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Abstract

With the requirement for increasing efficiency of wireless spectrum usage, the cognitive radio

technique has been emerging as an important solution. Passive monitoring over wireless channels in

cognitive radio is an innovative approach in which the system attempts to locate channels with the

highest activity over time. A huge amount of work has been contributed to this field when the reward

of each channel is identical to observers. However, when the reward is different over observers, these

algorithms perform poorly. In this thesis, we challenge this problem by considering this correlation

as part of the reward. We develop one optimal online learning algorithm when a switching cost

exists in the system. We also propose three approximation algorithms with competitive computation

complexity but still guarantee to obtain a constant amount of reward compared to the optimal case.

Theoretical analysis and simulation are conducted to prove the effectiveness of these approaches.
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Chapter 1

Introduction and Background

As the number of wireless devices increases, there emerges a major concern, the running out

of frequency spectrum for wireless devices. This problem can be solved by applying cognitive radio

technique, in which secondary users can use the channel when licensed users have no activity. In

this thesis, we concentrate on passively monitoring the activity of licensed users over channels so

that the system can make a choice based on the information provided.

1.1 Sequential Learning and Multi-Armed Bandit Problem

Sequential learning, in which wireless monitoring is an active branch, first came from neuro-

scientists who studied the human’s ability of learning things from sequences with order. This ob-

servation caught the attention of scientists, particularly those in computer science when Lashley [1]

stated that sequential learning is not attributable to sensory feedback and that there are plans for

behavior since the nervous system prepares for some behaviors but not others. This idea opened a

new way of thinking for both neuro-scientists and computer scientists doing research on sequential

learning. In computer science, sequential learning has been long studied by [2], [3], [4], [5].

Wireless monitoring in sequential learning is a technique where a dedicated set of hardware

devices, called sniffers, are used to monitor activities in wireless networks. These devices capture

transmissions of users’ activity of interference source in their vicinity, and store packet level in trace

files, which can be analyzed distributive or at a central location. Since most, if not all, infrastructure

networks utilize multiple contiguous or non-contiguous channels or bands, an important issue is to

determine which set of frequency bands each sniffer operates on to maximize the total amount of

information gathered. This is called the sniffer-channel assignment problem or channel assignment

problem for short.

This is a challenging problem. First, the system usually does not have enough devices to
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Figure 1.1: Objective of cognitive radio technique

monitor all resources at any time. Second, there is no priori - the knowledge of usage patterns

or the likelihood of occurrence of interesting events. Therefore, the system needs to balance be-

tween exploring channels that are under-sampling and assigning sniffers to busiest ones with current

knowledge. This trade-off is closely related to the multi-armed bandit problem (MAB) [2] [6]. In

MAB problems, a gambler must choose one arm over N non-identical slot machines to play in a

sequence of trials so as to maximize his payoff. At any time, the gambler chooses an arm based on

past information. The efficiency of the policy that he uses can be measured in term of its associated

regret, which is defined as the difference between the expected payoff gained by a “genie” who

always uses the optimal stationary arm, and that obtained by a given policy. The regret achieved by

a policy is evaluated in terms of its growth over time and how it scales with respect to the various

problem parameters.

A large volume of work has been devoted to designing good strategies for variations of the

MAB problem and to the understanding of the theoretical limits of such procedures. Lai et al. [7]

established logarithmic upper and lower bounds for dent stochastic arms with parametric pay-off

distributions.

While Agrawal [8] considered a class of sample-mean based policies, Auer et al. [9] analyzed

upper confidence bound (UCB) based and ε-Greedy policies which both have the regret ofO(log T )

over time. Bandit problems with linear parameterized payoff were studied extensively in [10] [11]

[12]. However, when we have no statistical assumptions about the payoff of the slot machines
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(adversarial environment), Auer et al. proposed the well-known EXP3 set of algorithms [13] which

are built up based on [14] and [15], and in turn is a variant of Littlestone and Warmuth’s [16]

weighted majority algorithm, and Vovk’s [17] aggregating strategies. The EXP3 policy achieves a

theoretical growth of regretO(T 1/2) over time with T is the total time that the algorithm is planning

to played.

Recently, [18] considered the MAB problem in an unknown environment and proposed a pol-

icy with its regret achievesO(
√
nK log3/2(n) logK) in adversarial model andO(K∆ log2(n) logK)

in stochastic model. MAB with switching costs was first considered in [19]. An excellent survey

on MAB with switching costs can be found in [20]. Beside traditional multi-armed bandit prob-

lems, [21] proposed their algorithm when the set of arm is infinite and satisfies the metric space,

and the payoff function satisfies a Lipschitz condition with respect to the metric.

1.2 Passive Monitoring of Multi-Channel Wireless Networks

In the field of wireless monitoring, from system-level point of view, [22], [23], [24], [25],

[26], [27] attempted to design complete systems, and addressed the interactions among the compo-

nents of such systems. The authors have argued both qualitatively and quantitatively the need for

wireless side monitoring. Different from [28], [29] or [30] in which the certain statistics regarding

the users’ activity are given or can be inferred, our work has no assumption about such parameters.

In this case, a sequential approach should be applied to balance the trade-off between explo-

ration and exploitation. In exploration phase, sniffers are assigned to channels with less information

to gain further knowledge, while in exploitation; they are set to channels with highest traffic based

on the gathered information of the system. If the system only concentrates on discovering the envi-

ronment, it suffers the regret by not assigning its sniffers to the best channels to capture the traffic.

However, if the exploration process is not enough, the system may choose a suboptimal choice to

assign their sniffers. This trade-off is vividly illustrated by the famous multi-armed bandit problem

(MAB).
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Figure 1.2: Characteristics and capabilities of of wireless monitoring system

Realizing the connection between the MAB and spectrum access in cognitive radio net-

works, [31] considered the problem of secondary user channel selection as the distributed multi-

armed bandit problem, and presented a policy that achieved asymptotically logarithmic regret in

time. Lai et al. applied the UCB1 algorithm [9] to single user-channel selection in [32], and later

extended it to consider Markovian payoffs and for the case of multiple users in [33]. Two policies

for distributed learning and access with order-optimal cognitive system throughput under self-play

were proposed in [34]. In centralized model, [35] proposed two algorithms without switching costs

which are proven to achieve logarithmic regret over time compared to an offline optimal solution.

A distributed algorithm based on Gibbs sampler is proposed in [36]. Shin et al. [37] extended their

earlier work and propose DA-OSCA, a distributed algorithm for the channel assignment problem

while preserving the same approximation ratio as the centralized algorithm. It adapts to the changes

in the network by determining the arrival and departure of sniffers/nodes.

In our problem, each of the S sniffers must be assigned to one over the set of K channels

to monitor so as to maximize the total information gathered. Therefore, the total number of arms

available each round is thus N = KS . We assume that the payoff of each arm is proportional to the

number of distinct users detected. For simplicity, we assume that a user’s activity in a given channel

can be described with a sequence of independent and identically distributed (i.i.d) Bernoulli random

variables. However, as opposed to the standard MAB problem, the observation upon a single assign-

ment is not only the reward associated with the assignment, but also the activity patterns observed
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at each monitored channel. Note that the observed pattern may have correlated components, e.g.,

when two sniffers observe the transmission of the same set of users. The objective of our work is

to design algorithms to assign sniffers to channels so as to maximize the probability of observing

users’ activity over time.

1.3 Contribution and Organization of This Thesis

In our thesis, we formulate the channel assignment problem as a multi-agent multi-arm partial

information problem with linearly parameterized payoff. By formulating as such, two sniffers may

observe the same set of users when they sniff the same channel. Hence, in the first part of our

thesis, we formulate this correlation part as a visible set of rewards and propose one optimal online

learning policy - our Upper Confidence Bound (UCB)-based algorithm. This algorithm achieves

the theoretical logarithmic regret, but it is NP-hard, which is high computation complexity. From

this point of view, an approximate online learning algorithm - ε-GREEDY-APPROX is designed to

not only obtain a constant ratio of reward, but also take advantage in the computation complexity

compare to the optimal algorithm.

By including the correlation reward between sniffers in the problem, the computation com-

plexity of the system is increased. To reduce this amount of time, in the second part, we attempt

to achieve approximate solutions without considering the correlation information. Following this

direction, our algorithms have shorter running time but still keep a competitive performance com-

pare to the previous two algorithms. These new algorithms without the correlation reward can be

seen as multi-agent systems [38], in which all the agents work together to find its best assignment,

but each one has different information about its surrounded area. We evaluate the trade-off between

optimality, computation cost and rate of learning between algorithms from the simulation results of

all algorithms we proposed.

The first algorithm using the multi-agent approach is the EXP3-APPROX. In this algorithm,

channels seen by each agent are modeled as adversarial environment. With this assumption, we
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apply the idea of MAB algorithms under adversarial setting [13] and obtain an O(
√
T ) regret, and

an out-performed computation time compare to the first two algorithms. This algorithm is later ex-

tended to the distributed version - DEXP3-APPROX - with the idea of having no central processing

unit in real systems. However, by loosening the constraint of the environment, the regret of EXP3-

APPROX has low convergence speed compare to previous algorithms. Under the observation of

agents, we realize that channels are distorted at the beginning, but become “more stable” after each

agent converges to its optimal assignment. As a result, we devise ε-GREEDY-AGENT-APPROX

with the idea of using an stochastic algorithm for each agent when channel condition seen by agents

is “stable enough” to be seen as nearly stochastic environment.

Finally, from what we have done so far, we summarize them into this thesis with the struc-

ture as follows. In Chapter 2, we formulate our channel assignment problem. Details, analysis,

simulation results and conclusion for all the algorithms taking response of the correlation reward

are introduced in Chapter 3, and the other policies are in Chapter 4. We also do here a small scale

implementation for the wireless sniffing using both adversarial and stochastic algorithms in Chapter

5. Last but not least is our conclusion for this thesis and the future direction in Chapter 6.
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Chapter 2

Problem Formulation

The objective of this chapter is to cast the problem that we are going to solve into mathematic

model. The main idea of this thesis is to design algorithms to assign sniffers to channels with highest

users’ activity. In order to do that, we first model the offline problem in Section 2.1, in which a set

of sniffers needs to sniff through all available channels to determine the best assignments (sniffer

to channel) which contains the set of user with highest weights. Due to the property of the wireless

monitoring problem, we have a high probability of observing the same set of users monitored by two

or more sniffers when they are sniffing in the same channel. Therefore, in Section 2.2, we describe

our tool to learn this correlation reward which is later used in Chapter 3. Section 2.3 formulates

the optimal online learning problem with switching cost. Finally, we sketch a general view about

the approximate online learning algorithms in section 2.4 and take a deeper look at them in both

Chapter 3 and 4.

2.1 Offline Optimization Problem

We consider S sniffers monitoring user activities in K channels. A user u operates in one

of K channels, c(u) ∈ K = {1, ...,K}. Let pu denote the transmission probability of user

u. We represent the relationship between users and sniffers using an undirected bi-partite graph

G = (S, U,E), where S = {1, ..., S} is the set of sniffer nodes and U is the set of users. An

edge e = (s, u) exists between sniffer s ∈ S and user u ∈ U if s can capture the transmis-

sion from u. A channel assignment decision (or action) consists of an (unordered) set of S tuples

k = {〈i1, ki1〉 , 〈i2, ki2〉 , ..., 〈iS , kiS 〉}, where the ithj sniffer is assigned the kthij channel. The utility

(of payoff) of an assignment is the average amount of user activity it monitors.

We formulate the optimal sniffer-channel assignment where the graph G and the user-activity

probability (pu;u ∈ U) are both known. The objective here is to maximize the expected number
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of activity users monitored. We denote MAX-EFFORT-COVER (MEC) the problem of finding the

largest (weight) set of users that can be monitored by a set of sniffers, where each sniffer can monitor

one of a set of K channels. The MEC problem can be cast as the following integer program (IP):

max
∑

u∈U puyu

s.t.
∑K

k=1 zs,k ≤ 1 ∀s ∈ S
yu ≤

∑
s∈N(u) zs,c(u) ∀u ∈ U

yu, zs,k ∈ {0, 1} ∀u, s, k.

