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Abstract

The focus of companies like Google, Amazon etc. is to gain competitive busi-

ness advantage from the insights drawn by processing petabytes of data. Big Data

refers to data characterized by large volume, great variety, and ubiquitous nature

of its sources. MapReduce is a programming model that provides a highly scalable

and efficient solution to analyze massive datasets on large-scale commodity clusters.

Though Hadoop, its open source implementation became a de facto for parallel pro-

cessing of batch workloads, it is inefficient for iterative, incremental algorithms, ad

hoc queries, and stream processing.

Apache Spark is a general-purpose cluster-computing framework, which supports

in-memory data analytics. It preserves the merits offered by Hadoop and overcomes

its limitations. This thesis aims at evaluating the performance offered by the Spark

programming model for Big Data Analytics. Code has been developed to perform

analyses of historic air quality data using Spark and MapReduce. It involved sig-

nificant development effort and tuning the configuration parameters. It is observed

that Spark offers a performance of up to 20% more than MapReduce.

Applying Machine Learning techniques to Big Data forms the core of data ana-

lytics. MLib is a scalable machine-learning library, offered by the Spark eco-system.

To extend our analyses, we perform clustering on the air-quality dataset and evaluate

the performance, clustering quality and usability of K-Means Clustering algorithm

implementation provided by Spark MLib library against that of Apache Mahout.

We tried to develop code to evaluate Spark’s ability to integrate with HBase as a

data source. Though the initial test cases ran successfully with small dataset, due

to insufficient documentation available currently, this is reserved for future work.
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Chapter 1

Introduction

A tremendous digital revolution is seen in the modern world today. Personal comput-

ers, mobile phones, and tablets have become an inherent part of our lives. Internet

and social media have gained predominant importance. A fundamental paradigm

shift and a special focus are seen on e-commerce. Internet companies are growing at

a massive scale and there is a huge deluge of data being collected everywhere. The

value being extracted from these datasets proves to be crucial for many business de-

cisions and hence the growing research in big data analytics. The all-encompassing

term big data refers to data that are characterized by gigantic volume, great va-

riety, and ubiquitous nature of its sources. Conventional databases cannot handle

these large datasets. Individual machines do not support efficient processing of these

datasets, with their current IO and processing capabilities. To address these chal-

lenges, there is a proliferation of large-scale commodity clusters with distributed

system architectures that are able to store and use the large data sets effectively.

Though it existed in the early 1970s, it was in 2005 that Roger Magoulas from
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OReilly media introduced the term big data [1] to the world of computing. Com-

panies had realized the need for collecting larger datasets to be able to generate

more accurate correlations, instead of gathering multiple small datasets and merely

investing on sophisticated algorithms. Around the same time, there was a decreas-

ing trend seen in the cost and size of secondary storage devices and the network

infrastructure. With the growing popularity of grid and cloud computing, large data

centers are being used by enterprises big and small, for collecting data.

With millions of users accessing the Internet every hour, web services evolve to

be more and more reliable and highly available. Google with its search engine pro-

vides suggestions of what the user is querying for and thereby, highly personalized

search results within milliseconds. Cutting edge research is seen not only in the

area of sophisticated and efficient search algorithms, but also on the required in-

frastructure that supports extensive parallel processing of queries with high speed

and performance. Big data marks a fusion of multiple domains distributed systems,

storages, statistics, business intelligence, data mining, artificial intelligence, sciences,

and parallel processing.

The measure of how large the data are varies from company to company, from

terabytes to petabytes based on the size of the enterprise, its goals, and its inter-

ests. Social networking sites such as Facebook, Twitter, and e-commerce websites

like Amazon, eBay etc. are thriving to offer highly personalized experience by ana-

lyzing the user logs and understanding user behavior. There exists a perfect synergy

in the research in industry and academia, in big data analytics, natural language

processing and machine learning. From giving customized predictions, to fraud and
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spam detection, to analyses made on sensor networks, GPS traces, complex science

simulations and health care - genomics, biological and environmental research, pub-

lic sector, almost every domain now leverages big data analytics to extract valuable

information to make strategic business decisions.

1.1 Brief Overview of MapReduce Programming

and Hadoop Eco-system

The existing techniques in traditional database management systems and data ware-

house tools do not scale to analyze the petabyte datasets. At an infrastructure level,

these large datasets cannot be stored on a single machine. Hence, a cluster of com-

modity PCs that are interconnected using a network is necessary to store the data.

On the software front, it is crucial to be able to achieve high-speed access. While

performance remains the prime concern, due to the growing demand and to meet

the commercial requirements, availability and reliability are very essential. The sys-

tem must be able to reconcile the failure of any node, at any point of time without

affecting the services, making fault-tolerance a critical challenge. Apart from this,

in large scale data intensive computations automatic parallelizing, data distribution,

scheduling program execution across multiple systems, load balancing, inter-machine

communication management, and being able to handle partial execution failures are

some of the major challenges encountered by such applications.

While many complex computational problems exist, at the heart of computer

science lies the problem of searching and sorting. Researchers at Google presented
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to the world, a new programming model called MapReduce [2] which stands as an

answer to all the above mentioned problems of achieving efficient processing of mas-

sive datasets on large clusters. Some of the famous problems to which MapReduce

provided a highly scalable and efficient solution are: determining frequency of oc-

currences of words in a large corpus of documents, frequency of URL access, finding

matching pattern, inverted index, and sorting of petabytes of data spread across

thousands of machines of a distributed cluster.

MapReduce is a functional style-programming paradigm where the problem is

decomposed into a set of map and reduce tasks. The user provides input as a

key/value pair to the map function that generates an intermediate key/value pair

set which are passed as an input to the reduce function. The reduce function then

merges all the intermediate values associated with the same intermediate key.

Consider the problem of determining the frequency of occurrence of words in

a corpus of documents. Using MapReduce, the problem could be solved easily as

follows. The input documents are parsed, and one line or text block is assigned to

a map instance. For each word the mapper emits (word, 1) where the key is the

word and the value is 1 which denotes the occurrence of a word. All the values

corresponding to a key go to one reducer and the logic in the reducer aggregates all

the values, which computes the total frequency of occurrence of the word. (Word,

count) is the output emitted by the reducer. This is shown in fig. 1.1 [3]. This could

be easily applied for a large class of problems that involve computing aggregate values

and it is highly scalable for very large sized datasets.

Going further, consider the K-Means clustering algorithm [4, 5]. K-Means is a
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Figure 1.1: Word count example using MapReduce.

very popular unsupervised machine-learning algorithm widely used in many prob-

lems. The algorithm iteratively groups a set of data points into clusters. The initial

cluster centroids are determined randomly or using a preprocessing algorithm such

as Canopy clustering to determine the initial cluster centroids which are provided

as input to the K-Means clustering algorithm. In the K-Means implementation each

iteration is a MapReduce job. The mapper reads the input, which consists of the

data points and the coordinates of data points and calculates the distance of every

data point to each centroid. The closest cluster is determined and the mapper out-

puts (clusterID, coordinatesOfDataPoints) as its output. In the reducer, for each

clusterId, the sum of all point coordinates is calculated and emitted as its output

and the mean of the cluster is re-computed. A number of MapReduce jobs are run

which denote several iterations of K-Means algorithm till the convergence criteria is

satisfied.
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The master-worker pattern is internally used. Input data are automatically parti-

tioned and distributed across multiple machines. Both the map function and reduce

function are distributed. When the user calls a MapReduce function, many copies of

the program are started on the cluster of machines. One of the copies is called the

master and it controls the rest of the copies - the workers. The master is responsible

for distributing the data across the workers and ensuring that all the workers are en-

gaged in successful completion of tasks. In case of any failure, it performs automatic

re-scheduling of tasks across the available workers. The intermediate key value pairs

generated by the map function is distributed across the multiple workers which run

the reduce function. The intermediate values are sorted and then merged by the

reduce function which emits them as output.

