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Abstract 

        The 3-dimension diffusion equation which describes fluid flow during 

hydraulic fracturing is interpreted in a statistical way. For all diffusing particles in a 

pumping procedure, the root-mean-square average of diffusing distance, which 

evaluates the fluctuation of diffusing particles as time evolves, is proportional to the 

square root of the product of diffusivity and elapsed time. The diffusivity is obtained 

from the spatial-temporal distribution of located microseismic events as a function of 

the distance between these events and pumping points, as well as elapsed time from 

injection inception. The upper-limit diffusivity of the original formation is 

characterized by the curve which fits the outermost located events on a distance-time 

plot. Similarly, diffusivity of the formation after hydraulic fracturing is obtained by 

curve fitting innermost located events induced by fluid flow back after injection stops. 

        The theoretical expression between the diffusivity tensor and permeability 

tensor is obtained based on an isothermal condition and assumed incompressible 

slurry. The diffusivity tensor is found to be equal to the permeability tensor divided by 

a scalar which is the product of dynamic viscosity, connected formation porosity, and 

formation compressibility.  

        Application of these equations to microseismic data acquired in the Barnett 

Shale Formation yields, with assumed hydraulic fracture geometry, initial 

permeability of 0.16 to 3.21 milliDarcy in the assumed dominant direction of 
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fracturing and normal to it, with an increase to 12.1 milliDarcy along the dominant 

direction of fracturing after hydraulic fracturing. 

        Numerical simulation results of fluid flow in synthetic media demonstrate: 

(1) If the flow domain size is not much larger than the part influenced by the 

entrance effect, the variables in Darcy’s law are inter-dependent. If so, the 

obtained permeability, no matter by experiment or simulation, cannot be 

upscaled, even under homogeneous condition.  

(2) The volume or area influenced by the entrance effect inside the flow domain 

depends on the geometry of the flow domain, fluid properties, and in-situ 

parameters. The more viscous fluid flow in a lower rate, the smaller volume or 

area influenced by entrance effect.  

(3) The flow field is difficult to be fully developed in a periodic domain. The wide 

throat zones store fluid as reservoirs. 
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Chapter 1  Introduction 

        The objective of this work is to extract field scale permeability information 

before and after hydraulic fracturing based on microseismic monitoring by the use of 

the diffusion and fluid flow simulation methods. We used the diffusion method to 

estimate the microseismic monitoring data called “Dollie”. Dollie data were acquired 

from a Barnett shale gas reservoir. The microseismic event location algorithm 

“UHFracDetect” was used for locating the microseismic events during monitoring. 

Uncertainties of the estimated permeability based on diffusion method definitely exist 

because of the data quality, monitoring duration, and geometry design. In order to 

reduce the uncertainties we implemented numerical methods and simulated fluid flow 

in synthetic media. 

        In Chapter 1, firstly, we introduce the motivation of this work, the concept 

of permeability, and Darcy’s law. Secondly, we briefly introduce hydraulic fracturing, 

shale gas, and gas shale reservoirs. Thirdly, we give literature review and analyze the 

limitations and problems of previous methods. Fourthly, we give the reasoning and 

introduce the methods used in this dissertation. These methods solved or partially 

solved the previous problems. Finally, we introduce the layout of this dissertation.     
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1.1 Permeability and Darcy’s law 

        Permeability, as a challenging parameter, is attracting more attention from 

both exploration geophysicists and petroleum engineers. Permeability is closely 

related to production rate, which is a crucial factor in the oil and gas industry.  

        Permeability is highly fluctuating due to the heterogeneities in medium. 

Thus, it is also a scale-dependent parameter. Sample scale permeability could be 

measured in a laboratory; however, the results are not necessarily appropriate for 

upscaling. The objective of this work is to extract field scale permeability. Field scale 

permeability is important because it helps petroleum engineers to decide drilling sites 

and drilling strategies, and to build reservoir models.  

        The concept of permeability in fluid flow was experimentally proposed in 

Darcy’s law (Darcy, 1856). The definition of permeability is the ease with which fluid 

is transmitted through a porous medium by connected pore space. Later Darcy’s law 

was proved by derivations based on the Navier-Stokes equation. The tensor form of 

Darcy’s law is:  

P


  
κ

u ,                                                       (1-1)                            

where u is the vector with three components which represents the specific discharge, 

i.e., the volume of fluid flow through unit area in unit time; κ is the 2
nd

 rank tensor of 

permeability; scalar P is the pressure; P  is the pressure gradient vector; scalar   is 

the dynamic viscosity.  
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        The SI unit of permeability is m
2
; however, Darcy, milliDarcy, and 

microDarcy are more commonly used. Conversion relations are: 

1 Darcy =9.86923×10
-13

 m
2
; 

1 Darcy=10
3
 milliDarcy=10

6
 microDarcy=10

9
 nanoDarcy 

The SI units of dynamic viscosity, pressure, and specific discharge are Pascal˖second, 

Pascal, and meter/second, respectively.  

        Darcy’s law gives the permeability calculation equation based on 

experimental measurements, with known or measurable information of the sample 

geometry, applied parameters and the fluid properties. In another words, the measured 

permeability by using Darcy’s law depends on geometrical size of the sample, 

pressure drop, flux, fluid density, and viscosity. Its magnitude is a spatial average of a 

sample under fluid flow test. Thus, the permeability obtained by measurements based 

on Darcy’s law is also called effective permeability. It is widely accepted as 

fundamental in permeability or flow-related studies.  

        However, the structural details inside the sample or material are still 

enigmas; for example, connected porosity, tortuosity of channels, connectivity, fluid 

properties, the degree of heterogeneity, and surface roughness of the channel. All of 

these properties define another term called intrinsic permeability. Intrinsic 

permeability is a function of medium structure only, i.e., it is independent of fluid 

properties or applied parameters. From the production point of view, intrinsic 

permeability is meaningless. This is because while there can be a totally different 
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production rate for heavy or light oil flow in the same medium under the same in-situ 

conditions, the permeability is the same. Thus, intrinsic permeability is not the study 

objective of this dissertation. We are more concerned with the flux or flow rate of a 

specific type of fluid flowing through a medium. 

         

1.2 Hydraulic fracturing and shale reservoirs 

        Hydraulic fracturing has been a commonly used technique since the 1970s. 

Recently, it has become a hot topic again due to the shale gas revolution. Hydraulic 

fracturing can increase hydrocarbon production rate and total output amount. A large 

amount of water, sands, and chemicals are pumped into a subsurface formation during 

a fracturing operation. The role of sands in the slurry is to keep the generated fractures 

open.  

        In-situ stress magnitude and distribution decide both the failure pressure 

threshold of generating a hydraulic fracture and its growth orientation. When the 

treating pressure is higher than the threshold of the rock’s failure point, a fracture is 

generated. The growth direction of a hydraulic fracture is perpendicular to the 

direction of minimum principal in-situ stress.  

        Hydraulic fracturing changes the formation structure in order to free the 

trapped hydrocarbon by increasing the drainage area, and by creating and connecting 

fractures. Figure 1-1 shows a diagram of hydraulic fracturing.  
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Figure 1-1 Hydraulic fracturing. The yellow-color dendritic structures along the 

horizontal interval of injection well represent fractures induced by pumping. 

(Alexi Sara Ernstoff and Brian R. Ellis, 2013) 

 

        In addition to shale gas reservoirs, the hydraulic fracturing technique could 

also be used for improving production of shale oil or tight sand reservoirs. Monitoring 

and understanding microseismic events induced by hydraulic fracturing could help us 

better characterize the dynamic change of reservoirs. Since the data we used in this 

dissertation were acquired from the Barnett gas shale formation, we give a brief 

introduction about shale gas and gas shale reservoirs. 

        Shale gas is high-efficiency, clean, and economic energy source. Figure 1-2 

shows the identified shale gas plays widely distributed throughout the continental 

United States. Shale gas could potentially reliance on the pressures of pollution, 

hydrocarbon transportation, and reliance on imports from overseas.  
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Figure 1-2 Identified shale gas plays in continental United States. (Theresa Andrejack 

Loux and Archie Filshill, 2013) 

 

        Gas shale is mainly composed of organic-rich, clay-sized consolidated 

particles. With appropriate temperature, pressure, and burial history, kerogen 

concentrate can be converted to hydrocarbon. For conventional reservoirs, after 

migrating from source rocks, oil and gas are usually stored in a sandstone formation. 

For unconventional reservoirs, shale formations generate hydrocarbon and serve as 

traps themselves. Advances in exploration and production techniques for conventional 

hydrocarbon reservoirs have been obtained in the last few decades. However, it is 

becoming more difficult to find economical onshore conventional reservoirs. At the 

same time, the risk and cost for offshore conventional reservoir exploration and 
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production are increasing. Thus, unconventional hydrocarbon reservoirs are attracting 

more attention, for example, shale gas and shale oil reservoirs.  

        Two characteristics of shale reservoirs are low permeability and anisotropy. 

Fortunately, for our study, we used core samples from the pumping well at the depth 

of the target layer. Plugs with different angles to the bedding plane were cut from core 

samples, as shown in Figure 1-3. Laboratory measurements showed that the 

permeability along the bedding plane is in the range of milliDarcy to microDarcy; the 

permeability normal to the bedding plane is around nanoDarcy (Metwally, 2010). This 

range of permeability is considered to be nonproductive. Thus, hydraulic fracturing is 

the key to improving production rate from this type of reservoirs and making them 

economical. 

   

 

 

 

Figure 1-3 Three cylinder samples from one Barnett Shale core, along 0, 45, and 90 

degrees to the bedding plane. The left picture is the illustration modified from Wang, 

2002. The right picture is the phot of one set of our samples (core-B;AS6485). 
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1.3 Literature review 

        The only direct way to determine permeability is by implementing fluid 

transport measurements in a laboratory. Metwally and Chesnokov (2010) obtained 

permeability of Barnett shale samples along 0°, 45°, and 90° to bedding plane under 

in-situ high temperature and pressure conditions by laboratory measurement.  

        However, problems of laboratory measurement include: 

(1) core samples may not be available; 

(2) there is a high cost for experiments;  

(3) there are upscaling problems;  

(4) coring may destroy sample structures when confining pressure dramatically 

drops; and 

(5) time-lapse results cannot be given during pumping.  

        Further, because permeability is a highly-fluctuating parameter due to 

heterogeneities inside the samples, laboratory measurements could only give rock 

matrix permeability results assuming a homogenous structure inside. Thus, results 

obtained by laboratory measurement cannot be extrapolated. 

        Indirect methods include empirical equations of permeability, and analytical 

and numerical solutions based on different types of assumptions. 

        Empirical permeability equations could be established by a large number of 

sample measurements, or be derived based on a specific type of rock physics model 

with certain assumptions, for example, pore space is assumed to be connected. 
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Empirical equations are usually expressed by using rock physics parameters, 

including porosity, grain size, cementation degree, and specific surface area. This type 

of method does not take fluid properties, pressure drop, and inflow velocity into 

account. An example is the Kozeny-Carman equation, which is expressed as 

4

8

R

A





 ,                                                        (1-2)                                         

where A is the area of cross-section, τ is tortuosity, and R is cross-section radius 

(Carman, 1961). The Kozeny-Carman equation is derived from fluid flowing through 

a pipe which has a circular cross-section.  

        Shapiro et al. (1997) and Talwani and Acree (1984) used the point source 

diffusion model and obtained the subsurface hydraulic diffusivity according to the 

spatial-temporal distribution of microseismic events induced by fluid injection. This 

method is based on diffusion theory and Biot’s theory. This method implicitly 

assumes all microseismic events are induced by an isotropic diffusion phenomenon.  

    However, some long-distance events at an early stage, which were induced 

by the combined effect of brittleness and in-situ stress distribution, would affect 

observation of events induced by fluid diffusion and permeability estimation. Also, 

shale formations are anisotropic. In the case of Shapiro et al. (1997), the reservoir was 

composed of sandstone. Besides, the monitoring scale in time and space was large in 

their case; for example, monitoring lasted for 60 hours and some events induced by 

fluid diffusion were located 1500m away from the single injection point. With this 
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time and space scale, the geometrical size of a hydraulic fracture could be negligible. 

