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ABSTRACT

A system has "been designed which allows mission planners to easily 

find optimal multiple burn space trajectories. Two previously developed 

methods with different gravity assumptions perform the optimization 

function. The power of these programs is extended by a method of costate 

estimation. A penalty function method of constraining coast arc times 

to be positive is included. The capability of the method is demonstrated 

by finding the optimal control for three different space missions. These 

include a Shuttle abort-onee-around mission and two-, and three-burn geo­

synchronous satellite placement missions.
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A propagation matrix across burn-coast arc

c effective exhaust velocity

d penalty magnitude

f function

G gravity vector

H Hamiltonian

h transversality condition

I identity matrix

J cost function

L thrust vector direction

M functional relationship for initial state vector

m mass

N functional relationship for final state vector

n number of thrust arcs

P primer vector, Lagrange multiplier for acceleration constraint

p magnitude of primer vector

Q negative of primer vector derivative, Lagrange multiplier for

velocity constraint

R position vector

S switch function

T thrust magnitude

t time

V velocity vector



X

W vector of thrust arc integrals; weighting matrix

w weight '
m m rp

X state vector, X = (R :V )

a control variable for thrust magnitude; vector of control variable,
m mm
» - (P . -Q , tj..... t2n+1)

e Lagrange multiplier for mass

A incremental

b variation

T) Lagrange multiplier for thrust magnitude constraint
T T TX costate vector, X = (P :-Q )

р gravitational constant

v Lagrange multiplier for thrust direction constraint

t time interval

y sum

T coast arc state transition matrix

$ coast arc costate transition matrix

ip thrust arc transition matrix

o thrust arc transition matrix for thrust integrals

a) Schuler frequency, the constant in gravity approximation

V gradient operator

Subscripts

b burn

с coast

F final

I initial

i arc index

p penalty



max maximum

x independent variables

y dependent variables

Superscripts

. time derivative

* used to distinguish between cost functions

* optimum

[i] arc index for matrices

-1 inverse

T transpose



INTRODUCTION

In order to reduce the high cost of space flight, thrusting maneuvers 

and orbit parameters must be planned so that missions are performed in an 

efficient manner. As missions become more complex and require more 

maneuvers to accomplish the mission goals, and as spacecraft thrust levels 

are reduced to lower vehicle cost, it becomes increasingly difficult for 

mission planners to determine an efficient mission plan.

Numerous computer programs have been developed which, under various 

assumptions and restrictions, are intended to aid the mission planner. A 

large number of these programs make the assumption that maneuvers to change 

the shape and size of the spacecraft's orbit are made impulsively (i.e., the 

maneuver is assumed to be an instantaneous change in velocity). The assump­

tion of an impulsive maneuver is valid when the spacecraft thrust level is 

high enough that the actual time required to make the maneuver is small 

with respect to the total mission time. Perhaps the most general of these 

programs is the one described by Jezewski and Rozendaal (ref. 1). This 

program requires only initial and final conditions and will produce a 

mission profile which gives the optimum number, placements, directions, 

and sizes of the impulsive maneuvers.

Various approaches have been applied to the problem of analyzing 

missions for spacecraft which have thrust levels low enough that the impul­

sive thrusting approximation is not valid. One approach is to assume a 

near optimum guidance algorithm and numerically integrate the equations of 



motion through thrusting maneuvers (e.g., ref. 2). Another approach is 

to assume a behavior for the vehicle controls and directly optimize the 

parameters which describe that behavior (e.g., ref. 3).

Brown, Harrold, and Johnson (ref. H) applied the principles of optimal 

control to the problem of multiple burn spacecraft trajectories. The re­

sult was a method by which optimum multiple burn trajectories could be found 

by determining the times at which the rocket engine should be switched on 

and off and by determining initial values for the differential equations 

describing the behavior of the costate vector. The costate vector is the 

vector of Lagrange multipliers which adjoins the equations of motion of the 

state vector to the performance functional and which describes the optimal 

thrust vector control through each maneuver. Tarbet (ref. 5) extended the 

versatility of the Brown, Harrold, and Johnson program by applying a con­

jugate gradient algorithm as the iteration scheme for determining the .optimal 

control. The control consists of an initial costate vector and an engine 

switch time array. To assist mission planners in determining starting 

values for the costate and switch times for the iteration process. Tarbet 

first computed an optimum impulsive solution to the problem by the method 

described in reference 1 and formed thrust arcs around the impulses accord­

ing to the technique described in reference 6. Although Tarbet's program 

successfully found solutions to problems, it was of limited usefulness 

because numerical integration of state, costate, and perturbation differen­

tial equations across thrust arcs required a significant amount of computer 

time for many problems and because the scheme for determining starting 

iterates was not suitable for problems in which the spacecraft thrust level 

was low.



Recently, Jezewski (ref. 7), in an effort to reduce the time required 

for computing multiburn trajectories, produced a program based on the 

principles of optimal control similar to the Brown, Harrold, and Johnson 

program except that he made the assumption that the gravitational accelera­

tion vector varies linearly with the radius vector. This assumption re­

sulted in a closed form solution to the state and costate differential 

equations across the thrust arcs which greatly reduced the trajectory 

computation time.

Tarbet's version of the Brown, Harrold, and Johnson program and 

Jezewski's program would complement each other if combined. Jezewski*s 

program can be used to provide a starting iterate for Tarbet's program 

since the two programs are similarly structured. A starting iterate ob­

tained from Jezewski's program would not have limitations imposed by the 

thrust level; and because it is obtained from a finite thrust program, it 

would be more accurate than the method of forming thrust arcs around im­

pulses. The most obvious result of the increased accuracy would be the re­

duction in computer time required. Another advantage would be the ability 

of the combined programs to find solutions to missions performed by space­

craft having low thrust levels, for which solutions were previously not 

possible. On the other hand Jezewski's program is in itself sufficiently 

accurate for a large number of applications, and Tarbet's program could be 

used to verify that accuracy when necessary. Thus, the use of Jezewski's 

program followed by verification of certain important solutions with 

Tarbet's program would allow parametric studies related to mission planning 

without entailing a large amount of computer time. Described herein is 

the development of such a combination.
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Because there is still a requirement to estimate the initial costate 

vector and the. engine switch times, mission planners may have difficulty 

applying the program successfully. It is expected that the mission planner 

can estimate with reasonable accuracy the array of engine switch times. 

The theory applied in references 5 and 7 proves that on an optimal trajec­

tory the spacecraft thrust vector is alined with the first three components 

of the costate vector (called the.primer vector). With this in mind, the 

engineer can make some estimate of the direction of the primer vector. 

