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Abstract

Smoothing is a data-driven technique in statistical modeling. It has many desirable
properties, and can be applied to modeling complex data. In this dissertation, a smoothing
cohort model is considered as an effective alternative to address the identifiability prob-
lem in age-period-cohort analysis, in which multiple estimators are induced by a linear
dependence of covariates: Period - Age = Cohort in the regression model of APC analy-
sis. The smoothing cohort model yields consistent estimation of age and period effects,
but cohort effect estimation is biased. Hence, the second stage model aims to correct the
bias by setting a constraint using the consistent estimation of age or period effect from
the first stage. Selection of constraints in the second stage is studied through simulations.
The large sample behavior of the model parameter estimation is examined. The method is
applied to cancer-incidence rate, mortality rate, and homicide-arrest rate data and yields

sensible trend estimation in age, period, and cohort.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Disease or event rates, such as the incidence or mortality rate of chronic diseases (cancer,
cardiovascular diseases, obesity, or diabetes, etc), homicide, suicide, and death rate, are
important measure of public health for disease monitoring and health-program evaluation.
[Coleman et al., 1993] pointed out that “Cancer mortality has been widely accepted as the
most important measure of progress against cancer, since it reflects the impact of cancer
on people, and has been considered less subject to distortion than incidence or survival,

although this is open to question. Cancer mortality also reflects trends in incidence and
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survival to a greater or lesser extent.”

As an example, Table 1.1.1 displays cervical cancer-incidence rate (per 10° person-
year) in Ontario women in Canada [Fu, 2000]. There are 14 rows and 7 columns, and each
row represents an age group and each column represents a period group. In addition, on

each diagonal are the people who have the same birth cohort year.

Table 1.1.1: Cervical Cancer-incidence Rate (per 10° person-year) in Ontario Women in
Canada by Age and Period

Period
Age 1960-64 1965-69 1970-74 1975-79 1980-84 1985-89 1990-94
20-24 3.89 3.24 2.90 2.05 2.19 1.76 1.73
25-29  16.01 11.18 8.92 9.74 8.48 7.43 7.54
30-34  26.02 21.14 16.32 15.84 14.54 13.67 12.71
35-39  38.84 25.09 21.07 18.74 18.80 18.04 18.18
40-44  47.65 32.50 22.71 20.01 18.78 16.19 18.12
45-49  51.48 36.69 22.15 19.20 17.74 17.29 18.31
50-54  49.12 37.26 25.51 18.41 16.66 15.41 14.07
55-59 5148 40.87 34.70 21.83 16.97 17.69 13.73
60-64  47.68 42.80 29.76 22.71 20.16 17.69 16.94
65-69  40.44 39.17 31.44 28.79 23.35 19.26 19.16
70-74  42.40 35.32 27.78 24.31 20.27 20.19 14.95
75-79  42.44 36.68 28.75 25.22 21.17 21.08 19.43
80-84  41.50 29.74 31.54 22.31 20.14 15.25 21.28
85-89  30.79 32.43 37.10 19.81 16.42 14.87 12.06

Indeed temporal trend of cancer incidence and mortality has been frequently studied
in the literature. [Vercelli et al., 2000, Quinn and Babb, 2002] studied patterns and trends
in prostate-cancer incidence and mortality. [Gonzalez-Diego et al., 2000] presented time
trends in ovarian-cancer mortality. [Pérez-Farinos et al., 2006] discussed time trend and

age, period, and cohort effects on kidney-cancer mortality in Europe from 1981-2000.
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[Znaor et al., 2015] examined trends in renal cell carcinoma incidence and mortality. [Bo-
yar Cetinkaya et al., 2015] showed trends in incidence of neuroendocrine neoplasms in

Norway. [Antoni et al., 2016] provided incidence and mortality trends of bladder cancer.

1.1.1 Age-Period-Cohort Analysis

For given Age-period-cohort (APC) data like the above, how to figure out the pattern or
trends of mortality or incidence rate over age, period, and cohort is an interesting question.
[Kupper et al., 1985] gave a review of APC analysis, and emphasized descriptive approach
to the APC analysis. The rates are plotted in various ways as a function of the age, period,
and cohort groups, see Figure 1.1.1, illustrating the need of a logarithm transformation of
the rate. It also was pointed out that descriptive APC analysis is helpful in obtaining gen-
eral qualitative features about age, period, and cohort patterns, but it has major limitations.
For example, in Figure 1.1.1, the shape of the period curve is affected both by varying
age effects and by varying cohort effects. Furthermore, a quantitative assessment of the
way in which these age and cohort effects interact to influence the shape of this period
curve cannot be obtained by visual examination of graphs like Figure 1.1.1. It can only be

achieved via the use of valid statistical modeling procedures.

A three-factor model, the APC model (1.1.1) below, was first studied by [Greenberg

et al., 1950]. It has been so far the most commonly used model in practice.

yij =M+ i+ B+ Y+ &y, (1.1.1)

where y;; is the log-transformed rate in the i"" age and j'" period, withi =1,2,...,a;j =
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Figure 1.1.1: Descriptive APC Analysis for Male-mortality Rate of Liver Cancer in Korea
(See Table 5.1.1)
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1,2,....,p;andk=1,--- ,a+ p— 1. u is the model intercept, ¢ is the " age effect, Bj is the
j'" period effect, and ¥ is the k" cohort effect withk =a —i+ j. And & j are independently
identically distributed Gaussian random errors with mean zero and common variance 6>

(i.e. & ~ N(0,02)).

[Kupper et al., 1985] also reviewed two-factor models (usually, age at occurrence and
birth cohort). This approach assumes that one of the three factors in model (1.1.1) is
“unimportant”, in which case a two-factor model could reasonably provide a valid approx-
imation of the data. A general strategy to choose a two-factor model is to examine “the
goodness of fit”. However, [Kupper et al., 1983] demonstrated that the above two-factor

models can be seriously misleading.

1.1.2 Age-Period-Cohort Model and The Identifiability Problem

Writing the APC model in a matrix form, we have

EY:Xb:<1 A P c) (1.1.2)

R ™ RE

where X = (1,A,P,C) is called design matrix, b” = (u,a”,B7,y") is a vector of model
parameters to estimate. Like in the analysis of variance (ANOVA) models, the parameters
need a side-condition, either by setting a reference level, such as a; = 1 =7 =0 or

by a parameter centralization below, which we prefer for the reason to provide variation
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assessment to each effect estimate

a p a+p—1
ZOC,': Zﬁj: Z ’}’k:O. (1.1.3)
i=1 j=1 k=1

For example, if the data is of 3 x 4, then the APC model can be written in a matrix

form as

1 1 0 1 O 0 0 o0 1 0O O
u

1 1 0O O 1 O 0 0 o0 1 0
091

1 1 O 0 O 1 O 0O 0 O 1
0%]

1 1 O -1 -1 -1 -1 -1 -1 -1 -1
Bi

1 0 1 1 O 0 O 1 O 0 O
B2

1 0 1 0 1 O 0 O 1 0O O
EY = Bs

1 0 1 0O O 1 O 0 O 1 0
N

1 0 1 -1 -1 -1 0 O 0 O 1
12}

1 -1 -1 1 0 O 1 O o0 0 O
V3

1 -1 -1 0 1 0 O 1 O 0 O
Y4

1 -1 -1 0 O 1 0O O 1 0O O
Y

1 -1 -1 -1 -1 -1 0 O O 1 0

The estimates of the model parameters help to estimate the age, period, and cohort
trend. However, the model has a fundamental problem, the identifiability problem as de-

scribed below and has been discussed by [Kupper et al., 1983, 1985] and [Holford, 1985].

In this APC model, there exists a linear dependence, Period — Age = Cohort. In
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terms of linear algebra, this means the matrix X7 X is singular. Consequently, the model

yields multiple estimators, resulting in an identifiability problem.

Consider random response variable ¥ and predictive variables X = (Xi,---,X,). The

linear regression model is given by
EY =Xb=>by+Db1 X1+ +bpX,. (1.1.4)
The parameters b are estimated by minimizing the following sum of squares of the errors,

2
min Z (yi_ (b0+b1Xi1 +"'+prip))

= (y—Xb)"(y—Xb), (1.15)
and if the matrix X is of full rank, the ordinary least-squares estimator is given by

b=xTx)"'xTy.

For the APC model, the design matrix X = (1,A, P,C) has linearly dependent columns,
leading to a singular matrix X7 X and resulting in multiple estimators of the parameters.

Each estimator corresponds to one generalized inverse of the matrix X7 X.

1.1.3 Methods Used for APC Model

Many methods have been discussed to address the identifiability problem, including con-

straint method, estimable function method, smoothing method, see [Robertson and Boyle,
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1986, Clayton and Schifflers, 1987a,b, Heuer, 1997, Robertson et al., 1999, O’Brien,

2000].

A common method to address this identifiability problem is using a constraint. The
popular ones are linear constraints, given by I7b = 0, where b is the vector of parameters,
and [ is a vector. In practice, equality constraints are often specified, such as a; = o,
Bi1 = B2 or 71 = . For example, oy = o assuming disease-mortality rate does not vary
in early ages. However, different constraint may lead to different trend estimation in age,
period, and cohort effects. Such constraints highly rely on prior information. It is thus, dif-
ficult to verify that a constraint is satisfied by true parameter values before the parameters
are accurately estimated, leading to an extremely difficult paradox. Furthermore different
constraints lead to different estimation and thus, there is no uniqueness of the parameter
estimation. For example, parameter estimation by different constraints for the cervical
cancer-incidence rate data is illustrated in Figure 1.1.2. Clearly, it indicates that the con-

straint approach still leads to multiple trends and there is no unique trend estimation.
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Figure 1.1.2: Comparison of Age, Period, and Cohort Trends Estimated with the linear
Model by Different Constraints for the Cervical Cancer-incidence Rate. Upper panels:
o = ap; middle panels: fB; = f3,; lower panels: 7, = 7.

Another popular approach is to use estimable functions. A linear combination I7b
of the model parameters b is estimable if it has a linear unbiased estimate, i.e., aly for

some a such that E[a’Y] = [Tb for all b. Estimates of APC model cannot be uniquely

9
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determined, but non-linear characteristics of the age, period, and cohort trends, like the
curvature [(age2-agel)-(age3-age2)], are estimable and can be uniquely estimated. But
the linear trend varies with the estimator and has been claimed non-estimable. Many stud-
ies tried to search for the linear estimable functions, but failed, see [Clayton and Schif-
flers, 1987b, Rodgers, 1982, Holford, 1983, 1985, 1991, Kupper et al., 1985, OBrien and

Stockard, 2009, Robertson et al., 1999, Tarone and Chu, 1996].

[Lee and Lin, 1996] studied an autoregressive APC model, where cohort effect is mod-
eled as an AR(1) process. The estimates are found to be stable, but the assumption in the
model needs to be carefully considered and the stationary requirement of the cohort effect
may often be violated. [Heuer, 1997] used smoothing spline to model APC data, where all

age, period, and cohort effects are smoothed by smoothing spline.

[Fu, 2000] proposed the intrinsic estimator, to address the identifiability problem in
APC analysis. Because of the linear dependency, X’ X is 1-less than full rank. Denote
the unit null vector of X7 X by By. The special one among the multiple estimators that is
perpendicular to By is called the intrinsic estimator B. It has been proved that the intrinsic
estimator converges to true parameter values as the number of periods (columns) p tends

to infinity [Fu, 2016].

1.2 Main Results of the Dissertation

This dissertation addresses two major issues in APC analysis, one computational and one

theoretical.

10
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In Chapter 1, the background of APC analysis is provided and previous methods to

address the identifiability problem in APC analysis are reviewed.

In Chapter 2, a two-stage smoothing model is studied. Stage 1 takes fixed effects of age
and period, with smoothing cohort effect. Stage 2 estimates age, period, and cohort effects
using a constraint approach based on the consistent estimation of age or period effects
from the first stage. Although the smoothing cohort model has been shown previously to
be an important alternative approach with reasonably accurate estimation, it still remains
unknown theoretically if it resolves the identifiability problem. More specifically, if the
estimates of the intercept and the age effects converge to the true parameter values as p
tends to infinity. This motivates our theoretical study of the asymptotic behavior of the

estimator.

In Chapter 3, for efficient selection of the constraint, several methods have been stud-
ied through simulations, including constraint of large ratio, ratio of small variance, and

constraint of small variance.

In Chapter 4, large sample behavior of the parameter estimator is studied. Consistency
of smoothing cohort model, i.e., its estimation converges to the true parameter, is proved
as smoothing bandwidth 7 — 0 and ph — . The limit of the convergence equals to the

limit of the intrinsic estimator.

Chapter 5 provides applications to real world examples using cancer-incidence and
mortality rates to demonstrate the usefulness of the two-stage smoothing cohort model.
The results are further compared with the intrinsic estimator method, to show that reason-

able results can be expected from the two-stage smoothing cohort model.

11
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Lastly, the conclusion from this dissertation is given in Chapter 6.