Thus, long-distance events at the early stage do not severely affect the estimated 

result. 

     In many cases, however, monitoring scales in time and space are not 

always as large as that one; for example, monitoring may be stopped immediately 

when pumping stops. In this way, microseismic events induced by fluid back flow 

cannot be located.  

        Further, the relation between diffusivity and permeability is based on the 

empirical equation in the paper of Shapiro et al. (1997). Also, the diffusivity 

expression is obtained by use of diffusion theory and Biot’s theory in their paper. 

Biot’s theory assumes that pore space is all connected; this is a controversy still and 

not widely accepted for shale formations, especially before hydraulic fracturing.  

        Grechka et al. (2010) proposed another approach, based on inverting the 

diffusion equation under the assumption of 1-dimensional flow of the injected fluids 

from the faces of a hydraulic fracture. This accounts for the geometrical effect of the 

hydraulic fracture. It assumes the incompressible fluid flow into the surrounding 

formation everywhere along the hydraulic fracture faces, not at a single point source. 

This method could give the original permeability along the bedding plane only.  

        Based on diffusion theory, bulk modulus (or reciprocal of compressibility) 

is always involved when converting diffusivity to permeability, no matter whether 

using previous empirical equations or the theoretical one we derived. Previously, bulk 
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modulus was obtained by well logging data for isotropic sandstone reservoirs. This 

would introduce errors for the bulk modulus of anisotropic shale formations. 

  

1.4 Methods 

        We started from 3-dimensional diffusion equation and wanted to understand 

the extensive properties transporting through control volume or control surface 

macroscopically. The diffusivity could be extracted by spatial-temporal distribution of 

the whole group of diffusing particles. Our reasoning was the diffusivity could be 

obtained by the microseismic event distribution in time and space, the theoretical 

relation between diffusivity and permeability would need to be found in the next step. 

Then permeability of the medium could be estimated by the spatial-temporal 

distribution of located microseismic events, as well.  

        The uncertainties of the permeability estimation results may come from the 

microseismic event location results, monitoring duration, quality of recorded 

seismograms, and monitoring design. In order to reduce uncertainties, we estimated 

permeability along different directional sectors. Meanwhile, we accounted for the 

geometry effect of hydraulic fracture.  

        If the moment tensor solution is unavailable or cannot be solved due to poor 

quality seismograms or monitoring design, for example, in our Dollie data case, the 

geometry of a hydraulic fracture needs to be calculated approximately with the help of 
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an assumed hydraulic fracture model and mass conservation of slurry.  

        Different from conventional sandstone reservoirs, shale is vertical 

transversely isotropic (VTI). Thus, effective medium theory was used for 

characterizing the bulk modulus of VTI medium in our study.   

        It is known that each located microseismic event corresponds to energy 

released from a specific coordinate, i.e., the medium has been changed at (x, y, z, t). If 

we can make full use of each located microseismic event by extracting the geometrical 

size, orientation, and location of each microseismic event, a hydraulic fracture network 

could be built. In this way, simulation of fluid flow in fracture network would be 

helpful for the permeability estimation and reservoir modeling after hydraulic 

fracturing. Numerical flow simulation could provide time-lapse results of flux together 

with visual displays of the pressure and velocity fields inside. 

        Thus, we implemented fluid flow simulation according to in-situ condition 

parameters. These parameters, such as pressure or flow rate or a combination of these, 

were used as boundary conditions in the flow simulation. Because the fracture 

network of Dollie case is not available, we implemented flow simulation for specific 

flow domains and obtained flow flux results which provided the basis for permeability 

calculation in complicated flow domains. The specific flow domains used in this work 

were rectangular and periodic domains because they represented the fracture with 

both uniformly and non-uniformly distributed proppants.    

        Also, flow simulations in two types of synthetic media were tested. One 
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type of medium was composed of shale matrix only; and the other was composed of 

shale matrix and a width-constant fracture. These gave us angular-dependent and 

scale-dependent permeability results.         

 

1.5 Dissertation layout 

        In Chapter 2, firstly, we introduce fluid diffusion theory and interpret 

diffusion in a statistical way. Secondly, we derive the expression of permeability in 

terms of diffusivity for incompressible fluid under isothermal condition. Thirdly, we 

give a brief introduction related to microseismic monitoring techniques, such as 

microseismic event location methods, moment tensor, and magnitude analysis. After 

that, we test the Dollie data acquired from a Barnett Shale gas reservoir and obtain 

permeability results before and after hydraulic fracturing. Finally, we give a summary 

and discussion about this method.   

        Chapter 3 presents how numerical methods are used for fluid flow 

simulation and gives the simulation results of fluid flow in different synthetic media. 

Firstly, we start from mass and momentum conservation equations to the 

Navier-Stokes equation, and then we briefly introduce the numerical methods used in 

this dissertation. After that, we describe how we used the staggered grid method for 

simple geometry flow simulation and the finite element method for complicated 

geometry flow simulation. Thirdly, we describe how we simulated fluid flow in a 
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synthetic medium and tested for angular-dependent and scale-dependent effects.  

        Chapter 4 includes our conclusions, discussion and recommendation for 

future work. 

 

 

Chapter 2 Diffusion method 

2.1 Introduction 

        Diffusion is a type of transport phenomenon existing in nature; for example, 

momentum, mass, and energy can be transported from high concentration to low 

concentration. The transport phenomena of momentum, heat, and mass are governed 

by Newton’s law considering fluid viscosity, Fourier’s law, and Fick’s law, 

respectively. They have the same mathematical expression form and all obey 

constitutive and conservation equations.  

        Figure 2-1 shows the diagram of diffusion phenomena in which diffusing 

particles travel along the direction of concentration gradient. The general form of 

diffusion equation is: 

2c
D c

t


 


,                                                       (2-1) 

where c is a type of the specific property; for example, c could be pressure for mass 

diffusion, or it could be temperature for thermal conduction. In this study we focus on 
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fluid diffusion; thus, c, D, and t represent pressure, hydraulic diffusivity, and time, 

respectively.  

 

 

Figure 2-1 The property is transported from high concentration to low concentration. 

The transported property could be mass, momentum, or energy and is represented by 

the red dots   

   

        Hydraulic diffusion phenomena occur if a group of interacting particles are 

in an environment in which viscous forces play a major role compared to inertial 

forces, i.e., there is a low Reynolds number. In fluid mechanics, a “small” Reynolds 

number means its value is lower than 4000, in general (Munson et al., 1990). The 

Reynolds number is expressed as 

sv L
R




 ,  

where ρ, vs, and η represent the density of fluid, average velocity of fluid, and 

dynamic viscosity of fluid; L characterizes the size of flow domain; for example, the 

diameter of a pipe. 

        Field scale permeability information of the hydrocarbon reservoirs cannot 
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be directly obtained by measurement. Thus, finding an alternative way is necessary. 

We know that the fluid which is able to flow through a medium must simultaneously 

satisfy the following three conditions: pressure drop, connected pore space, and 

appropriate viscosity. Permeability describes the ease of fluid transmitting in the 

medium. Meanwhile, diffusivity characterizes the flux due to the concentration 

gradient in the medium. Both diffusivity and permeability evaluate the fluid flow. We 

try to obtain permeability by diffusion observation. 

        In this chapter, firstly, we interpret the diffusion procedure from a statistical 

prospective. We want to extract diffusivity by analyzing the spatial-temporal 

distribution of diffusing particles as diffusion evolves. Secondly, we theoretically 

derive the expression between permeability and diffusivity for incompressible fluid 

under isothermal condition. Thirdly, we give a brief introduction about microseismic 

techniques, including microseismic acquisition, event location, and moment tensor, 

because microseismic monitoring is the fundamental tool for our permeability 

estimation. Fourthly, we test the Dollie data acquired from a Barnett Shale reservoir 

and obtain permeability before and after hydraulic fracturing. Summary and 

discussion are given in the end.    

 

 

2.2 Interpretation of diffusion procedure 

        The three-dimension diffusion equation could be written as 
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2 2 2

2 2 2
( )

P P P P
D

t x y z

   
  

   
.                                          (2-2) 

        This diffusion equation is linear and separable in a common coordinate 

system (Hu and Ni, 1989).  

        It is known that more than one solution exists for a linear differential 

equation. The general form of solution P due to an initial perturbation, is written as 

 

2
02

0

( )

( ) 4
3 3/2

1 1
P( , )

(2 ) (4 Dt)

D k t i Dtt e e d e
 


  

 
x x

k x x
x k   (Ursell, 2007)       (2-3) 

where x0 represents the coordinates of pumping source; k is frequency in vector form, 

i.e., k =(kx, ky, kz); x is the coordinate in vector form, i.e., (x, y, z); x0 is the coordinate 

of the initial perturbation occurs; D is diffusivity; and t is the time after the 

perturbation occurs.  

          Due to uncountable molecules involved in the motion of continuously 

deforming fluid, we prefer the Eulerian frame of reference to the Lagranian frame of 

reference for describing fluid motion. Each diffusing particle still obeys Newton’s 

laws of motion, but we focus more on the distribution of the whole group of diffusing 

particles during diffusion. A group of diffusing particles evolving can be described as 

probability density in space. This is from a statistical way to analyze the evolution of 

a group of diffusing particles. 

        When the word “statistical” is mentioned, it is natural that different types of 

average methods come to mind, each of them with its own corresponding physical 

meaning. The result of simple averaging of diffusing particles distribution for 
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isotropic diffusion is the same as the initial position and is not related to the diffusion 

rate. However, we need to find a measure for diffusing particle distribution evolving 

with time. Root-mean-square could describe the fluctuating of diffusing particles’ 

distribution in time and space. Figure 2-2 gives an example of isotropic diffusion for a 

group of diffusing particles. From time t to t+ t  the simple average position of the 

whole group of particles is the same. But the root-mean-square average could tell us 

more about the distribution of diffusing particles in space as time evolves. Thus, the 

root-mean-square average is the one we choose to use.  

 

Figure 2-2  A diffusion procedure at different time: (a) distribution of particles at t1 

and (b) distribution of particles at 1t t    

 

        According to Equation 2-3, the root-mean-square average and its expression 

is 

22

0( ) 6t Dt   x x .                                             (2-4) 

This tells us the root-mean-square average diffusing distance of all particles obeying
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6RMSr Dt . This expression contains root-mean-square distance r, diffusing time t, 

and diffusivity D simultaneously. The root-mean-square average gives the fluctuation 

of the variable, specifically, diffusing distance.      

        The root-mean-square average of the diffusing distance could help us 

analyze diffusivity according to observations of the microseismic event location. The 

purpose of this study is to extract field scale permeability with the help of 

microseismic monitoring. Thus, our next step is to find the relation between 

diffusivity and permeability. 

 

2.3 Diffusivity and permeability 

        In this section, we give the derivation between permeability and diffusivity 

based on mass conservation and Darcy’s law; this differs from the empirical 

expression.  

        We assume the proppants and liquid are incompressible. This is reasonable 

because liquid is practically considered as incompressible and proppants are made of 

high hardness material. Also, we assume the isothermal condition while pumping. We 

obtain the expression of mass conservation as 

( )
( )

t





 


u ,                                                   (2-5)   

where  is the density of fluid,  is the connected porosity of the formation, and u is 

the vector form of specific discharge or volumetric flux (unit in m/s).  
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The tensor form of Darcy’s law is written as Equation 1-1   

P


 
κ

u ,                                                       

where u is specific discharge (unit in m/s). 

        By substituting Equation 1-1 back to Equation 2-5, we obtain 

1 ( )
( )P

t


 


  


k .                                             (2-6) 

        The right-hand side of Equation 2-6 can be rewritten as 1 ( )
t t

 
    


 

k .  