The last three components of the costate vector, which are called the 

primer vector derivative, cannot be estimated by association with physical 

properties of the mission under consideration. In this study, a scheme 

will be presented which is derived from Jezewski's work for estimating the 

primer vector derivative. This scheme will require the planner to make 

some estimate of engine switch times and estimate roughly the direction the 

thrust vector should be oriented at the start of each thrust arc (e.g., 

along the velocity vector, normal to the orbit plane, etc.). An initial 

costate vector based on these estimates will be generated and will be passed 

on to the optimization program, which is composed of Jezewski's and Tarbet's 

program. To demonstrate the versatility of the program, several examples 

of solutions to missions of interest will be presented. The optimal con­

trol for three different space missions will be given. These include a 

Shuttle abort-onee-around mission and two- and three-burn geosynchronous 

satellite placement missions.
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Chapter II

FORMULATION OF THE MULTIBURN OPTIMIZATION PROBLEM

The multiburn space trajectory optimization problem is to find a set 

of thrusting and coasting arcs which minimizes some performance functional 

while transferring between two physical boundary conditions,

M(RI,V].,tI) = 0 (1)

and

Ndlp^.tp) = 0 (2)

subject to the differential constraints

R = V (3)

(MV = G

(5)m =

(6)

(7)

References U and 7 base their solution to the n-burn optimization problem 

on the functional

(8)J =

T 
c

0 < T < T — — max

*1

T+ - L m

Cartesian coordinates. The constraint on thrust magnitude

variables. R and V are, respectively, radius and velocity vectors in

is required as is the constraint on the thrust direction vector, L, that
TL L = 1

where R, V, and m are the state variables and T and L are the control 

^F
- m dt



which is to he minimized. Notice that minimizing this functional is 

equivalent to minimizing mass loss or, alternatively, maximizing final 

mass. The conditions needed for optimal control of a multihurn trajectory 

are developed in the literature (refs. U, 5» 7) and the development is 

presented herein for the convenience of the reader.

The inequality constraint (6) is first rewritten

T(T - T) - a2 = 0 (9)max

The constraints (3), (H), (5), (7), and (9) are adjoined to (8) to form 

the variational Hamiltonian

T T T •T1 rxH=-m+QV+P (G + - L) + sm + v(l - L^L) + n[T(T - T) - a2] m max
(10) 

where Q, P, e, v, and n are Lagrange multipliers adjoining the constraints 
to the functional. The necessary conditions for optimality with respect 

to the control L are given "by

= 0 = PT-| - 2vL (11)
oL in

By solving the set of linear equations (11) the necessary conditions are 

satisfied if

L = + - (12)
- P

The choice of which sign to use in equation (12) is determined by applying 

the Weierstrass E- condition, which requires that the Hamiltonian on the 

extremal curve be greater than the Hamiltonian on any nearby admissible 

curve for an extremum to occur. This implies that

d2H • 
dL2" - (13)



By application of (13), it follows that

L = + £ (1M

Substituting (1H) into (10), -cm for T, and rearranging, the Hamiltonian 

becomes

H = -m(l - e + p ^) + QTV + PTG + n[l(Tmax - T) - a2] (15)

9HThe term a is a control variable, so t— =0 is 'a necessary condition.

|| = -2pa = 0 (16)

Either n or a must equal zero. The Lagrange multiplier n cannot in 

general be assumed to be zero. From equation (9), for T=0 and T = T^ 

a must equal 0. By making the assumption that the thrust can only take

on values of zero and T , the quantity in brackets becomes equal to max
zero, and the last term of (15) then can be deleted so that the Hamiltonian

becomes

H = -m(l - e + p |) + QTV + PTG (1?)

The necessary conditions for optimality with respect to the multipliers

P, Q, and e are

and

•T P = dH 
dv

T= -Q (18)

•TQ = dH 
dR = -(ptv)g (19)

£ = -. 3H - 
dm = T -2 mz (20)



Differential Equation Solution

Equations (3), (U), ($), (1H), (18), (19)s and (20) compose a set of 

differential equations which must he solved to find the optimal multiple 

burn trajectory.

Coast arcs.- On coasting arcs both reference U and 7 assume that the 

gravitational vector G is given by the inverse-square relation

% = - # <21’

For an inverse-square gravitational field, the solutions for the state 

and costate vectors are known in closed form (refs. 8 and h) and may be 

expressed as

X(t) = TX(0) (22)

A(r) = $A(0) (23)

where T and $ are known 6-by-6 matrices.

Thrust arcs.- Reference H assumes that the gravitational vector G is 

also given by equation (21). No solution for the equations of motion in 

closed form exists assuming this gravitational vector. The solution across 

thrust arcs is found by using numerical integration.

Reference 7 makes a different assumption for G on thrust arcs.. To 

facilitate the solution of the differential equations the assumption that

Gb = -w2R (2H)

is made so that equations (3), (M, (18), and (19) can be solved in closed 

form. The term w in equation (21+) is defined by

0)
_y__
]Rp (25)
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where ]r| is evaluated only at the start of the thrust arc. The solution

for equations (3) and (U) is

X(t) = ’i'X(O) + fiW (26)

and the solution for equations (18) and (19) is

x(t) = n(o) (27)

where

Y =
I COS 0)T

—loo sin a)T

T 1 .I — sm cot co

I COS COT
(28)

•

H
l 3II C5

I sin cot
ICO COS COT

-I COS COT

I sin cot
—

where I is an identity matrix of dimension 3, and

W =

P' COS U)T dtm(t)p

P■-/T-'i" sin wt dt m(t)p

(29)

(30)

Boundary Conditions

To complete the solution to the multiburn optimization problem, a 

set of initial values for the state variables R,V,m and the variables 

P,Q,e must be obtained. In addition, another set of variables, the 

set of engine switch times t^,... j'tgn+l’ w^ere n number of

thrust arcs, must be determined. Indexing for the switch times is as 

follows: t is the time at which the vehicle is in the initial state o
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given "by equation (1); t^ is the time of the start of the ith thrust 

arc; t„. is the time of the termination of the ith thrust arc; and t^ ,  

is the time of termination of a final coast arc which is required to ob­

tain an optimum time-open transfer.

Equation (1) gives values for the state variables R and V, and 

the initial value of m will be specified according to the characteristics 

of the vehicle performing the mission. The variables P,Q,e,

• • • i^Pn+l + 8 in all) must be determined by satisfaction of boundary 

conditions. The following derivation of a set of boundary conditions is 

taken from unpublished notes by Jezewski.

Six boundary conditions are obtained from equation (2). Of the re­

maining 2h+2 conditions, 2n+l are obtained from conditions of optimality 

that are imposed on the Hamiltonian, equation (l?)* The conditions of 

optimality on H are (1) H must be constant across the trajectory, (2) H 

must be maximized, and (3) for a time-open solution,

H2n+1 “ 0 (31)

Finally, the condition

= constant / 0 (32)

is required because of the homogeneous property of the costate differential 

equations.