12



CHAPTER 2

Two-stage Smoothing Cohort Model

2.1 Smoothing Method

In order to model the dependence of the response variable Y on predictor X, in the nonlin-

ear fashion, a more general model is given as follows
E(Y[X) = f(X), 2.1.1)

where X = (Xj,---,X,)7 is fixed p vector of explanatory variables, and f(-) is an unknown

function from R? to R!.

13



2.1. SMOOTHING METHOD

For the case p > 1, an additive model has been studied [Hastie and Tibshirani, 1990],

E(Y|X):fl(Xl)-i-----l-fp(Xp), (2.1.2)

where f;(-) are arbitrary nonlinear functions.

Smoothing is a non-parametric, data-driven method to estimate f(x) in (2.1.1). Let s(+)
be a smoother, which is a function with same domain as the values in X, then £(-) = s(-).
[Hastie and Tibshirani, 1990] and [Hérdle et al., 2012] provide details about smoother,
additive model, nonparametric, and semi-parametric models. A simple case for smoothing

which helps to understand this concept is running-mean smoother.
Running-mean Smoother

A running-mean smoother to estimate f(x;) is to average Y values at x;, as well as the
k points to the left and k points to the right of x;. Denote the indices of these points by

N3(x;), the running mean

s(x;) = ave jeys ) (Vi)- (2.1.3)

If it is not possible to take k points to the left or right of x;, we take as many data points as

possible. A formal definition of a symmetric nearest neighbor is

NS(x;) = {max(i—k,1),---,i—1,i,i+1,--- ,min(i+k,n)} (2.1.4)

Next kernel and smoothing spline are presented, which are the most popular smoothers.

14



2.1. SMOOTHING METHOD

Kernel Smoother

First define a kernel K(-) as a non-negative continuous, bounded, and symmetric real-

valued function which integrates to one, i.e., [ K(u)du = 1. And

Kn(x—x) = K(—), (2.1.5)
where the parameter £ is the window-width, also known as the bandwidth.
[Nadaraya, 1964, Watson, 1964] studied an estimator
1 Kn(x —x;)yi
syw (x) = == , (2.1.6)
ww (1) i1 Kn(x —x;)

which is called Nadaraya-Waston (NW) estimator. It has been proved under mild assump-

tion, when 7 — 0 and nh — oo,

svw (x) B f(x).
Details of convergence will be discussed in Chapter 4.
Smoothing Spline

Among all functions f(x) with continuous second order derivative, smoothing spline

minimizes the penalized residual sum of squares

i F)+2 / [f" (1))t (2.1.7)

where a < x; < --- < x, < b. A is a smoothing parameter that can be selected to tune the

smoothness of the spline function.

15
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Smoothing spline can be expressed as,

f=U+AK)"y, (2.1.8)

where K € R"" and K;; = [ f;" (x) f} (x)dx, see [Hastie and Tibshirani, 1990, Hirdle et al.,

2012].

Denote S; = (I+AK)~!, then f =S,y. The degrees of freedom of a smoothing spline

is defined by

1
1+ Ad;’

df =Tr(Sy) = Z (2.1.9)
i=1

where d; are the eigenvalues of the matrix K. There is a strictly monotone relationship

between A and the degrees of freedom.

[McCullagh and Nelder, 1989] pointed out that “as for a cubic smoothing spline, it
can be shown that as n — o and the smoothing parameter A — 0, under certain regularity
conditions, f(x) — f(x). This says as we get more and more data, the smoothing-spline

estimate will converge to the true regression function E(Y|X = x).”

Linear smoother is important in smoothing, since some common smoothers, like run-
ning means, locally weighted running lines, kernel smoothers, smoothing splines, bin

smoothers, and even the least-squares line, are linear smoothers.

Definition 2.1. A linear smoother is written as
y =Sy, (2.1.10)
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2.1. SMOOTHING METHOD

where y = (y1,---,v,)! and the n x n matrix S, called a smoother matrix, depends on some

smoothing parameter, A, and also on the data x, but not y.

It has been shown that both NW kernel smoother and smoothing spline are linear

smoother, e.g. kernel smoother

K (x1—x1) o K (x1 —xn)
Y Kn(x1—x;) Y Kn(x1—x;)
y= : : y
Ky (xn_xl) . K, (xn_xn)
i1 Kn(n—x;) i1 K (xn—xi)

In smoothing, there is a fundamental trade-off between the bias and variance of the
estimate, and this trade-off is governed by the smoothing parameter. Over smoothing may

increase the bias, while under smoothing may increase the variance.

Smoothing has special properties that we can apply to the APC model. First, smoothing
is data-driven and provides local approximation. It takes near neighbors into consideration
and thus yields stable estimation when data becomes sparse, though it introduces bias in
the estimation as well. The estimation is nonlinear and not additive with linear term, so it

can be employed to break up the dependence in Period-Age=Cohort.

17



2.2. TWO-STAGE SMOOTHING COHORT MODEL - A SEMIPARAMETRIC
APPROACH

2.2 Two-stage Smoothing Cohort Model — A Semipara-

metric Approach

2.2.1 The First Stage of Smoothing Cohort Model

An alternative semiparametric approach to APC analysis, which is called two-stage smooth-

ing cohort model, was proposed by [Fu, 2008]. Smoothing cohort stage 1 is given by,

Yij = U+ 0+ B+ Sn+ &y, (2.2.1)

where i=1,...a; j=1,...,pand k=1,...,a+ p— 1. u is the model intercept, o; is i'"

age effect, B; is j™" period effect, Sy = S(k; i, -+, Yas p—1) 18 k' smoothed cohort effect

with k= a—i+ j and &, “ N(0,52).

Parameter centralization is required in this model.
a p
Y ai=) Bi=0. (2.22)
i=1 j=1

Consider a generalized linear model with a response variable Y following an exponen-

tial family distribution, with the link function g(-),

g(EY:j) = 1+ o+ B+ Sn. (2.2.3)

18



2.2. TWO-STAGE SMOOTHING COHORT MODEL - A SEMIPARAMETRIC
APPROACH

Consider the cubic smoothing spline (2.1.8), the model may be written as

g(Ey)z(l AP (1+M<)—1c) , (2.2.4)

R ™ KR =

where A > 0 is a smoothing tuning parameter.
There are three main reasons for us to study this model.

1. The APC data with a age groups and p period groups has overlap between consecu-
tive cohorts, which requires cohort effects to be estimated with contributions from nearest
neighbors. For example, in Table 2.2.1, there are 4 years overlap between consecutive

cohorts.

Table 2.2.1: Cohort Expression of Cervical Cancer-incidence Rate Data

Period
Age 1960-64 1965-69 ... 1990-94
20-24 1936-1944 1941-1949 ... 1966-1974
25-29 1931-1939 1936-1944 --- 1961-1969
50-54 . ) .- 1936-1944
80-84 1876-1884 1881-1889 --- 1906-1914
85-89 1871-1879 1876-1884 ---  1901-1909

2. Smoothing breaks up linear dependence. Since the smoothing estimates take the
nearest neighbor effects into consideration in a non-linear kernel fashion, it leads to a

design matrix effectively non-singular, thus breaks up the linear dependence. It can be
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2.2. TWO-STAGE SMOOTHING COHORT MODEL - A SEMIPARAMETRIC
APPROACH

summarized below.

Proposition 2.2. [Fu, 2008] The design matrix X = (1,A,P,(I+AK)~'C) is of full rank.

3. It reduces instability in parameter estimation, especially for the extreme cohorts
(oldest and youngest cohorts), where only one or two observations are on each cohort,
leading to unstable cohort effect estimation. Smoothing takes neighborhood effects into

consideration and thus makes the estimation more robust for the extreme cohorts.

2.2.2 Algorithm

Backfitting is an iterative method for estimating unknown components of an additive
model, which was proposed by [Friedman and Stuetzle, 1981] for projection-pursuit re-
gression, and by [Wecker and Ansley, 1982] and [Buja et al., 1989] for fitting additive

spline models.

Algorithm 2.3. Backfitting Algorithm for Smoothing Cohort Model

1. Initialize smoothed cohort effects to 0, S Y=0fork=1,---,a+p—1.
2. Compute the residuals U;; = Y;; — Sy withk =a—i+ j.

3. Fit an age-period model,

U,-j:u+a,~+ﬁ_,-+8,-j,

A

and compute the residuals Z;; = Y;; — Uj;.
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2.2. TWO-STAGE SMOOTHING COHORT MODEL - A SEMIPARAMETRIC
APPROACH

4. Smoothing the residuals Z;; against the cohort diagonals with a predetermined pa-

rameter A for spline smoothing,

Sy =S*(ksZu1, -+, Zap).

5. Tterate until convergence of the estimators of all a,f, and Sy with a convergence

criterion:

B = =By £ S <o

i J k

where A > 0 is a predetermined convergence threshold.

2.2.3 The Second Stage of Smoothing Cohort Model

Smoothing cohort model (2.2.3) can break up linear dependence, and yield unique estima-
tion of the age, period, and cohort effects. In a special case of linear model (2.2.1), it also
yields consistent estimation of the age or period effect (See Proposition 4.4). However it
introduces bias in cohort estimation. Given that the smoothing cohort model yields consis-
tent estimates of the age or period effects, such estimates can be further used to specify a
constraint that leads to consistent estimation of the age, period, and cohort model, leading
to bias correction. Furthermore, it has been proved that a non-contrast constraint may also
yield consistent estimates, which can be further used for consistent estimation through a

constraint. Note that a linear constraint /7 b = 0 on the parameters b is contrast if the sum

Y.l =0.
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CHAPTER 3

Second Stage in Smoothing Cohort Model

3.1 Introduction

In this chapter, a bias correction method will be discussed, which uses consistent estima-

tion from the first stage of smoothing cohort model to set an age or period-effect constraint.

Usually a constraint with the following form is used in APC analysis:

OC,'-CO&jZO or ﬁi—CBjZO, 3.1.1)

where ¢ is assumed by subjective assumption or prior knowledge. But this constraint
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3.2. METHOD 1: CONSTRAINT WITH LARGE RATIO

often leads to biased estimation [Kupper et al., 1985, Fu, 2016]. In this dissertation, an

estimate from another model is used to set the value of c. Let ¢ = %,i, j=1,---,a; or
J
c= %,i, j=1,---,p. &; and ﬁj are the age- and period-effect estimates from stage 1
J

smoothing cohort model.

For convenience, denote by 7 the effect of age o or period . Rewrite equation (3.1.1)

as

Ti—c1j =0, (3.1.2)

where ¢ = &,
%

Although it has been proved that a consistent estimation can be obtained either through
the smoothing cohort model or the non-contrast constraint method with p being large,
different constraints may yield different convergence speed. This motivates the study of

the selection of the second stage constraint.

3.2 Method 1: Constraint with Large Ratio

By the result from [Fu, 2016] that non-contrast constraint yields consistent estimates, it
may be expected that the bigger the ratio, the better the convergence speed. Hence the

following constraint is studied

A

- %,
Ti—cti=0 st (i,)) = argn;aqxi_—,
4 Tq
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3.3. METHOD 2: CONSTRAINT WITH RATIO OF SMALL VARIANCE

where ¢ = &.
T

Taking the sign of the ratio into consideration, another constraint will also be consid-

ered:
.. T
Tl'—CTj:O S.I. (17]):argmax PR
Pd | g
where ¢ = .
J
W o "W ande— TE?; , are also

7 ’

In the simulation, a few other ratios, such as ¢ = T T

examined to compare the convergence. Here ;) are sorted stage 1 estimates, %(1) < 7(3) <

SRy <0<y S o S e < T
3.3 Method 2: Constraint with Ratio of Small Variance

Rewrite the linear constraint 7; — ¢7; = 0 in ratio form:

Here c is expected to be a constant which represents the ratio of the true parameters. In

the stage 2 constraint, T—’ 1s used to estimate this constant ¢. So the smaller of the variance
J

of %, the more likely the ratio will behave like a constant.
J

7
(i, j) = argminVar(-2).

T, —CTj = 0 s.t.
P Ty
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3.3. METHOD 2: CONSTRAINT WITH RATIO OF SMALL VARIANCE

In order to calculate and compare Var(52), the following results of ratio distribution

Sy

are needed.

Proposition 3.1. [Hayya et al., 1975] Suppose X ~ N(py, 62),Y ~ N(uy, Gyz) and that X
and Y are not necessarily statistically independent. For an untransformed ratio of random

variables, W =Y /X, the second-order Taylor expansion gives the approximations,

2,2 &2
Ol Gy OxOyHy
VW) == 52— 5
X X X

Assume T; ~ N(Ug,02) and Tj ~ UQTE Grzj), the variance of ¢,, = z—” could be ap-
t q

proximated by

A2

A0 AD A A A
A2 Oz, T n Oz, Y 07,07, 7p (3.3.1)
Cpg — Al %2 ppq %3 ) b
q q q

where P, = cov(%,,1,).

Algorithm 3.2. Constraint selection with the ratio of the smallest variance

1. For Vi,j=1,---,a with age-effect constraint or Vi, j = 1,---, p with period-effect

constraint, compute the ratio R;; = (%) and its variance Var(R).
J
2. Choose (p,q) = argmin; ;Var(R;;).

