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ABSTRACT The popularity of mobile devices with global positioning system (GPS) has boosted various
wireless location-based services (LBSs). Certain honest-but-curious or even dishonest LBS servers may learn
the users’ trajectories from location trace files, and the users’ privacy can be compromised. In this paper,
we propose a quantitative approach to model trajectory inference attacks via tensor voting, which can be
widely applied in computer vision and machine learning as a perceptual organization. To counter the tensor
voting based attacks, we propose a novel trajectory privacy preservation TPP scheme, in which LBS users
will intentionally generate dummy trajectories to obfuscate LBS servers. Meanwhile, the LBS users have the
option to disclose their trajectories to trustworthy parties (e.g., users’ parents) by sending those parties a few
more encrypted locations. Considering the power constraint of hand-held mobile devices, we mathematically
formulate the trajectory privacy preservation problem into a mixed integer linear programming optimization
problem and propose the algorithms for optimizing solutions. Through simulations and analysis, we show
that the proposed scheme can effectively preserve LBS users’ trajectory privacy against tensor voting-based
inference attacks with limited power consumption.

INDEX TERMS Tensor voting, trajectory privacy, obfuscation, inference attacks.

I. INTRODUCTION

The last decade has witnessed the exploding growth in the
quantity and capability of consumer mobile devices such
as smartphones, tablets, etc., and the proliferation of wire-
less services. With the advance and commercial use of
global positioning system (GPS) technology, smartphones
and tablets feature sensors that can pinpoint users’ locations,
which can allow the location-based services (LBSs) to use
users’ whereabouts in a variety of ways. Actually, the LBSs
do more than just tell us about exactly where we are. They
offer useful features based on our location from location-
based discovery tools and smart search (e.g., Foursquare,
Yelp, Glympse, Detour, Gowalla, Shopkick, etc.) to games
and exercise tracking (e.g., Pokémon Go, Ingress, SCVNGR,
etc.). For example, Foursquare encourages users to check-in
at locations in return for virtual badges and points. It also

helps users keep up with friends, discover what is nearby, save
money and unlock deals. According to the study by Kantar
TNS, LBS users are increasingly using services to enrich their
daily lives, with 22% using LBSs to find their friends nearby,
26% to find restaurants and entertainment venues, 19% to
check the public transport schedules, 8% to book a taxi, and
13% to find a deal or special offer.

Although LBSs bring joy and convenience to people, they
also raise serious privacy concerns. Currently, most LBSs
require the user’s hand-held device to periodically report the
location information to the service provider, and the loca-
tion data will be stored in the database/servers of the LBS
provider. Following this mechanism, a dishonest third-party
service provider may have very chances to leverage the user’s
reported locations and analyze the rich trace files to infer
the trajectory of the user. With the exposure of trajectory,
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the users not only lose their privacy but also are vulnerable
to various attacks, even some serious physical attacks. For
instance, if a celebrity registers for some dishonest LBSs,
he/she can be easily tracked by the paparazzi in the digital
world. Correspondingly, his/her next location can be inferred,
so that his/her privacy in the real world will be invaded.
Another real life example happened in Missouri, July, 2016 is
that 11 Pokémon Go players have been ripped off because
of playing this location based game, as thieves learned their
trajectory and lured those victims to remote areas outside of
St. Louis. Besides robbery, it is not hard to imagine that there
might be more serious crimes such as sexual assault, kidnap-
ping, murder, assassination, etc. targeting specific victims at
selected locations, due to the disclosure of users’ trajectory
privacy.

To avoid those issues, it is worthy to study how the dis-
honest service provider analyzes the location data, and infer
the users’ trajectories. The emerging location data has pro-
vided opportunities for trajectory prediction [1], [2]. It is
necessary to innovate a scheme to preserve the trajectory
privacy of LBS users. On the other hand, users sometimes
would like to intentionally disclose their trajectory to trust-
worthy parties (e.g., their parents, family members, close
friends or even some well-known LBS providers). Therefore,
it is also important to satisfy those requirements of users with
the proposed trajectory privacy-preserving scheme. More-
over, as the scheme is applied on a mobile device, the energy
consumption should be considered as a constraint. However,
most existing trajectory privacy preservation works [3]-[5]
have limited concerns about this seemingly paradoxical but
practical requirements of LBS users. Besides, there is a
lack of quantitative approaches to analyze either inference
attacks or the countering privacy preservation measures.

Aiming to address those challenges, we novelly leverage
tensor voting techniques [6] to quantitatively model and
analyze trajectory inference attacks. To thwart tensor voting
based inference attacks, we propose a new trajectory privacy
preserving TPP scheme, which satisfies the “paradoxical”
requirements of LBS users with limited energy consumption
of their smart devices. Our salient contributions are summa-
rized as follows:

o In this paper, we consider the LBS users’ trajectory
privacy when enjoying the service. We propose a novel
trajectory attack model based on tensor voting theory.
At the meanwhile, a trajectory privacy preservation
scheme TPP is offered to counter this kind of trajectory
inference attack.

« In order to make progress on the privacy quantification
of the performance of the proposed trajectory privacy-
preserving solutions, we formulate the trajectory privacy
maximization problem with Euclidean distance. Since
tensor voting based trajectory inference attack is consid-
ered as the attack model, the tensor voting requirement
is set as a constraint.

« In our system, the user can selectively send his/her true
trajectory to the trustworthy parties. The user intuitively
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reports dummy locations along a fake trajectory to the
service provider and some critical locations along the
true trajectories will be put into a pre-processed location
data set. The data set will be encrypted and transmitted to
the trustworthy parties. The trustworthy parties are able
to decrypt the data set, put the points back to the original
trajectory and derive the actual path of the user, while the
attacker cannot infer the user’s true path.

« Since TPP is applied on mobile devices, we need to
consider about the energy limit problem. In our work,
we minimize the energy usage to prevent the mobile
devices from consuming battery fast.

« Contrasted with the previous works about dummy-based
trajectory privacy preservation, we evaluate and com-
pare the performance by simulations.

The rest of paper is organized as follows. We review the
related work on location and trajectory privacy in Section II.
In Section III, we present the overview of our system.
In Section IV, we propose a novel attack model based on
tensor voting theory. In Section V, we give the formula-
tion of the privacy maximization problem, derive an upper
bound of it and illustrate a heuristic algorithm to feasibly
solve the problem. We formulate the energy cost minimiza-
tion problem in Section VI. In Section VII, we analyze
the performance evaluation. Finally, we draw conclusions
in Section VIII.

