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Abstract

An one–dimensional elastic spring model is proposed to study the effect of shape memory

on the motion of a red blood cell in two-dimensional flows. In simple shear flow, the shape

memory effect also plays a role for having two well known motions: tumbling and swinging.

The intermittent behavior of the cell with a nonuniform natural state has been obtained

in a narrow range of the capillary number and has been studied thoroughly. The critical

value of the swelling ratio for having the intermittent behavior has been estimated. In

plane Poiseuille flow, the cell with the shape memory has an equilibrium shape as a slipper

or parachute depending on capillary number. To ensure the tank-treading motion while in

slippery shape, the upper bound of the shape memory coefficient has been suggested. Then

our 1D model has been extended to 2D, which has been validated by several benchmarking

tests. In three-dimensional shear flow, the critical shear rate for the cell motion transition

from tumbling to swinging is consistent with the experiments. And in tube Poiseuille flow

with rectangular cross section, the cell without shape memory always has a symmetric

equilibrium shape while the one with shape memory can obtain a slippery shape at low

flow rate. When the cell with shape memory passes through a very narrow channel, it

becomes a cup-shape first and then recovers its biconcave shape with a rotation of its

orientation. Such rotation is due to the tank–treading motion of the membrane caused by

the shape memory.

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Models and numerical methods 12

2.1 Two dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Three–dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 The Solution of Subproblem (2.38) . . . . . . . . . . . . . . . . . . . 25

2.3.4 The Solution of the Advection Subproblem . . . . . . . . . . . . . . 28

2.3.5 Immersed boundary method . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.6 Fictitious–domain method for non-rectangular computational domains 32

3 Two–dimensional cell motion in flows 35

3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 A single RBC tank–treading in the shear flow . . . . . . . . . . . . . 35

3.1.2 A go–and–stop experiment for the shape recovery . . . . . . . . . . . 37

3.2 Three types of the cell motion in shear flow . . . . . . . . . . . . . . . . . . 39

3.3 The swinging motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



3.4 The intermittent behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 The effect of the shape memory coefficient . . . . . . . . . . . . . . . 55

3.5 Cell motions in Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Three–dimensional cell motion in fluid flows 69

4.1 The initial shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 The stretching test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 The tank–treading of RBC in shear flow . . . . . . . . . . . . . . . . 76

4.2.3 The go-and-stop experiments in shear flow . . . . . . . . . . . . . . . 78

4.3 RBC motion in shear flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 RBC motion in tube Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 RBC going through a micro-channel with blockage . . . . . . . . . . . . . . 93

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 100

vii



List of Figures

1.1 Diagrams of human blood flowing through blood vessels (top) and classifi-
cation of three categories of blood cells (bottom) [39]. . . . . . . . . . . . . 2

1.2 Structure diagram of red blood cell membrane [26], it is mainly composed
of the phospholipid bilayer and the cytoskeleton structure. . . . . . . . . . . 3

2.1 Schematic diagram of (a) a single red blood cell in shear flow with the
computational domain Ω, (b) the inclination angle θ, (c) a single red blood
cell in Poiseuille flow with the computational domain Ω, and (d) the phase
angle φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The elastic spring model of the 2D cell membrane. . . . . . . . . . . . . . . 14

2.3 Schematic diagram of a single red blood cell with the computational domain
Ω in shear flow (top) and Poiseuille flow (bottom). . . . . . . . . . . . . . . 18

2.4 The elastic spring model for 3D red blood cell membrane. . . . . . . . . . . 19

3.1 Steady inclination angle (left) and membrane tank-treading velocity (right)
as a function of the cell swelling ratio for two degrees of confinement R0/w=
0.4 and 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 A go–and–stop experiment: the snapshots (top and middle) and history of
energy (bottom) over the unit thickness of the cell in shear flow at Ca =
6.365. The moving walls are stopped at time 29.52 ms. . . . . . . . . . . . . 37

3.3 Snapshots of the cell in shear flow with Ca = 0.182 in narrower channel. At
time t = 714.16 ms, the motion of two walls is stopped. . . . . . . . . . . . 38

3.4 Snapshots of the cell in shear flow with Ca = 0.091 in a wide channel. At
time t = 483.88 ms, the motion of two walls is stopped. . . . . . . . . . . . 38