3. Set non-contrast constraint T, — c¢T, = 0, where ¢ = z—” not equal to 1.
q
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3.4. METHOD 3: CONSTRAINT OF SMALL VARIANCE

3.4 Method 3: Constraint of Small Variance

Based on a similar argument to the previous method, the constraint of small variance is

also considered.
T, — Ty =0s.t. (p,q) = argmin; ;Var(%; — ct;).

Suppose X ~ N (i, 62),Y ~ N(Ly, Gyz) and that X and Y are not necessarily statisti-

cally independent. Then

Var(X —cY) = Var(X) —2Cov(X,Y)c + Var(Y)c*.

A 2 A 2 . .
Assume %; ~ N(7;,07) and %; ~ N(7;, 07, ), the variance of 7, — c7, could be approxi-

mated by
6 =03 —2ppc+ 03, (3.4.1)

where p,, = cov(%,,%,).

Algorithm 3.3. Constraint selection with the smallest variance

1. For Vi,j =1,---,a with age-effect constraint or Vi, j = 1,---, p with period-effect

constraint, compute the ratio R;; = (%) and variance of constraint
]
A N A A A ) A
Var(oc,- — R,’j(Xj) = var(oci) — 2R,‘jCOV(OC,‘, (Xj) —l—RijVar(OCj).

2. Choose (p,q) = argmin; ;Var(¢; — R;;@;).

26



3.5. NUMERICAL SIMULATION 1

3. Set non-contrast constraint T, — cT, = 0, where ¢ = % not equal to 1.
q

3.5 Numerical Simulation 1

In this simulation, a table of 10 age groups and 5 period groups are assigned. The specified
parameters are given in Table 3.5.6. The simulation parameter has N-shaped age trend, and
in general an increasing-age trend is expected in cancer-mortality rates and a decreasing-
age trend is expected in crime rates. A W-shaped period trend and a concave down shape
for cohort trend are specified. The commend ‘smooth.spline’ is used in R with d f = 10,
and 1000 simulate runs are conducted. A signal-noise ratio var(E)/c? = 3 is used, where

E =1u+Aa+ PP+ Cyis the expected effects without noise.

Figure 3.5.1 shows plots of given parameters and stage 1 smoothing cohort model es-
timates, where the solid lines are the specified parameters (as in [Fu, 2008]), and dash line
is the simulated mean estimates with the stage 1 model. Age and period trend estimated
by smoothing cohort model are close to the specified parameters, but the cohort-effect

estimates deviate from the specified trend, indicating certain bias.
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3.5. NUMERICAL SIMULATION 1

Age trend Period trend
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= ]
‘E‘ (=]
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S
-
s
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Cohort group

— True =— = Smoothing Stage 1

Figure 3.5.1: Age, Period, and Cohort Effects with Smoothing Cohort Stage 1 Model in
Simulation I

3.5.1 Age-effect Constraints Compared with Period-effect Constraints

Based on asymptotics, constraints on smaller group-size effects will make the estimator
close to large sample behavior, as the larger group size would make it more likely to behave

as the asymptotics. In this simulation p < a, so period-effect constraint is expected to yield
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3.5. NUMERICAL SIMULATION 1

less biased estimation. First, the behavior of the estimation with period-effect constraints
compare with age-effect constraints is examined. Parameter estimates are displayed in
Table 3.5.1 and plotted in Figure 3.5.2. In Figure 3.5.2, the upper panels show the trends
estimated with constraint of the largest ratio; middle panels show the trends estimated with
constraints of the smallest variance ratio; and lower panels show the trends estimated with
constraints of the smallest variance. The solid red line represents trends estimated with
age-effect constraints and the dashed green line represents trends estimated with period-
effect constraints. In all three methods, the period-effect constraints yield smaller bias than
the age-effect constraints, except for the middle upper panel. The period-effect constraint
yields slightly larger bias than the age-effect constraint in the middle plot of the upper
panels, which indicates that although the age-effect constraint with the largest ratio (non-
contrast constraint) yields consistent estimation of period effects, and also the period-effect
constraint with the largest ratio (non-contrast constraint) yields consistent estimation, it
does not warrant anything about the effect estimates of the other factors. In fact, the
largest ratio would yield poor effect estimates of the other factor by the simulation results
in the upper panel, which further illustrates the weakness of the non-contrast constraint
methods in [Fu, 2016]. In the middle panels, the constraint with the smallest variance of
ratio shows much less biased estimation for all age, period, and cohort effect than the other

two constraints. The simulation estimates, MSE and bias are given in Table 3.5.1.

In conclusion, period-effect constraints yield smaller bias. This may be explained by
the fact that period has smaller group size than age effect (p < a) in this simulation. In
the following, simulations are conducted with different constraint selection rules on period

effects only.
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Figure 3.5.2: Comparison of Age- and Period-effect Constraints by Estimation with Three
Constraint-selection Methods: Upper panels: the Largest Ratio; Middle panels: the Small-
est Variance of Ratio; Lower panels: the Smallest Variance of Constraint
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3.5. NUMERICAL SIMULATION 1

3.5.2 Simulation on Constraint Selection with Different Ratio

In this simulation, several constraints (the largest ratio, the largest absolute ratio, the largest
difference, and two small difference constraints) on only period effects are considered and
compared. The motivation to examine the various ratio is to make sure the constraint is
non-contrast constraint so that the ratio is far from 1. Monte Carlo estimates of age, period,
and cohort effect, MSE, and bias are given in Table 3.5.2, and the mean effect of 1000 runs

are plotted in Figure 3.5.3.

In Figure 3.5.3, the constraint ¢ = % gives the best results in this simulation. It may
(1)
be explained as this largest difference ratio % may have large variance so the ratio may
(1)

not behave like a constant, consequently the constraint defined by the ratio may not be

valid.
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3.5. NUMERICAL SIMULATION 1
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Figure 3.5.3: Smoothing Cohort Stage 2 Constraints on Period Effect by Ratio of Estimates
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3.5. NUMERICAL SIMULATION 1

3.5.3 Simulation on Constraint Selection by the Variance of Ratio

Monte Carlo estimates of age, period, and cohort effects by the average of the estimates
of 1000 runs, the MSE, and the bias are given in Table 3.5.3, and the estimated trends
are plotted in Figure 3.5.4. From the plot, it is observed that the smaller the variance
of the ratio, the smaller the estimates deviate from the specified parameter values for all
age, period, and cohort effects. When the variance is small enough, there is not much

difference, indicating consistent estimation.
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3.5. NUMERICAL SIMULATION 1

Table 3.5.3: Comparison of Smoothing Cohort Stage 2 Constraints on Period Effect by
Ratio of Variance

The Smallest Variance * 5" Variance 10" Variance © The Largest Variance ¢
Estimate = MSE Bias Estimtate ~ MSE Bias Estimtate = MSE Bias Estimtate MSE Bias
1.0172  0.0003  0.0172 1.0130 0.0002 0.0130 1.0074 0.0001  0.0074 1.0103  0.0002 0.0103
-3.2380 0.0022 -0.0380 -3.1002  0.0145  0.0998 -2.4394  0.5865 0.7606 -1.4716  3.0010 1.7284
-0.1721  0.0013  0.0279 -0.1041 0.0121  0.0959 0.3875 0.3501  0.5875 1.1577 1.8518 1.3577
1.7829 0.0007 -0.0171 1.8053 0.0016  0.0053 2.1946 0.1583  0.3946 27282  0.8662  0.9282
2.3389 0.0019 0.0389 2.3278 0.0015  0.0278 2.5802 0.0797 0.2802 2.8921  0.3525 0.5921
1.7747 0.0010 -0.0253 1.7777 0.0009 -0.0223 1.8533 0.0033  0.0533 1.9620  0.0268  0.1620
0.3234  0.0009 0.0234 0.3101  0.0005 0.0101 0.2609 0.0020 -0.0391 0.1577  0.0208 -0.1423
-2.1798 0.0008  0.0202 -2.2263 0.0015 -0.0263 -2.4462 0.0618 -0.2462 -2.7668  0.3232 -0.5668
-3.1758 0.0010 0.0242 -3.1756  0.0022  0.0244 -3.5997 0.1624 -0.3997 -4.1295  0.8687 -0.9295
0.7597 0.0022 -0.0403 0.7003 0.0127 -0.0997 0.2030 0.3614 -0.5970 -0.5782  1.9080 -1.3782
1.7861 0.0009 -0.0139 1.6850 0.0177 -0.1150 1.0059 0.6388 -0.7941 0.0485 3.0814 -1.7515
1.1539  0.0023 -0.0461 1.1584 0.0026 -0.0416 1.1906 0.0015 -0.0094 -0.2397 147029 -1.4397
-0.8113  0.0003 -0.0113 -1.1286 0.1084 -0.3286 -1.2737 0.2251 -0.4737 -2.7604  7.7394  -1.9604
0.3442  0.0209 0.1442 0.2503 0.0027  0.0503 0.2102  0.0002 0.0102 0.2032  0.0001  0.0032
-0.7795 0.0006  0.0205 -0.7891 0.0006 0.0109 -0.7605  0.0024  0.0395 -0.1244  2.0379 0.6756
0.0927 0.0116 -0.1073 0.5090 0.0961  0.3090 0.6333 0.1894  0.4333 29212 16.7037 2.7212
-0.4149 0.0104 0.0897 -0.2982 0.0537  0.2064 0.6449 1.3384  1.1495 2.0399  6.5021 2.5445
-0.3086 0.0013  0.0053 -0.2091 0.0177  0.1048 0.6131 0.8713  0.9270 1.8142  4.5493  2.1281
-0.1190  0.0013  0.0197 -0.0379 0.0147  0.1008 0.6400 0.6144  0.7787 1.6314  3.1471 1.7701
-0.0001 0.0008 -0.0142 0.0762 0.0067  0.0621 0.6211 0.3737  0.6070 1.3771  1.8667 1.3630
0.0880 0.0030 -0.0502 0.1447 0.0015  0.0065 0.5060 0.1379  0.3678 1.0575  0.8499 09193
0.1879 0.0021 -0.0408 0.2335 0.0008  0.0048 0.4742 0.0615  0.2455 0.7889 03157  0.5602
0.2629  0.0008 -0.0192 0.2626  0.0008 -0.0195 0.3450  0.0045  0.0629 0.4549  0.0304 0.1728
0.2501 0.0026 -0.0462 0.2655 0.0014 -0.0308 0.1796 0.0141 -0.1167 0.0711  0.0513 -0.2252
0.2711 0.0004  0.0006 0.3059 0.0020 0.0354 0.0586 0.0462 -0.2119 -0.2629 02865 -0.5334
0.1635 0.0022 -0.0425 0.1594 0.0038 -0.0466 -0.2372  0.1990 -0.4432 -0.7676  0.9525 -0.9736
0.0923 0.0008 -0.0129 0.0426  0.0068 -0.0626 -0.5101 0.3836 -0.6153 -1.2425  1.8248 -1.3477
-0.0338  0.0009 -0.0060 -0.1004 0.0099 -0.0726 -0.7835 0.5791 -0.7557 -1.7487  2.9749 -1.7209
-0.2126  0.0019 -0.0248 -0.3673  0.0395 -0.1795 -1.0918 0.8293 -0.9040 -2.3182 45583 -2.1304
-0.2269 0.0221 0.1414 -0.4777 0.0223 -0.1094 -1.4599 1.2094 -1.0916 -2.8952  6.4146 -2.5269
Note: Variance of ratio could be defined as a set S;; = {Var(B:/B),Vi,j=1,-- ,p,andi # j} and S(n) be the n'" smallest element of

Sij.
a Sr]noothing cohort stage 2 model using constraint with ratio corresponding sy).
® Smoothing cohort stage 2 model using constraint with ratio corresponding 5(5)-
¢ Smoothing cohort stage 2 model using constraint with ratio corresponding s(jg).-
4 Smoothing cohort stage 2 model using constraint with ratio corresponding max S.
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Figure 3.5.4: Smoothing Cohort Stage 2 Constraints on Period Effect by Ratio of Variance.

Note: The small variance of the ratio in 1%, 3", 5" and 7" leads to small deviation from specified value.
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3.5. NUMERICAL SIMULATION 1

3.5.4 Simulation on Constraint Selection by the Variance of Constraint

Monte Carlo estimates of age, period, and cohort effects by the average of the estimates
of 1000 runs, the MSE, and the bias are given in Table 3.5.4, and the estimated trends are

plotted in Figure 3.5.5.

