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ABSTRACT

Automatic theorem-proving by resolution was first proposed 

by J. A. Robinson in 1965. Since then, quite a number of 

restricted versions of resolution have been proposed all with 

the aim of providing more efficient proof procedures.

In this paper, SL-resolution - linear resolution with 

selection function - recently proposed by Kowalski and Keuhner, 

is studied. A version of SL-resolution was implemented by means 

of a LISP program, and its efficiency tested on a number of 

examples.

In the original paper, a long and tedious proof for the 

completeness of this inference system was gj.ven. A more ele

gant proof is given here, using the basic technique developed 

by Anderson and Bledsoe.
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CHAPTER I

INTRODUCTION

A theorem-proving problem is one which has the form: show 

that B follows from An, •••, A , where A,. •••, A and B 1 n 1 n
are statements. A r •••, An may be axioms or postulates of some 

theory, and that B is a (presumed) theorem of that theory. 

This is actually proving the given theorem from the given axioms.

Such problems usually require mathematical skill and 

ingenuity in reasoning for their solution. Hovzever, if we 

express A , •••, An and B in the symbolism of the predicate 

calculus, then such theorem-proving problems can be attempted 

automatically, using the techniques of automatic theorem-proving. 

Such techniques were originally developed by logicians and 

recently adapted and further developed for their use by computer 

scientists.

Besides the obvious application for proving mathematical 

theorems [8J, automatic theorem-proving is also finding use as 

the deductive component of general problem-solving systems [9], 

the deductive component of question-answering systems [10], and 

the deductive component of programs for proving the correctness 

of computer programs [11].

In 1965, a great step in the development of automatic 

theorem-proving for first order logic was taken by Robinson [3], 

with the introduction of the resolution method. Resolutions are 



2

carried out on a given set of clauses and the ones generated by 

these operations. Robinson's basic result is that if the given 

set of clauses is unsatisfiable, the resolution will yield the 

empty clause.

However, this, unrestricted resolution method is inefficient 

because one does not know which chain of resolutions is going 

to lead to an empty clause in the least number of steps. One 

has to try out systematically all possible resolutions.

Since then, several restricted resolution principles have 

been proposed. Among these are hyper-resolution [5], set of sup

port resolution [6] , P^^-resolution [5] , AM-clash resolution [7J , 

linear resolution, and SL-resolution. All of them vzere intro

duced with tile aim of yielding more efficient deductive systems.

In this paper, SL-resolution, a highly restricted version 

of resolution, recently proposed by Kowalski and Kuehner [1], 

is studied. They believe it to be the best inference system. 

Some of the theory of efficiency underlying their arguments is 

as follows.

We can regard a proof procedure as an inference system 

supplemented by a search strategy. An inference system of a 

proof procedure is made up of axioms and rules of inference. 

All restricted versions of resolution mentioned above are 

examples of inference systems. A search strategy for a given 

inference system is an algorithm for consecutively generating 

derivations in the search space of all derivations. Examples of 
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search strategies are unit preference, fewest components prefer

ence and diagonal search [12].

In general, we say that a proof procedure is efficient 

if a first proof of a theorem is obtained with few superfluous 

derivations.

The major cause for the inefficiency of present proof pro

cedures is that they generate far too many unnecessary deriva

tions before obtaining a proof. They are either redundant 

rederivations of the same sentence or irrelevant derivations. 

In the case of resolution systems, redundancy occurs in a more 

general form as a derived clause subsuming another. Redundant 

derivations can, to some extent, be recognized, and hence, dis

carded as soon as they are produced. But irrelevant derivations 

usually cannot be identified before the generation of a proof.

As proved by Rabin and Ehrenfaucht (unpublished), every 

proof procedure generates irrelevant derivations. An efficient 

proof procedure can only be one that generates the fewest number 

of irrelevant clauses. All the restricted resolution systems 

investigated so far succeeded in restricting the generation of 

redundancies. But in all cases, vast numbers remain.

The elimination of unnecessary derivations, unfortunately, 

does not necessarily guarantee increased efficiency. This is 

because shortest proofs obtainable by unrestricted resolution 

are often eliminated along with unnecessary derivations.
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The efficiency of a proof procedure can further be increased 

if it is supplemented by a search strategy that searches for 

simplest proofs.

We now summarize the above discussion. The efficiency of a 

proof procedure can be improved if it has an inference system 

that allows few redundancies and simplest proofs and a search 

strategy that searches for simplest proofs. The inference system 

should be such that it eliminates a vast number of unnecessary 

derivations and admits proofs that are not much more complex than 

those admitted by unrestricted resolution, since a refinement 

often eliminates simplest proofs admitted by unrestricted reso

lution. Kowalski and Keuhner claim that SL-resolution is a 

refinement that achieves the above.

According to Kowalski and Keuhner, SL-resolution, in addi

tion to being a good inference system, permits the application 

of a wide variety of heuristic techniques for the improvement of 

efficiency. -The employment of length of clauses as a heuristic 

function can be applied as strategy to it as well as to other 

resolution systems. Unique to SL-resolution is the ability of 

using intelligent heuristics for the selection of the literals 

to be resolved upon, of constructing and learning useful lemmas 

for simplification of proofs and of constructing and solving 

subgoals for the purpose of more efficient generation of proofs. 

Because of this, Kowalski and Keuhner claim that SL-resolution 

is the best inference system for automatic theorem-proving for 

first-order logic.



Its efficiency was tested by implementing a version of 

SL-resolution by means of a LISP program. A set of fourteen 

examples taken from [13] and [3] was tested. Only five of them 

were proved. The rest used more than 120 blocks of memory 

without finding a .proof. Thus our limited tests do not support 

the great claims of efficiency made by Kowalski and Keuhner. 

However, not all of the possible refinements of the method were 

implemented.

In the original paper, a long and tedious proof was given 

for the completeness of SL-resolution. A more elegant proof is 

given here, using the basic technique developed by Anderson and 

Bledsoe [2].

Chapter II gives an overview of first order predicate 

calculus, and explains what we mean by resolution in first 

calculus.

Chapter III describes ground SL-resolution and Chapter IV 

proves its completeness.

Chapter V is concerned with general SL-resolution.

Chapter VI lifts the completeness proof of Chapter IV to 

the level of general sets of clauses.

Chapter VII is devoted to the actual computer implementation 

of the proof procedure, and an evaluation of the results obtained 

with it.
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CHAPTER II

F0R1-1AI; PRELIMINARIES

The following symbolism and definitions for predicate 

calculus are used:

2.1 Constant Symbols. The following symbols are constant 

symbols: a, b, c, •••, etc.

2.2 Variable symbols. The following symbols are variable

symbols: x, y, z, etc.

2.3 Function symbols. The following symbols are function

symbols: f, g, h, etc.

2.4 The propositional connectives.

— for not,

A for and,

V for or,

for if, •••, then, •••,

■<->- for if and only if.

2.5 The quantifier symbols.

for for every,

V for for some, x
2.6 Predicate symbols. The following symbols are predicate 

symbols: P, Q, R, •••, etc.

2.7 Term. A variable or a constant symbol is a term. If f

is an n-ary function symbol, and t , t are n 

terms, then fCt,, •••, t ) is a term.I n
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2.8 Atom (or atomic formula). If P is an n-ary predicate 

symbol, and t , •••, tn are n terms, then PCt^, •••, 

t ) is an atom.n
2.9 Literal. A literal is an atom or the negation of an atom.

2.10 Complement. .If A is an atomic formula, then the two 

literals A and A are said to be the complement of 

each other, and to form, in either order, a complementary 

pair.

2.11 Well-formed formula. A literal is a w.f.f. If A and B 

are w.f.f.-'s, and v is any variable, then (A), (AAB) , 

(AVB) , (A->B) , (A*->B) , V (A) , A (A) , are w.f.f. *s.

2.12 Sentence. A sentence is any w.f.f. in which all the 

variables are quantified.

2.13 Clause. A clause is a finite set of literals. The empty 

clause is denoted by o. A clause with the . n literals

L,, •••, L , stands for the w.f.f., (L,VLnV**«VL ). All 1' ' n ' '12 n
variables in a clause are understood to be universally 

quantified.

2.14 Ground literal. A literal which contains no variables is 

called a ground literal.

2.15 Ground clause. A clause, each member of which is a ground 

literal, is called a ground clause. In particular, □ is a 

ground clause.
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2.16 Interpretation. An interpretation of a collection of 

sentences of the predicate calculus consists of a set of 

objects D together with the following associations:

(1) to each constant symbol appearing in any of the 

sentences, there is associated a particular object 

in D ,

(2) to each n-ary function symbol in any of the sentences 

is associated an n-ary function from dx*««xd into

(3) to each n-ary predicate symbol in the sentence is 

associated an n-ary function from dx-*«xd into
"n ' 

{true,false}.

An interpretation of a collection of sentences, then, 

determines, in a natural way, the truth or falsity 

(w.r.t. the interpretation) of each of the sentences.

2.17 Unsatisfiability. A set of sentences is said to be unsat- 

isfiable if there is no interpretation in which all of the 

sentences are true.

2.18 Substitution. A substitution is a list

a •- {tn/xn, • • •, t /x } , where each t. is a term, and linn i
each x. is a variable, and where no x. occurs more i i
than once. A substitution a applied to a clause C 

gives the clause Ca obtained by replacing each occurrence 

of x. in C by t. .r J i
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2.19 Unifier. A unifier a of two literals and L2 is 

a substitution a such that on applying o to L1 and

2.20 Most general unifier. A. unifier o of two literals

and L2 ,is -said to be a most general unifier if, given any 

unifier, of L1 and L2 , there is a substitution

a such that L1to’9 = L o , and L oo = L o .

