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ABSTRACT

This research investigates transverse or lift forces 

acting on a circular cylinder in an oscillating flow. The 

cylinder itself is oscillated with simple harmonic motion 

in water which is otherwise at rest. The response of the 

cylinder to forces imposed by vortex formation and shedding 

were studied in the time domain. From the data obtained, 

predictions of forcing frequency due to the shedding and max­

imum peak force were obtained. Data was correlated to a 

nondimensional grouping consisting of Keulegan-Carpenter 

Number and Reynolds Number.

The test cylinder was a smooth 2 inch nominal diameter 

cylinder 13.37 inches long. Oscillation periods of 0.87 to 

5.00 seconds were encountered and Keulegan-Carpenter Numbers 

of 6.28, 9.42, 12.57, 15.71, and 18.8 where obtained. Values 

of Reynolds Number ranged from 8.38 x 103 to 6.37 x 104.

Maximum peak values of lift coefficients ranged from

1.39  for Keulegan-Carpenter Number of 18.8 to 0.14 at 

Keulegan-Carpenter Number of 6.28.

The results were in general agreement with those 

obtained by other methods.
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CHAPTER 1

INTRODUCTION

The knowledge of what happens to structural members in 

an oscillating flow field is of great importance. More and 

more structures such as offshore platforms are being built 

with longer members. In general, this increased length 

leads to lower stiffness and lower natural frequency of the 

member. When these variables are in a lower range, shedding 

of vortices and transverse vibrations caused by these 

vortices becomes more and more important. This is because 

the driving frequency, due to alternately shed vortices, 

gets closer to the natural frequency of the members.

The economics of not overdesigning are obvious. Before 

more economical designs of structures can be produced, more 

knowledge is needed concerning the forces.

The in-line drag and inertia forces have been exten­

sively studied. Hunt [2J used an oscillating cylinder in 

a water tank at rest. He measured the in-line forces and 

obtained plots relative to velocity. He then correlated 

the velocity dependent force coefficient to R and d//vT where 

R is Reynolds number (R = Ud/v), U is free stream velocity, 

d is diameter, and v is kinematic viscosity. The other 

parameter contains d and \> plus the period of oscillation r.
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Hunt found that the inertia force component of in­

line force predominated over the drag force at lower values 

of amplitude to diameter ratio. At higher velocities and 

stroke, the drag force began to be a substantial portion 

of the result. He also found that the maximum force came 

before maximum velocity. This is reasonable because of 

the dominance of the acceleration-dependent inertia force 

and the 90° phase difference between acceleration and 

velocity. By correlating the data to a nondimensional 

relationship. Hunt found that the force coefficient was 

asymptotic to a steady flow value of 1.2 at higher ampli­

tude to diameter ratios. At lower amplitude to diameter 

ratios, the inertia force's predominance prevents this trend 

to a steady value of drag coefficient. The nondimensional 

groupings chosen by Hunt are

F/L  /Ud d \ 
pd u2 *\ v' /vT/ (1)

where F is force, L is cylinder length, U is freestream 

velocity, p is density of the fluid, d is cylinder diameter, 

v is kinematic viscosity and T is the oscillation period. 

Sarpkaya [1] also measured in-line forces.

Sarpkaya states that asymmetric vortex shedding causes 

asymmetry in the in-line force and transverse force. This 
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asymmetric shedding is described and illustrated in 

Figure 1. When compared against the Keulegan-Carpenter 

number, K , there are defined ranges of this number that 

give predictable vortex shedding characteristics. K is a 

function of velocity, oscillation period, and cylinder 

diameter. Along with other governing parameters, it will 

be discussed in the next few pages and defined functionally.

As Figure 1 shows there is no separation at K of 2 or 

less. Between values of 2 and 4 for K, according to 

Issacson and Maull [4], separation occurs and vorticity 

develops. In the range of 2 to 4, a transition occurs in 

forming the vortex due to separation and backflow behind 

the cylinder. The slightest disturbance can trigger a 

vortex between K of 2 or 4 but separation is not predictable 

until K of 4 or greater. Between K values of 4 and 6, 

vortex formation remains symmetric and no shedding occurs. 

No lift occurs below values of K = 6. Between values of 

6 and 15 for K, one vortex is shed each half cycle and 

asymmetry in forces is introduced. Asymmetry occurs because 

the vortex that is shed gives additional relative velocity 

to the fluid when the cylinder reverses direction. As the 

cylinder moves back through the disturbed region, the side 

of the shed vortex will develop the stronger vortex again
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K<2 NO SEPARATION

4>K<6 NO VORTEX DETACHMENT 
NO LIFT

K=8 ONE VORTEX SHED 
PER HALF CYCLE 

ASYMMETRIC LIFT

J<=|5 TWO VORTICES
PER HALF CYCLE

SYMMETRIC LIFT

VORTEX FORMATION FIGURE I 
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because of higher relative velocity. The stronger vortex 

will remain on this side unless an outside disturbance 

disrupts it. Which side of the cylinder the stronger vortex 

forms on first is a matter of random disturbance or fluctua­

tion. The probability is equal in a symmetric system of 

either side getting the stronger vortex. The point is 

that when one side gets the bigger vortex it keeps it from 

cycle to cycle. Figure 1 also illustrates what happens 

above K of 15. Two vortices or more are shed at higher 

values of K. At K of 15, two vortices are shed and 

symmetric forces occur because a vortex is on each side to 

add relative velocity to the flow in each half cycle.

Sarpkaya found that C , the inertia coefficient, was 

assymptotic to 1.75 at higher Reynolds numbers. C^, the 

drag coefficient, is asymptotic to 0.62.

Less seems to be known about transverse or lift forces 

than in-line forces. Sarpkaya investigated the lift forces 

as well as the in-line forces. According to his work, 

lift forces can be of the same order of magnitude as the 

in-line forces. More important than the order of magnitude 

of the forces is the frequency of occurence of these forces. 

Lift or transverse forces are caused by the development and 

shedding of the vortices in the low pressure area behind the 
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cylinder. A basic force imbalance occurs. When the two 

vortices grow at different rates, lift occurs. The instan­

taneous lift force resultant is in the direction of the 

stronger vortex due to the pressure being lower in that region. 

When a vortex is shed finally then the opposite side has the 

larger vortex and lower pressure and in steady state the 

situation is cyclic and given the name "Von Karman Vortex Street." 

In a reversing flow field, the same phenomenon can occur ini­

tially and will yield a force that varies with time.

Sarpkaya's test chamber was a U-tube 6 feet by 3 feet on 

the vertical legs and constricted to 3 feet square at the 

horizontal test section. The test cylinders had been given 1/32 

inch end clearance from the side of the test section. Sarpkaya 

reports that flow in the test section is uniform. Neither 

sufficient time nor length for boundary layer development 

on the test section walls exists according to Sarpkaya. 

Also, blockage has no effect in his experiments on the 

readings for the same reasons. The period of oscillation 

was 5.772 seconds, the natural period for the water 

oscillation in the U-tube.

The amplitude of oscillation was held at the desired 

level by synchronizing air pressure at the same frequency 

as the natural frequency of water oscillation in the U-tube.
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The cylinders were mounted to the test section by 

means of force transducers to self aligning bearings at 

the sides of the U tube. The results were correlated to 

Keulegan and Carpenter Number: 

and
d2

E> = <3>

where is maximum velocity, t is period, d is cylinder 

diameter, and v is kinematic viscosity. p is actually the 

Reynolds number divided by the Keulegan-Carpenter number. 

The nondimensional parameters above in (2) and (3) are 

developed from the following dimensional analysis:

F VUT Ud t\
0.5 pd LU A d V T/ k ’

= $(k, R, I) (5)

where F is force, p is fluid density, L is cylinder length, 

t is time and d, U, t and v are as defined for equations 

(2) and (3). may be substituted for U as it was in (2), 

in which case the equations refer to maximum velocity.