Under isothermal condition, the expressions of fluid compressibility and rock matrix 

compressibility according to their definition are 

1
( )f TC

P









                                                     (2-7) 

and 
1

( )r TC
P









.                                                 (2-8) 

        Combining with the chain rule, the part in the bracket of the right-hand side 

from Equation 2-6 can be written as 

( )r f r f

P P P
C C C C

t t t t t

 
     
    

    
    

. 

        For simplicity, we only consider the component along the x-axis, and we 

obtain 

( ) ( )r f

x

P
P C C

x t


 



 
  

 
.                                      (2-9)  

        We expand the spatial derivative and obtain 

2

2

( )f r

x

C CP P P

x x x t


 



   
 

   
.                                  (2-10) 
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        Again, by use of the chain rule and the expression of fluid compressibility, 

the second term on the left-hand side of Equation 2-10 can be written as,

2 2( ) ( )f

P P P P P
C

x x x P x P x x

         
  

       
,                            (2-11) 

is too small and negligible because the liquid is practically considered as 

incompressible.  

Then we obtain  

2

2

(C C )f r

x

P P

x t





 


 
.                                            (2-12) 

        Compared with classical diffusion equation, as shown in Equation 2-2, we 

obtain 

( )

x
x

f r

D
c c







.                                                 (2-13) 

        Similarly, the expressions are obtained for y- and z-components in a similar 

way. Then we find the tensor form expression between permeability and diffusivity is 

( )f rc c




κ
D ,                                                  (2-14)  

where D and κ  represent diffusivity and the permeability tensor, respectively.            

 

 

2.4 Overview of microseismic monitoring   

        In order to better understand the dynamic change of reservoirs induced by 

hydraulic fracturing, the microseismic monitoring technique is used as the first choice 
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in the oil and gas industry. Compared with other tools, such as temperature logging 

and tiltmeter surveys, microseismic monitoring can potentially give the information 

about fractures, such as length, height and preferred growing orientation in real time. 

        Microseismic monitoring is important for engineers to understand the 

dynamic change of reservoirs and help them make further-step decisions; for example, 

ascertaining the direction of the fracture growth, changing pumping strategies, and 

avoiding to contaminate drinking water zones or activating fault zones. Microseismic 

monitoring could provide microseismic event locations, moment tensor solutions, and 

the geometrical size of fractures.  

 

2.4.1 Microseismic event location 

        The purpose of microseismic event location is to find the onset times and 

the coordinates of microseismicities. The principle is similar to that used in global 

earthquake location. Seismograms, which contain the propagation information of 

seismic waves, were recorded by geophones. Traditionally, after picking the arrival 

times of different types of waves from seismograms, we could obtain the event 

location with the help of a velocity model. The main challenge of locating 

microseismic events is that weak signals can be contaminated by noise. Figure 2-3 

shows the microseismic magnitude and corresponding information, such as recording 

range, moment, slip and area, and equivalent explosive charge.   
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Figure 2-3 Moment magnitude, moment of microseismic, and equivalent explosive 

charge (Evgeny Chesnokov, “Microseismics: Integrated, Advanced Geophysics”, 

class lecture, Microseismic, Natural Sciences and Mathematics, Houston, TX, Aug 27, 

2012). 

 

Figures 2-4, 2-5, and 2-6 show seismograms with different noise levels; note that 

signal-noise ratios of all three are higher than 1. As the signal-noise ratio decreases, 

accurately picking the arrivals of waves is becoming difficult.  

 

Figure 2-4 Light noise contamination and arrival-time picking results (Evgeny 

Chesnokov, “Microseismics: Integrated, Advanced Geophysics”, class lecture, 

Microseismic, Natural Sciences and Mathematics, Houston, TX, Aug 27, 2012).  



24 

 

 

Figure 2-5 Moderate noise contamination and arrival-time picking results (Evgeny 

Chesnokov, “Microseismics: Integrated, Advanced Geophysics”, class lecture, 

Microseismic, Natural Sciences and Mathematics, Houston, TX, Aug 27, 2012).  

 

Figure 2-6 Severe noise contamination and arrival-time picking results (Evgeny 

Chesnokov, “Microseismics: Integrated, Advanced Geophysics”, class lecture, 

Microseismic, Natural Sciences and Mathematics, Houston, TX, Aug 27, 2012). 

 

 

        From the acquisition point of view, microseismic monitoring falls into two 

main categories. 

        The traditional one is downhole monitoring, which is typically a downhole 

geophone array deployed in a monitoring well as shown in Figure 2-7. Sometimes, 

two or more monitoring wells are used. 

       The other is surface monitoring, which is geophones deployed on the ground 



25 

 

surface or at a shallow depth, as shown in Figure 2-8. 

         

 

Figure 2-7 An example of downhole monitoring. The injection well is on the left. The 

monitoring well is on the right. The red rectangular points represent geophones 

(National Research Council, 2012). 

 

 

Figure 2-8 Surface monitoring (National Research Council, 2012). 

     

        Generally, downhole monitoring records good quality data because the 

geophones are closer to the microseismic sources in space; recorded seismograms 
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contain weak interference from human activities. In most cases, algorithms based on 

downhole monitoring belong to arrival-picking methods. This type of method requires 

accurately picking P- and/or S-wave arrival times and subsurface velocity model. Its 

principle is the same as that used for locating the hypocenter of a global earthquake; 

the theoretical travel times from the source to each geophone are calculated by use of 

the velocity model, and the hypocenter is located by optimizing a misfit function 

between the measured travel times and theoretically calculated ones (Aki and 

Richards, 2002). Arrival-picking methods are usually computationally inexpensive. 

The disadvantage of downhole monitoring is that solid angle coverage is limited 

because a single-monitoring well is commonly used.  

        In order to reduce the uncertainty of arrival-time picking, especially for 

weak events, relative location methods are used. By applying waveform 

cross-correlations between a master event and weak ones, the arrival time differences 

compared to the master event are obtained (Schaff et al., 2004; Schaff and Waldhauser, 

2005; Schaff, 2008).   

        Manual picking of P- and S-wave arrivals could achieve high picking 

accuracy, but it is time-consuming, due to the thousands of microseismic events 

induced during a hydraulic fracturing operation. A lot of effort has been made to 

develop automatic picking algorithms, including short-term-average and long-term 

average (Earle and Shearer, 1994), supper-Gaussian method (Liao et al. 2011), energy 

analysis (Earle and Shearer, 1994), and polarization analysis (Vidale, 1986).   
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        The second main type of microseismic event location methods is 

migration-based, and it is mainly used for surface-monitoring. These methods locate 

microseismic events by using full wavefields. This type of method also requires an 

accurate velocity model and the wide-bandwidth frequency components of recorded 

signals. The advantage of migration-based methods is that they locate weak events 

without requiring accurately picked seismic wave-arrivals. Instead, the principle is 

focusing energy at the hypocenter by use of time-reversal (Baysal et al., 1983; 

Gajewski and Tessmer, 2005). These methods can locate microseismic events from 

poor quality data, such as those with signal-noise ratio lower than 1 (Gajewski and 

Tessmer, 2005). The disadvantage of migration-based methods is their high 

computational cost.  

        In general, any microseismic event location algorithm cannot claim that its 

error is less than a certain distance because we do not know the true source coordinate 

(Chesnokov, personal communication). The only reliable way to test a location 

algorithm is to locate a source with known coordinates in a physical model and then 

compare with the true coordinates. The location algorithm, UHFracDetect, used in 

this work has been tested on physical models, for example, on a multi-layered model 

with vertical transversely isotropic layers.   
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2.4.2 Moment tensor and seismic magnitude analysis 

        The moment tensor is a simplified mathematical description of a focal 

mechanism in global seismology. Recorded seismograms can help us obtain a 2
nd

 

order moment tensor which contains the mechanism of failures. The moment tensor 

can be expressed as

11 12 13

0 21 22 23

31 32 33

M M M

M M M M M

M M M

 
 


 
  

,  

(Lay and Wallace, 1995), where M0 is the seismic moment, and Mij represents a force 

couple composed of opposing unit forces. M is real and symmetric; thus, only six 

independent components exist (Jost and Herrmann, 1989). The moment tensor also 

can be represented geometrically, by a beach ball diagram, which is a lower 

hemisphere stereographic projection, as shown in Figure 2-9. Conventionally, the 

black quadrants represent the first recorded P-wave as a compressive wave and the 

white quadrants represent the first recorded P-wave as a tensional wave. The real fault 

plane is one of the nodal planes. However, the fault plane cannot be determined by 

use of the beach ball diagram only.   
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Figure 2-9 Moment tensors and corresponding beach ball diagrams (Stein and 

Wysession, 2009) 

 

        Three basic types of seismic mechanisms are isotropic, double-couple, and 

the compensated linear vector dipole (CLVD). A real seismic source can be 

equivalently represented by any of these, or a certain percentage combination of two 

or all three. Figure 2-10 shows the three basic types of sources. 
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Figure 2-10 Three types of force couples and their corresponding beach ball diagrams 

 

        The source mechanism of a microseismic event can be determined 

according to the eigenvectors and eigenvalues of its corresponding moment tensor 

(Jost and Herrmann, 1989).  

        Generally, large solid angle coverage by geophones surrounding the source 

location and high quality seismograms are favorable factors to solve moment tensor 

(Baig and Urbancic, 2010). In real situations, the commonly-used monitoring design 

is a single array of geophones deployed in a monitoring well.  

        A single array of downhole geophones cannot solve the full moment tensor 

solution (Eaton, 2009; Vavryčuk, 2007). It might even give unstable inversion 

solutions. Recently, Song and Toksoz (2011) proposed that full waveforms could help 

Beach balls 

Force couples 
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solve the full moment tensor if the microseismic event location is close to the 

single-monitoring well, i.e., less than five times the dominant S-wave wavelength. 

However, the locations of all events would widely and be randomly distributed in 

space, so not every event could satisfy this requirement.    

        The purpose of solving the moment tensor solution of each microseismic 

event is to understand the failure mechanism and to find the fault plane orientation. 

The purpose of microseismic magnitude analysis is to obtain source radius according 

to radiated energy in an empirical way. The radius of a fault plane is assumed to be 

proportional to the P-wave or S-wave velocity divided by the corner frequency 

(Abercrombie, 1995; Brune, 1970; Brune, 1979). This method could be applied for 

global earthquakes as well as in microseismicity.  

        Microseismic source location combines with source orientation and radius 

are the basis for building the fracture network which is the prerequisite for reservoir 

fluid flow simulation. 

 

2.5 A case study  

        The relation between diffusivity and permeability has been derived. 

Diffusivity is characterized by using the root-mean-square average of the diffusing 

particles distribution in time and space. However, there is an implicit assumption 

between particles’ diffusing and microseismic events.  
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        The assumption is that the state of stress in the crust is close to a failure 

equilibrium. An increase of pore pressure caused by fluid injection and pressure 

relaxation changes the effective normal stress and friction coefficients of the rock 

mass and induces microseismicity (Shapiro et al., 1997; Talwani et al., 1984), i.e., all 

events are diffusion-induced.  

        In real cases, however, rock failure under in-situ conditions is a complicated 

problem. For example, microseismic events could be induced by pore pressure 

relaxation. They also could be induced by effects of rock brittleness and in-situ stress 

distribution combined. Interpreting moment tensor could be helpful. However, the 

moment tensor solution may be unavailable or not fully solved due to monitoring 

design.  

        Also, the point source model should be modified because the purpose of 

hydraulic fracturing is to change the medium by generating or connecting fractures. 

Another challenge is that even if the microseismic events which are really induced by 

fluid diffusion originating from the source with geometrical size, it is difficult to 

decide which part of the source is the origin of diffusion. This effect could be 

negligible only if the size of the source were small compared with the monitoring 

scale in time and space. If not, we could only obtain permeability parallel and 

perpendicular to the dominant fracturing direction. 