Equation (1?) is rewritten

H = -mS + h (33)

where
m m

h = P G + Q V (34)

is called the transversality condition and
S = 1 _ G + £P (35)

m
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The term S is called the switch function because the decision whether

m = 0 or m = m n may based on the sign of S. When S is negative,

a value of m" equal to m would reduce the value of H (remember. max
that is a negative number) which is to be maximized. When S is

negative, then m must equal zero. It follows, then, that at each 

engine switch time S must equal zero. The following boundary conditions 

result:

Si = 0 i = 1 2n (36)

Equations (2), (31), (32), and (36) then define the required 2n+8 

boundary conditions. Experience, however, indicates that these conditions 

are unsatisfactory because of the sensitivity of the switch function and 

because of the requirement to integrate the equation for e [eq. (20)]. 

Manipulation of the conditions of equation (36) along with the constancy 

of H will eliminate s from the solution. Elimination of e from the 

solution reduces the number of unknown variables to 2n+7 and, therefore, 

the number of boundary conditions required to 2n+7-

Equations ($) and (20) show that, since T equals zero on coast 

arcs, m and e are constant on coast arcs. Solving the equation for 

S^^ for £ and substituting the result into the equation for give

/ cp \ cp
SO4X-1 = o = 1 - (1 + —+ •—i = i,...,n-l (37)
21+1 \ m 1 m

Simplification of equation (37) gives the conditions

P2i = P2i+1 i=l,...,.n-l (38)

which states that the magnitude of the primer vector at the end of each 

interior coast arc is the same as at the beginning of that coast arc.
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As can be easily shown, on coast arcs H is constant; however, 

only on an optimum trajectory is H constant across the entire multi­

burn trajectory. On an optimum trajectory, then H must have the same 

value at the beginning and. end. of each thrust arc in order to satisfy 

the condition that H be a constant.

Ho. - H . = -mS. + h_. + mSo. - ho. n = 0 i=l,...,n21 21-1 21 21 21-1 21-1

(39)

At the beginning and end of each thrust arc, and must be

equal to zero; thus, equation (39) reduces to

h2i - h2i-l = 0 i = l,...,n (Ho)

Equation (38) satisfies the condition on the switch function given 

in equation (36) for i = 2,...,2n-l. To verify the satisfaction of 

equation (36) for i = 1, equation (39) should be examined for i = 1..

-mS2 + h2 + mS - h1 = 0 (hl)

Since S2 is forced to be equal to zero by condition (38), equation (hl) 

can be rewritten

mS1 + (h2 - h1) = 0 (h2)

According to equation (ho), hg - h^ is equal to zero, so S^ must equal 

zero. Similarly, since = 0 by equation (38), equation (39) can

be rewritten for i = n,

iS2n + (h2n " W - 0 (1,3)

Equation (ho) requires that (hOn - h2n ^) = 0; therefore, S2n must also 

equal zero. The boundary conditions of equations (38) and (ho) then 

satisfy the conditions stated in equation (36). Equations (2), (31), (32) 

(38), and (ho) form a complete set of 2n+T boundary conditions which may 

be used to determine the 2n+7 variables P,Q,t^,... s'tpn+l'
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When the gravity approximation [eq,. (21+)] is made on thrust arcs, 

the switch function at the end of each thrust arc must be modified to 

account for the discontinuity in the gravitational vector, so
c PT(G - G )

S = 1 + E + — + --- ----- — (1+U)m m max 

and the boundary condition (38) becomes

T0 = po. - p_._ - —P^.(G, - G ) (1+5)
21 21+1 cm 21 b cmax

In summary, the multiburn trajectory optimization problem has been 

formulated as a boundary value problem in the 2n+7 unknown quantities 

P,Q,t^,. .. j'tpn+l ‘W'i’tl1 "tl16 differential equations (3), (1+), ($)» (18), 

and (19) and with the 2n+7 boundary conditions given in equations (2), 

(31), (32), (38), and (1+0).
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Chapter III

CONVERGENCE TO BOUNDARY CONDITIONS

After solutions to the differential equations have heen obtained, 

what remains is a set of 2n+7 nonlinear equations in the 2n+7 un­

known parameters P,Q,t^,... s'tgn+l" Evaluating these nonlinear 

equations requires the computation of a trajectory for which a set of 

values for the unknowns is given. In general, an initial estimate for 

the unknowns will not yield the desired solution to the nonlinear equations. 

An iterative convergence process is required to obtain a set of values for 

the 2n+7 unknowns which produces the desired solution. One method of 

accomplishing this is to create a cost function and determine values of 

the parameters for which the cost function is minimized. One cost 

function is

J' = f(a)Tf(a) (1p6)
where f(ot) is the vector function of the unknown parameters

a1 = (U7)

For the solution in which the inverse-square gravity model of 

equation (21) is assumed on all arcs the matrix of partial derivatives, 

3f •—, is known (in the sense that differential equations for 6X and 6X 

must be numerically integrated on thrust arcs) and is described in 

reference H. Reference 7 gives the matrix t- for the solution in which 
dot 

the gravity approximation of equation (2k) is made on thrust arcs. With 

this information, a number of algorithms are applicable to this problem. 

Tarbet (ref. 5) applied a conjugate gradient algorithm to the full inverse­

square problem of reference k with good results.
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The algorithm described in reference 9 was used in the program of 

reference ?• (This program will be referred to as the m program.) That 

algorithm has been modified as shown in the appendix to increase the 

capability of the program. This enhancement was motivated in part by the 

requirement that the thrusting arcs and intermediate coasting arcs be 

non-negative, which results in a parameter inequality constraint. The 

constraint capability was extended to initial and final coast arcs as 

mission requirements dictated.
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Chapter IV

STARTING ITERATES

In order to find a solution to the problem, an initial estimate for 

a must be supplied. In the program described in reference 5» an impulsive 

solution and finite thrust arcs created about each impulse make up the 

starting iterate for the multiburn optimization program. Because of the 

inaccuracies inherent in approximating an impulse with a finite thrust 

arc, this method is restricted to relatively high (greater than 0.3) 

thrust-to-weight ratios. However, since appreciable amounts of computer 

time are required to find a solution, particularly for problems having 

long thrust arcs, an accurate estimate for a must be obtained. The 

to program can be used to determine a starting value for a for the full 

inverse-square program because its closed-form trajectory computation 

permits rapid convergence. When these two programs are combined so that 

the a) program is first used to obtain a starting iterate for the full 

inverse square program, a very versatile optimal maneuver analysis program 

results. The co program can be used for preliminary mission studies and 

performance scans, since its rapid convergence allows such studies without 

excessive computer time requirements. When more accurate data or verifi­

cation of data from the co program are required, then the inverse-square 

program can be used.