Equation (3) was developed to remove the redundance 

of U in both K and R. It is simply R divided by K. The 

cylinder used in the U tube ranged from 1.99 to 6.475 inches

in diameter. Blockage ratios of diameter divided by test 
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section width ranged from 0.055 to 0.18. Values of the 

lift coefficient were measured by Sarpkaya and were found 

to vary from a low of 0.12 to a high of 3.9.

Isaacson andMaull[4] measured transverse forces 

acting on cylinders subjected to wave action. Their cylinder 

is mounted to a rigid platform which spans a wave tank that 

is 58.5 feet long, 1.9 feet wide and up to 2.6 feet deep. 

A pebble beach absorbed waves generated by an oscillating 

paddle at the opposite end of the tank. The forces were 

correlated to K and R. The dependency on R is not as strong 

as on K for R < 20,000. As R becomes larger, the force 

coefficients become more a function of it. Different values 

of the wave depth parameters kh = 2tt h/X» where h is height 

and X is wave length were used. Values of

F 
r =. _™S_____L,rms 0.5 pdLU^ k '

where all terms are as defined previously and F is the rms 
root mean square value of the force were found to range to 

1.1 and the semi-peak values of the coefficient ranged to 

almost 1.8, peaking at K s 10.

Sarpkaya also found a lag between peak force and 

velocity. Peak force was developed after peak velocity had 

been reached and velocity of the fluid relative to the 
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cylinder was actually decreasing. This happens because it 

takes a finite amount of time at a given R value to develop 

the flow or, in this particular case, the vortex. In perspec­

tive with a steady flow analysis, we have many different 

cases of the starting condition approaching a given steady 

state R value. Just as R peaks, velocity decreases instead 

of remaining at the maximum value. Therefore, the strength 

of the vortex is not as great as it would be with R at 

steady state. The vortex will continue to increase its 

strength until it equals the now decreasing Reynolds number, 

unless it gets strong enough to shed.

Heinzer's [3] investigation with the aid of a high 

speed camera verified and collaborates most of the quantitative 

findings of the nature of vortex shedding in an oscillating 

flow field. Heinzer observed several interesting features.

Along with the normally primary vortex there is a 

secondary vortex formed. This is shown in Figure 2. It is 

bounded by and fed by the primary vortex. It is also 

bounded by the shear layer and the cylinder itself. When 

the relative velocity of cylinder to fluid changes direction, 

then two vortices are pushed out of the way. The primary 

and secondary vortices are of opposite rotation.

Heinzer also found that once the cylinder velocity 

had peaked, the vortices were still growing to some extent.
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Sarpkaya observed the same thing. This is because even 

though R is decreasing it still has a higher value than 

the corresponding steady state value for the vortex. There 

is still an imbalance, and separation and back flow leading 

to vortex formation are still present. Measurements by 

Heinzer indicate that the vortex may triple its size over 

that size it had when velocity reached a maximum.

Heinzer also noted that at a given K or T/d, which 

is also 2tt a/d, where a is amplitude of oscillation the, 

pattern did not change. Isaacson and Maull found this also. 

Whatever the given K value, frequency or speed did not seem 

to change the visible flow pattern much. As velocity 

increases, the number of cycles needed to attain a fully 

"disturbed" flow field near the cylinder is less. The range 

of oscillation frequencies of the cylinder wave from 1 Hz 

down to 0.25 Hz yielding values of from 36 in/sec down 

to 9 in/sec. Values of K ranged from 30.14 down to 2.5 in 

Heinzer's tests.

Another interesting feature of all of the workers 

surveyed was the randomness in the data. Sarpkaya states 

that a statistical method may be needed to obtain more 

complete information. Hunt initially attempted measurement 

of transverse forces but reported that the signal was too 

"spurious" from the strain gage transducer.
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Isaacson and Maull used an elementary averaging 

technique yielding average lift coefficients. The present 

work is an extension of the work of Isaacson and Maull and 

Sarpkaya.

An attempt is made to study frequency or time-variant 

characteristics to determine what the excitation frequencies 

are due to fluctuating lift. What the amplitude of the 

time-variant force coefficient is also is of interest. 

Information about fatigue forces from the alternating lift 

should be gained.

Isaacson and Maull used a wave tank and generated 

waves. Sarpkaya held his cylinder fixed in a relatively 

narrow conduit and oscillated the water. In the present 

investigation the water is at rest in a relatively very 

large tank and the cylinder is oscillated with simple 

harmonic motion. Isaacson and Maull had some small 

lengthwise variation in velocity due to the attenuation 

with depth of the water particle velocity. There should be 

almost none in these tests due to the lack of surface effects.
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CHAPTER 2

EXPERIMENTAL APPARATUS

These tests were carried out in a wave tank. The tank 

dimensions are 10 feet wide by 6 feet deep. The tank is 82 feet 

long when the wave-making paddle and beach section are 

discounted. The entire apparatus was suspended over the 

water with two composite wood beams made of four 2 by 6's 

each. Wood was chosen because of economics and its good 

damping characteristics. Simple harmonic motion was generated 

by means of a scotch yoke mechanism. The scotch yoke 

mechanism was suspended from the wooden beams by a frame 

made of 3 inch channel iron. The yoke consists of a guide­

piece with a milled slot. The guidepiece is fastened to 

chrome rods that ride in linear ball bearings. The arm of 

the yoke is driven by a pulley and belt from a variable speed 

DC motor through a bevel gear drive. The arm is fitted with 

a slider block which can be adjusted to control the stroke. 

It was essentially the same yoke as used by Hamann [11] and 

Hunt [2] and is shown in Figures 3 and 3a.

Initially the work was attempted in a smaller tank 

with water volume dimension of 8 feet long, 2 feet wide and 

1.5 feet deep. The test cylinder is 2 inches in diameter.
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Although the blockage ratio of cylinder diameter to tank 

width was less than 0.010, the flow was dominated by secondary 

effects. The most serious secondary effect was the sloshing 

of the tank itself. The predominant standing wave had an 

amplitude of just over 4 inches and a wave length, X, of about 

16 feet. Other effects such as wake reflection from the 

sides could be seen but were not measured in the small tank. 

In the large wave tank, a capacitance wire type depth gauge 

was calibrated and used to measure surface effects generated 

by the motion of the cylinder in the final test. The gage 

was placed 45° from the direction of travel of the cylinder 

and 18 inches from the center of cylinder travel.

Design of the Transducer Beams

Previous work indicated that the use of a single 

cantilever strain gage beam was not very satisfactory. It 

gave nonuniform deflection along the length which would 

vary results spanwise. The deflection is greatest at the 

cantilever tip farthest from the strain gages. The previous 

design was simply a cantilever rectangular cross section 

aluminum beam. It was fastened to the carrier bracket on 

the yoke at the top and the top of the cylinder on its lower 

end. Two gages, one on each side, were mounted and their 

strains summed in a Wheatstone bridge. These gages were self 
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compensating for temperature and 120 Q nominal resistance 

with a gage factor of 2.01.

In order to keep the far tip at the bottom of the 

cylinder from moving outside the theoretical boundary 

layer, insufficient strain was produced at the gage area 

to get good response. Steady state values for the boundary 

layer displacement thickness were used [5]. This is 

because no information on the boundary layer could be 

found in the literature for oscillating flows.

In order to solve this problem,the test model shown in 

Figure 4 was built. This arrangement uses two cantilevered 

transducer beams mounted to a rigid 1-inch pipe at the fixed 

end and supported by ball and socket joints at the test 

cylinder. The active test cylinder was contained in the 

center of the configuration. Self-compensating gages 

designed for aluminum were fastened to the beams as near the 

fixed end as possible. The gages were 350 C2 with a gage 

factor of 2.11. Semi-conductor gages were considerd but 

the cost was prohibitive.