(2.1)

In (2.1), each sniffer is associated with a set of binary decision variables, zs,k = 1 if the

sniffer is assigned to channel k; 0, otherwise. Further, yu is a binary variable indicating whether or

not user u is monitored, and pu is the weight associated with user u. MEC has been proven to be

NP-hard in [28].

2.2 Reward Learning Tool

In the online setting, in order to exploit the correlation among sniffer observations, MEC is

reformulated and casted as a linearized multi-arm bandit (MAB) problem [35].

Consider channel assignments of sniffers to channels, k = (〈1, k1〉 , . . . , 〈S, kS〉) (abbrevi-

ated as (k1, . . . , kS)), where 1 ≤ ki ≤ K. Let K =
{

k | k : S → {1, ..,K}S
}

be the set of all pos-

sible assignments. Let Uik(t) be a nonnegative, integer-valued random variable that denotes the in-

dex of the user whose activity sniffer i can observe in channel k at time t, or which takes the value of

zero if there is no activity in the chosen channel. The instantaneous feedback (observations) received

under the joint action k(t) = (k1, . . . , kS)) is Y ◦(k1,...,kS) = (U1,k1(t), U2,k2(t), . . . , US,kS (t)). Note

that I{
Ui1,ki1

=Ui2,ki1
=...=Uis,ki1

>0
} is a function of Y ◦(k1,...,kS), and hence can be taken as part of the

observation. Thus, we define Y(k1,...,kS) as the collection

I{
Ui1,ki1

=Ui2,ki1
=...=Uis,ki1

>0
} 1 ≤ s ≤ S, 1 ≤ i1 < . . . < is ≤ S. (2.2)

Note that spatial multiplexing is allowed such that multiple users can be active at the same

time in one channel (as long as they are sufficiently far apart geographically). However, we assume
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one sniffer can observe one user at a time. This is consistent with many existing multiple access

mechanisms including FDMA and TDMA. As in (2.1), the payoff upon selecting the joint action is

the number of distinct users that the sniffers observe. That is, the joint payoff of k = (k1, k2, . . . , kp)

is

Xk(t) = |{U1,k1(t), . . . , US,kS (t)}| − I{U1,k1
(t)=0,...,US,kS (t)=0}

=

S∑
i=1

I{U1,ki
(t)>0}

−
S∑

i,j=1

I{
Ui,ki (t)=Uj,kj (t)>0

}I{ki=kj ,i 6=j}
. . .

− (−1)SI{U1,k1
(t)=U2,k2

(t)=...=US,kS (t)>0} × I{k1=k2=...=kS}.

(2.3)

The expectation of joint payoff for channels k = (k1, k2, . . . , kS) is given by,

E[Xk(t)] =

S∑
i=1

P(U1,ki(t) > 1)

−
S∑

i,j=1

P(Ui,ki(t) = Uj,kj (t) > 0)I{ki=kj ,i 6=j}

. . .

− (−1)SP(U1,k1(t) = . . . = US,kS (t) > 0)× I{k1=k2=...=kS}.

(2.4)

Define an unknown vector θ with the following elements:

P(Ui,k > 0), 1 ≤ i ≤ S, 1 ≤ k ≤ K,
P(Ui1,k = Ui2,k > 0), 1 ≤ i1 < i2 ≤ S, 1 ≤ k ≤ K,

...
P(U1,k = U2,k = . . . = US,k > 0), 1 ≤ k ≤ K.

(2.5)

We introduce the “arm features,” φk ∈ RM as (2.6), where M = K(2S − 1). Note that

the arm feature φk,j of the jth arm can be uniquely determined by k = (k1, k2, . . . , kS). Let

Mk = {i : 1 ≤ i ≤M,φk,i 6= 0} be the set of nonzero components of feature vector φk and let
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Mk = |Mk|.

φk,i =



I{k1=i} , if 1 ≤ i ≤ K;

. . .

I{k2=i−l·K} , if l ·K + 1 ≤ i ≤ (l + 1) ·K;

. . .

−I{k1=k2=i−p·K} , if S ·K + 1 ≤ i ≤ (S + 1) ·K;

. . .

−(−1)SI{k1=k2=...=kS=i−K(2S−2)} , if K(2S − 2) + 1 ≤ i ≤ K(2S − 1).

(2.6)

To this end, we can rewrite the expectation of the payoff in MEC as a linear function of the

arm feature φk,

f(k) = E[Xk(t)] = θT φk, (2.7)

where (·)T denotes transposition.

Given θ, the system can play optimally: An arm with maximal payoff is chosen by k∗ =

argmaxk∈Kθ
>φk (here, and in what follows, for the sake of simplicity, we assume that there is a

unique optimal arm). A reasonable way to estimate the parameter vector θ is to keep a running

average for the components of θ. If at time t the agent chose k(t) ∈ K then the current estimate,

θ̂(t− 1), can be updated by

θ̂i(t) = θ̂i(t− 1) +
1

Ni(t)

(
Yi(t)− θ̂i(t− 1)

)
I{i∈Mk(t)},

Ni(t) = Ni(t− 1) + I{i∈Mk(t)}.
(2.8)

Here Ni(0) = 0, θ̂i(0) = 0. Thus, Ni(t) counts the number of times data for component i has been

observed up to time t.

Spanner arm ζ is a set of arms by playing which θ can be learned. In the monitoring problem

ζ can be chosen to be ζ = {(k, . . . , k) : 1 ≤ k ≤ K}, whose cardinality is K � KS = |K|. The

set ζ is called a spanning set or a spanner and its elements are called spanner arms.

10



2.3 Optimal Online Learning with Switching Regret

In practice, it takes a sniffer short period - a tuning time - to tune to the new channel whenever

the sniffer changes its channel. Hence, beside the sampling regret Rπn due to playing suboptimal

arms, a policy π may incur the switching regret SW π
n . Sampling regret is given by

Rπn = E

[
n∑
t=1

{
max
k∈A

φTkθ − φTktθ
}]

. (2.9)

Let Sn(j) =
∑n

t=1 I{kt=j,kt+1 6=j}, where kt denotes the joint action selected at time t. The switch-

ing regret is thus,

SW π
n = Csw

∑
k∈A

E[Sn(k)], (2.10)

where Csw is the switching cost. Now we assume that the switching cost is constant across all

joint actions. This is reasonable in a synchronous system where all sniffers coordinate the onsets of

monitoring.

An optimal monitoring policy π determines a sequence of actions in K over time such that

the expected total regret

Qπn = Rπn + SW π
n

is minimized. In Chapter 3 we propose our UCB-based optimal policy where Qπn grows sublinearly

in n.

2.4 Approximate Online Learning

Using any well-known algorithm in MAB problem in [35] or [9] to select the optimal arm

k(t) = argmaxk µ̂k(t − 1) is NP-hard due to its equivalence to the MEC problem. This high

computation complexity suffers any systems in practical environment. To reduce computation com-

plexity, we apply the idea of GREEDY in [29] with the guarantee of constant ratio of the reward

compare to the optimal case. Denote kg the assignment (or arm) chosen by GREEDY with com-

11



plete information. We define the regret of policy π relative to GREEDY as

Rπg (n) = E

[
n∑
t=1

{
φkgθ − φTktθ

}]
. (2.11)

Note that by the property of GREEDY, 1
2 maxk∈K φ

T
kθ − φkgθ ≤ 0. Thus, we have

Rπg (n) ≥ E

[
n∑
t=1

{
1

2
max
k∈K

φTkθ − φTktθ
}]

.

A part in Chapter 3 and Chapter 4 are dedicated to solving this approximate problem.

12



Chapter 3

Online Learning Policies with Correlation Information

When two or more sniffers are assigned to the same channel, they have a high probability

of observing the same set of users. Therefore, when the system calculates the received reward,

it should take into account this correlation amount to calculate the assignment’s gain correctly.

In this chapter, we consider this correlation part as an element of our problem and propose two

algorithms, one optimal and one approximate which explore and exploit the correlation reward

between sniffers. In section 3.1, we proposed an optimal algorithm for the channel assignment

problem. We then evaluate this approach, compare it with the UCB-based algorithm in [35]. We

point out the drawbacks of optimal algorithms in channel assignment problems and devise our

approximate algorithm to over come these drawbacks in the second section.

3.1 Optimal Online Learning Algorithm with Switching Cost

In reality, whenever a wireless device switches from one frequency to another one, it takes the

device a period of time to tune to the new channel. In our experiment with USRP2, the tuning time

to change between frequencies in the 802.11 standard is 8.02 milliseconds on average. As a result,

we always lose some information for this unavoidable period. In order to include this part in to our

problem, we cast it as a switching regret of the system and suppose that it is a constant number for

any switching actions. This regret should also be considered as important as the sampling regret we

face by choosing wrong assignments. In this section, we build up an algorithm try to minimize both

the sampling and switching regret of the channel assignment problem.

3.1.1 An Upper Confidence Bound (UCB)-Based Policy

When the switching cost is not negligible, to limit the increasing of switching regret, an

algorithm should not change the joint action too often. Most policies consider switching cost utilize

13
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Figure 3.1: Hexagonal layout with users (’+’), sniffers (solid dots), and channels of each cell (in
different colors)

“block” sampling, namely, an action once selected is played for a period of time, called an epoch.

The block length should be short with uncertainty parameters and longer when more knowledge is

gained. Define the epoch length of the rth epoch τ(r) = d(1 + α)re, where α ≥ 0.

The policy that we consider is built up on UCB2 [9] with the difference in the consideration

of dependent arms and that in the initialization stage, we only play each of the spanners ζ once.

After that, the decision time instances for arm selection are denoted by tj , j = 1, . . . , Jn, where

t1 = |ζ|+ 1 and Jn is the number of decision time instances up to time n. tj , j = 1, . . . , Jn divide

the time into epochs of length lj = tj+1 − tj , j = 1, . . . , Jn − 1 to be defined next. At time tj , the

algorithm chooses

k(tj) = argmax
k∈E

Vk(tj − 1), (3.1)

where

Vk(tj − 1) = µ̂k(tj − 1) +
∑

i∈Mk

√
ρ log tj
Ni(tj−1) ,

µ̂k(tj − 1) = θ̂(tj − 1)>φk.
(3.2)

the arm k(tj) is played lj times.

Let I(tj) = argmin
m∈Mk(t)

Nm(tj − 1), each component i is associated with an epoch counter ri(t)

14



initialized to zero. At time tj , the epoch counter of component I(tj) is updated as rI(tj)(tj) =

rI(tj)(tj − 1) + 1, and remains the same for the rest of the epoch length lj = τ(rI(tj)(tj)) −

τ(rI(tj)(tj) − 1). After playing k(tj) and observing (Yi(t); i ∈ Mk(tj)), tj ≤ t < tj + lj the

parameter estimate is updated using (2.8). Then, the process is repeated. The pseudo-code for the

algorithm can be seen in 3.1.

Theorem 3.1. Choose any ρ that satisfies ρ > 1/1.99. Then, there exists a constant C > 0 (which

may depend on ρ) such that for all n ≥ 1, the expected regret of UCB satisfies

QUCB
n ≤ 4M∆max

(
max

k:∆k>0

Mk

∆k

)2

ρ log n+ C,

where ∆max = maxk ∆k, and C scales linearly with |K| can be extracted from the proof.

Proof. The proof is similar to the original proof given by Auer et al [9], with some elements bor-

rowed from the analysis technique of Audibert et al [39]. (see also, [40]) and Gai et al [41]. As the

total regret consists of the sampling regret and the switching regret, we derive a bound of each term

separately.