The input for each task is saved in the local machines to conserve the network

bandwidth. The master contains the location information and distribution informa-

tion of the data and ensures that the map task is scheduled on the machine, which

contains a replica of corresponding data. In case of any failure it re-schedules the

task to the nearby machine to avoid consuming the bandwidth. Also, to alleviate the

problem of the tasks that take unusually long time, which are termed as stragglers,

when the MapReduce operation is close to finish, a backup execution of the remaining

in-progress tasks is scheduled by the master. When the primary or backup execution

is completed, the task is marked complete. Combiner functions, whose functionality

is similar to the reduce function can also be used to improve performance. However,

the difference is that they are run on the machines after the map task and they write

their outputs to the intermediate files.
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The ease with which many real-world problems can be expressed as MapReduce

computations made this paradigm very popular in academia and industry. Apache

Lucene [6, 7], an open source text search library, tried to address the challenges of

handling search in big data. Apache Nutch [8], open source web search engine, tried

to handle the problems of crawling and indexing websites. Doug Cutting created an

open source implementation of MapReduce called Hadoop [7, 9]. Hadoop provides to

the programmer with constructs for handling various challenges of distributed com-

puting, which facilitates the programmer to concentrate on the efficient algorithms

and program logic instead of spending long hours in taking care of the low-level

constructs on a regular basis.

Hadoop provides a shared storage system and an analysis system, which form the

core of its stack. A high-level API in JAVA is offered that facilitates MapReduce

programming. HDFS [10], the Hadoop distributed file system provides the means

of storing data and supports a wide range of formats. Data are replicated across

the nodes that help in reading from multiple disks at once. Due to its replication

scheme, it is able to provide strong fault tolerance. Further, it addresses a major

issue of large-scale data intensive computations moving large data to the disks

with executors, which affects bandwidth. Hadoop provides data locality, by moving

computation to the disks where the data are present. To address the problems of

distributing data among the nodes and handling partial failures, Hadoop provides

an execution environment with a YARN. YARN consists of a resource manager that

takes care of scheduling jobs and an application master that monitors the progress

of tasks.
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1.2 Problems and Challenges of MapReduce

Hadoop MapReduce has become a de facto programming paradigm for parallel pro-

gramming of massive datasets on large-scale commodity clusters. It has gained an

unbeatable popularity among different computing communities and enjoys a premier

position amongst the existing distributed frameworks. However, like any other ar-

chitecture, MapReduce has its downside too. There exists some serious limitations

to the programming model, and the class of algorithms and real-world problems to

which the solutions provided by using MapReduce perform very poorly and offer

meager performance.

MapReduce has been designed to offer highly scalable solutions for very large

datasets, usually varying in size of terabytes to petabytes. Batch processing lies at

the core of the design considerations of MapReduce. Further, it assumes a shared-

nothing architecture and the process workflow need to fit within the map-shuffle-

sort-reduce sequence. While this works like a charm for many problems, like that

of computing the frequency of occurrence of words in a large corpus of documents,

there are still many problems to which the nature of the proposed solution does not

align with the MapReduce model.

The very design of the paradigm, to express every computation as a sequence

of map and reduce tasks, stands also as a critical restriction. Not all problems can

be expressed in that format. Further, for very large datasets, the startup costs

for map and reduce tasks remains negligible as compared to the size of the data.

However, this turns of to be a serious limitation if several map reduce tasks have

to be started for multiple small data sets. Some algorithms require more than one
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map/reduce tasks. It is not possible to have several map or reduce tasks within

one MapReduce job. To be able to solve this problem, the programmer would have

to write a chain of map reduce jobs which increase the startup costs, redundant

storage caused by multiple disk writes at the end of each MapReduce job, and access

time. Map and reduce tasks run independently on several nodes of clusters, and

there is an inability to preserve the state among multiple map reduce phases and

jobs and provide global synchronization. Moving large intermediate datasets across

the nodes of cluster is very expensive and replication proves costly with increase in

size of the dataset. Further, it creates heavy network traffic and causes bandwidth

bottlenecks. Hadoop MapReduce also fails to support interactive data mining which

require running multiple ad hoc queries on same subset of data and handling real-

time streaming data which need to maintain and share state across multiple phases.

Insufficient support for debugging individual map/reduce tasks stands as another

pitfall of MapReduce.

A major class of algorithms where MapReduce failed to offer good performance

is iterative and incremental algorithms. By nature, these algorithms require mul-

tiple passes over the same dataset. They form the core of many machine-learning

problems. Consider the example of a PageRank [11, 12] algorithm, which is one of

the most widely used web-scale graph algorithm. It requires the computation of a

rank for every vertex of the graph which denotes a website which has to be done

iteratively. Another example is an Expectation maximization algorithm [13] where

maximum likelihood of parameters in statistical models has to be determined itera-

tively. The famous K-Means clustering algorithm described earlier, involves running
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multiple iterations over the data points to determine the respective clusters. These

would require running a MapReduce job for each iteration that makes it cumbersome.

1.3 Goals of this Thesis

Hadoop MapReduce has gained immense popularity in the world of distributed

computing for being a highly scalable and efficient paradigm for handling massive

datasets. While it is true, that Hadoop MapReduce offers peak performance for

batch operations on large datasets, it comes with a heavy downside and some se-

rious limitations too. Several specialized systems exist, such as: Pregel [14], which

offers a bulk synchronous parallel model for iterative graph algorithms, Impala [15]

that offers support to SQL on Hadoop and Storm [16], which facilitates distributed

real-time computations. It is difficult to integrate multiple operations on different

specialized systems, ex: if an analytics company is interested in storing the dataset

on a SQL style database, apply machine-learning algorithms, and finally perform

parallel aggregations in the last phase, it would be difficult to use different systems

for each stage and use the output of one analyses as an input to the other. Integrating

the operations and workflows on different models requires significant programming

effort and also an overhead to switch between multiple frameworks. A general-

purpose and advanced computing framework is needed which offers the power of

MapReduce, overcomes its drawbacks, and also supports multiple models built on it

which offer the functionality of specialized systems. Apache Spark [17] is a general

cluster-computing framework that solves these problems.

The goal of this thesis is to evaluate the performance offered by Apache Spark
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over Hadoop MapReduce by performing analyses on a large dataset. The evaluation

is done in three phases. The Java MapReduce API is evaluated over Scala-Spark

API by computing rolling average of pollutant concentration. In the second phase,

usability of HBase as the data storage with MapReduce and Spark is evaluated.

Spark provides a scalable Machine Learning Library called MLib [18, 19]. In the

third phase, the performance offered by this is evaluated against Apache Mahout [20].

A 10GB air-quality dataset containing all measurements of pollutants from various

sensors in 2011 all over Texas is used for this purpose.

1.4 Organization of the Document

The rest of the thesis is organized as follows. Chapter 2 outlines the details of

Apache Spark, a general-purpose cluster-computing framework. In chapter 3, we

present a comparison of the Spark and MapReduce programming models and evaluate

their performance. In chapter 4 we evaluate the performance, clustering quality and

usability of K-Means Clustering algorithm implementation provided by Spark MLib

library against that of Mahout. In chapter 5 we examine the usability of HBase as

a data storage from Spark as compared to its ease of integration with MapReduce.

In chapter 6 we present the conclusions of the work.
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Chapter 2

Background

Performing analyses on large datasets is common in many companies today. The

focus is on improving the infrastructure on par with the growing needs of advance

frameworks to decipher high business value from the data available. Hadoop and its

components have proved to be invaluable for large-scale data intensive analysis on

commodity clusters. They offer high scalability and fault tolerance. It has gained a

de-facto status for being the framework that best facilitates single-pass batch pro-

cessing of large-scale data, stored on-disk. However, its design does not support

interactive data exploration and processing of multi-pass algorithms efficiently. Re-

searchers realized the need for an advance framework that preserves the merits offered

by Hadoop and also overcomes its limitations.

