 400. Kozaki, M.; Akita, K.; Suzuki, S.; Okada, K., Org. Lett. 2007, 9, 3315-3318.
- 401. Linke, M.; Chambron, J.-C.; Heitz, V.; Sauvage, J.-P.; Encinas, S.; Barigelletti,
 F.; Flamigni, L., *J. Am. Chem. Soc.* 2000, *122*, 11834-11844.
- 402. Loh, Z.-H.; Miller, S. E.; Chang, C. J.; Carpenter, S. D.; Nocera, D. G., *J. Phys. Chem. A* 2002, *106*, 11700-11708.
- 403. Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y., J. Am. Chem. Soc.
 2000, 122, 6535-6551.
- 404. Maeda, D.; Shimakoshi, H.; Abe, M.; Fujitsuka, M.; Majima, T.; Hisaeda, Y., *Inorg. Chem.* **2010**, *49*, 2872-2880.
- 405. Maeda, H.; Ishikawa, Y.; Matsuda, T.; Osuka, A.; Furuta, H., *J. Am. Chem. Soc.*2003, *125*, 11822-11823.
- 406. Tanaka, T.; Lee, B. S.; Aratani, N.; Yoon, M.-C.; Kim, D.; Osuka, A., *Chem.--Eur. J.* **2011**, *17*, 14400-14412.

- 407. Umeyama, T.; Takamatsu, T.; Tezuka, N.; Matano, Y.; Araki, Y.; Wada, T.; Yoshikawa, O.; Sagawa, T.; Yoshikawa, S.; Imahori, H., *J. Phys. Chem. C* 2009, *113*, 10798-10806.
- 408. Molina-Ontoria, A.; Wielopolski, M.; Gebhardt, J.; Gouloumis, A.; Clark, T.;
 Guldi, D. M.; Martin, N., J. Am. Chem. Soc. 2011, 133, 2370-2373.
- 409. Moore, G. F.; Hambourger, M.; Kodis, G.; Michl, W.; Gust, D.; Moore, T. A.;
 Moore, A. L., J. Phys. Chem. B 2010, 114, 14450-14457.
- 410. Nakamura, T.; Fujitsuka, M.; Araki, Y.; Ito, O.; Ikemoto, J.; Takimiya, K.; Aso,
 Y.; Otsubo, T., *J. Phys. Chem. B* 2004, *108*, 10700-10710.
- 411. Noll, G.; Daub, J.; Lutz, M.; Rurack, K., J. Org. Chem. 2011, 76, 4859-4873.
- 412. Pellegrino, J.; Bari, S. E.; Bikiel, D. E.; Doctorovich, F., J. Am. Chem. Soc.
 2010, 132, 989-995.
- 413. Prathapan, S.; Yang, S. I.; Seth, J.; Miller, M. A.; Bocian, D. F.; Holten, D.;
 Lindsey, J. S., J. Phys. Chem. B 2001, 105, 8237-8248.
- Prodi, A.; Kleverlaan, C. J.; Indelli, M. T.; Scandola, F.; Alessio, E.; Iengo, E., *Inorg. Chem.* 2001, 40, 3498-3504.
- 415. Punidha, S.; Sinha, J.; Kumar, A.; Ravikanth, M., *J. Org. Chem.* **2008**, *73*, 323-326.
- 416. Tsue, H.; Imahori, H.; Kaneda, T.; Tanaka, Y.; Okada, T.; Tamaki, K.; Sakata,
 Y., J. Am. Chem. Soc. 2000, 122, 2279-2288.
- 417. Shifman, J. M.; Gibney, B. R.; Sharp, R. E.; Dutton, P. L., *Biochemistry* 2000, 39, 14813-14821.

- Schweikart, K.-H.; Malinovskii, V. L.; Yasseri, A. A.; Li, J.; Lysenko, A. B.;
 Bocian, D. F.; Lindsey, J. S., *Inorg. Chem.* 2003, *42*, 7431-7446.
- 419. Saha, S.; Flood, A. H.; Stoddart, J. F.; Impellizzeri, S.; Silvi, S.; Venturi, M.;
 Credi, A., J. Am. Chem. Soc. 2007, 129, 12159-12171.
- 420. Shiryaeva, I. M.; Collman, J. P.; Boulatov, R.; Sunderland, C. J., *Anal. Chem.*2003, 75, 494-502.
- 421. Singh, P.; Das, A. K.; Sarkar, B.; Niemeyer, M.; Roncaroli, F.; Olabe, J. A.;
 Fiedler, J.; Zalis, S.; Kaim, W., *Inorg. Chem.* 2008, 47, 7106-7113.
- 422. Song, J.; Aratani, N.; Heo, J. H.; Kim, D.; Shinokubo, H.; Osuka, A., J. Am. *Chem. Soc.* **2010**, *132*, 11868-11869.
- Spyroulias, G. A.; Despotopoulos, A. P.; Raptopoulou, C. P.; Terzis, A.; de Montauzon, D.; Poilblanc, R.; Coutsolelos, A. G., *Inorg. Chem.* 2002, *41*, 2648-2659.
- 424. Stromberg, J. R.; Marton, A.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Muthiah, C.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Meyer, G. J.; Holten, D., *J. Phys. Chem. C* 2007, *111*, 15464-15478.
- 425. Su, B.; Hatay, I.; Trojanek, A.; Samec, Z.; Khoury, T.; Gros, C. P.; Barbe, J.-M.;
 Daina, A.; Carrupt, P.-A.; Girault, H. H., *J. Am. Chem. Soc.* 2010, *132*, 2655-2662.
- 426. Subbaiyan, N. K.; Obraztsov, I.; Wijesinghe, C. A.; Tran, K.; Kutner, W.;
 D'Souza, F., J. Phys. Chem. C 2009, 113, 8982-8989.