We start by introducing the necessary notation. We denote by Tk(n) the number of times arm

k is chosen up to time n (including time n): Tk(n) =
∑n

t=1 I{k(t)=k}. We let µ∗ = maxk µk, ∆k =

Algorithm 3.1 The UCB-based algorithm
Initialize:
• Play each arm in the spanner ζ once and update vector θ̂ and its components as (2.8);
• Update sampling and switching regret;

for all j = 1, 2, ... do
• Choose arm k(tj) that maximize Vk(tj − 1) using (3.2);

if k(tj) is different from the previous arm then
Adding switching regret;

end if
for i = 1 to lj do
• Play arm k(tj);

• Update vector θ̂ using (2.8);
• Update sampling regret;

end for
end for

µ∗−µk. Then, it is easy see that E
[
RUCB1
n

]
=
∑

k ∆kE [Tk(n)] ≤ (maxk ∆k) E
[∑

k:∆k>0 Tk(n)
]
.

Our goal is to develop a bound on E
[∑

k:∆k>0 Tk(n)
]

which scales linearly withM rather that with

|K|.
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Let Zi(tj) = I{k(tj)6=k∗,I(tj)=i}, and T̃i(t) = T̃i(t − 1) + Zi(tj), tj ≤ t < tj+1.1 Note that∑
k 6=k∗ Tk(n) =

∑
i T̃i(n), since exactly one of the counters is incremented on both sides when a

suboptimal arm is chosen. Thus, it suffices to bound T̃i(n).

Therefore pick any index 1 ≤ i ≤ M and let u be an integer to be chosen later. We have

Zi(tj) = Zi(tj)I{T̃i(tj−1)>τ(u)} + Zi(tj)I{T̃i(tj−1)≤τ(u)}. Since
∑Jn

j=1 Zi(tj)I{T̃i(tj−1)≤τ(u)}lj ≤

τ(u), it suffices to deal with the first term, which we bound as follows:

Zi(tj)I{T̃i(tj−1)>τ(u)}

≤ I{
Vk(tj)(tj−1)>µ∗,T̃i(tj−1)>τ(u),I(tj)=i

} + I{Vk∗ (tj−1)≤µ∗}.

Now, let the k̂ij be the arm played in the jth epoch out of the epochs j′s where I(tj′) = i,

and t̂ij is the time when such an epoch starts. Clearly, k̂ij = k(t̂ij). Denote δ(j) = τ(j)−τ(j−1).

Thus,

T̃i(n) = 1 +
∑Jn−1

j=1 Zi(tj)lj

≤ 1 + τ(u) +

Jmax∑
j=u+1

Zi(t̂ij)I{T̃i(t̂ij−1)>τ(u)}δ(j),
(3.3)

where Jmax is the maximum possible number of epochs where Zi(tj) = 1. Clearly, Jmax ≤

d logn
log(1+α)e. Therefore,

E
[
T̃i(n)

]
≤ τ(u) + 1

+

Jmax∑
j=u+1

P
(
Vk̂ij (t̂ij − 1) > µ∗, T̃i(t̂ij − 1) > τ(u)

)
δ(j)

+

Jmax∑
j=u+1

P
(
Vk∗(t̂ij − 1) ≤ µ∗

)
δ(j).

We will now show that both sums can be bounded logarithmically with respect to n, provided that

u is sufficiently large.
1We are using the assumption that there is a unique optimal arm k∗. Note that this is assumed just for the sake of

simplicity and the proof, at the price of a more complicated presentation, works without it.
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The summand of the first sum is bounded as follows:
p1j , P

(
Vk̂ij (t̂ij − 1) > µ∗, T̃i(t̂ij − 1) > τ(u), I(t̂ij) = i

)
≤ P

{
µ̂k̂ij (t̂ij − 1) > µk̂ij + ∆k̂ij

− ck̂ij ,t̂ij−1,

T̃i(t− 1) > τ(u), I(t̂ij) = i
}

where ck̂ij ,t̂ij−1 =
√
ρ log t̂ij

∑
m∈Mk̂ij

√
1

Nm(t̂ij−1)
,
√
ρ log t̂ij Wk̂ij

(t̂ij − 1). Now,

∆k̂ij
− ck̂ij ,t̂ij−1

=
∑

m∈Mk̂ij

(
∆k̂ij

Wk̂ij
(t̂ij − 1)

−
√
ρ log t̂ij

)√
1

Nm(t̂ij − 1)
.

We claim that under the condition that T̃i(t̂ij − 1) > τ(u) the largest value Wk̂ij
(t̂ij − 1) can take

is bounded from above by Mk̂ij
/
√
τ(u). To see this note that T̃m(t − 1) ≤ Nm(t − 1) holds

for any m and t, because Nm(·) is always incremented when T̃m(·) is incremented. Further, since

I(t) = argminm∈Mk(t)
Nm(t− 1), NI(t)(t− 1) ≤ Nm(t− 1) holds for any m ∈Mk(t). Thus, for

arbitrary m ∈ Mk̂ij
, τ(u) < T̃i(t̂ij − 1) ≤ Ni(t̂ij − 1) ≤ Nm(t̂ij − 1). The claim then follows

from the definition of Wk̂ij
(t̂ij − 1).

Hence,

∆k̂ij
− ck̂ij ,t̂ij−1

≥
∑

m∈Mk̂ij

(
∆k̂ij

√
τ(u)

Mk̂ij

−
√
ρ log t̂ij

)√
1

Nm(t̂−1)
.

Further,
∆k̂ij

√
τ(u)

Mk̂ij

−
√
ρ log t̂ij ≥

√
ρ log n holds for 1 ≤ t̂ij ≤ n if

τ(u) ≥
(

2 max
k:∆k>0

Mk

∆k

)2

ρ log n.

Then, ∆k̂ij
− ck̂ij ,t−1 ≥

√
ρ log n Wk̂ij

(t− 1) and thus

p1j ≤ P
(
µ̂k̂ij (tij − 1) > µk̂kij +

√
ρ log n Wk̂ij

(t̂ij − 1)
)

(3.4)

≤
∑
k

Mk d4 log ne exp (−1.99ρ log n) , (3.5)
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where the last inequality follows from the union bound and Lemma 3.3, which is presented later in

subsection 3.1.2.

The summand of the second sum can be bounded as follows:

p2j , P
(
Vk∗(t̂ij − 1) ≤ µ∗

)
= P

(
µ̂k∗(t̂ij − 1) + ck∗,t̂ij ≤ µ

∗
)

≤
n∑

t=τ(j)

P(µ̂k∗(t− 1) + ck∗,t ≤ µ∗)

=
n∑

t=τ(j)

P
(
µ̂k∗(t− 1) ≤ µ∗ −

√
ρ log tWk∗(t)

)
.

The inequality is due to the fact that tij ≥ τ(j) and the union bound. Using Lemma 3.3 again,

we get that

p2j ≤
n∑

t=τ(j)

Mk∗d4 log net−1.99ρ

≤Mk∗d4 log ne
ˆ ∞
τ(j)

t−1.99ρ

= Mk∗d4 log neτ(j)−1.99ρ+1

≤Mk∗d4 log ne(1 + α)(−1.99ρ+1)j .

Putting together the inequalities, for n sufficiently large, we have
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E
[
T̃i(n)

]
≤ τ(u) +

Jmax∑
j=u+1

(p1j + p2j)δ(j)

≤
(

2 max
k:∆k>0

Mk

∆k

)2

ρ log n+
∑
k

Mkd4 log nen−1.99ρ
Jmax∑
j=u+1

δ(j)

+Mk∗d4 log ne
Jmax∑
j=u+1

(1 + α)(−1.99ρ+1)jδ(j)

≤
(

2 max
k:∆k>0

Mk

∆k

)2

ρ log n+
∑
k

Mkd4 log nen−1.99ρd(1 + α)Jmax − (1 + α)ue

+Mk∗d4 log ne
Jmax∑
j=u+1

(1 + α)(−1.99ρ+2)j

≤
(

2 max
k:∆k>0

Mk

∆k

)2

ρ log n+
∑
k

Mkd4 log nen−1.99ρ+1 + C ′Mk∗d4 log nen(−1.99ρ+2),

where C ′ is a proper defined constant dependent on α. Clearly, if ρ ≥ 2/1.99, the last two terms

are o(1).

To this end, we have proved that the sampling regret grows logarithmically with n. Next,

we analyze the asymptotic property of the switching regret. Clearly, the number of switching is

bounded by the number of times a suboptimal arm is played, which is clearly logarithmic in time.

However, a tighter bound can be obtained by taking into account the epoch length. Let Ψi(0) = 0

and

Ψi(t) =

{
Ψi(t− 1) + Zi(t), t = t1, t2, . . .
Ψi(t− 1), else

Recall that Zi(tj) = I{k(tj)6=k∗,I(tj)=i}. Namely, Ψi(t) is the number of epochs the ith component

incurred till time t, when it is the least visited component in the chosen arm. Clearly, the switching

cost if bounded by Csw
∑

i Ψi. Thus,

Ψi(n) = 1 +
∑Jn

j=1 Zi(tj)

≤ 1 + u+

Jmax∑
j=u+1

Zi(t̂ij)I{T̃i(t̂ij−1)>τ(u)}.
(3.6)

19



Therefore,

E [Ψi(n)] ≤ 1 + u

+

Jmax∑
j=u+1

P
(
Vk̂ij (t̂ij − 1) > µ∗, T̃i(t̂ij − 1) > τ(u), I(t) = i

)

+

Jmax∑
j=u+1

P
(
Vk∗(t̂ij − 1) ≤ µ∗

)
.

Following the same argument as the proof of sampling regret and picking

u = log1+α

(
2 max
k:∆k>0

Mk

∆k

)2

ρ log n,

we can prove that

E [Ψi(n)] ≤ log1+α log n+ C ′′.

In summary, the sampling regret grows logarithmic with time, while the switching regret grows in

log log fashion. Combining the sampling and the switching regret, we complete the proof of the

theorem. This algorithm is a part of our paper [42] that is in submission.

3.1.2 Tail Probability Bounds

This subsection is conducted to support the proof in subsection 3.1.1.

The following lemma generalizes Hoeffding’s inequality to sums with a random number of

terms. The lemma in the form presented here can be found as Theorem 18 of [43] (a similar state-

ment, generalizing Bernstein’s inequality can be extracted from [39]).

Lemma 3.2. Let (Ft; t ≥ 0) be a filtration. Let (Xt; t ≥ 1) be an i.i.d. sequence taking values in

some interval of length B. Let εt ∈ {0, 1} be a binary sequence. Assume that Xt is Ft-measurable

and εt is Ft−1-measurable (t ≥ 1). Let Nn =
∑n

t=1 εt, Xn =
∑n

t=1 εtXt/Nn. Then, for any

n ≥ 1, η > 0,

P
(
Xn > E [X1] + z

√
1

Nn
, Nn ≥ 1

)
≤ log n

log(1 + η)
exp

(
−2z2

B2

(
1− η2

16

))
.
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In particular, when η = 0.3,

P
(
Xn > E [X1] +

z√
Nn

, Nn ≥ 1

)
≤ d4 lnne exp

(
−1.99z2

B2

)
.

Now, we consider a multi-dimensional generalization of this result:

Lemma 3.3. Let (Ft; t ≥ 0) be a filtration. Let (Xt; t ≥ 1) be an i.i.d. sequence taking values

in RM such that Xti, the ith component of Xt, takes values in some interval of length B. Define

µ =
∑M

i=1 E [X1i]. Let εt ∈ {0, 1}M be an M -dimensional binary sequence. Assume that Xt is

Ft-measurable and εt is Ft−1-measurable (t ≥ 1). Let Nni =
∑n

t=1 εti, Xni = N−1
ni

∑n
t=1 εtiXti

and Xn =
∑M

i=1Xni. Then, for any n ≥ 1,

P

[
Xn > µ+ z

M∑
i=1

√
1

Nni
, Nn1, . . . , NnM ≥ 1

]
≤M d4 lnne exp

(
−1.99z2

B2

)
.

Proof. Let p denote the probability to be bounded and let µi = E [X1i]. Then,

p ≤
M∑
i=1

P
[
Xni > µi + z

√
1

Nni
, Nni ≥ 1

]
.

The result then follows by applying Lemma 3.2 to each of the M terms on the right-hand side.

The next result can be extracted from [9] (with a slight improvement). The setting is similar

to that of Lemma 3.2 with the deviation from the mean as a deterministic number.

