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Abstract

The creation of character animation of humans, animals, or plants plays one of the

most important roles in computer graphics, with tremendous applications on creat-

ing motion pictures, video games, and virtual worlds. To this day, one of the most

popular character animation techniques is skinning, where a set of low-dimensional

control parameters is mapped to the high-dimensional geometric shape of the charac-

ter model. Once the skinning model is setup, a manipulation on control parameters

is propagated to the surface of the model accordingly, generating articulations and

deformations of the character model. Skinning techniques allow effective controls of

animation from different sources, such as artist input or motion capture data. In

addition, skinning techniques can be used to accelerate the animation rendering or

compress the motion data. This dissertation explores fundamental problems in the

skinning pipeline including the model set up and the hardware accelerated rendering

of animation. The scope of this dissertation only focuses on linear skinning models

with using bone transformations as the controller.

To setup the skinning model, I propose example-based rigging techniques to ex-

tract the linear blend skinning (LBS) model from mesh sequence of the character

model in different poses. The output LBS model consists of sparse, convex, and

smooth skinning weights and rigid (orthogonal) bone transformations with or with-

out a skeletal structure. The key contributions of my rigging technique are: (1)

a fast iterative linear solver to optimize the orthogonal bone transformations, (2)

a problem formulation and an optimization method to accurately constraint bone

rotations around skeletal joints, (3) a rigidness Laplacian regularizer to constraint

the smoothness of skinning weights, and (4) a robust method to extract the skeletal
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structure from an over-completed initialization.

To accelerate the rendering of the LBS model during animation, I introduce a

two-layer linear blend skinning model which can substantially reduce the computa-

tional cost of a dense-weight LBS model with insignificant loss of its visual quality.

This two-layer model allows fast skinning animation without requiring the sparseness

constraint on the skinning weights (dense-weight), which offers more flexibility on

applications of the LBS model. The two-layer model is constructed by the sparse

coding technique with directly using dense skinning weights or with using additional

example poses to further improve its accuracy.
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Chapter 1

Introduction

Computer animation is the process of generating motion pictures with the assistance

of computer. It plays a very important role in computer graphics with tremendous

applications on creating movies, video games, and virtual worlds. Perhaps, the most

important research subject in computer animation is animating characters such as

human, animals, or plants. In most common cases, the rendering of a character

to pictures uses the 3D surface geometry of the character such as a 3D triangle

mesh. In order to achieve the best visual effect, the geometry typically has very

high spatial resolution. With a large amount of details, the major challenge for the

animation pipeline is manipulating the complicated geometry in each time frame.

In the early era of computer animation, this task was done by skilled artists with

a tremendous amount of time spent on drawing or tweaking the surface geometry

at the pixel or vertex level at every time frame. Later on, this problem is handled

by skinning techniques, in which the idea is mapping a low-dimensional controller
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to the high-dimensional 3D geometry shape of the character. The activation of the

controller would be transferred to the surface of the character accordingly, generating

its articulation and deformation. The controller is manually activated by animators

but it can also use the input signals of popular animation control techniques such as

inverse kinematic or motion capture.

Problems. The two fundamental problems of character skinning are model setup

and skinning animation rendering :

• The model setup problem considers the design of the skinning model and the

determination the parameters of the skinning model. In the modern animation

pipeline, this skinning model setup is typically called rigging.

• The skinning animation rendering problem considers the integration of the

skinning model into the rendering pipeline. In this pipeline, the skinning model

acts as a computing model to take the input of control parameters, generate

the 3D surface geometry, and then pass it to fragment shaders for rasterization

and shading.

Challenges. Typically, designing a good skinning technique needs to deal with

several challenges:

• Deformation realism. Reproducing the skinning deformation of creatures such

as human and animals is very challenging due to their complicated anatomy

structures. The skinning deformation is typically the resulting effect of inter-

actions between many hard and soft layers, e.g. bones, tendons, muscles, flesh,
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fat tissue, and skin. For this reason, deformations of some body parts, such

as hand, arm, or face, become extremely difficult to model. With these body

parts, skinning techniques would typically find challenges in generating effects

such as muscle bulges or skin wrinkles.

• Control effectiveness. A simple and intuitive controller not only helps for reduc-

ing the manual effort on animation manipulation, but also helps for reducing

the effort to setup the skinning model. For example, using the skeleton as

the controller for articulated models such as a human is a natural way and it

makes the setup and animation very effective. Unfortunately, the most simple

and intuitive controller typically cannot achieve realistic deformation effects

like muscle bulges or skin wrinkles. For many cases, the controller space need

to be extended to enhance the deformation space.

• Computational effectiveness. Last but not least, the performance of skinning

models is very important, especially with real time applications, e.g. anima-

tion editing, video games, or virtual worlds. Recent skinning models can take

advantage of parallel computing processors such as GPUs or APUs. However,

this typically requires special implementations to make them compatible with

different graphics pipelines and graphics hardwares.

1.1 Contributions and Organization

This dissertation contributes to both fundamental problems of character skinning,

including:

3



Contributions for skinning model setup. I propose a solution to example-

based rigging (chapter 3), which extracts the linear blend skinning (LBS) model from

a set of different example poses. The output LBS model consists of sparse, convex

and smooth skinning weights and rigid (orthogonal) bone transformations with or

without a skeletal structure. I formulate the skinning from examples problem as a

minimization of the reconstruction error on the ground truth data with respect to

constraints of the LBS model (§3.2). I also present an optimization framework for

this problem (§3.3), which includes four technical contributions:

• A fast iterative linear solver to optimize the orthogonal bone transformations

(§3.8).

• A problem formulation and optimization method to accurately constrain bone

rotations around skeletal joints (§3.5).

• A rigidness Laplacian regularizer to constrain the smoothness of skinning weights

(§3.7).

• A robust method to extract the skeletal structure from an over-completed ini-

tialized solution (§3.9).

Contributions for skinning animation rendering. I introduce a two-layer

linear blend skinning model (chapter 4) which can substantially reduce the compu-

tational cost of a dense-weight LBS model with insignificant loss of its visual quality.

The introduced model is friendly to the parallel implementation on graphics hard-

wares such as GPUs. It also allows fast skinning animation without requiring the
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sparseness constraint on the skinning weights (dense-weight), which offers more flex-

ibility on applications of the LBS model. The two-layer model is constructed by the

sparse coding technique (§4.2) with directly using dense skinning weights or with

using additional example poses to further improve its accuracy.
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Chapter 2

Background on Character Skinning

2.1 Geometric Skinning

Geometry-based methods are the simplest skinning techniques. Although their sim-

plicity limits the deformation realism, geometric methods have several advantages

such as easy for implementation, high performance, and well supported by mathe-

matical models. For these advantages, geometry-based is still one of the most widely

used skinning methods.

2.1.1 Skeleton-based Skinning

This skinning model uses the anatomic skeleton of the subject as the controller. For

the sake of convenience, the skeleton can be simplified. In common practice, the

skeleton of any articulated object is typically represented as a rooted tree, where
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each tree node corresponds to a joint and each tree edge corresponds to a bone (Fig.

2.1(a)). Any two bones connected at a common joint are allowed to rotate relatively

together around the common joint. The joints are either ball joints with 3 degree of

rotations or hinge joints with 2 degree of rotations. Animation is then controlled by

specifying the rotation angles of all the joints, or posing the skeleton in other words.

(a) (b) 

Figure 2.1: (a) Skeleton-based animation (images courtesy of [14]

c©EUROGRAPHICS 2008). (b) Skeleton-based animation with bones repre-

sented by their transformations (images courtesy of [46] c©ACM 2013)

Linear Models

Among many proposed skinning techniques, linear blend skinning (LBS) is widely

known to be the most popular skinning computational model due to its effective-

ness, simplicity, and efficiency [50, 18]. It has many different names over the years.

For example, in existing 3D modeling and animation tools, it is called smooth skin-

ning (Autodesk Maya), bones skinning (Autodesk 3D Studio Max), or linear blend

skinning (the open-source Blender). In the research community, this technique have

other distinct names, including skeleton subspace deformation, enveloping, or vertex

blending.
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In the LBS model, skin deformation is driven by a set of bones. Every vertex

is associated with the bones via a bone-vertex weight map which quantifies the

influence of each bone to the vertices. The skin is deformed by transforming each

vertex through a weighted combination of bone transformations from the rest pose.

Assuming wij is the influence of j-th bone to the i-th vertex, pi is the position of

the i-th vertex at the rest pose, |B| is the number of bones, and Rt
j and T tj are the

rotation matrix and translation vector of the j-th bone at the t-th configuration,

respectively, then the deformed i-th vertex, vti , can be computed as follows:

vti =

|B|∑
j=1

wij(R
t
jpi + T tj ) (2.1)

Depending on specific applications, the above LBS model may impose certain

constraints. The weight map wij is normally required to be convex, i.e., wij ≥ 0 and∑|B|
j=1wij = 1. The first non-negativity constraint makes the transformation blending

additive. The second affinity constraint normalizes the influences/weights to prevent

over-fitting and deformation artifacts. The two constraints are critical for certain

applications such as animation editing. In addition, the sparseness constraint on the

weight map, which limits the number of non-zero bone weights per vertex, may be

applied to take advantage of graphic hardware capabilities. Many applications also

require Rt
j matrix to be orthogonal, e.g. animation editing, collision detection, and

skeleton extraction. The orthogonal constraint avoids any shearing or scaling effect

on the bone transformations, thus put the transformations into the rigid group. For

this reason, the bone transformation with orthogonal rotation matrix is also called
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the “rigid bone”.

Non-linear Models

Despite its wide uses, the linear skinning model has certain limitations. For example,

it suffers from artifacts such as the collapsing elbow or the candy-wrapper effects [18].

These artifacts are generated because the volume of the object is not preserved due

to the linear blending of rotations create a non-orthogonal matrix.

One popular technique to handle this issue is interpolating the rotation and trans-

lation parts individually [38]. While the translation interpolation is done in the linear

manner, interpolating the rotation part is non-linear. Kavan et al. [38] represent a

rotation matrix as a quaternion. A quaternion is a four-dimensional vector space

over the real numbers. The four bases of a quaternion are denoted as 1, i, j, k such

that

i2 = j2 = k2 = ijk = −1

With the four basis, any quaternion q can be represented by

q =a+ bi+ cj + dk

where a, b, c, d are four real numbers

The norm of quaternion q is defined by

||q|| =
√
a2 + b2 + c2 + d2

A quaternion q with norm ||q|| = 1 is called a unit quaternion. A unit quaternion has

3 degree of freedoms. Any rotation in the 3D Euclidean space, i.e. SO(3,R), can be

represented by a unit quaternion. Given two rotations in form of quaternion q1 and
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q2 and its center of rotation, q1 and q2 can be linearly blended by spherical linear

interpolation (SLERP) [68]. Extending the problem to n > 2 rotations, Kavan et al.

[38] first find the center of rotation by solving the least square of the drifting between

any two rotations. Then, n rotations are blended by quaternion linear interpolation

(QLERP). Although this method preserves the volume of the object by keeping the

interpolation in the orthogonal space, it requires additional computation for finding

the center of rotation.

Later in 2008, Kavan et al. [38] addressed the limitation of quaternion blending

by employing the dual-quaternion. A dual-quaternion is a quaternion with four bases

are dual numbers. A dual number â has two bases 1 and ε such that ε2 = 0. Thus,

a dual-quaternion is determined by a tuple of eight real numbers. In other words,

a dual quaternion q̂ can be represented as the sum of two ordinary quaternion, a

non-dual part q0 and a dual-part qε, as follow

q̂ = q0 + εqε

The norm of dual quaternion q̂ is defined by

||q̂|| =||q0||+ ε
〈q0, qε〉
||q0||

where 〈q0, qε〉 is the dot product

A dual-quaternion q̂ with norm ||q̂|| = 1 is called a unit dual-quaternion. Any rigid

transformation in the 3D space can be represented as a unit dual-quaternion. In

contrast with the quaternion, blending dual quaternions can be done directly in a

linear manner, follow by a normalization to the unit dual-quaternion.

Compared with the original linear matrix blending, blending in a quaternion or
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dual quaternion form preserves more rigidity of the transformation and thus reduces

the linear deformation artifacts. However, this advantage goes with a performance

trade off. The performance of quaternion blending is slowest due to the cost of cal-

culating centers of rotation. The dual-quaternion blending is faster than quaternion

blending but still slower than linear blend skinning due to the overhead of converting

transformation matrices to dual-quaternions and vice versa.

Multi-dimensional Models

The intrinsic limitation of the linear skinning model can also be tackled by expanding

the weight matrices into multi-dimensional.

The multi-weight enveloping technique [77] modifies the linear blend skinning by

using an individual weight for each entry of the transformation matrix. As the result,

the influence of a bone transformation to a vertex is represented by a 3× 4 matrix.

This extension allows the linear blending model to capture some complicated defor-

mation such as muscle bulges. Due to its high dimension, the weight map is solved

from examples by a linear least squares. The result can capture the deformation of

the input well, but it often suffers from over fitting. In addition, the weight map is

non-intuitive for the artist, thus making manual tuning challenging.

Jacobson et al. [31] proposed stretchable and twistable bones for skeletal shape

deformation. On top of the linear blend skinning, this model adds a scalar weight

function to each bone. The additional weights can be computed automatically from

the skeletal structure, or they can be painted manually in an intuitive way. The

additional weights have enriched the deformation space significantly. However, this

method only works with skeletons with given structure, since the weight function
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need to be calculated based on the two ends of each bone.

2.1.2 Cage-based Skinning

Cage-based skinning was inspired by the free-form deformation (FFD) [67] where

the space of the object is embedded into a grid-based deformation control. By

manipulating the grid nodes, the embeded object can be deformed (Fig. 2.2(a)).

By extending the grid to an arbitrary triangular mesh, the controller can be shaped

to approximate the model surface (Fig. 2.2(b)). The controller is the cage and its

vertices are the control points. The position of each vertex on the model is then

computed as a linear blend of positions of some cage vetices. The weights of this

linear blending is sometime called the coordinates of the vertex.

(a) (b) 

Figure 2.2: (a) Free-form deformation (images courtesy of [67] c©ACM 1986). (b)

Cage-based deformation (images courtesy of [33] c©ACM 2005)

Compared to the sksleton-based skinning, cage-based skinning offers more flexi-

ble control on deformation. For example, muscle bulge effects can be easily created.

However, buiding the cage for a particular model is time consuming. In addition,

cage-based skinning cannot take the full advantage of the hardware-based implemen-

tation due to the dense influence of the cage vertices to the model vertices.
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2.1.3 Skinning from Single Shape

Researchers have pursued two different directions to extract skeletons and the skin-

ning weights from a single static pose, serving for different purposes. In one direction,

curve skeleton extraction [6, 72, 52, 27] is typically focused on discovering the topol-

ogy of the skeleton (e.g., handle or loop) rather than its exact shape. In the other

direction, some methods focus on generating skeletons for animation [7]. Often, this

application requires the skeleton to be simple, where each bone is typically a line

segment.

Automatic methods have been also proposed to generate the skinning weights

from a static 3D model [7, 30]. On top of these skinning weights, artists can also

make manual adjustments (weight painting). However, it is non-trivial to obtain

best sets of weights for realistic skinning, especially for highly deformable models,

since the only input of these methods is a static shape of the object.