In Figure 3.5.5, it can be observed that the larger the variance of the constraint, the
larger the estimates deviate from the specified parameter values for period effect. Es-
timated age effects are all close to the specified effects. But behavior of cohort-effect
estimation is not predictable. The period effect also presents unpredictable pattern. So the
small variance constraint approach cannot provide good constraint selection. This may be
explained by the fact that even when the variance of the constraint is small, the linear com-
bination of the parameters 7; — ¢T; may behave like a constant, but not necessarily equal

to zero, indicating the ratio constraint may not be valid.
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Table 3.5.4: Comparison of Smoothing Cohort Stage 2 Constraints on Period Effect by
Variance of Constraints

The Smallest Variance ? 5" Variance P 10" Variance © 20" Variance 9

Estimate MSE Bias Estimtate MSE Bias Estimtate MSE Bias Estimtate MSE Bias
1.0096 0.0001  0.0096 1.0098 0.0001  0.0098 1.0085 0.0001 0.0085 1.0156 0.0003 0.0156
-2.4070 0.6442  0.7930 -2.0963 1.2308 1.1037 -2.6817 0.2818 0.5183 -3.2631 0.0048  -0.0631
0.4316 0.4082 0.6316 0.6708 0.7661 0.8708 0.2051 0.1722  0.4051 -0.1827 0.0009 0.0173
22047 0.1688 0.4047 2.3831 0.3442 0.5831 2.0550 0.0693 0.2550 1.7667 0.0016  -0.0333
2.5803 0.0805 0.2803 2.6839 0.1491 0.3839 2.4924 0.0388 0.1924 23124 0.0005 0.0124
1.8662 0.0049 0.0662 1.8969 0.0099 0.0969 1.8115 0.0006 0.0115 1.7688 0.0013  -0.0312
0.2549 0.0026 -0.0451 0.2313  0.0052 -0.0687 0.2913  0.0006 -0.0087 0.3199 0.0008 0.0199
-2.4588 0.0689 -0.2588 -2.5668 0.1363 -0.3668 -2.3680 0.0300 -0.1680 -2.1799 0.0008 0.0201
-3.6053 0.1693 -0.4053 -3.7819 0.3426 -0.5819 -3.4529 0.0683 -0.2529 -3.1426 0.0037 0.0574
0.1563 0.4236 -0.6437 -0.0961 0.8109 -0.8961 0.3714 0.1918 -0.4286 0.7835 0.0009 -0.0165
0.9770 0.6924 -0.8230 0.6750 1.2784 -1.1250 1.2759 0.2881 -0.5241 1.8171 0.0011 0.0171
0.8374 0.1339 -0.3626 0.8713 0.1102 -0.3287 1.1865 0.0028 -0.0135 13.1393 205.2986 11.9393
-0.9130 0.0135 -0.1130 -1.1457 0.1201 -0.3457 -1.5635 0.5841 -0.7635 -4.2621  18.8781  -3.4621
0.1892 0.0002 -0.0108 0.1994 0.0001 -0.0006 0.1930 0.0002 -0.0070 0.3387 0.0194 0.1387
-0.6899 0.0128 0.1101 -0.6084 0.0373 0.1916 -0.7756  0.0015  0.0244 -12.4118 196.8118 -11.6118
0.5763 0.1444 0.3763 0.6834 0.2358 0.4834 0.9596 0.5790 0.7596 3.1958  16.8236 2.9958
0.6852 1.4477 1.1898 1.1463 27515 1.6509 0.2477 0.5944 0.7523 -0.4563 0.0049 0.0483
0.6663 0.9831 0.9802 1.0594 1.9049 1.3733 0.3086 0.4072 0.6225 -0.3401 0.0022  -0.0262
0.6862 0.6957 0.8249 1.0089 1.3294 1.1476 0.4080 0.3124 0.5467 -0.1527 0.0012  -0.0140
0.6492 0.4131 0.6351 0.8894 0.7743  0.8753 0.4359 0.1862 0.4218 -0.0182 0.0017  -0.0323
0.5413 0.1676  0.4031 0.7185 0.3411 0.5803 0.3804 0.0630 0.2422 0.0694 0.0052  -0.0688
0.4740 0.0622 0.2453 0.5805 0.1256 0.3518 0.3868 0.0268 0.1581 0.1759 0.0032  -0.0528
0.3525 0.0056 0.0704 0.3790 0.0100 0.0969 0.3165 0.0017 0.0344 0.2728 0.0005  -0.0093
0.1841 0.0132 -0.1122 0.1360 0.0262 -0.1603 0.2111 0.0078 -0.0852 0.2484 0.0028  -0.0479
0.0562 0.0481 -0.2143 -0.0560 0.1084 -0.3265 0.1521 0.0160 -0.1184 0.2956 0.0011 0.0251
-0.2496 0.2127 -0.4556 -0.4224 03991 -0.6284 -0.0743 0.0830 -0.2803 0.1798 0.0011  -0.0262
-0.5098 0.3876 -0.6150 -0.7633  0.7621 -0.8685 -0.2991 0.1717 -0.4043 0.1222 0.0010 0.0170
-0.8019 0.6145 -0.7741 -1.1240 1.2141 -1.0962 -0.5282  0.2634 -0.5004 0.0044 0.0020 0.0322
-1.1756  0.9980 -0.9878 -1.5587 1.8984 -1.3709 -0.8148 0.4128 -0.6270 -0.1906 0.0015  -0.0028
-1.5582 1.4483 -1.1899 -1.9935 2.6691 -1.6252 -1.1308 0.6103 -0.7625 -0.2108 0.0271 0.1575

Note: Variance of ratio could be defined as a set T = {Var(ﬁ,» —cf)Vi,j=1,---,p,andi+ j} and #(n) be the n'" smallest element of 7.
# Smoothing cohort stage 2 model using constraint with ratio corresponding #;).
b Smoothing cohort stage 2 model using constraint with ratio corresponding 1(s5)-
¢ Smoothing cohort stage 2 model using constraint with ratio corresponding #(;¢).
4 Smoothing cohort stage 2 model using constraint with ratio corresponding 1(20)-
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Figure 3.5.5: Smoothing Cohort Stage 2 Constraints on Period Effect by Variance
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3.5.5 Optimal Constraint Selection Method

From the simulation on constraint selection with large ratio, it has been observed that

A

c= by yields the smallest bias. So we compare this with the constraint of the smallest

By
variance of the ratio, as well as the constraint of the smallest variance to reveal which
constraint selection method performs the best. Figure 3.5.6 shows estimated age, period,
and cohort effects with constraints from three different selection rules. The one with the
smallest variance of the ratio yields the least bias among all three. So the constraint chosen

with the ratio of the smallest variance is recommended in the second stage of the smoothing

cohort model.
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Figure 3.5.6: Smoothing Cohort Stage 2 Model Estimation by Period-effect Constraints
with Three Constraint Selection Methods

Descriptive statistics of the standard error of ratios are given in Table 3.5.5. Figure
3.5.7 shows the standard error of the ratios by the period-effect constraints from three

different selection rules. There are three outliers with huge values of 2119161, 265886
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Table 3.5.5: Standard Error of Ratios by Period-effect Constraints with Three Constraint
Selection Methods

Min | 25th Percentile | Median | Mean | 75th Percentile Max
Constraint with the Largest Ratio 0.50 3.60 12.60 | 2931.00 60.50 2119000
Constraint with the Largest Absolute Ratio 0.73 4.94 15.20 | 6661.01 75.88 5636209
Constraint with Ratio of the Smallest Variance | 0.11 0.21 0.25 0.26 0.30 0.69
Constraint with the Smallest Variance 0.73 291 5.29 218.40 11.03 120100

and 120917 in constraint with the largest ratio, three outliers with large values of 5636209,
265886 and 156744 in constraint with the largest absolute ratio, and three outliers with
values of 120068, 48356 and 20425 in constraint with the smallest variance. The majority
of the standard error of constraint with the largest ratio, the largest absolute ratio, and
the smallest variance are not small, and can be huge as well in extreme case. This could
explain the fact that the constraint chosen with the largest ratio, the largest absolute ratio,

and the smallest variance yield larger bias, since the ratios do not behave like constants.
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Figure 3.5.7: Standard Error of Ratios by Period-effect Constraints with Three Constraint-
selection Methods

3.5.6 Optimal Constraint Estimation Compared with Intrinsic Esti-

mator

Comparison of the smoothing cohort stage 1, the smoothing cohort stage 2 with the optimal

constraint-selection method, as well as the intrinsic estimator is given in Table 3.5.6 and
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Figure 3.5.8. For age and period effects, all smoothing stage 1, smoothing stage 2 and
intrinsic estimator yield consistent estimation. But for cohort effect, the smoothing stage
2 and the intrinsic estimator yield smaller bias than the smoothing stage 1 model. So
the two-stage smoothing cohort model is a competitive APC analysis tool, as well as the

intrinsic estimator.
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Age trend Period trend
T a
(En]
9
5 2 i3]
# 2
W - w oo |
' L]
L5
! w
o
l."? -
T T T T T
2 4 L] 8 10 1 2 3 4 5
Age group Period group
Cohort trend
(o]
o
o |
]
o
£
w (o]
o
=t
=

I I I I I I I
2 4 6 8 10 12 14

Cohort group

—_— Smoothing Stage 1 — = Smoothing Stage 2 = = - Intrinzic

Figure 3.5.8: Comparison of the Two-stage Smoothing Cohort Model with the Period-
effect Constraint of the Smallest Variance of the Ratio and the Intrinsic Estimator for
Simulation I
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3.6. NUMERICAL SIMULATION 2

Table 3.5.6: Comparison of the Two-stage Smoothing Cohort Model by the Smallest Vari-
ance of Period Ratio and the Intrinsic Estimator for Simulation |

Smoothing Stage 1 Smoothing Stage 2 Intrinsic

Specified Estimate @ MSE Bias Estimtate =~ MSE Bias Estiamte =~ MSE Bias

u 1.0000 1.1090 0.0119  0.1090 1.0172  0.0003  0.0172 1.0092 0.0001 0.0092

o -3.2000 -3.1562 0.0023 0.0438 -3.2380 0.0022 -0.0380 -3.1165 0.0074  0.0835
(05) -0.2000  -0.1485 0.0029 0.0515 -0.1721 0.0013  0.0279 -0.1224  0.0063  0.0776
o 1.8000 1.7928 0.0004 -0.0072 1.7829 0.0007 -0.0171 1.8128 0.0005 0.0128
0l 23000  2.3324 0.0014 0.0324 2.3389 0.0019 0.0389 2.3448 0.0023  0.0448
o 1.8000 1.7762 0.0009 -0.0238 1.7747 0.0010 -0.0253 1.7792 0.0008 -0.0208
(073 0.3000  0.3434 0.0022 0.0434 0.3234 0.0009 0.0234 0.3380 0.0018 0.0380
o -2.2000  -2.2088 0.0004 -0.0088 -2.1798 0.0008  0.0202 -2.2195 0.0007 -0.0195
o -3.2000  -3.1923 0.0004 0.0077 -3.1758 0.0010 0.0242 -3.2152  0.0005 -0.0152
(0 0.8000  0.7314 0.0050 -0.0686 0.7597 0.0022 -0.0403 0.7040 0.0095 -0.0960
ajo 1.8000 1.7297 0.0053 -0.0703 1.7861 0.0009 -0.0139 1.6947 0.0115 -0.1053
Bi 1.2000 1.1673 0.0012 -0.0327 1.1539 0.0023 -0.0461 1.1512  0.0025 -0.0488
B> -0.8000  -0.8190 0.0005 -0.0190 -0.8113 0.0003 -0.0113 -0.8265 0.0008 -0.0265
B3 0.2000  0.2124 0.0003 0.0124 0.3442  0.0209 0.1442 0.2110 0.0002 0.0110
Ba -0.8000 -0.7774 0.0006  0.0226 -0.7795 0.0006  0.0205 -0.7696 0.0010  0.0304
Bs 0.2000  0.2167 0.0004 0.0167 0.0927 0.0116 -0.1073 0.2339 0.0013  0.0339
" -0.5046  -0.4836 0.0018 0.0210 -0.4149 0.0104 0.0897 -0.3266 0.0330 0.1780

o) -0.3139  -0.3264 0.0005 -0.0125 -0.3086 0.0013  0.0053 -0.1964 0.0145 0.1175

&) -0.1387  -0.1607 0.0007 -0.0220 -0.1190 0.0013  0.0197 -0.0180 0.0151 0.1207

Ya 0.0141  -0.0405 0.0032 -0.0546 -0.0001 0.0008 -0.0142 0.0939 0.0068 0.0798

Y 0.1382  0.0356 0.0107 -0.1026 0.0880 0.0030 -0.0502 0.1457 0.0004 0.0075

Y% 0.2287  0.1211 0.0118 -0.1076 0.1879 0.0021 -0.0408 0.2398 0.0005 0.0111

¥ 0.2821 0.1623 0.0145 -0.1198 0.2629 0.0008 -0.0192 0.2697 0.0006 -0.0124

% 0.2963  0.1722 0.0156 -0.1241 0.2501 0.0026 -0.0462 0.2540 0.0022 -0.0423

Y 0.2705  0.1779 0.0088 -0.0926 0.2711 0.0004  0.0006 0.2855 0.0006  0.0150

Yo 0.206  0.0774 0.0167 -0.1286 0.1635 0.0022 -0.0425 0.1459 0.0039 -0.0601
Y 0.1052  -0.0396 0.0211 -0.1448 0.0923 0.0008 -0.0129 0.0320 0.0058 -0.0732
h2  -0.0278  -0.1756 0.0221 -0.1478 -0.0338  0.0009 -0.0060 -0.1060 0.0066 -0.0782
N3 -0.1878  -0.3558 0.0286 -0.1680 -0.2126  0.0019 -0.0248 -0.3049 0.0144 -0.1171
ha  -03683 -0.5546 0.0361 -0.1863 -0.2269 0.0221 0.1414 -0.5146  0.0233 -0.1463

3.6 Numerical Simulation 2

It is also of interest to examine the behavior of different methods when the cohort effect
is not smooth. In this simulation, 25 age groups and 10 period groups are specified, and

1000 simulation runs are conducted. By the given parameter values, the age effect has an
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3.6. NUMERICAL SIMULATION 2

increasing trend, the period effect has a U-shaped trend, and the cohort effect is periodic
with overall concave up trend. Figure 3.6.1 shows the trend estimated by smoothing cohort
stage 1, smoothing cohort stage 2, and the intrinsic estimator, compared with specified
values. Table 3.6.1 and Table 3.6.2 display the estimates of the age, period, and cohort
effects, their SE and Bias of smoothing cohort stage 1, smoothing cohort stage 2, and the

intrinsic estimator for this simulation study.