12



2.1 Overview of Spark

Apache Spark [17, 21] is a general-purpose cluster-computing framework, which comes

with a power to run applications 100x faster than Hadoop in memory or 10x faster

on disk [21]. It can be considered as an extension to MapReduce. It supports a wide

range of distributed computations and facilitates re-use of working data sets across

multiple parallel operations. The problem of not being able to share data across

multiple map and reduce steps posed by Hadoop MapReduce is resolved by Sparks

potential to keep its data in memory. It offers sub-second latency and strongly

supports interactive ad hoc querying on large datasets. Its design helps to solve

multi-pass iterative algorithms efficiently. Not only for batch processing, Spark also

offers strong support to a variety of workloads, graph processing, and handling real-

time streaming data within the same runtime. It facilitates applications to scale

up and down elastically on clusters with ease and responsive resource sharing; work

placement is done automatically based on data locality.

Spark provides to its users, a great ease of programming with its language in-

tegrated programming interface and rich Application Programming Interface (API)

in Scala, Java, and Python. Its integration with the Scala/Python interactive shell

facilitates easier development and debugging. Spark is originally implemented in

Scala. Scala is hybrid programming language on the Java Virtual Machine(JVM). It

is a statically typed programming language and supports type inference. The scala

compiler performs type checking at compile time. It verifies and enforces constraints

of types and the programmer need not explicitly mention the type of the variable,

it is automatically inferred. Since it is built on the JVM, it interoperates and can
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be easily integrated with other languages on the JVM. It provides its users with

high expressiveness offered by its functional style and an ease of solving real world

problems by decomposing into Object Oriented Programming model. For every line

of code typed by the user into the interactive shell, the interpreter compiles a class.

It is then loaded into the JVM and a function is invoked on it.

Spark provides unified programming abstractions called Resilient Distributed

Datasets(RDD) [22]. They extend the data flow programming model introduced

by MapReduce, Dryad [23, 24]. High-level operations are used to perform computa-

tions without worrying about internals such as work distribution and fault tolerance.

RDDs are the primary storage primitives that facilitate the user to store the data in-

memory and across multiple compute nodes. They give control of data sharing to the

user and make efficient data sharing possible across multiple stages of parallel compu-

tations on a distributed dataset. RDDs are immutable parallel data structures. This

simplifies consistency and supports straggler mitigation possible by running back up

tasks. Stragglers are the slow nodes that are common in large clusters. They affect

the performance and need to be handled carefully. Read-only copies of RDDs are

shipped across worker nodes and will be acted upon by the operations in parallel.

Most of the parallel operations performed in real-time are naturally coarse grained.

Each operation is applied to multiple data elements.

Datasets are initially stored in storage system such as HDFS. On these data,

operations are carried out which generate RDDs. These operations are referred to

as transformations. Spark supports a wide range of transformations such as map,

filter, etc. The output of these transformations is a new RDD, which will be used
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by subsequent transformations. Spark also provides operations called actions, which

returns the result to the program instead of an RDD. RDDs are ephermal and are

computed every time they are used in an action.

Fault tolerance is crucial to any large-scale compute intensive, distributed frame-

work. Spark provides automatic recovery from sudden failures through its RDDs,

which are its distributed memory abstractions. It maintains a track of the series of

transformations applied in the form of lineage graph that it builds as the application

progresses. In case of any failures, it applies these transformations on the base data

to reconstruct any lost partitions. A program cannot reference an RDD that it can-

not reconstruct after a failure. This property proves to be critical for fault tolerance.

The major difference in the Spark model is that the lineage graph is used instead of

the actual data itself to efficiently achieve fault tolerance. Memory remains a prime

concern with the constantly increasing volumes of data. Not having to replicate the

data across disks saves significant memory and storage spaces. Network and storage

I/O account for a major fraction of the execution time. RDDs offer great control of

these, hence attributing to better performance.

2.2 Operations on RDDs

There are two types of operations on RDDs: Transformations and Actions. Trans-

formations return pointers to new RDDs while Actions return values or results to

the driver program. Multiple transformations and actions can be chained together

to perform complex analyses on datasets. RDDs can be created from Hadoop Input-

Formats such as HDFS files or by transforming other RDDs. There are two other
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essential aspects of RDDs the programmer can have a control of, Persistence and

Partitioning. The RDDs which are likely to be re-used can be indicated using the

persist() operation. Further, the programmer has options on chosing a storage

strategy for them such as preserving them MEMORY_ONLY, MEMORY_AND_DISK etc.

The programmer can also mention if the RDDs can be partitioned across machines

based on a key in each record. RDDs are computed lazily from the lineage graph

when they are first used in an action.

Programmers write a driver program, which connects to a cluster of workers. One

or more RDDs are defined in the driver and actions are invoked on them. Spark code

on the driver tracks the RDD lineage. Workers are the long-lived processes that can

store RDD partitions in memory across operations.

2.3 An Application using Spark for Mining Flight

Data

Consider an example of mining flight data. A flight dataset with all the flights

that occurred in 2008 in the US is used for the purpose of illustrating simple Spark

operations. The input file is a comma-separated list of data. For the task in hand,

the following fields are required: Month represented by Integers whose value ranges

from 1-12, DepDelay which is the duration by which the flight is delayed, given in

minutes and Origin which is the IATA airport code.

/** Create a Spark configuration object with

corresponding properties set */
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val conf = new SparkConf().setAppName("Flight Data Analyser")

/** Create a Spark Context Object */

val sc = new SparkContext(conf)

The SparkContext needs to be initialized as part of the program and the Spark-

Conf object that contains information about the application needs to be passed as

argument to the SparkContext constructor.

val inputFile = "/Priya/Asst1Input/Inputfile.csv"

The above line stores the input file path which is a path of HDFS on the Shark

cluster, whose details are described in section 3.3.1

val inputRDD = sc.textFile(inputFile)

The input file path is passed to the textFile() method which is invoked using

the Spark Context object. This creates an RDD of the input file. RDDs are statically

typed java objects parameterized by an element type. Various parallel operations

are invoked on these objects to return new RDDs or actions on them. Spark uses the

direct Scala compiler. Scala’s type inference makes it easier for the programmer, to

concentrate on the other programming tasks rather than worrying about the RDD

types.

val flightDetails = inputRDD.flatMap(line => line.split(" "))

.collect

On the RDD of the input file, a flatMap() method is invoked which maps each

entry of the input RDD to 0 or more output items creating a new RDD. Arguments
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to this are scala function literals (closures) and can use any language features or

scala/java library features. After this transformation, a collect() action is invoked

which returns an array of the elements at the driver program .Until the collect is

invoked, all the transformations remain lazy, and no work has been performed on

the cluster.

val flightData = sc.parallelize(flightDetails)

A parallelized RDD is created using the SparkContext’s parallelize() method

on the RDD computed previously. The elements of the collection are copied to form

a distributed dataset that can be operated in parallel.

val flightParameters = flightData.map( line => line.split(","))

val delayPerFlightPerMonth = flightParameters.map( retorigin =>

((retorigin(16),retorigin(1)),

if ((retorigin(15).equalsIgnoreCase("NA"))

|| (retorigin(15).toInt < 0 )) 0.toInt

else retorigin(15).toInt))

In the above line, map() operation is performed on the mapInputLines RDD . The

delay value is retrieved from the input file line by line and the key is stored as a tuple

of origin airport and the month and the delay value is the value for the corresponding

key in the new RDD.

val averageDelay = delayPerFlightPerMonth.combineByKey(

(v) => (if(v > 0) 1 else 0, 1),
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(acc: (Int, Int), v) => ( acc._1 + 1, acc._2 + 1),