2.2 Anatomical Simulation Skinning

Realistic skinning can be achieved by setting up anatomical models, and then per-

forming simulation [69, 48, 56, 22, 62]. Compared to the geometry-based skinning,

simulation methods offer several advantages such as collision handling and secondary

deformation. Although most of standard 3D modeling/animation tools, e.g. Maya

or Blender, support physical simulation really well, designing an anatomical model

as well as setting up simulation parameters is not an easy task. Acquiring a full scan
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of a body with all the internal organs material properties is typically very costly or

even impossible for many of non-human creatures. Recently, Ali-Hamadi et al. [3]

proposed a semi-automatic approach to transfer anatomy structures that could be

used for quick animation setup. However, this method only works with human-like

creatures. Another limitation of simulation methods is performance. Although a

lot of effort has been put for reducing the computational complexity [59, 29, 23],

the performance of simulation methods are still very far away from the real-time

requirement.

2.3 Example-based Skinning

2.3.1 Input Data

Several early related efforts were pursued to accurately model the high fidelity skin-

ning deformation by using example poses. The example poses might be generated by

artists, or achieved by running physical simulation.

2.3.2 Skinning Weights Fitting

Typically, this approach uses the example poses as the training data to find the

optimum weights for the skinning model. The major works in this direction focus on

linear skinning models.

For example, Wang and Phillips [77] employ linear least squares to calculate the
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multi-dimensional weights given a set of examples poses and their corresponding

bone transformations. Mohr and Gleicher [58] fit the affinity weights (the sum of

weights for each vertex equals to 1) for linear blend skinning from examples.

The skinning from examples problem might be solved by regression technique.

Wang et al. [76] use a linear regression model to learn the correlation between bone

rotations and rotations of triangles on the surface of the object. The prediction tri-

angle rotations are used as the input for Poisson surface reconstruction [5] on the

skinning phase. Feng et al. [16] employ Kernel Canonical Correlation Analysis to

learn the relation between control handle transformations and the surface deforma-

tion.

The first reported solution to compute both bone transformations and bone-

vertex weights from example poses is the skinning mesh animations (SMA) method

[32]. In the SMA model, the bone transformations are determined by first clustering

the triangle rotation sequences and then associating each cluster transformation to a

bone. Then, the bone-vertex weights are calculated by linear least squares with soft

constraints. Although the SMA model provides a complete solution to the skinning

decomposition problem, essentially, it is still a combination of two separate solutions

of sub-problems rather than a unified framework. SMA is more effective for near-rigid

(e.g., articulated) objects than non-rigid models since the triangle rotations can be

clearly observed in the nearly-rigid objects. The SMA model is able to enforce hard

constraints on bone rotation matrices; however, it can only enforce soft constraints

on the bone-vertex weights (i.e., the affinity constraint). Due to this reason, it has

to face a trade-off between guaranteeing the affinity constraint on the weights and
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sacrificing the reconstruction error.

Later, following this direction, Hasler et al. [25] first segment the meshes of ex-

ample poses into rigid parts by applying spectral clustering to the triangle rotations.

Then, the bone transformations and bone-vertex weights are refined via an iterative

process, where the bone transformations are optimized by linear least squares with

soft constraints enforced on rotation matrices. The bone-vertex weights are solved by

non-negative linear least squares with L1-norm minimization to achieve sparse solu-

tions, followed by L1-norm normalization in order to enforce the affinity constraint.

Since all the employed constraints are soft, the iterative process cannot guarantee

its convergence in theory. In addition, the results need some corrections in order to

fulfill the requirement of being rotation matrices as well as being a convex weight

map.

Skinning for Hardware-accelerated Rendering

The skinning from examples technique can be used to accelerate the hardware-

supported rendering by reducing the control data transferred between CPU and

GPU. Kavan et al. [36] proposed an efficient solution to compute the compact set

of bone transformations in the dual quaternion form based on an arbitrary set of

example poses and the corresponding weight map computed by a simple smooth in-

terpolation of an even distributed bones over the surface of the object. During the

rendering phase, bone transformations are sent to the GPU instead of the original

geometry, which can save a significant amount of data transfer.

Kavan et al. [37] target on the reduction of the control data transferred between

CPU and GPU by a matrix decomposition manner. In their model, the vertices of
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example poses, denoted as a matrix A, are decomposed to A = TX, where T rep-

resents transformations and X represents the combination of the weight matrix and

the rest pose. Their approach does not enforce any constraints on the transforma-

tions T and thus their approach is suitable (and often limited) to compression and

GPU-accelerated high performance rendering applications.

2.3.3 Skeleton Extraction

Using motion data, the skeleton and joint locations can be determined more easily

than using a static pose alone. Anguelov et al. [4] proposed an early work to deal

with unorganized point cloud data. Due to the lack of temporal coherence, their

method is primarily designed to identify and track rigid components of the model.

Kirk et al. [40] use marker-based mocap data as the input for skeleton extraction,

exploiting the temporal coherence between mocap frames. Since both of the methods

use low spatial resolution data, they only focus on solving the joint locations between

two rigid body components, discarding the blending between bodies. Later, several

methods have been proposed to work with animated mesh sequences [66, 14, 25].

Since an animated mesh sequence offers much higher spatial resolutions than mocap

data, they can often produce quality skeletons along with the LBS model.

2.3.4 Basis Models

Skinning using basis models represents the shape or the deformation of the object

as an interpolation of basis shapes.
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Blend Shape is a linear interpolation technique where the object shape is then

determined by the weighted linear combination of the basis [49].

One common way to build the bases shapes is performing Principal Component

Analysis [63] on example poses. PCA maps the input data with possibly correlated

variables into an uncorrelated variable space via an orthogonal linear transformation.

PCA is widely known to be one of the most common dimension reduction techniques

that attempt to minimize the reconstruction error. In computer graphics applica-

tions, PCA and its various variations have been used for segmenting human motion

capture data into distinct behaviors [8], compressing animation sequences [64], hu-

man motion data retrieval [17], and recovering missing markers in motion capture

data [61].

Pose-space Deformation. Lewis et al. [50] pioneered the pose-space deforma-

tion (PSD) that treats the deformation problem as a shape interpolation problem

from a set of example poses, and it allows animators intuitively manipulate the set

of control poses and add additional poses to correct the deformation artifacts. Com-

pared to the blendshape model, PSD expands the deformation to the non-linear

space, thus, it can easily capture the detailed deformation [10].

Skinning Correction Example poses can also be used to correct the skin de-

formation on top of any other skinning method. In the EigenSkin model [42], the

deformation error is corrected by mapping back the per-vertex displacement error

from each key pose to the rest pose. Then, the displacement error is represented

in the Eigen space to reduce the storage. This compact representation allows the

deformation correction to be calculated in an effective manner with a low band-width.
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Chapter 3

Example-based Rigging

Figure 3.1: Only using a single set of parameters, my example-based method can

accurately rig various models such as quadrupled animals (a), humans (b, c), and

highly deformable models (d). My method can even generate bone structures for

challenging parts, such as the mouth and the two ears of the cat (a), the skirt (b),

and the elastic cow model (d). My method is robust; using only 9 frames, it can

generate a skeleton with 28 bones for the cat model (a); note that even though the

given example poses of the cat model have asymmetric poses, it still can generate an

almost symmetric skeleton without imposing any symmetry constraints.

Setting up the skeleton-based animation (also known as rigging), has become
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one of the major steps involved with tedious non-trivial manual interventions in

industry practice. Rigging a model currently consists of two main steps: building a

hierarchical skeleton with rigid bones connected by joints, and skinning the 3D model

to define how joint rotations and translations would propagate to the surface during

animation. In practice, animators typically repeat the two steps many times to refine

the model for best results. This trial-and-error method is costly and time-consuming,

since its two steps are often done manually or semi-automatically.

The concept of using example poses (i.e., a sequence of deformed mesh frames) for

rigging [66, 14, 25] has become increasingly applicable and useful in recent years. In

particular, deformed mesh sequences can be soundly reconstructed by performance

capture [15, 74, 75, 70] or by dense motion capture based on commercial systems [61].

Since the skeleton extracted from example poses is typically compatible with game

engines and popular animation software such as Autodesk Maya, it can be straightfor-

wardly used for various animation editing, compression, and rendering applications,

which helps to reduce production cost in industry practice.

The essential idea of these example-based rigging methods [66, 14, 25] is: first

perform motion-driven clustering to extract rigid bone transformations, then esti-

mate joint locations and bone lengths using linear or non-linear least squares, and

finally optimize the bone transformations and skinning weights. However, they have

the following limitations: first, nearly-rigid parts cannot be identified perfectly since

motion-driven clustering algorithms model neither skin blending nor skeletal struc-

ture. As such, this step would either require non-trivial model-specific parameter

tuning or result in an non-robust skeleton. Second, each step in this pipeline is
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performed on the output from the previous step; thus, each step does not model

any constraints on the previous or next steps. For example, the clustering step does

not model transformation blending, or after the joint locations are determined, joint

constraints would change the bone transformations generated at the previous step.

To the end, errors could be significantly accumulated (e.g., from the root joint to

leaf joints). Due to these issues, these rigging methods have limited accuracy and

robustness and therefore fall short of meeting the demand. Examples in Fig. 3.2

show two common limitations of these rigging methods.

Figure 3.2: Examples to show two common limitations of current rigging methods: (i)

an over-estimated bone initialization may generate inaccurate and redundant bones

(indicated by red arrows); (ii) an inaccurate estimation of bone transformations

(indicated by red arrows with ellipse) causes noticeable deformation errors when the

bones are connected by joints (see the change of the legs). The examples in this

figure are generated using [25].

In this chapter, I address the above limitations and introduce a robust and ac-

curate rigging framework that takes a set of example poses as input and produces

its corresponding Skeleton-based Linear Blend Skinning (LBS) model. The obtained
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LBS model includes skeletal structure, skinning weights, joint locations, and bone

transformations corresponding to all the example poses. This method can robustly

generate high-quality rigging models from a small set of example poses. As shown

in Fig. 3.1, my method can robustly generate high-quality rigging models from a

small set of example poses. Compared to previous methods [66, 14, 25], it offers the

following two advantages:

• Robustness. By automatically pruning redundant bones, my approach is

more robust than the previous methods that often suffer from an over-estimated

bone initialization.

• Accuracy. By formulating the solving of a LBS model with skeleton as a con-

strained optimization, my iterative approach can obtain more accurate joint

locations, bone lengths, corresponding joint rotations, as well as the recon-

struction of the example poses without accumulation of fitting errors.

The key component of my method is an Iterative Rigging algorithm (§3.3), which

alternatively updates skinning weights (§3.7), joint locations, and bone transforma-

tions (§3.8), and automatically prunes redundant bones (§3.9).

3.1 Notations

Input. The input data for my rigging method is an animated mesh sequence, a.k.a.

example poses, with temporal coherence between vertices, i.e. meshes in different

frames share the same topology. Let F be the number of frames (or example poses)
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in the sequence, N be the number of vertices in each mesh, and vfi ∈ R3 be the 3D

position of the vertex i in frame f . The input mesh sequence also includes the rest

pose mesh (a.k.a., the dressing pose), where the position of the vertex i in the rest

pose is denoted by ui ∈ R3.

Output. The output of the algorithm is the LBS model with skeletal structure,

joint positions, skinning weights, and bone transformations with respect to the input

poses.

The skeletal structure is an undirected tree S with B bones as nodes of the tree

and B−1 joints as edges of the tree. For the sake of convenience, we write (j, k) ∈ S

to denote (j, k) is an edge of the tree S, or bone j and bone k share a common joint.

This common joint is also denoted as (j, k), and the joint position (at the rest pose)

is denoted as Cjk, which is also the center of rotation of two bones j and k.

The skinning weights, a.k.a. bone-vertex influences, W = {wij} is a N×B matrix,

where wij denotes the influence of the j-th bone on the i-th vertex. The skinning

weights W are constrained to be sparse and convex. The sparseness constraints

allows no more than 4 non-zero weights per vertex, i.e. ‖wi‖0 ≤ 4,∀1 ≤ i ≤ N where

wi ∈ RN denotes the weights of vertex i. The convexity constraints includes non-

negativity constraints, i.e. wij ≥ 0,∀1 ≤ i ≤ N, 1 ≤ j ≤ B, and affinity constraints,

i.e.
∑B

j=1wij = 1,∀1 ≤ i ≤ N .

For each input example pose, my rigging algorithm also outputs the optimum

bone transformations corresponding to the example pose. The transformation matrix

of the j-th bone in the f -th example pose is
[
Rf
j |T

f
j

]
, where Rf

j denotes the 3 × 3
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rotation matrix and T fj denotes the 3 × 1 translation vector. The rotation matrix

Rf
j satisfies the orthogonal constraint, i.e. Rf

j

T
Rf
j = I and detRf

j = 1, where I is a

3× 3 identity matrix.

3.2 Problem Formulation

min
S,Cjk,wij ,[R

f
j |T

f
j ]

E =ED + ωES + λEJ (3.1a)

Where: ED =
1

NF

N∑
i=1

F∑
f=1

∥∥∥∥∥∥∥
B∑
j=1

wij[R
f
j |T

f
j ]

ui
1

− vfi
∥∥∥∥∥∥∥
2

2

(3.1b)

ES =
B∑
j=1

wj
TLwj (3.1c)

EJ =
1

F

∑
(j,k)∈S

F∑
f=1

∥∥∥∥∥∥∥
(

[Rf
j |T

f
j ]− [Rf

k |T
f
k ]

)Cjk
1


∥∥∥∥∥∥∥
2

2

(3.1d)

Subject to: wij ≥ 0,
B∑
j=1

wij = 1, ‖wi‖0 ≤ 4, ∀i, j (3.1e)

Rf
j

T
Rf
j = I, detRf

j = 1, ∀j, f (3.1f)

We minimize the objective function in Eq. (3.1a) to find the optimized LBS

model with skeletal constraints. The objective function E includes the following 3

terms:

• Data fitting term ED (Eq. (3.1b)) minimizes the mesh reconstruction error.

This term is the squared sum of the reconstruction errors for all the vertices

for all the example poses.
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• Weight regularization term ES (Eq. (3.1c)) favors the smoothness of skinning

weights (§3.7) and drives the removal of redundant bones (§3.9). We derive

this term from the fairness and smoothness conditions on the manifold, which

is similar to [39]. wj ∈ RN is the column vector of N skinning weights of bone

j, and L ∈ RN×N is a discrete Laplacian matrix of the input mesh, where Lik

represents the similarity between the weights of two neighboring vertices i and

k (refer to Eq. (3.11a) for detailed definition of L).

• Joint constraint term EJ (Eq. (3.1d)) keeps any two connected bone transfor-

mations ∈ S rotate around their common joint. This soft constraint is derived

from [4, 66]. If two bones j and k share the common joint (j, k), this constraint

favors the rest-pose position of the joint, Cjk, going to the same position after

bone j transformation and bone k transformation (also refer to the explanation

of Eq. (3.5) in §3.6).

The minimization of E is also subject to the set of hard constraints. It includes

convex constraints (non-negativity and affinity) and sparseness constraints (no more

than 4 non-zero weights per vertex) on the skinning weights wij (Eq. (3.1e)), and

includes orthogonal constraints (Eq. (3.1f)) on the bone transformations Rf
j (all the

bone transformations need to be rigid).
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Figure 3.3: The pipeline overview of our skeletal rigging approach.

3.3 Algorithm Overview

From the input data, our method generates skinning weights, skeleton structure,

joint locations, and corresponding bone transformations using the following three

main steps, as illustrated in Fig. 3.3.

Initialization (§3.4). From the animated sequence, we first identify near-rigid

parts and use each part to initialize one rigid bone transformation sequence. In this

step, we favor to produce an over-estimated number of bones. Redundant bones will

be later removed at the skeleton pruning step (§3.9).