- 427. Taniguchi, M.; Ra, D.; Kirmaier, C.; Hindin, E.; Schwartz, J. K.; Diers, J. R.; Knox, R. S.; Bocian, D. F.; Lindsey, J. S.; Holten, D., *J. Am. Chem. Soc.* 2003, *125*, 13461-13470.
- 428. Terazono, Y.; Kodis, G.; Andreasson, J.; Jeong, G.; Brune, A.; Hartmann, T.;
 Duerr, H.; Moore, A. L.; Moore, T. A.; Gust, D., *J. Phys. Chem. B* 2004, *108*, 1812-1814.
- 429. Tkachenko, N. V.; Lemmetyinen, H.; Sonoda, J.; Ohkubo, K.; Sato, T.; Imahori, H.; Fukuzumi, S., *J. Phys. Chem. A* 2003, *107*, 8834-8844.
- 430. Toganoh, M.; Ikeda, S.; Furuta, H., Inorg. Chem. 2007, 46, 10003-10015.
- 431. Tomizaki, K.-y.; Yu, L.; Wei, L.; Bocian, D. F.; Lindsey, J. S., *J. Org. Chem.*2003, 68, 8199-8207.
- 432. Wiberg, J.; Guo, L.; Pettersson, K.; Nilsson, D.; Ljungdahl, T.; Mrtensson, J.;
 Albinsson, B., J. Am. Chem. Soc. 2007, 129, 155-163.
- Winters, M. U.; Dahlstedt, E.; Blades, H. E.; Wilson, C. J.; Frampton, M. J.;
 Anderson, H. L.; Albinsson, B., J. Am. Chem. Soc. 2007, 129, 4291-4297.
- 434. Warren, J. J.; Mayer, J. M., J. Am. Chem. Soc. 2008, 130, 2774-2776.
- 435. Yamaguchi, S.; Shinokubo, H.; Osuka, A., J. Am. Chem. Soc. 2010, 132, 9992-9993.
- 436. Yasseri, A. A.; Syomin, D.; Malinovskii, V. L.; Loewe, R. S.; Lindsey, J. S.;
 Zaera, F.; Bocian, D. F., *J. Am. Chem. Soc.* 2004, *126*, 11944-11953.
- 437. Zhan, H.-M.; Lamare, S.; Ng, A.; Kenny, T.; Guernon, H.; Chan, W.-K.;
 Djurisic, A. B.; Harvey, P. D.; Wong, W.-Y., *Macromolecules* 2011, 44, 5155-5167.

- 438. Allain, C.; Favette, S.; Chamoreau, L.-M.; Vaissermann, J.; Ruhlmann, L.; Hasenknopf, B., *Eur. J. Inorg. Chem.* **2008**, 3433-3441.
- Bonifazi, D.; Scholl, M.; Song, F.; Echegoyen, L.; Accorsi, G.; Armaroli, N.;Diederich, F., Angew. Chem., Int. Ed. 2003, 42, 4966-4970.
- Che, C.-M.; Zhang, J.-L.; Zhang, R.; Huang, J.-S.; Lai, T.-S.; Tsui, W.-M.;
 Zhou, X.-G.; Zhou, Z.-Y.; Zhu, N.; Chang, C. K., *Chem.--Eur. J.* 2005, *11*, 7040-7053.
- 441. De la Torre, G.; Giacalone, F.; Segura, J. L.; Martin, N.; Guldi, D. M., Chem.- Eur. J. 2005, 11, 1267-1280.
- 442. Lo Schiavo, S.; Serroni, S.; Puntoriero, F.; Tresoldi, G.; Piraino, P., *Eur. J. Inorg. Chem.* **2002**, 79-86.
- 443. Kang, S.; Hayashi, H.; Umeyama, T.; Matano, Y.; Tkachenko, N. V.; Lemmetyinen, H.; Imahori, H., *Chem.--Asian J.* **2008**, *3*, 2065-2074.
- 444. Jokic, D.; Boudon, C.; Pognon, G.; Bonin, M.; Schenk, K. J.; Gross, M.; Weiss,
 J., *Chem.--Eur. J.* 2005, *11*, 4199-4209.
- 445. Habermeyer, B.; Takai, A.; Gros, C. P.; El Ojaimi, M.; Barbe, J.-M.; Fukuzumi,
 S.-I., *Chem.--Eur. J.* 2011, *17*, 10670-10681.
- Flamigni, L.; Talarico, A. M.; Serroni, S.; Puntoriero, F.; Gunter, M. J.;
 Johnston, M. R.; Jeynes, T. P., *Chem.--Eur. J.* 2003, *9*, 2649-2659.
- 447. Flamigni, L.; Johnston, M. R.; Giribabu, L., Chem.--Eur. J. 2002, 8, 3938-3947.
- 448. Aoki, K.; Goshima, T.; Kozuka, Y.; Kawamori, Y.; Ono, N.; Hisaeda, Y.; Takagi, H. D.; Inamo, M., *Dalton Trans.* **2009**, 119-125.