Several beam configurations were investigated. Deflec­

tion at the mounting point to the cylinder, the end of the 

transducer beam, should not exceed 0.010 inch at the maximum 

expected loading. Unfortunately, the value of maximum
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deflection was due to considering a steady state boundary 

layer displacement thickness. It is more likely that the 

boundary layer is not as thick as steady state due to lack 

of time for development - especially at higher R in the test. 

An I-beam cross section was first investigated. It proved 

impractical even though strain would be high in the flange 

with minimum deflection because the flanges would be much 

too thin and frail. The final design was a simple rectangular 

cross section. The deflection, A , was calculated from max 
the following:

fl® 
Amax - 3EI '

where F is force, L is length, E is Young's modulus, and I 

is the moment of inertia. This is the linear deflection 

equation for a cantilever beam at the free end.

The gain or strain is found by relating stress to strain 

to gage factor as follows:
MC 

Q = — (8)

where o is stress, M is moment, C is the distance to the 

neutral axis. The strain is 

oe = - / (9)

SO
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relates gain to force since

e = G.F./AR/R (11)

where G.F. is the gage factor and R is resistance of the 

gages.

Equations that relate strain and gage factor to voltage 

change in the bridge are not needed since the beams were 

conveniently compared to the old single beam design. By 

comparison, the new beam was properly sized.

The values of deflection and strain were estimated 

using 1 lbf per beam for a relative maximum force. The 

following values were obtained for the beam in Figure 5. 

This beam is 4 inches long and has a cross section of 0.370 

inch by 0.125 inch thick, .

A = 0.0117 inch (12)max

e = 478 ne (13)max

Both of these values were thought satisfactory. Since 

there would be two beams and 4 gages, 2 lb^ could be carried 

and the gain would be quadrupled without excessive 

deflection.

Since the system was going to be used to measure para­

meters that are strong functions of time, the system 

response was also considered. During design, a lumped 

parameter model was used to calculate the expected natural
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frequency. Then the frequency was measured by thumping and 

by displacing the cylinder in water. The value of the 

system-damped natural frequency in water is 14.7 Hz. In 

order to prevent resonant oscillations, the desire was to 

get the frequency ratio 
w
r * (14)n

where is forcing frequency and is natural frequency, 

as close to zero as possible. For linear, second-order 

systems, this would produce a dynamic magnification factor 

of nearly 1.0 or give no gain to the mechanical signal.

We did not want the test model to become a mechanical 

oscillator. With the exception of the latex rubber seals, 

the system is linear. Tests showed that the seals had an 

increased effect at the lower deflection estimated at 5% 

change in force vs. voltage on the model when they were 

in place.

With the natural frequency at 14.7 Hz and the maximum 

expected frequency expected to be about 3 Hzzthe ratio in 

(14) was 0.20. This was not expected to be a problem.

Phase shift was almost negligible at less than 3% calculated.

Actual measurement,as discussed in the data reduction 

section, of this system's dynamic properties showed 

excellent characteristics.
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Beam material was 6061-T6 aluminum alloy. This alloy 

was chosen because of weight, (desire to keep rig inertia 

forces low), high yield strength (40,000 psi), corrosion 

resistance and machinability. Tolerances were measured at 

±0.003 inch on the thickness taken lengthwise and ±0.001 

inch on the width taken lengthwise. Both waterproof and 

oilproof gage coats were used. The gage mounting area was 

polished mirror smooth before roughing back for mounting.

The Total Cylinder Model

The test model was designed to similate the leg of an 

offshore platform or any uniform diameter cylinder. The 

end caps with fins were used to minimize end effects - make 

the cylinder infinite in length so to speak. An inside 

cylinder of schedule 80, 1-inch diameter steel pipe was used 

to "carry" the entire model assembly. The top of the steel 

pipe was mounted to a bracket attached to the yoke.

The fins on the end caps were made from 6061-T6 

aluminum, cut on a taper and polished mirror smooth. They 

are 10 inches outside diameter and have an undersized 2 inch 

hole in the center. The fins were shrink fitted to the 

caps at about 0.005 inch interference fit.

The caps and the cylinder were finished smooth at 

2.000 ± 0.010 inches outside diameter. The live test 
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section is 13.370 inches long. The inside pipe was bored 

to 0.002 inch over the outside diameter of the transducer 

beam's big ends. The beams were positioned in the steel 

pipe and clamped rigidly with set screws after the cylinder 

live section was mounted and aligned with its pins fastened 

to the socket end of the transducer beams. The pins mounting 

the live section to the transducer beams were 1 inch long 

10 x 32 screws. The screws were ground round and slotted 

on the opposite end. The cylinder was drilled and tapped 

on a vertical mill and the screws were locked with a sealing 

compound and the holes sealed with wax. The sockets were 

filled with no. 2 grease to inhibit wear and give free 

action at the end of the transducer beams. After the test 

section of the cylinder was securely mounted, the end caps 

were mounted and then the rubber seals were mounted. With 

the rubber seals in place, a polyeurethane gage coat was 

used to seal them at the cylinder and end cap. The seals 

were latex and very sturdy but had a tendency to rot. 

However, calibration stayed within about 3% average whenever 

seals were changed. Both end caps and the cylinder were 

cut down by 0.005 inch in the area of the seals to accomodate 

both the seals and gage coat. The final assembly was given 

several coats of clear rust proofing enamel after all holes 

were filled with wax.
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The deflection of the inside steel cylinder was estimated 

in the neighborhood of 0.001 inch using equation (1). The 

small clearance holes for the pins were ignored in this 

analysis.

Figure 4 shows the cross section of the entire assembly 

with the transducer beams (Figure 5), rubber seals, end caps 

and fins all in place. The top of the top cap is sealed to 

the inner pipe with nitrile rubber to prevent water leakage.

Slider Crank Mechanism and Yoke

The basic mechanism, sometimes known as a Scotch Yoke, 

has been discussed and is shown in Hunt [2] and in Figures 3 

and 3A. One slight change was made worth mentioning. The 

slider block itself was slightly misaligned to the yoke 

guide piece. By doing this, just short of binding and raising 

the slider halfway out of the slot, the jerk force at the 

ends of travel was greatly minimized. This jerk force is 

a step input to the system and is caused by the change in 

sign of the acceleration force at each end of the yokes 

travel. By reducing this jerk force, the amplitude of the 

excited natural frequency was reduced so much that 60 Hz 

noise was more of a problem than the 14.7 Hz "first critical" 

of the cylinder. The yoke guidepiece was kept well lubricated 

and the brass slider block on the radial arm moved freely.
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Velocity Time Measurement

Previously, a contact type limit switch was used to 

signal the position of the yoke. This introduced a slight 

step input into the mechanical system. This was replaced 

with a noncontact eddy current probe. The probe itself is 

basically a coil and is driven by an amplifier with a 

carrier frequency in the megahertz frequency range. When 

the field from the probe is interruped by a conductive ferric 

material, like steel, a back EMF voltage is produced which 

is linearly proportional to the distance from the probe. 

The fact that it is noncontact makes it very useful since 

it causes no mechanical interference. The probe driver is 

set up using negative 18 volt power supply. The voltage is 

very critical to calibration and when the system is properly 

balanced it is dynamically flat up to the Kilohertz range.

Instrumentation Subsystem

The instrumentation subsystem consisted of a Bridge 

Amplifier (Wheatstone bridge and D.C. Amplifier) in a self 

contained unit, an active low pass electronic filter, a dual 

DC power supply and the proximitor system. A voltmeter and 

oscilloscope as well as a Bureau of Standards calibrated 

oscillator were used to check system components periodically 

as well as the instrument subsystem response. Figure 6 shows
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the schematic layout of the subsystem and Figure 7 shows 

the electronics near the wave tank.

