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The paper describes an approximate but rather general derivation of the acoustic threshold for a sub-

harmonic component to be possible in the sound scattered by an insonified gas bubble. The general

result is illustrated with several specific models for the mechanical behavior of the surface coating

of bubbles used as acoustic contrast agents. The approximate results are found to be in satisfactory

agreement with fully non-linear numerical results in the literature. The amplitude of the first

harmonic is also found by the same method. A fundamental feature identified by the analysis is that

the subharmonic threshold can be considerably lowered with respect to that of an uncoated

free bubble if the mechanical response of the coating varies rapidly in the neighborhood of certain

specific values of the bubble radius, e.g., because of buckling.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4802742]
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I. INTRODUCTION

Research on the use of contrast agents to enhance ultra-

sonic imaging of living tissue has recently focused on the use

of the subharmonic component of the scattered sound (see,

e.g., Shankar et al., 1999; Chomas et al., 2002; Goertz et al.,
2007; Frinking et al., 2010; Faez et al., 2011). The main

advantage offered by this frequency band in comparison with

the fundamental and its harmonics lies in the essential feature

that, while the latter can be due to tissue as well as to contrast

agents, there are virtually no subharmonic sources other than

the contrast agents themselves. This feature obviates the need

for the complex data-processing and filtering procedures

made necessary by reliance on other frequency bands (see,

e.g., Shankar et al., 1998; Burns et al., 2000).

Ultrasonic contrast agents are essentially gas bubbles

stabilized against dissolution in the tissues by coatings of

various nature. Thus, interest in the subharmonic emission is

motivated by considerations very similar to those proposed

in the past to monitor the occurrence of acoustic cavitation

activity, which also requires unequivocal bubble-related

acoustic signals in otherwise silent frequency bands (see,

e.g., De Santis et al., 1967; Eller and Flynn, 1969; Neppiras,

1969a,b; Neppiras and Coakley, 1976).

Unlike harmonics, which gradually set in as the excita-

tion amplitude is increased, the subharmonic emission

requires that a certain threshold be exceeded. A satisfactory

theory for this threshold for the case of uncoated gas bubbles

has been available for some time (Prosperetti, 1974, 1977).

What motivates a reconsideration of this matter is the coat-

ing used to stabilize the bubbles, which has a major effect on

the threshold. For this reason, several recent papers have pre-

sented numerical simulations and extensions of the some-

what involved classical theory to various specific models of

the coating rheology (Sijl et al., 2010; Katiyar and Sarkar,

2011).

The purpose of the present paper is to treat the problem

perturbatively but with some degree of generality avoiding

the adoption of specific models for the coating rheology (Sec.

III). The effect of various modeling choices can then be

checked directly on the final result (Sec. VI) as we show with

several examples (Sec. VIII). The derivation is based on a

simple heuristic argument (Sec. V) developed in an earlier pa-

per (Prosperetti, 1976). By the same method, we also obtain

an expression for the dependence of the first-harmonic scatter-

ing on the amplitude of the ultrasonic excitation (Sec. X).

Even though our results only hold in the small-

amplitude approximation, it may be expected that their de-

pendence on the various parameters reflects the trends of the

actual phenomenon. In particular, it is shown that the pres-

ence of special values of the bubble radius in correspondence

of which the rheology of the coating exhibits a rapid transi-

tion, e.g., due to buckling, considerably lowers the subhar-

monic threshold.

II. RADIAL DYNAMICS OF A COATED BUBBLE

Our starting point is a modified form of the

Rayleigh–Plesset equation governing the radial dynamics of a

spherical bubble of radius R(t) (see, e.g., Brenner et al., 2002):

R €R þ 3

2
_R

2 ¼ 1

q
1þ R

c

d

dt

� �
PðR; _RÞ � p1

�

þ pA cos xt� RðR; _RÞ
�
� 4�

_R

R
: (1)