        Next, we try to extract permeability before and after hydraulic fracturing 

from a real study.  
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2.5.1 Dollie data acquisition and processing   

        A microseismic survey was performed during the hydraulic fracturing 

stimulation of a Barnett Shale gas reservoir. The Barnett Shale is located in the Bend 

Arch-Fort Worth Basin. The sedimentary rocks were formed in the Mississippian 

period, and consist of organic-rich shale and limestone. The formation includes three 

layers, a lower shale, a middle limestone, and an upper shale, as shown in Figure 

2-11.  

 

Figure 2-11 Fort Worth Basin- Generalized stratigraphy section of the Bend Arch 

(Montgomery et al., 2005). 
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        In this case, the vertical injection well, Dollie, was approximately 275m 

away from the vertical single monitoring well. Both wells had cemented casings. 

Further, the injection well was installed with two perforation guns. A twelve level 3-C 

geophone array was deployed in the monitoring well at a depth range from 2139m to 

2271m; we refer the shallowest as 1 and the deepest as 12. The spacing between 

geophones was 12.192m. The orientations of geophones at each level were unknown 

at the beginning. Their orientations were determined by use of signals from casing 

perforation shots. Shot signals were also used for building and checking the velocity 

model. We set the top of the monitoring well as the origin of the coordinate system. 

There were two pumping points. One was at the depth of 2239m and the other at the 

depth of 2270m. 

        The proppants in the slurry were sieved before pumped into the subsurface 

formation, and their grain size were narrowly distributed around the 4mm range with 

sphericity higher than 9/10.  

        The hydraulic stimulation was designed as follows: a total of 3700m
3
 slurry, 

composed of 1.17 specific-gravity brine, HCL acid, slickwater, and proppant, was 

pumped into the target layer; pumping pressure was around 3000 psi. The dynamic 

viscosity of slurry equalled to 53 10 Pa s . The perforation section had 4.5 inch 

production casing which was cemented with acid-soluble cement. The perforation was 

designed to have a N45°E/ N135°E azimuths. The injection lasted for approximately 8 

hours and the monitoring for 18.6 hours. 
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        During hydraulic fracturing, the UHFracDetect software recorded, 

processed, and located microseismic events in real time. Theoretically, the ambient 

noise level of downhole monitoring is lower than that of surface monitoring. But 

some signals were still contaminated by severe noise, for example, typical noisy data 

are shown in Figure 2-12.  

 

Figure 2-12 A typical example of recorded noisy data (Osakwe, 2013) 

 

        The UHFracDetect software filtered the data first, and then identified events 

by use of a detection algorithm and by removing poor quality detections. Finally, the 

selected events were located by grid searching within a 3-D domain. The total number 

of located microseismic events was 1425.  

        The UHFracDetect software is based on the arrival picking method. The 

signal-to-noise ratio of a locatable threshold is 1.3. For arrival picking-based methods, 

the velocity model is a crucial factor for good location results. In this case, the initial 
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velocity model was built according to sonic logs. Then, it was modified in order to 

minimize the differences between the calculated locations of the perforation shots and 

their known positions. This location result yielded 3-D treatment images and 

information for further analysis. Figures 2-13 and 2-14 show the map view and 

cross-section view of microseismic event location results. The red point or line 

represents the monitoring well. The black point or line represents the injection well. 

Each small point inside represents a microseismic event, and its color and size 

represent the onset time since injection started and magnitude of microseismic activity, 

respectively. 

 

Figure 2-13 Map view of event location results 
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Figure 2-14 Cross-section view of event location results 

 

        The stimulated rock volume (SRV) of the Dollie data equaled 72.97 10 m
3
 

(Lambordi, 2014), as shown in Figures 2-15 and 2-16. The so-called “field scale” is 

defined by the SRV.  
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Figure 2-15 Stimulated rock volume (SRV) after hydraulic fracturing (Lambordi, 

2014) 

 

Figure 2-16 Increasing cumulative volume of SRV during injection (Lambordi, 2014) 
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        Figure 2-17 shows the number of microseismic events in each 10-minute 

interval. Most events were induced at the beginning of the pumping stage. Injection 

lasted for eight hours. Then, the downhole pressure gradient reversed and fluid started 

to flow back. The number of located events increased immediately at eight hours.  

 

 

Figure 2-17 Number of located microseismic events in each 10-minute time interval. 

The red dash line represents the time of pumping stopped. 

 

        Further, according to well logging data, the target layer before hydraulic 

fracturing was 6%. The density of this shale formation is 2.55g/cm
3
. By use of the 

effective medium theory (Chesnokov and Bayuk, 2010), we extracted the stiffness 

tensor of this shale formation (VTI) from five standard logs as:  

Number of located events in each 10-minutes interval 
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        Based on the solved stiffness tensor, the corresponding effective bulk 

modulus of this VTI medium was calculated and its value equalled 0.028 GPa. This 

calculated effective bulk modulus was used for calculating permeability based on 

diffusivity. 

  

2.5.2 Dollie data interpretation        

        With the event location results, we were able to plot the distribution of all 

these events, as shown in Figure 2-18. “r” represents the distance between each 

microseismic event and the injection point. “t” represents the time of each 

microseismicity occurred since injection started. 
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Figure 2-18 Whole space r-t plot of all located events.  

 

        However, this is quite different from the ideal point source diffusion model 

proposed by Shapiro et al (1997). In this case, we found some microseismic events 

were located far from the injection point in the early pumping stage; these results are 

shown in Figures 2-13, 2-14 and 2-18. We cannot tell the mechanism of these events 

only based on the result of microseismic event location. They may have been caused 

by the effect of high brittleness combining with in-situ stress distribution, or slurry 

fast diffusing along pre-existing fracture. The hypothesis we proposed for this effect is 

caused by the geometry of hydraulic fracture. We need to test it by using treating 

parameters, hydraulic fracture model, and mass conservation.  

        The treating pressure and cumulative slurry volume, are shown in Figure 

2-19. The treating pressure and cumulative slurry volume during the fracturing 
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operation can be seen in the blue and green curve, respectively. Figure 2-19 shows 

treating pressure dropped dramatically 20 minutes after injection started which 

indicates a hydraulic fracture was generated (Gregory, 2011). Around 30 minutes after 

injection started, treating pressure increased back to around 3000 psi and kept at that 

level, which means the newly-generated space was filled with slurry and then fluid 

diffusion started to play a major role. We found the cumulative injected slurry volume 

to be around 231m
3
 when treating pressure increased back to 3000psi.  

 

Figure 2-19 Recorded treating parameters evolve with time. The blue line represents 

the treating pressure. The green line represents the cumulative slurry volume pumped 

in.  

 

        Now we consider the geometry of hydraulic fracture and mass conservation. 

Because of low porosity and permeability, a shale formation is not good at storing or 

transporting fluid in its matrix. At the early stage of pumping, the slurry played a 

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000
TREATING PARAMETERS

Time(hr)

T
re

a
ti
n
g
 P

re
s
s
u
re

 (
p
s
i)

 

 

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

C
u
m

u
la

ti
v
e
 S

lu
rr

y
 V

o
lu

m
e
(m

3
)

Treating Pressure

Cumulative Slurry Volume



43 

 

major role in opening new fractures and diffusion phenomena were assumed to be 

negligible. Thus, we assume the volume of slurry equals the volume of generated 

fracture space during the early stage.  

        The height of the hydraulic fracture was around 75m, according to the 

cross-section view of location result, as shown in Figure 2-14. The width of the 

hydraulic fracture was around 4mm, which is close to the grain size of proppant. 

Figure 2-19 shows the cumulative slurry volume was 231m
3
. According to the volume 

conservation of incompressible fluid, the calculated one-wing length of the hydraulic 

fracture was around 350m. This result is consistent with the map view location result, 

as shown in Figure 2-13.  

        Also, this hypothesis was tested after we divide the whole space into 

directional sectors. If these early long-distance events were induced by fracture 

opening, they should also show up in the sector which extends along the assumed 

predominant fracturing direction.  

        Now we could estimate diffusivity according to the whole space 

spatial-temporal distribution of located microseismic events as well as permeability 

before and after hydraulic fracturing. The plot is shown in Figure 2-20. The red curve 

starts at 30 minutes and 350m from the r-t plot and covers 95% of the events during 

injection. The diffusivity corresponding to the red curve was 1.2×10
-3

m
2
/s. The 

corresponding diffusivity after hydraulic fracturing equalled 3.75×10
-2

m
2
/s, which is 

characterized by the blue curve.  
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Figure 2-20 Whole space r-t plot. The red line characterizes diffusion after the fracture 

opening. The blue line starts at 8 hours after injection started and characterized the 

fluid flow back after injection stopped. 

 

        In the paper of Shapiro et al. (1997), the point source model is acceptable 

and the geometry of the hydraulic fracture is negligible because the geometrical size 

of the hydraulic fracture compared with the monitoring scale in space is small enough. 

However, the monitoring duration of the microseismic survey we conducted only 

lasted for 21 hours and the long-distance events located at the early stage were 

induced by a fracture opening. In order to this uncertainty, we considerd the 

geometrical size of hydraulic fracture and calculated the length of the hydraulic 

fracture.  

        The end of the hydraulic fracture wing was considered as the diffusion 
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starting point after the hydraulic fracture was generated. By use of formation porosity, 

dynamic viscosity, and diffusivity values, we were able to calculate permeability 

before and after hydraulic fracturing according to the permeability expression as 

shown in Equation 2-14. In this case, the permeabilities before and after hydraulic 

fracturing were 57.7 10  and 4.02×10
-3

 Darcy, respectively.  

        Though we considered the geometry effect of the hydraulic fracture, the 

whole space r-t plot shown in Figure 2-20 still introduces uncertainties. First, distance 

is scalar in the r-t plot and it does not contain direction information. Thus, adjacent 

points the in r-t plot could be far away from each other in real 3-D space. Besides, for 

a point source model, if the diffusion is anisotropic, the events induced along the 

preferred diffusion orientation would overwhelm the events induced in other 

directions. That is why Figure 2-20 only characterizes the diffusivity along the 

preferred diffusion orientation.  

        It is necessary to calculate directional diffusivity to reduce uncertainty. The 

tensor form of the diffusivity expression is  

1

4
T

t
r





n D n

  (Shapiro et al., 1999);  

this works also for a single point diffusion model. Our study differs in two ways. First, 

in our case, we have two injection points. Second, the monitoring scale is not large 

enough in space and time, thus the geometrical size of the hydraulic fracture affect the 

permeability estimation. These two reasons made permeability tensor estimation 
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impossible by using single-point source diffusion method. However, we could extract 

permeability components along and perpendicular to the dominant fracturing 

direction.  

        We set the injection point as the origin and divided the whole stimulated 

rock volume into directional sectors according to azimuth and dip angles. The 

azimuth and the dip angles were defined to be between 0°and 360° and between 

-90°and 90°, respectively. We defined the direction along the N45°E as 0°azimuth. 

The half space above the injection point had a positive dip angle. We examined two 

sectors in detail; one is along the dominant fracturing direction, the other is 

perpendicular to it.  

        Figure 2-21 shows the map view of the sector corresponding to the 

dominant fracturing direction. Both azimuth and dip angles are in the range of -22.5° 

to 22.5°. 

 
Figure 2-21 Map view location result of the sector with (-22.5~22.5) azimuth and 

(-22.5~22.5) dip 
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        In this sector, we could see the early long-distance events. This is consistent 

with our hypothesis. By using our hydraulic fracture model and mass conservation, 

the diffusion procedure was considered to start at the end of the hydraulic fracture, 

which was 350m from the injection point. The curves which characterize the 

diffusivities before and after hydraulic fracturing are shown in the r-t plot in Figure 

2-22; their values are 3 22.48 10 /m s and 20.188 /m s . The corresponding 

permeability values before and after hydraulic fracturing in this sector were 0.16 

milliDarcy and 12.1 milliDarcy.  