- 449. Mai, C.-L.; Huang, Y.-L.; Lee, G.-H.; Peng, S.-M.; Yeh, C.-Y., *Chem.--Eur. J.*2008, 14, 5120-5124.
- 450. Muller, M. A.; Gaplovsky, M.; Wirz, J.; Woggon, W.-D., *Helv. Chim. Acta* 2006, *89*, 2987-3001.
- 451. O'Shea, S. K.; Wall, T.; Lin, D., Transition Met. Chem. 2007, 32, 514-517.
- 452. Saha, S.; Johansson, E.; Flood, A. H.; Tseng, H.-R.; Zink, J. I.; Stoddart, J. F., *Chem.--Eur. J.* **2005**, *11*, 6846-6858.
- 453. Speck, M.; Kurreck, H.; Senge, M. O., Eur. J. Org. Chem. 2000, 2303-2314.
- 454. Amao, Y.; Okura, I., J. Mol. Catal. B: Enzym. 2002, 17, 9-21.
- 455. Armaroli, N.; Accorsi, G.; Song, F.; Palkar, A.; Echegoyen, L.; Bonifazi, D.;
 Diederich, F., *Chemphyschem* 2005, *6*, 732-43.
- 456. Armstrong, R. S.; Foran, G. J.; Hough, W. A.; D'Alessandro, D. M.; Lay, P. A.; Crossley, M. J., *Dalton Trans.* 2006, 4805-4813.
- 457. Arnold, D. P.; Hartnell, R. D.; Heath, G. A.; Newby, L.; Webster, R. D., *Chem. Commun.* **2002**, 754-755.
- 458. Bai, M.; Bao, M.; Ma, C.; Arnold, D. P.; Choi, M. T. M.; Ng, D. K. P.; Jiang, J., J. Mater. Chem. 2003, 13, 1333-1339.
- 459. Batinic-Haberle, I.; Spasojevic, I.; Stevens, R. D.; Bondurant, B.; Okado-Matsumoto, A.; Fridovich, I.; Vujaskovic, Z.; Dewhirst, M. W., *Dalton Trans.*2006, 617-624.
- 460. Batinic-Haberle, I.; Spasojevic, I.; Stevens, R. D.; Hambright, P.; Fridovich, I., *J. Chem. Soc., Dalton Trans.* 2002, 2689-2696.

- 461. Batinic-Haberle, I.; Spasojevic, I.; Stevens, R. D.; Hambright, P.; Neta, P.; Okado-Matsumoto, A.; Fridovich, I., *Dalton Trans.* **2004**, 1696-1702.
- Berezina, N. M.; Bazanov, M. I.; Semeikin, A. S.; Glazunov, A. V., *Russ. J. Electrochem.* 2011, 47, 42-46.
- 463. Guo, X.; Guo, B.; Shi, T., Inorg. Chim. Acta 2010, 363, 317-323.
- 464. Haber, J.; Matachowski, L.; Pamin, K.; Poltowicz, J., *J. Mol. Catal. A: Chem.*2000, *162*, 105-109.
- 465. Biffinger, J. C.; Uppaluri, S.; Sun, H.; DiMagno, S. G., *ACS Catal.* 2011, *1*, 764-771.
- 466. Bochot, C.; Bartoli, J.-F.; Frapart, Y.; Dansette, P. M.; Mansuy, D.; Battioni, P.,
 J. Mol. Catal. A: Chem. 2007, 263, 200-205.
- Cheng, C.-F.; Hung, C.-I.; Su, Y. O.; Cheng, S.-H., J. Electroanal. Chem. 2004, 566, 169-175.
- 468. Cheuquepan, W.; Villagra, D.; Azocar, M. I.; Ramirez, G.; Chen, Y. Y.; Matsuhiro, B.; Mendoza, L.; Isaacs, M.; Aguirre, M. J., *J. Chil. Chem. Soc.* 2010, 55, 253-256.
- 469. Kumamoto, S.; Arimura, T.; Tachiya, M., J. Oleo Sci. 2006, 55, 41-45.
- 470. Kilsa, K.; Macpherson, A. N.; Gillbro, T.; Martensson, J.; Albinsson, B., *Spectrochim. Acta, Part A* 2001, *57A*, 2213-2227.
- 471. Khan, T. K.; Ravikanth, M., Tetrahedron 2011, 67, 5816-5824.
- 472. Karr, P. A.; Zandler, M. E.; Beck, M.; Jaeger, J. D.; McCarty, A. L.; Smith, P. M.; D'Souza, F., *J. Mol. Struct.: THEOCHEM* 2006, 765, 91-103.