Here dots denote time differentiation, q, c, and � are the

liquid density, speed of sound, and kinematic viscosity, p1
the undisturbed ambient pressure and pA the amplitude of

the insonifying signal with angular frequency x. The bub-

ble internal pressure PðR; _RÞ has been assumed to depend

on the bubble radius and its time derivative to allow for

dissipative processes such as heat exchange with the liquid

a)Author to whom correspondence should be addressed. Also at: Physics of

Fluids Group, Faculty of Science and Technology, and Burgers Centrum,

University of Twente, 7500AE Enschede, Netherlands. Electronic mail:

prosperetti@jhu.edu

J. Acoust. Soc. Am. 133 (6), June 2013 VC 2013 Acoustical Society of America 37190001-4966/2013/133(6)/3719/8/$30.00

mailto:prosperetti@jhu.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4802742&domain=pdf&date_stamp=2013-06-01


(Prosperetti, 1991); an example of this dependency is given

in Eq. (45) below. Similarly, the interfacial term has been

written as RðR; _RÞ to allow for surface tension and the

elastic and dissipative properties of the coating. For an

uncoated bubble with the internal pressure treated accord-

ing to the usual polytropic approximation one would have

PðR; _RÞ ¼ P0

R0

R

� �3j

; RðR; _RÞ ¼ 2r
R
; (2)

with R0 the equilibrium radius of the bubble, P0 the bubble

internal pressure when R¼R0 and r the surface tension coef-

ficient. The application of the general theory to several dif-

ferent models for R is shown later.

For the following developments, it is useful to set

RðtÞ
R0

¼ 1þ XðtÞ; (3)

with which the radial equation becomes

€X þ 3

2

_X
2

1þ X
¼ 1

qR2
0ð1þ XÞ ½PðX;

_XÞ � p1

þ pA cos xt� RðX; _XÞ�

� 4�

R2
0

_X

ð1þ XÞ2
þ 1

qcR0

dP

dt
: (4)

III. SMALL-AMPLITUDE APPROXIMATION

We use a perturbative approach based on a Taylor series

expansion and set

PðR; _RÞ ’ P0 þ PXX þ P _X
_X þ 1

2
PXXX2 þ 1

2
P _X _X

_X
2

þ PX _X X _X þ � � � ; (5)

where P0¼P(R0, 0) and subscripts denote differentiation,

and, similarly,

RðR; _RÞ ¼ R0þRXXþR _X
_X þ 1

2
RXXX2þ 1

2
R _X _X

_X
2

þRX _X X _X þ � � � ; (6)

where R0¼R(R0, 0). For example, for the standard uncoated

free-bubble model (2), we have

PX ¼ �3jP0; PXX ¼ 3jð3jþ 1ÞP0; (7)

RX ¼ �
2r
R0

; RXX ¼
4r
R0

; (8)

with all the other derivatives vanishing. After substitution of

these expansions into (4), with allowance for the equilibrium

relation

P0 � p1 � R0 ¼ 0; (9)

and systematic truncation to second order, we find an equa-

tion which may be written as

€Xþ2b _Xþx2
0X¼ 2PA cos xtþAX2þB _X

2þCX _X

�2PAX cos xt; (10)

in which we have introduced the following definitions:

PA ¼
pA

2qR2
0

; (11)

x2
0 ¼
�PX þ RX

qR2
0

; 2b ¼ 4
�

R2
0

� PX

qcR0

� P _X � R _X

qR2
0

;

(12)

A ¼ 1

qR2
0

1

2
ðPXX � RXXÞ � ðPX � RXÞ

� �

¼ 1

2qR2
0

ðPXX � RXXÞ þ x2
0; (13)

B ¼ P _X _X � R _X _X

2qR2
0

� 3

2
; (14)

C ¼ PX _X � RX _X � P _X þ R _X

qR2
0

þ 8�

R2
0

: (15)

In deriving these expressions, we have approximated the

term dP=dt as PX
_X, which is permissible in view of the large

numerical value of the speed of sound in the liquid.

The quantity x0 has the physical meaning of the natural

angular frequency of the linear model and from (7) and (8),

for an uncoated bubble, it has the familiar expression

x2
0 ¼

1

qR2
0

3jP0 �
2r
R0

� �
: (16)

Damping is described by the parameter b in the definition

(12) of which we recognize, in order, the contributions due

to the liquid viscosity, acoustic radiation, heat exchange

with the liquid and surface viscosity.