All three methods yield accurate estimation for age and period effects. Both the
smoothing cohort stage 1 and stage 2 models yield accurate estimation for the cohort
effect. However, the intrinsic estimator shows the periodic shape but overall biased cohort
effect. This may be explained by the fact that large sample behavior warrants convergence
of the period effect in this study, because a > p, but cannot warrant the convergence of the

age and cohort effects as profile estimates, see Chapter 4.
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Figure 3.6.1: Comparison of the Two-stage Smoothing Cohort Model with the Smallest
Variance of Ratio Period-effect Constraint and the Intrinsic Estimator for Simulation II
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3.6. NUMERICAL SIMULATION 2

Table 3.6.1: Age and Period Effects Comparison of the Two-stage Smoothing Cohort
Model by the Smallest Variance of Period Ratio and the Intrinsic Estimator for Simulation
I

Smoothing Cohort Stage 1 Smoothing Cohort Stage 2 Intrinsic
Specified Estimate MSE Bias Estimtate MSE Bias Estimtate MSE Bias

u 1.0000 0.9344 0.0043 -0.0656 1.0021  0.0000 0.0021 1.0021  0.0000 0.0021
(o7} -3.1131  -3.0534 0.0037 0.0597 -3.0635 0.0030 0.0496 -2.3381  0.6008 0.7750
(%) -2.8000 -2.7399 0.0037 0.0601 -2.7446  0.0035 0.0554 -2.0797 0.5190 0.7203
o -2.4869 -2.4173  0.0050 0.0696 -2.4384  0.0027 0.0485 -1.8339  0.4265 0.6530
oy -2.1752 -2.1277 0.0024 0.0474 -2.1243  0.0029 0.0509 -1.5803 0.3541 0.5949
as -1.8662 -1.8159 0.0026 0.0503 -1.8146  0.0030 0.0516 -1.3310  0.2866 0.5353
s -1.5614 -1.5237 0.0015 0.0377 -1.5434  0.0006 0.0180 -1.1202  0.1947 0.4411
o -1.2620  -1.2470  0.0003 0.0150 -1.2442  0.0005 0.0178 -0.8815 0.1449 0.3805
o -0.9694  -0.9573 0.0003 0.0120 -0.9597  0.0003 0.0096 -0.6575 0.0974 0.3119
o -0.6848 -0.6575 0.0009 0.0272 -0.6752  0.0003  0.0096 -0.4334  0.0633 0.2514
app  -04095 -0.3975 0.0003 0.0121 -0.3899  0.0005 0.0196 -0.2086  0.0405 0.2010
o -0.1448 -0.1351 0.0002 0.0098 -0.1352  0.0002 0.0097 -0.0143  0.0172 0.1306

(03D 0.1082  0.1220  0.0003  0.0138 0.1080  0.0001 -0.0002 0.1684  0.0038 0.0602
o3 0.3484 0.3006 0.0024 -0.0478 0.3114  0.0015 -0.0370 03114  0.0015 -0.0370
4 0.5748 0.5667 0.0002 -0.0081 0.5668  0.0002 -0.0080 0.5063  0.0048 -0.0685
s 0.7863 0.7941 0.0002 0.0078 0.7811  0.0002 -0.0052 0.6602  0.0160 -0.1261
16 0.9820 0.9711 0.0002 -0.0109 0.9863  0.0002 0.0043 0.8050  0.0315 -0.1770
o7 1.1611 1.1468 0.0003 -0.0143 1.1492  0.0003 -0.0118 0.9074  0.0644 -0.2536
g 1.3227 1.3012 0.0006 -0.0214 1.2929  0.0011 -0.0298 0.9906 0.1104 -0.3320
a9 1.4661 1.4335 0.0012 -0.0327 1.4500  0.0005 -0.0162 1.0873  0.1436 -0.3789
0o 1.5908 1.5656  0.0007 -0.0252 1.5703  0.0007 -0.0205 1.1471  0.1969 -0.4437
o 1.6961 1.6746  0.0006 -0.0215 1.6696  0.0010 -0.0266 1.1860  0.2604 -0.5102
[075) 1.7817 1.7181 0.0041 -0.0636 1.7393  0.0021 -0.0424 1.1952  0.3441 -0.5865
[07%) 1.8470  1.8003  0.0023 -0.0467 1.8066  0.0020 -0.0404 1.2021  0.4161 -0.6449
Oha 1.8919 1.8443 0.0024 -0.0476 1.8450  0.0027 -0.0469 1.1801  0.5069 -0.7119
s 19162 1.8332 0.0070 -0.0830 1.8566  0.0041 -0.0596 1.1312  0.6163 -0.7850

B 0.8824 0.8488 0.0012 -0.0336 0.8573  0.0007 -0.0251 0.5849  0.0885 -0.2974
B 0.0588 0.0470 0.0002 -0.0119 0.0503  0.0001 -0.0086 -0.1671  0.0511 -0.2260
B3 -0.5294  -0.5559 0.0007 -0.0265 -0.5564  0.0008 -0.0269 -0.7054  0.0310 -0.1760
Ba -0.8824 -0.9022 0.0004 -0.0198 -0.8964  0.0002 -0.0140 -0.9871 0.0110 -0.1047
Bs -1.0000 -1.0112 0.0002 -0.0112 -1.0167 0.0003 -0.0167 -1.0469  0.0022 -0.0469

Bs -0.8824 -0.8662 0.0003 0.0161 -0.8660  0.0003 0.0164 -0.8346  0.0023  0.0477
B -0.5294 -0.5181 0.0002 0.0113 -0.5180  0.0002 0.0114 -0.4237 0.0112 0.1057
Bs 0.0588 0.0753  0.0003 0.0165 0.0687  0.0001 0.0099 0.2189  0.0257 0.1600
Bo 0.8824 09154 0.0011 0.0330 0.9126  0.0010 0.0302 1.1242  0.0585 0.2418
Bio 1.9412  1.9673  0.0007 0.0261 1.9645  0.0006 0.0234 22369  0.0875 0.2957
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Table 3.6.2: Cohort Effect Comparison of the Two-stage Smoothing Cohort Model by the
Smallest Variance of Period Ratio and the Intrinsic Estimator for Simulation II

Smoothing Cohort Stage 1 Smoothing Cohort Stage 2 Intrinsic
Specified Estimate MSE Bias Estimtate MSE Bias Estimtate MSE Bias
" 0.0584 0.3382 0.0786 0.2798 0.1463  0.0097 0.0879 1.1437  1.1791 1.0854
r 0.2300 0.2979 0.0048 0.0679 0.2977  0.0058 0.0677 1.2347  1.0100 1.0047
B 0.1482 0.2543 0.0114 0.1062 0.2200  0.0060 0.0718 1.0965 0.8996 0.9483
Y -0.0627 0.2109 0.0749 0.2736 -0.0176  0.0028 0.0451 0.7985 0.7419 0.8611

Y 0.1237  0.1722  0.0024  0.0485 0.2059  0.0074 0.0822 09616  0.7022 0.8379
Y 0.0301 0.1292  0.0099 0.0991 0.0710  0.0022 0.0409 0.7662  0.5420 0.7361

¥ -0.1582  0.0880  0.0606 0.2462 -0.1108  0.0027 0.0474 0.5239  0.4655 0.6821
%R 0.0414 0.0561 0.0002 0.0147 0.0762  0.0016 0.0348 0.6505  0.3711 0.6091
Y -0.0633  0.0205 0.0071 0.0838 -0.0233  0.0019 0.0400 0.4906  0.3069 0.5539
Yo -0.2277 -0.0108 0.0471 0.2170 -0.2201  0.0003 0.0076 0.2333  0.2126 0.4610
Y1 -0.0164 -0.0250 0.0001 -0.0085 0.0101  0.0009 0.0265 0.4030 0.1761 0.4195
Y2 -0.1314 -0.0433 0.0078 0.0881 -0.0996  0.0012 0.0318 0.2329  0.1328 0.3643
ns  -0.2705 -0.0610 0.0439 0.2095 -0.2439  0.0009 0.0265 0.0281  0.0893 0.2986
Yia  -0.0490 -0.0679 0.0004 -0.0189 -0.0342  0.0004 0.0147 0.1773  0.0514 0.2263
nis  -0.1731 -0.0819 0.0084 0.0913 -0.1451  0.0009 0.0280 0.0060  0.0322 0.1791
Yie  -0.2855 -0.0947 0.0364 0.1907 -0.2717  0.0003 0.0138 -0.1810  0.0110 0.1045
n7  -0.0552  -0.0969 0.0018 -0.0417 -0.0473  0.0002 0.0079 -0.0171  0.0016 0.0382
ns  -0.1871 -0.1048 0.0068 0.0823 -0.1924  0.0002 -0.0053 -0.2226  0.0014 -0.0355
Yo -0.2713  -0.1065 0.0272 0.1648 -0.2781  0.0002 -0.0069 -0.3688  0.0097 -0.0975
Yo  -0.0333 -0.0964 0.0040 -0.0631 -0.0239  0.0002  0.0095 -0.1750  0.0202 -0.1417
1 -0.1710 -0.0948 0.0058 0.0762 -0.1898  0.0005 -0.0188 -0.4014  0.0532 -0.2303
Y2 -0.2253  -0.0873 0.0191 0.1381 -0.2508  0.0008 -0.0254 -0.5228  0.0886 -0.2975
Y3 0.0198 -0.0665 0.0075 -0.0863 -0.0016  0.0007 -0.0214 -0.3341  0.1254 -0.3539
Y4  -0.1211 -0.0507 0.0050 0.0704 -0.1563  0.0015 -0.0352 -0.5492  0.1835 -0.4282
Ys  -0.1430 -0.0267 0.0135 0.1163 -0.1670  0.0009 -0.0240 -0.6204  0.2280 -0.4774
Y6 0.1099 0.0078 0.0105 -0.1022 0.0836  0.0010 -0.0263 -0.4302  0.2919 -0.5401
7 -0.0297 0.0353 0.0042 0.0649 -0.0683  0.0019 -0.0386 -0.6426  0.3758 -0.6129
s  -0.0148 0.0699 0.0072 0.0847 -0.0696  0.0034 -0.0547 -0.7043  0.4755 -0.6895

Yo 0.2496 0.1197 0.0169 -0.1299 0.1731  0.0064 -0.0766 -0.5221  0.5958 -0.7718
Y0 0.1202 0.1767 0.0032 0.0566 0.0392  0.0072 -0.0810 -0.7165 0.7001 -0.8366
%1 0.1826  0.2473  0.0043 0.0648 0.1314  0.0033 -0.0512 -0.6847  0.7524 -0.8673
Y2 0.4723 03284 0.0208 -0.1439 0.4105 0.0048 -0.0618 -0.4661 0.8809 -0.9384
3 0.3779 0.4089 0.0012 0.0311 0.3102  0.0059 -0.0676 -0.6268  1.0099 -1.0046
V34 0.5257 0.4889 0.0017 -0.0368 0.4364  0.0100 -0.0893 -0.5610 1.1822 -1.0867
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3.7 Summary

Based on the above simulation studies and comparison of different methods, we conclude

that

1. Smoothing cohort stage 1 model yields consistent estimation for age and period

effects, but not cohort effects.

2. Bias in cohort-effect estimation can be corrected in the second stage with a constraint
specified using consistent age- or period-effect estimates based on the first stage

estimation.

3. Since the consistency is for age (row) effect as p — oo, often, a larger p > a is
preferred. In general, the constraint on the effect of smaller group size yields smaller
bias. If a < p, age-effect constraints are recommended; otherwise, period-effect

constraints are recommended.

4. The constraint chosen with the ratio of the smallest variance is optimal in the second

stage of the smoothing cohort model.
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CHAPTER 4

Asymptotic Analysis

In this chapter, we study the asymptotics of the estimator of the smoothing cohort model.
Let b = (87 &T), where 87 = (u, ..., . 1) represents the intercept and row effects,
ET = (Bi,-+,Bp—1,7, ", Yarp—2) Tepresents the column and diagonal effects. In the
APC model, due to human life limitation, a is limited to be finite. To study large sample
behavior, we set p — oo. So 87 is the parameter of primary interest and &7 a nuisance

parameter, as its number of parameters diverges to infinity.
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4.1 Introduction

Assume the random variable ¥;; withi=1,...,a and j = 1,..., p follows a distribution in
the exponential family [McCullagh and Nelder, 1989], then the log-likelihood function

can be written as

y&(b) — w(E(b))
K(9)

I(b;y) = +c(y, 9), (4.1.1)

where  is a parameter, k(@) is a dispersion parameter, and link function g(EY) = 1 for

the model n = X'b.