Lemma 3.4. Let (Ft; t ≥ 0) be a filtration. Let (Xt; t ≥ 1) be an i.i.d. sequence taking values in

some interval of length 1. Let εt ∈ {0, 1} be a binary sequence. Assume that Xt is Ft-measurable

and εt is Ft−1-measurable (t ≥ 1). Let Nn =
∑n

t=1 εt, Xn =
∑n

t=1 εtXt/Nn. Then, for any

n ≥ 1, x > 0, z > 0,

P
[
Xn > E [X1] +

z

2

]
≤ P [Nn < x] +

2

z2
exp

(
−dxez

2

2

)
.
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Proof. We have

P
[
Xn > E [X1] +

z

2

]
≤ P [Nn < x]

+ P
[
Nn ≥ x,Xn > E [X1] +

z

2

]
.

Now,

P
[
Nn ≥ x,Xn > E [X1] +

z

2

]
=

n∑
s=dxe

P
[
Nn = s,Xn > E [X1] +

z

2

]
.

Let Sn =
∑n

t=1 εtXt. Define τ(s) as the first time when s values of X are observed: τ(s) =

min {t ≥ 1 : Nt = s}. Further, let S(1) = Sτ(1), S(2) = Sτ(2), . . .. Note that S(k) has exactly k

terms and S(k) is an F (k)-adapted martingale, where F (k) = Fτ(k)−1 (the so-called the “optional

skipping process”). Now, Xn = Sn/Nn = S(Nn)/Nn. Hence,

P
[
Nn = s,Xn > E [X1] +

z

2

]
= P

[
Nn = s, S(Nn)/Nn > E [X1] +

z

2

]
= P

[
Nn = s, S(s)/s > E [X1] +

z

2

]
≤ P

[
S(s)/s > E [X1] +

z

2

]
.

By the Hoeffding-Azuma inequality, P
[
S(s)/s > EX1 + z

2

]
≤ exp(−s z2/2). Using

∑∞
s=u e

−κu ≤

κ−1 e−κu, which holds for any integer u and κ > 0, we obtain the desired result.

3.1.3 Simulation Results and Analysis

In this simulation, wireless users are placed randomly in 2-D plane. The area is partitioned

into hexagon cells with circumcircle of radius 86 meters. Each cell is associated with a base station

operating in a channel (and so are the users in the cell). The channel to base station assignment

ensures that no neighboring cells use the same channel. Sniffers are deployed in a grid formation

separated by distance 100 meters, with a coverage radius of 12 meters. A snap shot of the synthetic

deployment is show in Figure 3.1. The transmission probability of users is selected uniformly from
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Figure 3.2: Regret of two algorithms over the configuration of 4 APs using 3 channels and 3 sniffers
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Figure 3.3: Regret of two algorithms over the configuration of 12 APs using 3 channels and 6
sniffers

[0, 0.006], resulting in an average busy probability of 0.2685 in each cell. The switching regret here

is set at 0.3. We vary the number of cells from 4 to 12, and the number of sniffers from 3 to 6.

Figure 3.2 and 3.3 show the regret of our proposed UCB and the UCB-based algorithm in [35]

over time. In all scenarios, two algorithms have approximately the same sampling regret. It is

consistent because they utilize the same equations to find the best arm to play whenever the system

needs to make a decision. However, by using epoch, our policy surpasses the UCB-based algorithm

in [35] in both switching regret (which directly leads to better total regret), and computation time

(as showed in Table 3.1).
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Table 3.1: Computation time (mins)

Configuration Proposed UCB UCB in [35]
4 APs, 3 channels, 3 sniffers 0.64 14.68
12APs, 3 channels, 6 sniffers 21.9 1868.5

3.2 Approximate Online Policy with Correlation Information

In the offline setting, as proved in [28], MEC problem is NP-hard, where graph G and user-

activity probabilities are both known. Therefore, in order to find the optimal solution, our algorithm

suffers a high computation complexity as we need to include all assignments in our computation.

To reduce the complexity, we devise this approximation algorithm built up from offline Greedy

algorithm and the reward learning tool as we introduced previously in Chapter 2. The Greedy

algorithm is shown to be 1
2 -approximate in the work of [28]. In the online setting, when both G and

user-activity probabilities are not known a prior, our ε-GREEDY-APPROX policy is well-fit in this

configuration.

First we extend the definition of arm features to the case where only a subset of sniffers

is in use. In particular, consider an action k = (k1, k2, ..., kS), where ki = 0 for some i ∈

[1, S]. In other words, some sniffers are not assigned any channel. Clearly, [35] is still valid

as the arm feature for k, and the expected payoff of arm k is f(k) = θTkφ. Next, we rewrite

GREEDY in terms of θ. GREEDY proceeds in L rounds. Let the arm chosen by round l be

kl = (〈i1, ki1〉 , 〈i2, ki2〉 , ..., 〈il, kil〉). Let ⊕ denote concatenation. In the l + 1st round, GREEDY

picks sniffer il+1 and assign it channel kil+1
if and only if the following conditions holds,

il+1 = arg max
j∈S/{i1,i2,...,il}

max
c=1,2,...,K

(φTkl⊕〈j,c〉θ − φ
T
kl
θ), (3.7)

and

kil+1
= arg max

c=1,2,...,K
(φTkl⊕〈il+1,c〉θ − φ

T
kl
θ). (3.8)

In the l + 1st round, the total number of choices are K(S − l). GREEDY needs to perform

K2(S−l)(2S−1) multiplications to compute the expected payoffs and makeK(S−l) comparisons
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to find the optimal. Thus, the total computation complexity is O(l(2S − l + 1)K2(2S − 1)/2)

compared to O(KS) for the optimal assignment through enumeration. The actual computation time

can reduce by only considering the non-zero entries in the arm feature. After having all required

definitions, we are in the position to present the ε-GREEDY-APPROX algorithm that use GREEDY

as a subroutine. The algorithm is summarized in Algorithm 3.2.

To establish the regret bound of the ε-GREEDY-APPROX algorithm, we first introduce the

following lemma.

Lemma 3.5. Given θ, there exists a non-empty B ∈ [0, 1]K·(2
S−1) centered at θ such that ∀θ̂ ∈ B,

kg(θ̂) = kg(θ).

Lemma 3.5 implies that as long as θ̂, the estimate of θ, is sufficiently close to θ, the channel

assignment of GREEDY is identical.

Proof. We prove by constructing a convex region C such that ∀θ̂ ∈ C, the choice of GREEDY

kg(θ) = kg(θ̂).

Let the arm chosen in GREEDY given θ be kg(θ) = (ki1 , ki2 , . . . , kiS ). Assume there is no

tie in the execution of GREEDY. Consider applying GREEDY to θ̂. The sufficient condition that the

same arm is chosen is given by,

φT
kl⊕

〈
il+1,kil+1

〉θ̂ > φTkl⊕〈j,c〉θ̂,

∀j 6= i1, i2, . . . , il+1, c 6= kil+1
, ∀l. Or equivalently, ∀j 6= i1, . . . , il+1, c 6= kil+1

,∀l,

(φ
kl⊕

〈
il+1,kil+1

〉 − φkl⊕〈j,c〉)T θ̂ > 0. (3.9)

The above inequalities define a set of half planes with non-empty convex intersection since θ̂ = θ

satisfies all the inequalities. Therefore, there exists a ball B centered at θ, and thus, the conclusion

in Lemma 3.5 holds.

The regret bound of the ε-GREEDY-APPROX algorithm is summarized in Theorem 3.6.
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Algorithm 3.2 The ε-GREEDY-APPROX algorithm
Define: the sequence εt ∈ (0, 1], t = 1, 2, . . . by

εt
def
= min

{
1,
c

t

}
. (3.10)

for t = 1 to Stoppingtime do
• Let it the arm picked by GREEDY;
• With probability 1− εt play it and with probability εt play a random spanner arm;
• Observe the feedback and update the estimation of parameters using (2.8).

end for

Theorem 3.6. Let

εn = min
{

1,
c

n

}
, n > |ζ|, (3.11)

where c > 0 is a tuning parameter. Then, assuming that c > min(10|ζ|, 4|ζ|
d2

), where d =

mink:∆k>0 ∆k, the expected regret of ε-GREEDY satisfies

Rε-greedy-approx
g (n) ≤ c log(n+ 1) +O(1). (3.12)

Proof. The proof follows the steps of the proof in [35] with some modifications. We denote by

Tk(n) the number of times arm k is chosen up to time n (including time n): Tk(n) =
∑n

t=1 I{k(t)=k}.

Without loss of generality, we assume that εn = 0 if n ≤ |ζ| (note that the algorithm does not

depend on the values of ε1, . . . , ε|ζ| and this assumption allows us to shorten the proof). Clearly, it

suffices to bound E [Tk(n)]. For this purpose we will bound P [k(n) 6= kg], where kg is an action

chosen by the GREEDY.

For n > |ζ|, by Lemma 3.5, the probability of choosing k is bounded by

P [k(n) 6= kg] ≤
εn I{k∈ζ}
|ζ|

+ (1− εn)P
[
θ̂(n− 1) 6∈ B

]
.

Let δ be the radius of B. We have

P
[
θ̂(n− 1) 6∈ B

]
≤
∑
i

P
[
|θ̂i(n− 1)− θi| >

δ√
M

]
.
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Define x0 = 1
2|ζ|
∑n−1

t=1 εt. By Lemma 7 in [35],

P
[
|θ̂i(n− 1)− θi| >

δ√
M

]

≤ P [Ni(n− 1) ≤ x0] +
M

δ2
exp

(
−2dx0eδ2

M

)
.

Let us now bound the first term of the right-hand side. Let ke ∈ ζ be such that i ∈ Mke .

Let NR
i (n) be the number of times ke has been selected up to time n in an exploration step:

NR
i (n) =

∑n
t=1 I{k(t)=ke,Ut≤εt}. Clearly, NR

i (n− 1) ≤ Ni(n− 1). Hence, P [Ni(n− 1) ≤ x0] ≤

P
[
NR
i (n− 1) ≤ x0

]
. Furthermore, E

[
NR
i (n− 1)

]
= 1
|ζ|
∑n−1

t=1 εt = 2x0, and Var[NR
i (n−1)] ≤

1
|ζ|
∑n−1

t=1 εt = 2x0. Therefore, by the Bernstein’s inequality (for details see [9]), we have

P
[
NR
i (n− 1) ≤ x0

]
≤ e−x0/5. (3.13)

Since x0 = 1
2|ζ|
∑n−1

t=1 εt ≥
c

2|ζ| log n, we have

P
[
NR
i (n− 1) ≤ x0

]
≤ e−x0/5 ≤ n−

c
10|ζ| .

Thus,

P
[
θ̂(n− 1) 6∈ B

]
≤Mn

− c
10|ζ| +

M2

δ2
n

cδ2

M|ζ| . (3.14)

Therefore,

P [k(n) 6= k] ≤
εn I{k∈ζ}
|ζ|

+Mn
− c

10|ζ| +
M2

δ2
n

cδ2

M2|ζ| .

Now, E
[
Rε−greedy−approx
n

]
≤ |ζ| +

∑n
t=|ζ|+1 P [k(n) 6= k] ≤ |ζ| + c log n + M

∑n
t=1 t

− c
10|ζ| +

M2

δ2
∑n

t=1 t
cδ2k
|ζ| . If c > min(10|ζ|, |ζ|

δ2k
) holds for any suboptimal k then the sum of the last two terms

over t = 1, . . . , n becomes finite. This finishes the proof of the result.

The empirical results of this algorithm is provided later with the other three approximate

online algorithms. Our algorithm has been published in [44].
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3.3 Conclusions

This chapter first proposed an UCB-based optimal approach for the online MEC problem.

Our optimal algorithm explores the characteristic of the environment and exploits the channel by

balancing between the confidence interval of each arm and the average reward of the arm. By

observing the channel over each epoch, our algorithm outperforms the UCB-based algorithm in [35]

in the switching regret, hence the total regret; and approaches the optimal upper bound performance.