3.5 Snapshots of the cell shape and orientation at the capillary number Ca=
0.455 (top), 9.093 (middle), and 90.934 (bottom) illustrate the tumbling,
swinging, and tank–treading motions, respectively. . . . . . . . . . . . . . . 40

viii



3.6 Histories of the inclination angle (left) and the phase angle (right) at the
capillary number Ca= 0.455 (top), 9.093 (middle), and 90.934 (bottom) as-
sociated with the tumbling, swinging, and tank–treading motions, respectively. 41

3.7 Snapshots of the capsule motion of s∗ = 0.481 with different nonuniform
natural states at α=0, 0.05, 0.1, 0.5 and 1 (from top to bottom), respectively,
and Ca= 0.455. The motion is TT at α=0, 0.05 and 0.1 and tumbling at
α=0.5 and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Inclination angles in wider channel (left) and narrower channel (right) with
respect to capillary numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Phase angles in wider channel (left) and narrower channel (right) with re-
spect to capillary numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Snapshots of cell swinging motion in a narrower channel 80µm× 20µm with
the following shape memory coefficients and capillary numbers: (top) α =
0.5, Ca = 1.818; (middle) α = 0.1, Ca = 0.364; (bottom) α = 0.05, Ca = 0.182. 44

3.11 Velocity fields of cell swinging from lowest position to highest position: at
time t=1.739s (top) inclination angle θ is at local min; at time t=1.752s
(middle) cell is swinging upwards, θ is increasing; at time t=1.766s (bottom)
cell is θ is at local max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.12 Velocity fields of cell swinging from highest position to lowest position: at
time t=1.766s (top) inclination angle θ is at local max; at time t=1.850s
(middle) cell is swinging downwards, θ is increasing; at time t=1.930s (bot-
tom) cell is θ is at local min. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.13 Snapshots of the cell shape and orientation in one cycle (top), histories of
the inclination angle (middle left), the phase angle (middle right), and the
energy over the unit thickness (bottom) of the cell at Ca= 4.410. . . . . . . 49

3.14 Histories of period of tumbling and tank–treading of the cell of s∗ = 0.481
in (a) a wider channel, (b) a narrower channel and (c) the enlargement of
the intermittent region of Fig. (a) (left) and Fig. (b) (right). . . . . . . . . 51

3.15 History of the inclination angle (top) and a velocity filed snapshot (bottom)
of the cell in a wider channel at Ca= 4.274. . . . . . . . . . . . . . . . . . . 52

3.16 Histories of period of tumbling and tank–treading of the cell of s∗ = 0.9
(left) and the enlargement of the intermittent region (right) in (a) a wider
channel and (b) a narrower channel. . . . . . . . . . . . . . . . . . . . . . . 53

3.17 The effect of the confinement ratio to the motion transition and intermittent
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



3.18 Snapshots of a tank–treading motion of a single cell with α = 0.05 at the
intermittent state in shear flow with the capillary number 0.163. . . . . . . 55

3.19 The intermittent state versus the shape memory coefficient α: the plot of
the critical value of the capillary number for the transition from tumbling
to intermittent state (left) and the range of the capillary number for having
the intermittent state (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.20 The intermittent state with effect of shape memory α varies from 0.05 to 1,
in a narrower channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.21 Two examples of intermittent state with one tumbling and one tank–treading
per cycle: the histories of the phase angle (top) and the energy over the unit
thickness (bottom) of the cases Caα

B = 0.8137 (left) and Caα
B = 0.8140

(right) in a narrower channel. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.22 The peaks of energy over several periods around intermittent state with
α = 0.05, in a narrower channel. The erroe bars represent the range of the
peak values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.23 Schematic diagram of how to determine orientation angle η (top left), history
of η (top right) and history of mass center (bottom) for cell in wider channel
with Ca = 9.093, α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.24 Snapshots tank-treading motion with breathing of a cell in Poiseuille flow
at Ca = 9.093 and α = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.25 Snapshots (top and middle) and history of angle η (bottom) for the cell
motion in Poiseuille flow at Ca=9.093 and α = 0.1. . . . . . . . . . . . . . . 62