Topology reconstruction. Using the initialized bone transformations, and

skinning weights to obtain the LBS without skeleton. Then, we reconstruct the

skeleton topology using minimum spanning tree algorithms on a weighted graph

that is inferred from the LBS (§3.6).
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Iterative rigging. The main component of our approach employs a block coor-

dinate descent strategy [9]. This step alternatively updates skinning weights, joint

positions, and bone transformations while keeping the remaining blocks fixed. Specif-

ically, the weights update minimizes E with respect to the data fitting and weight

regularization terms (§3.7); the joint positions update minimizes the joint constraint

term using [4]; the bone transformations update minimizes the data fitting and joint

constraint terms (§3.8). We repeat this alternative update process for a user-specified

maximum number of times, which is empirically set to 20 in our experiments. During

this process, we always prune redundant bones (§3.9) after each bone transforma-

tions update step. If a redundant bone is pruned, we will restart the iterative update

process by resetting the iteration counter to zero. In Eq. (3.1a), ω is a constant

determined by the Laplacian matrix (§3.7); λ starts with 1 and is multiplied by 1.5

after each iteration.

3.4 Initialization

Inspired by the work of [2, 28] that deformations should be as-rigid-as-possible in

order to achieve realistic visual results, our initialization assumes no surface defor-

mations appear. In other words, there is no bone-vertex weight blending. With this

assumption, each vertex is influenced by exactly one bone and its bone-vertex weight

is exactly 1. Then, the initialization problem becomes clustering N vertices into B

clusters, and all the vertices in one cluster follows the same rigid transformation.

For each cluster j of the animated vertices, we fit a rigid bone transformation
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[Rf
j |T

f
j ] to relate the vertex positions at the rest pose to the vertex positions at frame

f , where Rf
j ∈ R3×3 is an orthogonal rotation matrix and T fj ∈ R3 is a translation

vector.

Motion-driven vertex clustering. We apply the Linde-Buzo-Gray (LBG)

algorithm [51] to cluster vertices with similar rigid transformations. We first initialize

one cluster to include all the vertices. Then, by extending the cluster splitting-EM

strategy [51] to handle the mesh sequence data, we divide this initial cluster into two

clusters. Afterward, the same cluster splitting-EM strategy is repeatedly called to

further generate 4, 8, 16, and 32 clusters. We stop splitting at 32 clusters since all the

datasets used in this paper have no more than 32 bones. However, it is noteworthy

that the number of clusters can be more than 32 if needed (refer to Fig. 3.10), e.g.,

complicated models are inputted.

Cluster splitting-EM. This strategy consists of two sequential steps: (i) split-

ting one cluster into two, and then (ii) refining the resulting clusters using Expectation-

Maximization (EM). The details of the two steps are described below.

• Cluster splitting. Since we perform the motion-driven clustering without ex-

plicitly computing the feature vector for each vertex, the feature-based cluster

splitting step in the original LBG algorithm [51] cannot be directly applied.

Instead, we design a new cluster splitting scheme by considering the following

two criteria: (i) minimizing the approximation error, and (ii) keeping vertices

in the same cluster close together. To split a cluster j, we first compute O,

the rest-pose centroid of all the vertices belonging to j. Then, we find the seed
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vertex s belonging to j such that the product of its reconstruction error, e(s),

and the distance from its rest-pose position to the rest-pose centroid, d(us, O),

is maximum. Eq. (3.2a) shows its computing process, where L(i) denotes the

cluster label of vertex i. Finally, for all the vertices belonging to j, we use

the Euclidean distances from their rest-pose positions to us as the criterion to

evenly split them into two sets. Conceptually, we want to use the seed s and

its neighbors to initialize the new cluster centers (i.e., bone transformations).

The seed s is chosen as the off-center vertex with a large reconstruction error so

that the resulting new clusters can maximally reduce the overall reconstruction

error, as illustrated in Fig. 3.4.

s = arg max
i
{d(ui, O)e(s)} s.t. L(i) = j (3.2a)

where: d(ui, O) = ‖ui −O‖2

e(i) =

√√√√√√ 1

F

F∑
f=1

∥∥∥∥∥∥∥[Rf
j |T

f
j ]

ui
1

− vfi
∥∥∥∥∥∥∥
2

2

(3.2b)

• Cluster refining (EM). Similar to the K-means clustering algorithm, we can

refine the clusters after each split. Assuming each cluster j is represented as

a sequence of F bone transformations [Rf
j |T

f
j ] ( 1 ≤ f ≤ F corresponding to

the F example poses), the refinement process includes two alternative steps,

expectation and maximization . First, in the maximization step (a.k.a. as-

signment step), we associate each vertex to the bone which has the smallest

squared reconstruction error. Then, in the expectation step (a.k.a. updating
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step), we calculate the bone transformation based on all the associated vertices

by the Kabsch algorithm [34]. In this way, we find the best transformation for

pose f to relate the set of the associated vertices in pose f and the rest pose.

This assignment and updating process is repeated for several times (e.g., 5

times in our experiments) to achieve a good feasible clustering. To ensure the

robustness, we remove all the insignificant clusters after each updating step,

each of which has members (i.e., vertices) fewer than 0.1% of the total number

of the mesh vertices.

Seed Vertex us 

Cluster Split Here 

Input Example Pose 
Reconstructed Mesh 

after Splitting 
Reconstructed Mesh 

after Splitting 

Figure 3.4: An illustration of our cluster splitting strategy. The seed vertex is chosen

as the off-center vertex with a large reconstruction error so that the resulting new

clusters can maximally reduce the overall reconstruction error.

Connected patches generation. The motion-driven clustering algorithm only

assigns a vertex to the cluster using the smallest reconstruction error criterion, ig-

noring the mesh connectivity information. Thus, more than one rigid parts might

be assigned to one cluster if they have similar motions. To keep only one rigid part

per bone, we simply find all the connected components (i.e., patches of vertices) for

each cluster, and then initialize a new rigid bone transformation for each connected

component.
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The LBG algorithm is as fast and simple as K-means clustering, yet it is still suf-

ficiently robust compared to more costly solutions such as Mean Shift clustering [32]

and Agglomerative clustering [66]. Having a few redundant clusters at the initial-

ization step would affect our final result negligibly at most, thanks to our skeleton

pruning step that removes redundant bones. Thus, an accurate estimation of the

number of clusters is not required at the initialization step in our approach.

3.5 Joint Constraints and Joint Positions Solver

3.5.1 Joint Constraints

We use the constraints proposed by [4] to make bone transformations rotate around

common joints. Assumming the two bones j and k share the same joint Cjk. Intu-

itively, Cjk is the point such that its locations after both bone transformations are

most similar in all frames. Thus, the joint fitting error in Eq. (3.3) will be close to

zero.

F∑
f=1

∥∥∥∥∥∥∥
(

[Rf
j |T

f
j ]− [Rf

k |T
f
k ]

)Cjk
1


∥∥∥∥∥∥∥
2

2

→ 0 (3.3)

3.5.2 Joint Positions Solver

Given the two bone transformations sequences [Rf
j |T

f
j ] and [Rf

k |T
f
k ], we can find

the common joint of bone j and bone k by minimizing the joint fitting error (3.3).
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However, many joints of articulated creatures are hinge joints, which only have one

degree of freedom (rotation). For these type of joints, any point in the rotation axis

will be minimum solution of (3.3). To make the solution unique, we use the solution

proposed by Anguelov et al. [4], which add a soft constraint to minimize the distance

between joint position to the centroid of two bones:

min
Cjk

F∑
f=1

∥∥∥∥∥∥∥
(

[Rf
j |T

f
j ]− [Rf

k |T
f
k ]

)Cjk
1


∥∥∥∥∥∥∥
2

2

+ µ ‖Gj +Gk − 2Cjk‖22 (3.4)

Here, the two centroid Gj and Gk are the weighted centroid of all the vertices

ui with the weights are the skinning weights wij or wik. The parameter µ control

the trade off between joint fitting error and joint position error. µ is set to a small

number i.e. 0.01.

For the sake of robustness, we suggest to compute the center of rotation between

two bones using [4], instead of [66]. We found that the pseudo-inverse solver in [66]

tends to find the wrong subspace if the bone rotations are non-robust. In contrast,

the regularization term in [4] only depends on the centroid of two bones, which is

more robust to estimate. As the trade-off, [4] gives a slightly larger approximation

error than [66].
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3.6 Skeleton Reconstruction

We reconstruct the skeleton topology using both bone transformations and mesh

connectivity information. First, we run the alternative skinning weights update

(§3.7) and bone transformations update without skeleton (§3.8) for 10 iterations to

refine the bone transformations and generate skinning weights from the initialization

step. To improve the robustness, we start with only one non-zero weight per vertex

and increase the number of weights-per-vertex by one every 3 iterations. The output

of this step is bone transformations [Rf
j |T

f
j ] ∈ R3×4 and skinning weights wij ∈ R,

where i, j, and f denote a vertex index, a bone index, and a frame index, respectively.

We construct a weighted graph G with B nodes (corresponding to B bones).

The weight g(j, k) between bone j and bone k is computed by Eq. (3.5), which

puts a strong preference for having the joint (j, k) if the joint location fitting error

(numerator) is small and the blending of two bones (denominator) is large. The joint

fitting error is computed as the sum of squared difference of the center of rotation

of two bones, Cjk, after the two transformations of bone j and bone k. Here, the

center of rotation Cjk between two bones j and k is defined at the rest pose, and its

position is computed by [4] as described in §3.5. Since Cjk is the point such that its

locations after both bone transformations are most similar in all frames; thus, the

joint fitting error (the numerator in Eq. (3.5)) measures the quality of having the

joint between bone j and bone k. The blending of two bones (the denominator in

Eq. (3.5)) gives another measure on the relative position of the two bones, in which a

larger blending means the two bones are more likely to share the common joint; and
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vice versa. As the result, g(j, k) is large if bone j and bone k have a high probability

of sharing the common joint.

g(j, k) =

∑F
f=1

∥∥∥∥∥∥∥
(

[Rf
j |T

f
j ]− [Rf

k |T
f
k ]

)Cjk
1


∥∥∥∥∥∥∥
2

2∑N
i=1wijwik

(3.5)

Finally, we determine the skeleton S as the Minimum Spanning Tree (MST) of

G [41], which is similar to the idea of previous methods [40, 66, 14, 25]. For the sake

of convenience, we write (j, k) ∈ S to denote (j, k) is an edge of the tree S, or bone

j and bone k share a common joint. This common joint is also denoted as (j, k),

and the joint position (at the rest pose) is denoted as Cjk, which is also the center

of rotation of two bones j and k.

In practice, the root of the skeleton is often manually specified. For the sake of

visualization purpose, we simply set the root as the joint that is the closest to the

centroid of the rest pose for visualization purpose. Given the root of the skeleton

and each bone transformation, we can straightforwardly compute the joint rotations

and bone lengths. However, to ensure the readability of this paper we only use the

raw representation of the skeleton, that is, an unrooted skeleton with bone transfor-

mations.

For the sake of robustness, we suggest to compute the center of rotation between

two bones using [4], instead of [66]. We found that the pseudo-inverse solver in [66]

tends to find the wrong subspace if the bone rotations are non-robust. In contrast,

the regularization term in [4] only depends on the centroid of two bones, which is
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more robust to estimate. As the trade-off, [4] gives a slightly larger approximation

error than [66].

3.7 Skinning Weights Update

3.7.1 Non-negative Least Squares with Affinity Constraint

The skinning weights wij are updated by fixing the skeleton, joint positions, bone

transformations and find the optimized wij subject to the non-negatively and the

affine constraint (Eq. (3.1e)). Thus, the building block for the weights update is the

constrained linear least square (3.6).

Wi
T = arg min

x
‖Ax− b‖2 (3.6)

Subject to: x ≥ 0

Jx = 1, J = (1, 1, . . . , 1)

The problem (3.6) is a particular case of the general linear least squares with

equality and inequality constraints, in which the equality constraint could be in a

form of Cx = d and the inequality constraint could be in a form of Ex > f . One

widely-used solution to the general linear least squares problem is the Active Set

Method (ASM) [20].

The performance of the classical ASM solver is slow since it involves many itera-

tions to find the true active set (i.e. a subset of constraints that are exactly satisfied).
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Each iteration needs to solve one unconstrained linear least squares problem corre-

sponding to the current active set and then change one constraint from the active

set to the inactive set or vice versa. Starting from an estimation of the active set,

the algorithm stops when the true active set is found. Based on the original ASM

solver [20, 11, 60], we make the following two major modifications:

1. The first modification is to initialize a feasible solution only in the first run:

x = 1/n and the corresponding active set W . Later, our FASM algorithm

uses the value of x from the previous run as the initial value in the next run.

Since our block coordinate descent algorithm (Algorithm 3) updates the bone-

vertex influences in every iteration and converges to the optimal solution, we

assume the value of x and the active set will not be changed significantly in late

iterations. Thus, re-using the solution in the previous step for initialization

would save unnecessary computational efforts. Actually, a similar idea was

successfully used for aircraft control allocation [24].

2. The second modification is to pre-compute the cross products A = ATA and

B = ATb, as proposed in [13], since the solution of the unconstrained linear

least squares Ax = b is the same as that of ATAx = ATb. Thus, we can solve

the least squares p = arg min ‖A(x+ p)− b‖2 with equality constraint Jp = 0

and active set constraint pi = 0,∀i ∈ W via A and B. By doing so, each

iteration on active set needs to solve the linear least squares with the size of

the unknowns x, regardless the number of equations. Specifically, the number

of unknowns equals to the number of desired bones, which is typically much

smaller than the number of equations (i.e. the number of input example poses).

38



Note that the A and B can also be used to calculate the Lagrange multipliers

in equation (3.7).

As described in Algorithm 1, in the proposed FASM algorithm, we first initialize

a feasible solution x = 1/n and its corresponding active set W (line 3). In each

iteration (line 5 to 25), we first solve the descent direction p for all pi with i-th

constraint active (line 6). Here we enforce the constraint Jp = 0 to ensure the

moving of x in the direction of p would satisfy the equality constraint J(x+αp) = 1.

If x+p ≥ 0, we move the current solution by p, i.e. let x← x+p (line 8), otherwise,

we move the current solution by x ← x + αp with the maximum step α > 0 and

update the active set W (line 17 to line 23).

In line 9 to 15, the KKT conditions (3.7) [43, 9, 60] are used to check the optimum

of the current solution x. Using these KKT conditions, we calculate the Lagrange

multiplier λi for each constraint i /∈ W . In this equation, each unknown λi corre-

sponds to the inequality constraint xi ≥ 0 and the unknown µ ∈ R corresponds to

the equality constraint Jx = 1. Since the equality constraint Jx = 1 is always true,

there are at most n − 1 active inequality constraints. Thus, the system of equation

(3.7) is never under-determined. In addition, the solution x always satisfies all the

constraints, the system of equation (3.7) is always consistent.

[
JT I

]µ
λ

 = AT(Ax− b) (3.7)

λi = 0,∀i /∈ W
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Algorithm 1 Active Set Algorithm for Linear Least-Squares with Equality and

Inequality Constraints

Input: A ∈ Rm×n, b ∈ Rm

Output: x∗ = argmin ‖Ax− b‖2 s.t. x ≥ 0 and Jx = 1

1: A ← ATA

2: B ← ATb

3: Initialize a feasible solution x = 1/n if necessary

4: Initialize active (working) set W ← {i|xi = 0}
5: loop

6: Solve p = argmin ‖A(x+ p)− b‖2 s.t. Jp = 0 and pi = 0,∀i ∈ W via A and B by

algorithm 2

7: if x+ p ≥ 0 then

8: x← x+ p

9: Compute the Lagrange multipliers λ asscociated with W by equation (3.7)

10: if λi ≥ 0,∀i then
11: return x∗ ← x is the optimal solution

12: else

13: i∗ ← argmini∈W λi

14: W ←W\i
15: end if

16: else

17: α← −maxi/∈W xi/pi

18: if α ≤ 0 then

19: return x∗ ← x is the optimal solution

20: else

21: xi ← xi + αpi, ∀i
22: W ← {i|xi = 0}
23: end if

24: end if

25: end loop
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3.7.1.1 Handling Equality Constraints

In the above Algorithm 1, we need to solve a sub-problem of linear least squares

with equality constraint Jp = 0 (zero-sum) (line 6). This problem can be solved

by a direct elimination method, which removes the constraint by transforming the

problem to a lower dimension, such as one unknown is set to be p1 = −
∑n

i=2 pi as

proposed in [58]. However, this solution would change the cost function and thus

may break the convergence of our main algorithm. Instead, we can use an orthogonal

projection to preserve the cost function [11].