- 473. Karousis, N.; Sandanayaka, A. S. D.; Hasobe, T.; Economopoulos, S. P.; Sarantopoulou, E.; Tagmatarchis, N., *J. Mater. Chem.* **2011**, *21*, 109-117.
- 474. Jou, J.-Y.; Chang, C.-H.; Lee, G.-H.; Wang, Y.; Su, Y. O.; Yeh, W.-L.; Cheng,
 S.-H., *J. Porphyrins Phthalocyanines* 2003, *7*, 674-681.
- 475. Johanson, U.; Marandi, M.; Sammelselg, V.; Tamm, J., *J. Electroanal. Chem.*2005, 575, 267-273.
- 476. Harada, R.; Okawa, H.; Kojima, T., Inorg. Chim. Acta 2005, 358, 489-496.
- 477. Haber, J.; Matachowski, L.; Pamin, K.; Poltowicz, J., J. Mol. Catal. A: Chem.
 2003, 198, 215-221.
- 478. Claussen, J. A.; Ochoa, G.; Paez, M.; Costamagna, J.; Gulppi, M.; Nyokong, T.;
 Bedioui, F.; Zagal, J. H., J. Solid State Electrochem. 2008, 12, 473-481.
- 479. Daphnomili, D.; Grammatikopoulou, M.; Raptopoulou, C.; Charalambidis, G.;Lazarides, T.; Coutsolelos, A. G., *Bioinorg. Chem. Appl.* 2010, No pp given.
- 480. Dong, S.; Zhang, X.; Zhou, Y.; Jiang, J.; Bian, Y., Dyes Pigm. 2011, 91, 99-104.
- 481. Cornejo, G.; Ramirez, G.; Villagran, M.; Costamagna, J.; Trollund, E.; Aguirre, M. J., J. Chil. Chem. Soc. 2003, 48, 49-55.
- 482. Engelmann, F. M.; Losco, P.; Winnischofer, H.; Araki, K.; Toma, H. E., J. *Porphyrins Phthalocyanines* **2002**, *6*, 33-42.
- 483. Finikova, O. S.; Chen, P.; Ou, Z.; Kadish, K. M.; Vinogradov, S. A., J. Photochem. Photobiol., A 2008, 198, 75-84.
- 484. Formiga, A. L. B.; Nogueira, A. F.; Araki, K.; Toma, H. E., New J. Chem. 2008, 32, 1167-1174.
- 485. George, R. G.; Padmanabhan, M., Polyhedron 2003, 22, 3145-3154.

- 486. Shukla, A. D.; Ganguly, B.; Dave, P. C.; Samanta, A.; Das, A., *Chem. Commun.*2002, 2648-2649.
- 487. Mei, W.-J.; Liu, J.; Chao, H.; Ji, L.-N.; Li, A.-X.; Liu, J.-Z., *Transition Met. Chem.* 2003, 28, 852-857.
- 488. Matano, Y.; Nakabuchi, T.; Imahori, H., Pure Appl. Chem. 2010, 82, 583-593.
- 489. Martin, R.; Cao, R.; Esteva, A. M.; Montforts, F.-P., J. Porphyrins Phthalocyanines 2009, 13, 35-40.
- 490. Mansour, H.; El-Khouly, M. E.; Shaban, S. Y.; Ito, O.; Jux, N., J. Porphyrins Phthalocyanines 2007, 11, 719-728.
- Mukherjee, S.; Banerjee, S.; Bauri, A. K.; Bhattacharya, S., J. Mol. Struct. 2011, 1004, 13-25.
- 492. Lu, F.; Sun, X.; Li, R.; Liang, D.; Zhu, P.; Choi, C.-F.; Ng, D. K. P.; Fukuda, T.;
 Kobayashi, N.; Bai, M.; Ma, C.; Jiang, J., *New J. Chem.* 2004, *28*, 1116-1122.
- 493. Shen, Z.; Uno, H.; Shimizu, Y.; Ono, N., Org. Biomol. Chem. 2004, 2, 3442-3447.
- 494. Shin, E. J.; Kim, D., J. Photochem. Photobiol., A 2002, 152, 25-31.
- 495. Schweikart, K.-H.; Malinovskii, V. L.; Diers, J. R.; Yasseri, A. A.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S., *J. Mater. Chem.* 2002, *12*, 808-828.
- 496. Kachadourian, R.; Johnson, C. A.; Min, E.; Spasojevic, I.; Day, B. J., *Biochem. Pharmacol.* 2004, 67, 77-85.
- 497. Schaeferling, M.; Baeuerle, P., J. Mater. Chem. 2004, 14, 1132-1141.
- 498. Santosh, G.; Ravikanth, M., Chem. Phys. Lett. 2007, 448, 248-252.
- 499. Saito, K.; Hirao, T., Tetrahedron 2002, 58, 7491-7501.