3.26 Equilibrium shape (left) and history of the orientation angle η (right) for
the cell motion in Poiseuille flow at Ca=9.093 and α = 0.5. . . . . . . . . . 63

3.27 The equilibrium shape of cell in Poiseuille flow for Ca = 9.093, 18.187, 27.280, 36.373,
from left to right, with α = 0 and α = 0.05. (for Ca=9.093, shape has small
perturbations, see Figure 3.24) . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.28 The equilibrium shapes for cells with α = 0.05 (top) and α = 1 (bottom) in
Poiseuille flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 The level 0 mesh. Here R is the sphere radius. . . . . . . . . . . . . . . . . 70

4.2 The generated mesh points and elements on the sphere surface with four
different coarse levels: (a) level 1, Np=50, Ns=144, Ne=96; (b) level 2,
Np=194, Ns=576, Ne=384; (c) level 3, Np=770, Ns=2304, Ne=1536; (d)
level 4, Np=3074, Ns=9216, Ne=6144. . . . . . . . . . . . . . . . . . . . . 71

x



4.3 The initial shape of cell associated with four different coarse levels: (a) level
1, Np=50, Ns=144, Ne=96; (b) level 2, Np=194, Ns=576, Ne=384; (c) level
3, Np=770, Ns=2304, Ne=1536; (d) level 4, Np=3074, Ns=9216, Ne=6144. 72

4.4 The scheme diagram of a RBC with stretching force F added onto the nodes
with ”∗”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Deformated RBCs with level 3 mesh in the stretching test with different
stretching forces F=0,...,192 pN. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 The stretching test, in our simulation, the stretching force F varies from
0pN to 192pN. Here we perform tests for the same set of parameters with
different mesh levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 The RBC tank–treading in shear flow, the left figure shows the dimensionless
frequency of tank–treading, and the right one shows the cell average length
and width, with respect to different Capillary numbers. . . . . . . . . . . . 77

4.8 The go-and-stop experiment for the cell with uniform natural state (α = 0),
the cell is suspended in a shear flow with Ca = 1.1. The motion of the two
walls is stopped at time t = 16.7ms. . . . . . . . . . . . . . . . . . . . . . . 79

4.9 The go-and-stop experiment for the cell with nonuniform natural state (α =
1), at first cell is suspended into shear flow with Ca = 1.1, and the flow is
stopped at time t = 16.6ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 The go-and-stop experiment for the cell with α = 0.3, the flow is stopped at
time t = 16.6ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Cell bevior: dimple back to dimple after flow stopped at t = 16.6ms for the
cell with α = 0.3. The figures are viewed from the top of the RBC. . . . . . 82

4.12 Snapshots of the level 2 cell tumbling in shear flow, which completes a half
cycle from t = 32ms to t = 52.5ms, with shear rate K = 25s−1. . . . . . . . 84

4.13 Snapshots of the level 2 cell tank–treading in shear flow, which completes a
half cycle from t = 23.7ms to t = 47.1ms, with shear rate K = 30s−1. . . . 85

4.14 Snapshots of the level 3 cell tumbling in shear flow, which completes a half
cycle from t = 40.3ms to t = 66.4ms, with shear rate K = 20s−1. . . . . . . 86

4.15 Snapshots of the level 3 cell tank–treading in shear flow, which completes a
half cycle from t = 8.3ms to t = 37.3ms, with shear rate K = 25s−1. . . . . 86

4.16 Histories of the energy of cell tumbling in shear flow: the energies of the cell
with level 2 mesh at shear rates K = 15, 20, 25s−1 (left); and the energies
of the cell with level 3 mesh at shear rates K = 10, 15, 20s−1 (right). . . . . 87

xi



4.17 Equilibrium shapes of the cell in a narrow channel Ω = 20µm×10µm×40µm
(top), a wider channel 20µm×15µm×40µm (middle), and the widest channel
Ω = 20µm×20µm×40µm (bottom), with pressure gradients 1×10−7N , 2.5×
10−7N , 5× 10−7N , 7.5× 10−7N , 1× 10−6N , from left to right, respectively.
For all cases, we have α = 0 (i.e., no effect of shape memory). . . . . . . . . 89