IV. LINEAR THEORY

We denote by Xl the solution of the linear truncation

of (10):

€Xl þ 2b _Xl þ x2
0Xl ¼ 2PA cos xt: (17)

At steady state, Xl is given by

Xl ¼ X0eixt þ c:c: with X0 ¼
PA

x2
0 � x2 þ 2ibx

;

(18)

where, here and in the following, c.c. denotes the complex

conjugate. If x is very different from x0 and PA is small, Xl

will also be small. However, if x � x0 and the damping is

small, Xl becomes substantial even with a weak forcing.

This mechanism of resonant amplification is at the root

of the frequency spectrum of a non-linear oscillator as will

be seen in the next section.
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V. NON-LINEAR RESONANCES

We now set, in (10),

XðtÞ ¼ XlðtÞ þ YðtÞ; (19)

with Xl(t) given by (18), and find

€Y þ 2b _Y þ x2
0Y ¼ AðXl þ YÞ2 þ Bð _Xl þ _YÞ2

þ CðXl þ YÞð _Xl þ _YÞ
� 2PAðXl þ YÞ cos xt: (20)

Although, of course, the Y in the right-hand side of this equa-

tion is the same as that in the left-hand side, it is useful to con-

sider it for a moment as a given driving force. In this sense,

the equation may be seen as describing the response of the lin-

ear oscillator in the left-hand side to the excitation provided

by the right-hand side which, due to its non-linear nature, has

a greater frequency content than that of the driving ultrasound.

Ordinarily, when the ultrasound amplitude is not large,

the response Y will also be small and the additional frequen-

cies will amount to only small features in the acoustic spec-

trum scattered by the bubble. This conclusion however must

be modified when one of the frequencies in the right-hand

side of (20) is close to x0 as, in this case, the linear oscillator

in the left-hand side will contain a significant component at

a frequency close to x0 by the resonant amplification mecha-

nism mentioned at the end of the previous section.

It is easy to determine which are the possible insonify-

ing frequencies that can determine a strong response in this

way. As just explained, for these frequencies we expect Y to

contain a significant component proportional to e6i�xt, with

�x � x0. Thus, the “combination tones” due to the interac-

tion of this dominant component of Y with Xl in the right-

hand side of (20) will occur at frequencies

0; 2x; x6�x; 2�x: (21)

The only possible frequencies of this list which can resonate

with the frequency x0 � �x of the left-hand side of (20) are

2x � �x, i.e., �¼ 2, and (1� �)x � �x, i.e., � ¼ 1
2
. In the

first case the strong response will be at the first harmonic, in

the second one at the first subharmonic. This is the essence of

the argument originally presented in Prosperetti (1976).

Superficially, this argument seems independent of x0 but, in

reality, it is not as, unless �x � x0, no resonant amplification

is possible.

We conclude that, in order to find the dominant component

of the solution of (20), it is sufficient to consider only the terms

in the right-hand side which contain the resonant frequencies,

as all the other terms will only give a small contribution to Y.

VI. SUBHARMONIC

On the basis of the previous argument, in the subhar-

monic frequency region, we write the dominant part of the

solution of (20) as

Y ’ Y1=2 ¼ Y0eixt=2 þ c:c: (22)

We substitute this approximation for Y into the right-hand

side of (20) and, on the basis of the previous considerations,

we discard all the terms which cannot give rise to combina-

tion tones close to x0. With this step, the equation becomes,

approximately,

€Y1=2 þ 2b _Y1=2 þ x2
0Y1=2

¼ 2Aþ x2Bþ i

2
xC

� �
X0 � PA

� �
�Y0eixt=2 þ c:c:

(23)

where the overline denotes the complex conjugate and X0 is

given in (18). The peculiarity of the subharmonic component

lies in the fact that this equation can be satisfied by Y0¼ 0.

This will be the only possible solution unless the right-hand

side is able to supply enough energy to overcome the damp-

ing in the left-hand side. The origin of a threshold excitation

for the subharmonic lies in the fact that, for this to happen,

Y0 itself must be sufficiently large, which imposes a condi-

tion on the amplitude of the drive.