- 500. Rochler, J. W.; Simon, J. R., Z. Anorg. Allg. Chem. 2000, 626, 1731-1732.
- 501. Shi, Y.; Tang, X.; Sun, E.; Cheng, X.; Wang, D.; Yu, S.; Shi, T., Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2008, 38, 431-438.
- 502. Punidha, S.; Ravikanth, M., Tetrahedron 2008, 64, 8016-8028.
- 503. Punidha, S.; Rai, S.; Ravikanth, M., J. Porphyrins Phthalocyanines 2008, 12, 1030-1040.
- 504. Poltowicz, J.; Haber, J., J. Mol. Catal. A: Chem. 2004, 220, 43-51.
- 505. Palacio, M.; Juillard, A.; Leduc, P.; Battioni, P.; Mansuy, D., J. Organomet. Chem. 2002, 643-644, 522-524.
- 506. Obare, S. O.; Ito, T.; Meyer, G. J., *Environ. Sci. Technol.* **2005**, *39*, 6266-6272.
- 507. Obata, M.; Tanihara, N.; Nakai, M.; Harada, M.; Akimoto, S.; Yamazaki, I.;
 Ichimura, A.; Kinoshita, I.; Mikuriya, M.; Hoshino, M.; Yano, S., *Dalton Trans.*2004, 3283-3287.
- 508. Narra, M.; Elliott, P.; Swavey, S., Inorg. Chim. Acta 2006, 359, 2256-2262.
- 509. Nakazaki, J.; Senshu, Y.; Segawa, H., Polyhedron 2005, 24, 2538-2543.
- 510. Moreira, E. Z.; Ferreira, A. D. Q.; Neri, C. R.; Mukhopadhyay, S.; Dovidauskas,
 S.; Nikolaou, S.; Iamamoto, Y., *J. Porphyrins Phthalocyanines* 2010, 14, 975-984.
- 511. Reboucas, J. S.; De Carvalho, M. E. M. D.; Idemori, Y. M., J. Porphyrins Phthalocyanines 2002, 6, 50-57.
- 512. Lu, W.; Lu, Q.; Wang, C.; Zhou, X., J. Coord. Chem. 2003, 56, 1383-1390.
- Zhang, C.-F.; Chen, M.; Nakamura, C.; Miyake, J.; Qian, D.-J., *Langmuir* 2008, 24, 13490-13495.

- 514. Loew, N.; Wollenberger, U.; Scheller, F. W.; Katterle, M., *Bioelectrochemistry* 2009, 76, 28-33.
- Reboucas, J. S.; Spasojevic, I.; Tjahjono, D. H.; Richaud, A.; Mendez, F.;
 Benov, L.; Batinic-Haberle, I., *Dalton Trans.* 2008, 1233-1242.
- 516. Lei, J.; Ju, H.; Ikeda, O., *Electrochim. Acta* 2004, 49, 2453-2460.
- 517. Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A., Angew. Chem., Int.
 Ed. 2006, 45, 3944-3947.
- 518. Kubat, P.; Sebera, J.; Zalis, S.; Langmaier, J.; Fuciman, M.; Polivka, T.; Lang, K., *Phys. Chem. Chem. Phys.* 2011, *13*, 6947-6954.
- Speck, M.; Niethammer, D.; Senge, M. O., J. Chem. Soc., Perkin Trans. 2 2002, 455-462.
- Zhang, X.-Y.; Bian, Y.-Z.; Jiang, J.-Z., Wuji Huaxue Xuebao 2010, 26, 1719-1728.
- 521. Xiang, N.; Zhou, W.; Jiang, S.; Deng, L.; Liu, Y.; Tan, Z.; Zhao, B.; Shen, P.;
 Tan, S., Sol. Energy Mater. Sol. Cells 2011, 95, 1174-1181.
- 522. Toganoh, M.; Furuta, H., Chem. Lett. 2005, 34, 1034-1035.
- Vaijayanthimala, G.; Krishnan, V.; Mandal, S. K., J. Chem. Sci. 2008, 120, 115-129.
- 524. Walter, M. G.; Wamser, C. C.; Ruwitch, J.; Zhao, Y.; Braden, D.; Stevens, M.; Denman, A.; Pi, R.; Rudine, A.; Pessiki, P. J., *J. Porphyrins Phthalocyanines* 2007, 11, 601-612.
- 525. Wolffs, M.; Hoeben, F. J. M.; Beckers, E. H. A.; Schenning, A. P. H. J.; Meijer,
 E. W., J. Am. Chem. Soc. 2005, 127, 13484-13485.