Suppose we need to solve for x′ in the linear least squares with h equality con-

straints (Equation (3.8)).

min
x′
‖A′x′ − b′‖2 s.t. C ′x′ = d′ (3.8)

x′ ∈ Rk, C ′ ∈ Rh×k

Direct elimination is performed via the following QR decomposition:

C ′
T

= QR = [ Q1︸︷︷︸
h

| Q2︸︷︷︸
k−h

]

R1

0

 s.t. QQT = I

Let
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QTx′ =

y
z

⇔ x′ = Q

y
z


We have

d′ = C ′x′ = RTQTx′ = RT

y
z

 = R1
Ty

and

A′x′ = A′QQTx′ = A′[Q1|Q2]

y
z

 = A′Q1y + A′Q2z

Then, the problem (3.8) becomes an unconstrained linear least squares

min
z
‖A2z − (b′ − A1y)‖2

Where: A1 = A′Q1

A2 = A′Q2

RT
1 y = d′

x′ = Q

y
z


The solution of this unconstrained linear least squares is
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z = (A2
TA2)

−1A2
T(b′ − A1y) (3.9)

Applying the above calculations and transformations to our particular problem

of linear least squares with equality constraints in line 6 of Algorithm 1, we can

further simplify all the equations and achieve Algorithm 2. Here we need to solve

for k = n− |W| unknowns, and each unknown corresponds to an inactive inequality

constraint. The matrix A′ contains all columns of A with indexes not in W , b′ =

b− A′x, C ′ = J{k} = (1, 1, . . . , 1) ∈ Rk, and d′ = 0.

The QR decomposition of C ′ = J{k} can be pre-computed as follows:

J{k}
T

= Q{k}R{k} =

[
Q
{k}
1 |Q

{k}
2

]
R{k}

1

1

1

1

...

1


︸︷︷︸
J{k}

T

=



α

α

α

α

...

α︸ ︷︷ ︸
Q
{k}
1

α α α · · · α

δ γ γ · · · γ

γ δ γ · · · γ

γ γ δ · · · γ

...
...

...
. . .

...

γ γ γ · · · δ


︸ ︷︷ ︸

Q
{k}
2 ∈Rk×(k−1)



ρ

0

0

0

...

0


︸︷︷︸
R{k}

(3.10)

Here: α = −1/
√
k, δ = γ + 1, γ =

−1

k +
√
k
, ρ = −

√
k

In Algorithm 2, we can represent the two matrix products A2
TA2 and A2

T(b′ −

A1y) in (3.9) via the pre-calculated matrices A = ATA and B = ATb. The final
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simplified calculations are shown in lines 1 to 7 of Algorithm 2, where Ã = A2
TA2

and B̃ = A2
T(b′ − A1y).

Algorithm 2 Linear Least-Squares with Zero-Sum Constraint

Input: A ∈ Rn×n,B ∈ Rn, x ∈ Rn,W ⊆ {1 . . . n}

Output: p = argmin ‖A(x+ p)− b‖2 s.t. A = ATA,

B = ATb, Jp = 0 and pi = 0,∀i ∈ W

1: B′ ← B −Ax

2: AW ← Rows and columns of A with indexes not in W

3: BW ← Rows of B′ with indexes not in W

4: Compute Q
{k}
2 ∈ Rk×(k−1) by the QR decomposition in equation (3.10), where k =

n− |W|

5: Ã ← Q
{k}
2

T
AWQ{k}2

6: B̃ ← Q
{k}
2

T
BW

7: p̃← Ã−1B̃

8: pW ← Q
{k}
2 p̃

9: return p← Corresponding rows of pW , other rows are 0

3.7.2 Rigidness Laplacian Regularizer

Conventional least squares (LS) skinning weights solvers [32, 66] are sensitive to

noisy data. When the sparseness constraint is imposed, the LS solver might generate

skinning fractures, i.e., visible discontinuities on the surface (examples are shown as

the ω = 0 case in Fig. 3.5), as some neighboring vertices are associated with different

bones. Thus, we add a weight regularization term to make our algorithm robust.
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Instead, I propose a rigidness Laplacian L computed by Eq. (3.11a), where the

rigidness weight dik penalizes the maximum change of the Euclidean distance between

vertex i and vertex k with respect to the rest pose (Eq. (3.11b)). Intuitively, if vertex

i and vertex k belong to the same nearly-rigid part, the distance between them should

not change much, resulting in a large rigidness weight dik and highly similar skinning

weights for vertex i and vertex k (i.e., wi and wk).

Lik =



1 if k = i

− dik∑
h∈N (i) dih

if k ∈ N (i)

0 otherwise

(3.11a)

Where: N (i) denotes all the 1-ring neighbors of vertex i

dik =
1√

1
F

∑F
f=1

(∥∥∥vfi − vfk∥∥∥
2
−
∥∥∥ui − uk∥∥∥

2

)2 (3.11b)

With the proposed matrix L, we empirically set ω = 10−3 for all the experiments

in this paper. This parameter is determined by first resizing all the datasets to tightly

fit their rest poses in a unit sphere and then observing the deformation smoothness

for different ω values, examples of which are shown in Fig. 3.5.

3.7.3 Iterative Local Solver

Without the smoothness term Es, skinning weights can be updated per-vertex [32, 45]

since the weights of each vertex are independent of those of other vertices. In our
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Figure 3.5: The effect of different weight smoothness regularizations. Compared

to the graph Laplacian [57, 39], our rigidness Laplacian regularization offers better

smoothness while still preserving the global shape. Note that how the graph Lapla-

cian over-smooths the fracture while it starts to change the global shape (indicated

by red circles). Our rigidness Laplacian is robust as demonstrated by the similar

results with different ω values.

case, the weights of all the vertices are related to each other in the smoothness term

Es (refer to Eq. (3.1c)). Unfortunately, a global weights update of all the vertices

is impractical with a very large number of unknowns (N × 4). Instead, we use an

iterative local optimization strategy similar to the one used in [44]. Specifically, we

iterate all the vertices one by one (with the given order in the input). For each vertex

î, we fix the weights of its one-ring neighbors and minimize the objective function,

Eq. (3.1a), with respect to weights wî ∈ RB. Then, this problem becomes a linear

least squares problem with convex and sparseness constraints as follows:
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min
wî

1

NF

F∑
f=1

∥∥∥∥∥∥∥
B∑
j=1

wîj[R
f
j |T

f
j ]

uî
1

− vf
î

∥∥∥∥∥∥∥
2

2

+ ω

N∑
i=1

Lîi ‖wî − wi‖
2
2 (3.12)

The above least squares problem can be solved in a similar way as [32]. Specifi-

cally, we handle the sparseness constraint by greedily selecting 4 weights with smallest

residuals when used to individually estimate the objective function, Eq. (3.12). Then,

we perform non-negative linear least squares with the affinity constraint on the set

of 4 selected weights to compute their values (§3.7.1). Note that its size is relatively

small since L is a sparse matrix. As suggested by Landreneau and Schaefer [44],

we iterate the local solver a few times proportional to the number of mesh vertices.

Since these iterations are mixed with the iterations of the global block coordinate

descent, a small number of iterations are typically sufficient to reach the convergence

in our experiments, e.g., 0.05 percent of the total number of the mesh vertices.

Note that similar solutions of using graph Laplacian for skinning weights regu-

larization have been proposed [57, 39]. However, in their methods, the Laplacian

matrix is computed only based on the graph of a single mesh; it is insensitive to

the deformation over the whole mesh sequence. In contrast, our rigidness Laplacian

regularization takes the deformation of the whole mesh sequence into consideration

(Fig. 3.5).
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3.8 Bone Transformations Update

3.8.1 Absolute Orientation Problem

The Absolute Orientation problem, a.k.a. procrustes problem, is the problem of

finding the best rotation and translation to transform one set of points to another

set of points. Assumming we want to find the transformation [R|T ] to transform the

set of N points pi to another the set of N points qi, the general strategy [26, 34]

is minimizing the sum of square error beween all qi and all pi after applying [R|T ].

This is equivalent to minimizing the objective function (3.13) with respect to the

orthogonal contraint RTR = I of the rotation matrix.

min
R,T

N∑
i=1

‖(Rpi + T )− qi‖2 (3.13)

The solution for this minimization problem is proposed by Kabsch [34]. We first

need to subtract both points sets to their centroid in order to remove the translation

from the objective function. Then, we find the best rotation by Singular Value

Decomposition.

Specifically, the centroids of points sets are:

p∗ =
1

N

N∑
i=1

pi, q∗ =
1

N

N∑
i=1

qi (3.14)

Then, we perform translations for all the set of vertices as follows:
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pi = pi − p∗, qi = qi − q∗ (3.15)

Finally, the optimal transformation is computed by performing Singular Value

Decomposition:

R = ϑµT; T f
ĵ

= q∗ −Rp∗ (3.16a)

Where: µςϑT =
∑

i = 1Npiq
T
i (3.16b)

3.8.2 Rigid Transformations with Blending

In this step, we need to fix the bone-vertex influences and minimize the objective

function (4.1a) with respect to the bone rotations R and the bone translations T

over the set of example poses. Since the bone transformations for every pose are

independent, we can solve the minimization for each pose individually. For the pose

t, the problem then becomes finding the set of bone transformations to associate the

vertices in the rest pose {pi} to the vertices {vti} in pose t through minimization of

the objective function (Equation (3.17)).

min
Rt,T t

Et = min
Rt,T t

N∑
i=1

∥∥∥∥∥vti −
B∑
j=1

wij(R
t
jpi + T tj )

∥∥∥∥∥
2

(3.17)

The above quadratic optimization problem (3.17) can be solved by the Levenberg-

Marquardt algorithm [55]. However, this algorithm is inefficient since it requires
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many iterations to find the accurate optimum. Many other approaches have been

proposed to approximate the result or tackle similar problems. For example, Horn

[26] proposed a closed-form solution for the Absolute Orientation problem, which is a

particular case of (3.17) with only one bone transformation to be solved. Schaefer et

al. [65] slightly change the cost function and solve the new problem by the Moving

Least Squares (MLS) framework. The MLS solution, however, is not the exact

solution to the original problem (3.17). Recently, Kavan et al. [36] proposed a closed-

form solution by transforming (3.17) to the Dual Quaternion space. Unfortunately,

due to the non-linear nature of this transformation, it cannot preserve the error

metric in the original space. In order to update the bone transformations, we can

apply all these methods, however, none of them can guarantee the convergence of our

main algorithm, except the high computational cost Levenberg-Marquardt algorithm

[55].

To overcome this limitation, we update the bone transformations one by one

instead of updating all of them at once (Fig. 3.6). However, our updating can

guarantee the non-increasing of the global objective function (4.1a). By doing so,

we essentially break the problem with multiple transformations to simpler problems

where we need to only deal with a single transformation. Then, the simple problem

of finding the optimal transformation of the bone ĵ for the example pose t can be

solved by minimizing the following objective function:

Et
ĵ

=
N∑
i=1

∥∥∥∥∥∥vti −
B∑

j=1,j 6=ĵ

wij(R
t
jpi + T tj )− wiĵ(R

t
ĵ
pi + T t

ĵ
)

∥∥∥∥∥∥
2

(3.18)
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Figure 3.6: Comparison of the Weighted Absolute Orientation solution [26, 34] on

the left and our iterative bone transformations update on the right. The blue dots

indicate vertices in the example pose. The red plus signs (+) indicate the target

positions for the red bone transformation fitting. While the Weighted Absolute

Orientation only provides an approximate solution due to the deformation of the

target positions in the example pose, our iterative converges to the true optimum

solution by calculating the target positions as the residual of the deformation caused

by the remaining bones (the green bone).

Let

qti = vti −
B∑

j=1,j 6=ĵ

wij(R
t
jpi + T tj ) (3.19)

The problem of finding the optimal transformation then becomes:
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{Rt
ĵ
, T t

ĵ
}∗ = arg min

Rt
ĵ
,T t

ĵ

Et
ĵ

= arg min
Rt

ĵ
,T t

ĵ

N∑
i=1

∥∥∥qti − wiĵ(Rt
ĵ
pi + T t

ĵ
)
∥∥∥2 (3.20)

Subject to: Rt
ĵ

T
Rt
ĵ

= I, detRt
ĵ

= 1

The problem (3.20) is similar to the original Absolute Orientation problem [26],

in which we need to find the transformation to relate the two sets of vertices. The

only difference is the scope of the weight term. Inspired by the work of [26], we can

first remove the translation T t
ĵ

and then solve for the optimum rotation. This is done

by translating all the vertices to bring the center of rotation to the origin for each

set of vertices. Let

p∗ =

∑N
i=1w

2
iĵ
pi∑N

i=1w
2
iĵ

, qt∗ =

∑N
i=1wiĵq

t
i∑N

i=1w
2
iĵ

(3.21)

Then, we perform translations for all the set of vertices as follows.

pi = pi − p∗, qti = qti − wiĵq
t
∗ (3.22)

The cost function (3.20) yields
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Et
ĵ

=
N∑
i=1

∥∥∥qti + wiĵq
t
∗ − wiĵ[R

t
ĵ
(pi + p∗) + T t

ĵ
]
∥∥∥2

=
N∑
i=1

∥∥∥qti − wiĵRt
ĵ
pi − wiĵ[T

t
ĵ
− qt∗ +Rt

ĵ
p∗]
∥∥∥2 (3.23)

Let τ = T t
ĵ
− qt∗ +Rt

ĵ
p∗, (3.23) yields

Et
ĵ

=
N∑
i=1

∥∥∥qti − wiĵRt
ĵ
pi − wiĵτ

∥∥∥2 =
N∑
i=1

∥∥∥qti − wiĵRt
ĵ
pi

∥∥∥2
− 2τ

N∑
i=1

(wiĵq
t
i − wiĵ

2Rt
ĵ
pi) +

N∑
i=1

∥∥wiĵτ∥∥2 (3.24)

From equations (3.21) and (3.22), we have
∑N

i=1wiĵq
t
i = 0 and

∑N
i=1wiĵ

2Rt
ĵ
pi = 0.

Simplifying equation (3.24) yields

Et
ĵ
→ min⇔



N∑
i=1

∥∥∥qti − wiĵRt
ĵ
pi

∥∥∥2 → min (3.25)

N∑
i=1

∥∥wiĵτ∥∥2 → min⇔ τ = 0 (3.26)

From equation (3.26), we can calculate the optimum translation T t
ĵ

as follows if

the optimum rotation Rt
ĵ

is known.