Il. RELATED WORK

In the existing literature, there are a great number of papers
studying location privacy. One general location privacy
preservation mechanism is obfuscation [7]-[9], which is
implementing by sending a time or space obscure location
to the LBS instead of the true location of a user. Some
schemes of this method put the true location and another k — 1
dummy locations in an area in order to keep the probability of
finding out the true location at 1/k, which is called location
spatial cloaking [10]-[12]. Most schemes of the location
spatial cloaking methods use the syntactic privacy models,
which are sensitive to inference attacks. Another location
privacy preservation mechanism is sending fake locations
along with true locations of the user to the LBS provider,
which is called dummy-based [13]-[15]. In this case, users
will send a dummy request together with the true request,
and hence the attacker cannot distinguish the real location
from the dummy location. Moreover, there are also some
works based on differential privacy models to protect location
privacy [16], [17]. Moreover, some location privacy preserv-
ing schemes are using the mix-zone model [18], [19], which
is first proposed to be used in location privacy preservation
in [20]. A mix-zone indicates that when users enter the mix-
zone, they can change their pseudonym to prevent adversary
from tracking their locations. The challenge of preserving
location privacy is that some frameworks need a trusted third-
party anonymizer to pre-process the location data, which is
not always possible and can also involve privacy issues.
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Beyond the location privacy, it is challenging and com-
plicated to preserve trajectory privacy. Furthermore, if the
trajectory of a user is exposed, the locations of the user
will be known by the adversary. The most popular way of
trajectory protection is generating dummy trajectories. For
example, in [3] and [4], two dummy-based schemes, ran-
dom pattern scheme and rotation dummy generation, are
proposed. The first generates dummy trajectory randomly
from start to end locations and the second one rotates the
original trajectory by a location along the trajectory. There
is another technique to protect trajectory privacy, which is
trajectory k-anonymity [5]. Most work in trajectory privacy
preservation only concentrates on proposing a new privacy
protection framework, and have limited concern about quali-
fying the privacy mathematically. While in a practical way,
it is essential to obtain privacy qualification with metrics.
In other words, after applying the privacy-preserving frame-
work, it should be clear to understand to what extent the
preservation of the trajectory privacy is guaranteed.

lll. SYSTEM DESCRIPTION OF TPP

In this section, we demonstrate the problem statements and
notations. Under the non-interactive model of the privacy
preservation framework, which uses the learning algorithm,
we propose the trajectory privacy preservation solution TPP
against tensor voting based trajectory inference attack. TPP is
based on the fact that the location information is not directly
sent from GPS to the third-party server, but from the user’s
device. Also, the user has the control location information
reporting.

Before we introduce our system, without loss of generality,
we list the assumptions as follows. In our work, we assume
the users do not report locations along the true path but send
the candidate dummy locations to the service provider, which
can be chosen as fake locations of the users. In addition,
we assume the source and destination locations are public
known, because these locations can easily be identified by
others. For example, if the user is a student, in the morning,
he/she should go to school from home. Moreover, the users
may share their locations via the social networks such as
Facebook, Instagram and so on. Therefore, the two locations
are easily known to the attacker as the source and destination
locations of the trajectory. However, the trajectory should not
disclose to others. The rest of locations along the true trajec-
tory will be replaced with dummy locations chosen from the
candidate location set D. The set of locations on the real path
is TR = {Ly, - -+ , L;} and the set of candidate dummy loca-
tions is D = {Ly1, - - - , Lgj}. The dummy locations are cho-
sen from a candidate set, whichis C = {l,---,¢c,---,C}.
We take time ¢ as the timestamp for each location from a
time set for the trajectory 7 = {1, --- ,¢,--- , T}. Moreover,
users can potentially select to encrypt some crucial locations
on the true path and send them through a secure channel to
the trustworthy party who is able to decrypt the encrypted
location data set. The locations are chosen from an encrypted
candidate set, whichis & = {1,--- ,e,---, E}. We assume
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that the attacker is able to get access to the history data of
a user in order to learn the user’s living habits. Additionally,
the tensor voting analysis is treated as the trajectory inference
attack model, which will be introduced in Section IV in
detail.

FIGURE 1. TPP network architecture.

The system overview is shown in Figure 1, which is a
partial map of University of Houston from the College of
Technology Building to the Student Center Satellite. The two
solid circles are source and destination locations, the hollow
circles are the locations along the true trajectory and the
rhombi are candidate dummy locations. We assume the user
is walking along the dashes line which is the true path. The
user does not report the true locations but choose candidate
locations, thombi, and the fake path can be generated which
is solid line on the figure. At the meanwhile, some critical
location, such as turning points along the true trajectory, will
be encrypted in traditional ways like Advanced Encryption
Standard (AES) or Triple Data Encryption Algorithm (3DES)
and send to the trustworthy party. After the trusty party
decrypted the data set and put the location back to the map,
the true path of the user will be shown according to the
tensor voting analysis. In order to quantify and increase the
trajectory privacy, we are looking forward to maximizing the
differences between the true and dummy trajectories. In this
case, we can protect the trajectory privacy to the greatest
degree. We will further illustrate the problem formulation of
maximizing trajectory privacy in Section V.

IV. TENSOR VOTING BASED INFERENCE ATTACKS

A. OUTLINES OF TRAJECTORY INFERENCE

ATTACKS VIA TENSOR VOTING

Tensor voting is an unsupervised data-driven methodology to
automatically infer and group geometric objects [6], which
systematically explains how to infer hidden structures like
gaps and broken parts in the trace trajectory [21]—[23]. It can
be widely used in machine learning or computer vision as a
perceptual organization method. As for trajectory inference
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(a)

(b)

©

FIGURE 2. An illustrative example of tensor voting based inference attacks. (a) History locations of a LBS user. (b) After

tensor voting processing. (c) After feature extraction.

attacks, the dishonest LBSs or eavesdropping attackers may
exploit the tensor voting theory to infer a user’s trajectory,
because tensor voting has desired geometric properties such
as smoothing continuous trajectories and bounding boxes
with minimum registration errors.

Those salient properties make tensor voting based infer-
ence attacks superior other inference attacks [24] because the
adversary only needs partial/limited information to launch
inference attacks via tensor voting. For example, as shown
in Figure 2, even without any timestamps, the adversary can
still leverage the historical/known locations to infer the user’s
trajectory using tensor voting. In general, given the collected
location data of the LBS user, the adversary can encode the
normal space with tensor representation and mathematically
infer the trajectory of the LBS user according to the tensor
voting theory.