- 526. Yu, M.; Liu, G.; Cheng, Y.; Xu, W., Liq. Cryst. 2005, 32, 771-780.
- 527. Yu, M.; Liu, G. F.; Cui, X. L., J. Porphyrins Phthalocyanines 2005, 9, 231-239.
- Yu, M.; Zhang, Y. J.; Shi, J. H.; Liu, G. F.; Zhang, H. J., Solid State Sci. 2009, 11, 2016-2022.
- 529. Yamashita, K.; Ikeda, M.; Takeuchi, M.; Shinkai, S., *Chem. Lett.* 2003, *32*, 264-265.
- 530. Xue, Z.; Kwong, D. W.-J.; Xue, L.-W.; Liu, Q.; Hou, A.-X.; Wong, W.-K., *Chem. Biodiversity* **2009**, *6*, 1131-1143.
- 531. Winnischofer, H.; Engelmann, F. M.; Toma, H. E.; Araki, K.; Rechenberg, H. R., *Inorg. Chim. Acta* 2002, *338*, 27-35.
- Subbaiyan, N. K.; Hill, J. P.; Ariga, K.; Fukuzumi, S.; D'Souza, F., Chem. Commun. 2011, 47, 6003-6005.
- 533. Tabbi, G.; Di Mauro, G.; Purrello, R.; Bonomo, R. P., *Dalton Trans.* 2011, 40, 4223-4229.
- 534. Zhang, L.; Li, X.; Kang, S. Z.; Mu, J., Supramol. Chem. 2008, 20, 601-604.
- 535. Redmore, N. P.; Rubtsov, I. V.; Therien, M. J., Inorg. Chem. 2002, 41, 566-570.
- 536. Hatay, I.; Su, B.; Mendez, M. A.; Corminboeuf, C.; Khoury, T.; Gros, C. P.;
 Bourdillon, M.; Meyer, M.; Barbe, J.-M.; Ersoz, M.; Zalis, S.; Samec, Z.;
 Girault, H. H., *J. Am. Chem. Soc.* 2010, *132*, 13733-13741.
- 537. Sanchez, L.; Sierra, M.; Martin, N.; Myles, A. J.; Dale, T. J.; Rebek, J., Jr.;
 Seitz, W.; Guldi, D. M., Angew. Chem., Int. Ed. 2006, 45, 4637-4641.
- 538. Kano, K.; Kitagishi, H.; Sone, Y.; Nakazawa, N.; Kodera, M., *Eur. J. Inorg. Chem.* **2006**, 4043-4053.

- 539. Kobayashi, K.; Imabayashi, S. i.; Fujita, K.; Nonaka, K.; Kakiuchi, T.; Sasabe,
 H.; Knoll, W., *Bull. Chem. Soc. Jpn.* 2000, 73, 1993-2000.
- 540. Bartoli, J.-F.; Mouries-Mansuy, V.; Le Barch-Ozette, K.; Palacio, M.; Battioni,
 P.; Mansuy, D., *Chem. Commun.* 2000, 827-828.
- 541. Tashiro, K.; Konishi, K.; Aida, T., J. Am. Chem. Soc. 2000, 122, 7921-7926.
- Pilloud, D. L.; Chen, X.; Dutton, P. L.; Moser, C. C., J. Phys. Chem. B 2000, 104, 2868-2877.
- 543. Shiratori, H.; Ohno, T.; Nozaki, K.; Yamazaki, I.; Nishimura, Y.; Osuka, A., J. Org. Chem. 2000, 65, 8747-8757.
- 544. Schneider, J.; Vuong, K. Q.; Calladine, J. A.; Sun, X.-Z.; Whitwood, A. C.; George, M. W.; Perutz, R. N., *Inorg. Chem.* 2011, 50, 11877-11889.
- 545. D'Souza, F.; Wijesinghe, C. A.; El-Khouly, M. E.; Hudson, J.; Niemi, M.; Lemmetyinen, H.; Tkachenko, N. V.; Zandler, M. E.; Fukuzumi, S., *Phys. Chem. Chem. Phys.* 2011, 13, 18168-18178.
- 546. Sakai, H.; Rabbani, M. G.; Hasobe, T., *J. Porphyrins Phthalocyanines* **2011**, *15*, 639-651.
- 547. McGuire Jr, R.; Dogutan, D. K.; Teets, T. S.; Suntivich, J.; Shao-Horn, Y.; Nocera, D. G., *Chem. Sci.* 2010, *1*, 411-414.
- 548. Vaid, T. P., J. Am. Chem. Soc. 2011, 133, 15838-15841.
- 549. Tahara, H.; Yonemura, H.; Harada, S.; Yamada, S., *Jpn. J. Appl. Phys.* 2011, *50*, 081605/1-081605/6.
- 550. Wan, Z.; Jia, C.; Zhang, J.; Li, Z.; Wang, Z.; Zhang, G., *Youji Huaxue* 2011, *31*, 356-361.