(acc1: (Int, Int), acc2: (Int, Int))

=> (acc1._1 + acc2._1, acc1._2 + acc2._2)

)

Using the combineByKey() operation, each value corresponding to a key is aggre-

gated.

val percentageDelayPerFlightMonth = averageDelay.map{

case (key, value) =>

(key, ((value._1/value._2.toFloat)*100))}

Finally, the percentage of delay is computed for each key using the above map()

operation.
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Figure 2.1: Lineage graph for the flight data mining program. RDDs are represented
by boxes and transformations are represented by arrows.
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Chapter 3

A Comparison of Spark and

MapReduce

In the earlier chapters, an overview of Hadoop MapReduce and Spark programming

models has been presented. To evaluate the performance of these two programming

models, multiple analyses have been performed. A dataset containing all measure-

ments of pollutants from various sensors in 2011 all over Texas is used for our data

analysis. The input file is a comma-separated list of data. Each line consists of the

following fields: year, month, day, hour, min, region, parameter id, parameter name,

site, cams, value, and flag. The size of the input file is 10 GB and it is stored in

HDFS.
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3.1 Eight-hour Rolling Average

The first problem we tried to solve is to compute the eight-hour rolling average of

O3 concentration. For every site in Houston, we calculate the hourly average first

and combine them next to calculate eight-hour averages.

3.1.1 Using Hadoop MapReduce

Using Hadoop MapReduce the eight-hour rolling average has been computed using

two MapReduce jobs. The first MapReduce job computes the pollutant concentra-

tion average for every hour. The mapper receives a text file as an input. It emits

(key,value) pairs which are used by the reducer to perform the required aggrega-

tion. In this case, the key is composed as a combination of siteId, year, day of the

year, and the hour. Only those data points whose site Ids correspond to Houston,

parameter name is listed as O3, whose flag is not set and the pollutant value is not

null are considered as valid data points for our measurement. Their corresponding

pollutant concentration value is emitted by the Mapper. The following code sample

indicates the core functionality of map() function of Mapper:

//check if the site id of the input data point belongs to houston

if(HoustonSiteIds.contains(psite))

{

// check if the input data point belongs to O3

if( pparam_id.equals(O3_pid) && pparam_name.equals(O3_pname))

{

/*check if the flag of the input data point is empty
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and the pollutant concentration value is not null*/

if(!pflag.matches("[A-Za-z]+") && !pvalue.equals("NULL"))

{

mapOutputValue.set(Double.parseDouble(pvalue));

context.write(mapInputKey, mapOutputValue);

}

}

}

Every instance of the Reducer gets all the values associated with a key. For each

key, the sum of values and the frequency of values are computed. If the frequency

count for a given hour is above a certain threshold (ex: greater than five in our case),

the corresponding hourly average is computed. If the frequency count is less, a place-

holder value (ex: "-1" in our case) is emitted by the reducer for the corresponding

hour that indicates that it is insignificant. The following code sample indicates the

core functionality of reduce() function of Reducer :

for (DoubleWritable val : values)

{

String p_value = val.toString();

double p_value_D = Double.parseDouble(p_value);

total += p_value_D;

count++;

}

/* compute the hourly average if count is greater than five
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if the count is less than five, emit "-1" indicating that

the hourly average is insignificant */

if(count > 5){

average = total/count;

hourlyAvg.set(String.valueOf(average));

context.write(key,hourlyAvg);

}

else {

String invalid = "-1";

hourlyAvg.set(invalid);

context.write(key,hourlyAvg);

}

The next MapReduce job computes the eight-hour rolling average of the O3

concentration. The mapper receives as its input, the hourly averages computed in

the earlier MapReduce job. The mapper emits eight keys that indicate the eight

consecutive hours starting from the hour indicated in the input key and the input

average value corresponding to the base hour. Important care had to be taken to

ensure the hours emitted by the mapper match the clock (reflecting roll over after

24).

Every instance of reducer, receives all the average values corresponding to an

hour. For every hour, the sum of the values and a frequency count is computed as

in case of earlier MapReduce job. If the number of valid entries determined by the

frequency count for a given hour is above a certain threshold (ex: greater than six),

the corresponding eight-hour rolling average is computed. If the frequency count is
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less, a placeholder value (ex: "NA") is emitted by the reducer for the corresponding

hour that indicates that it is insignificant.

The input and output files are provided as command line arguments to the driver

method of the MapReduce program. A configuration Object is used to initialize

a job instance. To the Class which comprises of the Jar, the Mapper, and Re-

ducer classes, the input output formats of the input output files, the classes of Out-

put Key and Value are explicitly passed through the job instance. The method

waitForCompletion() is called on every job instance, to ensure that the first job

completes its execution before the second job begins to execute. This is very im-

portant, as we are pipelining the output of first job as input to the second, and the

second job will throw an error if it is unable to receive the complete output of the

first job.

3.1.2 Using Apache Spark

Using Apache Spark, the eight-hour rolling average is computed in a single program.

The programmer is not limited to decompose the problem strictly into a sequence of

map and reduce steps. We present two implementations to computing the eight-hour

rolling average: using combineByKey() and reduceByKey(). There is no significant

performance difference seen in our context, since both the transformations are de-

signed to group in order to perform aggregation over each key. We illustrate the

choice and flexibility offered by the Spark to the programmer to chosoe either of

them.
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The first implementation uses combineByKey() transformation to perform ag-

gregation. In the Spark Driver program, we start by creating a Spark configuration

object to which we pass the required application parameters. An essential configu-

ration parameter which is set in the current context is spark.akka.frameSize().

It indicates the maximum message size to allow in control plane communication in

MB. The default size is ten. To be able to handle the large data size, we set it to

twenty. A SparkContext object is created which is used for the subsequent parallel

computations. The input and output files are stored on the HDFS. The air-quality

file is provided as an input. A significant difference is that the hourly average values

can be directly passed to the subsequent computations without having to write to

the disk.

The input file is stored as an RDD using the Spark’s textFile() method. The

data points with no flags set, whose site Ids correspond to Houston, parameter name

is listed as O3 and the pollutant value is not null are relevant for our analyses. A

sequence of map() and filter() transformations are applied on the input RDD

to extract the valid data points for our measurement into a new RDD. This new

RDD is cached using the persist() method. We apply the map() operation on this

RDD, which results in an RDD of (key,value) tuples. The key is composed as a

combination of siteId, year, day of the year and the hour and value is the pollutant

concentration value for the corresponding hour. Using the combineByKey() opera-

tion, the sum of the pollutant concentration values and their frequency for each key

is computed. The hourly average is then computed by applying a map() transfor-

mation on the RDD obtained as a result of the earlier aggregation. As in case of
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Hadoop MapReduce implementation described in section 3.1.1, before computing

the average, the frequency count is ensured to meet the minimum threshold require-

ments. In the code sample given below, we illustrate the map() transformation and

aggregation using combineByKey() transformation.

/** Apply map on the data points */

val mapOutputFinal = mapInput.map(param =>

((param(8), param(0),

getKeyPart1(param(0),param(1),param(2)),

param(3)), param(10).toDouble))

/** Perform reduce on the data points */

val reduceOutput = mapOutputFinal.combineByKey(

(v) => (v , 1),

(acc: (Double, Int), v) =>

( acc._1 + v, acc._2 + 1),

(acc1: (Double, Int), acc2: (Double, Int)) =>

(acc1._1 + acc2._1, acc1._2 + acc2._2)

)

/** If there are more than 5 values, emit the corresponding value

else emit -1 */

val job1Output= reduceOutput.map{ case (key, value) =>

if (value._2 > 5)

(key,BigDecimal(value._1/value._2)
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.setScale(3, BigDecimal.RoundingMode.HALF_UP)

.toDouble)

else (key,(-1).toDouble)}

In the next phase, we compute the eight-hour rolling average. On the RDD

consisting of the hourly averages, we apply a map() transformation which gener-

ates an RDD consisting of (key,value) tuples. The map() operation emits eight

keys which indicate the eight consecutive hours starting from the hour indicated in

the input key and the input average value corresponding to the base hour. The

method inputKeyIncrementer() (called within the map() to generates the eight

(key,value) tuples) ensures that the hours match the clock (reflecting roll over

after 24). The sum and the frequency of hourly average values is computed using

the combineByKey() transformation and later using a map() transformation, the

eight-hour rolling average is computed.