The log-likelihood function for the smoothing model can be written as

Is(u,0,B,7;9) =Y

i=1j

I(yij; b, @, B,SY). 4.1.2)

P
=1

In order to study the consistency of the estimator for 6 as p — oo, the profiled log-

likelihood function for 6 is considered since there will be infinitely many f; and .

Define a profile log-likelihood function for smoothing model,

Pis(6) = I5(6.&s(6)), 4.1.3)

where &s(0) = argmaxg I5(8,&:y). Denote the maximum profile likelihood estimator (MaPLE)

of the profile log-likelihood function Pls(0) as 6F = (fis,al).
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4.1. INTRODUCTION

The log-likelihood function for the intrinsic estimator can be written as

ll(ﬂaa7ﬁ77;)’)zz l(yijau7a7ﬁay)_6(bTBO)2 for 6>0 (414)
i=1j=1

Similarly, define the profile log-likelihood functions for /(6,&) and [;(6,&):

PI(0)=1(0,£(0)), (4.1.5)

and

Pl](e):ll(eaél(e))v (4.1.6)

where &(0) = argmax(6,8;y), &(6) = argmaxg ;(0,&;y). Denote by 0, = (fu, &) the
MaPLE of P/;(0).

Note that the basic idea for the intrinsic estimator is to find the estimator B s.t. B L By.
This can be achieved by adding a penalty term to the profile log-likelihood function of

P1;(6) with 8 > 0

PL(8) = 1(6,5(8))
= PI(0) - 5(676+ETE(0))>

= 1(6,6(6)) —6(606+&3&(6)), (4.1.7)

where 6 is the intercept and age-effect vector and & is the period- and cohort-effect vector

in B().

Properties of the Intrinsic Estimator
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4.1. INTRODUCTION

We need the following regularity conditions for the asymptotics studies.

The Regularity Conditions:

1. The parameter space D = Dy X Dy X +++ X Dpg 123 € R24+2P=3 for model parame-
ters b has its subspaces D; uniformly bounded with respect to p for j=1,---,2a+

2p —3.

2. The log-likelihood /(b;y) of the exponential family is continuously differentiable
with continuous derivatives % and a uniform bound ’f—bl‘ <M <o forbc
1vvy J

D,i,j=1,---,2a+2p—3.

Lemma 4.1. [Fu, 2016] Under the regularity conditions 1 & 2, there exists a unique set
of true parameters of intercept, row and column effects. Denote these true parameters as

w, o and B*, which are the limits of the intrinsic estimator.
Proposition 4.2. [Fu, 2016] Under the regularity conditions 1 & 2, consider a linear

constraint on row effects 1T ot = 0:

1. If1T0> =0, that is, the constraint is satisfied by true row effect parameters, the row
parameter estimates 0, is \/p-consistent, i.e., \/p(0, — ™) — N(0,X,) as p — oo

for some positive definite (a — 1) x (a — 1) variance-covariance matrix X, .

2. If1T 0> # 0, that is, the constraint is not satisfied by true parameters, the constraint

yields asymptotic bias.

Proposition 4.3. [Fu, 2016] Under the regularity conditions 1 & 2, consider a linear

constraint on column or diagonal effects ITE =0 :
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4.1. INTRODUCTION

1. If the constraint is satisfied by true parameter values, row effect estimation &, is

\/P—consistent.

2. If the constraint is not satisfied by true parameters, a contrast constraint yields

asymptotic bias, which does not depend on p.

3. If the constraint is not satisfied by true parameters, a non-contrast constraint yields

consistent estimates with the asymptotic bias of the order of O( p_l) —0as p—>oo.

Propositions 4.2 and 4.3 are the ideas we followed when doing stage 2 smoothing

cohort constraint selection.

Properties of Smoothing Cohort Model

Proposition 4.4. [Fu, 2008] Assume the following bounded cohort condition:

ISyl < C(p), for k=1,2,... (4.1.8)

1. If C(p) = o(p), the smoothing cohort model yields consistent estimation for model

intercept |1 and age effects o, -, 0, as the number of period groups p goes to

infinity.

2. If C(p) = o(\/P), the \/p consistency also holds for the above estimation.

Proposition 4.4 shows that smoothing cohort stage 1 model yields consistent age- or
period-effect estimation, which guarantees constraint in smoothing cohort stage 2 model
will not be ‘far’ away from true parameters, so the stage 2 constraint estimator is consis-

tent, hence corrects the bias.
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Lemma 4.5. [Nadaraya, 1964 ]Under assumptions

1. [|K(u)|du < oo
2. uK(u) =0, as |u| — oo

3. EY? < oo

YL Kn(x—xi)yi p
=Y Ku(r—x,) = f(x) (4.1.9)

SNW ()C)

as h — 0 and nh — oo, where f(+) is the function satisfying Y = f(X).

4.2 Asymptotics of Smoothing Cohort Model Estimation

Lemma 4.6. The MaPLE 557 » Of the profile log-likelihood Pls(0;y),) satisfies

Pls®s.) 1, 200) a5 pseo 42.1)

P a

Proof. We abuse the notation a little without confusion and write the model deviance
Dev(b;y) = 2Is(y;y) —2ls(b;y) as Dev(b;y) = —2Ig(b;y). The deviance is asymptotically
distributed as k(¢)x3 with d degrees of freedom and dispersion parameter k(¢) [Murphy
and Van der Vaart, 2000]. With the submodel having a parameters under the profile log-

likelihood, d = (ap — a). Hence, the deviance of the submodel Dev(6;y) satisfies

Dev(0;y) _ Dev(0,E5(6);y) N K(q))xgpfa
p p p

as p —»oo.
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4.2. ASYMPTOTICS OF SMOOTHING COHORT MODEL ESTIMATION

Let Z, ~ xgp_a. By Chebyshev’s inequality on the random variable Z,x(¢)/p with any

fixed € > 0,
K(9)Zy,

k(9)Z,
b :

>eg) <
> » )_var[

1/€*.

Since E[K((Z)Z”} =x(¢)(ap—a)/p — ax(¢9) and var[K(q;)Z"} =2(ap—a)x?*(9)/p?,

k(9)Z,

P(p

—m<<¢>\ se) < 2Aap-a)kd(9)/(pe)

< 2ax*(¢)/(pe?) =0 as p—oo. (42.2)

It is followed by the convergence in probability k(¢)Z,/p —, ak(¢) as p — . Hence

Pig(8 a
Hsss) ,, —4xc(9). O

Lemma 4.7. For any bandwidth h > 0,

dPls(6) 915(6,5)

and the limit of the partial derivative of the profile log-likelihood exists

1 92Plg(6;
_EW&Q as p—»oo, (4.2.4)

where C\ is a positive definite a X a Fisher information matrix of the row effect model, and

is also independent of h > .

Proof. By the chain rule %Z’é) |e—&4(9) = 0 for V6 and %k:és(@) = 0 for smooth
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likelihood.
JIPIs(6) _ 9ls(6,&5(6))
20 20
8ZS(O,§)| 815(975)855(9>‘
00  6=5s(0) dE 00 '6=5s(0)
alS(97§>|
00 6=5s(0)
For large p,
92PIg(6) 9%15(6,&:y)
v T T pCy,VO (4.2.5)

where Cj is the Fisher information matrix for the row effect model /5(0;y) with parameters
0, and is positive-definite. Since C; is derived from only the second order partial derivative
of the log-likelihood function with respect to 0, it does not involve the cohort effects and

thus is also independent of the smoothing bandwidth /2 > 0. ]

Theorem 4.8. Under the regularity conditions 1 & 2, the limit of the MaPLE 957;,7 p exXists

for any smoothing bandwidth h > 0 as p — o=, i.e.,
és,h,p LN 05, as p—ro and Vh>0,

for some GS,h'

Proof. For any bandwidth 4 > 0, consider a Cauchy sequence { ég,pﬂ} of the MaPLE
9571, for arbitrarily large number p and any finite number n. Take Taylor expansion of

the profile log-likelihood Pls ,(0;y) with y in a table of a rows and an increasing number
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4.2. ASYMPTOTICS OF SMOOTHING COHORT MODEL ESTIMATION

(p +n) columns, where the log-likelihood Pls ,(6;y) assumes the values for y in the first

p columns.
. ~ dPls »(6;y) 5 5
Pls p(0s p+niy) = PlS,p(QS,p;Y)+5—6|6:é&p(e&p+n_957]7)
1 - 70%Pls ,(0:y)

+ 0(’|éS,p+n - éS,pHZ)

. [ = 7 9°Plsp(6:)) 5 5
= PlS.,p(QS,p;y) + E(GS,IH—n - GS,p)Té—gz’e:éS,,,(eS,p-l-n - 95.,17)

+ 0(||8s,psn — Bs.p|*)- (4.2.6)

The likelihood functions satisfy lg,p+n(é57p+n, és(éern);y) < lsyp(éSJ,Jrn, 55(957p+n);y) <

1571,(@5’[,, és(ég7p);y), following the discussion in [Fu, 2016]. For large p, VA > 0,n > 0,

1 ~ -
. |PLs pin(Bpn3y) = Pls p(0s pnsy)|
1 ~ ~ - -
< 1_7 ‘ZS,p—I—n(GS,p—&-na ‘SS(Qern);)’) - lS,p(eS,p+n7 ‘SS(GS,p—i-n);y)’
1 ~ ~ - -
< 1_7 ‘ZS,p+n(GS,p+naéS(eern);)’) - lS7p(95,p7§S(QS,p);y)|
p+n 1 ~ 1 ~
= p p+nPlS,p+n(eS,p+n;y) - ;PZS,p(GS,p;y)
L0 as p—> o 4.2.7)

by Lemma 4.6. Then by Equation (4.2.6) and Lemma 4.7,
~ ~ T ~ ~ 2 ~ ~
(95,p+n - 95,17) CI(GS,IH—n - 95,17) < 1_7 ’PZS,p+n(95,p+n;)’) _Pl&p(OS,p;)’)‘
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4.2. ASYMPTOTICS OF SMOOTHING COHORT MODEL ESTIMATION

p+n 1 ~ 1 ~
—PI 0 ;y) — —Pls , (05 ,;

2 ~ -
< 1_9 ‘PZS,p(e&ern) _PZS,p+n(QS,p+n)| +2

L0 as p — oo,

which implies the convergence in probability of the Cauchy sequence 957 pin @S p — 0.

(o)

Hence there exists an a-dimensional vector 6, such that ég,;h p 2, 057, as p — 0. [

Theorem 4.9. Under the regularity conditions:

1. The parameter space D = Dy X Dy X -+ X Dyq12,-3 € R2“+2p_3f0r model parame-
ters b has its subspaces D j uniformly bounded with respect to p for j=1,---,2a+

2p—37

2. The log-likelihood 1(b;y) of the exponential family is continuously differentiable

. . . . 921 . ol
with continuous derivatives 95,95 and a uniform bound ‘a_bj‘ <M < oo forbc

]D)aiaj: 17 72a+2p_Sa
3. [IK(u)|du < oo,

4. uK(u) — 0, as |u| — oo,

as h — 0 and ph — o, there exists an a-dimensional nonrandom vector 6g° s.t.
5 P poo
es’h’ p GS R

and

Pls(Bs,5) ©» PI(65).

Meanwhile, 6g° satisfies P1(6g") = max Pl(9).

62



4.2. ASYMPTOTICS OF SMOOTHING COHORT MODEL ESTIMATION

Proof. As h — 0 and ph — o, Lemma 4.5 provides syw () — S(7).

So there exists a

function of 6 that is £5°(0) s.t. &g ,(0) — £°(0), as h — 0 and ph — oo, Define 65 =

argmax[s(0,5°(0)).

By the property of smoothing method,

Is(6,5)=1(0,8&) —1(6,8), as h—0,

where SET = (BT, Sy7).

Thus
Pls(0) — PI(6), as h—0,
and
Pls(65) = max Plg(0) — maxPI(0), as h— 0.
Therefore

PI(65°) = max PI(0).

(4.2.8)

O

Remark 4.10. This proofis based on the convergence of NW kernel smoother, but it can be

applied to the smoothing spline cohort model, since [Silverman, 1984] illustrated spline

smoothing and kernel method are essentially asymptotically equivalent.

Theorem 4.11. Under the regularity conditions:

1. The parameter space D = D1 X Dy X -+ X Dyq12,-3 € R24+2P=3 for model parame-

ters b has its subspaces D j uniformly bounded with respect to p for j=1,---,2a+
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4.2. ASYMPTOTICS OF SMOOTHING COHORT MODEL ESTIMATION

2p—37

2. The log-likelihood 1(b;y) of the exponential family is continuously differentiable
with continuous derivatives % and a uniform bound ‘%‘ <M < o forb e
AL J

D7i7j: 17 720+2P_3;
3 1K ()| du < o,

4. uK(u) — 0, as |u| — oo,

as ph — o and h — 0,

és—é[ —p 0,

ie, 05 = 0%, where 60 is the limit of MaPLE Os, and 0% is the unique true parameters,

the limit of the intrinsic estimator.