After substitution of (22) into the left-hand side of (23),

the terms proportional to eixt/2 will balance provided that

x2
0 �

1

4
x2 þ ibx

� �
Y0

� 2Aþ x2Bþ i

2
xC

� �
X0 � PA

� �
�Y0 ¼ 0: (24)

Consideration of the terms proportional to e�ixt/2 leads to

the complex conjugate of this relation:

� 2Aþ x2B� i

2
xC

� �
�X0 � PA

� �
Y0

þ x2
0 �

1

4
x2 � ibx

� �
�Y0 ¼ 0: (25)

These two relations form a homogeneous algebraic linear

system for Y0 and �Y 0 which can have nonzero solutions only

provided the determinant vanishes. After some reduction,

this condition may be written in the form

PAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 � x2Þ2 þ 4b2x2

q
0
B@

1
CA

2

¼
x2

0 � 1
4
x2

� �2 þ b2x2

½2Aþ ðBþ 1Þx2 � x2
0�

2 þ 1
2

C� 2b
� �2

x2
: (26)

Since, unless this condition is satisfied, the only possible solu-

tion of (24) and (25) is Y0 ¼ �Y 0 ¼ 0, it is evident that (26)

determines the threshold for the subharmonic emission. The

subharmonic amplitude remains undetermined in the present

second-order theory, but can be found by carrying the theory to

the third order as shown in an earlier paper (Prosperetti, 1974).

VII. ABSOLUTE THRESHOLD

The previous result (26) gives the threshold pressure

amplitude for the subharmonic to be possible. In general,

however, whether the subharmonic component is actually
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excited or not, depends on the initial conditions of the

motion. It is only when the subharmonic-free motion is

unstable that the subharmonic is necessarily present
(Prosperetti, 1974, 1977; Sijl et al., 2010). For this to happen

the pressure amplitude must exceed another threshold which

may be termed the absolute threshold. An expression for this

threshold cannot be derived truncating the small-amplitude

expansion at second order as done in Sec. III. At least one

more order is necessary. The relevant calculation can be

found in Prosperetti (1974) and the final results are also

given in Prosperetti (1977) and Sijl et al. (2010).1

The absolute threshold is mostly larger than the exis-

tence threshold except in the vicinity of x/x0¼ 2. An exam-

ple for a 10 lm-radius bubble calculated with the parameter

values of Fig. 5 of Prosperetti (1977) is shown in Fig. 1; here

and in the following figures f¼x/2p and f0¼x0/2p.

The existence of two separate thresholds should be kept

in mind when judging numerical results for which the dis-

tinction between them is not easily made.

VIII. EXAMPLES

We now apply the previous general result (26) to some

specific coating rheology models used in the literature. Since

the present theory is built on a weakly non-linear approxima-

tion, it is of particular interest to compare its predictions to

the fully non-linear numerical results of Katiyar and Sarkar

(2011).

In all the examples that follow, the bubble internal pres-

sure P is modeled in the polytropic form (2) with

p1¼ 101.3 kPa, �¼ 10�6 m2/s and q¼ 1000 kg/m3. The

effect of the coating (or of surface tension for an uncoated

bubble), is parameterized as

R ¼ 2rðRÞ
R
þ 4gsðRÞ

_R

R2
¼ 2r

R0ð1þ XÞ þ 4
gsðXÞ _X

R0ð1þ XÞ2
;

(27)

where gs is the coefficient of surface viscosity.

A. Uncoated bubble

In the present notation, the subharmonic threshold of an

uncoated bubble derived in Prosperetti (1977) and confirmed

in Sijl et al. (2010) can be written as

PA

jx2
0 � x2j ¼

bx

j2A� 1
2
x2 � x2

0j
: (28)

In the theory leading to this result the damping parameter b
was assumed to be very small, which explains its absence from

the left-hand side where it is negligible compared to x2 � x2
0

� 3
4
x2. Furthermore, in the derivation of (28), use was made of

the simple model (2) so that B ¼ � 3
2

and C¼ 4b. Thus, if

attention is limited to the neighborhood of x ’ 1
2
x, it is seen

that (26) is in excellent agreement with (28).

Katiyar and Sarkar (2011) have investigated this case

numerically taking c¼ 1485 m/s, r¼ 0.072 J/m2, and

j¼ 1.07. Their results for a 3 lm-radius bubble (dashed

line) are compared with the present one in Fig. 2. As

expected, there are some differences, but the present approx-

imation captures nevertheless the essential features of the

threshold. An element to keep in mind in this comparison is

that the numerical results really refer to what was termed the

absolute threshold in Sec. VII. Therefore, the comparison

becomes somewhat less meaningful away from x/x0¼ 2.