In the rest of this section, we introduce the tensor voting
framework in 2-D. As shown in Figure 2(a), attackers are
able to collect history locations of a user. With the tensor
voting process, the outlier locations are filtered out shown
in Figure 2(b). After feature extraction, attackers can math-
ematically track the user’s trajectory. Next, we will illustrate
the approach to representing a token, which is encoded with
normal space. Then, we introduce the tensor voting based
inference attack procedure.

B. SECOND ORDER REPRESENTATION

The structure information of an input location site can
be encoded with a tensor. According to the Gestalt prin-
ciples [25], the exist of objects or shapes which are
close enough indicates that these objects probably appear
as a group. The strength of each type of visual struc-
ture, or saliency, and the preferred normal directions can
be encoded within a second order symmetric non-negative
definite tensor.

To begin with, we need to mathematically model the struc-
tures. In a N — d space, there is a set of N orthonormal basis
vectors €1, - - - , €y, where d basis vectors from the beginning
of this set span the normal space and the rest N — d vectors
span the tangent space. The representation of the normal
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space in d dimensions is

ey

Therefore, the projection of a vector v into the 2-D normal
space should be

d d
o= & (&v) = (el ) v="av.
i=1 i=1

In our work, we only consider 2-D, so in the above equations,
d is equal to 2.

The normal space represents the structure types well, but it
is required to know how salient the structures are in order to
adequately model the structure. We encode the saliency and
normal spaces into a second order, symmetric, non-negative
definite tensor, because the parameters are associated with
the structure type. Furthermore, the second order tensor is
equivalent to a 2x?2 matrix, or an ellipse. The directions of
two eigenvectors are the axes directions of the tensor. The
major axis of the ellipse is the preferred normal orientation
of a potential curve going through the location. The size of
the ellipse indicates the certainty of the preferred orientation.
An arbitrary second order, symmetric, non-negative definite
tensor can be decomposed as:

@

d
T=) )l d=2)
i=1
= KléléT + kzézég
= (A1 — A2) élé{ + )\z(élé{ + ézég),

(€)

where ); are the eigenvalues and e; are the corresponding
eigenvectors. We further define

s =X — A2, @

as the saliency of the tensor. In (3), the first term refers to the
stick tensor, which shows the elementary curve token with the
eigenvector €; as the curve normal direction. The second term
corresponds to the ball tensor that indicates a structure which
has no preference of normal orientation or an intersection
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where two or more paths cross with each other. Therefore,
if A1 — A7 is much larger than A;, it means the stick tensor is
dominant and infers that the curve goes through this token has
anormal direction parallel to the orthonormal basis vector €;.
When A1 is approximately equal to A,, the tensor will become
a ball tensor which shows the token is a junction or out of the
structure.

C. TENSOR VOTING IN 2-D

After the input sites have been encoded with tensors, the vot-
ing procedure is used to communicate information from each
input site, or voter, to any output site, or receiver.

o' o .
A4
() o ¢

FIGURE 3. lllustration of token refinement.

Figure 3 illustrates an overview of a typical tensor vot-
ing analysis for the simple case of points in 2-D. Analysis
begins with no information at the input sites other than their
locations. We create a token at each input site, according
to the second order representation, initialized with a unit
ball tensor indicating that no separation of the normal space
from the tangent space is yet known. The first step of tensor
voting, named as sparse voting, which is used to communi-
cate information among token locations, refined tokens have
encoded saliency and preferred directions of normal space
at the input sites. Major and minor axes of the ellipse in
Figure 3 align with the preferred normal and tangent direc-
tions, respectively. The difference between the major and
minor axis lengths represents the degree to which structure
at the token is curve-like. In addition, the outliers tend to
have lower saliency and are less curve-like because they are
unorganized and unlikely to conspire to form a false structure.
The second step of tensor voting is dense voting, which means
the tokens cast vote to every neighbor location regardless
of the presence of tokens. After these two steps, we can get a
dense saliency figure which shows the map of saliency.

In this subsection, we use Figure 4 as an example to
illustrate the tensor voting procedure in 2-D. Stick vote is
used in tensor voting to transmit information about the normal
direction from a voter point O(x1, y1) to a votee point P(x3,
¥2). The tensors of them after encoding can be represented by

£ AT
To = 20,101V s (5)

where the unit normal vector of point O is Qz(T)’ 0= [O 1], and
the unit tangent vector is VO ;= [1 O] We assume the voter
and votee are connected by an arc of the osculating circle
passing through them, so the normal of the votee P is Vp .
In Figure 4, vI' = [x — x1 y2 — y1] is the vector from voter
O to votee P, 6 is half of the central angle between P and O
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FIGURE 4. Illustration of the stick vote [21].

which is also the angle between vector v and vector Vo ; and
o is the arc length from point O to P. Geometrically, we can
obtain normal vector Vp , of votee P is

A - N . — sin 26
Vpn = V0,0 0820 — Vo, sin20 = |: 0s 20 ] (6)
half of the central angle 0 is
6 = arcsin V! ¥,, = arcsin G2 =) , (D
VO =22 + (2 = y1)?
and arc length « is
_ vl
sin 6
2 2 : 2—y1)
X2 —x1)* 4+ — arcsin ———=—rte—-—
_ [(x2 D 02—yl \/m ®

Y2 =y

During the voting procedure, votes are not cast equally
from a token to another. The vote will attenuate with distance,
in order to reduce the influence between unrelated tokens.
Additionally, the voter will not cast any vote to a receiver
which is at an angle larger than 7r /4 with respect to the tangent
of the osculating circle at the voter. The attenuation function
can be given empirically,

(X2+CK2
DF(a,k,0) = e oz ) ©)]
where « is the curvature that can be found as
2sinf 2(y2 —
K = - (y; Y1) - (10)
vl (2 —x)*+ 2 —y1)

c is the penalty for curvature and o is the only parameter that
the user can change to set the scale of voting. The parameter
c is also used to control the de%ree of decay with curvature,
which is set to: ¢ = —1218ODE=D ‘we can find that the
attenuation function is a normal distribution function which
is corresponding to a real number. The stick vote cast from
voter O to votee P is as the following,