- 551. Xu, Y.; He, C.; Liu, F.; Jiao, M.; Yang, S., J. Mater. Chem. 2011, 21, 13538-13545.
- 552. Wang, H.; Wang, K.; Bian, Y.; Jiang, J.; Kobayashi, N., Chem. Commun. 2011, 47, 6879-6881.
- 553. Toganoh, M.; Sato, A.; Furuta, H., Angew. Chem., Int. Ed. 2011, 50, 2752-2755.
- 554. Takai, A.; Gros, C. P.; Barbe, J.-M.; Fukuzumi, S., Chem.--Eur. J. 2011, 17, 3420-3428.
- 555. Venkatraman, S.; Prabhuraja, V.; Mishra, R.; Kumar, R.; Chandrashekar, T. K.; Teng, W.; Senge, K. R., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem. 2003, 42A, 2191-2197.
- 556. Meyer, D. N.; Woggon, W.-D., Chimia 2005, 59, 85-87.
- 557. Su, L.-J.; Li, W.-H.; Xu, C.-F.; Wang, L.-M.; Cheng, X.-L.; Shi, T.-S., Gaodeng Xuexiao Huaxue Xuebao 2008, 29, 1716-1720.
- 558. Bhyrappa, P.; Velkannan, V., J. Porphyrins Phthalocyanines 2011, 15, 883-889.
- Pereira, A. M. V. M.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Gisselbrecht,
 J.-P.; Jeandon, C.; Ruppert, R., *J. Porphyrins Phthalocyanines* 2011, 15, 575-582.
- Chandra, T.; Kraft, B. J.; Huffman, J. C.; Zaleski, J. M., *Inorg. Chem.* 2003, 42, 5158-5172.
- 561. Kachadourian, R.; Flaherty, M. M.; Crumbliss, A. L.; Patel, M.; Day, B. J., J. Inorg. Biochem. 2003, 95, 240-248.
- Batinic-Haberle, I.; Liochev, S. I.; Spasojevic, I.; Fridovich, I., Arch. Biochem. Biophys. 1997, 343, 225-233.

- Batinic-Haberle, I.; Spasojevic, I.; Hambright, P.; Benov, L.; Crumbliss, A. L.;
 Fridovich, I., *Inorg. Chem.* 1999, *38*, 4011-4022.
- 564. Bhyrappa, P.; Krishnan, V., J. Chem. Sci. 2004, 116, 71-78.
- 565. Kanematsu, M.; Naumov, P.; Kojima, T.; Fukuzumi, S., *Chem.--Eur. J.* 2011, 17, 12372-12384.
- Lazarides, T.; Charalambidis, G.; Vuillamy, A.; Reglier, M.; Klontzas, E.;
 Froudakis, G.; Kuhri, S.; Guldi, D. M.; Coutsolelos, A. G., *Inorg. Chem.* 2011, 50, 8926-8936.
- 567. Ishida, M.; Park, S. W.; Hwang, D.; Koo, Y. B.; Sessler, J. L.; Kim, D. Y.; Kim, D., J. Phys. Chem. C 2011, 115, 19343-19354.
- 568. Nemykin, V. N.; Rohde, G. T.; Barrett, C. D.; Hadt, R. G.; Bizzarri, C.; Galloni,
 P.; Floris, B.; Nowik, I.; Herber, R. H.; Marrani, A. G.; Zanoni, R.; Loim, N. M., *J. Am. Chem. Soc.* 2009, *131*, 14969-14978.
- Mugnol, K. C. U.; Martins, M. V. A.; Nascimento, E. C.; Nascimento, O. R.; Crespilho, F. N.; Arantes, J. T.; Nantes, I. L., *Theor. Chem. Acc.* 2011, 130, 829-837.
- 570. Khan, T. K.; Ravikanth, M., Eur. J. Org. Chem. 2011, 2011, 7011-7022.
- 571. Ou, Z.; Zhu, W.; Fang, Y.; Sintic, P. J.; Khoury, T.; Crossley, M. J.; Kadish, K.
 M., *Inorg. Chem.* 2011, *50*, 12802-12809.
- Yoshida, K.; Nakashima, T.; Yamaguchi, S.; Osuka, A.; Shinokubo, H., *Dalton Trans.* 2011, 40, 8773-8775.
- 573. Sprafke, J. K.; Kondratuk, D. V.; Wykes, M.; Thompson, A. L.; Hoffmann, M.; Drevinskas, R.; Chen, W.-H.; Yong, C. K.; Karnbratt, J.; Bullock, J. E.; Malfois,