T t
ĵ

= qt∗ −Rt
ĵ
p∗ (3.27)
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After the translation T t
ĵ

is removed, we find the optimum rotation Rt
ĵ

by minimiz-

ing (3.25). First, we construct two matrices P = [w1ĵp
t
1 . . . wNĵp

t
N ] andQ = [qt1 . . . q

t
N ]

(P,Q ∈ R3×N). The objective function in (3.25) becomes

N∑
i=1

∥∥∥qti − wiĵRt
ĵ
pi

∥∥∥2 =
N∑
i=1

∥∥∥qti −Rt
ĵ
(wiĵpi)

∥∥∥2
=
∥∥∥Q−Rt

ĵ
P
∥∥∥
F

= tr((Q−Rt
ĵ
P )T(Q−Rt

ĵ
P ))

= tr(QTQ)+tr(PTRt
ĵ

T
Rt
ĵ
P )− 2tr(QTRt

ĵ
P )

Where ‖.‖F denotes the Frobenius norm and tr(.) denotes the matrix trace. Since

P and Q are constant matrices and Rt
ĵ

T
Rt
ĵ

= I, the problem then becomes maximiz-

ing

ζ = tr(QTRt
ĵ
P ) = tr(PQTRt

ĵ
)→ max (3.28)

Then, SVD is performed on PQT as follows:

PQT =
N∑
i=1

wiĵpiqi
T = µΣϑT (3.29)

We can rewrite the objective function ζ in equation (3.28) as follows:

ζ = tr(µΣϑTRt
ĵ
) = tr(ΣϑTRt

ĵ
µ)
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Since ϑ, Rt
ĵ
, and µ are orthogonal matrices, ϑTRt

ĵ
µ is an orthogonal matrix as

well. In addition, since Σ is a diagonal matrix, we have tr(ΣϑTRt
ĵ
µ) ≤ tr(Σ). Thus,

ζ → max⇔ ϑTRt
ĵ
µ = I ⇔ Rt

ĵ
= ϑµT (3.30)

3.8.3 Adding Joint Constraints

To enforce the joint constraints while updating the rigid bone transformations, I

employ the solution to the Absolute Orientation problem with blending to relate

two sets of points [45] while the joints are treated as additional points with a large

weight (λ). When the parameter λ is increased, bones are constrained to rotate more

strictly around the joints as illustrated in Fig. 3.7.

Figure 3.7: (Left) Without the joint constraints, the bone transformations (bones)

generated by [45] do not always rotate around the joints. (Right) With the soft joint

constraints, bones rotate more strictly around the joints. Since the bone transfor-

mations are alternatively updated with the joint locations, our rigging model can

converge to a local optimum with a good approximation of the input.
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At this bone transformations update step, we need to minimize the objective

function (Eq. (3.1a)) with respect to the bone transformations [Rf
j |T

f
j ]. To constrain

the rotation matrix Rf
j to be orthogonal, we employ the optimization strategy for

the rigid transformations with blending, where bones are updated one by one while

keeping the rest of the bones fixed.

The transformation of bone ĵ at frame f is updated by minimizing the following

objective function, Eq. (3.31a), which contains two parts. The first part corresponds

to the data fitting term (Eq. (3.1b)) whose optimal solution brings the rest pose ui to

the residual qfi (Eq. (3.31b)). The second part corresponds to the joint constraints in

Eq. (3.1d), which enforces [Rf

ĵ
|T f
ĵ

] to bring every joint Cĵk of bone ĵ to its expected

position Ψf
k(Cĵk) after bone k transformation. Note that the weight smoothness term

ES in Eq. (3.1c) can be dropped since [Rf
j |T

f
j ] is not involved in ES.

minEf

ĵ
=

1

N

N∑
i=1

∥∥∥∥∥∥∥wiĵ[Rf

ĵ
|T f
ĵ

]

ui
1

− qfi
∥∥∥∥∥∥∥
2

2

+

λ
∑

(ĵ,k)∈S

∥∥∥∥∥∥∥[Rf

ĵ
|T f
ĵ

]

Cĵk
1

−Ψf
k(Cĵk)

∥∥∥∥∥∥∥
2

2

(3.31a)

Where: qfi = vfi −
B∑

j=1,j 6=ĵ

wij[R
f
j |T

f
j ]

ui
1

 (3.31b)

Ψf
k(Cĵk) = [Rf

k |T
f
k ]

Cĵk
1

 (3.31c)
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The optimal solution to minimize the objective function Eq. (3.31a) is the combi-

nation of the solution of rigid transformations with blending and the solution of the

Weighted Absolute Orientation problem [34]. We first need to compute the center of

rotation p∗ for the rest pose (Eq. (3.32a)) and the center of rotation qf∗ for frame f

(Eq. (3.32b)). Note that, in Eqs. (3.32a) and (3.32b),
∣∣∣(ĵ, k) ∈ S

∣∣∣ denotes the number

of the edges that are connected with ĵ in S.

p∗ =

1
N

∑N
i=1w

2
iĵ
ui + λ

∑
(ĵ,k)∈SCĵk

1
N

∑N
i=1w

2
iĵ

+ λ
∣∣∣(ĵ, k) ∈ S

∣∣∣ (3.32a)

qf∗ =
1
N

∑N
i=1wiĵq

f
i + λ

∑
(ĵ,k)∈S Ψf

k(Cĵk)

1
N

∑N
i=1w

2
iĵ

+ λ
∣∣∣(ĵ, k) ∈ S

∣∣∣ (3.32b)

Then, we subtract the center of rotation from each vertex and each joint as

follows:

pi = ui − p∗; C ĵk = Cĵk − p∗ (3.33a)

qfi = qfi − wiĵq
f
∗ ; Ψ

f

k(Cĵk) = Ψf
k(Cĵk)− q

f
∗ (3.33b)

The points after subtraction are concatenated into matrices P,Q ∈ R3×(N+|(ĵ,k)∈S|)

as follows:

P =
[w1ĵ

N
p1 . . .

wNĵ
N

pN

∣∣∣ ∀(ĵ,k)∈SλC ĵk

]
(3.34a)

Q =

[
1

N
qf1 . . .

1

N
qfN

∣∣∣∣ ∀(ĵ,k)∈SλΨ
f

k(Cĵk)
]

(3.34b)
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Finally, the optimal transformation of bone ĵ at frame f , Eq. (3.35a), is computed

by performing Singular Value Decomposition on PQT.

Rf

ĵ
= ϑµT; T f

ĵ
= qf∗ −R

f

ĵ
p∗ (3.35a)

Where: µςϑT = PQT (3.35b)

3.9 Skeleton Pruning

Figure 3.8: The redundant bones in the left panel are pruned to achieve the neat

skeleton in the right panel. As illustrated in the two yellow boxes, the redundant

bone j is identified by utilizing the weight regularization term to force its weights

degenerate.

Since the initialization step (§3.4) considers neither transformation blending nor

the skeleton structure, it might generate some redundant bones. Typically, the re-

dundant bones are located in highly deformable regions, e.g., around the joints, as

they cause large approximation errors at the motion-driven clustering step. Later,
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after the LBS resolves the highly deformable regions, the redundant bones are no

longer needed and thus should be removed. Unfortunately, since the redundant bones

do not violate any conditions in the LBS formulation, accurately identifying them is

difficult. For this reason, the solution optimized by a general data fitting with al-

ternative skinning weights update and bone transformations update [45] would still

retain the redundant bones in order to minimize the LBS deformation error.

Specifically, instead of conducting a brute-force search for the redundant bones,

we utilize the weight regularization term to force their weights degenerate. We

illustrate an example of this strategy in two yellow boxes in Fig. 3.8. As illustrated

in the yellow box in the left panel, the bone j (red) is initialized at a potential joint

between the bone h (blue) and the bone k (green). Although the blending between

h and k can closely approximate the deformation, having the bone j is still a valid

solution for the best approximation. By adding the weight regularization term, our

minimized objective function (Eq. (3.1a)) makes the weights of j become very close

to zero, in order to improve the smoothness of the skinning weights. As the result,

the bone j becomes degenerate, and it can be removed. In our experiments, we

found that the weights of the redundant bones converge to zero quite slowly. For

this reason, we remove the redundant bone j if the sum of its squared weights is

smaller than 1% of the largest sum of the squared weights among all the bones.

Mathematically, we remove the bone j if its weights satisfy the condition described

in the following Eq. (3.36).
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Remove bone j if
N∑
i=1

wij
2 < 10−2M (3.36)

where: M = max
k

{
N∑
i=1

wik
2

}

3.10 Results and Comparisons

3.10.1 With Skeleton

Datasets. I evaluated my approach on 9 test datasets (Table 3.1) obtained from

various publicly available sources: the cat-poses, horse-poses, lion-poses, and

horse-gallop were obtained from [71]; the hand was obtained from [73]; the dance

and cow were obtained from [12]; the scape was obtained from [5]; and the samba

was obtained from [74].

To test the robustness of my approach, I only used a single set of parameters for

all the experiments on all the test datasets in this paper (see previous sections for

parameter selection discussion).

Fig. 3.9 shows the skeletons extracted from 3 test datasets by my approach as

well as their corresponding cluster initialization results. Despite generating over-

estimated clusters at the initialization step, my approach successfully pruned redun-

dant bones, especially for the dance and hand models. Fig. 3.10 demonstrates the

robustness and effectiveness of my skeleton pruning for handling different numbers of

clusters from the initialization step. My approach can produce similar final skeletons
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with consistent structure on the trunk and legs, by pruning most of the redundant

bones. Note that minor differences only appear on certain highly deformable regions

such as the tail and feet.

Figure 3.9: The skeletons extracted from 3 datasets by my approach (from left

to right): cat-poses, dance, and hand. The clustering results obtained at the

initialization step are also illustrated via a color-coded scheme. Using the same set

of parameters, my approach can robustly determine the optimal number of bones in

the skeletons thanks to the skeleton pruning.

In Fig. 3.11, I compare my approach with three state of the art approaches

[66, 14, 25]. For a fair comparison, I use the number of bones generated by my

approach as one of the input parameters to the three comparing methods. Other

parameters in the three comparing approaches are set as suggested by their original

authors. While my approach can generate sound results for all the test datasets, in

general the other three approaches suffer from the following two issues:

1. Redundant bones. The lion-poses, horse-gallop, and scape generated by
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Figure 3.10: The extracted horse-gallop skeletons with different cluster initializa-

tions. Despite very different numbers of initialized clusters, my approach can output

similar final skeletons with consistent structure on the trunk and legs; minor differ-

ences on the tail and feet are due to the high deformations on these regions.

both [66] and [25] have many redundant bones, since the clustering algorithms

in their approaches result in an over-estimated number of bones in some highly-

deformable regions.

2. Inaccurate joint locations. The joints at the back legs of the lion-poses are

inaccurately estimated by both [14] and [25], and the joints at the legs of

the scape are inaccurately estimated by [66]. I suspect this issue is due to

the inaccurate estimation of bone transformations in some highly deformable

parts.

In Table 3.1, I show quantitative comparisons among all the four methods (my

62



Figure 3.11: Comparisons between my proposed method and three state of the art

approaches. The five test datasets shown in this figure are (in the clockwise di-

rection starting from the top-left corner): cat-poses, lion-poses, scape, horse-

gallop, and hand. For a fair comparison, I set the same number of bones for all the

four methods. Only my proposed method can generate sound outputs for all the 5

datasets. The issues in the results are indicated by red arrows.

method, method II - [66], method III - [14], and method IV - [25]). In term of the

approximation power (measured by lower RMSE), my method soundly outperforms

all the other three methods thanks to its iterative rigging. However, my method is

slower than both the method II and the method III, since it needs many iterations.

Fig. 3.12 shows examples of visual distortion on the reconstructed hand poses with

respect to different RMSE values.
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Figure 3.12: Examples of visual distortion on the reconstructed hand poses with

respect to different RMSE values (pay attention to the red circled areas). Fig. 3.11

shows the corresponding skeletons.

3.10.2 Without Skeleton

The skeleton-based LBS is a good choice if the model is an articulated object. Oth-

erwise, we can relax the skeletal constraint to get a more flexible LBS, which can

approximate highly deformable input models. I generate the LBS model without

skeleton by only keeping the skinning weights update (§3.7) and bone transforma-

tions update without skeleton (§3.8.2).

The test datasets. I used publicly available triangle mesh datasets, includ-

ing 12 datasets from the “Deformation Transfer” [71], 4 datasets from the “Wavelet

Compression” [21], and 1 dataset (i.e., the chicken character dataset) from the “Skin-

ning Mesh Animations” [32]. The original name given by its authors is used to refer

to each dataset in this writing. Based on properties of these datasets, I roughly

divide the datasets into two categories: articulated (near-rigid) models and elastic

(highly-deformable) models. Details of the used 17 datasets are described in Table

4.1.

Error metric. To quantitatively evaluate my model, I choose the error metric
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proposed in [37] over the one in [32], because the former is less sensitive to global

motions of the models and thus more robust than the latter, as reported in [37].

Specifically, I first resize all the datasets so that the rest poses are tightly enclosed

by a unit sphere. Then, the error metric is calculated from the value ED of the

objective function in Eq. (4.1a) by:

ERMS = 1000

√
ED

3.N.F

Configurations. For each dataset obtained from the “Deformation Transfer”

[71], the rest pose ui is set to be the provided reference pose. For each of the other

datasets, the rest pose ui is chosen to be the first example pose. The number of

bones, B, is manually determined for experiments. I denote this number B as a

subscript of the dataset name. In my implementation, I stop the algorithm if within

one iteration the the objective function ED is not improved by 1%.

Figure 3.13 shows my results on four articulated models and two elastic models.

I use the skin colors to illustrate the bone-vertex influence map. At the rest pose,

I also draw a coordinate system for each bone to illustrate its bone transformation,

and the origin of the coordinate system is put at the vertex that is most influenced

by the bone. In each example pose, the coordinate system for each bone is deformed

in accordance with its bone transformation.

Comparisons. I compared our LBS model with two state-of-the-art skinning

from examples approaches: the Skinning Mesh Animations with rigid bones (SMA)

[32] and the Learning Skeletons for Shape and Pose [25]. Both competitive methods

impose, orthogonal constraints on the bone rotation matrices (rigid bones), convex
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constraints and sparseness constraints on the bone-vertex weight map. To ensure a

fair comparison, all the methods ran on a single thread, without GPU-based accel-

eration. I also used all the parameter settings published by the original authors in

our implementations. It is noteworthy that the work of [37] was not included in this

comparison because it can only handle the case of non-rigid bones, while the focus

of this comparison experiment is skinning decomposition with rigid bones.

The SMA was implemented in C++. I used the open source library Mean Shift

Clustering with Locality Sensitive Hashing (LSH) [19]. The two parameters for LSH,

i.e., K and L, were set to 70 and 200, respectively. The bandwidth h was set to

h = 9|t|ε, where |t| is the number of example poses and ε = 0.05. To estimate the

bone-vertex weights, I used the Non-Negative Least Squares.

The LSSP was implemented in MATLAB. I used the Self-Tuning Spectral Clus-

tering [78] for the initialization step with automatic local scaling on distance matrix.

On the weight matrix optimization step, I employed the L1/L2+ minimizer [79],

where the parameter ρ was set to 0.1 and the A matrix was normalized. At the

factorization step, I performed 10 iterations.

Figure 3.14 shows the comparison results on three models generated by my pro-

posed method, SMA, and LSSP. Due to the high deformability of the models, SMA

fails to associate vertices into rigid bones and hefty distortion can be observed on the

reconstructed poses, especially on the camel-collapse11 model. Although LSSP can

estimate the global deformation well, certain details are not correctly reconstructed,

e.g., on the horse-collapse10 model.
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I also evaluated the accuracy and performance of three skinning methods in a

quantitative way including the error metric, the number of required bones, execution

time, etc. (shown in Table 3.3). In Table 3.3, the number of bones is denoted

by the subscript of the dataset name. The error ERMS as well as the error after

rank-5 EigenSkin corrections [42] are reported where the numbers in the parentheses

are the EigenSkin correction errors. All the running times were measured on the

same computer with a 2GHz single core CPU. Note that the number of bones is

automatically estimated in SMA, thus its results are not avaiable for many specific

numbers of bones. The results of LSSP are also not avaiable for models with more

than 10K vertices due to the large memory requirement in the Self-Tuning Spectral

Clustering algorithm at the initialization step.