Vo.p = DF(a, K,U)Qp,neg’n, (11)

which is also a stick tensor. Finally, stick votes received at
a votee P are the sum of votes cast by all the input tokens.
We assume that there are k locations in a set K on the map.
The votes received by a votee P can be represented as

Ve=3 Ver (12)
xekC
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where V, p is the vote point x cast to point P. Because the
vote is also a stick tensor, equation (12) can be decomposed
by (3) as following

~ AT ~ AT A AT
Tp = (p1 — AP 2)VPnVp , + AP 2(VPnVp , + VP.iVp ;).
(13)

V. PROPOSED TRAJECTORY PRIVACY PRESERVING
SCHEME AGAINST INFERENCE ATTACKS

In this section, we will demonstrate our trajectory privacy
preservation scheme against tensor voting based inference
attack. In Subsection V-A, we will propose our formulation
for trajectory privacy maximization problem. Because the
formulated problem is a mixed integer linear programming
(MILP) problem, we will first give the upper bound for the
problem in Subsection V-B. In order to solve the formulated
problem efficiently and effectively, we will demonstrate a
heuristic algorithm for the feasible solution and analyze the
complexity of the algorithm in Subsection V-C.

A. TRAJECTORY PRIVACY MAXIMIZATION PROBLEM

In order to counter the tensor voting based inference attack,
we proposed the TPP scheme shown as Figure 1. First, we let
the user not report the location points along the actual trajec-
tory, but intentionally choose candidate locations and report
them which are along a dummy trajectory. Based on the
tensor voting analysis, we make sure that both the saliency of
dummy tensors are sufficiently large to form a fake trajectory.
So with tensor voting based inference attack, the attacker
believes that the user follows the dummy trajectory instead
of the actual one. At the meanwhile, the user will select
several specific and critical locations along the true path to
be encrypted and sent to the trustworthy party. After the
trustworthy party decrypts and puts these locations back to
the map, the true path will appear on the map by processing
with the tensor voting framework.

1) METHOD OF CHOOSING CANDIDATE LOCATIONS

As shown in Figure 1, the blue dashed line indicates the true
trajectory, the red solid line indicates the fake trajectory and
the two black points along the line are the source and desti-
nation locations. In order to make the attacker trust that the
user follows the fake trajectory, because, sometimes, before
the user is trying to fake his/her trajectories, the location
of the user may be already known by the attacker and also
a person cannot go too far away in a short time period,
the source and destination locations are assumed to be public
known locations. In Figure 1, the yellow parts are buildings
and the green parts are grass or bushes. We assume that
the user can go through a building and not cross through
the grass or bush. We set the grey rhombi as the candidate
locations, which are all along roads or close to the exit in the
building. As we illustrate in Section III, we assume the set of
candidate dummy locations is D. The dummy locations are
chosen from a candidate set, which is C. The time set is 7.
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In order to choose the candidate location, we denote

‘ 1, if Lgjis chosen att,
0, otherwise,

c
for D3 wi=T-2 and Y wi=1, (14)
teT jeC Jj=1
where T is the total number of time slots of the whole
trajectory. Like we illustrated before, we assume the source
and destination locations are public known, the sum of the
selected candidate location should be T —2. Moreover, during
one time slot, only one candidate location from the set can be
chosen, which is shown as (11).

2) EUCLIDEAN DISTANCE

In our work, we are trying to propose a mathematical way to
quantify the trajectory privacy. We define the location along
the true trajectory at timestamp ¢ is L/, and similarly the
dummy location along the fake path at timestamp 7 is Léj.
The location L] can be represented as a triple-tuple (x;, y;, 1),
where x; and y; are the coordinates of the location. Conse-
quently, we can get the Euclidean distance between the two
locations at the same timestamp as follows,

Eu(L{, L}y = \/(xf — X2+ O — ¥ (15)

After processing the locations with our scheme we illustrated
in Section III, besides the public known source and destina-
tion locations, the adversary can only get one set of locations,
which is the dummy trajectory TRy = wj’. -D,j e C.Inour
paper, the source and destination locations are overlapped by
true and dummy trajectories, and hence we can define the
trajectory privacy as

T—-1
TP(TRa, TR) = Y Eu(L{,L}). (16)
t=2

As shown in Figure 5, we assume the black solid line and
blue dashed line are two trajectories, and the red dashes
lines between the two trajectories are the euclidean distances
between two locations and the total length of all the red
dashed line is considered as the defined trajectory privacy.

FIGURE 5. Euclidean distance based trajectory privacy metrics.

3) TENSOR VOTING CONSTRAINT

As illustrated in Section IV, we take tensor voting analysis
to launch trajectory inference attacks. In order to hide the
true path, after processing with tensor voting, the saliency of
fake locations along the dummy trajectory should be larger
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than an upper bound threshold value sz, , and the saliency
of locations except the destination and source locations along
the true trajectory should be smaller than a lower bound
threshold value s7y, . Likewise, after the encrypted critical
points along the true trajectory has been decrypted by the
trusted party and put back on the map, the saliency of loca-
tions along the true trajectory should also be larger than the
upper bound threshold value s7p,, . From Subsection IV-C,
we can obtain the tensor of location L after voting procedure
can be represented as following

o oT
Tr = (r,1 —AL2)VLAVL
o of Lo of
+AL2(VL VL + VLV )- (17)

As defined in Subsection IV-B, the saliency of the tensor of
location L should be

S =AL1—AL2. (18)

Accordingly, the saliency of the locations along the dummy
trajectory and the locations along the true trajectory can be
represented as SLyj and s;,. Hence, in order to hide the true
trajectory and show the dummy trajectory, we need to satisfy

w} Sy = w} -stHy (G €0), (19)

(ief). (20)

SL; = STH;,

In addition, based on tensor voting theory, we can also get the
maximum distance d,,,, from the voter at which the vote cast
will have 1% of the voter’s saliency, as e_(dmﬂfz/ o) = 0.01,
since voting only takes place in a finite neighborhood.

4) PROBLEM FORMULATION

With the proposed trajectory privacy preservation system,
the formulation for the trajectory privacy maximization prob-
lem can be described as follows,

Maximize TP(T R4, TR) (21
s.t.: w]’- ={1,0} (G e0), (22)
ZZW;=T—2, (23)
teT jeC
c
> owi=1, (24)
j=1
Wi sty = wi sty (€0, (25)
s, <sta, (€f), (26)

where w} is the optimization variable, Pg, Pty , STH,, and sta,
are all constant, and sy, and sz, i is deterministic value when
the only parameter o in tensor voting procedure is given.
Equations (22) (23) and (24) indicate the candidate dummy
locations selection constraint. (25) and (26) specify the tensor
voting constraints.