The future work follows this direction includes extension to non-stationarity environments, which

could be done, e.g., along the line of work of [43], the consideration of an adversarial setting [45],

[46] and/or switching costs [19].

Although our optimal approach can obtain a logarithmic regret, it suffers a high computation

complexity due to MEC is a NP-hard problem. To make it implementable in reality, we devise

ε-GREEDY approach to reduce the computation time. ε-GREEDY has an excellent learning rate

due to extracting information from the correlated elements of arm featured vector. This approximate

algorithm out-performs our optimal approach in running time, but still has a comparative compu-

tation complexity. In Chapter 4, we propose three approximate online learning algorithms without

using the correlation information between sniffers to reduce the complexity. We will evaluate the

regret, computation time, and rate of learning of all approximate algorithms.
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Chapter 4

Approximate Online Learning Policies without Correlation
Information

As we have seen from Chapter 3, the correlation reward can support previous algorithms

finding the best assignment. However, using this information will add more parameters into the

calculation process of the system. This factor mainly increases the complexity of all algorithms.

To reduce this amount of computation time, we build up three approximate algorithms without

concerning about the correlation part. We show that our algorithms are competitive in many systems

which may requires low computation complexity, high rate of learning or minimum requirement of

hardware.

4.1 Approximate Online Policy with Adversarial Assumption

In ε-GREEDY-APPROX, the algorithm needs to decide the sequence of sniffers to choose

and their assignments based on the approximate vector θ̂. It makes the algorithm suffer a high

computation in order to find the best arm to play each time. ε-GREEDY-APPROX can be classified

as a single agent multi-arm learning as both learning and decision are made by one agent. To

further improve the computation efficiency, we propose a multi-agent multi-arm learning strategy

called EXP3-APPROX. The basic idea is to have S agents, each corresponding to one stage of

GREEDY. Each agent maintains its own set of states and makes decision accordingly by treating

decisions from agents prior to itself as a black box. Learning of the agents is coupled by how the

payoff is partitioned among the agents.

Consider L agents E1, E2, . . . , EL. Agent Ei keeps a weight matrix W i of dimension S ×K.

At time t, agent E1, E2, . . . , EL choose their respective action in action space S × K according

to a modified version of the EXP3.1 algorithm [13] (Algorithm 4.1). Agent El knows about the

decision of agent E1 through El−1, namely, kl = (〈i1, ki1〉 , 〈i2, ki2〉 , . . . ,
〈
il−1, kil−1

〉
). Algorithm
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4.1 summarizes the inner EXP3.1 policy executed by agent El at time t.

It has been proven in [13], EXP3.1 can achieve a uniform regret bound of O(
√
nK ′ lnK ′)

at time n with respect to an optimal policy using a single action, where K ′ is the number of arms.

Compared to EXP3.1 in [13], the main differences in the modified EXP3.1 is the consideration of

only a subset of actions based on the previous agents’ decisions. This requires normalization ofwls,k

accordingly. Similarly, we can adapt the EXP3.P algorithm in [13], which has less variances in the

regrets. The EXP3-APPROX (Algorithm 4.2) uses the modified EXP3.1 as a subroutine for each

agent. It is easy to see that EXP3-APPROX has a computation complexity of O(LKS) per update.

To see the regret bound of EXP-APPROX, we need to first establish a few lemmas. Let g̃

be GREEDY when decisions are made with some additive errors. More specifically, g̃ chooses

aj+1 =
〈
ij+1, kij+1

〉
in stage j + 1 if and only if

f(kg̃j ⊕ aj+1)− f(kg̃j ) ≥ max
〈s,c〉
{f(kg̃j ⊕ 〈s, c〉)− f(kg̃j )} − εj+1, (4.1)

where εj+1 is the additive error in stage j + 1.

Algorithm 4.1 The MODIFIED EXP3.1 algorithm
Input:

〈
ij , kij

〉
, j = 1, 2, . . . , l − 1;

Initialize:
• Let t = 1, and Ĝi,j(1) = 0 for i = 1, 2, . . . , S, j = 1, 2, . . . ,K;

• C = S\{i1, i2, . . . , il−1};
• wls,k = 1, s ∈ S, k ∈ K; rl = 0;

• g = SK lnSK/(e− 1)4rl ;

• γ = min
{

1, 1
2rl

}
;

• ps,k = (1− γ)
wl

s,k∑
(i,j)∈C wl

i,j

+ γ
SK

, ∀s ∈ S, k ∈ K;

for all t = 1, 2, ... do
repeat

]]Draw (il, kil) randomly according to the probabilities ps,k;
until il 6∈ C
• Receive reward xil,kil (t);

• x̂i1,kil =
xil,kil

(t)

pil,kil

∑
s 6∈C,k∈K ps,k;

• wli1,kil
= wli1,kil

exp

(
γx̂il,kil
SK

)
;

• Ĝil,kil (t+ 1) = Ĝil,kil (t) + xil,kil (t);

if maxi,j Ĝi,j(t) > g − SK/γ then
rl ← rl + 1;

end if
end for
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Figure 4.1: Trade-offs in computation complexity, optimality and rate of learning in offline and
online algorithm

Lemma 4.1. g̃ satisfies

f(kg̃) ≥ 1

2

max
k∈K

f(k)−
p∑
j=1

εj

 .

Lemma 4.1 states that with additive errors, GREEDY can achieve a utility no less than half

of that of the optimal algorithm minus the sum of the additive errors.

Proof. Let S be a finite set. A function h : 2S → R is submodular if for any A ⊂ B ⊂ S

and x ∈ S/B, h(A
⋃
{x}) − h(A) ≥ h(B

⋃
{x}) − h(B). First, we show that f(k) = φTkθ

is non-decreasing and submodular under the generalized definition of arm features. To see so,

consider kL = (〈i1, ki1〉 , 〈i2, ki2〉 , . . . , 〈iL, kiL〉) and kM = (〈i1, ki1〉 , 〈i2, ki2〉 , . . . , 〈iM , kiM 〉),

where L < M . Additionally, let a = 〈q, kq〉, where q 6= i1, i2, . . . , iM . By definition, f(kL) =

E
[∣∣∣⋃j∈(i1,i2,...,iL) Uj,kj (t)

∣∣∣]. Clearly, f(kL ⊕ a) ≥ f(kL) as
⋃
j∈(i1,i2,...,iL) Uj,kj (t) ∪ Uq,kq ⊇⋃

j∈(i1,i2,...,iL) Uj,kj (t). Additionally, since
⋃
j∈(i1,i2,...,iL) Uj,kj (t)∪Uq,kq/

⋃
j∈(i1,i2,...,iL) Uj,kj (t) ⊇⋃

j∈(i1,i2,...,iM ) Uj,kj (t) ∪ Uq,kq/
⋃
j∈(i1,i2,...,iM ) Uj,kj (t), f(kL ⊕ a) ≥ f(kM ⊕ a).

By renumbering the sniffers, we can assume that GREEDY picks the arm (
〈

1, kg̃1

〉
,
〈

2, kg̃2

〉
,

. . . ,
〈
i, kg̃p

〉
) with errors εj’s. Denote the optimal solution (〈1, k∗1〉 , 〈2, k∗2〉 , . . . ,

〈
p, k∗p

〉
). Define

the action chosen up to stage j as kg̃j = (
〈

1, kg̃1

〉
,
〈

2, kg̃2

〉
, . . . ,

〈
i, kg̃j

〉
). Similarly, we define

31



k∗j = (〈1, k∗1〉 , 〈2, k∗2〉 , . . . ,
〈
j, k∗j

〉
). We have

f(kg̃) =
∑

j

(
f(kg̃j )− f(kg̃j−1)

)
≥
∑

j

(
f(kg̃j−1 ⊕

〈
j, k∗j

〉
)− f(kg̃j−1)

)
+
∑

j εj

≥
∑

j

(
f(kg̃ ⊕

〈
j, k∗j

〉
)− f(kg̃)

)
+
∑

j εj

≥ f(kg̃ ⊕j
〈
j, k∗j

〉
)− f(kg̃) +

∑
j εj

= f(kg̃ ⊕ k∗)− f(kg̃) +
∑

j εj
≥ f(k∗)− f(kg̃) +

∑
j εj .

(4.2)

The first inequality is due to the decision of GREEDY. The second and third inequalities are due to

the submodularity of f . Note that we abuse the use of f here by generalizing to the case where a

sniffer may be assigned to multiple channels.

From (4.2), we have

f(kg̃) ≥ 1

2

f(k∗) +
∑
j

εj

 . (4.3)

Let ri be the expected regret experienced by agent Ei and let R =
∑L

i=1 ri. The following

lemma relates the regret experienced by each agent to the regret of the original online problem.

Lemma 4.2. REXP3−approx
g (n) > R/2.

Algorithm 4.2 The EXP3-APPROX algorithm
for n = 1 to T do

for l = 1 to L do
• γ = min{1,

√
(S−(l−1))K ln(S−(l−1))K

(e−1)T
};

• Run modified EXP3.1 to select an action 〈il, kil〉;
end forPlay k = (〈i1, ki1〉 , 〈i2, ki2〉 , . . . , 〈iL, kiL〉) and observe Y on = (Ui1,ki1 , Ui2,ki2 , . . . , UiL,kiL );
for l = 1 to L do
• Feedback xil,kil =

∣∣∣⋃lj=1 Uij ,kij −
⋃l−1
j=1 Uij ,kij

∣∣∣ to agent l;

• Agent El updates W l;
end for

end for

Proof. Similar to the proof of [38], we view EXP3-APPROX as producing an approximate version of

the offline greedy schedule. First, we view the sequence of actions selected by Ei as a single “meta-

function” ãi and define ft(k⊕ãi) = f(k⊕ãti). Define h = 1
n

∑n
t=1 ft, and let S̃i = 〈ã1, ã2, . . . , ãi〉.
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By construction,

ri(n)

n
= max

a∈Ai

{
f
(
S̃i−1 ⊕ a

)
− f

(
S̃i−1

)}
(4.4)

−
(
f
(
S̃i−1 ⊕ ãi

)
− f

(
S̃i−1

))
,

where Ai is the set of valid actions agent Ei can take.

Thus, EXP3-APPROX behaves like GREEDY for the function h, where the ith decision is

made with additive error ri
n . From Lemma 4.1, we have REXP3−approx

g (n) ≤ 1

2

∑p
i=1 ri(n) =

R(n)/2.

Note that in EXP3-APPROX, the feedback xil,kil to agent El at time t satisfies E
[
xil,kkl

]
=

f(kl−1 ⊕ 〈il, kkl〉) − f(kl−1) that depends on the choices of agents E1, E2, . . . , El−1 and is inde-

pendent of the choices of agent Et in the previous round. Therefore, each agent faces an adversarial

multi-arm bandit [13]. Using the same arguments as the proof of Theorem 12 in [38], we have:

Theorem 4.3. For finite time horizon T , algorithm EXP3-APPROX has an expected regret,

E
[
REXP3−approx
g (T )

]
= O(

√
TSK lnSK).

We are going to publish this algoritm in [47].