In order to initialize the iteration loop in the co program, an esti­

mate of costate, X, and the engine on and off times must be provided. It 
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is expected that a mission engineer, relying on past experience and a 

knowledge of the desired trajectory can estimate the engine on and off 

times. The costate is a six-dimensional vector comprised of a primer 

vector P and its derivative P.

where P = -Q. According to (1^), the thrust acceleration vector is alined 

with and has the same direction as the primer vector, P. Thus, knowing 

what is to "be accomplished in a particular maneuver, a mission engineer 

can estimate how the thrust vector should be directed (e.g., posigrade or 

retrograde) and, therefore, the direction of the primer vector, P. If 

some estimate for |p| at the start of each maneuver can be made, then 

the primer derivative, P, is the only quantity for which an estimate is 

not readily obtained. Reference 10 has a scheme for the estimation of P 

for two-burn maneuvers. The following is an extension of that scheme to 

n burns.

the beginning of the

burn by

(119)

of time

as

(50)

only. Similarly, acrosswhere Y is a matrix which is a function

X3 = $X2

of Ag

at t^of a burn may be computed in terms of

According to equation (27), the costate X^

coast arcs X^ can be expressed in terms

x2 = n1

at time t^ at the end

according to equation (23). Combining equations (U9) and (50) gives
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X = m
3

(51)

which is the solution for the costate at the beginning of the second 

burn arc of a multiburn solution, the time at which another estimate for

P can be made. For conciseness, define

(52)

on the ith burn-coast arc, and renumber X so that X. is the value i
at the beginning of the ith burn-coast arc,

Equation (55) can be solved directly for :

X •J.1 = Al+1 llt.
1 (53)

and rewrite equation (53)

Pi+1 A[i]1
12 p.1

P.
= A[I] A[i] p

(5M
i+l 21 22 1

*•

^i’ when i=l is the quantity bo be estimated. Two equations involving

P.1 can be written from equation (5^)

Pi+1 = 4i]pi pi (55)

and

Pi+1 “ A2i,pi pi (56)

P. =1 12 I i+l 11 1 (57)

which gives an estimate for P^, for a two-burn problem, by setting i=l.

Solving equation (56) for gives



19

P = A^^ lP -A^^Pr (58)
; i 22 t i+1 21 ij ° '

With proper indexing, equation (57) is a solution for so substi­

tuting equation (57) into equation (58) yields

• [i]—1 A^+^^ IP - aJ^^^P - A^^P *| (59)P. = A^J A12 11+2 TL1 i+1/ 21 i|
1 22 L ' / J

For i=l, equation (59) provides an estimate for P^ for a three-burn 

solution. Proceeding similarly, an estimate for a four-burn problem can 

be obtained by substituting equation (59) into equation (58):

’ [il-1f Fi+ll-1 A^'^2^ ^(p - aJ"*"+^^P - A^i+l]p - A^^P 1Pi = A22 |A22 1 A12 \ 1+3 •L1 i+2/ A21 i+l A21 ij

(60)

Examination of equations (57)» (59)> and (60) indicates that a form 

exists for a P^ estimate in terms of the estimates for the P vectors 

at the start of each burn-coast arc and that the equations lend themselves 

to a computer solution for P^ for a trajectory with a desired number of 

burn arcs. To implement this procedure a trajectory must be calculated 

by using the time estimates and some guess made for P^ and P^ to obtain 
the A^^ matrices. Usually P^ is specified to be a vector of unit 

magnitude in the desired thrust direction and P^ is chosen to be a 

unit vector in the gravity acceleration direction. Given P^ and P^ a 

trajectory is propagated and the state vectors, the costate vectors, and 
the A^^ are computed and saved. The desired P^ vectors are computed 

based on the just-saved state vectors and the mission engineer's estimate 

of the required direction for the P vectors. These desired P vectors
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are then compared, with those actually computed, in the trajectory propa­

gation. If any of the are greater than a given tolerance in direc­

tion (about 0.6 radians), a new estimate is calculated from the 

equations developed previously using the matrices and the desired

P^ vectors. A new trajectory is then calculated by starting the 

iterative loop again. A functional flow chart for the estimation'scheme 

is given in figure 1.
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Figure 1.- Costate estimation flow chart.
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Chapter V

EXAMPLE APPLICATIONS

The program (called. OPBURN) described, in the foregoing sections is 

very versatile. It allows mission planners to determine optimal multiple 

burn trajectories for a large class of orbital transfer problems. They 

need to provide the program only with data describing the initial and 

final conditions, the vehicle characteristics, and a rough idea of some 

of the physical characteristics of the solution. To demonstrate the 

program capability, solutions to two types of example problems will be 

presented. The first type of problem is a Shuttle abort-once-around (AOA) 

trajectory from the suborbital tank staging point to the entry interface 

conditions. The second type of problem for which solutions will be pre­

sented is a geosynchronous satellite placement mission which is initiated 

from a low-altitude circular orbit.

Shuttle Abort-Onee-Around (AOA) Mission

Current plans for the launch of the Space Shuttle are to shut down 

the main engines before a safe orbit has been attained, separate the ex­

ternal tank from the orbiter so that it will return to earth without 

needing a retrorocket, and then continue the injection of the orbiter with 

the orbit maneuvering system (OMS) engines. Should an abort become 

necessary at the tank separation point, the current plan is to make a 

circumnavigation of the earth by using OMS maneuvers to ensure that the 

proper entry interface for a safe landing is achieved. For certain
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missions this will he the nominal profile. One of the design missions 

[for the Shuttle is a single orbit mission in which the Shuttle is launched 

and transfers to a suitable low-altitude orbit (e.g., approximately 

100 n. mi. altitude circular orbit), dispenses a payload, deorbits, re­

enters, and lands at its departure point all in one orbit. This mission 

is to be flown from the Western Test Range and the orbit will have an 

inclination of 10H°.

The OPBURN program was used to analyze the OMS propulsion require­

ments for this mission when the suborbital tank staging launch scheme 

was employed. The state vectors (R and V) were specified at the main 

engine cutoff and at the reentry interface, the vehicle characteristics 

were defined, and the program OPBURN was used to determine a sequence of 

two burns to achieve a transfer between the two states. The state 

vectors and the vehicle characteristics for the example are given in 

table I. Note that two final state vectors are given. The solution to 

the AOA mission having the first given final state vector will include 

the full inverse square solution from the final phase of the program. 