It is well-known that in first-order predicate calculus, 

it is legitimate to assume that each sentence is in prenex form 

with no existential quantifiers in the prefix, since the exis

tentially quantified variables have been replaced by Skolem 

functions. Moreover, the matrix of each sentence can be assumed 

to be a disjunction of formulae each of which is either an 

atomic formula or the negation of an atomic formula. Therefore, 

our syntax is set up so that the natural syntactical unit is a 

finite set of sentences in this special form. The quantifier 

prefix is omitted from each sentence, since it consists only of 

universal quantifiers binding each variable in the sentence; 

furthermore, the matrix of each sentence is regarded simply as 

the set of its disjuncts, on the grounds that the order and mul

tiplicity of the disjunct in a disjunction are immaterial. In 

other words, we will assume that we are only dealing with sets 

of clauses, since any collection of sentences of the first-order 

predicate calculus can be transformed into such a set.
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2.21 Binary factor. If C is a clause containing two literals 

which are unifiable and X is the most general unifier of 

those literals, then CX is a binary factor of C . The 

procedure is called binary factoring.

For example, the binary factor of P(x)VP(g(a))VQ(x), 

having the most general unifier X = [g(a)/x] is 

P(g(a) )VQ(g(a) ) .

2.22 Factor. A factor of a clause C is any clause obtained 

from C by repeated applications of binary factoring.

2.23 Resolution,. For two unifiable clauses, A and B , 

having the literals LeA, and L'eB, such that a is a most 

general unifier of L and L* , the clause[(A\L)U(B\L’)]o 

is called a resolvent of A and B „ The procedure of 

obtaining a resolvent of two clauses is called resolution.

For example, if A = {P(x,y),Q(x),T(f(x),y)} and

B = {P(c,g(w)) ,Q(a) } , then

[{Q (x) ,T (f (x) ,y) }U{Q (a) }] {c/x,g(w)/y} = {Q (c) ,T (f (c) , g (w) ) , 

Q(a)} would be a resolvent of A and B .

Note that for ground clauses, no substitutions are 

possible, and hence, the complementary literals L,L must 

appear in A and B .
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CHAPTER III

GROUND SL-PESOLUTION

In thia section, we define the notion of SL-resolution for 

ground clauses.

In ST-,-resolution, each clause is written in the form of a 

chain (or ordered list), which is a sequence of literals arranged 

in some p-.-edefined order. Each literal in a chain is assigned 

a status of either A-literal or B-literal. All literals in the 

input chain are initially assigned the status of B-literal. Two 

literals are said to be in the same cell if there are no A-literals 

between them.

If c is a clause, a chain obtained from C will be denoted 

by O’* . S* denotes a set of chains obtained from a set of 

clauses S .

An SL-derivation of C* from S* , for a given support 

surjset S' of S , is a sequence D* = (C*, • • • ,C*) , where C* ~ 1 n 1
is an input chain in S‘* , and C* - C* . For every i , such 

that, 1 i < n ,

(1) C?+1 obtained from C* by either truncation, reduction, 

or expansion, and

(2) if C* , is not obtained from C* by reduction, then, no 

two B-literals occurrina in distinct cells in C* have the- i
Seine atom, and no pair of A- and B-literals are complementary.
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C* , is obtained from C* by truncation if the leftmost i + l i
literal is an A-literal and if C* , is C* with this A-literal i+l i
and all immediately adjacent A-literals deleted. The status of a 

literal in C* , is the same as its status in C* .i + l i
C*  is obtained from C* by reduction if the leftmost i+l i

literal in C* is a B-literal and 2.

(1) C* is not obtained from C* . by truncation,

(2) is obtained from by deleting a B-literal, L , 

in the leftmost cell of B-literals in C* , and,i
(3) (merging) L is identical to a B-literal in some nonleft- 

most cell of B-literals in C* ori
(ancestor resolution) L is complementary7 to some A-literal 

of C* .i
The literals in c?+1 have the same status as the corresponding 

literals in C* .i

C?+1 is obtained from, C* by expansion with B* in S* 

if the leftmost literal in Ct is a B-literal and the following 

conditions hold.

(1) The leftmost literal L in C* is complementary to some 

literal L in B* .

(2) Let C*Q be obtained from C* by deleting L , and let 

B* be obtained from B* by deleting L . Then Ct+1 is 

the chain BtE]c*„ obtained by concatenating B*, L, and C*„ 

in that order. The literals in C*and B„ have the
10 0

status of the corresponding literals in C£ and B* .
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Figure 1 illustrates a resolution ded'uction of c and the 

corresponding SL-deduction. Input chains are exhibited on the 

left of the appropriate chain. For notational convenience, 

A-literals in D* are enclosed within individual square boxes. 

Chains in D* are. written without curly brackets and separating 

commas.

= {k4,k2,
=

= {k2,k3)

=

= {K2'K1}

= {k4,k3,k1}
= {K3'K1}

= xK2,k1}

B* = K^K 3 3

B* = K 5

Figure 1.

(expansion)

(expansion)

(merging reduction)

(truncation)

(expansion)

(ancestor resolution
reducti'on)

(truncation)

(expansion)

(truncation)
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CHAPTER IV

C0I4PLETENESS OF GROUND SL-RESOLUTION

In [1], Kowalski and Kushner give a proof that ground 

SL-resolution is complete. That proof is quite long and compli

cated. In this section vze will give a somewhat shorter com

pleteness proof using the techniques developed in [2].

The following terminologies are used in the proof of the 

completeness of ground SL-resolution.

5.1 A ground clause C is said to subsume a ground clause D 

if every literal in C is also in D .

5.2 If S is a set of (ground) clauses, then "14 is a model, for 

S" means that M is a set of literals which does not 

contain any complementary pair of literals (L and L) and 

such that each clause C in S contains at least one 

literal which is in 14 . Thus a model is a ground inter

pretation of a set of clauses, S , which makes each of 

the clauses in S true, i.e., which satisfies S .

5.3 If S is a set of (ground) clauses, then S is said to 

be minimally unsatisfiable if S is unsatisfiable and for 

each clause CeS, s\{C} is satisfiable, i.e., the deletion 

of any clause from S leaves a satisfiable set of clauses. 

Before presenting the proof of the main theorem, the

results of the following lemmas are needed.
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Lemma 1. If S is any finite, unsatisfiable set of ground 

clauses, then S may be reduced to a subset S’ S , such 

that, S’ is minimally unsatisfiable.

Proof. Assume for contradiction that for every finite unsat

isfiable subset of S , we can always find an unsatisfiable 

set S„ , such that, S„ C S. C S . 
2 2^1

That is, we can construct a sequence of subsets of S , 

such that S C S . C • • • G S. c sn c s , for some n such 

that Sn contains only one clause. But there is always an inter

pretation for a single clause, contradicting our assumption that 

it is unsatisfiable.

Lemma 2. If S is any minimally unsatisfiable set of ground 

clauses and L is any literal which occurs in some clause in 

S , then L must occur in some other clause in S .

Proof. Suppose for contradiction that there exists a literal, 

L , which occurs in a clause C in S but that the literal 

L does not occur in any clause in S . The set S' , . where 

S' = S - {C} is satisfiable, by the minimal unsatisfiability 

of S . Let M* be a model for S* . Since the literal L 

does not occur in S’ , we may assume, without loss of gene

rality, that L^M’. But then M = M’U{L} is a model of S 

which satisfies S , contradicting the fact that S is unsat

isfiable.
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Theorem. If S is any minimally unsatisfiable set of ground 

clauses and C is any clause in S , then there is an SL- 

deduction of  from S* with top chain C* .

Proof. For any set S of clauses, let k(S) be the total number 

of appearances of .literals in S minus the number of clauses 

in S .

The proof is by mathematical induction k(S).

When k(S) = 0 , S must consist of only two complementary 

unit clauses, since S is minimally unsatisfiable. o can be 

deduced from S* by expansion and truncation, independent of 

the choice of either of the two chains in S* as the top chain.

Assume that it is true that for any minimally unsatisfiable 

set S , of clauses such that k(S) < N , N > 0 ,  can be 

deduced from it by SL-deduction with any chain C* in S* as 

top chain.

Now assume that S is a minimally unsatisfiable set of 

clauses with- k(S) = N . We have two cases:

Case 1: The top chain C* is a unit chain.

Case 2: The top chain C* is not a unit chain.

Proof of Case 1. Let C = (L) , and (S - {C})d be the set

of clauses obtained from S-{C} by deleting all occurences of

the literal L from them. We claim that (S-{C})d is unsatis

fiable. Suppose for contradiction that this is not true. Let M 

be a model satisfying (S-{C})d. Since L is not in any clause 
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in (S-{c})d, we may assume without loss of generality, that L$M. 

But MU{L} is a model satisfying S , contradicting that S is 

unsatisfiable.

For a minimally unsatisfiable subset (S-{C})dni of (S-{C})d, 

k(S-{C})dm < N., Since there must exist Le(S-{C}) by lemma 2. 

Hence, by induction hypothesis,  can be deduced from it by 

SL-deduction. In particular, o can be deduced by SL-deduction 

with top chain (A)* (see figure 2(a)), where A was obtained 

from a clause (AVL) in S-{C} by deleting the literal L . For 

if there is no such clause (A) in (S-{C})dm, then (S-{C})dm will 

be a subset of S-{C} which is satisfiable.