The bridge and D.C. amplifier unit has a linear range 

of ± 5 volts with a 100 KQ load or more and ± 0.5 milliampere 

with a 1 KQ load. The actual load was the 10 megohm 

strip chart recorder input impedance. The unit has flat 

response from D.C. to 2 KHz when using the meter output 

jack to drive a recorder. Internal resistors were available 

and could be switched into the bridge to check the calibration 

of the amplifier output gain. Sensitivity of the unit was 

± 25 ye up to 2000 He with 350 0 strain gages.

The active electronic filter was designed specifically 

for this research. The natural frequency of the cylinder 

due to jerk force excitation was a problem and needed blocking. 

Bearing noise from the rolling element linear bearings guiding 

the yoke guidepiece and 60 Hz line noise were also problems. 

The intent of the design was to get as close to a maximally 

flat Butterworth response in the frequency domain and the fast 

rise time minimal overshoot Bessel response in the time 

domain. Actual results were quite good for the second order circuit 

shown in Figure 8. The frequency response is shown in Figure 9. 

The corner frequency is 4.9 Hz with attenuation of 16 db per
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octave. The pass band gain of the filter was 0.4 decibel 

at 1.5 Hz. The phase shift is shown in Figure 10. Instead 

of the normal plot, this plot is percent phase shift versus 

frequency. The phase shift plot was used to shift the 

velocity or displacement mark back to its real time position 

where it would have been had the strain gage trace not 

been shifted through the filter.

In the time domain, the response was observed. The rig 

itself was used and was both thumped and displaced to excite 

the natural frequency. True, this is not a fast rise 

square wave, but interest is not in the response for universal 

application of the filter but its usefulness in this research. 

The response is shown in Figure 11. The peak overshoot 

was 6% with a rise time of 0.112 second. The upper trace 

shows the unfiltered response or comparison.

The filter was tuned to the needed response by changing 

the shunt capacitor on the second stage and adjusting the 

500 KQ pots in the feedback loops. The final value of 

the second stage shunt capacitance was 0.33 microfarad. 

The filter and its power supply are shown in Figure 12. 

Position and timing was accomplished by using the noncontract 

probe described earlier in this report.

The recorder is a two-channel,pressurized ink pen 

instrument. It has two independent channels. The input
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impedance is quite high at 10 megohms and response is flat 

to 100 Hz with 3 decibels loss coming at 125 Hz. Chart 

speeds ranged from 1 to 125 millimeters per second. Gain 

ranged from 0.001 to 5 volts.

'The wave gage was a capacitance wire calibrated and 

found to be linear between ± 4 inch wave height. The wire 

is coated with polyeurethane and measures the change in 

capacitance with depth by the change in dielectric as water 

level fluctuates. The wire is in series with the primary 

side of a transformer driven at 2 KHz. The secondary 

side senses the change due to water depth. The signal is 

conditioned and fed to an amplifier and strip chart recorder.
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CHAPTER 3

DATA ACQUISITION AND REDUCTION

Calibration of the Cylinder Model

The cylinder was calibrated in the static mode and a 

dynamic check was performed. Five static data points for 

force against strain gage output voltage were obtained for 

each side of the cylinder. The assumption that the force 

to voltage relationship would be symmetric from one side 

to the other was not made. In fact, there was a slight 

difference. The calibration proved to be very nearly linear. 

The difference from linearity can be explained mostly by 

the rubber seals and some probable hysteresis in the beams. 

Calibration was checked several times and found to differ by 

a maximum of 8% at the lower end without the seals using a 

digital voltmeter. With the seals left on and using only 

the recorder, no difference above a few percent over the 

entire range was seen. The recorder itself was also checked 

against a source calibrated to the Bureau of Standards. No 

measurable error was present.

The calibration curve in Figure 13 was plotted. Two 

power curves, one for each side of the cylinder, were fitted 

to the data. These curves were used in the calculation of 

results. The power curve used was
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M.V. = C Fb. (15)

where M.V. is millivolts, C is the constant, F is force 

and b is the exponent.

The coefficient of determination, r3, was also calculated 

for each curve as a measure of goodness of fit. The positive 

values of voltage to force fit the following curve:

M.V. = 229.3(F)0'89 (16)

The coefficient of determination for this curve is 0.99971.

A r3 value of 1.0 is a "perfect" fit. Negative values of 

voltage to force fit the following curve:

0.97M.V. = 207.11(F) (17)

The coefficient of determination for this curve is 0.99530.

The fact that the curves are so close to linear bears 

out the soundness of the rig design as long as deflections 

are kept small. The latex rubber seals are inherently non­

linear. However, they do not provide enough restoring force 

to effect the curves significantly.

Calibration of the Bridge Amplifier

The Wheatstone bridge and amplifier unit was used to 

amplify the strain gage signal and condition it. In order to 

insure that the gain setting was constant throughout the 

testing, the same internal shunt resistance was used and the 
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meter was set by turning the gain knob to 830 pe before and 

after each run. The instrument had the slightest tendency 

to drift so constant checking was necessary.

Several minutes warmup were allowed before running 

any tests. The Wheatstone bridge was nulled and the amplifier 

was balanced. Then, the gain was set and the recorder 

connected to the meter jack.

Dynamic Calibration Check

The entire system was checked dynamically for response. 

The purpose of this was to verify that the mechanical sub­

system, electronic filter subsystem, bridge amplifier and 

recorder were sufficiently linear in combination and separately 

to substantiate the results obtained.

Figure 14 shows the test schematic for the basic set­

up. Initially, the system was checked without the filter. 

Then the filter was inserted in the system. The filter is 

not shown because of space limitations on Figure 14, but 

it is installed just as indicated on Figure 6.

The platform for the calibration was made of standard 

2 inch dimension lumber. This would prevent damage to the 

fins and allow them to bite into the wood for a more secure 

mounting. The cylinder was strapped into place and wedged 

at the fins against rotation. The natural frequency in air
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was measured by thumping to be 34.09 Hz. Since the damped 

natural frequency in water was 14.7 Hz, mass was added to 

decrease the natural frequency of the cylinder. A sheet of 

lead was used and a test frequency of 15.4 Hz was finally 

obtained. A small shaker capable of yielding 2 pounds force 

was attached to the wooden mounting platform with small 

bolts passing completely through the wood. The shaker was 

fastened to the cylinder by using a hose clamp strapped 

around the lead sheet which was rolled on the cylinder. The 

displacement of the cylinder was monitored using a calibrated 

proximitor system of the same type used to measure the 

timing of the yoke travel. The probe was placed over a 

steel thumb tack pressed into the lead. The probe voltage 

output is linear with displacement in the range used and is 

dynamically flat in response up to several thousand cycles 

per second.

The output of the electromagnetic shaker was held 

constant by monitoring the current supplied to it using a 

1 Q resistor in one of the leads from the power amp to the 

shaker. The power amp was supplied with a sine wave signal 

from an oscillator which was verified with a frequency 

counter. The strain gages were connected to the bridge 

amplifier unit and this signal recorded on the strip chart 
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recorder. The voltage drop across the 1 Q resistor to 

the shaker was placed on the other channel of the recorder 

and held constant.

An oscilloscope was used to monitor the output signal 

of the proximity probe and verify the wave form output. 

The proximity probe system and strain gage system were 

compared from D.C. up to 20 Hz and found to agree both 

qualitatively in wave shape and in magnitude. Both were 

checked statically by adding weight and a calculation shown 

below was performed to verify that reading force from the 

gages and probe yielded no difference.