From Table 3.3, We can see that my proposed method clearly outperforms SMA

and LSSP. Especially on the elastic models (i.e., camel-collapse11, face-poses, horse-

collapse3, pcow24, and pkanga39), my proposed method generates significantly smaller

errors than SMA. The reason is that SMA computes the bone transformations by

first clustering the triangle rotation sequences into rigid transformation groups, and

thus, it only works well if the model that can be divided into nearly rigid parts.

Our results also outperform LSSP results for two limitations of the bone-vertex

weight map optimization: (1) LSSP employs the soft constraint for sparseness; and

(2) LSSP does not consider the affinity constraint during the optimization, and the

affinity constraint is only enforced through post-normalization. Also, even LSSP

supports for the sparseness weight map, it does not guarantee the maximum number

of non-zero weights per vertex, which could be an issue for the implementation of
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hardware accelerated skinning.

Among the three approaches, LSSP performs slowest due to the MATLAB imple-

mentation and the comlexity of its clustering and optimization algorithm. In general,

my proposed method performs slightly slower than SMA. This is one limitation of

the current SSDR model. However, my proposed method can be efficiently accel-

erated via parallel implementations such as exploiting multi-core CPUs or GPUs.

This can be done by parallelizing certain high computational cost operations such as

calculating vertex transformations or matrix multiplications. Fortunatelly, most of

those calculations are matrix operations, which are relatively easy to be parallelized.

By contrast, parallelizing SMA and LSSP will be more challenging since it requires

to parallelize spectral clusterings and non-linear optimizers.

3.11 Discussion

Performance. My method can only prune a small number of bones at one time,

and thus its iterative rigging may need to be repeated many times if the number

of initialized bones is significantly over-estimated. We found a positive correlation

between the running time of my method and the number of bones pruned. Therefore,

if the number of initialized bones is much larger than the number of bones in the

final skeleton, my method takes a significant amount of time to prune redundant

bones. Fig. 3.15 visualizes an example of its detailed computation breakdown, which

shows that a more proper initialization of bones would significantly shorten the

computational time of my method.
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Due to the performance reason, my current method is only suitable for offline

applications. A potential solution to speed up the performance is to incorporate

skeleton templates or certain user interactions into my approach, which is a part of

my future work.

Data dependency. Due to its data-driven (i.e., example-based) nature, rigging

results by my approach largely depend on the quality of input example poses. I

found that the limited motion range and noise of input example poses could affect

the outcome of my approach at some cases. For example, the asymmetric skeletons

of the dance model (in Fig. 3.1 and Fig. 3.9) and the samba model (in Fig. 3.1 and

Fig. 3.16) are due to noise, asymmetry, and the limited motion ranges of some joints

in the example poses. The incorrect joint of the hand model (in Fig. 3.11) is due to

the very similar motions of the pinkie and index fingers in the example poses.

Approximation power. Results in §3.10.1 demonstrate that skeleton-based

LBS is robust and accurate to handle articulated, nearly-rigid models. I also tested

skeleton-based LBS with several highly deformable models although this is not one of

the targeted applications for any skeleton extraction or rigging methods. The results

in Fig. 3.16 and Fig. 3.17 show that, skeleton-based LBS can generate skeleton-based

LBS models with better overall approximations than the three previous methods [66,

14, 25], since my iterative rigging algorithm can effectively optimize the objective

function in Eq. (3.1a). Notice that skeleton-based LBS can even approximate the

cow deformation reasonably well (Fig. 3.17), although a more suitable skinning

model for this dataset is still the LBS model without skeletal structure §3.10.2.

Moreover, due to the limited approximation power of the LBS model, my current

69



method cannot capture certain complicated non-linear deformations (one example is

shown in Fig. 3.18).
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Dataset N F B
Proposed method Method II Method III Method IV

Time RMSE Time RMSE Time RMSE Time RMSE

cat-poses 7207 9 28 5.8 0.25 0.1 0.68 6.9 1.04 17.2 0.63

horse-poses 8431 10 27 7.7 0.21 0.2 0.54 6.2 1.24 20.0 0.75

lion-poses 5000 9 30 4.1 0.27 0.1 0.83 4.0 1.62 11.7 1.14

horse-gallop 8431 48 27 41.9 0.22 0.8 0.44 33.3 1.10 80.3 0.88

hand 7997 43 18 65.1 0.18 0.6 0.23 20.0 0.42 41.9 0.18

dance 7061 201 16 148.7 0.22 2.5 0.76 61.8 0.78 168.0 0.53

scape 12500 70 23 252.1 0.42 1.7 1.03 60.7 1.18 410.4 1.24

samba 9971 175 22 348.2 0.56 3.3 1.29 95.1 1.57 296.0 1.79

cow 2904 204 11 72.3 1.52 1.0 5.41 16.0 5.61 47.9 5.58

Table 3.1: Quantitative comparisons among all the four methods. The reported

RMSE is normalized by the bounding volume diagonal [66, 25]. Specifically,

RMSE = 100 ×
√
ED/d, where ED is the data fitting error in Eq. (3.1b), and d

is the diagonal of the bounding box of the rest pose. The error is computed on the

output using the joint rotation representation to strictly enforce the joint constraints.

The running time (in minutes) was recorded on the same off-the-shelf computer with

an Intel Xeon E5405 2.0GHz CPU. All the methods in this comparison were imple-

mented in C++ with single thread.
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Name N F Category

camel-collapse 21887 53 Elastic

camel-gallop 21887 48 Articulated

camel-poses 21887 10 Articulated

cat-poses 7207 9 Articulated

chickenCrossing 3030 400 Articulated

elephant-gallop 42321 48 Articulated

elephant-poses 42321 10 Articulated

face-poses 29299 9 Elastic

flamingo-poses 26907 10 Articulated

Name N F Category

horse-collapse 8431 53 Elastic

horse-gallop 8431 48 Articulated

horse-poses 8431 10 Articulated

lion-poses 5000 9 Articulated

pcow 2904 204 Elastic

pdance 7061 201 Articulated

pjump 15830 222 Articulated

pkanga 4002 65 Elastic

Table 3.2: The test/evaluation datasets used. N denotes the number of vertices and

F denotes the number of example poses.
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Figure 3.13: Results of my proposed LBS skinning without skeleton. My proposed

model works well with both the articulated models (the top four models) and the

elastic models (the bottom two models).
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Figure 3.14: Comparisons of the skinning decomposition results among my proposed

method, SMA [32], and LSSP [25]. LSSP is unable to run on the camel-collapse

due to the large size of this dataset and SMA is unable to configure with 10 bones

for the horse-collapse dataset. The example poses are rendered in blue. Significant

distortion areas are indicated in red circles.
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Dataset[No. of bones]
Approximation error E RMS Execution time (minutes)
SMA LSSP Proposed SMA LSSP Proposed

camel-collapse11 125.3 (4) - 5.4(1.7) 13.8 - 7.4
camel-collapse20 - - 4(1.4) - - 15.1
camel-gallop20 - - 3.7(1.5) - - 13.9
camel-gallop29 17.6 (1.9) - 3(1.3) 25.2 - 21.9
camel-poses10 - - 10.1(3.9) - - 1
camel-poses25 8.3 (1.8) - 2.7(1.2) 9.4 - 4.6
cat-poses15 - 10.7(6.1) 6.5(2.7) - 302.8 0.7
cat-poses20 - - 4.7(2) - - 1
cat-poses25 8.5 (3.1) 6.2(3.3) 3.4(1.4) 0.7 371.7 1.5
chickenCrossing20 - 10.1(9.7) 8.7(5.7) - 1128.9 14.8
chickenCrossing28 12.5 (4.2) 6.2(5.1) 8.1(5.4) 14.1 1165.4 24
elephant-gallop20 - - 4.3(2.3) - - 27.5
elephant-gallop27 5.6 (1.9) - 2.7(1.3) 56.1 - 53.6
elephant-poses10 - - 8.2(4.2) - - 3.2
elephant-poses21 5.8 (2.2) - 3.2(1.5) 29.4 - 8.1
face-poses27 - - 7(3.6) - - 7
face-poses36 37.6 (8.5) - - 3.6 - -
flamingo-poses10 - - 4.8(2.2) - - 2
flamingo-poses23 5.7 (1.7) - 1.7(0.8) 16.3 - 5.1
horse-collapse3 139.5 (5.1) 51(3.1) 26.5(4.1) 3.3 856.6 0.8
horse-collapse10 - 15.5(2.6) 7.4(2.1) - 802 2.6
horse-collapse20 - 6(2) 5(1.6) - 1088.5 5.7
horse-gallop20 - 15.7(5.3) 3.6(1.8) - 859.9 5.4
horse-gallop33 9.5 (1.5) 12.5(4.6) 2.2(1.1) 3.8 911 9.8
horse-poses20 - 20.6(7.8) 3.8(1.8) - 461.8 1.4
horse-poses42 4.7 (1.4) 2.2(1.2) - 2.1 475.1 -
lion-poses10 - 22.1(11) 11.3(5) - 201.3 0.2
lion-poses21 62.8 (5.7) 7.7(3.9) 4.4(2.2) 0.6 360.2 0.8
pcow10 - 16.5(13.2) 14.4(11.9) - 549.2 2.4
pcow24 24.8 (13.2) 7.2(6.7) 5.7(4.8) 3.8 564.5 8.9
pdance10 - 8(4.9) 6.3(3.4) - 2177.7 5.8
pdance24 3.8 (1.6) 3.4(2.3) 1.3(0.8) 22 2446.8 28.3
pjump20 - - 6.7(4.7) - - 42.7
pjump40 15.3 (6.7) - 4.5(3.4) 30.5 - 104.1
pkanga20 - 32(8.5) 8.9(4.5) - 308.5 3.2
pkanga39 134.1 (15.4) 22.4(7) 6.7(4.2) 1.6 360.7 7.6

Table 3.3: Rigid bone skinning decomposition results of Skinning Mesh Animation

with rigid bones (SMA) [32], Learning Skeletons for Shape and Pose (LSSP) [25], and

my proposed skinning without skeleton.The result after rank-5 EigenSkin corrections

[42] is also reported in the parentheses.
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Figure 3.16: Despite the high deformation on the skirt part of the samba model,

my approach is still able to generate a reasonable skeletal structure where the skirt

is rigged by some bones originated from the hip. Meanwhile, the three previous

approaches cannot extract similar skeleton patterns.
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Figure 3.17: My proposed method can even rig an elastic model such as this stretched

cow. The top row shows the resulting skeletons in the rest pose. Compared with the

reconstructed result by my method, the reconstructed poses by the three previous

methods are not visually close to the ground-truth.
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Figure 3.18: My approach with using skeleton LBS fails to remove 4 redundant

bones in the upper arms and upper legs of the scape model, since the LBS model

need them for a better approximation of muscle bulging on these parts (indicated by

red arrows). To the end, my approach keeps the 4 bones to capture the non-linear

deformation effect. The gray models are the ground-truth.
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Chapter 4

Two-layer Blend Skinning

Compression

Figure 4.1: My compression model blends master bone transformations and caches

them as virtual bone transformations (left most). It can compress a Linear Blend

Skinning (LBS) model with dense weights and generate a fast and compact model

without sacrificing the quality of skinning, compared with dense-weight LBS model.

Blend skinning is typically linear; it is controlled by a weight matrix, where

each element defines the contribution of a bone (in skeleton-based skinning) or a
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control point (in cage-based skinning) to interpolation of a mesh vertex. To speed up

skinning performance, a sparseness constraint is often imposed on the weight matrix,

that is, the weight matrix contains only a small proportion of non-zero elements. In

practice, for the sake of effective parallel implementation on GPUs or multi-core

CPUs, a more strict sparseness constraint is typically imposed on the weight matrix,

which requires every vertex to be associated with no more than k bones or control

points. On the one hand, the sparseness constraint has the advantages of saving

computation and balancing workload between different processing cores. On the

other hand, this setup has the following intrinsic limitations.

Limitation #1: It is difficult to handle exceptional vertices that are naturally

associated with more than k bones or control points. The exceptional vertices typ-

ically appear on smooth and highly deformable regions of 3D models. As a specific

example shown in Fig. 4.2(b), more than 23 percent of the vertices in a cheb model

(illustrated in red), rigged by [7] with 17 bones, are influenced by all the bones. Also,

exceptional vertices might be required by design; as an example, vertices on the palm

region of a hand model (Fig. 4.2(c)) are influenced by several proximal phalanges

and all five metacarpal bones. Indeed, due to existence of such exceptional vertices,

a difficult trade-off often needs to be delicately handled in sparse-weight skinning

models.

Limitation #2: Conventional weighted blending is inefficient from a computa-

tional perspective, despite the fact that performance has always been one of most
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Figure 4.2: (a): Our skinning compression model can achieve a high performance

with insignificant loss of visual quality. (b) and (c): Examples of exceptional vertices

(illustrated in red color): the Cheb model (b) is rigged by [7], and a hand model (c)

is rigged manually.

important concerns for skinning models [37]. Specifically, the weights of two neigh-

boring vertices are typically similar if skinning is smooth. These similar linear combi-

nations are calculated multiple times; if they can be properly cached (or compressed),

overall computational cost can be measurably reduced.

Limitation #3: Imposing a sparseness constraint makes a skinning problem a

selection of discrete variables that does not have any yet known optimal polynomial

solutions [80]. Putting it together with convex (non-negativity and affinity) con-

straints on weights would make the skinning problem even more challenging. Any

non-optimal solution might lead to a non-smooth skinning model or even a bad

approximation [44]. Solutions to many skinning applications can be significantly

simplified if a sparseness constraint does not need to be handled.

In this chapter, I present a lossy weight matrix compression approach 4.1 to
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free skinning models from the sparseness constraint and thus overcome the above

limitations (Fig. 4.2(a)). Based on the weight compression, I construct an effective

two-layer blend skinning model to reduce computation of linear blend skinning (LBS)

with dense weights (Fig. 4.3). Specifically, its master bone blending layer blends the

transformations of the original control bones (called master bones) and caches the

results as virtual bone transformations. Then, its virtual bone blending layer blends

the virtual bone transformations in a similar way to produce vertex transformations.

In the virtual bone blending layer, each vertex transformation is blended by no more

than two virtual bones.

Compared with existing weight reduction techniques [32, 44], my model allows

more flexible control on the trade-off between accuracy (skinning error) and perfor-

mance (a desired number of blending operations). Through experiments and direct

comparisons, I show that the proposed model achieves substantially smaller approxi-

mation errors than state of the art weight reduction techniques, given the same total

number of bones (§4.4). I also analyze the performance and memory overhead of

my approach on graphics hardware and its potential applications for other skinning

models (§4.5).

4.1 Problem Formulation

Let W ∈ Rk×n be the weight matrix of an input skinning model with n vertices

and k bones, as illustrated at the top left of Fig. 4.3. We denote the i-th column

of W (or the original weights of the i-th vertex) as wi. We compress this original
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Figure 4.3: A conventional blend skinning model (top left) with a dense weight

matrix W (bottom left) is approximated as a two-layer blending with virtual bones

(top right). This is equivalent to factorizing W into a sparse dictionary D and a

matrix of sparse coefficients A (bottom right). D has at most c non-zero elements,

while A has at most 2 non-zero elements.

skinning model using a two-layer blending scheme with virtual bones (the top right

of Fig. 4.3). At the first layer, a.k.a. master bone blending, we calculate and cache

the transformations of m virtual bones by blending the transformations of k original

bones (called master bones). At the second layer, a.k.a. virtual bone blending, we

calculate the position of each vertex by blending the transformations of the virtual

bones and applying the resultant transformation to the vertex. We also impose a

sparseness constraint on each blending layer to make the model friendly to parallel

implementation on graphics hardware. Specifically, at the master bone blending

layer, we allow at most c blending operations for each virtual bone; at the virtual

bone blending layer, we allow at most 2 blending operations for each vertex.