Another implementation to compute the eight-hour rolling average uses the mapValues()

transformation provided by the Spark API which maps every entry of the key to

(value,1) tuple. Here 1 indicates the occurence of the value for the corresponding

key. Using a reduceByKey() transformation, the sum of the values and the frequency

count is computed. This RDD is used to compute the hourly average in the next

map() transformation.
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3.2 Eight-hour Rolling Average for Multiple Pol-

lutant Concentrations

We now extend our analyses to SO2 and NO2 which are two other significant pollu-

tants.

3.2.1 Using Hadoop MapReduce

In the first task, the eight-hour rolling average is calculated for O3 concentration.

To be able to perform these analyses, a chain of six MapReduce jobs is used. Two

MapReduce jobs are used for each pollutant concentration to compute the eight-

hour rolling average. Each mapper uses the data points whose parameter id and the

parameter name correspond to the specific pollutant concentrations for subsequent

aggregations. The sequence of computations used is the same as described in section

3.1.1

3.2.2 Using Apache Spark

Using Spark-Scala API offers the programmer, high expressiveness, and conciseness.

The task of computing eight-hour rolling average of multiple pollutant concentrations

requires performing the same set of parallel operations on different subset of the data.

On the existing dataset, the filter being imposed varies from one pollutant to the

other. We can use the functional style of Scala to design the problem into making

multiple calls to the core function that computes the eight-hour rolling average.
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We use a single Spark program for multiple pollutant concentrations. The air-

quality data set stored in the HDFS and a base output path are passed as inputs to

the driver program. A function generateOutputFilePaths() is used which gener-

ates dynamically, an output file path that stores the eight-hour rolling average com-

puted for each pollutant concentration. For example: if the base HDFS path provided

is Priya/MultipollutantAvg/ , three HDFS paths are created Priya/MultipollutantAvg-

44201-O3/, Priya/MultipollutantAvg-42602-NO2/, Priya/MultipollutantAvg-42401-

SO2/.

The list of pollutant concentrations is stored as map with tuples of the param-

eter name and parameter id. For each pollutant concentration stored in this map,

the method rollingAvgCalculator() is invoked. This method consists of all the

parallel computations indicated in the earlier subsection 3.1.2 which are a series of

transformations on the dataset performed to compute the eight-hour rolling aver-

age. The arguments passed to the function are the parameter name of the pollutant

concentration and the corresponding output path. By calling the same function mul-

tiple times on different pollutant parameters, we are able to compute the eight-hour

rolling average for each of the pollutant concentrations in a single program.

3.3 Performance Evaluation

In the following section we evaluate the performance offered by Spark over MapRe-

duce on the basis of the results obtained by the analyses performed. First, a descrip-

tion of the resources used for executing the tasks has been provided, followed by a

discussion on the results.
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3.3.1 Technical Resources

The Shark cluster located at the University of Houston is used to perform analyses

for the research work. It has 17 SUN X2100 nodes (shark01 - shark20). Each node

has a 2.2 GHz dual core AMD Opteron processor. The main memory for these nodes

is between 2-4 GB. There are three SUN X2200 nodes (shark25 - shark28) with

two 2.2 GHz quad core AMD Opteron processor (8 cores total) and 16 GB main

memory. It is connected by a 48 port Linksys GE switch. Further, the secondary

storage comprises of 20 TB Sun StorageTek 6140 array and 4 TB distributed HDFS

storage.

The cluster uses openSUSE operating system with version 13.1. The Hadoop

version we are using is 2.6.0. The Java version: 1.7.0 51, Spark version: 1.2.0, Hbase

version: 0.98.9.

3.3.2 Parameters Evaluated

To evaluate performance of Apache Spark over Hadoop MapReduce, we have con-

sidered two major parameters.

• Programmability

• Performance and Scalability

Programmability The ease of programming offered by any new technology stands

as a crucial parameter that determines how gracefully it can be adapted and used.

MapReduce and all other components on Hadoop use a Java API. Java being a very

popular programming language makes it easy and simple for programmers to quickly
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learn and use the API provided by MapReduce for their big data solutions. However,

with increase in the complexity of the problem and growing need to expand and add

new modules, programmers find it difficult to manage to get good solutions with the

limitations posed by the model.

Spark is written in Scala. Scala, being a functional programming language, pro-

vides conciseness and expressiveness. The number of lines of code can be considered

as a good measure to evaluate the programmability of the model.

It can be observed from figure 3.1 that the number of lines of Code in Spark is

very less as compared to that of Hadoop MapReduce. This is mainly due to the

conciseness offered by Scala [25] API. Particularly, in case of computing the eight-

hour rolling average of the Multiple Pollutant Concentrations using Spark there is

no overhead of replicating code blocks, no need for passing very long command line

arguments. The program can be designed to dynamically adapt to the increase in

the computational complexity.

For O3 pollutant concentration, the number of lines of code for computing eight-

hour rolling average using Scala-Spark API is two and half times lesser than the

number of lines of code to simulate the same parallel operations using MapReduce.

For computing the eight-hour rolling average for multiple polluntants, this difference

is large. The number of lines of code using Scala-Spark API is 3.16 times lesser

than the number of lines of code used by MapReduce. The size of the program

is important as the complexity of the problem grows, where code maintainability

needs to be addressed with care. Spark version of the code supports efficient code

reusability handle increasing number of pollutant concentrations.
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Figure 3.1: Number of lines of code

Spark also offers APIs both in Java and Python. The choice of using Scala for

our research is simple and obvious, in terms that it is the language in which the

Spark model has been natively written. It requires a significant effort and time to

learn and adapt to Scala syntax initially. However, when one gets a good hold of the

language, Scala being both functional and object orientated, one enjoys the benefits

offered by its dual nature.

Also, code development is easier with Spark as it provides the interactive shell

which facilitates testing the code as we develop it. With the Spark-Scala shell, we

can see the output of each line of code that we write. This is a huge drawback

in MapReduce, as there is no proper debugging facility available. It is difficult to

debug a complex big data application running on thousands of clusters. It would be

a tedious task to analyse the logs to understand which part of the program is causing

the error. Spark with its interactive shell helps us conquer the error handling and
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debuging at the initial stages of code development.

Performance and Scalability The execution time taken for the analyses per-

formed is critical in big data applications. We measure the execution time to pre-

cisely evaluate the performance. Lesser execution times indicate that the program

runs fast and there by giving good performance. It is also well noted that proper

resource utilization is also crucial with large datasets. A good application should

ideally offer high performance with minimal resource utilization.

To achieve good performance in the applications using Hadoop MapReduce, we

vary the number of reducers based on the size of the dataset and the ratio of the

number of values for each key. The number of reducers should be slightly less than

the number of reduce slots on the cluster. By increasing the number of reducers,

we allow all the values corresponding to a key finish in one wave, fully utilizing the

cluster using the reduce phase.

It can be observed from figure 3.2 that MR jobs run faster with increase in

the number of reducers from 1 to 5. However, there is no significant performance

improvement seen by increasing the number of reducers from 5 to 10. This reason

could be that more number of values are aggregated for some keys than the others

and there cannot be any further distribution among the reduce instances resulting

in approximately same computational time.