4.18 Snapshots of the cell in the narrow channel Ω = 20µm×10µm×40µm, with
pressure gradients 1× 10−7N (top) and 2.5× 10−7N (bottom), for the case
α = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.19 Snapshots of the cell in the narrow channel Ω = 20µm×10µm×40µm, with
pressure gradients 1× 10−7N (top) and 2.5× 10−7N (bottom), for the case
α = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.20 Equilibrium shapes of the cell in a narrow channel Ω = 20µm×10µm×40µm
(top), a wider channel 20µm×15µm×40µm (middle), and the widest channel
Ω = 20µm×20µm×40µm (bottom), with pressure gradients per unit volume
1 × 10−7N , 2.5 × 10−7N , 5 × 10−7N , 7.5 × 10−7N , 1 × 10−6N , from left to
right, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.21 Replot of the two lower left subfigures in Figure 4.20, view from the opposite
side of the channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.22 Schemetic diagram of a single red blood cell suspended in a micro-channel
with blockage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.23 Shapes of the cell at different locations in the channel: (top), side view,
observe from (10,0,0); (bottom), top view, observe from (0,10,0). Both fig-
ures are plotting exactly the same cell at same locations. The corresponding
times are t = 0ms, 15ms, 30ms, 45ms, 60ms, 77ms, 95ms, 115ms, 137.2ms,
respectively, for the case α = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.24 Shapes of the cell at different locations in the channel: (top), side view,
observe from (10,0,0); (middle), top view, observe from (0,10,0); (bottom),
view from the side of RBC such that longitude is presented in figure. All
the three figures plots the same cell at same times, which are t = 137.2ms,
160ms, 200ms, 250ms, 300ms,350ms, 400ms, respectively, for the case α = 0. 95

4.25 Shapes of the cell in different locations in the channel: (top), side view,
observe from (10,0,0); (bottom), bottom view, observe from (0,-10,0). Both
figures are plotting exactly the same cell at same locations. The correspond-
ing times are t = 0ms, 15ms, 30ms, 46ms, 66ms, 86ms, 106ms, respectively,
for the case α = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xii



4.26 Shapes of the cell in different locations in the channel: (top), side view,
observe from (10,0,0); (middle), top view, observe from (0,10,0); (bottom),
view from the side of RBC such that longitude is presented in figure. All
the three figures plots the same cell at same times, which are t = 115.4ms,
125ms, 140ms, 160ms, 180ms,200ms, 220ms, respectively. Here α = 0.3. . . 97

xiii



List of Tables

3.1 Period of tank-treading in Poiseuille flow . . . . . . . . . . . . . . . . . . . . 65

xiv



Chapter 1

Introduction

1.1 Motivation

An adult human has around 2 − 3 × 1013 red blood cells (erythrocytes), which make up

about 44% of the volume of whole blood. This volume percentage of red blood cells to

total volume is called hematocrit (HCT), also known as packed cell volume (PCV) or

erythrocyte volume fraction (EVF). Other blood cells, like white blood cells (leukocytes)

and platelets (thrombocytes), only take less than 1% of blood volume. The remaining 55%

volume are composed of blood plasma, it is mostly water (up to 95% by volume), and

contains dissolved proteins, glucose, clotting factors, electrolytes, hormones, and carbon

dioxide. The human blood, as shown in Figure 1.1, is a suspension of blood cells within

the blood plasma. It is in charge of delivering necessary substances such as nutrients and

oxygen to cells, and transporting metabolic waste away from them through blood vessels.

Among all these functions, the red blood cell plays an essential role in carrying oxygen

from the lungs to the body tissues and carbon dioxide from tissues to lungs.
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Figure 1.1: Diagrams of human blood flowing through blood vessels (top) and classification

of three categories of blood cells (bottom) [39].
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A typical red blood cell has a biconcave disk shape, with average diameter 7.82µm,

thickness 2.58µm, surface area 135µm2 and volume 94µm3[19]. Because of the excess area,

a healthy red blood cell is highly deformable. The cell membrane consists of two layers: 1),

the phospholipid bilayer with glycocalyx attached on the surface and 2), the cytoskeleton

structure, which is a network of proteins fastened to the bilayer. The bilayer provides the

cell with bending elasticity, and the skeleton structure provides with shear elasticity. In

addition, the thin bilayer has a strong resistance against surface area change.