To demonstrate the inequality constraint capability of OPBURN, solutions 

to the AOA mission having the second given final state vector will be 

presented with and without imposition of an inequality constraint on 

the initial coast arc. While the mission has a 10U° inclination, it is 

completely coplanar, so for simplicity, the problem was formulated for 

OPBURN in the equatorial plane. Note that the vehicle thrust-to-weight 

ratio is very small (0.0^9)• In addition to the data in table I, the 

thrust direction at the start of the first burn arc was specified to be 

posigrade, while the thrust direction at the start of the second burn 

arc was retrograde. An estimate of engine on and off times was provided.
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TABLE I

EXAMPLE SHUTTLE AOA MISSION DATA

State Vectors

Specific impulse, sec

Initial Final

Example 1 Example 2

Radius, ft 21 229 538.0 21 295 738.0 21 295 738.0

Right Ascension, deg 13.2 258.5 261.5

Declination, deg 0 0 0

Velocity, fps 25 700.0 25 650.0 25 700.0

Flight-path angle, deg 0.2 -0.715 -0.815

Azimuth, deg 90.0 90.0 90.0

Vehicle characteristics

Initial weight, lb 243 031.0

Thrust, lb 12 000.0

313.2
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Table II gives data describing the solution to the first AOA problem. 

The times shown in column 1 are those provided the program as input data. 

The costate vector in column 1 is produced by the costate estimation 

routine, and the orbital parameters which follow it describe the orbits 

and thrust arcs which result from state propagation using that costate 

estimate. Using the solution described in column 1 as the starting 

iterate, the io program converged in 13 iterations. Parameters describing 

that solution are given in column 2 of table II. Note that the initial 

coast length was increased by approximately 87 seconds. The first thrust 

arc was increased by 15 seconds, and the second thrust arc was delayed 

for approximately 300 seconds and increased 13 seconds in duration.

The costate vector, however, was changed only slightly in obtaining the 

converged solution. When the converged solution from the co program was 

used as a starting point, the inverse-square program converged in 11 

iterations. Parameters describing that solution are also listed in 

table II. The similarity of the co and inverse-square solutions indicates 

that at least for this class of problem the co program has sufficient 

accuracy to preclude the need of the inverse-square program for every 

desired solution. An altitude profile of this mission is shown in 

figure 2(a).
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TABLE II

SHUTTLE AOA SOLUTION SUMMARY

Initial 
estimate

to 

approximation
Inverse-square 

solution

Engine switch
time array, sec t^ 0 0 0

h 1 87.7 87.8

'fc2 95 166.8 166.9

"t3 2413 2711.6 2711.6

21^60 2771.7 2771.8

Costate -.226 -.271 -.271

• 97^ .85H .85I1

0 0 0

-.385 -.Hits -.ltl;3

-.127 -.033 -.033

0 0 0

Intermediate orbit

Perigee altitude, n. mi. U8.2 lt9.3 H9.3

Apogee altitude, n. mi. 106.8 92.it 92.5 '

AV1, fps 150. u 126.5 126. H

AV2, fps 76.1 97-2 97. H

^AV, fps 226.5 223.7 223.8
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The co program is formulated to determine the optimum transfer be­

tween the two orbits specified by the input initial and final state 

vectors. By determining the length of the coast arcs before the first 

burn and after the last burn while allowing their length to be either 

positive or negative, departure from the initial orbit and arrival at 

the final orbit at the optimum position is ensured. In certain instances, 

however, mission considerations preclude the usefulness of solutions 

which have negative initial or final coasts. For example, in the fore­

going description of the AOA mission, the initial state vector was given 

at the Shuttle main engine cutoff in a launch trajectory, making it 

impossible for the mission designer to initiate the transfer at a position 

on the initial orbit previous to the input state vector. If the final 

state vector in the previous problem is changed to that in the third 

column of table I, a negative initial coast of 91-0 seconds is required 

as indicated by the data in column 1 of table III. Imposing the param- 

eter inequality constraint developed in the appendix on the initial time 

yields the solution indicated in column 2. Note that the initial coast 

time is now 1.03 second and that, as expected, the AV required for the 

transfer is higher. The constraint is stated such that the coast arc 

is only required to be non-negative, a 0-second coast arc can be 

expected. The actual constraint as implemented in the appendix is "hard" 

only in the limit of k-x®, so the program cannot satisfy the constraint 

precisely. A hard constraint is one in which the quantity being constrained 

may take on a value equal to the value of the constraint. In the example 

under discussion, the initial coast arc would have a 0-second duration if 

the constraint were hard.
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TABLE III

INEQUALITY CONSTRAINT EXAMPLE

Unconstrained Constrained

Engine switch
time array, sec t^ 0 0

-90.9 1.03

t2 3.97 96.5

t3 2557.8 2350.2

S 2602.8 2396.3

Costate -.18U -.195

.882 .888

0 0

-.I127 -.413

-.12 -.108

0 0

Intermediate orbit

Perigee altitude, n. mi. U6.7 48.2

Apogee altitude, n. mi. - 109.1 108.0

AV1, fps 151.9 152.8

AV2, fps 72.8 74.6

£AV, fps 224.7 227.4
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Altitude profiles for the unconstrained and constrained example 

AOA missions are illustrated in figures 2(b) and (c). The profiles are 

very similar. Note that the second burn arc occurs closer to apogee 

in the constrained solution.

Synchronous Orbit Missions

Many of the satellite placement missions planned for the Shuttle re­

quire additional propulsion to achieve the required orbit. To provide 

the additional propulsion a general purpose rocket vehicle called a tug 

is being developed. Several designs are being considered. In an effort 

to save weight some of these designs entail the use of a rather small 

engine, which results in a low thrust-to-weight ratio. This sometimes 

complicates mission planning efforts to ensure that the tug will be used 

as efficiently as possible. One particularly severe mission, for which 

there are numerous payloads, is the placement of a satellite in a geo­

synchronous orbit. This mission is difficult because of the large altitude 

change and the large plane change (29°) required between the initial and 

final circular orbits. The altitude of a circular geosynchronous orbit 

is 19 323 n. mi. As a further example of the capability of OPBURN, this 

mission was chosen for solutions with vehicle thrust-to-weight ratios as 

low as 0.1. Solutions for the mission will include two- and three-burn 

profiles.

The geosynchronous satellite placement mission is initiated in a 

low-altitude circular orbit sized according to the capabilities of the 

Shuttle. For this example, a circular orbit of 150-n. mi. altitude was 

assumed. The initial state vector is given in table IV. For ease of 

input, a coordinate system was established so that the initial orbit was 

in the X-Y plane, and the line of intersection (i.e., the line of nodes)
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TABLE IV

EXAMPLE GEOSYNCHRONOUS ORBIT MISSION DATA

State vectors

Initial Final

Radius, ft 21 837 155-0 138 333 U97.O

Right ascension deg -90.0 180.0

Declination, deg 0 0

Velocity, fps 25 389-25 10 087.52

Flight-path angle, deg 0 0

Azimuth, deg 90.0 61.0

Vehicle

Initial weight, lb

characteristics

100 000

Thrust, lb 30 000, 20

Specific impulse, sec H20

000, 10 000
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of the initial and final orbit planes was along the X-axis (fig. 3). 