 

 

Figure 2-22 r-t plot corresponds to the same sector as in Figure 2-21  
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        The second sector which is perpendicular to the dominant fracturing 

direction that we selected has azimuth ranges from 67.5° to 112.5°, and dip ranges 

from -22.5° to 22.5°. Figure 2-23 shows the map view location result of this sector. In 

this sector, the diffusion procedure was considered to start at the injection point. This 

is because the structure normal to the dominant fracturing direction was not changed 

very much according to hydraulic fracture model.  

 

Figure 2-23 Map view location result of the sector which has (67.5°~112.5°) azimuth, 

and (-22.5°~22.5°) dip  

 

        The corresponding r-t plot of the sector normal to the dominant fracturing 

direction is shown in Figure 2-24.  
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Figure 2-24 r-t plot of the sector with (67.5°~112.5°) azimuth, and (-22.5°~22.5°) dip  

         

        For this sector, the diffusivity and permeability before hydraulic fracturing 

were 0.05m
2
/s and 3.21×10

-3
Darcy. However, the diffusivity or permeability after 

hydraulic fracturing could not be obtained in this directional sector, for two reasons. 

First, according to our observations, there was only one located event after pumping. 

The uncertainty of estimated diffusivity result would be huge. Second, this direction 

was normal to the preferred fracture growth orientation, i.e., the formation along this 

direction was not changed before and after fracturing operation.  
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2.6 Summary and discussion 

2.6.1 Summary 

        In this chapter, the 3-D diffusion equation has been interpreted from a 

probability perspective. Diffusivity, which carries the physical meaning of diffusion, 

has been interpreted as the probability density of a perturbation distributed in time and 

space. For a group of hydraulic diffusing particles, the root-mean-square average 

diffusing distance describes the fluctuation of diffusing particles in time and space, 

expressed as 6rmsr Dt . In all, diffusing distance equals the square root of the 

product of diffusivity multiply, elapsed time, and a constant. With different criteria, 

the constant could be modified. For example, the curve fit the outermost events in r-t 

plots and gave the upper-limit diffusivity of the original formation. Its expression is 

2 / 4D r t . Similarly, diffusivity of the formation after hydraulic fracturing was 

obtained by the curve fitting innermost located events induced by fluid flow after 

injection stopped. 

        For incompressible fluid, the diffusivity tensor was found to be equal to the 

permeability tensor divided by a scalar which was the product of dynamic viscosity, 

connected porosity, and formation compressibility under an isothermal condition.  

        Microseismic data acquired in the Barnett Shale Formation yielded, with 

assumed hydraulic geometry, an initial permeability of 0.16 and 3.21 milliDarcy in 

the assumed dominant of fracturing and normal to it, with an increase to 12.1 
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milliDarcy along the dominant direction of fracturing after the hydraulic fracturing, 

i.e., an increase the permeability along the assumed dominant fracturing direction by 

two orders of magnitude. The determination of permeability before hydraulic 

fracturing using the Dollie data is consistent with core sample measurement results 

done in the laboratory. 

 

2.6.2 Discussion 

        Outermost diffusion-induced microseismic events in spatial-temporal 

distribution were used for estimating the diffusivity of the original formation because 

the medium had not been changed by earlier located events. Similarly, the diffusivity 

after hydraulic fracturing was able to be extracted by using innermost 

diffusion-induced events in spatial-temporal distribution. The diffusivities determined 

in this way were the upper-limit values. High diffusivity means fluid can transport at a 

high rate, and vice versa.  

        The uncertainties of permeability estimation based on the diffusion method 

may have come from the following: 

(1) Accuracy of microseismic event location results 

Accuracy of event locations is difficult to verify, because we do not know the 

exact coordinates of each event, except at perforation points. Besides, only a 

small portion of microseismic events in the time-space plot was used for 
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estimating the permeability of the medium before and after hydraulic 

fracturing. Thus, the accuracy of the permeability estimation results depends 

highly on the location results of those events. Very few microseismic events 

were located after pumping, which also introduces uncertainty for the 

permeability estimation of the medium after hydraulic fracturing. Reducing 

the locatable threshold of the microseismic events location method would be 

helpful for permeability estimation.  

(2) Time and space scale of monitoring  

Permeability tensor estimation based on the diffusion method worked for the 

single point source model. For the hydraulic fracturing case, it is 

approximately valid if the time and space scale of monitoring is large enough 

compared with the geometry of the hydraulic fracture.  

(3) Assumed hydraulic fracture geometry 

The end of the hydraulic fracture wing was considered as the point source for 

diffusion along a dominant fracturing direction. An inaccurate length for the 

hydraulic fracture could induce errors up to one order of magnitude for 

permeability estimations of the original medium along the dominant fracturing 

direction. This is because, compared to the permeability values of shale 

formation, a several-meter difference in diffusing distance would make a huge 

difference for the estimated permeability. 

(4) Unclear mechanism of microseismic events and assumed diffusion-induced 
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events 

A located microseismic event only means the medium has been changed at 

those coordinates, i.e., (x, y, z, t). However, it does not necessarily mean the 

fluid reached this point. It may have been induced by the effect of in-situ 

stress distribution and the brittleness of the medium combined. On the other 

hand, fluid flow would not necessarily be inducing microseismic events; for 

example, water could flow quietly in a pipe or pre-existing fractures. A 

hydraulic fracture model is important to reduce the uncertainty that comes 

from the ambiguous relationship between ‘fracture’ and ‘flow’, especially 

when the time and space scale of monitoring is limited.  

 

        The permeability tensor could not be fully extracted from the Dollie data 

case. The first reason is that two pumping points along the vertical well made the 

diffusion-induced events overlap. Second, because the monitoring scale in time and 

space was not large enough, hydraulic fracture geometry had to be taken into account. 

However, we were unable to accurately determine the origins of diffusion-induced 

events which were located not normal to the dominant direction of fracturing.  

        Accurately locating microseismic events was our first priority. With the 

location results we could give the spatial-temporal distribution of microseismic and 

calculate the SRV. However, we did not have 100% accuracy answer about the real 

coordinates of each microseismic event in real situations. 
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        Here I list several aspects that may have introduced errors and uncertainties 

to microseismic event location results and some recommendations for future work. 

        Generally, the accuracy of location depends on (Abaseyev, et.al, 2009):  

(1) Geometry of observation;  

(2) Velocity model;  

(3) Types of the waves used for interpret data;  

(4) Accuracy of P- and S-wave time arrival determination;  

(5) geophone component orientations.  

        Among these, the velocity model is important for both arrival picking-based 

methods and migration-based methods. The velocity model changes dynamically 

because the purpose of hydraulic fracturing is to change the subsurface structure, 

which definitely changes transport and elastic properties as well. Figures 2-25 and 

2-26 present seismograms recorded by the same station responding to different 

pershots. The first example in Figure 2-25 shows that the correlation of recorded 

seismograms was high because these two perfshots are close in time. The second 

example in Figure 2-26 shows that the correlation of recorded seismogram was low 

due to the long time gap. These imply the velocity model was changing dramatically 

during hydraulic fracturing.  

        Further, not all detectable microseismic events can be located, i.e., each 

algorithm has a locatable threshold. For the UHFracDetect, it can locate microseismic 

events with a signal-noise ratio higher than 1.3. This means that some weak events, 
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for example, back flow induced events, cannot be located. Recently, migration-based 

location methods were able to locate microseismic events with a signal-noise ratio as 

low as 0.5 (Gajewski and Tessmer, 2005). Due to its high computational cost, this 

type of method is still less popular in the oil and gas industry. Thus, in the future it is 

necessary to reduce the threshold of location and the computational cost. 

        Diffusion methods estimate the upper-limit diffusivity of the original 

formation by using outermost events in r-t plots, and estimate upper-limit formation 

diffusivity after hydraulic fracturing by using innermost events in r-t plots. In this way, 

uncertainties definitely depend on the accuracy of outermost and innermost events in 

r-t plots. However, located events between these did change the formation structure 

but did not contribute to the diffusivity estimation. Even worse, we may not have 

located events induced by flow back if monitoring stopped immediately when 

pumping stop. Thus, in the next chapter we consider a way to make use of all located 

events during pumping and simulate the fluid flow in the fracture system.    
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Figure 2-25 Two perfshots taken from Dollie well. The distance between these two 

perfshots is 40 ft. The time difference between these two perfshots is 71 seconds. The 

recorded seismograms by the same station have high correlation coefficients values. 

(Evgeny Chesnokov, “Microseismics: Integrated, Advanced Geophysics”, class 

lecture, Microseismic, Natural Sciences and Mathematics, Houston, TX, Aug 27, 

2012). 
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Figure 2-26 Two Perfshots taken from Dollie well. The distance between these two 

perfshots is 40 ft. The time difference between these two perfshots is 2 days and 23 

hours. The recorded seismograms by the same station have low correlation 

coefficients values. (Evgeny Chesnokov, “Microseismics: Integrated, Advanced 

Geophysics”, class lecture, Microseismic, Natural Sciences and Mathematics, 

Houston, TX, Aug 27, 2012). 
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Chapter 3 Fluid flow simulation 

3.1 Introduction 

        The moment tensor solution and analysis of microseismic magnitude could 

provide the orientation and geometrical size of each fracture. Combining the locations 

of microseismic events, the fracture networks could theoretically be built. With the 

help of operating parameters such as pumping pressure, and slurry viscosity, fluid 

flow in the fracture networks could be simulated based on the Navier-Stokes equation. 

Flow flux and permeability could also be calculated.   

        Different from diffusion methods, permeability can be only obtained by 

fluid flow simulation for known flow domains using numerical methods. Fluid flow 

simulation is considered to be an extension of microseismic monitoring techniques; 

thus it was able to help us calculate the production rate or permeability using the 

following: 

(1) Flow domain information; for example, length, width, and shape of flow domain;  

(2) Fluid information; for example, viscosity, density; 

(3) In-situ parameters; for example, pressure gradient or inlet velocity.  

        We also wanted to investigate angular-dependent and scale-dependent 

effects on synthetic media by our implementing fluid flow simulation.  

        In this chapter, we first briefly introduce the basic theory of fluid dynamics 

and numerical methods. After that, we simulate the fluid flow in a rectangular channel 
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using the finite difference method. We also simulate fluid flow in a periodic geometry 

channel using the finite element method. Rectangular and periodic flow domains are 

selected for simulation because they represent the shapes of hydraulic fractures with 

uniformly (ideal) and non-uniformly (non-ideal) distributed proppants in hydraulic 

fractures. Rectangular and periodic geometry flow domains can be seen as the basic 

elements out of which real hydraulic fractures are made. We also simulate fluid flow 

in synthetic shale core samples which have flow directions of 0°, 15°, 30°, 45°, 60°, 

and 75° angles to bedding planes. Then, we simulate the fluid flow in the fracture 

with the same width and orientation but with different sizes of synthetic media. With 

the help of simulation, we were able to calculate effective permeability of 

corresponding synthetic media.  

 

3.2 Numerical methods and the Navier-Stokes equation 

        As in investigating other problems, analytical solutions are best, and have 

many benefits, such as being continuous, accurate, and fast for computation. However, 

analytical solutions do not always exist. As a non-linear partial differential equation, 

no analytical solution exists for the general form of the Navier-Stokes equation. 

However, numerical solutions exist for almost all cases. Compared with results 

obtained by experiments, numerical methods are inexpensive, visible, and have 

controllable computation accuracy. Numerical simulation of fluid flow is widely used 

in the fields of aerospace, automobile, and biomedical, but it is still new for reservoir 



60 

 

monitoring. 

        Numerical methods could provide solutions in a discrete form for each grid 

point. Thus, we needed to discretize the domain, i.e., divide the domain into numbers 

of discrete sub-domains, where each sub-domain is represented by a discrete set of 

points. The purpose of discretization is to obtain lower order polynomial functions. 

Then the continuous governing differential equation was able to be converted into a 

system of algebraic equations. After that we could obtain values of dependent 

variables at discrete points.  