B. THE UPPER BOUND FOR TRAJECTORY

PRIVACY OPTIMIZATION

The formulated trajectory privacy maximization problem is a
mixed integer linear programming (MILP) problem, which is
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NP-hard to solve in general [26], [27]. The complexity of the
optimization results from the integer parameter w]’-. We can
relax the binary variable w! from {0, 1} to real numbers in
[0, 1], according to the methodologies in [27]. In this case,
the complexity of this optimization problem will be reduced
obviously. After relaxing the integer variables, we can explore
an upper bound for the formulated problem. As a result,
the MILP problem is converted into a linear programming
(LP) problem, which can be obtained in polynomial time and
solved using CPLEX [28].

C. THE HEURISTIC ALGORITHM FOR FEASIBLE
SOLUTIONS

As illustrated in Subsection V-B, we are able to get the upper
bound for the proposed problem as the benchmark, neverthe-
less we still explore for an effective and feasible solution.
In this subsection, we will describe our heuristic algorithm
to solve this optimization problem.

It is obvious that if all the dummy locations in the set
D are determined to be chosen or not, which means all of
the w!-variables are decided, the proposed trajectory privacy
maximization problem will become an LP problem. In this
case, we first relax binary w!-variables to 0 < w! < 1, and
hence the problem is converted to an LP problem. This LP
problem can be solved by several mathematical tools, so we
are able to achieve the feasible solution that every wjt. -variable
should be a decimal value between 0 and 1. All w! with
decimal values are put into a set Wj’ . If all of the fractional
values are smaller than 0.5, we fix the minimal value of w’,
represented as w;, to 0. Otherwise, there should be a maximal
value of wj’. values, which is assumed to be represented as
w!,, and then we set w!, to 1. Subsequently, we can relax
the rest of w'-variables and perform an updated LP prob-
lem as above. The procedure of the heuristic algorithm is
shown in Algorithm 1. Upon iterations of solving the updated
LP problem, we can fix all the w!-variables. After fixing
w]’. -variables, the original MILP is converted into an LP and
can be feasibly solved.

After the description of the heuristic algorithm for the
proposed problem, we analyze and compare the complexity
of the optimization solution of the MILP problem formula-
tion and the feasible solution with the heuristic algorithm.
In this MILP problem, there is one binary variable w} for
j € C. Therefore, the possible combinations of w; is 2€.
As said, considering all of wjt. are fixed, the MILP problem
will become an LP problem. According to [29], we can
find that the intrinsic computational complexity of an LP
problem is O(A3 - L), where A is whether the number of
constraints or variables in the problem depending on which
one is larger, and L is the number of binary bits required
to store the data, which is the input length of a situation of
the proposed problem. The number of variables is CZ, which
is larger than the number of constraints C, the complexity
of solving this LP problem is O(C® - L). Consequently,
the computational complexity for the optimal solution of
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the proposed MILP formulation is O2€ - C® - L). Now,
we continue to analyze the computational complexity of our
heuristic algorithm. As illustrated before, we relax and fix
the w/t. -variable by iterations. In order to determine all the w'-
variables, we repeat doing iteration. The complexity for the
iteration procedure is O(C) and the complexity for the LP
problem is O(C® - L), which results in the overall complexity
is O(C - C% - L). Obviously, the computational complexity
is significantly reduced compared with the optimal solution
with complexity O(2¢ - C¢ - L).

Algorithm 1 Relex-and-Fix Heuristic Algorithm

Data: w} LP feasible values
1 Wj’ < set of all w]’. with fractional values;
2 while Wj’ # @ do

3 if all fractional values in th < 0.5 then
4 fix the minimum w’, to 0;
5 Wi\ wis
6 reformulate and solve the new relaxed LP
problem with fixed w-variables;
7 else
8 fix the maximum w/, to 1;
W\
10 reformulate and solve the new relaxed LP
problem with fixed w-variables;
11 end
12 end

[

3 return all fixed w]’--values;

VI. TRUE TRAJECTORY RECONSTRUCTION FOR
TRUSTWORTHY PARTIES

Although the user prefers to fake their trajectory in order to
prevent from attacking from malicious parties, the user may
also desire to tell his/her true trajectory to parents or friends
who are considered as trustworthy party. As we illustrated
in Section III, the user can send selected locations to the
trustworthy parties. However, because of sending these loca-
tions, it will cause extra communication and computation
cost. In this section, we will minimize the energy cost when
sending encrypted locations to trustworthy parties for true
trajectory reconstruction.

A. METHOD OF CHOOSING ENCRYPTED LOCATIONS

In our work, the user can select several critical locations such
as turning points to be encrypted with an encryption function
E(-). The encrypted data set can only be decrypted by the
trusted party. Similarly, the set of locations on the real path is
TR and the locations are chosen from an encrypted candidate
set £, which are introduced in Section III. We give a function
to choose the candidate location as following,

§t =

1

27)

1, ifiis chosen to be encrypted at ¢,
0, otherwise.
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After the trustworthy party decrypts the encrypted location
data, by applying the tensor voting framework, the true tra-
jectory can be obtained by the reliable party.

B. ENERGY COST CONSTRAINT

When we encrypt the plain text and transmit it through the
wireless network, there is energy consumption. Because our
scheme is used in mobile devices and there is a limited power
usage, we need to reduce the power usage when processing
the our scheme. In our paper, the extra energy consumption
is from encryption and transmission of the critical locations
along the true trajectory. Therefore, we assume that the power
usage need to satisfy (28), where Pg is the power cost to
encrypt and transmit one location and Pry is the limited
power usage of the mobile device. In our paper, we use the
AES scheme to encrypt the location information for example.
The energy cost constraint can be represented as following

> 81 Pp < Py (28)

=
In [30], the authors designed three different experiments and
gave the result data about energy consumption in a cell phone.
We assume that the size a location data is 8kB and the average
energy consumption of AES encryption and transmission is
around 90mW according to the experiment result of [30].
Therefore, Pg in (28) is equal to 90mW. In order not to
consume energy of the cell phone too fast, the energy con-

sumption should never be higher than 1W, so Pry in (28)
should be 1W.