4.2 Distributed Approximate Online Policy with Adversarial Assumption

Until now, we have proposed two centralized approximation algorithms for online learning,

both achieving sub-linear regrets compared to the offline GREEDY. Consider a synchronized net-

work of S sniffers. In the centralized algorithm, in each slot, a control center needs to assign the

new channel assignment to each sniffer and collect the observations (users observed) from each

sniffer. The total number of messages generated is Θ(S). In addition, the central controller needs

to store a total of Θ(LSK) amount of information. Distributed solutions have the advantage of

distributed states and robustness to a single point of failure. In what follows, we present DEXP3-
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Algorithm 4.3 The Distributed EXP3-APPROX algorithm

Initialize: α > 0, wls,k ← 1, and Zl ← SK, l = 1, 2, . . . , L;
for all t = 1, 2, 3, ... do

Initialize S
′
s,k ← ∅, Rl = 0, l = 1, 2, . . . , L;

for agent l = 1 to L do
Initialize S

′
← ∅;

for s 6∈ S
′

in parallel do
repeat

Sample Xs ∼ Poisson
(
α · P(

∑
k

wls,k, Zl, Rl, γl, |S
′
s,k|)

)
;

if ††Xs ≥ 1 then
Broadcast < sampled Xs, ID(s) >; Add S

′
← S

′
∪ s; Receive messages from S

′
;

if ID(s) = mins′∈S′ ID(s
′
) then

• Select exactly one element sl from S
′

such that each s
′

is selected with probability
Xs′ /

∑
s∈S′ Xs;

• Broadcast < select ID(sl) >;
end if
if ID(s) = ID(sl) then
• Select exactly one channel kl with probability wlsl,kl/

∑
k

wlsl,k;

• Compute the reward x〈sl,kl〉 from (4.5);
• Update wls,k, Ĝls,k;
• R̂i =

∑
k w

i
s,k, i = l + 1, 2, . . . , L;

•∆l = wls,k(t)− wls,k(t− 1) and Zl ← Zl + ∆l;
• Broadcast < ft(S

′
s,k ⊕ 〈sl, kl〉), ID〈sl, kl〉 >, < ∆l, ID〈sl, kl〉 >, and < R̂l+1, R̂l+2, . . . , R̂L,

ID〈sl, kl〉 >;
if Ĝls,k > gl − SK/γl then
• rl ← rl + 1, recalculate gl and γl;
• Broadcast < rl, gl, γl >;

end if
end if

end if
if receive < ∆l, ID〈sl, kl〉 > and < R̂l+1, R̂l+2, . . . , R̂L, ID〈sl, kl〉 > then
• S

′
s,k ← S

′
s,k ⊕ 〈sl, kl〉, Zl ← Zl + ∆l;

• Ri = Ri + R̂i, i = l + 1, l + 2, . . . , L;
end if
if receive < rl, gl, γl > then

Update rl, gl, and γl;
end if

until s receives a message of type < select ID >
end for

end for
end for
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APPROX, a distributed sniffer-channel selection scheme, where the ith sniffer maintains a local copy

of wi,k, k ∈ K, which is updated based on the reward it receives.

At the core of DEXP3-APPROX, it implements a distributed multinomial sampling scheme

for Line ]] in Algorithm 4.1. Sampling from a multinomial distribution with parameters {ps,k, s ∈

S, k ∈ K} is equivalent to a two-step sampling process. Let ps
∆
=
∑

k ps,k. First, we pick a sniffer

s according to the multinomial distribution with parameters {ps, s ∈ S}. Next, the chosen sniffer

s locally selects a channel according to the multinomial distribution with parameters {ps,k/ps, k ∈

K}. Note that the first step is equivalent to the distributed sensor selection problem in [48], while

the second step can be implemented easily on the chosen sniffer. After L rounds of sampling, L

sniffers are selected. They play their locally sampled channels and make observations. By the end

of the procedure, the selected sniffer s is associated with a tuple (is, ks), namely, its rank (acting as

the iths agent) and the channel it operates on. By default, all unassigned sniffers are given the rank

of L+ 1.

Determination of rewards is relatively straightforward if all sniffers are within a single broad-

cast domain. In a multi-hop setting where sniffers are spread out in a large geographical area, only

neighboring sniffers operating in the same channel can have overlapping observations. Let Ns be

the neighbors of sniffer s who may observe some common users as s. Ns can be conservatively

estimated from the radio propagation model and the sensitivity threshold of sniffer s. Sniffer s’s

observation only needs to be disseminated to Ns. At sniffer s, upon receiving observations from its

neighbors in Ns, it computes its reward as,

xs,ks =

∣∣∣∣∣∣
⋃

j∈Ns,ij≤is

Uj,kj −
⋃

j∈Ns,ij<is

Uj,kj

∣∣∣∣∣∣ . (4.5)

The pseudo code of the DEXP3-approx is given in Algorithm 4.3. In the algorithm, a sniffer s

stores weights for each of the L agent wls,k, k = 1, 2, . . . ,K, a normalizing constant Zl, an updating

weightRl, a cumulative reward Ĝls,k, a round index rl and a threshold γl, l = 1, 2, . . . , L. We define
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Table 4.1: Comparison of computation complexity and regret bounds of various online algorithms

ε-GREEDY ε-GREEDY-APPROX EXP3-APPROX DEXP3-APPROX‡

Computation complexity O(C(M,L)KL)) O(LKS2(2S − 1) O(LKS) O(L+K)

Regret bound O(logn) O(logn)† O(
√
n)† O(

√
n)†

Message complexity Θ(S) Θ(S) Θ(S) Θ(L)]

† the regret bound is relative to the offline Greedy.
C(S,L) is the combinatoric number.
‡ indicates per node complexity, ] indicates average complexity.

a function,

P(w,Z,R, γ, L′) ,
(1− γ)

w

Z
+

γ

SK

(1− γ)
Z −R
Z

+
(S − L′)γ

S

,

It is easy to show that on average, a total of Θ(1) sensors are selected in Line †† in Algorithm

4.3. Thus, in each stage, an average of Θ(1) broadcasts are needed. Therefore, the total average

number of messages generated are Θ(L). Note that since DEXP3-APPROX implements EXP3-

APPROX in a distributed manner. The two share the same regret bounds.

Table 4.1 summarizes the computation complexity and regret bounds of channel assignment

algorithms discussed thus far. Clearly, we observe a trade-off in the computation complexity (each

iteration) and the growth in regret bounds over time. One may argue based on this observation

that a unified metric should be introduced that characterizes the regret rate per computation unit.

However, it should be noted that message exchanges in learning incur communication costs, while

computation in each iteration incurs computation cost. Thus, a single metric is insufficient to capture

both costs.

4.3 Approximate Online Policy without Correlation Information using stochastic al-

gorithm

From what we have learned so far, our approximate online policy with correlation informa-

tion achieves the logarithmic regret compare to the offline Greedy algorithm. However, the com-

putation complexity that we have to pay to maintain the correlation structure is very expensive.
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This drawback can be reduced the EXP3-APPROX with the cost of low convergence compare to

ε-GREEDY-APPROX. Gaining experience from the drawback of two algorithms, we design this

approach with the primitive objective is to obtain not only a competitive computation complexity

like EXP3-APPROX but also an excellent convergence speed similar to ε-GREEDY-APPROX.

Though designed for the sniffer-channel selection problem, the idea of multi-agent learning

behind EXP3-APPROX is of interest in its own right and is applicable to problems with sub-modular

structure but subject to budget constraints. We found the slow convergence of the multi-agent al-

gorithms is primarily due to the adversarial setting. Except the first agent of the system, which

can obtain a perfect condition of all the channels (which is stochastic), the reward observed by the

followed agents seems to be non-stochastic due to the property of Greedy algorithm. Hence, if each

agent utilizes stochastic-setting algorithms (e.g., ε-Greedy) from the beginning, our system faces a

high probability of having a linear regret.

However, as an agent converges to its optimal action, the reward observed over channels by

its next colleague seems to be “more stochastic.” Therefore, our idea here is to adapt the algorithm

which each agent utilizes with the environment that it faces. Applying the idea of switching condi-

tion in [18], and later in [49], we design ε-GREEDY-AGENT-APPROX in which each agent starts

using ε-GREEDY when the switching condition from it right previous agent is satisfied. In order to

apply this idea, we define σ as the stability threshold of ε-GREEDY-AGENT-APPROX and assume

that we know this parameter.

Algorithm 4.4 The ε-GREEDY-AGENT-APPROX algorithm
Initialize:
• The stability of the algorithm is σ.
• The sequences εl,t ∈(0, 1], with t = 1, 2, . . . by

εl,t , min

{
1,

cK

d2l (t− tl−1)

}
. (4.6)

for t = 1 to Stoppingtime do
• Play agent 1 using ε1,t-GREEDY algorithm.
• tl is the moment when εl,t < σ

2
. At tl, activate agent l + 1, play each arm in of this agent at least m times,

then play agent l + 1 using εl+1,t-GREEDY algorithm.
• Observe the feedback and update the estimation of average reward matrix of all active agents.

end for
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Each agent E1, E2,..., EL keeps its average reward matrix µ̄l of dimension S × K. At the

beginning, agent 1 sniffs though all the channels by finding the appropriate assignment using the

ε-GREEDY described in [9]. At any time t, the system checks for the stability threshold of the

currently running agents. Whenever this parameter is crossed, the system starts activating the next

agent. By using this algorithm, we can achieve a competitive logarithmic regret compare to ε-

GREEDY with high probability. The full algorithm can be seen in Algorithm 4.4.

In our algorithm, we define t0 = 0 with the meaning as agent 1 starts running from the

beginning. Because each agent uses ε-GREEDY algorithm, the function of parameter c, and dl

must be the same as c and d in ε-GREEDY algorithm of [9], respectively. With agent l, c is chosen

to be c > 5 for the convergence of the expected regret, and dl is defined as:

0 < dl ≤ min
k:µk,l<µ

∗
l

∆k,l, (4.7)

with

∆k,l = µ∗l − µk,l. (4.8)

In 4.8, µ∗l and µk,l are respectively the expected reward of the optimal and kth assignments of agent

l when all previous agents choose their optimal assignment to play.

The key idea of our algorithm is the stability σ of the system. This parameter helps the

system determine the best time to trigger an agent with a high probability of 1 − exp(−mσ
6 ) of

having logarithmic regret. In order to find this parameter, we first define the stability of each agent

σ1, σ2,..., σS−1 as

σl = min
k

max

(
2µk,l+1

∆k,l+1
,

∆k,l+1

2(1− µk,l+1)

)
, (4.9)

and

σ = min
l=1,...,S−1

σl. (4.10)

We can see that the stability of the system is chosen to be the smallest value of stability of all agents.

This is consistent when the algorithm can only achieve the logarithmic regret with high probability

when each agent in it achieves the local logarithmic regret. In reality, we do not let agents stay
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Table 4.2: Computation time (s)

Configuration L ε-GREEDY-APPROX EXP3-APPROX DEXP3-APPROX†

4 APs, 3 channels, 3 sniffers
1 219.64 86.74 150.08
3 916.04 248.30 446.02

9 APs, 3 channels, 6 sniffers
3 944.74 306.59 499.86
6 3732.90 663.40 1062.1

12 APs, 6 channels, 6 sniffers
3 1409.70 419.74 625.47
6 4075.80 927.13 1323.00

† The computation time of DEXP3-APPROX is the total time on all nodes.

idly before they are activated. To gain advantage, we let all agents choose random arms from the

beginning without updating their average reward matrix before they are activated. This shortcut

method can partially reduce the regret of the system.

4.4 Simulation Results and Analysis

In this section, we evaluate the performance of the proposed online approximation algorithms.

Due to the high computation complexity of ε-GREEDY, we only compare the convergence and

computation time of ε-GREEDY-APPROX, EXP3-APPROX, DEXP3-APPROX, and ε-GREEDY-

AGENT-APPROX. We use the same environment as in the simulation of the UCB-based algorithm.

Figure 4.2 shows the regrets of ε-GREEDY-APPROX, EXP3-APPROX and DEXP3-APPROX

over time. In all scenarios, ε-GREEDY-APPROX converges much faster than the other two algo-

rithms. This is consistent with the analytical results that ε-GREEDY-APPROX converges logarith-

mically in O(log n); and EXP3-APPROX and DEXP3-APPROX converge in O(
√
n), where n is

time. The slow convergence of EXP3-APPROX and DEXP3-APPROX can be attributed to two fac-

tors: i) they utilize multiple agents, each assuming adversarial payoffs, and ii) ε-GREEDY-APPROX

utilizes spanner arms in exploitation stages, which allows fast learning.

Table 4.2 summarizes the computation time of a single execution of all algorithms under

different scenarios. The algorithms are implemented in Matlab R2009b running on a Windows

desktop PC with Intel core i7-2600 CPU@3.4GHz and 8GB RAM memory. As seen from Table 4.2,
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Figure 4.2: Regrets of ε-GREEDY-APPROX and EXP3-APPROX and DEXP3-APPROX.

increasing the number of sniffers leads to a significant increase in the computation time in both

algorithms. However, the increments with ε-GREEDY-APPROX are higher than that with EXP3-

APPROX. In contrast, the computation time grows slower when increasing the number of channels.