Now, using C* = (L)* as the top chain, we can obtain 

(AVjT])*, where |L| means that L is an A-literal. Add (L) back 

to all chains from which it was deleted except for the original 

topmost chain (A)*. Every time that L is added back, it is 

deleted from the resolvent by ancestor resolution reduction, so 

that we are left with the A-literal L which yields □ by trun

cation (see figure 2(b)).
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(a)

(AVL) * (L) * = C*

(Cn ~(AV [Q ) *

(C1(VL))* (^(VjL]))*

Figure 2. (a) SL-decluction of □ from (S-{C}) dm* with (A)* as

top chain, obtained by induction hypothesis. (b) SL-deduction 

of  from S* with C* as top chain, obtained by adding L 

back to clauses from which it was deleted. (The symbol (VL) means 

to add the L back to those clauses from which it was deleted.)

Proof of Case 2: Since the top chain C* is not a unit chain, 

it can be written as (AVL)*, where A is a nonempty disjunc

tion of literals. Since S is minimally unsatisfiable, let M 

be a model which satisfies S-{C}. M does not satisfy S and 

therefore L^M. Now let Sd be the set of clauses obtained by 

deleting all occurences of the literal L from clauses in S . 

Since L^M we have that M still satisfies (S-{c})d. Therefore 

when Sd is reduced to a minimally unsatisfiable set of clauses, 

we .can be sure that the clause (A) is in Sdm (for otherwise 

Sdm is a subset of (S-{c})d which is satisfiable). The minimally 

unsatisfiable subset, Sdm , of Sd , has k(Sdm) < N .
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Hence, by the induction hypothesis, we can obtain an SL-deduction 

of  from it. In particular, we can obtain this deduction with 

top chain (A)*, as shown in figure 3(a) .

Now let S' = (S-{C))U{(L)} . S' is still unsatisfiable, 

since (L) subsumes- C . Let S,m be a minimally unsatisfiable 

subset of S* . (L)ES,in, for otherwise, S ,m is a subset of the 

satisfiable set S-{C}. Hence, we have a minimally unsatisfiable 

set of clauses S,m with k(S|m) < N By the induction hypoth

esis,  can be deduced by SL-deduction with (L)* as top chain 

as shown in figure 3(b) .

I’Then using C* = (AVL) * as top chain, add L back to all 

clauses from which it was deleted. Every time that L is 

added back, it is deleted from the resulting chain by merging 

reduction, so that we are left with B-literal L which will 

yield □ (see figure 3(c)), by the deduction shown in figure 3(b).
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(b)
m

(c)

Figure 3. (a) SL-deduction of □ from sdm* with top chain (A)*,

obtained by the induction hypothesis. (b) SL-deduction of  from 

S|in* with (L) * as top chain, obtained by the induction hypothesis.

(c) SL-deduction of  from S* with top chain C* , obtained by 

placing the last two deductions one after the other.



21

CH7J.’TER V

GENERAL SL-RESOLUTION

For a given set of input clauses S f a set S* of input 

chains for S consists of exactly one sequence (06)* for each 

factor 06 of a clause 0 in S . (06)* is an ordered list of

all literals in 09. A chain is a sequence of literals each one 

of which is assigned the status of A- or B-literal. All literals 

in input chains are B-literals. If there are no A-literals 

between two B-literals of a chain, then the two B-literals are 

in the same cell of the chain.

For a given set of clauses S , a support subset S' of 

S , an SL-derivation of 0* from S’* is a sequence of chains 

D* (C*,'-»,C*) , where 0* is in S'* , and 0* = 0* ,

For 1 4? i < n ,

(1) 0* , is obtained from 0* by either truncation, reduction,i + l i -1
or expansion, and

(2) if c*+1 is not obtained from C* by reduction, then no 

two B-literals occurring in distinct cells of have the 

same atom and no pair of A- and B-literals are complementary 

literals.

C*,n is obtained from C* by truncation if i+l i -1
(i) the leftmost literal in C£ is an A-literal, and

(ii) C£+1 is the longest subsequence of Ct whose leftmost 

literal is a B-literal. The status of a literal in C*,ni+l
is the same as its status in C* .
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C*+1 is obtained from C? by reduction if the following 

conditions hold.

(i) The leftmost literal in C* is a B-literal.

(ii) C* is not obtained from C* , by truncation i i + l •L
(iii) The leftmost cell of C* contains a B-literal L andi

either C* contains a B-literal K which is not in the i
leftmost cell of C* or C* contains an A-literal K i i
and that {K,L} is unifiable with most general unifier

6 ,

(iv) Let be obtained by deleting the given occurrence

of L in C* . Then C* , = C* 0 . A literal in C* 3 
1 1+1 10 1+1

has the same status as the literal in C* from which it i
descends.

C*+1 is obtained from C* by expansion with B* in S'* 

if the following conditions hold.

(i) The leftmost literal in C* is a B-literal. i
(ii) Let L be the leftmost literal in the leftmost cell of

C* . B* contains a literal K such that {L,K} is uni- i
fiable with a most general unifier 6 .

(iii) Let C*Q and B* be obtained by deleting the given

occurrence of L in C* and K in B* . C*  is the i i + l
chain B*0L0C?o0 obtained by concatenating BQ0, L0 and

C*_ in that order. L0 is an A-literal in (B*LC*_)6. 
10 0 10

Every other literal in has the same status as the

literal in B* or C*„ from which it descends.
0 10
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CHAPTER VI

COMPLETENESS OF GENERAL SL-RESOLUTION

For the proof of the completeness of general SL-resolution, 

we make use of the results of Skolem-Herbrand-Godel Theorem, and 

the ground completeness theorem that we proved in Chapter IV. 

In preparation for the Skolem-Herbrand-Godel Theorem, we 

need to define the Herbrand Universe.

6.1 The Herbrand Universe. With any set S of clauses, there 

is associated a set of ground terms called the Herbrand 

universe of S , as follows: Let F be the set of all 

function symbols and constants which occur in S . If F 

contains any constants, the functional symbol vocabulary of 

S is F ; otherwise, it is the set {a}UF. The Herbrand 

universe of S is then the set of all ground terms in 

which there occur only symbols in the functional vocabulary 

of S .

The following proof of Skolem-Herbrand-Godel Theorem is 

taken from [4].

Skolem-Herbrand-Godel Theorem. If S is unsatisfiable, 

then some finite set of ground instances of clauses in S is 

unsatisfiable.

Proof. Let A1, A2, A3, ••• be an enumeration of all ground 

instances over the Herbrand universe of S of atoms in S . Let 

C^, C2, C3, ••• be an enumeration of all ground instances over 

the Herbrand universe of S of clauses in S .
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If S is unsatisfiable, then, in particular, no 

"symbolic" interpretation, with the Herbrand universe of S 

satisfies S . Therefore no assignment of truth values to the 

atoms A , A2, ••• will make every C17 C2, ••• true and 

therefore every branch in the tree T terminates (see figure 4). 

But, if each branch of a tree which splits into at most two 

branches at each node terminates, there can be only finitely many 

nodes in the tree. Therefore, T has only finitely many nodes. 

The indices jn, j„, •••, j„ written below these terminal nodes 

then provide a finite set C. , C. , •••, C. of instances of 
31 :I2

clauses in S which are unsatisfiable. For if M is the largest 

index among those of the atoms A.^ which actually occur in the 
M instances C. , C. , •••, C. , then each of the 2 distinct 

31 32 3N
assignments of truth values to A., A„, •••, A will falsify at 12 M
least one instance in the set C. , C. , •••, C.

31 32 3N

Figure 4



25

We are now in a position to prove the completeness theorem 

for general SL-resolution.

Theorem. If S is any minimally unsatisfiable set of general 

clauses, and C is any clause of S , then there is an SL- 

deduction of  from S* , where Sf is the set of all factors 

of S , with top chain C* , where Cf is either C or some 

factor of C .

Sketch of proof: By Skolem-Herbrand-Godel Theorem, there exists 

some finite subset of ground instances of clauses in S that is 

unsatisfiable. From this unsatisfiable subset, we take a mini

mally unsatisfiable subset. S' . Since S' is minimally unsat- 

isfiable, it must be that each clause in S is represented by 

at least one ground instance in S' . Let C* be the clause 

in S’ that is a ground instance of C . Then, by the ground 

completeness theorem, we can deduce  from C* by SL-resolution.

We need to show that a corresponding deduction of  can be 

constructed for the general clauses which exactly "mimics" the 

ground level proof by SL-resolution from the set of all factors 

of S , S .

Before we proceed with the discussion, we need to state 

some facts about most general unifiers. They are as follows: 

If there exists any substitution a which unifies two 

literals L1 , L2 (i.e., such that L1a = L2a), then the most 

general unification algorithm will find a most general unifier
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a which will unify and L2 such that L1a and L2a are

instances of I^cr, L2az i.e., there exists another substitution 

X such that (I^cOA = L^a = L2a = (L2a)X ,

From this, one can see, for example, that if a clause C* 

is a ground instance of C , then there exists some factor C 

of C such that Cf and C have the same number of literals 

and C* is an instance of Cf . For example, if

C = (P(x)VP(f(y))VQ(y)) and C = (P(f(a))VQ(a)) , note that 

C has the factor Cf = (P(f(y))VQ(y)) with the above properties 

Since C* , the top clause in the ground case, is a ground 

instance of C , by the above argument, we can use Cf as the 

general top clause, where Cf is either C or that factor of 

C which contains the same number of literals as C* .