        Newton’s laws are inherently suitable for Lagrangian description. We could 

write an equation of motion and focus on the locations of each particle with the help 

of Newton’s law. In fluid mechanics, it is more convenient to use Eulerian description, 

which is a way of focusing on specific volume fixed in space. This specific volume is 

called control volume. Fluid can freely flow through its boundaries as time passes. A 

mass or momentum balance equation can be written for the control volume. The 

difficulty is the basic equations given by Newton’s law of motion are not inherently 

developed for control volume. Thus, the transformation from Lagrangian to Eulerian 

description is necessary. Reynolds transport theorem is involved. Details of the 

Reynolds transport theorem are shown in Appendix.  

        The momentum balance equation for undeformable and stationary control 

volume is expressed in Equation 3-1, as  
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( ) ( )( )cv

cv cs

F v dV v v dA
t
  


 


   ,                                  (3-1)  

where  is the density of fluid, v is the velocity of fluid,  is the normal vector of 

the control surface, and cvF  is the effective forces applied to the control volume. 

After analyzing the stress-strain relation with the help of viscosity parameters and

  , we can obtain the Navier-Stokes equation for homogenous and isotropic 

Newtonian fluid. The conservative form of the Navier-Stokes equation is 

( ) ( ) ( ) [( ) ]i k
i i j i

j i j j i k

u uP
u u u b

t x x x x x x
     
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      

      
,          (3-2)  

where i, j, and k represent three axes of Cartesian coordinates, and  and are the 

viscosity coefficient and 2
nd

 viscosity coefficient, respectively. On the right-hand side 

of the equation, the first term is interpreted as a pressure gradient term; the second 

term is a viscous term; the third is a volumetric dilation term, which equals to zero if 

incompressible fluid; and the last term represents the body force.      

        For the left-hand side, after expanding the derivative, we obtain

( )ji i
i i j

j j

uu u
u u u

t t x x


 

 
  
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.  

The sum of the second and third terms equals to zero according to mass conservation.       

        Thus, the left-hand side is ( )i i i
j

j

u u Du
u

t x Dt
 
 

 
 

. If iDu

Dt
 or

( )i i
j

j

u u
u

t x

 


 

is used on the left-hand side of the Equation 3-2, we obtain the 

non-conservative Navier-Stokes expression.  is not necessary to be a constant even 
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if it is out of the derivative symbol.     

        For 3-D cases (i=1,2,3), we have three momentum equations. However, 

there are four unknowns, i.e., u1, u2, u3, and P. That is why the mass conservation 

equation has to be involved, though the mass conservation equation explicitly does 

not contain a pressure term. The challenge of fluid flow simulation is to solve 

equations numerically, where P is unknown, and we do not have an explicit governing 

equation.  

          

3.3 Finite difference method and flow simulation in simple geometry 

domain 

        In this section, we simulate fluid flow in a simple geometry domain, i.e., a 

rectangular domain. We will briefly introduce the principle of the numerical method, 

boundary conditions and initial conditions, and then show the simulation results.  

 

3.3.1 Finite difference method 

        The finite difference method is one of the oldest numerical methods. It was 

proposed by L.F. Richardson (1911). It expresses the derivatives in terms of suitable 

algebraic differences using the Taylor series expansion. Usually, we keep the 

first-order derivative term and truncate higher order terms. If we set the step-length to 
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be h, the truncation error of the first-order derivative using forward or backward 

difference is proportional to h; the truncation error of the first-order derivative using 

center difference is proportional to h
2
; the truncation error of the second-order 

derivative using center difference is also proportional to h
2
. If the value of step length 

h is small, h
2
 is assumed to be insignificant.  

        According to the Taylor series, however, the forward difference expression 

is
2

( ) ( ) '( ) ''( )...
2

h
f x h f x hf x f x     .                                (3-3)  

If we keep the first two terms on the right-hand size of the expression and assume the 

value of h is small, the truncation error could also be significant because ''( )f x is not 

necessary small. Thus, we need to evaluate the higher order derivatives and make sure 

the truncation error is tolerated.  

        The advantage of the finite difference method is its simplicity for 

expressing the derivative form of a differential equation by Taylor series expansion. 

Except for the possible truncation error problem just mentioned, the disadvantage of 

the finite difference method is that it requires grid lines orientated in a mutually 

orthogonal manner. Thus, for complicated geometry domains, the finite difference 

method is not the first choice. 

    

3.3.2 Flow simulation in simple geometry domain      

        For compressible flow, pressure is linked to density. However, the pumping 
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slurry is made of sands and liquid solutions, we assume it is incompressible. In this 

section, we simulate 2-D, incompressible flow in a rectangular domain till it reaches 

steady state. Steady flow means the properties of the flow are not a function of time, 

i.e., 0c
t





,  

where c represents any property of the flow. For incompressible fluid, density is a 

given property of the fluid itself, not a function of pressure. 

        The conservative form of the Navier-Stokes equation is

( ) ( ) ( ) [( ) ]i k
i i j i

j i j j i k

u uP
u u u b

t x x x x x x
     
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      
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.          (3-4) 

Specifically, the x-momentum equation is: 

, (3-5) 

 

where u and v are velocity along the x and y directions, respectively;  is the density 

of fluid, λ and μ are viscosity coefficient and 2
nd

 viscosity coefficient, and P is 

pressure.  

Due to incompressible, steady flow simulation, the original Navier-Stokes equation is

( ) ( )i i i
j

j i j j

u u uP
u

t x x x x
 
   

   
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,                                  (3-6)  

where body force term is cancelled because of buoyance force.  

        As a variable, pressure appears in gradient form instead of in its absolute 

sense. When we evaluate a local derivative at a particular point, it will bring us 

difficulty if pressure gradient and velocity are evaluated at the same point, as shown 

2( ) ( ) ( )
( 2 ) [ ( ] i
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V b

t x y x x x y x y
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   
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         
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in Figure 3-1.   

 

Figure 3-1 Velocity u is evaluated at points i-1, i-1, i, i+1, i+2 

 

 

For example, we obtain a simplified momentum equation as 

i

u P

t x

 
 

 
,                                                      (3-7)  

where u represents the velocity and P represents pressure. If we rewrite it in discrete 

form, we obtain
1

1 1

2

n n

i i i iu u P P

t x



  
 

 
.                                (3-8) 

        We can see the pressure at this particular point i does not show up in the 

momentum equation at point i because of the pressure gradient used. In order to avoid 

this, pressure and velocity should be evaluated at alternate points, as shown in Figure 

3-2. We set up the staggered grid and derived the discretized momentum equation in a 

simple geometry domain. 

 

Figure 3-2 Points of pressure are evaluated in between the evaluated points of velocity, 

i.e., pressure is evaluated at the red color points.  
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        Figure 3-3 presents a 2-D staggered grid as an example.  

 

Figure 3-3 Two dimensional staggered grid 

 

        Velocity along the x-axis is evaluated at each red point and represented by u; 

velocity along the y-axis is evaluated at each purple point and represented by v. 

Pressure is evaluated at each intersection point of the blue lines. In 2-D cases, three 

quantities, u, v, and p, are not evaluated at the same point (i, j), i.e., velocity u with 

respect to pressure P is evaluated at the same grid along y, but at the half-grid point 

along the x direction. Similarly, velocity v is evaluated with respect to P at the same x 

but at the half-grid point along the y direction. 

        We arbitrarily selected a control volume which is extending one half-grid in 

each direction, as shown in Figure 3-4. Pressure P is at the center of the control 

volume. Each control volume has four faces; we defined the east, west, north, and 

south faces as e, w, n, and s, respectively. We defined the nearest east, west, north, and 

south grid points as E, W, N, and S, respectively.  
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Figure 3-4 Control volume and its four faces 

 

        Next, we gave the discretized momentum and continuity equations of 

two-dimensional, incompressible, steady flow.  

The continuity equation in continuous form was expressed as 

0
u v

x t

 
 

 
.                                                     (3-9)  

Its discretized form was expressed as 

0e w n su u v v

x y

 
 

 
,                                              (3-10) 

where e, w, n, and s represent east, west, north, and south faces of the control volume. 

Due to steady flow, the momentum equation along the x axis in continuous form at 

face e is 

2 2
2

2 2

1
( ) ( ) ( )

P u u
u uv

x y x x y




    
    

    
;                            (3-11) 

its discretized form is 

2 2

2

21
( )e w n s ee e wE P

u u uv uv u u uP P

x y x x




   
   

   
.                    (3-12) 

Similarly, we could obtain momentum equation along the y axis. 
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        In this way, we reorganized the expression and obtained x-momentum in the 

form of a linearized matrix equation at each point e for the whole domain:

1 E P
e e nb nb

P P
A u A u

x


  


 ;                                      (3-13)  

and a y-momentum linearized matrix equation at point n for the whole domain: 

1 N P
n n nb nb

P P
A v A v

y


  


 ,                                      (3-14) 

where subscript nb represents contributions from neighboring points.  

        Now we have three equations (continuity, x-momentum, and y-momentum 

equations) we need to solve and obtain values of ue, vn, and PP. The principle is we 

assume pressure at every point first, i.e., assume PE, PP, and PN through the whole 

domain, and obtain  

* *1 E P
e e nb nb

P P
A u A u

x


  


 and

* *
1 N P

n n nb nb

P P
A v A v

y


  


 ,           (3-15) 

where the asterisk means the pressure values are assumed, the first terms on the 

left-hand side represent velocity variation due to pressure change, and the second 

terms on the left-hand side represent the contribution from neighboring grids’ 

convective and diffusive flow.  

        Then we can solve the momentum equations and obtain the velocity fields 

u* and v* according to the assumed pressure field. If the assumed pressure field is 

correct, the corresponding velocity field would satisfy the continuity equation at every 

location. If the continuity equation is not satisfied, we need to make a correction to 
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the pressure field and repeat this procedure till the solved velocity field satisfies the 

continuity equation. During this procedure, we use the first-order degree 

approximation that pressure correction will not have significant change from the 

implicit neighboring contribution.    

      Now we implement boundary conditions. For second-order differential 

equations, usually there are three types of boundary conditions. The first one is the 

essential boundary condition, which is the variable for which variation appears if the 

boundary term is specified. The second one is the natural boundary condition, which 

is the coefficient of variation if the boundary term is specified. The last one is the 

mixed boundary condition.  

        The flow domain for this procedure is shown in Figure 3-5.    

 

Figure 3-5 Schematic drawing of a two-dimensional domain with four boundaries   

         

        We simulated the laminar flow with the boundary conditions of this domain 

as follows: 
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We used u, v, and P to represent velocity along the x-axis, y-axis, and pressure, 

respectively. The boundary conditions of both top and bottom walls are: dP/dx=0, 

u=v=0. The boundary conditions of inflow are: u=constant, v=0; dP/dx=0. The 

boundary conditions of outflow are: du/dx=dv/dy=0, P=0.   

        The whole domain was discretized. Pressure, u-velocity, and v-velocity 

were evaluated at m*n, m*(n-1), and (m-1)*n points, respectively. We implemented 

the boundary conditions in discretized form and used index i and j, which represent 

the coordinate of pressure grid points, where i=1,2,3…m, j=1,2,3…n.  

        The boundary conditions could be modified according to the different cases 

we investigate; for example, on the inflow side we could use an essential boundary 

condition, i.e., a specific pressure value.  

        The geophysical and computational parameters we used in simulation are 

shown in Table 1: 

Density of fluid 1.5g/cm
3
 

Viscosity of fluid 3×10
-5

 Pa˖s 

Inlet velocity 0.01m/s 

Outlet pressure 0 

Length of flow domain 0.02m 

Width of flow domain 0.008m 

Tolerated residual error for continuity equation 10
-6 

Table 1 Simulation parameters used for the 0.02*0.008m rectangular domain. 
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        These parameters shown in Table 1 are directly from our Dollie data case, 

and the simulation based on those parameters is defined as Case 1.  

        Then we changed the one parameter at a time and observed the difference in 

each simulation result. 