The total computation time of DEXP3-APPROX is higher than EXP3-APPROX. This is because

DEXP-APPROX needs to resample when no sniffer is selected in a stage. However, the per-node

computation time is expected to be shorter as the computation is done in parallel.

In the second part of this section, we compare three algorithms ε-GREEDY-APPROX, ε-

GREEDY-AGENT-APPROX, and an algorithm by running the ε-GREEDY with each agent without

caring about the stability of the channel - we call ε-GREEDY-SIMPLE. We evaluate these three

approaches in two circumstances. In the first case, the environment is considered to be easy, in

which the expected rewards seen by later agents are not very different when previous ones change

their assignment. In this situation, the regret showed by three algorithms are approximately close to

each other when we share the same probability of exploration between them. This result is in our

prediction as all algorithms use ε-GREEDY method to determine the best assignment. The regret
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Figure 4.3: Regrets of ε-GREEDY-APPROX and ε-GREEDY-AGENT-APPROX and ε-GREEDY-
SIMPLE when the configuration is 4 APs, S = 3, K = 3 and L = 3.

in this case is the first picture of Figure 4.3.

In the second circumstance, the reward viewed by later agents in suboptimal arm seems to

be better than it should be when previous agents choose the suboptimal assignment instead of their

optimal one. Moreover, the reward of the optimal assignment of later agents is worse than it should

be when previous agents choose the suboptimal assignment instead of the best one. In this case, the

regret of both ε-GREEDY-APPROX and ε-GREEDY-AGENT-APPROX are still in logarithmic form

while ε-GREEDY-SIMPLE’s regret becomes linear. The behavior of these algorithms are showed

in the second picture of Figure 4.3.

The linear regret of ε-GREEDY-SIMPLE is because at the time the exploitation rate surpasses

the exploration rate of one agent, it previous agent is still busily exploring the environment. There-

fore, the algorithm can easily make a mistake by choosing a suboptimal arm and follow it until

the end of the experiment. This statement is not true with our ε-GREEDY-AGENT-APPROX when

later agents only update their statistic information to find the optimal assignment when previous

agents are stable enough. It makes ε-GREEDY-AGENT-APPROX perform as good as ε-GREEDY-

APPROX in the achieved regret and out-perform ε-GREEDY-APPROX in the computation time as

we can see in Table 4.3.
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Table 4.3: Computation time (s)

Configuration L ε-GREEDY-APPROX ε-GREEDY-AGENT-APPROX

4 APs, 3 channels, 3 sniffers
1 219.64 49.67
3 916.04 143.05

9 APs, 3 channels, 6 sniffers
3 944.74 180.42
6 3732.90 362.47

12 APs, 6 channels, 6 sniffers
3 1409.70 252.16
6 4075.80 562.91

4.5 Conclusions

When we linearly increase the number of sniffers in our experiment, the computation com-

plexity of optimal algorithms also increases exponentially. This problem makes optimal approaches

unimplementable in the real environment with a huge set of assignments. In this section, we pro-

pose three approximate algorithms with low computation complexity but still guarantee a constant

amount of reward compare to optimal algorithms. To achieve this goal, we combine the idea

of offline GREEDY with the popular EXP3.1 algorithm to create EXP3-APPROX and DEXP3-

APPROX. We also build up ε-GREEDY-AGENT-APPROX with a high probability of achieving

logarithmic regret and surpassing ε-GREEDY algorithm in computation time. As showed in the

results, our algorithms achieve the regret of the offline GREEDY. Moreover, we can see that all

these algorithms have low complexity compare to the previously proposed approach with correlated

reward.
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Chapter 5

Implementation

The purpose of this chapter is to conduct a small scale implementation for what we have

developed so far in this thesis. Therefore, we would like to start with a simple configuration and

traditional algorithms to confirm the implementability of our direction over real environments. In

the first section of this chapter, we describe IEEE 802.11 standard and the sniffing process we use in

the experiment. The second part talks about algorithms that we want to implement and how to apply

them in a real time environment. Last but not least are results, its analysis and our conclusions.

5.1 Sniffing Process

In every implementation, tools and the surrounded environment mainly contribute to the re-

ceived results. Hence, we utilize this section to describe our sniffer, the sniffing process it uses,

and IEEE 802.11 standard in which data packets are required to be captured. In our experiment, we

use as a sniffer a Dell Latitude E6410 laptop with OS Ubuntu 10.04, Processor Intel(R) Core(TM)

i5 CPU M520 @2.40 GHz, RAM 3GB, HDD 200 GB with WLAN 802.11 a/b/g Wireless card-

bus adapter. This device uses the sniffing process which is built in library libpcap to captures data

packets over the set of channel 1, 6, and 11 of IEEE 802.11 standard.

5.1.1 IEEE 802.11 Standard

IEEE LAN/MAN Standards Committee (IEEE 802) first created IEEE 802.11 in 1997. This

family consist a set of standards for implementing wireless local area network computer communi-

cation in the 2.4, 3.6, 5.0 and 60 GHz frequency bands. It regulates the use of a series of half-duplex

over-the-air modulation techniques that use the same basic protocol. The most popular are those de-

fined by the 802.11b and 802.11g protocols which are in the range of our wireless card.

802.11b and 802.11g utilize the 2.4 - 2.5 GHz spectrum (ISM band). This band consists of
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Figure 5.1: Wi-Fi channels in the 2.4 GHz band

13 channels begin with channel 1 centered on 2.412 GHz. The 14th band was proposed in Japan,

but later dropped. All the bands space 5 MHz apart and have the bandwidth of 22 MHz regulated

by 802.11b and 20 MHz by 802.11g. The availability of channels varies from country to country,

constrained by how each country allocates its radio spectrum to various services. While Spain

only permits channel 10 and 11, North America allows all channels from 1 through 11. Since 11

frequencies have some overlap parts over the others, three non-overlapping channels 1, 6, and 11

are widely in use in North America.

In order to capture data packets from one over these three Wi-Fi channels, we need to under-

stand how IEEE 802.11 defines a packet as a data packet. This information is regulated in the Frame

Control field of a MAC frame. A MAC sub-layer frame is described as a sequence of fields in a

specific order as we can see in Figure 5.2. To distinguish a data packet from all packets, we have to

take a deeper look inside the first byte of the Frame Control field. Based on IEEE 802.11 standard,

the type of a packet is specified in Type and Subtype in Frame Control field. To find a data packet

based on IEEE 802.11, a system must check for a frame with protocol version of 00b (in which “b”

stand for bit counting), the value of Type field as 10b for data, and 0000b for the Subtype field for

data. By using the library of libpcap to analyze our captured packets, a data packet should have the

value of the first octet as 0x08 written in hexadecimal system.

5.1.2 Sniffing Process

Our sniffing process libpcap on which a Dell laptop runs on was originally developed by the

Network Research Group at Lawrence Berkeley Laboratory in libpcap. libpcap not only provides
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Figure 5.2: MAC frame structure of IEEE 802.11 standard

the packet-capture and filtering engines and protocol analyzers, but also supports saving captured

packets to a file and processes it. In our thesis, we only concern about capturing a data packet from

a chosen channel and analyze it.

The sniffing process here is divided in to five steps. The first step is to choose an interface,

check for its availability, its mode and the frequency we want to use to sniff data packets. In this

experiment, the interface wlan1 which is the notation for the Wireless cardbus adapter is chosen,

and set to the monitor mode in order to sniff. Finally, we choose a frequency from the set of Wi-Fi

channels to tune to.

In the second step, we open the device for sniffing with all the parameters configured in the

previous part. Next, a filter is applied to the sniffer so that we can extract the required type of

packets we want. To refine a data frame from a sequence of frames, we need to set a filter to extract

any MAC frame with the first byte in Frame Control field have the value of 0x08. When everything

is ready, the forth step is to sniff data packets, count it, and finally to close our session. Figure 5.3

generalizes our process.

5.2 Algorithms and Configurations

As we describe in the previous section, after having the sniffing process to capture data pack-

ets from Wi-Fi channels, we need to plug this tool into algorithms to observe the efficiency of each

policy over real time environments. Therefore, the first part of this section is about algorithms that
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Figure 5.3: A sniffing process

we want to apply in our experiment. Later, we state requirements, our regulations and configurations

in order to implement all mentioned approaches in the real world.

5.2.1 Algorithms

In our small scale implementation, we run 4 algorithms and compare their observed average

packets over time. Our first algorithm is a naive one, in which it chooses a random channel in the

set of {1, 6, 11}Wi-Fi channels and observes the data packets on that frequency until the end of the

session. This approach is the base line to compare the efficiency of the other algorithms over time.

The second policy we want to implement here is EXP3 in [13] (which can be seen in Algorithm

5.1). This policy is used when the channel is supposed to be non-stationary over time.

In EXP3 policy, a constant exploration property is separated equally to all assignments over

a system. Within one assignment, an up-to-date exploitation probability is calculated based on

the ratio between the assignment’s weights over the total one. An arm’s weight is proportional

to the observed reward, but vice versa to the probability of playing this arm at that time. As a

result, the probability of playing one arm each time is the summation of exploration and exploitation

probability at that moment. This scheme of finding an appropriate assignment is efficient in an

Algorithm 5.1 The EXP3 algorithm
Parameters: γ ∈ (0, 1].
Initilize: wi(1) = 1 for i = 1, ...,K channels.
for t = 1 to Stopping time do

• Set pi = (1− γ)
wi(t)∑K
j=1 wj(t)

+
γ

K
.

• Draw it randomly according to p1(t),...,pK(t).

• Observe reward xit(t) ∈ [0, 1].

• Update the weight of the played arm as wit(t + 1) = wit(t) exp (γxit(t)/(Kpit(t))). The weight of the
other arms does not change.

end for
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adversarial environment when the weight system can extensively reflect the effect of the observed

reward to the playing probability.

Although EXP3 can achieve the regret growth upper bounded by O
(
T 1/2

)
in adversarial

environments, this regret is only the lower bound when the channels are stochastic. This growth is

considered to be poor as statisticians are proved that a upper bound of O (log T ) can be obtained in

this case. It is in [9] where two efficient approaches ε-GREEDY (as in Algorithm 5.2) and UCB1

(Algorithm 5.3) achieve this theoretical regret.

The key idea of ε-GREEDY is to have a decreasing exploration probability εt overtime. It

also means that the exploitation part increases when we reveal more information about our sur-

rounded environment. While in the exploitation mode, the arm with highest average reward is

chosen to play, the system chooses a random arm in the exploration mode. This method of learning

and utilizing is practical in stochastic setting when the rewards provided by channels are stationary.

Different from ε-GREEDY, UCB1 utilizes the idea of confident interval to choose an appro-

priate assignment at the beginning of each time slot. The confident interval is a brilliant generaliza-

tion about experience a system has with its arms. The more times an assignment is played, the less

obscurity it becomes to the system. As a result, the confident interval of a sparely played assignment

is longer compare to the one of a frequently chosen assignment. By combining one assignment’s

confident interval with its average reward, we decide the assignment to observe is the one with this

highest sum. In stochastic setting, both UCB1 and ε-GREEDY out-perform the other multi-armed

bandits problems with their simplicity and efficiency.

Algorithm 5.2 The ε-GREEDY algorithm
Parameters: c > 0 and 0 < d < 1.
Initialize: Define a sequence εt ∈ (0, 1], t = 1, 2, ... by
εt , min

{
1, cK

d2t

}
.

for t = 1 to Stopping time do
• Let it be the machine with the highest current average reward.
• Play it with probability 1− εt and play a random machine with probability εt.

end for
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Table 5.1: The value of the divisor

Algorithm Room 311 PGH M. D. Anderson Library Engineering building
UCB1 150 400 500
EXP3 225 600 750

5.2.2 Configurations

Because all these algorithms work on over time slots, we first need to determine the width

of each time slot of our system. From experiments, we determine the width of a time slot to be

0.8 seconds. The width of the time slot affects the reward that we can observe over a time slot.