C. TENSOR VOTING CONSTRAINT

We define S/L,- as the saliency of the encrypted locations along
the true path after being decrypted and processed voting.
The saliency should be larger than the upper bound threshold
value sy, as demonstrated in Subsubsection V-A.3, which
can be represented as following

81{ . S/L,- > 81{ -stHy (€ &) 29)

D. ENERGY COST MINIMIZATION

In order to reduce the communication and computation cost
when communicating with trustworthy party, we employ the
formulation as following

Minimize Z st (30)
ie€
S.t.: 8; ={1,0} (€eé), 3D
> 8- Pr < Prm. (32)
ie€E

8.5y =8 sy, (€8 (33)

where 5; is variable, Pg, P7H and s7y, are constant, s}ﬂ_
is also a constant if the only parameter ¢ in tensor voting
is confirmed, (31) signifies the encryption of true locations
constraint, (32) expresses the energy cost constraint, and (33)
represents the tensor voting constraint.
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VIl. PERFORMANCE EVALUATION

In this section, we will analyze the security and discuss about
the simulation results about our proposed trajectory privacy
maximization and energy cost minimization problem.

A. SIMULATION SETUP

In the simulation, we consider there are 2 to 10 locations
including the source and destination locations along the true
trajectory. We grant 30 dummy locations which are dis-
tributed in a 200 x 50 m? area. We assume that users will
send their locations to server every 30 seconds. The speed
that people tend to choose to walk is the preferred walking
speed of human. Most people’s preferred walking speed is
around 1.4 m/s. However, people’s walking speed can also
achieve to 2.5 m/s in a short distance [31]. As illustrated in
Subsection IV-C, the decay function is a normal distributed
function. In order to make the vote cast from other location
higher than 1% of the voter’s saliency, the maximum distance,

( dY%llIX
o2 =

say dax, between two locations should satisfy e
0.01, which can be simplified as d,;,r = 30. In this case,
compared with the walking speed of human, we are able to
set the tensor voting parameters o as 10, 20 and 25.

B. SECURITY ANALYSIS
The trajectory privacy is preserved by reporting dummy loca-
tions instead of true locations of the user. As illustrated in
Section V, we define the trajectory privacy as the difference
between true and dummy trajectory which is represented by
TP(TR4, TR). We apply the heuristic algorithm described
in Subsection V-C to conduct the simulation with comparison
of the trajectory privacy with different o values. As seen
in Figure 6, the trajectory privacy will be higher if the num-
ber of locations along a trajectory is larger. It is reasonable
because if the trajectory is longer, the choices of dummy
locations will be more. Similarly, if o is higher, which means
the voting scale is larger, there will be more choices of
dummy locations. Consequently, the trajectory privacy will
be preserved with larger o value and longer trajectory.

In our paper, as described in Section III, the users are also
able to communicate with the trustworthy party. We assume
to encrypt users’ true locations by traditional encryption

500
——0c=10
- g =20 fs
>400 b = 95
o
o .
2
£300]
ol
=]
.§200 r
[
i
100 -
0 . .
2 4 6 8 10

Number of Locations along a Trajectory

FIGURE 6. Trajectory privacy with different o.
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algorithms like AES and 3DES. In this case, the security of
transmitting information to trustworthy party is preserved by
the hardness of compromising those encryption algorithms.

C. PERFORMANCE COMPARISON

The simulation setup is demonstrated in Subsection VII-A.
In this subsection, we will discuss the result of energy cost
minimization problem and compare the performance of the
TPP scheme with random and rotation schemes [3].

As we mentioned in Section VI, we desire to transmit loca-
tion information to the trustworthy party with lower energy
consumption. Figure 7 indicates that as the number of loca-
tions along a trajectory becomes larger, more encrypted loca-
tions need to be transmitted to trustworthy parties for infer-
ring the true trajectory. With a higher o value, the encrypted
locations is less. But when the number of locations are too
small, no matter how big o is, the performances are the same.
Since we aim to show the tendency of the user’s trajectory, o
value is not limited by the preferred walking speed of human.

Finally, we compare the defined trajectory privacy of our
TPP scheme with the random and rotation schemes [3]. The
number of generated random dummy locations is the same as
locations along the true trajectory. The source and destination
locations are the same along true and dummy trajectories.
We randomly choose dummy locations to satisfy the walking
speed of human. Since the source and destination locations
are public known, we make some adjustments of the rotation

(3]

=Y

N w

Number of Encrpted Locations

o

4 6 8 10
Number of Locations along a Trajectory

N

FIGURE 7. The number of encrypted location corresponding to different 5.
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FIGURE 8. Performance comparison of different trajectory privacy
preservation schemes.
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scheme to fit this scenario. In the simulation, we only rotate
the rest of locations and the rotation point is the center of the
trajectory. Furthermore, we limit the rotation angle in order
to keep the distance between locations along a trajectory to
satisfy the walking speed of human. As shown in Figure 8§,
we make a comparison between the random, rotation and
our TPP scheme with o equals to 20. It is obvious that our
proposed scheme perform much better to preserve trajectory
privacy.

VIIl. CONCLUSION

In this paper, we have studied the trajectory privacy maxi-
mization problem via our proposed scheme against the tensor
voting based inferring attack. We have introduced a novel
trajectory inference attack model based on tensor voting
theory. We have mathematically formulated the trajectory
privacy maximization problem under several constraints such
as saliency limitation based on tensor voting theory, and put
it into an MILP problem. Because of the NP-hardness of the
MILP problem, we have converted it into LP problem for an
upper bound and developed a heuristic algorithm for feasible
solutions. We also have illustrated the energy cost minimiza-
tion problem. Through extensive simulations, we have shown
that the proposed TPP scheme can effectively preserve LBS
users’ trajectory privacy.

REFERENCES

[11 G. Xu, S. Gao, M. Daneshmand, C. Wang, and Y. Liu, “A survey for
mobility big data analytics for geolocation prediction,” IEEE Wireless
Commun., vol. 24, no. 1, pp. 111-119, Feb. 2017.

[2] N.Ye, Y. Zhang, R. Wang, and R. Malekian, ““Vehicle trajectory prediction
based on hidden Markov model,” KSII Trans. Internet Inf. Syst., vol. 10,
no. 7, pp. 3150-3170, Jul. 2016.

[3] T.-H. You, W.-C. Peng, and W.-C. Lee, “Protecting moving trajecto-
ries with dummies,” in Proc. IEEE Int. Conf. Mobile Data Manage.,
Mannheim, Germany, May 2007, pp. 278-282.