B. Viscous coating

For the simple model of a viscous coating one may use

(27) with both the surface tension coefficient r and the coef-

ficient of surface viscosity gs constants (Sarkar et al., 2005).

In this case

RX ¼ �
2r
R0

; R _X ¼
4gs

R0

; RXX ¼
4r
R0

; RX _X ¼ �
8gs

R0

;

(29)

while the other derivatives of R vanish. Furthermore,

2b ¼ 4
�

R2
0

þ 4gs

qR3
0

þ 3jP0

qcR0

; C ¼ 4

R2
0

2� þ 3
gs

qR0

� �
:

(30)

FIG. 1. (Color online) The solid line is the pressure amplitude above which

a subharmonic component is possible; the dashed line is the pressure ampli-

tude above which a subharmonic component is necessarily present due

to the instability of the subharmonic-free oscillations. This example is for an

uncoated free bubble with a 10 lm-radius using the parameter values of

Fig. 5 of Prosperetti (1977).

FIG. 2. (Color online) The present prediction for the subharmonic threshold for

an uncoated free bubble with a radius of 3 lm (solid line) compared with the

fully non-linear numerical results of Katiyar and Sarkar (2011) (dashed line).
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In order to compare with the numerical results of Katiyar

and Sarkar (2011), we take r¼ 0.6 J/m2, c¼ 1485 m/s,

j¼ 1.07, and gs¼ 10�8 N s/m. The comparison is shown in

Fig. 3 and is qualitatively similar to the uncoated-bubble

case of the previous figure.

C. Church-Hoff model

The model proposed by Church (1995) and further

developed by Hoff et al. (2000) can be cast in the form (27)

by taking

rðRÞ ¼ 6Gsds
R2

0

R2
1� R0

R

� �
; jðRÞ ¼ 3lsds

R2
0

R2
; (31)

with which

RX ¼
12Gsds

R0

; R _X ¼
12lsds

R0

; R _X _X ¼ 0; (32)

RXX ¼ �
96Gsds

R0

; RX _X ¼ �
48lsds

R0

: (33)

Katiyar and Sarkar (2011) have used this model to cal-

culate the non-linear threshold for a 3 lm-radius Sonazoid

bubble by taking Gs¼ 52 MPa, ls¼ 0.99 Pa s, and ds¼ 4

nm. Figure 4 shows a comparison of their results (dashed

line) with the present ones. They have also adapted the same

model to Levovist bubbles. The comparison of our to their

result is similar to that of Fig. 4 and is not shown for brevity.

D. Model of Marmottant et al.

Marmottant et al. have introduced a model which

accounts for the transition from an effectively vanishing sur-

face tension, when the radius has shrunk so much that the

coating buckles, to a surface tension equal to r0, the surface

tension of an uncoated bubble, when the coating has ruptured

(Marmottant et al., 2005). The model may be written as

r ¼
0 for R � Rb

v
R2

R2
b

� 1

� �
for Rb � R � Rrupture

r0 for Rrupture � R;

8>><
>>: (34)

with Rb the buckling radius, or, more compactly, as

rðXÞ¼ v½HðX�XbÞ�HðX�XrÞ�þr0HðX�XrÞ; (35)

where H is the Heaviside step function, Xb¼R/Rb� 1 and

Xr¼R/Rrupture� 1. In any real system the sharp transition

modeled by the step function will be attenuated by the actual

properties of the coating. It is therefore justified to use a

smoothed approximation to the step function; a standard one is

(see, e.g., Peskin, 1977; Engquist et al., 2005; Towers, 2007)

H�ðxÞ ¼
1

2
þ xþ ð�=pÞsin px=�

2�
; (36)

from which

H0�ðxÞ ¼ d�ðxÞ ¼
1þ cos px=�

2�
;

d02ðxÞ ¼ �
p

2�2
sin px=�: (37)

These functions reduce to H(x), d(x), and d0(x), respectively,

as e! 0.