Every Spark application (i.e. for every SparkContext instance) has its own in-

dependent set of executor processes. Executor refers to a process launched for an

application on a worker node, that runs tasks and keeps data in memory or disk

storage across them. The cluster manager that Spark runs on provides scheduling
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Figure 3.2: Average execution time for calculating eight-hour rolling average with
HDFS as data source using Hadoop MapReduce

facilities across applications. Using the --executor-cores option, we can control

the resources per executor. This is the major advantage for achieving the desired

performance using Spark in the YARN cluster mode.

As mentioned above, to be able to achive desired performance, the user should

explicitly tune the resources while executing the Spark application. This is critical

as it gives us a control over the memory to be used, the number of processes to be

started. We can try to get high performance with minimal resource utilisation. It

can be observed from figure 3.3 and table 3.1 that when the --num-executors

and --executor-cores are not set for the Spark application, it can be noticed that

Spark application takes longer time to execute. However, in the latter runs, when

we set the number of executors to 2 and increase the number of cores, we achive the

desired performance which is higher than that obtained by using MapReduce.
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The same flexibility to control the resources shows a significant performance dif-

ference in computing the eight-hour rolling average for the Multiple Pollutant con-

centrations. It can be observed from figure 3.4 that the analyses performed using

Spark run faster than that of MapReduce.

In terms of scalability, Hadoop is used in real-time big data companies as it

is known to scale well to clusters of thousand nodes. Spark is used actively in

clusters of upto hundred nodes. However, active research is going on to making

necessary improvements to the existing Spark model to match the scalability of

Hadoop MapReduce.

Figure 3.3: Average execution time for calculating eight-hour rolling average for O3
concentration with HDFS as data source using Spark

To summarize the analysis, Spark outperforms MapReduce when the Spark ap-

plication is set to utilize the resources correctly. Spark’s ability to do this stands as

a great advantage for performing analyses on massive datasets.
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Table 3.1: Average execution time for calculating eight-hour rolling average for Multi
Pollutant concentration with HDFS as data source using Spark

Number of Executors Number of Cores
Not Set 2 4 8

4 6m54.97s 6m47.90s 5m23.82s 3m56.75s

Figure 3.4: Comparision of average execution time for analyzing air-quality dataset
with HDFS as data source using Spark and Hadoop MapReduce
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Chapter 4

Machine Learning with Spark

4.1 Introduction

Machine Learning (ML) [26] helps to program systems to automatically learn and

improve with experience. Applying Machine Learning techniques to big data forms

the core of data analytics. Insights drawn by applying various ML algorithms play

a vital role in the improving business. Some of the examples where ML algorithms

see their importance in the recent time are: personalized treatment by analyzing

patient’s medical records, improved navigation systems which operate based on ex-

perience from sensors, recommender systems that drive sales of e-commerce industry,

classifiers to keep spam out of email accounts, recommender systems to provide en-

riching user experience, friend suggestions in social network, etc. With the rise in the

number of ML-driven applications, there is a growing demand for scalable solutions

and large-scale distributed computing systems that support them.
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4.1.1 Existing Tools

ML researchers prefer to code in statistical computing languages like Matlab [27] or

R [28]. Weka [29] and Google Predict [30] offer ML tools with an intuitive interface.

These languages and tools are sufficient for small-scale data exploration but the pro-

totypes built using these technologies do not scale to larger datasets. Implementing

these on massive datasets, to fit to the industry needs significant development effort,

and becomes tougher as the problem complexity expands with time.

4.2 Comparision of Spark MLib to Mahout

Apache Mahout [20] is a machine learning library built on Hadoop. Though the

recommendations, clustering and classification implementation provided by Mahout

have gained popularity, developing new ML models on Mahout is not easy as it relies

on HDFS to store and communicate intermediate state. This calls for the need of an

advance framework, which supports wide range of Machine Learning algorithms on

a large cluster of commodity machines.

MLib [18] is a scalable machine learning library built on Spark. It makes a

perfect fit for the iterative ML algorihtms and with its capacity to store data in-

memory. It offers high performance and ease of use, which favors both the ML

researchers as well as end users. It can be used with the other components of Spark’s

eco-system without having to worry about portability issues. It presents to the

programmers APIs in Scala, Java, and Python. It can be used with the Hadoop

workflows. MLib facilitates API for computing basic statistics such as mean, median,
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correlation, sampling and random data generation that are used as part of many ML

algorithms. Some of the common machine learning algorithms supported by MLib are

classification, regression, clustering, collaborative filtering, dimensionality reduction,

feature extraction, and transformation. Active research and development is being

carried out by the Spark developer community to implement more algorithms in the

MLib library.

K-Means algorithm(described in 1.1) implementation provided by Mahout and

MLib is evaluated. An air quality dataset that is stored in the HDFS is used for this

purpose.

4.2.1 K-Means Clustering using Apache Mahout

An input file with site id’s and feature vector, which contains the latitude and lon-

gitude and the daily maximum of O3 value for that site is used. The length of the

feature vector is 367. The dataset has 106 data points. The expected input format

by Mahout is a Sequence file. SequenceFile is a binary file with key/value pairs used

vastly in MapReduce as input/output format. We evaluate the clustering quality

obtained by K-Means algorithm by using compactness of the clusters as a measure.

Running the K-Means algorithm using Mahout is achieved in two steps:

mahout kmeans -i /Priya/Clustering/dailymax.seq

-o /Priya/Clustering/kmeans-out

-c /Priya/Clustering/centers/centers.seq

-x 10 -k 5 cl
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The above command is used to run K-Means algorithm for 5 clusters with a max-

imum of 10 iterations on the sequence file. The clusterdump tool is used that makes

it easier to read the output of any clustering algorithm in output. The command

used is as follows:

mahout clusterdump

-i /Priya/Clustering/kmeans-out/clusters-9-final

--pointsDir /Priya/Clustering/kmeans-out/clusteredPoints

-o /home/priya/outputk.txt

The output file consists of 5 clusters, centroids, and points corresponding to each

cluster. This is passed as an input to a java program that computes the compactness

of algorithm using the formula in 4.1.

To measure how well the algorithm performed, we compute the ’clustering qual-

ity’. This is obtained by analyzing the output of clustering. After clustering, we

obtain the clusters, their centroids, and the points corresponding to each cluster.

Using these details, we compute the clustering quality. For each cluster, we take the

ratio of sum of square of distance between the data point that belong to the cluster

and the cluster centroid and the sum of square of distance between the data points

that do not belong to the cluster and the cluster centroid. Clustering quality is the

sum of the ratio obtained for each cluster.

c =
NumClusters∑

C=0

∑
i∈C (xi − µc)

2∑
j3C (xj − µc)2

(4.1)
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4.2.2 K-Means Clustering using Apache Spark MLib

To perform K-Means Clustering using Apache Spark, a text file containing site id’s

and feature vector which contains the latitude and longitude and the daily maximum

of O3 value for that site is passed as an input to the Spark driver program. MLib

uses a parallelized variant of the k-means++ method called kmeans||. It accepts

the following parameters:

• Number of desired clusters.

• Maximum number of iterations to run.

• Number of times to run the k-means algorithm.

Optionally we can provide:

• initializationMode : specifies either random initialization or initialization

via k-means|| The default is k-means||.

• initializationSteps : determines the number of steps in the k-means||

algorithm.

• epsilon : Distance threshold within which we consider k-means to have con-

verged.

The input file is loaded into an RDD using the Spark’s textFile() method.

// Load and parse the data

val data = sc.textFile(pollutantInputFile)
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The input is parsed to a new RDD containing Vector using a map() transfor-

mation on the RDD containing the data points. This RDD [Vector] containing the

training data is passed to the train() method of the KMeans object.