Each input chain D'* in the ground proof is an instance 

of some chain D* in S* . By the same reasoning, there exists 

some D* in S* such that Df is a factor of D and such that 

D’ is a ground instance of Df with the same number of literals 

We can use D* as the corresponding input chain in the proof for 

the general case.

When the operation of expansion is applied to the ground top 

clause and a ground input clause, a corresponding expansion 

operation takes place for the general top clause, and the corres

ponding general input chain. Because the ground top clause is a 

ground instance of the general top clause with the same number of 
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literals, the ground input clause is a ground instance of the 

corresponding general input clause or some factor of it having 

the same number of literals, and because a most general unifier 

is found by the most general unification algorithm called upon 

by expansion in the general case, the resulting chain obtained 

in the ground case is a ground instance of that obtained in the 

general case with the same number of literals.

Similarly, all subsequent expansion operations in the ground 

case yield corresponding expansion operations in the general 

case. The resulting chain in the ground case is a ground 

instance of that in the general case with the same number of 

literals.

A reduction operation in the ground case has a corresponding 

reduction operation in the general case. Because the ground 

chain being operated upon by reduction is a ground instance of 

the general chain operated upon by the corresponding reduction 

with the same number of literals, and reduction in the general 

case calls upon the most general unifier algorithm, the resulting 

ground chain is a ground instance of that in the general case 

with the same number of literals.

A truncation operation in the ground case has a corres

ponding truncation operation in the general case. Because the 

ground chain to be operated upon by truncation is a ground 

instance of the general chain to be operated upon by the 
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corresponding truncation with the same number of literals, the 

resulting ground chain is a ground instance of the resulting 

general chain with the same number of literals.

The following example demonstrates the above discussion.

Input set = I ( s(x^v s(e) ) f (S(x)VS(y)V P(x,T(z) ,e))

(S (x) VP (y,w,y)VP (e/I (z) ,e)) } 
C

with ( S"(x)V S(e)) as top clause.

The ground proof of figure 5(a) will have a corresponding 

general proof of figure 5(b).

S(e) P(e,T(a),e)

6'
(truncation)

□

S(e)

Figure 5(a)



29

I S"(e)J
6 

........................ (truncation)

□

Figure 5(b)

0* is a ground instance of chain 0 with the same number of 

literals.

0 is a factor of A .

1* is a ground instance of chain 1 with the same number of 

literals.

1 is a factor of C .

2* is a ground instance of 2 with the same number of literals,

3* is a ground instance of 3 with the same number of literals.

3 is a factor of C .

4* is a ground instance of 4 with the same number of literals.

5' is a ground instance of 5 with the same number of literals.

61 is a ground instance of 6 with the same number of literals.
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Theorem. If S is any unsatisfiable set of general clauses, 

and S’ a support set (i.e.. S' eg and S \ S’ is sat- 

isfiable), then there is an SL-deduction of a from S* with top 

chain C* , some chain in S^* .

Proof. S can be .reduced to a minimally unsatisfiable subset 

SM C S . Since S \ S’ is satisfiable, SM must contain at 

least one clause, C , from S' . By the preceding theorem,  

can be deduced from Sf* C S* by SL-deduction with top chain 

C* , some chain in S'* . f f
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CHAPTER VII

COMPUTER IMPLEMENTATION AND RESULTS

Instead of giving a first proof directly, the program 

generates a search space of derivations. This is because the 

tree that is going -to yield the first proof is unknown. Every 

chain to be expanded upon has to be expanded with every chain 

in the input set, thus creating the search space of derivations.

The following representations are used in the program.

A variable symbol is represented by an atom.

A constant symbol is represented by a list containing only 

one atom.

A function is represented by a list the first member of 

which is an atom representing the function symbol and the rest 

are terms.

A literal is represented by a list, the first member of which 

is the literal symbol and the rest are terms. If L is an atom, 

then L is represented by (NIL L).

A clause is represented by a list of literals.

A chain is represented as a clause with the status of 

each literal tagged to it. For example, the chain, P(f(x)) 

Q(y,g(c) ) R(d) , is represented as ((B(P(F X)))(A(Q Y(G(C)))) 

(R(R(D)))).

The function MAIN is defined with two arguments CO and L . 

CO is the top clause with its length tagged to it. L is the 
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list of input clauses each tagged with its length. MAIN returns 

NIL if the set of input clauses is unsatisfiable and may other

wise not terminate.

The algorithm for the program is as follows:

1. Assign to each literal in the top clause a status. (In 

doing this, the clause is converted into a chain.)

2. The chain is put into the appropriate list in {S (1),S (2) , • * •, 

S(20)}. For example, a chain of length 5 is put into S(5).

3. Check for the first nonempty list, say, S(K), in this 

order, S(1),S(2),•••,S (20).

4. Take the first chain C(K) in S (K) .

5. Check if C(K), using its first literal to be unified upon, 

is unifiable with the first untried chain CIN in the input 

list.

6. If not, go to 12.

7. If so, apply expansion to C(K), and CIN.

8. Apply reduction and truncation to the result.

9. If result is NIL, terminate.

10. If not, calculate the complexity of the resulting chain 

Complexity 1 = K + length of CIN-1 .

Complexity 2 = K + 2 x length of CIN-3 .

11. Append resulting chain to appropriate list of S(1),S(2),• • •, 

S(20), according to its complexity.

12. Is CIN the last one in the input list?

13. If not, go to 5.
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14. If so, delete C(K) from S(K).

15. Go to 3.

MAIN calls upon the following functions:

MAIN1, the inputs of which are SI, S2, •••, S20, L , where L 

is the list of input clauses. It returns the value of ERT(S1, 

S2, •••, S20, U, LI, L2), where U is the length of the first 

chain, Ll, of the first nonempty list of SI, S2, •••, S20 , in 

that order; L2 is the list of input clauses.

-ERT, the inputs of which are SI, S2, •••, S20, U, Ll, L2 as 

described above. . For each of the input clauses in L2, it calls 

on expansion, reduction, and truncation, with Ll as the chain to 

be expanded upon. The resulting chain, if it exists, is appended 

to the appropriate list of SI, •••, S20 , according to its com

plexity. It deletes Ll from its list before it returns the value 

of MAIN1(S1, S2, •••, S20, L), where L is the list of input 

clauses.

STRIP, the input of which is a unit clause, and returns the 

same clause, if it has a positive literal, and the clause with 

the negation sign of the literal deleted, otherwise.

UNIFY1, the inputs of which are two positive literals, X and 

Y . It increments the counter UCNT by one and returns the value 

of UNIFY(X,Y).

UNIFY, the inputs of which are 01 and 02 which are the same as 

those of UNIFY1. It returns the value T , if 01 and 02 are 
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unifiable, and the value F , otherwise. It should be noted 

that UNIFY works for literals of at most three terms.

OCCUR, the inputs of which are X and Y , where X is a 

variable, and Y is a term. It returns the value T , if X 

appears in the.substituted value of Y (or in Y , if Y is 

not substituted for), and the value F , otherwise.

RECOVER, the input of which is X , a list. It returns the 

list with substitutions for the symbols that need to be substi

tuted for, and generates new symbols for those that do not. 

REC0VER1, the input of which is X , a list, and returns the 

value of RECOVER (CAR(X)).

SUBSTITUTE, the inputs of which are LI, and L2, where LI is a 

list of chains, and L2 is the empty list, when first called. It 

returns as its value, the list of chains with appropriate 

substitutions.

EXPANSION, the inputs of which are LI, L2, L3, where LI is a 

chain, L2 is a clause, and L3 is the literal, with its status 

specified, that is to be expanded upon. It returns the value of 

COMBINE (LI, L2, (CADR L3), U, NIL), where U is the comple

mentary literal of L3.

COMBINE, the inputs of which are LI, L2, L3, L4 and L5, where LI 

is a chain, L2 is a clause, L3 is the literal to be expanded 

upon, L4 is the complementary literal of L3, and L5 is the empty 

list, when first called. It checks to see if Ll and L2 can be 
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expanded, using L3 as the literal to be expanded upon. If not, 

it returns NIL. If so, it returns the resulting chain.

C0MBINE1, the inputs of which are LI, L2, L3, and L4, where LI 

is a chain, L2 is a clause, L3 is the literal to be expanded 

upon, and L4 is the list of all those literals in front of the 

complementary literal of L3 in L2. It returns the value of the 

resulting chain of Ll, and L2 with L3 as the literal to be 

expanded upon.

EXPANSIONC, the inputs of which are Ll, L2, and L3, where Ll is 

a chain, L2 is a literal, and L3 is the empty list, when first 

called. It returns, as its value, the list L3 with L2 deleted. 

ADD, the inputs of which are Ll and L2, where Ll is either 'A 

or 1B , and L2 is a literal.

REDUCTION, the inputs of which are Ll, L2, and L3. Ll is a 

chain. L2 is the list of all literals of Ll except the leftmost 

cell deleted. L3 is the empty list, when first called. It 

applies ancester and merging reductions to every literal in the 

leftmost cell of Ll, and returns the resulting chain as its 

value.

PRELIT, the input of which is Ll, a chain, and returns Ll with 

its leftmost cell deleted.

LASTBS, the inputs of which are Ll and L2, where Ll is a chain 

and L2 is the empty list, when first called. It returns the 

leftmost cell of Ll as its value.
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NEGATE, the input of which is L , a literal with its status 

tagged to it. It returns the complementary literal of L with 

the same status.

TRUNCATION, the input of which is L , a chain. It returns L 

after applying the operation of truncation to it.

A set of fourteen examples (see appendix), already proved 

in [13] and [3], was tested twice, each time using a different 

complexity.