The final state vector, also given in table IV, corresponds to a cir­

cular orbit with an altitude of 19 323 n. mi. and at an inclination of 

29° from the X-Y plane. Vehicle characteristics shown were chosen to 

produce vehicle thrust-to-weight ratios (T/w^) of 0.3» 0.2, and 0.1. 

The specific impulse selected is that of a proposed oxygen difluoride/ 

methane propellant tug.

The two-burn mission profile consists of two thrust arcs. The first, 

which is centered approximately on the line of nodes, places the space­

craft into an elliptical transfer orbit with an apogee altitude approxi­

mately that of the desired final circular orbit. The second thrust arc, 

which occurs at the apogee of the transfer orbit, circularizes the space­

craft at the desired altitude. Each thrust arc concurrently performs, a 

portion of the required plane change; in other words, the first thrust 

arc achieves a small part of the required plane change, and the second 

completes it. In the three-burn profile, the function of the first thrust 

arc in the two-burn profile is achieved by the first two thrust arcs. 

These thrust arcs are separated by approximately one revolution in an 

elliptical orbit and centered approximately on the same node. Each 

mission profile is illustrated in figure U.

As in the previous example, an estimate of the engine switch times 

was provided and the costate estimation routine employed to produce a co­

state vector estimate based on the knowledge that all of the burns would 

be posigrade. These estimates for the control variables were then trans­

ferred to the a) program for convergence to an estimate for the optimal 

control. The optimal control estimate from the a) program was used as a 

starting iterate for the inverse-square program in the two- and three-burn 

cases.



Figure 3.- Illustration of geosynchronous orbit mission 
initial and final orbit geometry.
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Figure 4. - Illustration of geosynchronous orbit mission profiles.



35

Parameters describing optimal two- and three-burn geosynchronous 

orbit missions for vehicles with a T/w^ of 0.3 are listed in table V. 

The time arrays listed in the initial estimate column were the estimates 

provided the program; the costates in those columns are produced by the 

costate estimation routine. The columns labeled "m solution" give the 

values of parameters describing the solutions obtained from the m program. 

The values describing the solutions obtained from the full inverse-square 

program are listed in the columns labeled "inverse-square solution." The 

two three-burn solutions are in close agreement. This indicates that the 

gravity approximation in the m program is accurate in this case. The m 

solution to the two-burn problem does not agree with the inverse-square 

solution as well as the m solution to the three-burn problem. Note that 

the AV requirement for the m solution is ^5 fps higher than that found by 

the inverse-square program. All of the increase is required in the first 

thrust arc, which indicates that the gravity approximation does not have 

sufficient accuracy on that arc. Since the gravity approximation 

equation (2^+) is a linear function of position, the accuracy of the approx­

imation on a thrust arc will depend on the altitude excursion of the 

vehicle in that arc.

Data describing the same missions for vehicles with a T/w^. = 0.2 

are given in table VI. Again there is acceptable agreement between the 

io and inverse-square solutions. Because of the lower T/w^., longer thrust 

arcs are required to produce a given orbital change, so a larger altitude 

excursion results and the to approximation is less accurate for these 

solutions than when the T/w^. was 0.3. This fact is evident" by examining



TABLE V

GEOSYNCHRONOUS MISSION SOLUTION PARAMETERS

(T/Wl = 0.3)

No. of thrust arcs = 2 No. of thrust arcs = 3

Inverse-square 
solution-

Initial 
estimate

(i) 
solution

Inverse-square 
solution

Initial
estimate

U) 
solution

Engine switch time array. 0 0 0 0 0 0

sec
*1 900 956 1 005 1 180 1 180 1 175

t2 1 650 1 591 1 637 1 520 1 518 1 51b

*3 20 320 20 252 20 250 10 660 10 662 10 65b

20 600 20 522 20 521 10 950 10 953 10 9bb

• 29 600 29 656 29 756

*6 r 29 880 29 928 29 8b8

Costate vector 0.362 0.699 0.691 1.1b 0.680 0.687

.227 .185 .202 -0.06U .219 .211

0 -.0007 .0021 .529, .00023 .00035

.1>52 .173 .189 -.075’ .205 .6b5

0 -.168 -.165 -.1 . -.172 -.169

Intermediate orbits

Perigee altitude, n. mi./ 227/68 H26 202/19 322 190/19 322 158/3b5O 156/3bO3 155/3b2O

apogee altitude, n. ml. 168/19 723 161/19 323 160/19 323



TABLE V

GEOSYNCHRONOUS MISSION SOLUTION PARAMETERS - Concluded

(T/Wj. = 0.3)

No. of thrust arcs’® 2

Inverse-square 
solution

No. of thrust arcs = 3

Inverse-square 
solution

Initial 
estimate

0)
solution

Initial 
estimate

to 
solution

A inclination, deg

Burn 1 0 2.13 ' 2.15 .8 1.16 1.17

Burn 2 0 26.87 26.85 .28 l.Olf 1.03

Burn 3 3.5 26.8 26.8

AV, fps •

Burn 1 10 376 8 183 8 133 3 762 3 7H1 3 752

Burn 2 7 621 5. 868 5 86U If 323 If 339 U 325

Burn 3 6 112 5 880 5 883

IAV, fps 17 997 1U 052 Ilf 007 1U 197 13 960 13 960



TABLE VI

GEOSYNCHRONOUS MISSION SOLUTION PARAMETERS

(T/Wj = 0.2)

No. of thrust arcs = 2 No. of thrust arcs = 3

Inverse-square 
solution

Initial 
estimate

0) 
solution

Inverse-square 
solution

Initial 
estimate

(1) 
solution

Engine switch time array. *0 0 0 0 0 0 0

sec 800 758 831 1 ii»o 11U0 1 0^3

*2 1 800 , 1 723 1 788 1 725 1 726 1 618

*3 20 320 20 238 20 233 10 920 11 868 11 793

20 5U0 20 636 20 63U li 3U0 12 235 12 16$

* S • • 30 050 31 015 31 030

*6 30 U60 31 i<18 31 1+37 3*

Costate vector 1.05 0.636 0.695 1.10 O.696 0.691

-.053 .093 .190 -.o6it • lOb .202

0 0 0 •0 .00006 -.000088

-.05 .087 .179 -.601 .098 .189

1.02 .7U2 .651 1.05 .686 .61+7

0 -.167 -.16 0 -.151 -.165 LO 
OO



TABLE VI

GEOSYNCHRONOUS MISSION SOLUTION PARAMETERS - Concluded

(T/wx = 0.2)

Intermediate orbits

No. of thrust arcs = 2

Inverse-square 
solution

No. of thrust arcs = 3

Inverse-square 
solution

. Initial 
estimate

(1) 
solution.