For Case 2: the density of fluid was changed to 1g/cm
3
. 

For Case 3: the viscosity of fluid was changed to 3×10
-6

 Pa˖s. 

For Case 4: the inlet velocity was changed to 0.03m/s. 

        Figure 3-6 gives the simulation results for each case. The row number 

corresponds to the case number. For each case, the figure on the left column shows 

the horizontal velocity (u) in flow domain. The figure in the middle column shows the 

vertical velocity (v) in flow domain. The figure on the right column shows the 

pressure field in flow domain. The color bar gives the magnitude of each field. 

        Figure 3-6 shows that the velocity and pressure fields of each case when the 

fluid flow reached the steady state. For different cases, the flow domain size stayed 

the same, but the area of the zone influenced by the entrance effect was different. 

“Entrance effect” means the horizontal velocity is a function of the x-coordinate and 

vertical velocity is a function of the y-coordinate, i.e., the velocity field has not fully 

developed. Compared with whole flow domain size, the zones influenced by entrance 

effects cannot be negligible. 
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Figure 3-6 Simulation results of Cases 1, 2, 3, and 4 

 

         

Case 1 
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Case 3 

Case 4 

u velocity field 
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pressure field 
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        One-dimensional Darcy’s law is expressed as 

x

A dP
Q

dx




 .                                                     (3-16) 

        After reorganizing, we obtain 

xQ

A P








.                                                      (3-17)  

        We were able to calculate permeability using this expression. Because the 

fluid is incompressible, has the same inlet velocity, same flow domain, and same mass 

conservation, the flux values are the same for Cases 1, 2, and 3. Their permeability 

ratio depends on the viscosity divided by pressure drop.   

        The only different parameter used in the simulation of Case 2 compared 

with Case 1, is the fluid density. Density was changed from 1.5 g/cm
3
 to 1 g/cm

3
. For 

both Case 1 and Case 2, flux is the same due to the same inlet velocity. Though 

density is implicit in Darcy’s law, simulation results showed us the total pressure drop 

decreased. From Case 1 to Case 2, permeability increased. 

        The only different parameter used in the simulation of Case 3 compared 

with Case 1, is the fluid viscosity. Viscosity was changed from 3×10
-5

 Pa˖s to 3×10
-6

 

Pa˖s. For both Case 1 and Case 3, the inlet velocity and flux are the same, respectively. 

Simulation results showed that the total pressure drop decreased dramatically, i.e., the 

total pressure drop in Case 3 was less than one tenths of the total pressure drop in 

Case 1. From Case 1 to Case 3, permeability increased. 

        The only different parameter used in the simulation of Case 4 compared 



74 

 

with Case 1, is the inlet velocity. The inlet velocity was changed from 0.01 m/s to 

0.03 m/s. Thus, the flux of Case 4 is three times larger than the flux of Case 1. 

According to simulation results, the pressure drop increased. The ratio of pressure 

drop in Case 4 to that in Case 1 was smaller than three. From Case 1 to Case 4, 

permeability increased. 

        Based on simulation results, we can make several conclusions. Firstly, for 

the same flow domain, when the zone under the entrance effect is not negligible, the 

calculated permeability is a non-linear function of flux, pressure drop, and viscosity. 

Also, flux and pressure drop are inter-dependent. There is no explicit expression 

between them, even if the same type of fluid (compare Case 1 with Case 4) was used. 

The reason behind this phenomenon is that the Navier-Stokes equation is a non-linear 

partial differential equation and no analytical solution exists.  

       If we keep the same boundary conditions and change the type of fluid, i.e., 

density and/or viscosity (compare Case 1 with Case 2; Case 1 with Case 3), the flux 

does not change due to the boundary conditions; however the total pressure drop and 

flow field are changed. Similarly, there is no linear relationship between the total 

pressure drop and independent variables, such as density or viscosity.  

        When the entrance effect is not negligible, even in the same flow domain as 

the simulation above, permeability depends on fluid type and the status of flow. 

Variables, which appear in Darcy’s law, are inter-dependent. There is no possibility 

that calculated permeability would change linearly, as one single variable changes and 
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others stay the same.  

        Further, if the flow domain is much larger than the zone influenced by the 

entrance effect, the pressure gradient is close to a constant value, i.e., pressure linearly 

decreases along the flow direction. Under this condition, permeability, which is 

proportional to the ratio of flux to pressure gradient, is considered to be a constant 

along flow direction for the same type of fluid. Thus, upscaling is applicable when the 

entrance effect zone is negligible compared with the total flow domain.  

        The values of flux and pressure drop could always be measured by 

experiment or numerical simulation. After that, permeability values could be 

calculated. The advantage of numerical simulation is it gives the details of velocity 

and pressure fields inside the flow domain. This helped us to evaluate the entrance 

effect directly.  

 

3.4 Finite element method and flow simulation in the periodic domain 

        The finite element method (FEM) was first used by Courant (1943). At an 

early stage, this method was mostly used for analyzing structural mechanical 

problems. The principle and flowchart of the FEM are as follows: 

(1) Set up the geometry and divide domains into a number of discretized 

sub-domains. The shape of each sub-domain could be arbitrarily selected;  

(2) Each sub-domain is represented by a number of discrete points; 
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(3) Derive the algebraic equations from the governing differential equation and 

make it valid at each discrete point; and  

(4) Input boundary and initial conditions, and solve the system of algebraic 

equations to obtain values of dependent variables at discrete points.  

The advantages of the FEM include: 

(1) The shape of domains could be complicated; and 

(2) There are only small errors for diffusion-dominated problems (viscous flow), 

because the method has the characteristic of error minimization. 

        Compared to the finite difference method, the disadvantage of FEM is its 

computational cost.  

        We simulated the fluid flow in a periodic medium with the help of ANSYS 

version 15.0 using the FEM. The radii of wide and narrow throats for the periodic 

domain are 8mm and 4mm. Other parameters are the same as Case 1 of the 

rectangular domain simulation, such as density and viscosity of fluid, length of 

domain, and inlet and outlet velocities. This simulation is defined as Case A in the 

periodic flow domain. Figure 3-7 shows the corresponding results of velocity and 

pressure fields of final steady state flow in the periodic flow domain. The simulation 

parameters of Case A are shown in Table 2.  
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Density of fluid 1.5g/cm
3
 

Viscosity of fluid 3×10
-5

Pa˖s 

Length of domain 0.08m 

Wide and narrow radii 0.008m and 0.004m 

Inlet velocity 0.01m/s 

Outlet pressure 0 Pa 

Table 2 Simulation parameters of Case 1 used in a periodic domain 

 

        Figure 3-7 shows the velocity and pressure fields when fluid flow reaches 

the steady state. The velocity field is shown at the top and pressure field is shown at 

the bottom. The color bar gives the magnitude of the corresponding field. The units of 

velocity fields and pressure field are m/s and Pa, respectively. 

        Due to the geometry of this type of flow domain, the flow field is difficult 

to be fully developed. Thus, the effective permeability had to be calculated case by 

case and could not be upscaled. The effective permeability was calculated using total 

pressure drop, flux, and viscosity. Compared with cases of rectangular domain 

simulation, the velocity field in a periodic domain is highly fluctuating. Wide throat 

zones store fluid as reservoirs. Thus, if proppant settle-down phenomena exist during 

hydraulic fracturing, it is disadvantageous to hydrocarbon production. 
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Figure 3-7 Simulation results of Case A in a periodic medium with 8mm and 4mm 

radii throats.  
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        The only change in the Case B simulation compared with Case A in the 

periodic domain is that the wide and narrow radii become 0.004m and 0.002m. We 

kept boundary conditions and other parameters the same. The velocity field (top) and 

pressure field (bottom) are shown in Figure 3-8.  

        We found as the flow domain became narrower, the zone influenced by the 

entrance effect became more obvious. Compared with the result of Case A as shown 

in Figure 3-7, for example, the magnitude of the velocity field at the third narrow 

throat was closer to the second throat. Therefore, the flow field was difficult to fully 

develop. Thus, the ratio between flux and pressure gradient is not a constant. 

Permeability depends on medium (flow domain), type of fluid (density, viscosity), and 

in-situ conditions (applied pressure and/or flow velocity). Moreover, if the geometry 

of a flow domain is complicated, velocity and pressure inside the domain would be 

fluctuating, which could induce a turbulent effect. This is another reason for the 

difficulty of upscaling. Generally, favorable conditions for permeability upscaling 

include: 

(1) high viscosity fluid;  

(2) fluid flowing slowly or low applied pressure drop; and 

(3) simple geometry domain with fully developed flow field. 
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Figure 3-8 Simulation results of Case B in a periodic domain with 4mm and 2mm 

radii throats. 

Velocity field of Case B 

Pressure field of Case B 
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3.5 Fluid flow simulation in synthetic media 

        In this section, we simulate fluid flow in synthetic media. We first simulate 

fluid flow in a shale matrix. The reason for this test is that numerical methods could 

always give results; however, the simulated results need to be verified by analytical 

solutions or the results obtained by experiments. The permeabilities at 0°, 45°, and 90° 

to the bedding plane have been measured in our laboratory. Numerical simulation 

could provide the permeability along any angle to the bedding plane. Given no 

analytical solution, it is important to compare numerical solutions with experimental 

results, especially for the one with 45° to the bedding plane. 

        Also, we investigated the scale dependent effect. The model was composed 

of a fracture with a constant width parallel to the bedding plane inside a shale matrix.  

 

3.5.1 Angular dependent permeability of shale sample 

        We used the same parameters according to laboratory measurements; for 

example, the radius and length of shale plugs used for measurement were 0.5 inch and 

1 inch, respectively. Applied pressure drop on both ends was 300psi. The synthetic 

samples orient were 0°, 15°, 30°, 45°, 60°, 75°, and 90° to bedding plane, as shown in 

Figure 3-9. 
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Figure 3-9 Blue lines represent the shale bedding planes. Shale plugs have different 

angles to the bedding planes. Letters “I” and “O” mean the inlet and outlet during 

measurements. 

 

        Boundary conditions were simulated to exactly match the laboratory 

measurement conditions as well. Table 3 gives the simulation parameters. 

Length and radius of sample  1inch and 1inch 

Fluid viscosity 1.8*10
-5

Pa˖s 

Pressure drop 300psi 

Table 3 Simulation parameters of fluid flow in a synthetic shale matrix. 

        

        In the real measurements, the sample was jacketed and no fluid was allowed 

to flow along or normal to the side of cylinder. Figure 3-10 gives a diagram the 

boundary conditions for the synthetic samples. The arrow represents the flow 

direction. 

 

Figure 3-10 A synthetic shale sample diagram. Blue arrow represents the flow 

direction. 

X 

Y 
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        We set 1microDarcy and 1nanoDarcy as the permeabilities parallel and 

normal to the bedding plane according to the results obtained by measurement. We 

assume the samples are homogenous and no heterogeneities exist inside the sample. 

By simulating fluid flow, we were able to obtain the velocity field and pressure fields 

in the flow domain of each sample. Then angular dependent permeability was 

calculated. Plugs at 45° to the bedding plane were cut and measured in our laboratory. 

We compared the simulated results with experimental ones.  

        Results from the sample with 15° to the bedding plane velocity field and 

pressure field are shown in Figure 3-11.  

        Results from the sample with 30° to the bedding plane velocity field and 

pressure field are shown in Figure 3-12.  

        Results from the sample with 45° to the bedding plane velocity field and 

pressure field are shown in Figure 3-13. 

        Results from the sample with 60°to the bedding plane velocity field and 

pressure field are shown in Figure 3-14. 
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Figure 3-11 Velocity and pressure field of sample with 15° to bedding plane 
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Figure 3-12 Velocity and pressure field of sample with 30° to bedding plane 
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Figure 3-13 Velocity and pressure field of sample with 45° to bedding plane 
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Figure 3-14 Velocity and pressure field of sample with 60° to bedding plane 
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        Using Darcy’s law, we obtained angular-dependent permeability result for 

this synthetic shale core. The curve represents the permeability of samples with 

different angles to the bedding plane is shown in Figure 3-15. The simulated results 

are consistent with the ones obtained by laboratory measurement. This demonstrates 

the accuracy of the simulation algorithm we used.  