The equation of motion for the system can be written 

simply as

F = mx II, (18)

where F is force, m is mass, x is acceleration, and II is 

the normalized impedance term of the system. This is only 

for the translation mode. In the case of simple harmonic 

motion, the acceleration is

x = -auu3 sin (a)t + ^), (19)

where a is amplitude, qj is circular frequency, t is time 

and 56 is phase angle.

The maximum value of acceleration is aoj3 where

II 1.0 at low frequencies.
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So,

F = m auu3 , (20)max
or

= m a(2nf)2 • (21)max
where f is harmonic frequency. The following values were

obtained for the system,

1. ) 300 mv at f = 1.1 Hz from the probe,

2. ) 135 mv at f = 1.1 Hz from the strain gage.

We can represent the maximum force in excess of the effects of 

gravity from equation (21). Total weight of the cylinder, 

lead, clamp, and thumb tack was found to be 7.67 lb. The 

calibration slope for the probe was 186.94 millivolts per 

thousandths of an inch. So, the measured millivolt reading 

yields a dynamic force of 0.59 lb^. To compare this dynamic 

measurement with a static load, an additional 200 gms

(0.4405 ) was placed on the cylinder in a static condition.

The additional measurement in excess of gravitational 

force was 230 millivolts. Thus, the ratio of static to 

dynamic loadings is 0.7466 for the force ratio and 0.7690 for 

the millivolt ratio. The two values are within 3%.

Using the average calibration curve for the strain gage

of

F =
0.93

(22)217.73
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where F is force, and MV is millivolts, the following is

obtained
135 \0-93

217.73/ 0.598 lb. (23)

The difference here is

= 1.013 or 1.3% increase.
0 ♦ D 90

(24)

Several things are worth noting. First, the impedance term 

is set equal to 1 because Figure 15 verifies that this is 

the case at f = 1.1 Hz. Second, the calculations and curves 

were not normalized because the objective was only to verify 

calibration. Third, gravity was left out of the force 

calculations for the same reasons as above.

The last step in the procedure was to put the filter 

in the system and check response of the cylinder, filter, 

bridge amplifier, and recorder all together in the frequency 

domain. This has been shown in Figure 11 for the time 

domain except that the cylinder was in water and in these 

tests it was mass damped. Figure 16 shows the results to 

be quite satisfactory.

The conclusion is that the systems are linear in the 

range of measurement and that static and dynamic calibration 

are equivalent in this range.
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Run Procedure

Amplitude to diameter ratios were altered by changing the 

stroke of the yoke with the adjustable slider block. A rule 

and scribe marks were used to double check the amplitude set­

tings. Strokes of 2, 3, 4, 5, and 6 inches were used to yield 

amplitude to diameter ratios of 1, 1.5, 2.0, 2.5 and 3.0 and 

K values of 6.28, 9.42, 12.57, 15.71, and, 18.84.

When the stroke was set, runs at different speeds were 

made before resetting the machine stroke. A variable rheostat was 

used to drive the motor and the exact speed of the rig could 

not be accurately duplicated. Rough approximations were 

used to vary the speed between runs at a given stroke by

6 in/sec. Actual velocities were measured from the chart 

using the timing mark and chart speed. There was less than 

2% variation between cycles so that there was very little 

slippage on the yoke drive even at the highest speeds run 

in the tests. However, yoke slippage is not the only cause 

of a period difference between cycles. More about this in 

the results discussion.

No less than 5 minutes elapsed between runs and several 

criteria were used to judge when the water had calmed 

enough to make a data run. First, the water itself would 

have to be visibly quiet. Second, the deflection of the 
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pen on the recorder at 2 millivolts per division gain had 

to be negligible with the rig stopped before the next run. 

The water could appear quiet on the surface but the cylinder 

could still move because of remaining vorticity and fluid 

motion.

In general this disturbance did not last more than 20 

to 30 seconds after stopping the cylinder. In cases where 

the surface waves generated were negligible, the cylinder 

movement due to residual vorticity could still be present, 

even after the surface effects appeared to be gone. In all 

cases, after 5 minutes, no residual effects remained.

Before the run, the bridge amplifier was checked for 

bridge null and amplifier gain. The active filter was also 

checked. The rheostat was turned as quickly as possible to 

the desired setting and the system allowed to run until 

wave reflection from the sides of the tank reached the 

cylinder. Chart speed was selected at either 25 mm/sec or 

125 mm/sec depending upon the oscillation period of the rig.

The wave gage was not used in every test. It was used 

on several runs at each amplitude-to-diameter ratio in order 

to measure the waves generated by the cylinder.

In order to be certain that the cylinder transducer 

beams were mounted perpendicular to the direction of travel. 
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marks were scribed using a square on top of the top fin. By 

locating the plane of maximum force with the cylinder in the 

horizontal plane, the position was found and the marks 

scribed into the aluminum fin. Then the cylinder was mounted 

to the yoke and locked into place with the scribe marks 

parallel to the yoke guidepiece.

Data Reduction

For each speed setting of the rig and each amplitude 

setting, as many cycles as practical were averaged to obtain 

a representative cycle. The same points in time on the 

curves were used to calculate the estimator of the mean 

millivolt value at that point. Along with the discrete 

point estimator, the standard error of the mean and interval 

estimators or confidence intervals were calculated. Tables 

and other data for the calculations are shown in Benedict 

[ 6]. Table I shows the results of such calculations for 

the maximum mean value of the millivolt readings for each 

data pass. This information is very useful as an indicator 

of the reliability of the overall results. The statistical 

analysis of the raw data coupled with the in-depth system 

analysis in the calibration section should aid understanding 

of the results to be discussed later.
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An explanation of Table I is required, a/d is simply 

the amplitude-to-diameter ratio. The Keulegan-Carpenter 

number (K) is related to it by the following:

U T
K = 2rr a/d = , (25)

where a is amplitude of oscillation, d is cylinder diameter, and 

Um is the maximum velocity, N is the number of data sets 

for each point on the average curve, R is the range defined 

as the difference between the lowest and highest values at 

any given velocity or time. x at M.V.max is the mean value 

of the raw millivolt readings at the point where x is a

maximum. s at M.V. maximum is the estimator for the standard 

error of the mean st the same point as x at M.V.max. Both 

relationships are functionally defined below,

N
*| =N I Xil (26)
M.V.max i=l 'M.V.max

^M.V.max i=l 1^M.V.max 'M.V.max

where N is the number of data sets at the point, and x.। 
'M.V.max 

is the ith value at the curve's maximum.

The mean and standard error of the mean estimator are

used to calculate the interval estimator or tolerance on the 

mean. This is referred to in Table I as the 95% confidence
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TABLE I

a/d U m 
in/sec

N _ R at 
XM.V.max

x at
M.V.max

s at
M.V.max

95% 
Confidence 

Limit

1.0 14.34 6 5 at 11 11 1.76 ± 1.85 M.V.

1.5 5.65 3 2 at 9 9 1.53 ± 3.80 M.V.
1.5 12.88 6 4 at 30 30 2.80 ± 2.94 M.V.
1.5 20.58 4 7 at 30 30 2.99 ± 4.76 M.V.

2.0 5.03 6 2.5 at 6.5 6 1.08 ± 1.13 M.V.
2.0 12.18 4 27 at 15 15 11.06 ± 17.60 M.V.
2.0 19.51 4 85 at 58.75 38 45.04 ± 71.66 M.V.
2.0 27.56 6 57 at 127 127 28.11 ± 29.50 M.V.

2.5 11.06 5 14 at 45 45 5.29 ± 6.57 M.V.
2.5 18.61 5 19 at 70 70 8.29 ± 10.29 M.V.
2.5 26.17 4 23 at 122 112 23.5 ± 29.17 M.V.