Initial 
estimate

0) 
solution

Perigee altitude, n.. mi./ 311/211 200 255/19 322 . 2111/19 322 171/3751 17U/U372 168/lt21t0

apogee altitude, n. mi.
■ 1

223/20 130 207/19 322 175/19 326

A inclination, deg

Burn 1 0 2.03 2.08 d 1.33 1.29

Burn 2 0 26.97 26.92 0 .87 .88

Burn 3 26.8 26.83

AV, fps •

Burn 1 r • 8 7U5 8 329 8 225 3 977 It U23 It 326

Burn 2 ■■ 3 017 5 857 5 858 It 226 3 756 3 779

Burn 3 ' 5 995 ‘"5 86U 5 879

IAV, fps n 762 1U 186 1U 082 lU 198 1U 01t3 13 98U

CO 
xo
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the characteristic velocity requirements for the two-hurn solution in 

table VI. The oi program indicates a AV requirement 103 fps greater than 

the requirement found by the inverse-square program. All of this increased 

cost is required to accomplish the first thrust arc. In the three-burn 

case, the a) solution requires a total of 59 fps more than in the inverse­

square solution. The increased cost cannot be attributed as easily to 

any particular thrust arc due to the differences in the solutions. For 

example, the first thrust arc required 97 fps more in the w solution than 

in the inverse-square solution; however, the apogee of the first inter­

mediate orbit is 132 n. mi. higher in the m solution. The transfer to 

that orbit would require a larger AV.

Parameters describing two- and three-burn solutions to the geo­

synchronous orbit mission for vehicles with a T/w^. of 0.1 are listed in 

table VII. Data describing the inverse-square solution are provided only 

for the two-burn case. No inverse-square solution is provided for the 

three-burn solution because the to solution proved to be unsatisfactory 

as a starting iterate for the inverse-square program. Note the large 

difference between the co and inverse-square solutions in the two-burn case. 

The difference indicates the the co program solution has little value be­

cause of the inaccuracy of the gravity approximation, although the co program 

did converge given the time array shown and costate estimate produced by 

the costate estimation routine. Also, while the inverse-square solution 

did converge, the co solution was not suitable as a starting iterate in 

the inverse-square program. This was because the co solution produced a 

large initial error in boundary condition satisfaction in the inverse-square 

program and a large amount of computer time was required to attain convergence.



TABLE VII

GEOSYNCHRONOUS MISSION SOLUTION PARAMETERS

(T/Wj = 0.1)

H

• No. of thrust arcs = 2

Inverse-square 
solution

No. of thrust arcs = 3

Initial 
estimate

0) 
solution

Initial 
estimate

(1) 
solution

Engine switch time array, *0 °- 0 0 0 0

sec t1 1*25 =61*1 301* 1 076 1 076

t2 2 375 1 567 2 29U 2 050 2 051

t3 20 360 20 628 20 231 9 872 9 872

tu 21 150 21 313 ■ 21 001 16 850 10 850

• tc 29 162 29 163
?•

t6 29 91*7 29 91*8

Costate vector 1.02 0.901 0.710 1.09 1.02

-.032 -.375 .11*8 -.063 -.012

0 =,0007 ' .001 0 -.3 x 10"6

-.029 -.352 .139 -.059 -.011*1*

1.01 .962 .659 1.01* 1.1

0 -.213 -.11*3 0 -.200



TABLE VII

GEOSYNCHRONOUS.MISSION SOLUTION PARAMETERS - Concluded.

(T/wx = 0.1)

No. of thrust arcs = 2 No. of thrust arcs = 3

Initial 
estimate

0) 
solution

Inverse-square 
solution

Initial 
estimate

0) 
solution

Intermediate orbits

Perigee altitude, n. mi./ 795/11 U32 867/19 321 520/19 321 232/302b 220/3005

apogee altitude, n. mi. 396/19 b70 350/19 321

A inclination, deg

Burn 1 0 l.ltS. 1.8U 0 0.98

Burn 2 0 27.52. . 27.16 0 1.19

Burn 3 0 26.83

AV, fps •

Burn 1 8 931* 10 081 8 675 3 565 3 569

Burn 2 5 8Ult 5 696 5 776 U.880 b 879

Burn 3 5 80b 5 810

EAV, fps lit 278 15 777 lb b?! lb 251 lb 259

ro



The performance data for the geosynchronous orbit missions were 

plotted as a function of T/w^ (fig. 5) to illustrate the effects of lower 

thrust-to-weight ratios and the benefits of increasing the number of 

thrust arcs used to accomplish the mission. The graph indicates that 

there is a 500-fps penalty for reducing T/w^ from 0.3 to 0.1 when a two-burn 

transfer is used. The io solution curve for three-burn transfers indicates 

a penalty of 300 fps for reducing T/w^ from 0.3 to 0.1. Some of that penalty 

is caused by the gravity assumption in the oi program, as is evident by 

comparing the penalties indicated for reducing T/w^ from 0.3 to 0.2. The 

co solution curve shows an 83-fps penalty, whereas the inverse-square solu­

tion curve indicates a penalty of only 24 fps. The three oj solutions for 
T/w-j. = 0.1 show that a definite though diminishing performance improvement 

is possible by increasing the number of thrust arcs.

In all cases investigated the costate estimation routine produced 

estimates for the costate vector from which the io program converged. In 

some cases a more accurate time estimate was available than in others. 

This resulted in fewer iterations being required by the io program. The 

time estimates given in tables V, VI, and VII do not necessarily reflect 

the accuracy required by the program. They were simply the best available 

to the author.
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Figure 5.- Performance comparison for various geosynchronous orbit transfers.’
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Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

A program is now available for optimal analysis of multiple burn 

space missions. The program does not require that the user have knowledge 

of optimal control principles. This is the result of the development of 

the costate estimation subroutine which requires that the user input only 

physical quantities that can be identified and estimated. Through the 

use of the w/inverse-square combination the author has become confident 

that the solutions produced by the m program are accurate, so that the 

inverse-square phase of OPBURN is not generally required. It is retained 

in OPBURN as a valuable program for solution verification of particular 

missions, especially when a new class of solutions is being produced.