[4] P-R.Lei, W.-C. Peng, 1.-J. Su, and C.-P. Chang, “Dummy-based schemes
for protecting movement trajectories,” J. Inf. Sci. Eng., vol. 28, no. 2,
pp. 335-350, 2012.

[5] T. Xu and Y. Cai, “Exploring historical location data for anonymity
preservation in location-based services,” in Proc. 27th Conf. Comput.
Commun. (INFOCOM), Phoenix, AZ, USA, Apr. 2008, pp. 547-555.

[6] P. Mordohai and G. Medioni, Tensor Voting: A Perceptual Organization
Approach to Computer Vision and Machine Learning. Morgan & Claypool,
2006.

[71 M. Duckham and L. Kulik, “A formal model of obfuscation and negotia-
tion for location privacy,” in Proc. Int. Conf. Pervasive Comput., Munich,
Germany, May 2005, pp. 152-170.

[8] T.Jiang, H.J. Wang, and Y.-C. Hu, “Preserving location privacy in wireless
LANS,” in Proc. 5th Int. Conf. Mobile Syst., Appl. Services (MobiSys),
San Juan, Puerto Rico, Jun. 2007, pp. 246-257.

[9] N.E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi, “Optimal geo-
indistinguishable mechanisms for location privacy,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), Scottsdale, AZ, USA, Nov. 2014,
pp. 251-262.

[10] B. Gedik and L. Liu, “Protecting location privacy with personalized
K-anonymity: Architecture and algorithms,”” IEEE Trans. Mobile Comput.,
vol. 7, no. 1, pp. 1-18, Jan. 2008.

[11] M. Gruteser and D. Grunwald, “Anonymous usage of location-based ser-
vices through spatial and temporal cloaking,” in Proc. 1st Int. Conf. Mobile
Syst., Appl. Services (MobiSys), San Francisco, CA, USA, May 2003,
pp. 31-42.

[12] K. Vu, R.Zheng, and J. Gao, “Efficient algorithms for K-anonymous loca-
tion privacy in participatory sensing,” in Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM), Orlando, FL, USA, Mar. 2012, pp. 2399-2407.

77984

[13] H.Lu, C. S. Jensen, and M. L. Yiu, “PAD: Privacy-area aware, dummy-
based location privacy in mobile services,” in Proc. 7th ACM Int. Workshop
Data Eng. Wireless Mobile Access (MobiDE), Vancouver, BC, Canada,
Jun. 2008, pp. 16-23.

[14] B. Niu, Q. Li, X. Zhu, G. Cao, and H. Li, “Enhancing privacy through
caching in location-based services,” in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM), Hong Kong, Apr./May 2015, pp. 1017-1025.

[15] F Tang,J.Li, I You, and M. Guo, “Long-term location privacy protection
for location-based services in mobile cloud computing,” Soft Comput.,
vol. 20, no. 5, pp. 1735-1747, May 2016.

[16] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: Differential privacy for location-based sys-
tems,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Berlin,
Germany, Nov. 2013, pp. 901-914.

[17] Y. Xiao and L. Xiong, “Protecting locations with differential privacy
under temporal correlations,” in Proc. 22nd ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), Denver, CO, USA, Oct. 2015, pp. 1298-1309.

[18] X. Liu, H. Zhao, M. Pan, H. Yue, X. Li, and Y. Fang, “Traffic-aware
multiple mix zone placement for protecting location privacy,” in Proc.
IEEE Int. Conf. Comput. Commun. (INFOCOM), Orlando, FL, USA,
Mar. 2012, pp. 972-980.

[19] B. Palanisamy and L. Liu, “MobiMix: Protecting location privacy with
mix-zones over road networks,” in Proc. IEEE 27th Int. Conf. Data
Eng. (ICDE), Hannover, Germany, Apr. 2011, pp. 494-505.

[20] A. R. Beresford and F. Stajano, “Location privacy in pervasive comput-
ing,” IEEE Pervasive Comput., vol. 2, no. 1, pp. 4655, Jan. 2003.

[21] E.Pan, M. Pan, and Z. Han, “Tensor voting techniques and applications in
mobile trace inference,” IEEE Access, vol. 3, pp. 3000-3009, 2015.

[22] E. Pan, M. Pan, Z. Han, and V. Wright, “Mobile trace inference based
on tensor voting,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Austin, TX, USA, Dec. 2014, pp. 4891-4897.

[23] Z.Han, M. Hong, and D. Wang, Signal Processing and Networking for Big
Data Applications. Cambridge, U.K.: Cambridge Univ. Press, 2017.

[24] X.Pan,J. Xu, and X. Meng, ‘‘Protecting location privacy against location-
dependent attacks in mobile services,” IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 8, pp. 1506-1519, Aug. 2012.

[25] C. T. Zahn, “Graph-theoretical methods for detecting and describing
gestalt clusters,” IEEE Trans. Comput., vol. C-20, no. 1, pp. 68-86,
Jan. 1971.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences). New York, NY, USA: W. H. Freeman and Company, 1979.

[27] M. Pan, P. Li, Y. Song, Y. Fang, and P. Lin, “Spectrum clouds: A session
based spectrum trading system for multi-hop cognitive radio networks,” in
Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Orlando, FL, USA,
Mar. 2012, pp. 1557-1565.

[28] ILOG IBM. (2014). Cplex Optimization Studio. [Online]. Available:
http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer

[29] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and
Network Flows. Hoboken, NJ, USA: Wiley, 2011.

[30] C. DelBello, K. Raihan, and T. Zhang, “Reducing energy consumption
of mobile phones during data transmission and encryption for wireless
body area network applications,” Secur. Commun. Netw., vol. 8, no. 17,
pp. 2973-2980, Nov. 2015.

[31]1 R. C. Browning, E. A. Baker, J. A. Herron, and R. Kram, “Effects of
obesity and sex on the energetic cost and preferred speed of walking,”
J. Appl. Physiol., vol. 100, no. 2, pp. 390-398, Feb. 2006.

XINYUE ZHANG (S’17) received the B.E. degree
in communication engineering from Beijing Jiao-
tong University, China, in 2016, and the B.Sc.
degree in electronic engineering from KU Leuven,
Belgium, in 2016. She is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Hous-
ton. She has been a Research Assistant with the
Cognitive Radio Networking, Cybersecurity, and
Cyber-Physical System Laboratory since 2017.
Her research interests include cognitive radio networks and wireless security.