Although this reward is directly related to the number of data frames the sniffer can catch, it is

defined in our algorithms to be in the range of [0, 1]. This range is extremely important with the two

algorithms UCB1 and EXP3 when the reward decides the way our algorithms update the confident

interval/weight, which in turn determines the way an arm is chosen to play. Therefore, after counting

the observed data frames, we should divide this number to a constant so that the reward is not larger

than 1 every time. The chosen constant number depends on the maximum number of data frames

that we can capture in a time slot in a place. It is chosen to be double the maximum number of

packets in UCB1 algorithm, and three times in EXP3. The divisor’s value varies over places and

time, and can be seen in Table 5.1 in our experiment.

From what we have seen in theoretical research about the multi-armed bandit problem, an

algorithm is evaluated by the growth of its regret over time. This is a brilliant and precise evaluation

method in theory, but not practical in real implementations. Generally, we have no information

about not only the activity of users over time, but also the channel with busiest traffic. As a result,

we do not have the expected reward in stochastic setting or the real one in adversarial environment

of the best channel. Therefore, the best way to evaluate an algorithm is to measure its average

Algorithm 5.3 The UCB1 algorithm
Initialize: Play each machine once.

Loop: Play machine j that maximizes µ̄j +

√
2 ln t

tj
, with µ̄j is the average reward of machine j, tj is the number of

time it is played, and t is the overall number of plays so far.
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Table 5.2: Order of each algorithm in a period

PLACE ALGORITHMS
Naive ε-GREEDY UCB1 EXP3

PGH building
10:00 AM 1 2 3 4
01:15 PM 4 1 2 3
02:45 PM 3 4 1 2
07:30 PM 2 3 4 1

M. D. Anderson Library
10:00 AM 3 1 4 2
01:15 PM 4 3 1 2
02:45 PM 2 4 3 1
07:30 PM 1 3 2 4

Engineering building 1
10:00 AM 1 2 3 4
01:15 PM 4 1 2 3
02:45 PM 3 4 1 2
07:30 PM 2 3 4 1

reward over time which is calculated as the total packets observed by a sniffer over the total time

it is active. Using this evaluation, we run both algorithms and test for the average reward these

approaches.

5.3 Implementation Results and Analysis

The locations chosen to evaluate all four approaches over the set of {1, 6, 11}Wi-Fi channels

are: 1) Room 311 PGH building, 2) the second floor of M. D. Anderson Library, and 3) main hall of

Engineering building 1 at University of Houston. We evaluate four policies ε-GREEDY, UCB1,

EXP3, and the naive algorithm in each place whole day. The running time of an experiment in a

place includes 4 periods: from 10:00 am to 11:15 am, from 1:15 pm to 2:30 pm, from 2:45 pm to

4:00 pm, and from 7:30 pm to 8:45 pm. Each period is chosen so as the traffic does not vary in

a large scale (e.g., the period of 11:15 am to 1:15 pm is unstable because people usually leave for

lunch). Results of each algorithm in one day are also sum up and divided by the number of time it

is played to find the average reward of the algorithm over the place.

As in Figure 5.4, from the place of experiments, Room 311 PGH building is the most unstable
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Figure 5.4: Average packets of four algorithms over places in each period of time
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Figure 5.5: Average packets of four algorithms over places in one day

environment when the results of all algorithms vary in a big range. This is consistent because the

stable low traffic within the room is largely affected by the unexpected data frames of graduate

students passing outside. This phenomenon does not happen in our experiment at the second floor

of M. D. Anderson Library or the main hall of Engineering building 1 as data packets created by

one user only have a small contribution to the total traffic over experiment period.

Besides, looking at the time of each experiment, we can see that we have a big change in

traffic in the third period from 02:45 pm to 04:00 pm. It is expressed as a big drop of average

packets per second of the latest running algorithm in Table 5.2. In Engineering building 1, we do

not see this phenomenon happens because the latest running algorithm - the naive policy - chose a

suboptimal channel (the sixth frequency) to play. We relate this change to users’ action of moving

from classes to parking lots at University of Houston.

The average packets of each algorithm over a day in one place are plotted in Figure 5.5. In

every case, the naive policy is the one observes the smallest average number of packets over time.

This is understandable as it randomly access a channel without trying to explore the environment

to find the best frequency. While in an unstable area, EXP3 and UCB1 outperform ε-GREEDY,

three policies can obtained the same result under a mind environment at M. D. Anderson Library. In

Engineering building 1 when the traffic is the most stable in cases, ε-GREEDY is the best choice

given our configuration. We also included the number of time each channel is observed by our

sniffer in Table 5.3.
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Table 5.3: Number of observation over channel of three algorithms

PLACE ε-GREEDY UCB1 EXP3
1 6 11 1 6 11 1 6 11

PGH building
10:00 AM 75 67 858 142 660 198 143 708 149
1:15 PM 739 81 180 309 365 326 275 367 358
2:45 PM 848 74 78 500 221 279 538 190 272
7:30 PM 60 93 847 289 273 438 671 112 217

M. D. Anderson Library
10:00 AM 84 842 74 264 574 162 136 724 140
1:15 PM 840 79 81 551 309 140 770 108 122
2:45 PM 821 95 84 714 191 95 732 165 103
7:30 PM 856 64 80 458 416 126 342 533 125

M. D. Anderson Library
10:00 AM 830 89 81 808 121 71 751 141 108
1:15 PM 850 85 65 817 126 57 729 157 114
2:45 PM 852 66 82 823 111 66 754 139 107
7:30 PM 79 64 857 266 124 610 201 153 646

5.4 Conclusions

As proved in [9], the growth of ε-GREEDY and UCB1 isO (log T ) over time in the stochas-

tic environment. However, these policies perform poorly when the environment is supposed to be

adversarial. In this setting, EXP3 can achieve the regret of O
(√

T
)

over time. Different from

theoretical work, the convergence speed of algorithms is also decided by the width of a time slot,

the divisor to calculate the reward of each algorithm and the time running these policies. Due to

the limitation of time and devices, we only conducted experiments in three places at University of

Houston with a fixed set of parameters. In the future, we would like to vary the location, the width

of time slot, and the value of divisor parameters to observe the change in average reward seen by

different algorithms. We also intend to increase the number of samples to more than one week at

each place to get more precise information about the efficiency of these approaches over different

environments.
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Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusion

In this work, we proposed one centralized optimal online learning algorithm that achieves

sub-linear regret bound. Although the optimal algorithm has a well-behaved regret, it suffers a high

computation complexity due to MEC is a NP-hard problem. We also proposed two centralized and

one distributed approximate online learning algorithms with sub-linear regret bound compared to

offline GREEDY algorithm with complete information.

With the first approximate online learning algorithm - ε-GREEDY-APPROX, the system try to

obtain greedily the reward by exploiting the vector of correlation θ. By doing this, the computation

time of the system can be reduced to only O
(
LKS2(2S − 1)

)
compare to O

(
C(M,L)KL

)
of the

optimal online learning algorithm. This computation time still suffers high cost due to the structure

of θ, and no longer can be reduced to achieve a logarithmic regret compare to the offline GREEDY

algorithm. Therefore, we deduce EXP3-APPROX with the idea of multi-agents to have a better

computation complexity with the adversarial setting.

Though designed for the sniffer-channel selection problem, the idea of multi-agent learning

behind EXP3-APPROX is of interest in its own right and is applicable to problems with sub-modular

structure but subject to budget constraints. We found the slow convergence of the multi-agent algo-

rithms is primarily due to the adversarial settings. Except the first agent of the system, which can

obtain a perfect condition of all the channels (which is stochastic), the reward which is observed by

the followed agents seems to be non-stochastic due to the property of Greedy algorithm. Hence, if

each agent runs stochastic-setting algorithms (e.g., ε-Greedy) from the beginning, our system faces

a high probability of having a linear regret.

However, as each agent converges to its optimal actions the reward we can observe over each

channel seems to be “more stochastic.” Therefore, idea here is to adapt the algorithm which each
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agent uses with the environment that it faces. It is the idea of the ε-GREEDY-AGENT-APPROX. The

main challenge here is whenever the system decides the agent which is activating to have “enough

convergence” so that the next agent can be activated. However, as we analyze previously in the sum-

mary of the ε-GREEDY-APPROX algorithm, by reducing the correlation reward between sniffers,

we have to pay the price of “high probability” in the bound to get the advantage of computation

time.

The proposed algorithms can provide a lot of benefit to society. As the number of mobile

devices is increasing while the frequency spectrum is running out, conducting research into wireless

monitoring can help scientists and investors to increase the usage of channels. These techniques will

also assist the Internet advertisement and data mining by detecting the favor of users through their

search behavior. By developing a huge range of algorithms, we hope that they can serve in a wide

range of applications based only the designed advantage.

6.2 Future Work

As we discussed and analyzed in previous chapters, the stochastic multi-armed bandit algo-

rithms cannot fully solve the partial information problem without having the correlation observed

rewards. However, this conclusion is generally not true with adaptive algorithms in the reinforce-

ment learning. In [50], Tokic presents an adaptive ε-GREEDY based on value differences. The

idea of this paper is to control the exploration ratio by observing the difference between the current

and previous average reward of each channel. In stochastic channel, when this difference converges

to 0, it means that we are closing to the mean value of the reward. Hence, we can decrease an

amount of ε that corresponds to the well explored channel.

The adaptive ε-GREEDY works excellently when user’s activities over each channel are

assumed to be stochastic. However, it performs poorly when we try to use it with each agent in a

multi-agent algorithm. We explain the received bad result by the local structure of value differences

function of this adaptive ε-GREEDY algorithm. With a traditional multi-armed bandit problem
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with K arms, this algorithm requires to have K local functions to supervise the temporal difference

of each channel. Each function only control the average reward each channel without caring about

the other channels. This local information directly affects the change of exploration ratio ε. In

multi-agent algorithm, these local functions usually converge to 0 before the agent can find its

optimal assignment. This property is the result of the activity of the previous agents.

To overcome this draw back, we intend to build up a global value difference of each agent

instead of using K local functions. This global value difference function supervises the average

reward of the agent, hence only converges when the agent can find its optimal assignment. This

property of the new function makes it slowly converge to the optimal assignment compare to K

parallel local value difference functions in the stochastic environment, but overcome them when the

channels are no long stochastic. The difficulties of the new algorithm and the one in [50] are first -

how to choose the temporal value, the temperature of the algorithm so that ε can be guaranteed to

converge, and second - how to prove the upper logarithmic regret of the algorithm.

All previous works, we suppose that the environment that we consider is stochastic, or ad-

versarial. However, in reality, the action of the users over the channel has it own pattern. We can

model the activity of users over channels as the Markovian chain with finite states. This problem

has been considered in [51], [52]. In their problem, the reward is considered to change every time

based on the Markov chain model with unknown parameters. In our problem, we suppose that the

user with stay a fixed amount of time at a state before moving to the other states with some unknown

probability, and each state has a fixed user active probability. By using this model, we can model

the stochastic environment as a Markov chain with only one state and the adversarial environment

as a Markov chain with infinite number of states. In every case, by using EXP3 we can guarantee

to obtain a sub-linear regret. However, as we analyze previously, EXP3 has a low speed of conver-

gence, hence we may not need to use this algorithm when the number of states in the Markov chain

is small. When we have an upper bound of the number of stages, the best approach is to observe a

channel in epochs to discover the pattern of the channel. Therefore, we would like to design a set

of algorithms based on UCB2 in [9] to run on this environment and obtain a well-behaved regret
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compares to running EXP3. This work is supposed to be done after the future work based on [50].

Last but not least, we want to extend the scale of our existing experiment in this thesis to

a client-server model. In this model, a desktop is connected to a set of laptops through a switch.

The desktop with a competitive configuration works as a server of the system. All the laptops

behave as sniffers sniffing though channels of the Wi-Fi standard to capture data packets. These

packets are then sent to the server to calculate the reward received by the assignment and receive

control information from the server to tune to required channels. We expect to implement all of

our algorithms proposed in this thesis in the experiment and check for their executability in real

environment.
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