Proof. The intrinsic estimator B maximizes the following penalized likelihood [Fu, 2016],

I(yij, i, 0, B,y) — 8(bT By)* for &> 0. (4.2.9)
1

ll(ﬂyayﬁﬁ’;)’) - Z

P
i=1 j=

~

Since B is perpendicular to the By, the penalty term achieves 0 at B and thus 6 can be

arbitrarily small. We requires 0 = o(#).

For the intrinsic estimator, we have

_9*Pu(6)  9*(6,8)

T Q52 ~ pC1+266)® 6y,v0, (4.2.10)
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4.2. ASYMPTOTICS OF SMOOTHING COHORT MODEL ESTIMATION

where C| is the Fisher information matrix for the row effect model /(6,&;y) with param-

eters 0, and is positive-definite and independent of J.

Note 0; satisfies

(61,&(6r)) L By.

So

Pl](é[) = Pl(é]) = maxPl(@),

and

Pl;(Bs) = PI(Bs) + 8(6 b5+ &5 £(6s))*.

Since (Bjb)* = O(p). Let § = o(5),p > 1, then §(B{b)* = o(1).

Pl](ég) = Pl(és) —|—0(1),

Pl;(6;) — Pl;(0s) = P1(6;) — PI(65) +o(1). (4.2.11)

Let h — 0 and ph — oo, by Theorem 4.9,

P1;(67)—Pl;(65°) = PI(6”) — Pl(65°) = max PI(6) —max Pl(6) = 0.
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4.3. SIMULATION ANALYSIS FOR CONSISTENCY OF SMOOTHING COHORT
MODEL

Take Taylor expansion,

Pli(65°) = Pl(67)+—o(65—67)

that is,

as h — 0 and ph — oo. O

4.3 Simulation Analysis for Consistency of Smoothing Co-

hort Model

Simulations are conducted in this section to show the consistency of the smoothing cohort
model with intrinsic estimation. In the simulation, difference between és and 91 are de-
fined as L,-norm. The norm tends to be increasing over the value of a. So we focus on the

mean difference, % } ]@S — é1| ‘2 .
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MODEL

In this example, a data set in a table of 20 x 150 dimension is generated, with specified
parameter values in Figure 4.3.1. Age effect follows an increasing trend, period effect
follows a decreasing trend, and cohort effect has an increasing-then-decreasing shape.

One hundred runs are conducted in this simulation study.

Age trend Period trend
o _
A o
2 -
(e 0]
© -
o0}
© S
g ° g
E < | E ~
o o
N
o | © |
o
Qo |
© T T T T T T T T
5 10 15 20 0 50 100 150
Age group Period group
Cohort trend
2
o
S -
[
Ln
-
g 7
T _
Ln
(QV]
S -
|
Lo
™
O -
| T T T T
0 50 100 150
Cohort group

Figure 4.3.1: The Row, Column, and Diagonal Effects Specified
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Mean difference by periods (a=5) Mean difference by periods (a=10)
N
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Figure 4.3.2: Mean Difference by Periods for Varying Degrees of Freedom with Fixed
Age Group Size

In Figure 4.3.2, smoothing splines with different degrees of freedom (df) are simulated
to reveal the influence of df onto the consistency of 05 and 6; with different values of fixed

a. Fora=15,a=10,a = 15, and a = 20, different degrees of freedom do not yield large
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MODEL

difference (about 1072).

Mean difference by periods (df=10) Mean difference by periods (df=5)

N 1 a=56 2 a=10 3 a=15 4 a=20 1 a=5 2 a=10 3 a=15 4 a=20

Mean difference

0.000 0.005 0.010 0.015 0.020 0.025
Mean difference

0.000 0.005 0.010 0.015 0.020 0.025

Mean difference by periods (df=1) Mean difference by periods (df=0.1)

0.030
0.030

1 a=5 2 a=10 3 a=15 4 a=20 1 a=5 2 a=10 3 a=15 4 a=20

Mean difference
0.020

| |

Mean difference
0.020

| |

0.010
!
0.010
|

0.000
|
0.000
|

Figure 4.3.3: Mean Difference by Periods for Varying Age Group Size with Fixed Degrees
of Freedom

In Figure 4.3.3, the df is fixed to reveal the influence of a onto the consistency of O

and ;. When both a and p are small, the difference is large due to small sample size.
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When p is small, the larger difference with larger a is due to the constraint specified on

the age effects which has a relatively larger group size than the period size, as discussed

before.
Mean difference by periods (a=10, df=10)
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Figure 4.3.4: Mean Difference by Periods witha =10 and d f = 10
In Figure 4.3.4, to reveal the asymptotic behavior, an example with large p > 50 is

considered. As p increases, the difference between s and 6; decreases to a negligible

value (about 1073).

70



4.4. SUMMARY

4.4 Summary

Asymptotic properties of the smoothing cohort model are studied in this chapter. Under
mild regularity conditions, when bandwidth 7 — 0 and ph — oo, smoothing cohort model
estimation converges to the true parameter. Two simulation studies were conducted, which
illustrate the convergence of the smoothing cohort model estimation and the intrinsic es-
timator. The consistency establishes the result that the two models (two-stage smoothing
and intrinsic estimator) yield age estimates converging to the same true parameter values,

and further addresses the identifiability problem.
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CHAPTER b

Application

In this chapter, the smoothing cohort stage 2 model with the smallest variance of ratio
constraint is applied to several examples. Comparison with the intrinsic estimator is also

conducted.

5.1 Male-mortality Rate of Liver Cancer in Korea

Liver cancer is one of the most common causes of death in the world. In this example, data
for the mortality rate of liver cancer in Korean adults (30 years and older) were obtained

from the Korean Statistical Information Service for the period from 1984-2013. The data
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is given in the Table 5.1.1, [Park and Jee, 2015]. Note the last row (age > 80) is included
in application, even the cohort of the last row is different from the previous one, but the
number of observations with age 85+ was small. We use the two-stage smoothing co-
hort model with ratio of the smallest variance constraint, and compare with the intrinsic
estimator.

Table 5.1.1: Male-mortality Rate (per 10° person-year) of Liver Cancer in Korea by Age
and Period

Period
Age 1984-1988 1989-1993 1994-1998 1999-2003 2004-2008 2009-2013
30-34 7 6 4 3.2 2.2 1.6
35-39 19.6 17.8 12.7 9.9 6 5
40-44 43.6 40.9 34 26 20.2 13.4
45-49 76.7 78.7 64.5 51.8 433 31.1
50-54 111 120.2 106.3 89.2 72 54.9
55-59 143.1 152.5 142.9 123.8 103.5 78.1
60-64 164.9 177.5 173.3 149.2 127.9 102.8
65-69 169.6 203.1 196.2 176.7 156.5 127.6
70-74 147.9 193.5 231.3 203.5 187.9 170.9
75-79 140.2 177.7 219 225.4 216.7 203
80+ 147 154.1 183.4 206.4 224.3 238.4

This study has a = 11 age groups and p = 6 period groups. Based on the simulation
study, the period-effect constraint should yield more accurate estimation than the age-
effect constraint. Figure 5.1.1 shows estimates and bootstrapped 95% confidence intervals
from the intrinsic estimator and the smoothing cohort stage 2 model with both the age- and
the period-effect constraints. Estimated values are displayed in Table 5.1.2. The two-stage
smoothing cohort model with the period-effect constraint gives close trend estimation with
the intrinsic estimator, and close estimates of variance component 0.001161 and 0.001227,

which are smaller than variance component of the age-effect constraint. The standard error
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of the intrinsic estimator is smaller than bootstrapped standard errors of the period- and
age-effect constraint, but the period-effect constraint gives comparatively small standard
error close to that of the intrinsic estimator. Both intrinsic estimator and the period-effect
constraint give reasonable age, period, and cohort trend estimation, with increasing age-
effect trend, flat period trend, as well as increasing-then-decreasing trend for cohort effect.
At the ends of cohort effect, there are some small difference between intrinsic estimates
and smoothing period constraint estimates due to few observations in the extreme young
and old cohorts. [Park and Jee, 2015] discussed this age-period-cohort analysis of liver-
cancer mortality among Korean men from 1984 to 2013. It has been demonstrated that
the national vaccination program against HBV may have contributed to the reduction of
liver-cancer mortality in Korean children and adolescents. The period effect following the
implementation of the national vaccination program in 1995 was significant after account-
ing for age and cohort effects. The decrease of HBV infection is limited to the younger
population and viral persistence remains in the middle-aged and older population. HBsAg
(also known as the Australia antigen, which is the surface antigen of the HVB) seropreva-
lence has been reduced by half during the past 30 years, probably due to the combined

effect of vaccination and antiviral therapy.
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Figure 5.1.1: Smoothing Cohort Stage 2 Model (Constraint with the Smallest Variance of
Ratio) and the Intrinsic Estimator with Application to Male-mortality Rate of Liver Cancer
in Korea
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Table 5.1.2: Age, Period, and Cohort Trends Estimated with the Smoothing Cohort Stage
2 Model and the Intrinsic Estimator for Male-mortality Rate of Liver Cancer in Korea

Intrinsic Period-effect Constraint Age-effect Constraint
Estimate SE Estimate Bootstrapped SE | Estimate Bootstrapped SE
L 4.0233  0.0074 | 4.0233 0.0057 4.0233 0.0121
& -2.1155 0.0200 | -2.2094 0.1016 -3.2609 0.9704
6 -1.2904 0.0183 | -1.3655 0.0812 -2.2067 0.7792
6z -0.5649 0.0186 | -0.6213 0.0610 -1.2522 0.5830
&4 -0.0879 0.0188 | -0.1255 0.0424 -0.5461 0.3106
&s 02291 0.0190 | 0.2103 0.0243 0.1534 0.0485
& 04020 0.0190 | 0.4020 0.0142 0.4020 0.0310
6; 04984 0.0190 | 0.5172 0.0248 0.7275 0.1991
&g 0.5963 0.0189 | 0.6339 0.0429 1.0545 0.3930
6o 0.7040 0.0187 | 0.7603 0.0624 1.3912 0.5895
6o 0.7967 0.0184 | 0.8719 0.0805 1.7131 0.7862
6y 0.8321  0.0194 | 0.9261 0.1002 1.8242 0.6897
Bl -0.0287 0.0128 | 0.0324 0.0562 0.5440 0.4885
ﬁz 0.0636  0.0130 | 0.0918 0.0301 0.4072 0.2930
ﬁg 0.0448 0.0130 | 0.0542 0.0130 0.1593 0.0998
34 0.0094 0.0130 | -0.0141 0.0089 -0.1051 0.1010
ﬁ5 -0.0300 0.0128 | -0.0582 0.0334 -0.3736 0.2930
36 -0.0591 0.0134 | -0.1061 0.0533 -0.6318 0.4875
i 0.1637 0.0426 | 0.0228 0.1504 -1.5544 1.4683
% 0.1352  0.0309 | 0.0130 0.1301 -1.3539 1.2713
5 0.3020 0.0261 | 0.1986 0.1104 -0.9580 1.0735
4 0.5016 0.0234 | 0.4170 0.0927 -0.5293 0.8790
5 0.6181 0.0215 | 0.5523 0.0730 -0.1837 0.6853
%  0.6034 0.0199 | 0.5564 0.0523 0.0307 0.4886
¥ 0.5415 0.0207 | 0.5133 0.0354 0.1979 0.2912
5 04682 0.0209 | 0.4588 0.0193 0.3537 0.0990
5 0.3522  0.0208 | 0.3616 0.0184 0.4668 0.1083
fio 02151  0.0202 | 0.2433 0.0328 0.5588 0.2980
f11 0.0369 0.0193 | 0.0839 0.0513 0.6097 0.4923
12 -0.1901  0.0206 | -0.1243 0.0710 0.6118 0.6878
f13 -0.4694  0.0223 | -0.3848 0.0902 0.5615 0.8794
fia  -0.8231 0.0249 | -0.7197 0.1098 0.4369 1.0709
f1s  -1.0769 0.0298 | -0.9547 0.1341 0.4122 1.2639
e -1.3787 0.0489 | -1.2377 0.1574 0.3395 1.4556
62 0.001160969 0.001227093 0.005437853

Note: Standard errors were computed by simulation based on 1000 runs of bootstrapped residuals.
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5.2 Homicide-Arrest Rate

The homicide-arrest rate [O’Brien, 2000] data is given in the Table 5.2.1. Each age group
covers a range of 5 years and the span between the periods is 5 years. The age, period, and

cohort trend of this data has been discussed by [O’Brien, 2000, Fu, 2008].