Figure 1.2: Structure diagram of red blood cell membrane [26], it is mainly composed of

the phospholipid bilayer and the cytoskeleton structure.

The biconcave rest shape of a red blood cell can be deformed when external forces are

acting on the cell, but will be recovered when the cell is released. Moreover, it is reported

to have a shape memory effect [22] in the sense that, not only the biconcave shape is

recovered, but also the whole configuration of the membrane. To be more precise, the rim

is always formed by the same part of the membrane, and dimple always dimple in stress

free state. Due to the shape–memory effect, the red cell may exhibit three types of motion
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in shear flow: With low shear rate (or high viscosity ratio between the inner and outer

fluid), the cell behaves more like a rigid body, and undergoes an unsteady tumbling motion

(TB, also referred to as flipping) where the cell major axis rotates about mass center;

with high shear rate (or low viscosity ratio), cell becomes more fluid like, it may take a

steady tank-treading motion (TT), where cell have a equilibrium shape and inclination

angle, with cell membrane rotates around the inner cytoplasm like the motion of tank

wheel bands; in moderate shear rate (or moderate viscosity ratio), cell performs a swinging

motion (SW) which a transition between the previous two, where the inclination angle

undergoes oscillation about the flow direction and the membrane tank-treads. The steady

tank-treading motion can be viewed as an extreme case of the swinging that the oscillation

of inclination angle is so small that can be neglected. In Poiseuille flow, cell may perform

tank-treading motion with an asymmetric slippery shape with moderate Reynolds number,

and show an equilibrium symmetric parachute shape if Reynolds number is high enough

[54]. A suspension of red blood cells in small capillary may have some rouleaux form at low

flow speed [35, 59] and are destructed when increase the shear rate. If initially suspended

randomly, cells are know to migrate to the center of the capillary [55] and a cell-free layer

will be formed, the size of cell-free layer depends on the capillary size and hematocrit, etc.

The interaction between the red blood cell and the external fluid is yet far from fully

understood, even in simple shear flow, recent studies suggests in addition to the typical

aforementioned three motions, cell may also have in-plane intermittency [57], and out-plane

rolling, or spinning motions [17]. On the other hand, the understanding of full dynamics of

cell motion in flow is very important, especially in cell separation and in diagnosing those

diseases where cell rheology has been changed, such as sickle cell disease, thalassemia,

malaria, etc. Therefore, the red blood cell dynamics is attracting more and more interest

of researchers through experimental, theoretical, and numerical approaches.
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Simplified systems of RBC have been often adopted as an alternative in most studies

based on the fact that they are easily fabricated in the laboratory, with their size, shape, and

mechanical properties may vary [38]. They all represent several aspects of RBC properties

but not all. For example, vesicles are made of a pure phospholipid bilayer, which ensures

the membrane area to be inextensible, but the absence of skeleton structure takes away

the shear elasticity; while capsules are quasi-spherical shells made of polymers, which is

usually extensible, but they have shear elasticity. In some studies inextensible capsules are

also been used to model the RBC behaviors in various flows[51].

Starting with Keller and Skalak [30], several models and numerical methods have been

developed to study the reological properties of vesicles, capsules, and red blood cells. The

continuum models are usually following the Skalak, Mooney-Rivlin and neo-Hookean laws,

with or without bending resistance [30, 18, 51, 3, 57]. On the other hand, spring network

models are also very popular in numerical simulations [60, 20, 62]. Recently, some multi-

scale modeling [20, 46] has been introduced to gather as much cell mechanical properties

as possible, and are expected to gain more delicate results with fairly increasing amount of

computational load. There are also various flow solvers which can treat the flow-structure

interactions, for example, the Immersed boundary methods based on finite element meth-

ods [32, 53], lattice-Boltzmann methods [58, 29], finite difference methods [16], particle

methods such as Dissipative particle dynamics [20] and Smoothed Particle Hydrodynamics

[60], the Boundary integral equation methods [64, 52], etc.