Although the program produces useful results, a number of improvements 

and additions are suggested:

1. The addition of the capability to segment thrust arcs in the a) 

program, reinitializing the gravity approximation each time. This would 

increase the accuracy of the io program and reduce or eliminate the in­

accuracies noted in the geosynchronous missions due to large altitude 

excursions on long thrust arcs. Through the use of a segmented solution, 

the range of cases for which the w solution would be a suitable starting 

iterate should be increased (e.g., the three-burn geosynchronous mission 

with T/w^ = 0.1).
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2. The addition of parameter inequality constraints on the switch 
! . . .
times in the inverse-square program. This would make the ui/inverse- 

square combination compatible for a wider range of cases.

3. Development of an interactive program for mission planner use 

which would accept his input data, call the costate estimation program, 

and display the resulting trajectory. With such a program the mission 

planner could interactively determine thrust arc placement and size so 

that the resulting trajectory could be transferred to an execution of 

the OPBURN program with a greater chance of convergence to the desired 

answer.
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APPENDIX - PARAMETER INEQUALITY CONSTRAINTS

In order to restrict the to program so that coast and "burn arcs of 

negative time duration are prohibited, it is necessary to implement an 

inequality constraint. The algorithm provided in the io program (ref. 8) 

was modified to include an inequality constraint by the penalty function 

approach. The penalty function described in ref. 11 was selected because 

it has the property that it and all of its derivatives are continuous. 

The penalty function is given by

m
Jp(a) = die*-1-^1+oti^ (A""1)

i=l

where a is the m vector of parameters, d is a penalty constant, and k 

is some integer.

Given the vector function f(a), we wish to find a such that 

f(a) = 0, subject to the constraints that some or all of the parameters 

remain non-negative. First form the function

J'(a) = J(a) + J (a) (A-2)
P 

where

1 TJ(a) = f(a)1Wyf(a) (A-3)

and expand it in a Taylor series to second-order terms about a*, the con­

strained solution to f(a) = 0:



aj
(a - a*)daP

(a - a*) (A-M+a*

(A-5)0a*
8J 
da

dJ 
da

a*

a*

t d^j 
da2

+ ^(a - a*) d2J
___ P.da2

At a*

* + a*

dJ
v + ■T-~, a* da

so that

(A-6)

Using this find, the gradient

(A-7)a*

a*a*
t d2J 

da2

d2J
da2 a*

d2J
___ 2
da2

d2J 
___ 2 
da2

G' (a) = = (a - a*)T

It is now possible to solve for Aa by assuming that the second-order

terms vary slowly.

Aa = a* - (A-8)

All that remains is to determine G1(a) and d2J 
da2- Differentiating

equation (A-2) yields

G'(a)T
T dJT^ 

da da da y da (A-9)

and differentiating equation (A-3) twice gives

d2J dfTTI df ,Ttt d2f 
da2 da y da y da2 (A-10)



which contains the undesirable term 92f 
3a2' To circumvent the complex compu­

tation involved in the last term, it is approximated by

f W = yW (A-lly 3a2 1 x

so that
T

/ T 32J \-i / 3J \A /df TT af . P . TT \ Vdfv - . _p \Aot = wy 3^ + 3^2 + YWx) ld^yf + ) (A-12)

Note from equation (A-l) that *^p(a) i-3' a summation of terms each of 

which is a function of only one parameter. Because of this property, 
3J 3J

the gradient —is a row vector with m terms, and each term, t-^, is a oCt oOt. 1 
function of the ith parameter only. Proceeding to the second derivative, 
32J 

note that it is an m-by-m diagonal matrix with the i,ith element a 

function of the ith parameter only.

In the io program, the vector, a, is composed of six costate com­

ponents and a 2n+l array of times. Since it is desired to constrain the 

times only, d^ = 0, i = 1,...,6. The value for the remaining d^ will 

be set to
d = 10jC (A-13)

where C is the value of J'(a) of the previous iteration. Initially, 

J=2 with provision for its increase should the constraint be violated. 

The value of k in (A-l) is nominally set to 2501, which produces a 

minimum arc duration of less than 1 second for each time constrained. The 

odd number 2501 is required to eliminate symmetry from equation (A-l). If 

the penalty function is allowed to be symmetric, then the possibility ex­

ists for a solution which violates the constraint but for which no penalty 

is assessed (i.e., < -2).
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The two weighting matrices and. W , will normally he identity

matrices. However, they can he defined as required for special situa­

tions so long as is positive definite. An algorithm exists in the 

io program to modify so that the tolerance to which optimality con­

ditions are satisfied is increased. This is provided because it may not 

he possible to satisfy the optimality conditions completely in cases in 

which the first and/or the last coast arcs are constrained.



51

REFERENCES

1. Jezewski, D. J. and Rozendaal, H. L., "An Efficient Method for 

Calculating Optimal Free-Space N-Impulse Trajectories," AIAA Journal, 

Vol. 6, No. 11, November 1968.

2. McAdoo, S. F. and Funk, J., "An Earth Departure Technique for Use in 

Manned Interplanetary Missions Using the NERVA Engine," AAS 70-0395 

presented at the AAS/AIAA Astrodynamics Conference, June 1970.

3. Johnson, I. L. and Kamm, J. L., "Near Optimal Shuttle Trajectories 

Using Accelerated Gradient Methods," AAS/AIAA Paper Number 328, 

presented at the AAS/AIAA Astrodynamics Specialists Conference, 

August 1971•

U. Brown, K. R.; Harrold, E. F.; and Johnson, G. W.; "Rapid Optimization 

of Multiple-Burn Rocket Flights," NASA CR-1H30, Prepared by International 

Business Machines Corp., Cambridge, Mass., September 1969-

5. Tarbet, J. D., "Optimum Continuous Control by a Method of Parameter­

ization," Ph.D. Dissertation, University of Houston, August 1971-

6. Robbins, H. M., "An Analytical Study of the Impulsive Approximations, 

AIAA Journal, Vol. U, No. 8, August 1966.

7. Jezewski, D. J., "N-Burn Optimal Analytic Trajectories," AIAA Journal, 

Vol. 11, No. 10, October 1973.

8. Goodyear, W. H., "Completely Closed-Form Solution for Coordinates and 

Partial Derivatives of the Two-Body Problem," The Astronomical 

Journal, Vol. 70, No. 3, April 1965-

9. Armstrong, E. S., "A Combined Newton-Raphson and Gradient Parameter 

Correction Technique for Solution of Optimal-Control Problems," , 

NASA TR R-293 dated October 1968.



52

10. Jezewski, D. J., "Optimal Analytic Multiburn Trajectories," AIAA 

Journal, Vol. 10, No. 5, May 1972.

11. Jezewski, D. J., and. Faust, N. L., "inequality Constraints in Primer- 

Optimal, N-Impulse Solutions," AIAA Journal, Vol. 9» No. 1>,

April 1971.