Complexity 1 = (previous complexity of chain)

+ (length of input chain) - 1 .

The second complexity gives more weight to the length of 

the input clause.

Complexity 2 = (previous complexity of chain)

+ 2 * (length of input chain) - 3 .

The results are shown in the following table.
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Examples
Number of ERT Calls Execution Time in Sec.

Complexity 1 Complexity 2 Complexity 1 Complexity 2

1 6 5 13.945 12.989

2 memory 
exhausted

memory 
exhausted

29.032 52.170

3 memory 
exhausted

memory 
exhausted

40.012 31.175

4 memory 
exhausted

memory 
exhausted

51.623 45.063

5 4 4 8.396 11.852

6 memory 
exhausted

memory 
exhausted

30.810 36.478

7 11 11 9.890 15.249

8 memory 
exhausted

memory 
exhausted

20.724 60.313

9 30 28 28.995 25.328

10 memory 
exhausted

memory 
exhausted

39.848 33.452

11 memory 
exhausted

memory 
exhausted

42.415 60.643

12 memory 
exhausted

memory 
exhausted

33.432 60.990

13 memory 
exhausted

memory 
exhausted

30.495 27.361

14 9 5 19.138 14.632
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Most of the preceding 14 examples are quite difficult for 

automatic theorem-proving programs. Some have only been proved 

by a program which uses an incomplete proof procedure [13]. 

However, all 14 have been proved by one or more programs. Thus, 

the results of jthis particular technique are somewhat disappointing 

and do not live up to the claims made by Kowalski and Keuhner 

in this paper (although we did not implement all aspects of 

their technique). Neither complexity tested is clearly superior 

to the other. Further experimentation with different complexi

ties would be useful.
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( CSFTQ UCNT 0 )
(DEFINE '(
(MAIN (LAMBDA (CO L)

(PROG (SI S2 S3 S4 S5 S6 S7 S3 S9 S10 Sil S12 S13 S14 S15 S16 517
S13 S19 S20 ) 
( CO ND
((EQUAL (CAR CO) »!) (SETO SI (LIST (ADDB ( CA DR CO) NIL))) 

(RETURN (MAINl SI $2 S3 S4 S3 S6 S7 S3 S9 
Sil S12 S13 S14 SIS S16 517 SIB S19 S20

$10 
L )) )

((EQUAL (CAR CO) ’2) (SETQ S2 (LIST (ADDS (CADR CO) MIL))) 
(RETURN (MAINl SI S2 S3 S4 S3 So S7 SB S9 
Sil S12 S13 S14 S15 S16 S17 S18 519 S20

510
L )) )

((EQUAL (CAR CO) ’3) (SETO S3 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl SI S2 S3 S4 S3 S6 S7 SB S9 
Sil S12 5 13 S14 5 15 S16 5 17 SIB S19 S 20

510
L )) )

((EQUAL (CAR CO) *4) (SETQ S4 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl SI S2 S3 S4 S5 56 S7 SB 59 
511 512 S13 S14 515 S16 517 SIB S19 S20

510
L )) )

((EQUAL (CAR CO) ’5) (SETQ S3 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 52 S3 S4 S3 56 S7 58 59 
Sil 512 S13 S 14 5 15 5 16 517 S18*S19 S 20

SI 0
L )) )

((EQUAL (CAR CO) ’6) (SETQ 56 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 S2 S3 S4 5 5 56 S7 S8 5 9 
511 512 513 514 515 516 S17 S18 519 520

SI 0
L ) ) )

((EQUAL (CAR CO) ’7) (SETQ 57 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 52 S3 S4 S5 56 5 7 88 S9 
Sil 512 513 514 515 S16 517 518 S19 820

510
L )) )

((EQUAL (CAR CO) '8) (SETQ 58 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 52 S3 54 S5 S6 S7 SB 5 9 
511 512 S13 S14 515 516 517 518 519 520

51 0
L )) )

((EQUAL (CAR CO) '9) (SETQ S9 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 52 S3 54 S3 56 57 SH 59 
511 512 S13 514 515 516 517 SIB 519 520

SI 0
L )) )

((EQUAL (CAR CO) ’10) (SETQ 510 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 52 S3 54 S5 56 S7 58 5 9 
511 512 513 S14 515 S16 517 518 51 9 S20

51 0
L )) )

((EQUAL (CAR CO) ’ll) (SETQ 511 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl Si 52 S3 54 S3 56 57 58 59 
511 512 513 514 515 516 517 SIB 519 S 20

51 0
L )) )

((EQUAL (CAR CO) ’12) (SETQ 512 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl SI 52 S3 54 55 56 57 SB 59 
511 512 513 514 515 516 517 518 519 5 20

51 0
L )) )

((EQUAL (CAR CO) ’13) (SETQ S13 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 52 S3 54 S5 S6 57 58 59 
511 512 513 514 515 516 517 518 519 520

S10
L )) )

((EQUAL (CAR CO) ’14) (SETQ S14 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 52 S3 54 S3 56 S7 SB S9 
511 512 S13 514 515 516 517 518 519 520

S10
L )) )

((EQUAL (CAR CO) ’15) (SETQ 515 (LIST (ADDB (CADR CO) NIL))) 
(RETURN (MAINl 51 52 S3 54 55 S6 S7 58 59
Sil S12 S13 S14 S15 516 517 518 519 5 20

510
L )) )
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((EQUAL (CAR CO) '16) (SETQ S16 (LIST (APDB (CA DR CO) NIL))) 
(RETURN (MAIN1 SI S2 S3 S4 S5 S6 $7 S8 S9 S10 
Sil S12 S13 S14 S15 S16 S17 S18 S19 S 20 L)))

((EQUAL (CAR CO) '17) (SETQ S17 (LIST (ADDS ( CA DR CO) NIL))) 
(RETURN (HAIN1 SI S2 S3 S4 S5 S6 S7 S8 S9 SI 0 
Sil S12 S13 S14 S15 S16 S17 S18 S39 S 20 L)))

((EQUAL (CAR CO) '18) (SETQ S18 (LIST (ADDS (CADR CO) NIL))) 
(RETURN (MAIN1 SI S2 S3 S4 S5 S6 S7 S8 S9 S10 
Sil S12 S13 S14 S15 S16 S17 S18 S19 S20 L)))

((EQUAL (CAR CO) '19) (SETQ S19 (LIST (ADDS (CADR CO) NIL))) 
(RETURN (MAIN1 SI S2 S3 S4 S5 S6 S7 S8 S9 SI 0 
Sil S12 S13 S14 S15 S16 S17 S18 S19 S20 L)))

((EQUAL (CAR CO) '20) (SETQ S20 (LIST (ADDS (CADR CO) NIL))) 
(RETURN (MAIN1 SI S2 S3 S4 S5 S6 S7 SB S9 S10 
Sil S12 S13 S14 S15 S16 S17 S18 S19 S 20 L)))

) )) )
(MAIN1 (LAMBDA (SI S2 S3 S4 S5 S6 S7 S8 S9 S10 Sil S12 S13 S14 S15 

S16 S17 S18 S19 S20 L)
( CO ND
((NOT (NULL SI)) (ERT SI S2 S3 S4 S5 S6 S7 S8 S9 SI 0 SI 1 S12 S13 SI 4

S15 S16 S17 S18 S19 S 20 *1 (CAR Si) D)
((NOT (NULL S2) ) (ERT SI S2 S3 34 S5 S6 S7 S8 S9 SI 0 Sil S12 S13 S14

S15 S16 S17 S18 S19 S 20 '2 (CAR S 2) L))
((NOT (NULL S3)) (ERT SI S2 S3 S4 S5 S6 S7 S8 S9 S10 Sil S12 S13 S14

S15 S16 S17 S18 S19 S 20 '3 (CAR S3) D)
((NOT (NULL S4)) (ERT SI S2 S3 S4 S5 S6 S7 S8 S9 SI 0 Sil SI 2 S13 SI 4

S15 S16 S17 S18 S19 S 20 '4 (CAR S4) L))
((NOT (NULL S5)) (ERT SI S2 S3 S4 S5 S6 S7 S8 S9 S10 Sil S12. S13 S14

S15 S16 S17 S18 S19 S 20 «5 (CAR S 5) D)
((NOT (NULL S6) ) (ERT SI S2 S3 S4 S5 S6 S7 S8 S9 S10 SU S12 S13 S14

S15 S16 S17 S18 S19 S20 '6 (CAR S6) D)
((NOT (NULL S7) ) (ERT SI S2 S3 S4 S5 S6 S7 S8 S9 SI 0 SI 1 SI 2 SI 3 SI 4

S15 S16 S17 S18 S19 S20 *7 (CAR S7) D)
((NOT (NULL S8) ) (ERT SI S2 S3 S4 S3 S6 S7 S8 S9 SI 0 Sil S12 S13 SI 4

S15 S16 S17 S18 S19 S20 '8 (CAR SB) L))
((NOT (NULL S9)) (ERT SI S2 S3 S4 S3 S6 S7 S3 S9 S10 SI 1 S12 S13 Si 4

SIS S16 S17 S18 S19 S20 »9 (CAR S9) L ))
((NOT (NULL S10)) (ERT SI S2 S3 S4 S3 S6 S7 S8 S9 S10 Sil S12 S13 S14

S15 S16 S17 S18 S19 S20 »10 (CAR S10) L) )
((NOT (NULL SID) (ERT SI S2 S3 S4 S3 S6 S7 SB S9 S10 SU S12 S13 S14

S15 S16 S17 S18 S19 S20 'll (CAR Sil) L) )
((NOT (NULL S12)) (ERT Si S2 S3 S4 S3 S6 S7 S8 S9 S10 SU 312 513 S14

SI 5 SI 6 SI 7 SI 8 SI 9 S2 0 '12 (CAR S12) L) )
((NOT (NULL S13)) (ERT SI S2 S3 S4 S3 S6 S7 S8 S9 S10 Sil S12 S13 S14

SIS S16 S17 S18 S19 S2 0 *13 (CAR S13) L) )
((NOT (NULL S14)) (ERT SI S2 S3 S4 S3 S6 S7 SB S9 S10 Sil S12 S13 S14

S15 S16 S17 S18 S19 S20 *14 (CAR S14 ) L) )
((NOT (NULL S15)) (ERT SI S2 S3 S4 S3 S6 S7 SB S9 S10 Sil S12 S13 S14

SIS S16 S17 S18 S19 S20 *15 (CAR S15 ) D)
((NOT (NULL S16)) (ERT SI S2 S3 S4 S3 S6 S7 SB S9 S10 Sil S12 S13 S14

SIS S16 S17 S18 S19 S20 *16 (CAR S16 ) L) )
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((NOT (NULL S17)) (ERT SI S2 S3 S4 
S15 S16 S17 