Table 5.2.1: Homicide-Arrest Rate by Age and Period

Period
Age 1960-1964 1965-1969 1970-1974 1975-1979 1980-1984 1985-1989 1990-1994 1995-1999
15-19 8.89 9.07 17.22 17.54 18.02 16.32 36.52 35.24
20-24 14.00 15.18 23.76 25.62 23.95 21.11 29.10 32.34
25-29 13.45 14.69 20.09 21.05 18.91 16.79 17.99 16.75
30-34 10.73 11.70 16.00 15.81 15.22 12.59 12.44 10.05
35-39 9.37 9.76 13.13 12.83 12.31 9.60 9.38 7.27
40-44 6.48 7.41 10.10 10.52 8.79 7.50 6.81 5.48
45-49 5.71 5.56 7.51 7.32 6.76 5.31 5.17 3.67

This sample has a = 7 age groups and p = 8 period groups. Age-effect group size
is similar with period-effect group size. So we consider both age- and period-effect con-
straints. In Figure 5.2.1, the period-effect constraint yields closer estimation to intrin-
sic estimation than the age-effect constraint. Estimated values are displayed in Table
5.2.2. Difference between the intrinsic estimation and the period-effect constraint esti-
mation is around 10~2. Also the model variance components of the intrinsic estimator and
smoothing cohort estimation with the optimal period-effect constraint are close, which are
0.001709 and 0.001970, and both standard errors are small and close to each other. The
age-effect constraint yields different trend estimation from the period-effect constraint and
intrinsic estimation, with larger estimate of variance component (0.00303) and standard er-
ror. The intrinsic estimator and the period-effect constraint yield an increasing age trend

from age 15 to age 20, then decreasing age trend after age 20, a rapidly increasing period
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trend from 1960 to 1970 and decreasing trend after 1970, as well as a slowly decreasing

then sharp increasing trend for cohort effect. This result met the investigator’s expectation

[O’Brien, 2000].
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] ]
=9 = ]
W W
5 2 5 °
& &
w g w o
o | o |
w
27 27
2 =2
v T T T T T T T v T T T T T T T T
15 20 25 30 35 40 45 1960 1965 1970 1975 1980 1985 1990 1955
Age Period
Cohort trend
]
o |
w
5 9
£
w g
2 4
w
S
=2
w T T T T T T T
1910 1820 1930 1940 1950 1980 1970
Cohort
— Intrinzic estimator (IE} — Smoothing-Age (SA) — Smoothing-Peried (SP)
- Confidence interval of E = = = Confidence interval of SA = = Confidence interval of SP

Figure 5.2.1: Smoothing Cohort Stage 2 Model (Constraints with the Smallest Variance of
Ratio) and the Intrinsic Estimator with Application to Homicide-Arrest Rate
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Table 5.2.2: Age, Period, and Cohort Trends Estimated with the Smoothing Cohort Stage
2 Model and the Intrinsic Estimator for Homicide-Arrest Rate

Intrinsic Period-effect Constraint Age-effect Constraint

Estimate SE Estimate Bootstrapped SE | Estimate Bootstrapped SE
w o 2.6468 0.0098 | 2.6468 0.0077 2.6468 0.0082
o 0.1446 0.0198 | 0.1299 0.0405 -0.0692 0.0644
oy 05513 0.0186 | 0.5415 0.0285 0.3634 0.0407
o3 0.4066 0.0190 | 0.4017 0.0185 0.3126 0.0258
oy 0.1417 0.0191 | 0.1417 0.0147 0.1417 0.0177
o5 -0.0940 0.0191 | -0.0890 0.0186 -0.0680 0.0035
o -0.4036 0.0188 | -0.3938 0.0291 -0.2157 0.0436
o; -0.7466 0.0188 | -0.7318 0.0398 -0.4647 0.0668
B1  -0.2832 0.0196 | -0.2660 0.0442 0.0457 0.0715
B> -0.1601 0.0205 | -0.1478 0.0330 0.0748 0.0494
B3 0.2436 0.0208 | 0.2510 0.0233 0.3845 0.0437
Bs 0.2842 0.0208 | 0.2866 0.0168 0.3312 0.0224
Bs 02145 0.0207 | 0.2120 0.0179 0.1675 0.0189
Be  0.0074  0.0204 | 0.0323 0.0085 -0.1336 0.0368
Bz 0.0193  0.0200 | 0.0070 0.0439 -0.2156 0.0530
Bs -0.3256 0.0224 | -0.3752 0.0450 -0.6545 0.0740
o 0.1252  0.0493 | 0.0932 0.0929 -0.4856 0.1431
Y -0.0579 0.0370 | -0.0850 0.0729 -0.5747 0.1151
B -0.0800 0.0321 | -0.1021 0.0603 -0.5028 0.0836
Y+ -0.1537 0.0292 | -0.1709 0.0472 -0.4826 0.0842
s -0.1879 0.0270 | -0.2002 0.0368 -0.4228 0.0549
Y -0.2581 0.0250 | -0.2655 0.0268 -0.3991 0.0394
¥ -0.2885 0.0227 | -0.2910 0.0189 -0.3355 0.0208
s -0.3126 0.0223 | -0.3101 0.0185 -0.2656 0.0168
Y -0.2615 0.0239 | -0.2542 0.0253 -0.1206 0.0352
Yio -0.2436 0.0254 | -0.2314 0.0372 -0.0087 0.0552
i -0.1521  0.0273 | -0.1349 0.0476 0.1767 0.0715
Y2 0.0791 0.0302 | 0.1013 0.0572 0.5020 0.0930
T3 0.6954  0.0355 | 0.7225 0.0764 1.2122 0.1281
Ya 1.0963  0.0597 | 1.1283 0.0927 1.7070 0.1359
62 0.00171 0.00197 0.00303

Note: Standard errors were computed by simulation based on 1000 runs of bootstrapped residuals.
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5.3 Incidence Rate of Testis Cancer

This study fits the APC model with incidence rate of testis cancer (per 1000 male person-

years) in Denmark 1943-1996 in 5-year classes, [Carstensen, 2007]. The data set is given

in Table 5.3.1.

Table 5.3.1: Incidence Rate of Testis Cancer (per 10° person-year) in Denmark

Period

Age 43-47 48-52 53-57 57-62 63-67 68-72 73-77 78-82 83-87 88-92 93-96
15-19 4.3 3.1 5.5 4.5 4.8 114 122 12.2 16.3 183 204
20-24 12.3 139 212 212 19.1 269 379 490 494 49.1 49.1
25-29 232 264 29.0 39.1 379 357 483 697 746 866 774
30-34 234 284 355 412 490 537 569 66.0 729 899 101.9
35-39 230 238 246 294 464 589 61.7 532 605 734 86.8
40-44 16.8 208 282 284 295 399 493 524 429 505 55.7
45-49 15.5 14.8 16.7 239 203 28.6 30.1 322 413 310 39.1
50-54 9.9 15.5 112  12.6 209 16,7 23.0 242 308 29.6 242
55-59 4.2 9.1 9.3 134 127 13.8 13.7 209 218 18.1 27.5
60-64 7.4 9.2 7.7 8.2 11.6 9.6 14.5 12.2 13.8 8.5 7.2

This sample has a = 10 age groups and p = 11 period groups. Comparison of the in-

trinsic estimator and smoothing cohort stage 2 model are given in Figure 5.3.1. Estimated

values are displayed in Table 5.3.2. For this case, the intrinsic estimator gives the smaller

standard error and variance component than the period-effect constraint. The age-effect

constraint has the largest bootstrapped standard error, as well as 62. From the figure, the

intrinsic estimator and the period-effect constraint yield similar pattern of trend estimation.

This age-period-cohort trend estimation is similar with the result in [Carstensen, 2007].
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Figure 5.3.1: Smoothing Cohort Stage 2 Model (Constraints with the Smallest Variance of
Ratio) and the Intrinsic Estimator with Application to Testis Cancer-incidence Rate
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Table 5.3.2: Age, Period, and Cohort Trends Estimated with the Smoothing Cohort Stage
2 Model and the Intrinsic Estimator of Testis Cancer-incidence Rate

Intrinsic Period-effect Constraint Age-effect Constraint
Estimate SE Estimate Bootstrapped SE | Estimate Bootstrapped SE
W 3.2543  0.0228 | 3.2543 0.0186 3.2543 0.0194
o -1.2026 0.0529 | -1.3825 0.1784 -0.7755 0.2859
o 0.0753  0.0504 | -0.0646 0.1400 0.4074 0.1908
oz 06113 0.0508 | 0.5113 0.1078 0.8485 0.1655
oy 0.7737  0.0510 | 0.7138 0.0723 0.9161 0.1043
as  0.6749 0.0511 | 0.6549 0.0472 0.7223 0.0544
o 04685 0.0512 | 0.4885 0.0475 0.4211 0.0545
o; 0.1424  0.0512 | 0.2023 0.0713 0.0762 0.0838
og -0.1710 0.0510 | -0.0711 0.1050 -0.4083 0.1626
o9 -0.5070 0.0506 | -0.3671 0.1419 -0.8391 0.2266
ap  -0.8654 0.0511 | -0.6855 0.1817 -1.3686 0.2789
B1 -0.6722 0.0526 | -0.4723 0.2038 -1.1467 0.3190
B> -0.4505 0.0537 | -0.2906 0.1645 -0.8301 0.2584
B3 -0.3353 0.0541 | -0.2154 0.1253 -0.6200 0.1965
Bs  -0.1798 0.0542 | -0.0999 0.0868 -0.3696 0.1355
Bs -0.0400 0.0542 | -0.0419 0.0165 -0.1349 0.0802
Bs  0.1206 0.0540 | 0.1206 0.0401 0.1206 0.0451
B; 02595 0.0539 | 0.2196 0.0560 0.3544 0.0767
Bs  0.3302 0.0537 | 0.2503 0.0876 0.5200 0.1346
Bo 03797 0.0534 | 0.2598 0.1195 0.6644 0.1976
Bio 0.3028 0.0530 | 0.1429 0.1587 0.6824 0.2577
B 02850 0.0577 | 0.1270 0.1968 0.7595 0.3229
n 02899 0.1602 | -0.0898 0.3988 1.1915 0.6105
» -0.1744 0.1161 | -0.5141 0.3433 0.6323 0.5419
B -0.0723  0.0976 | -0.3721 0.3029 0.6394 0.4831
Y+ -0.0379 0.0869 | -0.2977 0.2708 0.5790 0.4232
¥ -0.1363  0.0797 | -0.3561 0.2168 0.3857 0.3590
%  -0.2320 0.0743 | -0.4118 0.1810 0.1951 0.2925
v -0.1171 0.0698 | -0.2570 0.1431 0.2150 0.2320
B -0.2765 0.0658 | -0.3764 0.1104 -0.0392 0.1696
Y%  -0.1816 0.0620 | -0.2415 0.0738 -0.0392 0.1080
Yo -0.1747 0.0580 | -0.1947 0.0468 -0.1273 0.0576
ni -0.1719  0.0576 | -0.1519 0.0533 -0.2193 0.0575
N2 -0.0449 0.0607 | 0.0150 0.0783 -0.1873 0.1061
N3 -0.3062  0.0638 | -0.2063 0.1138 -0.5435 0.1638
ha -0.1932  0.0672 | -0.0533 0.1502 -0.5254 0.2245
ns  0.0530  0.0713 | 0.2329 0.1841 -0.3741 0.2881
Ne  0.1819  0.0765 | 0.4017 0.2245 -0.3401 0.3566
n7  0.2282  0.0837 | 0.4880 0.2613 -0.3886 0.4223
ns  0.2725  0.0948 | 0.5723 0.2967 -0.4392 0.4821
Yo 04151  0.1141 | 0.7548 0.3407 -0.3916 0.5504
Yo 0.6783 0.1823 | 1.0580 0.3852 -0.2233 0.6291
62 0.01994 0.02026 0.02110

Note: Standard errors were computed by simulation based on 1000 runs of bootstrapped residuals.
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5.4. SUMMARY

5.4 Summary

The two-stage smoothing cohort model yields accurate estimation of the age, period, and
cohort effects in the study of incidence rate, mortality rate, and homicide-arrest rate data,
with meaningful trend estimation. Most often the constraint specified on the effects of
smaller group size yields estimation close to intrinsic estimation, indicating the consis-

tency of the method.
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CHAPTER 6

Conclusion

Estimating the trend of incidence or mortality rate in age, period, and cohort is of cru-
cial importance to public health. The identifiability problem in the APC model has been
studied for 40 years. Although many methods have been proposed, none of them have ad-
dressed the problem appropriately. [Fu, 2016] showed the expected value of the intrinsic
estimator is an estimable function and is the only estimable function that determines the
parameters. Further the true parameter values can be identified by taking the limit of the

intrinsic estimator under mild regularity condition.

This dissertation provides the asymptotic results for an alternative semiparametric ap-

proach — a two-stage smoothing cohort model. It has been proved that the intercept and
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age-effect estimates converge to the true parameter values as 4 — 0 and ph — oo, indicat-
ing that this alternative method also provides consistent estimation and an alternative to

address the identifiability problem.

Another significant contribution of this dissertation is to identify the optimal constraint
to correct the bias for finite samples, which yields accurate estimation for the age, period,
and cohort effects. Furthermore, it also has been shown that the two-stage smoothing
cohort model with a constraint set up on the effects of the factor that has the smaller group
size with the smallest variance of the ratio yields less-biased estimation on the cohort

effects than the intrinsic estimator.

The smoothing cohort model with optimal constraint possesses desirable properties by
the large sample theory, and works as valid alternative approach to addressing the identi-
fiability problem. Both simulation results and application demonstrate the usefulness of

this method.
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