3.0 10.34 7 10 at 42 42 3.65 ± 3.38 M.V.
3.0 17.13 7 82 at 92 92 26.8 ± 24.79 M.V.
3.0 24.09 6 80 at 122 122 30.0 ± 31.49 M.V.
3.0 31.77 3 20 at 175 175 5.0 ± 12.42 M.V.
3.0 38.23 3 50 at 181 181 30.6 ± 76.03 M.V.



53

limit. In short, this means that we are 95% certain that the 

true population mean with infinite samples lies within 

the range that the interval estimator defines. The interval 

estimator at 95% confidence is defined as

±(tN-l 9s) S
I.E./95% = ■ ■ ' ■ , (28)

where t  _ is the value of the Student t statisticalN-l,.95
distribution, s is the standard error of the mean estimator, 

and N is the number of data sets.

By analyzing the raw data in this manner, random errors 

can be accounted for and the final results better understood.

One other point is vital concerning data reduction.

Phase shifting of the data trace occurs as the signal passes 

through the filter. This was an unavoidable situation but 

one which can be compensated for. The data trace was 

analyzed for its fundamental frequency and then the timing 

mark was shifted forward the appropriate amount. Figure 10 

shows the phase shift curve over the range needed.

As far as the actual number of curves is concerned less 

than 3 points yield very poor accuracy statistically. The 

value of t when N = 2 is 12.706 but when N = 3, itN-l,.95
is down to 4.303 and at N = 6 , it is 2.447. To further put 

the analysis into perspective, an infinite number of data
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points yields t  of 1.96. The upshot is that little N—1, . 9 5
effort should be spared to get at least 3 curves but more

than 3 does not increase data reliability significantly.

This fact is discussed in Benedict [6].
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CHAPTER 4

COMPUTATIONAL PROCEDURE

Force Calculation

A program was used to calculate the force from the raw 

millivolt readings taken from the curves off of the strip 

chart recorder. Equations (16) and (17) were used depending 

upon the sign of the millivolt reading for each point. The 

number of points used for each of the force curves shown 

in Figures 18, 19, 20, 21, 22, 23, and 24 was selected to 

give as smooth a curve as possible. The mean value or 

estimator of the mean millivolt value was used at each point 

in the cycle and a corresponding force value was calculated.

Velocity Calculation

The same program that calculated the force also calcu­

lated the velocity as well as lift coefficients. The 

velocity for the simple harmonic motion is given as

U = ao) cos (out), (29)

where a is amplitude, (« circular frequency, and t time. By 

replacing the circular frequency with harmonic frequency, f, 

we get

U = a 2nf cos (2nft). (30)

The equation can be written as

U = 2nfa cos (2n —), (31)
T 
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where T is period and t is time, and the units of radians 

can be changed to degrees and

U = 2nfa cos (360 —). (32)
T

For easy reduction from the actual curves and using the 

number of millimeters distance from the point of maximum 

velocity, equation (35) is written as
d.

U = 2nfa cos (360 -^) , (33)

where d^ is the distance of the ith point on the curves and 

D is the total distance, both in millimeters. This is the 

relationship used in the calculating routine. For maximum
d.

velocity, the values of cos (360 is unity and

U = 2jTfa (34)max

C (t) CalculationL max 

Values of peak lift coefficient referenced to maximum 

velocity were calculated for the various points in the cycle,

C (t) = n _F(t) --  (35)
L max 0.5 pdLU2 max

where F is the force at a particular time in the cycle, o is 

water density in the tank, d is cylinder diameter, L is 

test section length and U is the maximum velocity.

The same program that calculated force and velocity 

used these to calculate the lift coefficient at each time
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in the cycle. The vs time curves are on the bottom

of Figures 18, 19, 20, 21, 22, 23 and 24 for different 

values of amplitude to diameter ratio or K.

CT vs p Calculation L max

Plots of CL against 3, the frequency parameter were 

also made. Figure 17 shows the results of the present work 

and Figure 17A shows the results of Sarpkaya [1]. In 

Figure 17, there are tolerances placed on each point. These 

were calculated by using the 95% confidence limit on the 

maximum force referred to maximum velocity. The equation 

for this is

F- = ---- max-----
L max 0.5 odL U2 max

The parameter p is as defined in (3). Curves were fitted 

to their data using both a logarithmic and exponential 

function. This result should allow calculation of expected 

lift coefficient for given values of K and R. Coefficient 

of determination was also calculated for each of the curves 

representing the different values of K.

The values of C are taken at the peak force not L max 
the semi-peak which is half the peak to peak. By looking 

at the C vs time curves in Figures 18 through 24, the L IR3.X 
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peak and semi-peak are not necessarily equal. The peak and 

semi-peak are only equal for a perfect periodic function 

that is symmetric, i.e., a sine wave.
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CHAPTER 5

RESULTS AND DISCUSSION

In general. Figures 18, 19, 20, 21, 22, 23, and 24 are 

average curves. Table I shows how many curves or cycles 

were used to obtain the average curves shown. Thus CL max 
is the maximum mean value and not the highest value obtained 

during the tests. Figures 17 and 17B are plots of these 

maximum mean values of lift coefficient against p and K.

All of the curves start at the point of maximum velocity and 

finish at maximum velocity. A point of maximum velocity 

also occurs within each curve at T/2.

Figure 18 shows results for a/d of 1.0. This yields K 

of 6.28. The period for this curve was 0.88 seconds. 

During this period, there appears to be only one cycle of 

force fluctuation. The actual data traces verified C L max 
peaks at 0.13. Longer periods, runs with lower velocities 

and accelerations, yielded no detectable flucutations in 

force. These curves are averages of 6 cycles. Note that the 

average curve "hunts" before it crosses the time axis. What 

is happening is that the physical phenomenon of vortex 

shedding is not periodic over the time periods involved in 

this study. There are narrow band random fluctuations. Both 

the period or frequency and ampltidue vary from one cycle 
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to the next. This is true at all values of K and p studied 

in this research. In some of the average curves, this 

phenomenon does not have enough effect to show up. The total 

system is not determinable as to mass, spring constant and 

damping. The cylinder subsystem is, but its interaction 

with the water is not.

At this value of K (6.28) we are at the lower end of 

the range of K where lift occurs. At the lower frequencies 

and periods for K = 6.28, less energy is input to the "system" 

and there may not be enough disturbance to allow the vortices 

to become asymmetric. Figure 1 illustrates this situation. 

At shorter periods, much more energy is put into the system 

and more vorticity must be dissipated. The value of R and 

P are both higher for shorter periods. The parameter P has 

more complete definition of the phenomenon than K or R alone. 

As Wiegil [9 ] states, the total period or distance travelled 

is more important than the maximum velocity or R .It 

takes time for vorticies to develop and shed. The phenomenon 

itself of vortex shedding is transient.

Figure 19 shows results for a/d of 1.5 or K of 9.42 and 

periods of 3.33, 1.46 and 0.92. For this value of K, one 

vortex is shed per half cycle or two per full cycle. The 

curves show this type of shedding as does Figure 1. Another 

factor is the asymmetry of the curves in Figure 19. This 
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happens because when a vortex is shed, it causes an induced 

velocity which affects the velocity of the free stream or 

cylinder velocity when the cylinder returns on the last half 

of the cycle. This addition of velocity can be explained 

because the vortex is rotating and effectively increases the 

relative velocity between cylinder and water and forces the 

stronger vortex to remain on the same side of the cylinder 

from cycle to cycle. Figure 1 shows this for K = 8. The 

same wave shape exists in all three curves. Heinzer [3] 

found that for a given value of a/d or K the nature of 

shedding did not change. In the present research, period 

or frequency made no significant difference in the wave 

shape of the average curves. The curves in Figure 19 show 

that the force and lift coefficient curves are different for 

different periods. This illustrates the importance of the 

frequency parameter, p. Narrow band random fluctuations 

do not have a pronounced effect on these average curves. 