((NOT (NULL SIB)) (ERT SI S2 S3 S4 
S15 S16 S17 

((NOT (NULL S19)) (ERT SI S2 S3 S4 
S15 S16 S17 

((NOT (NULL S20)) (ERT SI S2 S3 S4 
S15 S16 S17 

) )>
(ERT (LAMBDA (SI S 2‘ S3 S4 S5 S6 S7 SB 

S17 S18 S19 S2Q U LI 
(PROG (E G L V X Y) 
(SETO L L2) 

LOOP (COND
( (NULL L2) (COND 

((EQUAL U »1) (RETURN

((EQUAL U ’2) (RETURN

((EQUAL U «3) (RETURN

((EQUAL U *4) (RETURN

((EQUAL U ’5) (RETURN

((EQUAL U »6) (RETURN

((EQUAL U ’7) (RETURN

((EQUAL U 18) (RETURN

((EQUAL U 19 ) (RETURN

((EQUAL U »10) (RETURN

((EQUAL U «11) (RETURN

((EQUAL U 112) (RETURN

S5 S6 S7 S8 S9 510 S11 S12 S13 S14
S18 S19 520 '17 (CAR S17) L) )
S5 S6 S7 58 S9 510 Sil S12 S13 S14
518 519 520 '18 (CAR SIB) L) )
S5 S6 S7 58 59 510 511 S12 513 S14
518 519 520 '19 (CAR S19) L) )
55 S6 S7 58 59 S10 Sil S12 S13 S14
S18 519 S20 '20 (CAR S 20 ) L) )

S9 S10 511 S12 513 514 515 516
L2 )

(MAIN1 (CDR SI) S2 S3 S4 55 56 57 
S8 59 510 511 512 513 514 
515 516 517 518 S19 S20 L ) )) 

(MAIN1 SI (CDR 52) 53 54 55 56 57 
S8 59 S10 511 S12 513 514 
515 516 517 518 S19 520 L ))) 

(MAIM 51 S2 (CDR S3) S4 55 S6 S7 
S8 S9 S10 Sil 512 513 S14 
5 15 5 16 5 17 S 18 S 19 5 20 L ) )) 

(MAIN1 SI 52 S3 (CDR S 4) 55 56 S7 
58 59 S10 511 512 S13 S14 
515 516 S17 518 519 5 20 L ) )) 

(MAIN1 51 52 S3 54 (CDR 55 ) 56 57 
S8 59 S10 511 512 513 514 
515 515 517 518 S19 5 20 L ) )) 

(MAIN1 51 52 S3 S4 S5 (CDR S6) S7 
5 8 59 S10 511 S12 513 514 
S15 516 517 518 S19 S20 L ) )) 

(MAIN1 51 S2 S3 54 55 S6 (CDR S7 )
58 S9 510 511 S12 S13 514 
S15 516 S17 S18 S19 5 20 L )) )

(MAIN1 SI S2 S3 S4 S5 S6 57 (CDR 58)
59 510 511 S12 S13 514
515 S16 S17 S18 519 5 20 L ) )) 

(MAINl 51 52 S3 54 S5 S6 57 58 
(CDR S9) 510 Sil S12 S13 SI 4 
S 15 5 16 S 17 5 18 S 19 5 20 L ) )) 

(MAINl 51 S2 S3 S4 55 S6 57 SB 
59 (CDR 510)511 S12 513 514 
515 516 S17 S18 S19 5 20 L ) )) 

(MAINl SI S2 S3 S4 55 S6 57 58 
S9 510 (CDR S11)S12 513 S14 
S15 S16 S17 S18 S19 S20 L ) )) 

(MAINl 51 S2 S3 S 4 55 S6 S7 5 8 
S9 510 Sil (CDR S12) 513 S14 
S15 516 S17 S18 S19 S 20 L ) ))
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((EQUAL U ’13) ( RETURN

((EQUAL U ’14) (RETURN

((EQUAL U ’15) (RETURN

((EQUA’L U ’16) (RETURN

((EQUAL U ’17) (RETURN

((EQUAL U ’18) (RETURN

((EQUAL U ’20) (RETURN

(MA INI SI S2 S3 S4 S5 S6 S7 S8 
S9 S10 Sll S12 (CDR S13) S14 
S15 S16 S17 S18 S19 S20 L ) )) 

(MAIN1 SI S2 S3 S4 S5 S6 S7 S8 
S9 S10 Sll S12 S13 (CDR S14)
515 S16 S17 S18 S19 S 20 L ) )) 

(MA INI SI S2 S3 S4 S5 S6 S7 SB S9
S10 Sll S12 S13 S14 (CDR S15)
516 S17 S18 S19 S20 L ) )) 

(MAIN1 SI S2 S3 S4 S5 S6 S7 S8 S9
S10 Sll S12 S13 S14 S15

(( EQUAL U ’19) (RETURN

(CDR S16) S17 S18 S19 S20 L )))
(MA INI SI S2 S3 S4 S5 S6 S7 58 S9

S10 Sll S12 S13 S14 S15
S16 (CDR S17) S18 S19 S 20 L )))

(MA INI SI S2 S3 S4 S5 S6 S7 SB S9
S10 Sll S12 S13 S14 S15
S16 S17 (CDR S18) S19 S20 L )))

(MA INI SI S2 S3 S4 S5 S6 S7 S8 S9
S10 Sll S12 S13 S14 S15
S16 S17 S18 (CDR S19) S20 L )))

(MA INI SI S2 S3 S4 S5 S6 S7 S8 S9
S10 Sll S12 S13 S14 S15
S16 S17 S18 S19 (CDR S20) L ) ))

) ))
(SETO E (EXPANSION Ll (CADAR L2) (CAR LI)))
( CO ND
((NULL E) (SETQ L2 (CDR L2)) (GO LOOP))
(T (ERASE ’ (X Y)) (SETQ G (TRUNCATION (REDUCTION E (PRELIT E)
NIL )) )) )
( COND
( (NULL G) ( RETURN N IL ))
(T (SETQ V (SUB1 (PLUS (CAAR L2 ) U)))))
( COND
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
((EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V 
( (EQUAL V

*1) (SETQ SI 
’2) (SETQ S2 
’3) (SETQ S3 
’4) (SETQ S4 
•5) (SETQ S5 
’6) (SETQ S6 
’7) (SETQ S7 
’8) (SEJQ S8 
’9) (SETO S9

(APPEND SI
(APPEND S2
(APPEND S3
(APPEND S4
(APPEND S5
(APPEND S6
(APPEND S7
(APPEND S8
(APPEND S9

(LIST G )) )) 
(LI ST G )) )) 
(LIST G )) )) 
(LI ST G)) )) 
(LIST G)) )) 
(LI ST G )} )) 
(LIST G )) )) 
(LIST G)) )) 
(LIST G )) ))

’ 10 ) 
’ll ) 
’ 12 ) 
’13 ) 
’ 14 ) 
’15 ) 
’16 ) 
’ 17 )

(SETQ S10 
(SETQ Sll 
(SETQ S12 
(SETQ S13 
(SETQ S14 
(SETQ S15 
(SETQ SI6 
(SETQ S17

(APPEND S10 
(APPEND Sll 
(APPEND S12 
(APPEND SI 3 
(APPEND S14 
(APPEND S15 
(APPEND S16 
(APPEND S17

(L 1ST G) )) ) 
(LIST G) )) ) 
(L 1ST G) )) ) 
(L 1ST G) )) ) 
(L 1ST G) )) ) 
(LIST G) )) ) 
(L 1ST G) )) ) 
(L 1ST G) )) >
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((EQUAL V ’18) (SETQ Si 8 (APPEND Si 8 (LIST G))))
((EQUAL V ’19) (SETQ S19 (APPEND S19 (LIST G))))
((EQUAL V ’20) (SETQ S2 0 (APPEND S2 0 (LIST G) )) ))
( SETQ L2 (CDR L2) ) 
( GO LOOP) ) ))

(STRIP (LAMBDA ( L)
(CO ND
( (ATOM (CAR L )) L )
(T (CONS (CADAR L) (CDR L))))))

(UNIFY1 (LAMBDA‘(X Y) (PROG ( )
( CSETO UCNT ( AD DI UCN T) )
(RETURN (UNIFY X Y) )) ))