Letting dj ∈ Rk be the blending weights of the j-th virtual bone, we can represent
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all the master bone blending weights as a sparse matrix D = [d1, . . . , dm] ∈ Rk×m.

Similarly, letting αi ∈ Rm be the blending weights of the i-th vertex, we can represent

all the virtual bone blending weights as another sparse matrix A = [α1, . . . , αn] ∈

Rm×n, where each column αi has at most two non-zero elements. With the above

matrix representations, the blend skinning compression problem can be viewed as a

sparse coding problem in which the original matrix W needs to be factorized into D

(i.e., dictionary) and A (i.e., coefficients), as illustrated at the bottom of Fig. 4.3.

Each column dj is called an atom of the dictionary. This sparse coding problem is

then formulated as minimizing the following quadratic error function:

min
D,A

∆W
2 = min

D,A

1

kn
‖DA−W‖2F (4.1a)

Subject to: card(αi) ≤ 2,∀i (4.1b)

card(di) ≤ c,∀i (4.1c)

Parameter selection. We denote card(x) as the cardinality (number) of non-

zero elements in vector x. The constraint in Eq. (4.1b) enforces that at most two

virtual bones can influence any particular vertex. This number (two) is empirically

chosen for best performance. Since the number of vertices is typically large, minimiz-

ing the number of blending operations at the virtual bone blending layer would be the

most effective way to reduce computational cost. In Eq. (4.1c), we also constrain the

sparseness ofD to reduce computational cost and thus improve performance. In order

to maintain the approximation power of this model, we need to keep the sparseness of

dictionary atoms to be no less than that of the original weights or vertices. However,
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we empirically found that slightly increasing the sparseness of atoms could expand

its approximation power. For this reason, we choose c = maxi=1...n card(wi) + 1 in

our experiments. Note that users can perform fine tuning on c to further optimize

performance with different input data.

Figure 4.4: Some example poses of an animated mesh sequence (left) and its cor-

responding compressed blend skinning model (right). Master bone transformations

are illustrated in red, and virtual bone transformations are illustrated in blue. We

place each virtual bone at a vertex with the largest sparse coefficient. Our model dis-

tributes virtual bones adaptively so that more virtual bones are employed for highly

deformed regions (e.g., the legs or the tail).

Approximation power and effectiveness of our model. Compared with

directly imposing a sparseness constraint on skinning weights, our two-layer sparse

blending model essentially expands the linear blending space from c-1 bone blend-

ing operations per vertex to 2c bone blending operations per vertex. Furthermore,
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virtual bones in our model can cache similar blending of master bones and save sig-

nificant computational cost. The virtual bones can also be adaptively distributed

in accordance with deformation complexity, e.g., the vertices on highly deformed

regions could employ more virtual bones than those on other regions, as illustrated

in Fig. 4.4.

In terms of parallel implementation, our compression model is friendly to stream

processing architectures, such as GPUs, since blending operations for each node

(virtual bone or vertex) are independent of each other, and they have the same

workload (i.e., the same number of blending operations per node). Thus, the two

blending layers in our model can be effectively implemented on GPUs as a process

of two passes.

4.2 Sparse Compression Algorithm

The overview of our sparse weight matrix factorization for compressing blend skin-

ning models is presented in Algorithm 3. Users can terminate this algorithm two

different ways: specifying a maximum number of virtual bones (or dictionary size)

Σ, or specifying an error threshold ε. In the former case, we can control the compu-

tational cost of the compressed model (i.e., number of blending operations). In the

latter case, we can control the accuracy of the compressed model (i.e., the approxi-

mation error, ∆W ).

Algorithm 3 can be briefly summarized as follows: First, we initialize a minimum

dictionary with 2 atoms and its corresponding coefficients (line 1 and line 2). Then
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we sequentially add atoms to the dictionary (line 4 to line 8) along with jointly

optimizing the dictionary and coefficients (line 9 to line 14) until error ∆W < ε or

the size of the dictionary m = Σ.

Initialization. We initialize the first atom of the dictionary using the weights

of a vertex with the largest `2-norm (i.e. d1 = arg maxwi
‖wi‖2). The second atom is

initialized as the weights of another vertex with the smallest dot product to d1 (i.e.,

d2 = arg minwi
{wi · d1}). The coefficients A can be solved per-vertex (column by

column) by linear least squares with two unknowns (corresponding to two atoms) as

follows: αi = arg minx ‖Dx− wi‖22.

Adding atoms. In order to minimize ∆W , we always add the weights of a vertex

p that has the largest error to the dictionary as follows (line 5):

D ← [D,wp] s.t. p = arg max
i
‖Dαi − wi‖22 (4.2)

Instead of adding atoms to the dictionary one by one, followed by a joint dictionary-

coefficients optimization, we can improve performance by adding κ(∆W ,m) atoms

(line 4) before each joint optimization. κ(∆W ,m) is computed based on the current

approximation error ∆W (D,A) (refer to Eq. (4.1a)) and the current dictionary size

m (Eq. (4.3)). Note that when adding each atom without dictionary optimization,

we still need to update coefficients according to the added atom (line 7).

κ(∆W ,m) = min{
(

∆W

ε
− 1

)
m+ 1,Σ−m} (4.3)
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Dictionary-coefficients optimization. We solve the joint dictionary-coefficients

optimization problem by a block coordinate descent approach with warm restarts

[60], that is, alternatively updating the dictionary (line 10) and coefficients (line 11

to line 13). With the warm restarts, we found that its alternative update process

can converge within a small number of iterations. In our experiments, we found that

it typically converged within 3 iterations.

In the following sections, we describe details of two major steps in the algorithm

3, i.e., dictionary update (§4.2.1) and coefficients update (§4.2.2). Note that two

coefficients update steps (line 7 and line 12) use the same procedure. To speed

up performance, we only perform updates on a subset of vertices with potential

coefficient changes. This is implemented as an ordered update process that starts

from one vertex, i.e., vertex p in line 7 and vertex i at line 12.

4.2.1 Dictionary Update

At the dictionary update step, we employ an online dictionary update algorithm with

warm restarts [53], since it is simpler and faster than other methods (e.g., K-SVD [1]

or Newton’s method [47]). Since our dataset is relatively small, we can use it at each

update rather than sampling it. Specifically, we precompute Φ and Γ as follows:

Φ =
n∑
i=1

αiαi
T = [φ1, . . . , φm] ∈ Rm×m (4.4a)

Γ =
n∑
i=1

wiαi
T = [γ1, . . . , γm] ∈ Rk×m (4.4b)
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Since αi is sparse, the complexity of computing Φ and Γ is O(n). Then we update

each atom (column) dj of the dictionary as follows:

dj ←
1

Aj,j
(γj −Dφj) + dj (4.5)

After each atom update, we enforce the sparseness constraint in Eq. (4.1c) by

keeping the c largest elements of vector dj, while setting the others to be 0. Finally,

we normalize the result so that dj satisfies the affinity constraint (i.e., the sum of all

the elements equals to 1) by keeping it within the effective range of a floating point

number on the machine. Although other normalization methods such as dividing dj

by the maximum element would work in theory, we found that dividing dj by the

sum of all the elements (normalization with the affinity constraint) can improve the

rate of convergence since the weights {wi} are also constrained to be affinity.

4.2.2 Coefficients Update

The challenge of coefficients update for each vertex is to find two optimum dictionary

atoms (i.e., virtual bones) that contribute to the vertex most. If the two optimum

atoms are determined, the coefficients update becomes a trivial least squares prob-

lem with two unknowns. Although the two optimum atoms can be determined by

a greedy algorithm such as matching pursuit [54], it requires O(m) operations per

vertex, or O(mn) operations for updating all the coefficients. To this end, we pro-

pose a fast coefficients update method that requires approximately O(n) operations
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by assuming skinning weights are typically smooth across neighboring vertices (the

fairness assumption on the manifold).

i 
j 

Shared optimum 
virtual bone 

Figure 4.5: On a manifold, two neighboring vertices typically have similar skinning

weights and coefficients; thus, they most likely share the same optimum virtual

bones (dictionary atoms). This assumption can be used to accelerate the update of

coefficients.

With this assumption, two neighboring vertices on a mesh would have similar

skinning weights and coefficients. Furthermore, the two vertices might share the

same optimum virtual bones, as illustrated in Fig. 4.5. If the two optimum atoms

for vertex i are updated, we expect the two atoms might be the optimal ones for its

neighboring vertices. Thus, we can perform the update as a preorder graph traversal,

that is, we start coefficient updating at a vertex with two known optimum dictionary

atoms and use these atoms as candidates to update the coefficients of its neighboring

vertices; then we repeat the same process for these neighboring vertices. Specifically,

we implement the coefficients update recursively as a depth-first search on a mesh

edge-based graph (Algorithm 4).

In Algorithm 4, assuming vertex i has two candidate atoms with indices r and

s, we update coefficients αi and corresponding approximation error Ei (line 2) if
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and only if the linear combination of the two candidate atoms dr and ds can im-

prove Ei (line 1). Here we define the approximation error Ei of weight wi as

Ei
2 = ‖Dαi − wi‖22. Since the two candidate atoms are known, we solve the op-

timum αi by least squares with two unknowns, i.e., (αi)r and (αi)s. If wi is con-

strained to be affinity, we also impose the affinity constraint to αi to improve the

rate of convergence. Specifically, we solve:

min

(αi)r

(αi)s

‖dr(αi)r + ds(αi)s − wi‖22 s.t. (αi)r + (αi)s = 1 (4.6)

Once candidate atoms dr and ds are used to update coefficients αi of vertex i,

we then recursively update coefficients of its neighboring vertices N (i) (line 3 to line

6). Let j be a vertex in N (i), we first find candidate atoms r′ and s′ of j so that

the linear combination of dr′ and ds′ best approximates wj (line 4). We only select

r′ and s′ within the set of current optimum atoms of vertex j and the candidate

atoms of vertex i. Specifically, let ρj and σj be indices of current optimum atoms of

vertex j, i.e. (αj)ρj and (αj)σj are non-zero coefficients, we only select r′ and s′ in

the set of {r, s, ρj, σj}. In the end, we consider six combinations of two atom indices

and solve linear least squares for each of them, similar to Eq. (4.6), to find the best

combination.

Employing coefficients update in the main algorithm. We employ the

above recursive algorithm 4 in the main algorithm 3 for two purposes. First, after

weights wp are added to the dictionary (line 6 in Algorithm 3), the new dictionary
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atom wp is the optimum atom for vertex p. We start a recursive coefficients update

from vertex p (line 7) with the latest added dictionary atom wp. The other candidate

atom can be selected arbitrarily. Compared to a conventional solution of updating

coefficients for all the vertices, our algorithm can save a significant amount of unnec-

essary update cost for vertices far away from p on the mesh that are not potentially

affected by the latest added atom (virtual bone).

Second, in full coefficients update step, we start the recursive coefficients update

one by one from every vertex (line 12 in Algorithm 3). For each vertex i, we keep its

current optimum atoms and use them as candidate atoms. In other words, candidate

atoms dr and ds for vertex i will be the atoms such that (αi)r 6= 0 and (αi)s 6= 0. If

the least squares solution using these candidate atoms improves the approximation

error, the update will be propagated through its neighboring vertices on the mesh.

In general, this recursive update process might visit each vertex several times, which

makes the amortized complexity of the full coefficient update step O(n) in practice.

We will further analyze performance of our algorithm through experiments in §4.4.

4.3 Factorization from Example Poses

Our model can also utilize example poses for a better approximation. Although we

can potentially extend our weight factorization algorithm for various skinning models

such as cage based deformation [33] or dual-quaternion blending [35], without loss

of generality, in this work we only demonstrate our model for the most popular LBS

approach.
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In order to utilize the example poses, we need to find a compression model that

best approximates given example poses instead of a compression model that best

approximates skinning weights. Similar to previous works [32, 37, 45], we also min-

imize a quadratic error function on all the example poses given corresponding bone

transformations. Fortunately, we can still adapt our sparse weight matrix factoriza-

tion (Algorithm 3) by replacing the approximation error on skinning weights with

the approximation error on example poses.

Assume we have f example poses. Let vti ∈ R3 be the position of vertex i

in example pose t, and ui ∈ R3 be the rest pose position of vertex i. For each

example pose t, we represent its bone transformations as matrices, and use T tj ∈ R3×4

to denote the transformation of bone j relative to its position at the rest pose.

Given the example poses and bone transformations, we can solve the optimized LBS

weights W ∗ = [w∗1, . . . , w
∗
n] ∈ Rk×n using linear least squares with equality constraint

(
∑k

j=1 (w∗i )j = 1) and inequality constraint (w∗i ≥ 0) [45]. Note that the optimized

weights W ∗ are not constrained to be sparse. We utilize example poses by modifying

certain steps in Algorithm 3 as follows.

Approximation error. We replace the approximation error on weight matrix

∆W
2 (Eq. (4.1)) with the approximation error on example poses ∆E

2 (Eq. (4.7a)).

The approximation error for each vertex Ei
2 (Eq. (4.7b)) is used to find new atoms

for the dictionary (line 5 in Algorithm 3). Here, we normalize the approximation

error by subtracting the lower bound E∗i
2 (i.e., the approximation error with the

optimized LBS weights w∗i , refer to Eq. (4.7c)) from it.
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∆E
2 =

1

3fn

n∑
i=1

Ei
2 (4.7a)

Where: Ei
2 =

f∑
t=1

∥∥∥∥∥∥∥
k∑
j=1

(Dαi)jT
t
j

uti
1

− vi
∥∥∥∥∥∥∥
2

2

− E∗i
2 (4.7b)

E∗i
2 =

f∑
t=1

∥∥∥∥∥∥∥
k∑
j=1

(w∗i )jT
t
j

uti
1

− vi
∥∥∥∥∥∥∥
2

2

(4.7c)

Coefficients update. We also use the approximation error Ei
2 on example

poses (Eq. (4.7b)) to solve coefficients for the linear combination of atoms (line 1

and line 4 in Algorithm 4).

Dictionary update. We use the optimized weights W ∗ to pre-compute matrix

Γ instead of W (refer to Eq. (4.4b)). Then we perform the same column update

using Eq. (4.5). It should be noted that this dictionary update neither gives the best

error reduction nor guarantees convergence in theory. However, this simple update is

faster and more effective than other complicated methods, e.g., employing divergence

protections such as Shift-cutting [60] or Marquardt parameter [55].

4.4 Results and Comparisons

To evaluate our approach, we first performed skinning decomposition on a number

of animated mesh sequences provided by [71, 74] (reported in Table 4.1) to extract

their optimized linear blend skinning models. For fair comparisons between different
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sequences, we first rescaled all the datasets so that their rest poses are tightly fit

in a unit sphere. Then, for each sequence, we implemented the smooth skinning

decomposition algorithm [45] to extract its flexible bone transformations and convex

weight map.

Name n f

samba 9971 175

camel-gallop 21887 48

elephant-gallop 42321 48

Name n f

horse-gallop 8431 48

camel-collapse 21887 53

horse-collapse 8431 53

Table 4.1: The test datasets used in this work. n denotes the number of vertices,

and f denotes the number of example poses.

We also considered different levels of the sparseness constraint on the weight

map by setting different maximum numbers of bones per vertex (namely, 4 bones

per vertex, 8 bones per vertex, and dense weights without the sparseness constraint).

In our compressed skinning model, we calculate the number of bones per vertex as the

average number of blending operations per vertex (including the blending operations

on both layers). Specifically, the number of bones per vertex in our model is mc
n

+ 2.

To compare the approximation powers of different approaches on the example poses,

we use a fitting error measure E proposed by Kavan et al. [37]. In this section, we

report all errors multiplied by 1000 for the sake of convenience.