With these expressions and a constant coefficient of sur-

face viscosity, for R0¼Rb, we find

R ¼ 0; RX ¼ 2
v

Rb
; RXX ¼ 4

v
Rb

1

�
� 1

2

� �
; (38)

R _X ¼
4j
R0

; RX _X ¼ �
8j
R0

; (39)

while R _X _X ¼ 0. To gain some insight into the behavior of

this model, we can assume e� 1 and evaluate the expression

(26) at x¼ 2x0; the result is

PAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2

0 þ 16b2
p ’ 3

2
j

RbP0

v
þ 1

� �
b�: (40)

The threshold can be made as small as desired by decreasing e.

FIG. 3. (Color online) The present prediction for the subharmonic threshold

for a 3 lm-radius bubble with a viscous coating (solid line) compared

with the fully non-linear numerical results of Katiyar and Sarkar (2011)

(dashed line).

FIG. 4. (Color online) The present prediction for the subharmonic threshold

for a Sonazoid bubble with a radius of 3 lm (solid line) compared with the

fully non-linear numerical results of Katiyar and Sarkar (2011) (dashed line).
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For a numerical example, following Marmottant et al.
(2005), we take q¼ 1000 kg/m3, �¼ 10�6 m2/s, c¼ 1480 m/s,

v¼ 1 N/m, gs¼ 15� 10�9 N, Rb¼ 0.975 lm, j¼ 1.095 and

vary e. Figure 5 shows the predicted thresholds for the exis-

tence of the subharmonic for 10�3� e� 10�2.

A different regularization of the previous model has

recently been proposed by Sijl et al. (2010) who write

rðXÞ ¼ r0 þ 2v̂X þ 1

2
fX2: (41)

If R0 corresponds to the buckling radius, r0¼ 0 and f> 0.

For R0 in the neighborhood of the rupture radius, on the

other hand, r0¼ 0.072 J/m2 and f< 0. With this expression,

we find

RX ¼ 2
2v̂ � r0

R0

; RXX ¼ 2
f� 4v̂ þ 2r0

R0

; (42)

while the other derivatives are the same as in (39). A compari-

son of the expression for RXX with that shown in (39) shows

that, approximately, the role played by 4v/e in (39) is the

same as that of 2ðf� 4v̂Þ in (42) and, indeed, Sijl et al.
(2010) show that the subharmonic threshold greatly decreases

by increasing f� 4v̂ similarly to what is shown in Fig. 5.

IX. MINIMIZING THE SUBHARMONIC THRESHOLD

Let us now consider in general terms how the subhar-

monic threshold can be reduced. Since the minimum of the

threshold occurs in the neighborhood of x0 ¼ 1
2
x, let us

rewrite the general expression (26) for x¼ 2x0; we find

PA

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2

0þ16b2
p

 !2

¼ 4b2

½2A=x2
0þ4Bþ3�2þ4

1

2
C�2b

� �2
:

(43)

From their definitions, we see that

2
A

x2
0

þ 4Bþ 3 ¼ � d

dX
logð�PX þ RXÞ

� 1þ P _X _X þ R _X _X

2qR2
0

: (44)

The bubble internal pressure depends on the bubble radius,

frequency, and nature of the gas, but for the small bubbles of

present concern, it will be close to isothermal. Thus, the

pressure terms in this relation cannot be easily manipulated.

The effect of the radial velocity is approximately embodied

in the relation (Prosperetti, 1991)

P

P0

¼ R0

R

� �3

1� c� 1

5c
R3

0

DR2
_R

� �

¼ ð1þ XÞ�3 � c� 1

5c
R2

0

D
ð1þ XÞ�5 _X; (45)

with c the ratio of the specific heats and D the thermal diffu-

sivity of the gas, from which it is seen that P _X _X ¼ 0. For

models of the type (27), R _X _X ¼ 0. The most effective way to

decrease the threshold by increasing (44) appears therefore

to endow the coating with a large value of (d/dX)

logRX¼RXX/RX. In the model of Marmottant et al. (2005),

for R0¼Rb, RXX/RX¼ (2� e)/e, which reflects the near-

discontinuity of RX in the neighborhood of the buckling ra-

dius. It would appear that any coating the properties of

which change rapidly for particular values of the radius (e.g.,

due to the transition to a close-packing of the constituent

molecules) would endow bubbles having a similar radius

with a very low subharmonic threshold.