(UNIFY (LAMBDA (01 0 2) ( CO ND
( (EQ 01 02) T)
( (ATOM 01 ) (COND

((EQUAL (GET 01 (QUOTE IS-BOUND)) UCNT) (UNIFY (EVAL 01) 02)) 
((OCCUR 01 02) NIL)
(T (DO (PUT 01 (QUOTE IS-BOUND) UCNT) (CSET 01 02)))))

( (ATOM 02 ) (COND
((EQUAL (GET 02 (QUOTE IS-BOUND)) UCNT) (UNIFY 01 (EVAL 02))) 
((OCCUR 02 01) NIL)
(T (DO (PUT 02 (QUOTE IS-BOUND) UCNT) (CSET 02 01)))))

((NOT (EQ (CAR 01) (CAR 02))) NIL)
( (NULL (CDR 01) ) T)
((NULL (CDDR 01)) (UNIFY (CADR 01) (CADR 02)))
((NULL (CDDDR 01)) (AND (UNIFY (CADR 01) (CADR 02))

(UNIFY (CAD DR 01) (CADDR 02))))
(T (AND (UNIFY (CADR 01) (CADR 02))

(UNIFY (CADDR 01) (CADDR 02))
(UNIFY (CADDDR 01) (CADDDR 02)))))))

(OCCUR (LAMBDA (X Y) ( COND
( (EQ X Y) T)
( (ATOM Y) (COND

((Equal (get y (quote is-bound)) ucnt) (occur x (eval y) ))
(T NIL )) )

(T (OR (OCCUR X (CAR Y) ) (OCCUR X (CDR Y) )) )) ))
(RECOVER (LAMBDA (X) (COND

( (ATOM X) ( COND
((EQUAL (GET X (QUOTE IS-BOUND)) UCNT) (RECOVER (EVAL X))) 
((EQUAL (GET X (QUOTE RECOV) ) UCNT) (EVAL X) ) .
(T (DO (PUT X (QUOTE RECOV) UCNT) (CSET X (GENSYM) )) )) ) 

(T (CONS (CAR X) (MAPLIST (CDR X) REC 0VER1) )) )) ) 
(RECOVERl (LAMBDA (X)

( RECOVER (CAR X )) ))
(SUBSTITUTE (LAMBDA (LI L2 )

( COND
( (NULL LI ) L2 )
(T (SUBSTITUTE (CDR LI) (APPEND L2 (LIST (CONS (CAAR Ll) (LIST 
(RECOVER (CADAR Ll) )) )) )) )) ))
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(EXPANSION (LAMBDA (LI L2 L3)
(PROG (U)
( COND

((ATOM (CAADR L3)) (SETO U ( CADR (NEGATE L3) )) )
(T (SETO U (CONS (CADAADR L3) ( CDADR L3 )) )) )
(RETURN (COMBINE LI L2 (CADR L3 ) U NIL)) ) ))

(EXPANSIONC (LAMBDA (Ll L2 L3)
( COND
((EQUAL (CAR Ll ) L2) (APPEND L3 (CDR Ll)) )
(T (EXPANSIONC (CDR Ll) L2 (APPEND L3 (LIST (CAR Ll))))) ) ))

(ADD (LAMBDA ( Ll L2)
(CONS Ll (LIST L2)) ))

(COMBINEl (LAMBDA (Ll L2 L3 L4)
(APPEND (APPEND (ADDS (APPEND L4 (CDR L2) ) NIL)

(L 1ST (ADD ' A L3 )) ) 
(EXPANSIONC Ll (ADD ’ B L3 ) NIL)) )) 

(COMBINE (LAMBDA (Ll L2 L3 L4 L5)
(PROG (U X Y)
( COND
( (NULL L2 ) (RETURN NI L) )
((EQUAL (CAAR L2) (CAR L4)) (SE TQ U (UNIFY1 (STRIP (CAR L2) ) (STRIP 
L4) )) ))
( COND

((NULL U) (ERASE ’ (X Y ) ) (RETURN (COMBINE Ll (CDR L2) L3 L4 
(APPEND L5 (LIST (CAR L2))))))

(T (RETURN (SUBSTITUTE (COMBINEl Ll L2 L3 L5) NIL))) ) ) )) 
(ADDS (LAMBDA (Ll L2)

(COND
( (NULL Ll > L2)
(T (ADDB (CDR Ll) (APPEND L2 (LIST (ADD »B (CAR Ll) ))))))
) )

(REDUCTION (LAMBDA (Ll L2 L3)
(PROG (U NL1 NL2 NL3 X Y)
(COND
((NULL (LASTBS Ll NIL)) (RETURN (APPEND L3 L2) ))
((EQ (CAAR L2) ' B) (COND

((EQUAL (CAADAR Ll) (CA AD AR L2) ) (SETQ U (UNIFY1 
(STRIP (CAD AR Ll)) (STRIP (CADAR L2 )) )) ) 
(T (SETQ U NIL) )) )

(T (COND
((AND (ATOM (CAADAR L2) ) (EQUAL (CAADR (NEGATE (CAR L2)))
( CAADAR Ll) ))

(SETQ U (UNIFY1 (STRIP (CADAR Ll )) (STRIP (CADAR L2) )) ))
((AND (ATOM (CAADAR LD) (EQUAL (CAADR (NEGATE (CAR Ll))) 

(CAADAR L2 )) )
(SETQ U (UNIFY1 (STRIP (CADAR Ll)) (STRIP (CADAR L2)))))))) 

(COND
((NULL U) (COND

((NULL (CDR L2) ) (ERASE ’(X Y)) (RETURN (REDUCTION (CDR Ll 
(PRELIT Ll) (APPEND L3 (LIST (CAR Ll)) )) ))

(T (ERASE ' (X Y) ) (RETURN (REDUCTION Ll (CDR L2) L3))))) 
(T (SETQ NL1 (SUBSTITUTE (CDR Ll) NIL))
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(SETO NL2 (SUBSTITUTE (PRELIT LI) NIL))
(SETQ NL3 (SUBSTITUTE L3 NIL))

(ERASE » (X Y))
(RETURN (REDUCTION NL1 NL2 NL3)))) )))

(PRELIT (LAMBDA (L )
(CO ND
((EQ »B (CAAR D) (PRELIT (CDR L)))
( T L) )) )

(LASTBS (LAMBDA (LI L2)
(COND
( (EQ (QUOTE A ) (CAAR LI )) L2)
(T (LASTBS (CDR LI) (APPEND L2 (LIST (CAR LI))))) ) )) 

(NEGATE (LAMBDA (L )
(CONS (CAR L) (LIST (CONS (ADD NIL (CAADR L))(CDADR L )) ) )
) )

(TRUNCATION (LAMBDA (L )
(COND
( (NULL L) NIL >
( (EQ »B (CAAR L )) L )
(T (TRUNCATION (CDR L )> ) > ))

))



49

1. (MAIN ’(1 (((NIL P) (K X4) X4 (K X4) ) ) )
’( (1 ( ((NIL P) (K X4 ) X4 (K X4 )) ))

(1 ((P (G XI Yl) XI Y1)))
(1 ( (P X2 (H X2 Y2) Y2)) )
(4 (((NIL P) X3 Y3 U3) ((NIL P) Y3 Z3 V3) ((NIL P) X3 V3 W3)

(P U3 Z3 W3) )) ))
2. (MAIN '(1 (((NIL py (B ) (A) (C))))

'( (1 ( ((NIL P) (B) (A) (C) )) ) 
(1 (<P XI (E) XI))) 
(1 ( (P ( E) X2 X2 )) ) 
(4 (((NIL P) X3 Y3 U3) ((NIL P) Y3 Z3 V3) ((NIL P) U3 Z3 W3) 

( P X3 V3 W3 )) ) 
(4 (((NIL P> X4 Y4 U4) ((NIL/P) Y4 Z4 V4) ((NIL P) X4 V4 W4 ) 

(P U4 Z4 W4) ) ) 
(1 ( (P X5 X5 (E) )) ) 
(1 ((P (A) (8) (C)))) ))

3. (MAIN ’(1 (((NIL P) (A) (E ) (A))))
*( (1 ( (( NI L P) ( A) ( E) ( A) )) ) 

(1 ((P (I XI ) XI (E) )) ) 
(1 ( (P ( E) X2 X2 )) ) 
(4 (((NIL P) X3 Y3 U3) ((NIL P) Y3 Z3 V3)

((NIL P) U3 Z3 W3) (P X3 V3 W3 )) )
(4 (((NIL P) X4 Y4 U4) ((NIL P) Y4 Z4 V4)

((NIL P) X4 V4 W4) (P U4 Z4 W4)) ) ))
4. (MAIN ’(1 (((NIL P) (A) XI (E) )) )

’( (1 ( ((NIL P) (A) XI (E)) )) 
(1 ( (P (I X2 ) X2 (E) )) ) 
(1 ( (P ( E) X5 X5)) ) 
(4 (((NIL P) X3 Y3 U3) ((NIL P) Y3 Z3 V3)

((NIL P) U3 Z3 W3) (P X3 V3 W3)))
(4 (((NIL P) X4 Y4 U4) ((NIL P) Y4 Z4 V4)

((NIL P) X4 V4 W4) (P U4 Z4 W4)) )) )
5. (MAIN '(1 (( (NIL S) (E)) ))