/** Perform clustering*/

val parsedData = data.map(s =>

Vectors.dense(s.split(’ ’).map(_.toDouble))).cache()

// Cluster the data into five clusters using KMeans

val numClusters = 5

val numIterations = 10

val clusters = KMeans.train(parsedData,

numClusters, numIterations)

Once the clustering is performed, to retrieve the cluster centers, we use the

makeRDD() method, which gives the list of cluster centers. Each cluster center

is then mapped to the cluster index using the predict() method. The RDD

clusterCentroidPoints is saved as a text file on HDFS that consists of the cluster

ids and cluster centers

/** Generate (clusterId, clusterCenter) */

val clusterCentersGenerated =

sc.makeRDD(clusters.clusterCenters, numClusters)

val reqClusterCenters = clusterCentersGenerated.
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map{ case(x) => (clusters.predict(x),x)}

val clusterCentroidPoints = reqClusterCenters.

map{ case(x) => (x._1.toInt, x._2)}

Further, to compute the compactness, it is important to know to which cluster

every point in the data belongs. To achieve this, we perform a similar computation

as mentioned in the previous step. Each data point is mapped to the cluster index

using the predict()method.The RDD pointAndClusterId is saved as a text file

on HDFS which consists of the cluster ids and cluster centers

/** Generate (clusterId, dataPoint) */

val points = parsedData.map{case(x) =>

(clusters.predict(x),x)}

val pointAndClusterId = points.map{ (x) =>

(x._1.toInt, x._2)}

The output files are passed as input to a java program which computes the com-

pactness of the algorithm using the formula mentioned in 4.1.

4.3 Performance Evaluation

The resources described in 3.3.1 is used to perform analyses for the research work.

From table 4.1 that the compactness value obtained for Spark MLib is higher

than that of Mahout

It can be observed from table 4.2 that MLib runs faster than Mahout. Mahout

requires the input to be converted to a Sequence File. This conversion is not trivial
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Table 4.1: Comparision of Clustering Quality obtained by K-Means algorithm im-
plementation by Mahout and MLib

Mahout MLib
Trial1 0.8051 1.3201
Trial2 0.7331 1.4504
Trial3 0.8131 1.3388

Table 4.2: Average execution time for performing K-Means clustering using Mahout
and MLib

Mahout MLib
AverageExecutionTime(secs) 205.384 46.83

as it requires a lot of preprocessing and stands as a serious limitation. On the other

hand, MLib accepts the input in a simple text format, and uses it own Vector class

to convert the input to an RDD [Vector]. This offers programmers with great

flexibility. MLib is also available through the Spark’s interactive shell which makes

development and debugging easier.

Further, the conciseness obtained by using the Scala API can be seen by very few

lines of code written to use the K-Means clustering provided by Spark MLib.

Table 4.3: Number of lines of code to use the K-Means implementation provided by
MLib

MLib
#LinesOfCode 67
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Chapter 5

Integration With HBase

In the age of massive scale analytical processing, there is an increasing demand for

efficient storage systems that can facilitate large queries and scans on wide range of

records and in some cases very big tables. Traditionally, Relational Database Man-

agement Systems (RDBMS’) [31] have been used by large-scale enterprises since the

1970s. However, there are multiple problems with scaling up traditional database

technologies. For example: it is difficult to scale up vertically by adding more

database servers and to handle the problem of waits and deadlocks that increase with

the number of transactions and high concurrency. De-normalizing the databases does

not help either, as it results in costly join operations at later stages. Sharding is a

technique used to spread data across multiple storage files and servers. This too is

impractical, as it is very costly to re-shard the data and it incurs huge I/O overload

due to its massive copy operations. Due to these limitations, RDBMS’ make a poor

fit to the big data needs.

To address these limitations, a new class of databases emerged called NoSQL [32].
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Multiple variants of NoSQL databases are seen in practice. They are designed to offer

horizontal scalability without a need to repartition as data grows and also supporting

high fault tolerance and data availability. Around the same time, Bigtable [33], a dis-

tributed storage system for managing structured data presented by Google, addresses

the limitations of RDBMS mentioned before. A big table is a sparse, distributed,

persistent, multidimensional-sorted map. It is indexed by row key, column key, and

a timestamp. Each value in the map is an uninterpreted array of bytes. The data

model offers dynamic control over data layout and format to the clients. With its

wide applicability and high availability, it proved be a scalable solution with its im-

plementation seen in various Google projects such as Google Finance, Google Earth,

etc. In 2007, HBase [34] project started as an open source extension of Bigtable. In

2010, it became an Apache top-level project and gradually gained a significant place

in the NoSQL community.

HBase is a distributed, persistent, strictly consistent storage system. It scales

efficiently to large-scale commodity clusters. It adopts a column-oriented architecture

with huge, wide sparse tables. It supports compression. It is designed to offer good

read performance and near optimal writes. The basic unit of HBase is a column.

One or more columns merge to form rows. Row keys uniquely address rows. Row

keys are arbitrary array of bytes. The read and write operations are atomic for

each row key. This is to prevent problems caused during concurrent updates to the

same row. Multiple rows form a table. Further, each column has multiple versions.

Distinct values of each version are stored in a separate cell. Their row key sorts rows

lexicographically. Columns are grouped into ’Column Families’ that are the basic
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unit of access control. All columns of a column family are stored together in same low

level storage called HFile. Column families are defined while creating HBase table.

Each column is referred as family:qualifier, where qualifier is any arbitrary array

of bytes. Every column value or cell is timestamped. Multiple versions are sorted

in decreasing timestamp order. Hence, whenever there is a query the most recent

version is read first. To facilitate efficient searches, contiguous ranges of rows are

stored as Regions. Regions serve as unit of load balancing and scalability. Initially,

there is one region per table, which is dynamically split as the system gets large. By

this, HBase supports Auto Sharding. A region server processes each region. In case

of failure, regions can be quickly moved between region servers.

HBase tightly integrates with MapReduce. It provides wrappers that convert

tables into input sources and output targets for MapReduce jobs. HBase also provides

an extensible jruby-based (JIRB) shell as a feature to execute some commands (each

command represents one functionality) [35]. It facilitates interactive development.

We examine its integration with MapReduce in section 5.1. As mentioned in the

earlier chapters, there is a slow shift seen in the big data industry from MapReduce

to Spark.

Spark supports accepting input from data sources supported by Hadoop, local file

system, HDFS, Cassandra, HBase, and Amazon S3. It supports data formats such

as text files, Sequence Files, and any other Hadoop Input Format. Because HBase

is a vital component of Hadoop eco-system, we examine Spark’s ability to actively

integrate and interoperate with the HBase in section 5.2.
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5.1 Using HBase with Hadoop MapReduce

To examine MapReduce integration with HBase we calculate the eight-hour rolling

average as described in section 3.1.1. However, the main difference is that, we use

HBase as the data source. To achieve this, we write two MapReduce jobs that are

chained together. The first MapReduce job computes the hourly average. It accepts

as an input, a HBase table with the data stored in it.

The air-quality data set containing all measurements of pollutants from various

sensors in 2011 all over Texas is used. A MapReduce job is used to perform bulk

import of the data into a HBase table using completebulkimport tool. A table

2011-full is created in the HBase. The schema has been defined manually using

the hbase shell commands. The fields of the dataset are grouped into column families

as follows:

• date: year, month, day, hour, min

• location: region and site

• data: cams, param_id, param_name, value, flag

//Create a scan instance

Scan scan = new Scan();

//choose families and columns for scanning

scan.addFamily(Bytes.toBytes("date"));

scan.addFamily(Bytes.toBytes("location"));

49



scan.addColumn(Bytes.toBytes("data"),

Bytes.toBytes("param_id"));

scan.addColumn(Bytes.toBytes("data"),

Bytes.toBytes("value"));

scan.addColumn(Bytes.toBytes("data"),

Bytes.toBytes("flag"));

The code sample given above indicates the scan operation performed on HBase

table. Only those data points whose site Ids correspond to Houston, parameter name

is listed as O3, whose flag is not set and the pollutant value is not null are considered

as valid data points for our measurement. We check for the valid data points by using

scan and filter operations provided by the Client API of HBase. Using Scan class we

narrow down the dataset being passed to the Mapper. We create a scan instance,

which will scan through the entire table. Once Scan is constructed we further narrow

down the search by mentioning the family and corresponding column to be scanned

and set a filter. Since we need more than one filter, we create a list of filters and set

the filter to the list. The following code sample indicates the filter operation.