M.; Wasielewski, M. R.; Albinsson, B.; Herz, L. M.; Zigmantas, D.; Beljonne, D.; Anderson, H. L., *J. Am. Chem. Soc.* **2011**, *133*, 17262-17273.

- 574. Chuang, C.-H.; Ou, C.-K.; Liu, S.-T.; Kumar, A.; Ching, W.-M.; Chiang, P.-C.; dela Rosa, M. A. C.; Hung, C.-H., *Inorg. Chem.* **2011**, *50*, 11947-11957.
- 575. Beer, P. D.; Drew, M. G. B.; Jagessar, R., J. Chem. Soc., Dalton Trans. 1997, 881-886.
- Bohle, D. S.; Hung, C.-H.; Powell, A. K.; Smith, B. D.; Wocadlo, S., *Inorg. Chem.* 1997, 36, 1992-1993.
- 577. Cheng, R.-J.; Lin, S.-H.; Mo, H.-M., Organometallics 1997, 16, 2121-2126.
- 578. Choi, I.-K.; Liu, Y.; Wei, Z.; Ryan, M. D., Inorg. Chem. 1997, 36, 3113-3118.
- 579. Cunningham, K. L.; McNett, K. M.; Pierce, R. A.; Davis, K. A.; Harris, H. H.; Falck, D. M.; McMillin, D. R., *Inorg. Chem.* **1997**, *36*, 608-613.
- Frangione, M.; Port, J.; Baldiwala, M.; Judd, A.; Galley, J.; DeVega, M.; Linna,
 K.; Caron, L.; Anderson, E.; Goodwin, J. A., *Inorg. Chem.* **1997**, *36*, 1904-1911.
- 581. Grass, V.; Lexa, D.; Momenteau, M.; Saveant, J.-M., J. Am. Chem. Soc. 1997, 119, 3536-3542.
- Jayaraj, K.; Gold, A.; Austin, R. N.; Ball, L. M.; Terner, J.; Mandon, D.; Weiss,
 R.; Fischer, J.; DeCian, A.; Bill, E.; Muether, M.; Schuenemann, V.; Trautwein,
 A. X., *Inorg. Chem.* 1997, *36*, 4555-4566.
- 583. Liu, Y.; DeSilva, C.; Ryan, M. D., Inorg. Chim. Acta 1997, 258, 247-255.
- 584. Qiu, A.; Sawyer, D. T., J. Porphyrins Phthalocyanines 1997, 1, 125-134.
- 585. Arnold, D. P.; Heath, G. A.; James, D. A., New J. Chem. 1998, 22, 1377-1387.

- 586. Bennett, J. E.; Burewicz, A.; Wheeler, D. E.; Eliezer, I.; Czuchajowski, L.; Malinski, T., *Inorg. Chim. Acta* 1998, 271, 167-173.
- 587. Bohle, D. S.; Hung, C.-H.; Smith, B. D., Inorg. Chem. 1998, 37, 5798-5806.
- 588. Cao, Y.; Petersen, J. L.; Stolzenberg, A. M., Inorg. Chem. 1998, 37, 5173-5179.
- Koerner, R.; Wright, J. L.; Ding, X. D.; Nesset, M. J. M.; Aubrecht, K.; Watson,
 R. A.; Barber, R. A.; Mink, L. M.; Tipton, A. R.; Norvell, C. J.; Skidmore, K.;
 Simonis, U.; Walker, F. A., *Inorg. Chem.* 1998, 37, 733-745.
- 590. Armaroli, N.; Diederich, F.; Echegoyen, L.; Habicher, T.; Flamigni, L.; Marconi, G.; Nierengarten, J.-F., New J. Chem. 1999, 23, 77-83.
- 591. Yu, Mao-Lin; Wang, Su-Min; Feng, Ke; Khoury, Tony; Crossley, Maxwell J.;
 Yang, Fan; Zhang, Jian-Ping; Tung, Chen-Ho; Wu, Li-Zhu., *J. Phys. Chem. C.*2011, 115, 23634-23641.