Keller and Skalak (KS) [30] theoretically analyzed the motion of a membrane with a

fixed ellipsoidal shape in simple shear flow. They found that the transition from tank

treading mode to tumbling mode depends on the viscosity ratio of the internal fluid and

external fluid and is independent of shear rate. The viscosity–ratio–dependent transition
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has also been studied and explained in [27, 28, 37, 4]. Noguchi and Gompper [40, 41, 42]

have studied the dynamics of vesicles in simple shear flow using mesoscale simulations of

dynamically triangulated surfaces. Vesicles are found to transit from steady tank–treading

to unsteady tumbling motion, or swinging with increasing membrane viscosity. In [42], they

have developed a model based on the classical framework of Keller and Skalak [30] for the

membrane to theoretically explain the vesicle motion. Using their model, they predicted the

swinging motion and studied the dependency of transition between tumbling and swinging

on the shear rate, the viscosity ratio of the membrane and the internal fluid, and the reduced

volume [42]. However, they did not mention the shape memory property of red blood cells

discovered by Fischer [22]. The experimental evidence of the existence of swinging motion

is obtained by Abkarian et al. [1]. They also observed the intermediate motions during

the transition from swinging to tumbling (respectively, tumbling to swinging) by reducing

(respectively, increasing) the flow shear rate. A simplified model with a fixed elliptical

shape for cell membrane is studied to theoretically support their observations. In [57],

Skotheim and Secomb introduced an elastic energy in terms of the phase angle of the tank–

treading rotation in addition to the KS theory. They observed tumbling, tank–treading

with swinging, and the intermittent behavior between these two states and analyzed the

influence of the viscosity ratio, membrane elasticity, shape, and the shear rate on the motion

of a capsule of either prolate or oblate shape. The both simplified models considered in

[57, 1] take into account the membrane shear elasticity for the effect of the shape memory.

Tsubota et al. [60] used an elastic spring model fully coupled with fluid flow to study cell

motion dependency on the natural state of membrane in two–dimensional shear flow. The

so–called natural state, defined as the reference shape of membrane in zero–stress state

in [60], automatically determines the shape memory property of the cell. When being at

uniform natural state (i.e., all reference angles are set to be the same), the cell appears
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to tank–tread with an inclination angle unchanged and independent of the preset value of

reference angles. But when a biconcave resting shape is assumed as the natural state (called

non–uniform state), the cell is observed to perform tumbling, swinging, and tank–treading

motions. In [60], Tsubota et al. also predicted the intermittency between swinging and

tumbling would occur in very narrow range of parameter space, but they did not obtain such

intermittent behavior because, we believe, the swelling ratio of their cell is not small enough.

In [66], Vlahovska et al. used perturbation approach to study the motion of an almost–

spherical capsule in shear flow at the Stokes regime. Their reduced models are more general

and have no restriction of the fixed shape on the capsule when comparing with the one in

[57]. Without the shape–memory effect, Vlahovska et al. obtained the intermittency when

having deformation only in the shear plane and that the intermittent behavior disappears

in Stokes flow for an almost spherical capsule (not a capsule of biconcave shape) that can

deform in the vorticity direction. They concluded that the intermittency is an artifact of

the shape preservation. In [62], the transition between tumbling and tank–treading motions

has been considered while studying the model of the RBC membrane fully coupled with

the Stokes flow. Tsubota et al. obtained no intermittency dynamics around the transition

between tumbling and tank–treading motions for the cases of the viscosity ratio, λ, of the

internal RBC fluid and the suspending fluid between 0.1 and 0.3, which is quite low when

comparing with the values used in [57, 66]. In [20], Fedosov et al. used a two–dimensional

spring network with the shape memory effect in the bending energy term to model red

blood cell membrane. They obtained the intermittent behavior in shear flow for the cases

of the viscosity ratio λ greater than or equal to 1, but did not study further about the

intermittent behavior.