In Fig. 4.6, we show several example results of our skinning compression model

with different thresholds of the objective function. We can hardly observe visual

distortions if the error threshold drops below 0.001. If example poses are not utilized
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in our approach, the value of the objective function ∆W represents the average error

in original bone-vertex weights, since the original bone-vertex weights satisfy the

affinity constraint. ∆W can also represent the relative distortion of the compressed

model, compared to the original blend skinning model. Otherwise, if example poses

are used, the value of the objective function ∆E represents the absolute distortion,

compared to the original skinning model.

Since all the datasets are rescaled to tightly fit in a unit sphere, the amounts of

distortion caused by the both compression methods (with/without utilizing example

poses) are highly similar if the same error threshold is used. This relation is illus-

trated in Fig. 4.7. In this figure, at each step we incrementally add 10 virtual bones

to our skinning compression approach and then perform joint dictionary-coefficients

optimization. For each step, the fitting errors on the example poses are plotted along

with the objective function.

Figs. 4.6 and 4.7 also illustrate that, to achieve the same approximation accuracy,

utilizing the example poses can produce a compressed skinning model with a smaller

number of virtual bones than without utilizing the example poses. In addition, when

the example poses are provided, we have a more accurate way to control the fitting

error. Specifically, we can calculate the fitting error using the following equation:

E2 = ∆E
2 + E∗2, where E∗2 is the lower bound of the fitting error (i.e., the fitting

error with the optimized LBS weights W ∗).

Comparison without utilizing example poses. In Table 4.2, we compare

the approximation errors on weight matrix (i.e., ∆W ) among our method, k-largest

weight reduction, and smooth weight reduction [44]. We can see that, for all the cases,
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our approach achieves substantially smaller approximation errors than the other two

approaches. In this comparison, all the three methods only perform reduction on the

weight matrix without utilizing example poses. We use two sets of input skinning

models generated by skinning decomposition [45]: skinning models with 8 bones per

vertex and with dense bone-vertex weights. Using the three different methods, the

skinning models with 8 bones per vertex are reduced to 4 bones per vertex, and

the skinning models with dense weights are reduced to 4 bones per vertex and 8

bones per vertex, respectively. Given a reduced number of bones per vertex, kr, we

calculate the number of virtual bones (or the size of the dictionary) for our method

as Σ = (kr−2)n
c

. In the k-largest weight reduction method, we keep only the kr largest

weights per vertex and then normalize the sum of these weights to be 1. In the

smooth weight reduction method [44], at the normalization step, it also takes mesh

fairness into account by matching the Laplacian of reduced weights with that of

the original weight map. Incorporating smoothness to the reduction process would

increase the approximation error on the weight matrix.

Comparison with utilizing example poses. If example poses are used, we

also compare our method with geometry weight reduction [32], poisson weight re-

duction [44], and smooth skinning decomposition [45]. From an original skinning

model with k bones per vertex, the geometry weight reduction method selects kr

bones per vertex with best approximation, normalizes the weights of the kr bones,

and then minimizes the fitting error on the example poses using linear least squares.

Similar to the smooth weight reduction [44], the Poisson weight reduction method

takes mesh fairness into account by matching Laplacians on the example poses.
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Qualitative comparisons among the weight reduction methods are presented in

Fig. 4.8. All the methods reduce the skinning models with dense weights to 4 bones

per vertex. From this figure, we can see that the weight reduction methods utiliz-

ing the example poses always give better approximations than the same methods

without utilizing the example poses. In general, the results by the smooth and

Poisson weight reduction methods are smoother and more pleasing than those by

the k-largest and geometry weight reduction methods. Meanwhile, without notice-

able visual distortions, our skinning compression method approximates the original

skinning models significantly better than the four weight reduction methods (i.e.,

smooth, Poisson, k-largest, and geometry). In particular, when the example poses

are utilized, our method, with only 4 bone-blending operations per vertex, can com-

press and approximate the original models as good as dense-weight skinning models.

This approximation is even better than the employed original skinning decomposi-

tion approach [45] with 4 bones per vertex, e.g. in the case of the elephant-gallop

model.

In Table 4.3, we also quantitatively compare the fitting errors on example poses

among all the methods. The results show that our model can substantially out-

perform the four chosen weight reduction methods. In most cases, our results are

even better than the employed original skinning decomposition approach [45] with

the same number of bones. Note that this comparison gives certain bias to the em-

ployed skinning decomposition approach [45], since it is allowed to optimize bone

transformations and the rest pose to fit with the reduced weights.

Performance. We also illustrate the running time of our approach for some test
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cases in Fig. 4.9. We implemented our approach in C++ and ran all the experiments

on an off-the-shelf computer with a single 2.0 GHz CPU core. As illustrated in this

figure, when the example poses are utilized, our approach will need more than an

order of magnitude running time than the case without utilizing example poses. For

the same number of master bones, we observe the running time of our compression

increases linearly with respect to the size of the input data. Approximately, the

running time without example poses increases linearly with respect to the number

of vertices n, and the running time with the example poses increases linearly with

respect to the size of all the example poses (i.e., n× f). This observation shows that

our algorithm, especially the coefficients update (§4.2.2), has approximately a linear

complexity in practice.

4.5 Discussion

Besides the LBS model (as demonstrated above), our two-layer blend skinning com-

pression approach can also be potentially extended to handle and compress other

skinning models. For instance, we could reduce non-linear skinning models with

dense weights such as dual-quaternion blend skinning [35] by replacing the lin-

ear coefficients update in §4.2.2 with a non-linear least squares solver (e.g., the

Levenberg-Marquardt algorithm [55]). Our compression method could also work

for cage-based deformation models by using an objective function similar to the one

used in [44]. Note that additional non-trivial analysis would be required to polish

the above thoughts.
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Our current approach has certain limitations.

• First, our two-layer blending approach imposes some computational overhead.

In Fig. 4.10, we show GPU performance comparison between our approach and

the LBS model. Our two-layer model performs much faster than the LBS model

with dense weights. Our model and the LBS with sparse weights have similar

performance in some scenarios that require intensive computation, i.e., models

with 8 bones per vertex or models with a high resolution (e.g., the camel model

(21887 vertices) and the elephant model (42321 vertices)). In other scenarios

that require light computation, our model performs slower due to extra I/O

operations on the buffers and cost for synchronization between two passes on

GPUs. Fortunately, since the overhead is insignificant for complex models,

our approach is suitable well for skinning applications that require both high

performance and visual quality.

• Second, our model requires additional storage space for caching virtual bone

transformations. Fig. 4.11 visualizes the memory overhead required by our

approach, compared with linear blend skinning with the same number of bones

per vertex. Note that the total memory required by our approach to store

blending weights is equal to the memory for storing the linear blending skinning

weights. The latter is proportional to the number of vertices of a 3D model.

• Finally, transformation blending in our approach cannot go beyond certain

intrinsic limitations of the LBS model, among which sophisticated deformation

effects such as muscle bulges or skin wrinkles cannot be captured well. Several
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sound solutions have been proposed to alleviate this problem including multi-

weight blending [77] and skinning correction [50, 42].

Within specific contexts, we can modify or extend our compression model for

better performance. For example, the number of virtual bones per vertex in the

virtual bone blending layer can be increased for smoother skinning. However, this will

measurably affect performance, since the number of blending operations will increase

by n (the number of vertices) when the number of virtual bones per vertex increases

by one. In addition, we can also increase the number of blending layers, which

will increase the number of combinations of master bone blending operations at an

exponential rate. Nevertheless, increasing the number of layers would put additional

overhead on skinning models, especially with common multi-pass implementation on

GPUs. We believe that analyzing and extending our compression model in these

directions will be useful for certain skinning applications.
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Algorithm 3 Sparse Weight Matrix Factorization

Input: a weight matrix W = [w1, . . . , wn] ∈ Rk×n, an error threshold ε OR a

maximum number of virtual bones Σ.

Output: D = [d1, . . . , dm] ∈ Rk×m and

A = [α1, . . . , αn] ∈ Rm×n s.t. Eq. (4.1)

1: Initialize a dictionary with m = 2 atoms: D = {d1, d2}

2: Initialize coefficients A according to D

3: repeat

4: for t = 1→ κ(∆W ,m) do

5: Find vertex p with the largest approximation error

6: Add wp to the dictionary

7: Update coefficients A from vertex p

8: end for

9: repeat

10: Update dictionary D

11: for i = 1→ n do

12: Update coefficients A from vertex i

13: end for

14: until Convergence

15: until ∆W < ε OR m = Σ

16: return D and A
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Algorithm 4 CoefficientsUpdate(vertex i, candidate atoms dr, ds)

Input: vertex i, candidate atoms dr, ds

1: if the linear combination of dr and ds improves error Ei then

2: Update αi and Ei by linear least squares

3: for all j ∈ N (i) do

4: Find {r′, s′} ⊂ {r, s, ρj, σj} s.t. the linear combination of dr′ and ds′ best

approximates wj

5: CoefficientsUpdate(j, dr′ , ds′)

6: end for

7: end if
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Figure 4.6: Example results of our skinning compression model with different thresh-

olds of the objective function (∆W and ∆E). We can hardly observe visual distortions

if the error threshold drops below 0.001. The input skinning model (camel gallop)

has 15 bones with a dense weight matrix. For each compression example, its bone

distribution is illustrated at the bottom-left corner. Master bone transformations are

illustrated in red; virtual bone transformations are illustrated in blue. The fitting

error on the example poses, E, is also reported. “V. Bones” denotes virtual bones;

“b/vtx” denotes bones per vertex.
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Figure 4.7: Relation of the objective function and the fitting error on the example

poses. The input skinning model has 15 bones with a dense weight matrix extracted

from a camel gallop sequence. The relation between value of the objective function

and the fitting error is quite similar for the both cases (i.e., with/without utilizing

example poses). Compression utilizing the example poses produces smaller fitting

errors than that without utilizing the example poses.
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Name[k]
8 to 4 bones/vertex Dense to 4 bones/vertex Dense to 8 bones/vertex

k-Largest Smooth Ours k-Largest Smooth Ours k-Largest Smooth Ours

samba10 19.6 24.5 1.2 21.9 26.6 1.1 1.8 2.4 0.2

samba20 14 18 1.7 18.1 22.2 2.4 5 6.5 0.9

camel-gallop15 12.3 18.8 0.5 19.5 27.6 0.8 5 8.9 0.2

camel-gallop30 8.8 14 0.6 19.7 26.2 1.3 7.9 12.6 0.5

elephant-gallop15 16.4 24.5 0.5 30.3 42 0.8 8.1 12.1 0.3

elephant-gallop30 12.8 20.1 0.6 25.9 34.4 1.3 10 14.6 0.5

horse-gallop15 13 17.3 0.9 157.7 161.5 1.3 4.9 6.6 0.3

horse-gallop30 7.3 9.6 0.8 23.1 29.6 2.4 9.1 12.4 0.9

camel-collapse20 14.7 23.2 1.3 22 30.1 1.8 7.5 12.4 0.6

camel-collapse40 9.9 15.9 1.6 18.8 24.5 2.5 8.3 12.1 1.1

horse-collapse20 15.9 22.4 2.8 28.8 37 4 10.1 14.2 1.5

horse-collapse40 10.8 14.7 3.3 23.6 29.4 5.1 11 14.6 2.7

Table 4.2: Comparison of the approximation errors on weight matrix (∆W ): k-largest

weight reduction, smooth weight reduction [44], and our method. In this comparison,

example poses are not used. The number of bones k is shown as a subscript of input

model name. The errors are multiplied by 1000 for convenience.
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Figure 4.8: Comparisons between our method and several selected skinning weight

reduction methods (i.e., k-largest weight reduction, smooth weight reduction [44],

geometry weight reduction [32], and Poisson weight reduction [44]). The three used

models are elephant-gallop with 15 bones (top-left), horse-collapse with 20 bones

(top-right), and samba with 10 bones (bottom). All the methods reduce the skinning

models with dense weights (obtained via the smooth skinning decomposition method

[45]) to 4 bones per vertex. The methods noted with blue do not utilize example

poses, while the methods noted with red utilize example poses. In addition, “4

bones/vtx skinning decomposition” denotes the skinning model with 4 bones per

vertex that is directly computed by the smooth skinning decomposition approach

[45].
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Figure 4.9: Running time (seconds) of our skinning compression approach on CPU.

The first row shows running time of our compression without using example poses

and the bottom row shows the running time with using example poses. k denotes the

number of master bones, n denotes the number of vertices of the input 3D model,

and f is the frame number of example poses.
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Figure 4.10: GPU Performance comparison between LBS and our approach. Both

methods were implemented with Microsoft Direct3D 11 running on NVIDIA Geforce

GT 540M. Normal vectors were transformed and then normalized to unit length.

The performance was measured by animating 150 instances and reporting FPS for

the entire pipeline including rendering.
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Figure 4.11: The memory overhead required by our approach to cache virtual bone

transformations, compared with the linear blend skinning model with the same num-

ber of bones per vertex. Here we assume each vertex is stored as four 32-bit floating

point numbers, a transformation matrix is stored as sixteen floating point numbers,

and a blending weight with index is stored as two floating point numbers.
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Chapter 5

Conclusion

This dissertation focuses on two fundamental problems of character skinning. (1)

Model setup: My skinning from examples method extracts the skeleton-based LBS

model. Such an extracted skinning model makes the editing task become more

intuitive, and it is also compatible with mainstream 3D modeling and animation

tools and 3D game engines. With the iterative linear solver I developed, my method

offers more robust and more accurate results than the previous work. (2) Hardware

accelerated rendering of skinning animation: I introduced an efficient two-layer LBS

model to substantially reduce the computational cost of a dense-weight skinning

model, with insignificant loss of its visual quality. This model is constructed by sparse

coding technique using dense skinning weights or using animated mesh sequence to

further improve its accuracy. This method significantly outperforms state-of-the-art

weight reduction algorithms, as well as skinning decomposition algorithms with the

sparseness constraint.
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I believe these skinning methods might have numerous potential applications in

both graphics and other disciplines. For example, skinning can be used as a data

compression or a data reduction model, serving for hardware accelerated rendering or

real-time simulation. In addition, skinning decomposition with skeleton extraction

can be used in bio-mechanical and medical applications to analyze the motion and

structure of articulated subjects. Skinning techniques could also benefit performance

capture techniques since a deep understanding about the relation between skin de-

formations and object structure, e.g. skeleton or motion actuators, would help to

limit the search space for 3D reconstruction and surface tracking. Skinning models

can be used as a regularizer for building performance capture systems. With some

extensions, skinning from example methods can also be applied on raw 3D scan data

such as noisy, incomplete, and unorganized point cloud datasets.

However, the proposed models still has certain limitations. The first limitation is

the limited approximation power of the linear blending models, which makes them

impossible to capture complicated deformations such as muscle bulges or skin wrin-

kles. Thus, high-quality visual results call for effective and accurate skinning models.

In the future, I plan to develop high quality skinning models with intuitive user con-

trols, e.g. via semantic or dragging handles. This would significantly benefit artists

and practitioners who use the current animation pipeline. Other relevant research di-

rections I would like to pursue include: incorporating physics for skinning, interactive

and seamless correction by artists, and hybrid simulation driven skinning methods.

The second limitation is the example data dependency, which is also a common lim-

itation of any data driven method. For example, if the input sequence only consists
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of very limited or biased motions, then my proposed approach might not be able to

extract its skinning model with a high accuracy. I believe some potential solutions

to tackle these issues would be to utilize templates or introduce certain user inter-

ventions. The third limitation is its relatively high computational cost, although it

can be alleviated, to a certain extent, via GPUs or multi-core CPUs based parallel

implementation.
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