//Filter list contains all the sites in Houston and O3 for each site

FilterList list = new FilterList(FilterList.Operator.MUST_PASS_ALL);

SingleColumnValueFilter O3ParamIdFilter = new SingleColumnValueFilter(

Bytes.toBytes("data"),

Bytes.toBytes("param_id"),
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CompareOp.EQUAL,

Bytes.toBytes("44201"));

list.addFilter(O3ParamIdFilter);

SingleColumnValueFilter flagFilter = new SingleColumnValueFilter(

Bytes.toBytes("data"),

Bytes.toBytes("flag"),

CompareOp.NOT_EQUAL,

Bytes.toBytes("\"\""));

list.addFilter(flagFilter);

SingleColumnValueFilter valueFilter = new SingleColumnValueFilter(

Bytes.toBytes("data"),

Bytes.toBytes("value"),

CompareOp.NOT_EQUAL,

Bytes.toBytes("NULL"));

list.addFilter(valueFilter);

scan.setFilter(list);

Hence, only the valid data points are sent as an input to the Mapper of the first

MapReduce job. The Mapper receives as an input the data from the table as arrays

of bytes. These are then converted to strings to perform the subsequent operations

as described in section 3.1.1 to initially compute the hourly average and compute

the eight-hour rolling Average in the next MapReduce job.
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5.1.1 Performance Evaluation

The performance offered by using HBase as a source by computing eight-hour rolling

average has been evaluated by measuring the execution time. Figure 5.1 captures the

average execution time taken for the computation. We use the UNIX time command

to measure the execution time. Each job has been run 3 times.

Figure 5.1: Execution time for calculating eight-hour rolling average with HBase as
data source using Hadoop MapReduce

It can be observed that, though from the usability perspective using HBase as a

data source is very good, it takes long time for computations as compared to that

of using HDFS as a data source. With increase in number of reducers, there is an

improvement in the performance. As mentioned earlier, HBase internally uses HFiles

to store data on the HDFS. Slow performance offered by using HBase as compared

to HDFS can be accounted to the extra overhead of the hbase operations, which

inherently access HDFS too. However, HBase can be used as a NoSQL data store

that offers high scalability for batch-oriented data processing with excellent read

performance.
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5.2 Using HBase with Apache Spark

Spark offers high performance and great ease of use when performing analyses on

large datasets. While it is extremely flexible to use data stored in HDFS as input

source to a Spark driver program, integrating with HBase has been a herculean task.

Some of the challenges encountered in the process of using HBase from Spark are

described below.

HBase runs on top of Hadoop in a fully distributed mode. When Spark runs on a

cluster, the SparkContext needs to connect to cluster managers to allocate resources

across applications. It was difficult to set the configuration parameters in the Spark

driver program to be able to establish the connection and access table existing in

HBase. Very few sources available on the Internet discuss how to access HBase from

Spark, and very little description is available about the API and how to adapt it to

a generic cluster set up. It took significant time and effort to get a working test case

of Spark.

In the sample test case, we had to explicitly pass all the configuration details

through the driver program to the Spark configuration object. This is not the right

approach, as it gets difficult for the end user to mention the configuration details in

every application. Further, it reduces portability of the application across different

clusters. The Spark environment should be able to read the configuration automat-

ically from the files. Though the current Spark version already supports this, there

is no documentation available for common users that give instructions about how to

achieve it.

The code snippet given bellow illustrates a sample test case that scans a HBase
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table and prints them.

def scanTable(table: HTableInterface): Unit = {

println("Scanning table")

val scan = new Scan();

val tableScanner = table.getScanner(scan);

tableScanner.foreach { result =>

result.raw.foreach { kv =>

println("Row name \t "

+Bytes.toString(kv.getRow))

println("Column family \t"

+Bytes.toString(kv.getFamily))

println("Timestamp family \t"

+kv.getTimestamp)

println("Value family : \t"

+Bytes.toString(kv.getValue))

}

}

println("Done")

}

A test case has been developed. A small table is created in HBase and a Spark

application is written that establishes connection to the HBase table and retrieves

the data from HBase and prints it. While the test case ran successfully, work is
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still in progress to implement other HBase operations using Spark. To perform

any computations, Spark requires the data to be transformed to RDD, which is its

primary abstraction. To be able to perform the analyses on the air quality data set,

the scan() and filter() functions of the HBase API have to be used from a Spark driver

program, to transform the data read from the HBase table to a Spark RDD and then

perform the required transformations. The documentation available does not provide

sufficient details about how this can be done and how it can be extended to handle

large dataset stored on a cluster of machines. It is reserved for the future work to

understand and get a working implementation of a Spark application integrated with

HBase.
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Chapter 6

Conclusions and Outlook

Hadoop MapReduce is a distributed programming model, which supports parallel

processing of large-scale data efficiently. It supports batch workloads and offers

scalable solutions to a wide range of real world problems.

Though it has gained popularity, MapReduce has some serious limitations too.

Some classes of real-world problems cannot be easily decomposed into map and

reduce computations. Increase in start up costs of map and reduce tasks in case

of multiple chained MapReduce jobs and need to move large dataset across the

cluster proves expensive with increase in dataset size. The design of MapReduce

does not inherently offer good support to iterative and incremental algorithms. It

does not support interactive and random workloads. There is no support to share the

intermediate state between map and reduce stages without writing to the secondary

storage. With growing research, there is a need seen for an advance framework that

preserves all the merits of MapReduce and also overcomes its limitations.
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Apache Spark is a general-purpose computational engine which facilitates in-

memory analytics on large-scale data stored in cluster of commodity machines. It

supports wide range of workloads ranging from ad hoc queries to batch and iterative

processing. It provides to its user, a great ease of use with its APIs in Scala, Java,

and Python.

We have evaluated the performance offered by Apache Spark over Hadoop MapRe-

duce by performing analyses on an air-quality dataset of 10 GB. In the first phase,

the Java MapReduce API is evaluated over Scala-Spark API by computing rolling

average of pollutant concentration. From the analyses performed, it is observed that

Spark offers a performance of up to 20% more than Hadoop MapReduce. It offers to

its programmers’ conciseness and expressiveness mainly due to the Scala syntax.

Machine Learning is an emerging discipline, which helps in making predictions

by learning from existing data. ML research is rapidly growing in the present day

data analytics. Machine learning algorithms are actively used in e-commerce, social

networking cites, fraud detection, etc. There is a growing demand seen for scalable

solutions and large-scale computing systems which support ML. Spark provides a

scalable Machine Learning Library called MLib [18, 19]. In the third phase, the

performance offered by this is evaluated against Apache Mahout.

Spark is designed to actively interoperate with Hadoop eco-system. In the next

phase, we evaluate the usability of HBase as the data source with Spark as compared

to that of HBase integration with MapReduce. However, since it is in its inital stages

and inadequate learning resources available, it has been difficult to integrate it with

HBase. We wish to continue working on this in the future.
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In the future, performing analyses on a larger dataset is of great interest. It

would be interesting to explore the performance and cluster tuning for a data set of

size up to 50 GB as an initial step to understand the real-time scenario. We will

continue to work on integration with HBase. Further, we would love to explore the

other components of the Spark eco-system such as Spark SQL and also the other

algorithms provided by MLib.
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