Maximum lift coefficients, CT , were 0.98, 0.48, and 0.25 

for periods of 3.33, 1.46, and 0.92 respectively. The shorter 

periods had higher peak velocities but did not have enough 

time at the higher velocities and R to develop enough force 

to give higher values of C than lower periods.L max 
Figures 20 and 21 show results for a/d of 2.0 or K of 

12.57 and periods of 5.0, 2.06, 1.29 and 0.91 seconds. The 
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period of 5.0 seconds is the highest period at which 

significant fluctuations were measured in force. This 

does not say it is the highest period, lowest frequency, or 

lowest p value at which fluctuations can occur. Using a 

variable rheostat to modulate motor speed did not give the 

freedom to preset the harmonic frequency exactly; only 

roughly.

In reality, lift may still be occurring at lower p 

values but the measurement system cannot detect it reliably. 

All curves have the characteristics of one vortex per half 

cycle. According to Sarpkaya [1] and Isaacson and Maull [4], 

a K value of around 15 is needed to obtain two vortices per 

half cycle. On the curves for 0.91 and 2.06 seconds period, 

we again notice the effects of random fluctuations. Two 

additional inflection points occur in the curves at these 

periods. This would appear to add another cycle during the 

oscillation period to each of these average curves. In 

reality, this is not the case. It is not physically hap­

pening that the cylinder is oscillating as the curve indicates. 

While the average curves for periods of 0.91 and 2.06 seconds 

show an apparent qualitative difference the curves for 2.06 

and 1.29 have the most variation in peak amplitude for 

CT and force. This is shown both in Table I and Figure L max
17 for a/d of 2.0. All of this serves to indicate the 
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necessity of a statistical approach to the problem. Maximum 

peak lift coefficients, C , were 0.82, 0.36, 0.45, and L max 
0.61 for periods of 5.00, 2.06, 1.29 and 0.91 seconds 

respectively. The trend toward decreasing C with 

increasing g is reversed here. There is no apparent physical 

explanation for this at present.

Figure 22 shows results for a/d of 2.5 or K of 15.71 and 

periods of 2.84, 1.68, and 1.2 seconds. At K = 15, the 

expected behavior is a transition to two vortices shed per 

half cycle. The curves for periods of 1.2 and 1.68 seconds 

show this to be the case. The curve for the 2.84 second 

period does not. Since the force is not very high in 

comparison to the other two curves; it is tempting to say 

that random fluctuations "cancelled" a cycle. Examination 

of the actual data trace shows this is not the case. The 

value of p may be too low for development of the second 

vortex to the size needed for shedding. There are regions 

of fractional shedding. These are regions with any given 

value of R and |3 for a set value of K where the last vortex 

in a half cycle does not shed. The last vortex does not 

grow large enough to be shed. Five curves were averaged 

and Table I clearly shows a very tight value of I.E. In 

other words what may have happened was that the system 

changed from two vortices per half cycle after only 2 
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cycles from start to one shed and perhaps one almost shed in 

each half cycle. Perhaps there is not enough energy available 

after shedding the first vortex for the second one to 

develop to shedding in the distance that remains until 

reversal of the cycle. Since Reynolds number is actually 

time variant, there should be enough time to develop and shed 

the second vortex even though R is not as high as in curves 

of 1.2 and 1.68 seconds. However, there is no force reversal 

on the actual data traces, merely a tendency toward zero 

slope in the curves after the "first" vortex in the half 

cycle is shed.

Maximum lift coefficients, C , of 1.3, 0.72, and L max
0.59 were obtained for periods of 2.84, 1.68, and 1.2 seconds. 

Again, the trend is to increasing lift coefficient for 

decreasing frequency parameter, p. Also the trend has been 

established that we have an increasing CL for increasing 

K at comparable values of p. Little effect in the nature of 

the curves can be attributed to random fluctuation.

Figures 23 and 24 show results for a/d values of 3.0 

or K of 18.84 and periods of 3.65, 2.2, 1.56, 1.19, and 0.99 

seconds. All of these traces show similar behavior. There 

is more effect from random fluctuation in the two curves of 

highest frequency. Amplitude variations are greatest at 

0.99 and 2.20 seconds period but there seems to be less 



75

random phase changes as period increases. The regime of 

two vortices shed per half cycle exists here and all curves 

show 6 half cycles or force peaks. Remember, a vortex does 

not have to be shed to obtain lift, so 2 vortices shed per 

half cycle can mean 3 force peaks per half cycle. Maximum 

lift coefficients, C , were 1.39, 0.94, 0.73, 0.64, and L max
0.40 for periods of 3.65, 2.2, 1.56, 1.19, and 0.99 seconds 

respectively.

In summarizing the results of these curves, it is most 

important to discuss frequency of the lift force. As 

Sarpkaya [1] points out all vortices are not necessarily shed. 

This fact along with previously discussed narrow band fluc­

tuation forces one to recognize that again K does not tell 

the complete story. Figure 25 shows that both lower and 

higher values of fL/fo» the ratio of lift frequency to water 

oscillation frequency, can be obtained at higher and lower 

values of K. Notice that we had a f /f ratio of 1.0 atL o 
a/d = 1.0 and K = 6.28. There is no vortex shed but asymmetry 

does develop. Also at a/d =2.5 (r = 2.84 seconds period 

and K = 15.7), we obtained a value of 2 for the nearest 

integer lift frequency. This would suggest only one vortex 

shed per half cycle on this particular run. This is most 

probably what happened. In general as Figure 25 shows the 

lift frequency is highly predictable based on K. Plotted
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on Figure 25 are some of the points Sarpkaya computed and 

the values for the present work. The dotted line is the 

expected behavior as described by Isaacson and Maull [4] 

and found by Chakrabarti [ 7] with just a few exceptions. 

The exceptions were as plotted on Figure 25 wherein a few 

values of fo/fL were one cycle lower than one would intuitively 

expect. These exceptions are for lower values of R and p. 

Figure 54 in [1] shows this exception also.

Also, from Figures 17, 17A, and 17B we can see the 

upshot of the force measurements. Figure 17 shows the mean 

values of lift coefficient at the maximum peaks plotted 

against the frequency parameter, p. Using the confidence 

intervals for the mean peak forces from Table I, the values 

of the tolerance on the lift coefficients were calculated

using the following:

I.E.],
L max

I.E.],
'F max

0.5 pdL U2 r max
(37)

where I.E. i—• is calculated from the values of the 95%|Fmax
confidence limits on X at M.V. , and p, d, L, and U2 are max max
as defined for previous expressions. It can be argued that

intervals in p, d, L, and U should also be calculated, max
As a practical matter, there is no randomness in these values, 

only errors in precision of their measurement.
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Figure 17 and 17A show a strong trend with p for a

apparent from reading the text of Sarpkaya [1] but in

is printed with

some cases showed higher coefficients of determinations for

an exponential curve than for a logarithmic curve.