Another way to decrease the threshold would be to

increase the combination 1
2

C� 2b without increasing the

damping b. From the definitions (12) and (15), with the mod-

els (45) for the pressure and (27) for the surface properties,

we find

1

2
C� 2b ¼ 2

5

c� 1

c
P0

qD
� 3jP0

qcR0

þ 2
gs � dgs=dX

qR3
0

: (46)

The first term also occurs in the expression for b, which is

2b ¼ 4
�

R2
0

þ c� 1

5c
P0

qD
þ 3jP0

qcR0

þ 4gs

qR3
0

; (47)

and, therefore, cannot be increased independently from b.
The second term (acoustic damping) is quantitatively

of minor importance. The most effective way to increase
1
2

C� 2b seems therefore to be to make dgs/dX more and

more negative while, at the same time, limiting the increase

of gs. Hence, again, we see the benefit of the rapid variation

of a coating property—the surface viscosity gs rather than

the surface elasticity as before—near particular values of the

radius.

X. HARMONIC

A treatment of the first harmonic response can be pro-

vided along lines similar to those used in Sec. VI. In this

case we set, in place of (22),

FIG. 5. Subharmonic threshold according to the model of Marmottant et al.
(2005). The different lines correspond to different values of the regularization

parameter e; see Sec. VIII D for details. Note how strongly the threshold can

be reduced with respect to the case of an uncoated bubble shown in Fig. 2.
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Y ’ Y2 ¼ Y0e2ixt þ c:c:; (48)

and, retaining only resonant terms, approximate (20) by

€Y 2 þ 2b _Y2 þ x2
0Y2 ¼ ½AX2

0 � x2BX2
0 þ ixCX2

0

� PAX0�e2ixt þ c:c: (49)

It is obvious that Y0¼ 0 is not a solution of this equation.

Thus, the harmonic component does not exhibit a threshold:

whatever the driving, a nonzero harmonic component is nec-

essarily present.

After substitution of (48) in the left-hand side of (49)

and some rearrangement one finds

jY0j2 ¼
PAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
0�x2Þ2þ 4b2x2

q
0
B@

1
CA

4

� ½Aþ ð1�BÞx2�x2
0�

2þ ðCþ 2bÞ2x2

ðx2
0� 4x2Þ2þ 16b2x2

: (50)

For an uncoated bubble this becomes

jY0j2 ¼
PAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
0 � x2Þ2 þ 4b2x2

q
0
B@

1
CA

4

�
Aþ 5

2
x2 � x2

0

� �2

þ 36b2x2

ðx2
0 � 4x2Þ2 þ 16b2x2

; (51)

which can be compared with the earlier expression

(Prosperetti, 1974):

jY0j2 ¼
PA

x2
0 � x2

� �4 Aþ 5

2
x2 � x2

0

� �2

ð4x2 � x2
0Þ

2 þ 16b2x2
: (52)

As in the previous case, the two results coincide except for

the small terms 4b2 and 36b2, which are both negligible. Of

course, the term 16b2 in the right-hand side denominator

cannot be dropped as this result is to be used in the neighbor-

hood of 2x � x0.

It may be noted that attempts to increase the quantity A
in order to lower the subharmonic threshold would in most

cases also have the effect of increasing the scattering ampli-

tude of the first harmonic.

XI. SUMMARY AND CONCLUSIONS

We have provided a simple derivation of the smallest

acoustic pressure amplitude necessary for the presence of a

steady subharmonic component in the ultrasound scattered

by a spherical bubble. By virtue of its generality, the result

can be readily adapted to a variety of models for the surface

coating of bubbles used as acoustic contrast agents, and we

have provided several examples in Sec. VIII.

A fundamental feature identified by the analysis is that

the subharmonic threshold can be considerably lowered with

respect to that of an uncoated bubble if the mechanical

response of the coating varies rapidly in the neighborhood of

certain specific values of the bubble radius, e.g., because of

buckling (or, possibly, rupture). The reason is that the subhar-

monic response is an inherently non-linear feature, and that

discontinuities or near-discontinuities in the response of the

coating introduce strong non-linearities even with a modest

acoustic drive. A specific example of this behavior is provided

by the “compression only” model of Marmottant et al. (2005).
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