In this dissertation, we first propose a two-dimensional modified model for red blood

cell membrane based on the one developed by Tsubota et al. [60], and analyze the cell
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motion in simple shear flow via direct numerical simulation, especially the intermittent

behavior. In [57], Skotheim and Secomb restricted the capsule or cell to stay in the shear

plane with the fixed shape and obtained the intermittent behavior by studying the in–

plane inclination angle and phase angle with the shape memory energy defined by the

phase angle, which is actually a two–dimensional model. We want to relax the restriction

of the non–deformability (i.e., the fixed shape) and consider a full model for the fluid

and cell interaction in two–dimensional shear flow, which is closely related to the study

of the inclination angle and phase angle in the shear plane as in [57]. Furthermore, we

have taken into account the effect of shape memory similar to the one used in [57] with

a parameter α, which is the weight of shape memory in total bending energy. Then we

have studied the dependency of the cell motion on the capillary number Ca = µγ̇R3
0/B,

where µ, γ̇, R0, and B stand for the fluid viscosity, the shear rate of fluid flow based

on the gradient of the velocity at the wall, the effective radius of the cell and the bending

modulus, respectively. Also, we have tested the effect of coefficient α and found that as this

parameter decreases, the critical capillary number at transition from tumbling to swinging

decreases almost linearly, and the range for having the intermittent state becomes narrow.

To explain the linearly of the critical capillary numbers with respect to α, we have defined

the weighted–bending–capillary number Caα
B, which is similar to the bending capillary

number in [60], but taking the effect of shape memory α into account and found that

transition occurs around the same range of Caα
B. Also the swelling ratio of the cell does

have its effect to the intermittent behavior as indicated in the figures presented in [57]. We

have obtained that for the cell of swelling ratio greater than 0.6, it is almost impossible

to capture the intermittent behavior with viscosity ratio equal to 1, since the range of the

capillary number for such behavior is about zero if it exists. Our result is consistent with

the results obtained by Tsubota et al. in [60] since the cell used in their simulations has
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the swelling ratio of 0.7. When suspending a cell in Poiseuille flow in a wider channel,

the cell with non-uniform natural state (α = 1) swings several times first. Then the cell

migrates away from the centerline of the channel. This result suggests that cell with a

strong effect of shape memory has a similar behavior as a neutrally buoyant rigid particle.

In a narrow channel, cell behavior is much more complicated, it can change to slippery

shape or parachute shape depending on the Capillary number, and the cell tank–treads

when in slippery shape if α is low, but gets to an equilibrium shape if α is large.

Next we extend the model into three dimensions, based on the model suggested by

Tsubota et al. in [61]. Consider the reference shape as a biconcave shape given by shrinking

about 36% volume of a cell from sphere shape. We have discussed how to obtain the initial

shape of the cell, and the resulting shape has been used as the shape of memory. We

have validated first the model and numerical methods by comparing several aspects with

experimental results or other simulation results. Then we have modeled the cell in shear

flow with very small shear rates, and instead of tank–treading motion which usually happen

in moderate and high shear rates, the cell performs tumbling motion, with its biconcave

shape almost unchanged. When cell is tumbling, the membrane particle which was in

the dimple cannot go back to dimple during tumbling, although it goes back and forth in

some range. We have also observed that the cell with different coarse–grained levels shows

similar behavior when tumbling, but the transition between tumbling and tank–treading

decreases as cell membrane mesh is finer. The intermittency has not been observed in 3D

simulations because the increment in shear rate we have tested is 5s−1, and as suggested in

the 2D results, intermittency occurs in an extremely narrow range of shear rates. Also, we

have suspended the cell into tube Poiseuille flow, cell changes to either a parachute shape or

a 2D parachute for all choices of Capillary number if the channel height is the same as the

channel width, and may show some asymmetric shapes when the height is not equal to the
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width. We have discussed the dependency of cell equilibrium shapes on the channel height,

the Capillary number (determined by the pressure gradient), and the coefficient α. Due

to our setting of the channel, the x direction of the channel also has its effects on the cell

behavior, and hence the cell motions departs from the 2D results which can only represent

the 3D slit Poiseuille flow results (see, e.g., [56]) very well. Furthermore, we have consider

the flow through a micro-channel with blockage and recorded the cell behavior after it

comes out from the narrower part. Consistent with the experimental observation, the cell

with nonuniform natural state first changes to a cup-shape very quickly, and then turns to

a biconcave shape with a rotation in cell orientation during a long period of time. The cell

with uniform natural state also changes to cup-shape first; but afterwards, it recovers to

a biconcave disk shape without any rotation, and the marked dimple membrane particle

does not tank–tread back to dimple.