The data in Figure 17 was fitted to both logarithmic

and exponential curves given respectively in the form

(38)A + BStiP

and

(39)

maximum peak forcethe equations were rearranged so that

are of the form:

(40)

and

(41)

is that CTL max

CTL max

CTL max
= CpD;

decrease in C L

Isaacson and Maull [4] and the present work. All of these

where A, B, C, and D are constants to

because, as Table II shows, the least squares curve fits in

could be calculated. These relations

be determined. Then

figures were plotted on rectilinear scales. This was

C it seems the case. Figure 17B shows a comparison of L max

Fmax ’ M(A +

in Figure 17A is the maximum value found. This is not

looking at the tabulated data where C „ , „ y L R.M.S.

in Figure 17A is not an average value. CL max

F = MCpD 
max

. The difference between the two figures max
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TABLE II

d K LOGARITHMIC r2 EXPONENTIAL r2

1.0 6.28 INSUFFICIENT DATA

1.5 9.42 F =M[4.82-0.57072 p] max 1.0 F =M max
mop1'04 0.98

2.0 12.57 F =mE1.65-0.1507? p] max 0.30 F =M max
2.62S0-22 0.20

2.5 15.7 F =M[7.10-0.8407? Pl max 0.95 F =M max
788p°*93 0.98

3.0 18.84 F =M[6.06-0.71072 p] max 0.97 F =M max
438S0'86 0.94

ALL F =M[3.99-0.45071 p] max 0.54 F =M max
229.2p°’81 0.52

where M = 0.5 pdLU2 max
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where M = 0.5 pdLU2 , the denominator of the dimensionless 

lift coefficient. With the force equation from Table II 

and calculation of the forcing frequency from Figure 25, one 

should be able to predict fatigue effects on piles, pipes 

and offshore platform legs as well as have some knowledge 

of the nature of a dynamic forcing function due to alter­

nating lift on these bodies.

In Table II the logarithmic curve fits best except at

K of 15.7. Neither curve fits well at K of 12.57 as indicated 

by the low values of the coefficient of determination r2.

The results from the wave gage indicated that the 

maximum surface wave generated by the rig was 0.75 inch 

peak to peak at a/d of 3.0 or K of 18.8 and p of 1805. 

The wave length was not monitored.
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CHAPTER 6

UNCERTAINTY ANALYSIS

The data used for the calculation of the results could 

have a definite bearing on the outcome. Due to errors of 

precision in the measurements taken on some of these data, 

an uncertainty analysis is needed. Equation (39) represents 

the relationship used to obtain the maximum lift coefficient 

for any value of K and p. By using the methods set forth by 

Kline and McClintock [10], the uncertainty in the maximum 

lift coefficient can be calculated. These uncertainty 

intervals are not the same as the interval estimator, I.E., 

defined in (40). The interval estimator took the narrow 

band random fluctuations in force into account. The uncer­

tainty interval accounts for precisional errors in measuring 

cylinder dimensions, cylinder velocity, and water density.

The uncertainty interval is defined as

U.I
CL max

^CL max \3dC 3 ydC 2L max. \ ( L max.—---- AP + (—--- Ad )dp / \ dd /
dC
dU max. max

dC.- L maxA-
dF maxmax

(42)

where C is defined in (40). Computing the partial L max
derivatives gives
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„ T r/ max A \2 ( max A_\3 / max ATU,I*|- "Lw.5 p2dLU3 AP/ +\0.5 p^LU3 Ad/ +\0.5 pdL2U2 AL
max max r maxL max

L-2F a2 zAFmax______  \ / max
0.5 pdL2U3 max/ + \0.5 pdLU2

max max
(43)

The following tolerances were used as estimated.

Ap = 0.001 slugs/ft3
Ad = 0.01 inch
AL =0.01 inch
AU = 0.006max U , inch/second max
AF =0.01max lbf

The tolerance in the force measurement is due mostly to the 

2 millivolt noise. Initially the 60 Hz line noise was 80 

millivolts but the filter cut it down to 2 millivolts. The 

tolerance in p was obtained by allowing p to be assumed as 

low as 62.3 lb/ft3. The tolerances on d and L were measured 

and specified on assembly drawing for the cylinder. The 

tolerance in umax is obtained by observing the change in 

distance of the timing marks on the strip chart due to 

drive belt slippage on the yoke. Using the above values for 

tolerances and

p = 1.94 slugs/ft3 
d = 2.00 inches 
L = 13.37 inches.
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and the appropriate values of F and U max max at various

values of K; Table IV is developed from the following 

equation

U.I = -4—To.00116 F2 + 0.000375
U I max' maxL max

(44)

Since errors or tolerances in the actual values were small, 

the uncertainties are all very small. The largest uncertainty 

was in the force itself with the 2 millivolt noise. In 

fact, with periods of oscillation large enough, force 

flucutations could be imperceptable even though substantial 

lift coefficients would have resulted due to low velocities.
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TABLE III

a/d K F max
lb

U max 
w/sec

CL max
L max

1.0 6.28 0.035 14.34 0.13 .00003

1.5 9.42 0.041 5.65 0.98 .00001
1.5 9.42 0.104 12.88 0.48 .00003
1.5 0.42 0.14 20.58 0.25 .00002

2.0 12.57 0.03 5.03 0.82 .0002
2.0 12.57 0.07 12.18 0.36 .00004
2.0 12.57 0.22 19.51 0.45 .00002
2.0 12.57 0.61 27.56 0.61 .00003

2.5 15.71 0.21 11.06 1.30 .00007
2.5 15.71 0.325 18.61 0.72 .00004
2.5 15.71 0.53 26.17 0.59 .00003

3.0 18.84 0.19 10.34 1.39 .00008
3.0 18.84 0.36 17.13 0.94 .000046
3.0 18.84 0.55 24.09 0.73 .00003
3.0 18.84 0.84 31.77 0.64 .00003
3.0 18.84 0.77 38.23 0.40 .00002
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CHAPTER 7

CONCLUSIONS

As a result of the work presented here, several 

conclusions were reached. They are explained below.

1. ) The shedding frequency is strongly dependent on 

K. It is almost independent of p. As Wiegel [9 ] states, 

it is the distance moved by the pile that is most important. 

The distance the fluid moves along the boundary determines 

the extent of backflow, separation, and vortex formation. 

This is true provided R is sufficiently large. In the case 

of water with the values of a/d used herein, there is always 

sufficient R to get vortex formation but a/d may not be 

large enough to get separation at all p values.

2. ) The actual forces measured were in good agreement 

with those obtained by two separate methods. Sarpkaya [1] 

held the cylinder stationery and used a U-tube of elaborate 

design and construction and Isaacson and Maull [4] made 

waves past a stationary pile. In this work, a cylinder was 

moved with simple harmonic motion in a large wave tank 

otherwise at rest. As Figure 17 shows, maximum peak lift 

coefficient is strongly dependent on p the ratios of R to K. 

Sarpkaya1s [1] data in Figure 17A bears this out.

3. ) There are narrow band random fluctuations that are 

the nature of the phenomenon. The use of frequency domain 
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spectrum analysis does not sufficiently uncover this. In 

the present work, time domain plots of system response on 

an average basis showed these effects in Figures 18, 20, 

and 21 where they were most pronounced. These random 

fluctuations represent both variation in phase and amplitude 

from cycle to cycle. In the case of this work the amplitude 

variation was most significant.

4. ) Maximum peak force can be modeled with either 

logarithmic or exponential curves with excellent fit in all 

but one case, that for a/d of 2.0.

5. ) Lift forces alternate due to the nature of vortex 

generation and shedding but are not necessarily symmetric 

about zero force. This would make twice the peak force 

greater than twice the semi peak to peak or average.
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INSTRUMENT

BRIDGE AMPLIFIER

FILTER POWER SUPPLY

RECORDER

PROXIMITOR SYSTEM

OSCILLOSCOPE

SHAKER

SHAKER POWER AMP

OSCILLATOR

FREQUENCY COUNTER

APPENDIX

INSTRUMENT LIST

MANUFACTURER/MODEL

----- VISHAY/BAM-1

----- HEWLETT PACKARD/6205B 
DUAL CHANNEL

----- CLEVITE BRUSH/220

----- BENTLY NEVADA/3115N 2388

----- TEKTRONIX/561 W3A6

----- LING/101

----- LING/POA-1

----- HEWLETT PACKARD/202CD

----- SIMPSON/2725A
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