VOLUME 6, 2018



X. Zhang et al.: TPP Against Tensor Voting Based Inference Attacks

IEEE Access

JINGYI WANG (S’16) received the B.S. degree in
physics from Nankai University, China, in 2012,
and the M.S. degree in electrical and computer
engineering from Auburn University, Auburn, AL,
USA, in 2015. She is currently pursuing the Ph.D.
degree with the Department of Electrical and
Computer Engineering, University of Houston,
Houston, TX, USA. Her research interests include
privacy preservation of cognitive radio networks,
distributed spectrum trading, and wireless big data
privacy. Her work on cognitive radio network won Best Paper Award in
Globecom 2017.

MINGLElI SHU received the B.S. degree in
automation, the M.S. degree in power electron-
ics, and the Ph.D. degree in communication and
information systems from Shandong University,
China, in 2003, 2006, and 2017, respectively. He
is currently a Research Fellow with the Shandong
Computer Science Center (National Supercom-
puter Center in Jinan), Qilu University of Tech-
nology (Shandong Academy of Sciences), Jinan,
China.

He is also the Head of the Information Medicine Team, Shandong Com-
puter Science Center (National Supercomputer Center in Jinan), the Execu-
tive Director of the Sino-Australian Joint Laboratory of International Health
Technology, the Vice President of the Medical and Health Branch of Shan-
dong Internet of Things Association, the Vice President of the “Internet +
Alliance, the Executive Director of the Telemedicine and Information Tech-
nology Branch of China Medical Equipment Association, and the Executive
Director of “Internet 4+’ Medical Professional Committee of China Health
Information and Big Date Association. His research interests include medical
artificial intelligence, medical big data and medical Internet of Things,
wireless sensor networks, wireless body area networks, and information
security.

YINGLONG WANG received the B.S. degree
in electronic technology and the M.S. degree in
industrial automation from the Shandong Univer-
sity of Technology, Jinan, China, in 1987 and
1990, respectively, and the Ph.D. degree in
communication and information systems from
Shandong University, Jinan, in 2005. He is cur-
rently a Research Fellow with the Shandong Com-
puter Science Center (National Supercomputer
Center in Jinan), Qilu University of Technology
(Shandong Academy of Sciences), Jinan. He is the Director of the Sino-
Australian Joint Laboratory of International Health Technology, the Vice
Chairman of the Shandong Science and Technology Association, the Pres-
ident of the Shandong Internet of Things Association, a member of the
Shandong Information Expert Group, a member of the Shandong Informa-
tion Expert Consultation Committee, the Vice Chairman of the Shandong
Computer Society, and the Vice Chairman of the Shandong Information Stan-
dardization Technology Committee. His current research interests include
medical artificial intelligence, high-performance computing, wireless sensor
networks, information security, and cloud computing.

VOLUME 6, 2018

MIAO PAN (S’07-M’12-SM’18) received the
B.Sc. degree in electrical engineering from the
Dalian University of Technology, China, in 2004,
the M.A.Sc. degree in electrical and computer
engineering from the Beijing University of Posts
and Telecommunications, China, in 2007, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Florida in 2012. He is
currently an Assistant Professor with the Depart-
ment of Electrical and Computer Engineering,
University of Houston. His research interests include cognitive radio net-
works, cybersecurity, and cyber-physical systems. He is a member of ACM.
He was a recipient of the NSF CAREER Award in 2014. His work won
Best Paper Awards in VTC 2018, Globecom 2017 and Globecom 2015,
respectively. He is an Associate Editor of the IEEE INTERNET OF THINGS
JournaL from 2015 to 2018.

ZHU HAN (S’01-M’04-SM’09-F’14) received
the B.S. degree in electronic engineering from
Tsinghua University in 1997 and the M.S. and
Ph.D. degrees in electrical and computer engineer-
ing from the University of Maryland, College Park,
in 1999 and 2003, respectively.

From 2000 to 2002, he was an R&D Engineer
of JDSU, Germantown, MD, USA. From 2003 to
2006, he was a Research Associate at the Uni-
versity of Maryland, College Park. From 2006 to
2008, he was an Assistant Professor at Boise State University, Boise, ID,
USA. He is currently a Professor with the Electrical and Computer Engi-
neering Department and with the Computer Science Department, University
of Houston, TX, USA. His research interests include wireless resource
allocation and management, wireless communications and networking, game
theory, big data analysis, security, and smart grid. He received the NSF
Career Award in 2010, the Fred W. Ellersick Prize of the IEEE Commu-
nication Society in 2011, the EURASIP Best Paper Award for the Journal
on Advances in Signal Processing in 2015, the IEEE Leonard G. Abraham
Prize in the field of Communications Systems (Best Paper Award in IEEE
JSAC) in 2016, and several best paper awards in IEEE conferences. He is
currently an IEEE Communications Society Distinguished Lecturer.

77985



	INTRODUCTION
	RELATED WORK
	SYSTEM DESCRIPTION OF TPP
	TENSOR VOTING BASED INFERENCE ATTACKS
	OUTLINES OF TRAJECTORY INFERENCE ATTACKS VIA TENSOR VOTING
	SECOND ORDER REPRESENTATION
	TENSOR VOTING IN 2-D

	PROPOSED TRAJECTORY PRIVACY PRESERVING SCHEME AGAINST INFERENCE ATTACKS
	TRAJECTORY PRIVACY MAXIMIZATION PROBLEM
	METHOD OF CHOOSING CANDIDATE LOCATIONS
	EUCLIDEAN DISTANCE
	TENSOR VOTING CONSTRAINT
	PROBLEM FORMULATION

	THE UPPER BOUND FOR TRAJECTORY PRIVACY OPTIMIZATION
	THE HEURISTIC ALGORITHM FOR FEASIBLE SOLUTIONS

	TRUE TRAJECTORY RECONSTRUCTION FOR TRUSTWORTHY PARTIES
	METHOD OF CHOOSING ENCRYPTED LOCATIONS
	ENERGY COST CONSTRAINT
	TENSOR VOTING CONSTRAINT
	ENERGY COST MINIMIZATION

	PERFORMANCE EVALUATION
	SIMULATION SETUP
	SECURITY ANALYSIS
	PERFORMANCE COMPARISON

	CONCLUSION
	REFERENCES
	Biographies
	XINYUE ZHANG
	JINGYI WANG
	MINGLEI SHU
	YINGLONG WANG
	MIAO PAN
	ZHU HAN