 

 

Figure 3-15 Angular dependent permeability of a lab-scale synthetic shale matrix 

sample 

 

        In this simulation, the ratio of radius to length is 1:1, and the pressure drop 

is 300psi. We observed the velocity field was not fully developed inside the flow 

Numerical results and experimental results 

: Numerical results 

: Experimental results 



89 

 

domain. Also, the pressure gradient did not close to a constant. Thus, this result could 

not be upscaled, even for another series’ sample test which has the same ratio of 

radius to length but twice as big as the current sample size. The reason is the velocity 

at the boundaries of the cylinder was 0 for laminar flow. If we had tested another set 

of larger samples with the same ratio of radius to length, and same dP/dx for the 

whole sample, the surface effect would have been decreased and calculated 

permeability would have been increased. Because the size of samples was limited, 

permeability results obtained by laboratory measurement could not be upscaled 

generally, even for homogenous samples.  

        Besides, if the ratio of radius to length were changed in our case, the 

velocity field and pressure field would have been changed as well. Again, in many 

situations, permeability is a case-by-case problem.  

 

3.5.2 Scale dependent effect 

        Though permeability is a case-by-case problem in general, we wanted to 

investigate under what conditions upscaling was possible, i.e., under what conditions 

flow field is fully developed and the entrance effect is negligible. When the flow field 

is fully developed, permeability would be linearly changed with flux or viscosity, and 

pressure gradient. The synthetic medium we used was a shale matrix containing a 

constant-width fracture. The only variable was the size of media. The sizes of sample 
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tested included 1cm*1cm, 2cm*2cm, 4cm*4cm, 8cm*8cm, and 16cm*16cm.  

Other parameters are shown in Table 4 below. 

 

Pressure drop 2 Pa 

Width of fracture 1mm 

Density of fluid 1.5g/cm
3
 

Permeability normal to the bedding plane 1nanoDarcy 

Permeability along the bedding plane 1milliDarcy 

Viscosity of fluid 3*10
-4

 Pa˖s 

Table 4 Simulation parameters for the scale dependent effect 

 

        The only variable here is the size of sample. Figure 3-16 gives a diagram of 

the model. The dashed lines represent the boundaries of different samples. The width 

of the fracture was kept the same. 

 

Figure 3-16 A diagram of different sizes of samples with a width-constant fracture 

inside. 
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        Fluid was able to interchange between the rock matrix and fracture 

boundaries. Other boundary conditions kept the same boundary conditions as the ones 

in previous angular dependent simulations. 

        Pressure field and velocity field results obtained by the 1cm*1cm sample 

simulation are shown in Figure 3-17. According to the velocity field, we found the 

flow field was obviously not fully developed. The fracture domain influenced by the 

entrance effect was around 60%. The shale matrix contributed very little to the 

effective permeability of the sample.   

        Pressure field and velocity field results obtained by our 2cm*2cm sample 

simulation are shown in Figure 3-18. Compared with the whole domain, the zone 

under the entrance effect was much smaller.  

        Pressure field and velocity field results obtained by 4cm*4cm sample 

simulation are shown in Figure 3-19.  

        Pressure field and velocity field results obtained by 8cm*8cm sample 

simulation are shown in Figure 3-20.  
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Figure 3-17 velocity field (top) and pressure field (bottom) of 1cm*1cm sample 

simulation 

1cm*1cm sample---velocity field 

1cm*1cm sample----pressure field 

Velocity (m/s) 

Pressure (Pa) 
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Figure 3-18 velocity field (top) and pressure field (bottom) of 2cm*2cm sample 

simulation 

2cm*2cm sample----velocity field 

2cm*2cm sample----pressure field 

Velocity (m/s) 

Pressure (Pa) 
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Figure 3-19 velocity field (top) and pressure field (bottom) of 4cm*4cm sample 

simulation 

4cm*4cm sample----velocity field 

4cm*4cm sample----pressure field 

Velocity (m/s) 

Pressure (Pa) 
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Figure 3-20 velocity field (top) and pressure field (bottom) of 8cm*8cm sample 

simulation 

8cm*8cm sample----velocity field 

8cm*8cm sample----pressure field 

Velocity (m/s) 

Pressure (Pa) 
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        In this way, we obtain the permeability for different sizes of samples. The 

results are shown in Figure 3-21. Again, the permeability expression is

( P/ x)

Q

A


 

 
, based on Darcy’s law. In this set of simulations, we used the same 

width of fracture (1mm width) and the same pressure drop (2Pa) on both ends of each 

flow domain. In this simulation, the total pressure drop was only 2 Pa. Under these 

conditions, we found the zone under the entrance effect was around 60% for the 

1cm*1cm domain, and 12% for the 2cm*2cm domain. The percentage was smaller 

and smaller as the size increased. When the size of the domain was larger than 

2cm*2cm, as the size increased, the permeability decreased linearly. Again, this 

simulation result demonstrates that a simple flow domain and low pressure drop are 

favorable conditions for upscaling. 
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Figure 3-21 Calculated permeability results of samples with different sizes 

 

 

3.6 Conclusion and discussion 

Numerical simulation provides another way to obtain permeability.  

Simulation results of fluid flow in synthetic media demonstrate: 

(1) If the flow domain is not much larger than the zone influenced by the entrance 

effect, the variables in Darcy’s law are inter-dependent. If so, the obtained 

permeability, by experiment or simulation, could not be upscaled, even under 

homogenous conditions. 
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(2) The size influenced by the entrance effect inside the flow domain 

simultaneously depends on: the geometry of the flow domain; fluid properties, 

such as viscosity and density; and in-situ parameters, such as applied pressure 

drop or inlet velocity. Generally, the entrance effect would be weak if a high 

viscosity fluid were slowly flowing through a simple geometry domain. If the 

entrance effect is negligible, upscaling could be applicable. If not, 

permeability is a case-by-case problem. Though permeability values could be 

obtained by experiment or numerical methods, compared with lab 

measurement, numerical methods provide a way to illustrate the velocity and 

pressure fields more directly, which is important for evaluating the entrance 

effect and considering upscaling. 

(3) The velocity field fluctuates when there is fluid flow in a periodic domain. The 

flow field is difficult to fully develop. The wide throat zones store fluid as 

reservoirs. 

(4) If upscaling is applicable under certain cases, we still need to make sure it is in 

a laminar flow regime by checking the Reynolds number.   

 

 

        The fluid we used for derivations and simulations is an incompressible fluid. 

If a compressible fluid were involved, the situations would be much more 

complicated. In this chapter, we have investigated the permeability problem 
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completely from a transport property perspective, without considering elastic effects. 

For example, if we set pressure values as boundary conditions at both ends of the flow 

domain, we only focused on the absolute pressure drop. In other words, if we used 

300psi and 0psi at both ends as boundary conditions for one case, and used 400psi and 

100psi at both ends for another case, their simulation results are the same. But real 

situations would be different from this. 

 

 

 

 

 

 

 

 

 

 

 



100 

 

Chapter 4 Conclusions and future work 

4.1 Conclusions 

        The diffusivity tensor is found to be equal to the permeability tensor divided 

by a scalar which is the product of dynamic viscosity, connected formation porosity, 

and formation compressibility.  

        Applying the diffusion method to the microseismic data acquired in the 

Barnett Shale Formation, we obtained an initial permeability of 0.16 and 3.21 

milliDarcy parallel and perpendicular to the assumed dominant direction of fracturing, 

with an increase to 12.1 milliDarcy in the dominant fracturing direction after 

hydraulic fracturing. 

        Numerical methods, as an alternative, could help us to simulate fluid flow in 

different types of domains and calculate the permeability. Compared with 

experimental results, numerical simulations could provide us not only the 

permeability results, but also the velocity and pressure fields inside the flow domains. 

With the help of numerical simulation results, we could analyze the upscaling 

problems. Generally, a high viscosity fluid slowly flows in a simple geometry domain 

is the favorable condition for upscaling. Besides, numerical simulations could provide 

the angular and scale dependent permeability results. Thus, there is still a lot of 

potential of numerical simulations to develop in reservoir modeling, upscaling topics.     
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4.2 Recommendation for future work 

        Microseismic event location is the first step of microseismic monitoring. It 

is the basis for analyzing diffusion procedures and building fracture networks. 

Whether using a picking-based or migration-based method, a velocity model is the 

key for the accuracy of microseismic event location. The structure of the subsurface 

medium is changing during the pumping stage and the velocity model should be 

updated during pumping. Thus, dynamic velocity modeling is an important research 

field in the future. 

        Hydraulic fracturing induces thousands of microseismic events. For the 

picking-based method, automatic and accurate arrival-picking are necessary, 

especially for weak signals. This is another research field in the future. The general 

relation between magnitude and the number of locatable events is shown in Figure 

4-1. 

 

Figure 4-1 The relation between the magnitude and the number of locatable 

microseismic events. 
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        If we could reduce the locatable threshold, such as picking from a noisy 

environment, the number of locatable microseismic events would increase a lot, 

which would much better improve diffusion characterization.   

        Moment tensor inversion tells us the mechanism of failure and orientation 

of a fracture. This could help us differentiate the events induced by fracture opening 

or diffusion. Microseismic event location results, moment tensor solutions, and 

magnitude analysis of each event would help us build fracture networks. Then, we 

could simulate fluid flow inside and estimate the time-lapse permeability result. 
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Appendix  

        For Lagrangian description, we focus on a system, which means the 

collection of particles of fixed mass or other identities. Here we show the derivation 

of the Reynold Transport Theorem which transforms Lagranian description to 

Eulerian description (modified from [Munson, Young and Okiishi, 1990]). 

 

 

        Solid blue and red dashed circles show the same system at different times. 

The moving direction is from left to right, as shown on the top of the figure. The blue 

solid circle and red dashed circle represent the system at time t and t t . At time t, 

the system contains Regions I and II. At time t t , the system contains Regions II 

and III. Region II is included by the system at a different time and is a defined control 

volume. If we assume t is infinitely small, then Region II approximately equals the 

system.   

        Here we use N to represent any extensive property. So it could represent 

mass, momentum or energy. We use tN and t tN   to represent the property of this 
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system at times t and t t , respectively. Obviously,  

(N ) (N )t I t II tN    and (N ) (N )t t II t t III t tN     .  

Because t is infinite small, the derivative of the system is:

0
. .

(N ) (N )
lim t t t II t t II t

t
sys c s

N NdN
N d S

dt t t

 

 

 
  

   ,  

where c.s. represents the control surface.  

        Thus, the general form of Reynolds Transport Theorem is:

. .

( )dr

sys CV c s

dN N
n V A

dt t
 


 
  ,  

where rV is the velocity of fluid relative to the control volume,  is the unit normal 

vector of the control surface, and n equals the property per unit mass. 

        N could represent any extensive property, such as mass and momentum. 

Here we give the mass and momentum conservation equation. The table below shows 

the meanings of N and n in each case. 

 Mass conservation Momentum conservation 

N m(mass) mv  

n 1 v   

General 

expression  

( )dAr

sys cv cs

dm m
v

dt t
 


 
    

( )
( )( )r

cv cssys

d mv
vdV v v dA

dt t
  


 
    

Special 

case 

( ) 0v
t





 


  

( ) ( )( )cv

cv cs

F v dV v v dA
t
  


 


    

Table A-1 Mass and momentum conservation expressions based on Reynolds 

Transport Theorem. 
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        In the table, ‘special case’ is based on two assumptions. The first one is that 

the control volume is underformable, i.e., the control volume is not a function of time. 

So, 

cv cv

dV dV
t t

 
 


   .  

        The second assumption is the flow is stationary, i.e., the velocity relative to 

the control volume equals the absolute velocity. 
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