'( (1 ( (( NIL S) ( E) )) ) 
(1 ( (P ( E) XI XI )) ) 
(1 ( (P X2 (E ) X2)) ) 
(1 ( (P X3 (I X3) (E) )) )
(1 ( (P ( I X4 ) X4 (E) )) )
(1 ( (S ( A) )) ) 
(4 (((NIL S) X5) ((NIL S) Y5) ((NIL P) X5 (I Y5) Z5) (S Z5 )) )
(4 (((NIL P) X6 Y6 U6) ((NIL P) Y6 Z6 V6) ((NIL P) X6 V6 W 6)

( P U6 Z 6 W6 )) )
(4 (((NIL P) X7 Y7 U7) ((NIL P) Y7 Z7 V7) ((NIL P) U7 Z7 W7) 

(P X7 V7 W7 )) ) ))
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6. (MAIN

7. (MAIN

8. (MAIN

9. (MAIN

•<1 (( (NIL S) (I (B) )) )) 
•( (1 ( ((NIL S) (I (B)) )) )

(1 ((P (E) XI XI )))
(1 ( (P X2 (E) X2)) )
(1 ( (P X3 (I X3) (E) )) ) 
(1 ( (P (I X4 ) X4 ( E) )) ) 
(1 ( (S ( 8) )) )

*(1 (( (NIL D) (A) (B)) ))

(4 ( (( NI L S) X5) ( (N IL S ) Y5 ) (( NI L P) X5 (I Y5) Z5) ( S Z5 )) )
(4 ( ((NIL P)

(P U6 Z6
X6 Y6 U6) 
W6) ))

( (NIL P) Y6 Z6 V6 ) ((NIL P) X6 V6 W6)

(4 (((NIL P)
(P X7 V7

X7 Y? U7) 
W7) )) ) )

((NIL P) Y7 27 V7) ((NIL P) U7 Z7 W7)

( (1 ( (( NI L D) (A) (B) )) )
(1 ( (P (A) )) )
(1 ( (M (A) ( S (C )) ( S (B )) )) )
(1 ( (M XI XI (S XI)) ))
(2 ( ((NI L M) X2 Y2 Z2) (M Y2 X2 Z2)))
(2 (((NIL M) X3 Y3 Z3) (D X3 Z3)))
(5 ( ((NIL P) X4) ( (NIL M) Y4 Z4 114 )

((NIL D) X4 U4> (D X4 Y4> (D X4 Z4) ))))
.'(3 (((NIL L) (I) X8) ((NIL L) X8 (A)) (D (F X8) X8) ))
*((3 (((NIL L) (I) X8) ((NIL L) X8 (A) ) (D (F X6) X8)))

(1 ( (D XI XI)) )
(3 (((NIL D) X2 Y2) ((NIL D) Y2 Z2) (D X2 Z2)))
(2 ( (P X3) (D (G X3) X3) ))
(2 ( (P X4) (L (I ) (G X4) )))
(2 ( (P X5) (L (G X5) X5) ))
(1 ((L (I) (A) )) )
(2 ( ((NIL P) X6) ( (NIL D) X6 ( A) )) )
(3 (((NIL L) (I) X7) ((NIL L) X7 (A)) (P (F X7)) )) ))

♦(3 (((NIL P) X8) ((NIL L) (A) X8) (L (F (A)) X8)) )
’((3 (((NIL P) X8) ((NIL D (A) X8) (L (F (A)) X8)))

(1 ( (L XI (F XI) )) )
(1 ( ((NI L L) X2 X2 )) )
(2 (((NIL L) X3 Y3) ((NIL L) Y3 X3)))
(2 ( ((NIL D) X4 (F Y4) ) (L Y4 X4)) )
(2 ( (P X5) (D (H X5) X5) ))
(2 ((P X6) (P (H X6) )) )
(2 ( (P X7) ( L (H X7) X7) )) ) ) .
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10.(MAIN '(1 (((NIL R) (F (F (A) (B)) (C) ) (F (A) (F (B) (C)) ))))
*((1 (((NIL R) (F (F (A) (B)> (O) (F (A) (F (B) (C)))))) 

(1 ((R (F XI Yl) (F Y1 XI) ) ) )
(1 ( (R (F X2 (F Y2 Z2) ) (F (F X2 Y2) Z2))))
(1 ( (R (G (F X3 Y3 ) Y3 ) X3 )) )
(1 ( (R X4 (G (F X4 Y4) Y4) ) ) )
(1 ( (R (F (X3 X5 Y5) Z5) (G (F X5 Z 5) Y 5) )) )
(1 ((R (G (F X6 Y6) Z6 ) (F (G X6 Z6) Y6))))
(3 (((NIL R) X7 Y7) ((NIL R) Y7 Z7) (R X7 Z7)) )
(1 ( (R X8 X8)) )
(3 (((NIL R) X9 Y9) ((NIL R) U9 (F X9 V9)) (R U9 (F Y9 V9) )) )
(3 (((NIL R) X10 Y10) ((NIL R) U10 (G XI0 V10)) (R U10 (G Y10
(3 (((NIL R) Xll YU) ((NIL R) Ull (G Vll XU)) (R UU (G VU

||.(MAIN

12.(MAIN

13.(MAI N

’(1 (((NIL R) (F (G (A) (B)) (O) (F (A) (G (C) (B))))))
*((1 (((NIL R) (F (G (A) (B)) (O) (F (A) (G (C) (B) )) >) ) 

(1 ( (R (F XI Yl) (F Yl XI) )) ) 
(1 ((R (F X2 (F Y2 Z2) ) (F (F X2 Y2) Z2) >> )
(1 ( (R ( G (F X3 Y3 ) Y3 ) X3 )) )
(1 ((R X4 (G (F X4 Y4) Y4)))) 
(1 ((R (F (G X5 Y5) Z5) (G (F X5 Z5) Y5))))
(1 (<R (G (F X6 Y6) Z6) (F (G X6 Z6) Y6))))
(3 (((NIL R) X7 Y7 ) ((NIL R) Y7 Z7 ) (R X7 Z7 )) ) 
(1 ( (R X8 X8 )) ) 
(3 (((NIL R) X9 Y9) ((NIL R) U9 (F X9 V9)) (R U9 (F Y9 V9))))
(3 (((NIL R) X10 Y10) ((NIL R) U10 (G X10 V10)) (R U10 (G Y10
(3 (((NIL R) XU Yll) ((NIL R) U11 (G Vll X1D) (R U11 (G VI1

’(1 (((NIL R) (F (A) (G (B) (C))) (F (G (A) (O) (B) )) ))
*((1 (((NIL R) (F (A) (G (B) (C))) (F (G (A) (C) ) (B)))))

(1 ( (R (F XI Yl) (F Yl XI) )) )
(1 ( (R (F X2 (F Y2 Z2)) (F (F X2 Y2) Z2) >> >
(1 ( (R (G (F X3 Y3) Y3) X3)) )
(1 ( (R X4 (G ( F X4 Y4) Y4) )) )
(1 ( (R (F (G X5 Y5) Z5) (G (F X5 Z5) Y5) )) )
(1 ( (R (G (F X6 Y6 ) Z6 ) (F (G X6 Z6) Y6) )) )
(3 (((NIL R) X7 Y7) ((NIL R) Y7 Z7) (R X7 Z7 )) )
(1 ( (R X8 X8)) )
(3 (((NIL R) X9 Y9) ((NIL R) U9 (F X9 V9)) (R U9 (F Y9 V9))))
(3 (((NIL R) X10 Y10) ((NIL R) U10 (G X10 V10) ) (R U10 (G Y10
(3 (((NIL R) Xll Yll) ((NIL R) UH (G Vll XU)) (R Ull (G Vll

*(1 (((NIL R) (G (F (A) (B)) (C) ) (F (A) (G (B) (C))))))
*((1 (((NIL R) (G (F (A) (B)) (C)) (F (A) (G (B) (C))))))

(1 ( (R ( F XI Yl) (F Yl XI) )) )
(1 ((R (F X2 (F Y2 Z2)) (F (F X2 Y2) Z2))))
(1 ( (R ( G (F X3 Y3 ) Y3 ) X3 )) )
(1 ((R X4 (G (F X4 Y4) Y4) )) )
(1 ( (R ( F (G X5 Y5 ) Z5 ) (G (F X5 Z5) Y5) )) )
(1 ((R (G (F X6 Y6) Z6) (F (G X6 Z6) Y6))))
(3 (((NIL R) X7 Y7 ) ((NIL R) Y7 Z7) (R X7 Z7 )) )
(1 ( (R X8 X8 )) )
(3 (((NIL R) X9 Y9) ((NIL R) U9 (F X9 V9)) (R U9 (F Y9 V9))))
(3 (((NIL R) X10 Y10) ((NIL R) U10 (G X10 VI0)) (R U10 (G Y10
(3 (((NIL R) Xll Yll) ((NIL R) Ull (G Vll XU)) (R UU (G VU

VI0) )]
Y11) ))

vi o)):
Yin);

V10) ))
YU) )]

vi o)):
YU) ))



14. (MaIN ’(1 (( <N1L Q) <K XD xl <K Xl))))
•((1 (((NIL Q) (K Xl) Xl (K Xl))))

(4 (((NIL Q) X2 Y2 U2) ((NIL 0) Y2 Z2 V2)
((NIL Q) X2 V2 W2) (Q U2 Z2 W2)) )

(4 (((NIL Q) X3 Y3 U3) ((NIL Q) Y3 Z3 V3)
((NIL Q) U3 Z3 W3) (Q X3 V3 W3)))

(1 ( (Q (G X4 Y4) X 4 Y4 )) ) 
(1 ((Q X5 (H X5 Y5) Y5))) 
(1 ( (Q X6 Y6 ( F X6 Y6) )) )) )
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