1.2 Dissertation outline

Now we outline the composition of this dissertation:

In Chapter 2, we discuss the models and numerical methods used in this dissertation.

The fluid inside and outside cell membrane is described by Navier-Stokes equation, and

the cell membrane in both 2D and 3D are approximated by spring networks. The cell-fluid

interaction is treated by the Immersed boundary method. For irregular domain, we adopt

the Fictitious domain method. The coupled problem is solve by operator splitting scheme

with forward Euler in time. The solution of each resulting operator, as well as the finite

element approach/Euler’s method will be also discussed.

In Chapter 3, we have validated our proposed 2D model and methods by two parts:
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(i) the tank–treading motion of cell with uniform natural state at different swelling ra-

tios in shear flow, and (ii) the go-and-stop experiments to illustrate that only cells with

nonuniform natural state can have the ”dimple back to dimple” behavior. Then we present

numerical results of cell motion in shear flow, including the discussion of all three types

of cell motion and especially the swinging motion. Next we provide the detail description

of the intermittent behavior and the effect of the natural state on the intermittency. And

finally we focus the results of cell motions in Poiseuille flow.

In Chapter 4, we consider three-dimensional cases. Similarly, first, we validate the

model and methods by three parts: (i) the stretching test, (ii) cell tank–treading in shear

flow, and (iii) the go-and-stop experiments. Then we study the cell tumbling motion in

shear flow with very low shear rates. Next we consider the cell moving in tube Poiseuille

flow, and study the effect of several aspects on the cell equilibrium shapes. And, at last,

the cell behavior in a micro-channel with blockage has been studied.
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Chapter 2

Models and numerical methods

2.1 Two dimensional model

A cell with a non-spherical rest shape is suspended in a domain Ω filled with a fluid which is

incompressible and Newtonian as in Figure 2.1. The inclination angle and phase angle are

defined as in Figure 2.1b and 2.1d. respectively. For some T > 0, the governing equations

for the fluid–cell system are the Navier–Stokes equations

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ4u + f , in Ω × (0, T ), (2.1)

∇ · u = 0, in Ω × (0, T ). (2.2)

with the following boundary and initial conditions:

u = umax on the top and −umax on the bottom of Ω (2.3)

u is periodic in the x direction, (2.4)

u(x, 0) = u0(x), in Ω (2.5)
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(b)
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(d)

Figure 2.1: Schematic diagram of (a) a single red blood cell in shear flow with the compu-

tational domain Ω, (b) the inclination angle θ, (c) a single red blood cell in Poiseuille flow

with the computational domain Ω, and (d) the phase angle φ.

where u and p are the fluid velocity and pressure, respectively, ρ is the fluid density, and

µ is the fluid viscosity, which is assumed to be constant for the entire fluid. In (2.1), f

is a body force which is the sum of fp and fB where fB accounts for the force acting on

the fluid/cell interface. The boundary condition in (2.3) is umax = (U, 0)t for simple shear

flow. In (2.5), u0(x) is the initial fluid velocity. For the cases of shear flow, fp is set to be

zero. For the case of Poiseuille flow, U is zero and fp is the pressure gradient.

An elastic spring model used in [60] is considered to describe the deformable behavior
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and elasticity of RBC. Based on this model, the cell membrane can be viewed as membrane

particles connecting with the neighboring membrane particles by springs, as shown in

Figure 2.2. Energy stores in the spring due to the change of the length l of the spring

θ
l

Figure 2.2: The elastic spring model of the 2D cell membrane.

with respect to its reference length l0 and the change in angle θ between two neighboring

springs. The total energy per unit thickness of the cell membrane, E = El +Eb, is the sum

of the one for stretch and compression and the one for the bending which, in particular,

are

El =
kl

2

N
∑

i=1

(
li − l0
l0

)2, Eb =
kb

2

N
∑

i=1

tan2(
θi − θ0

i

2
). (2.6)

In equation (2.6), N is the total number of the spring elements, and kl and kb are spring

constants for changes in length and bending angle, respectively. The set of reference angles

{θ0
i }N

i=1 corresponds to a preset natural state, where θ0
i = constant for all i corresponds

to a uniform natural state, and otherwise a nonuniform natural state, which will give the

model a shape memory property. The term Eb defined in (2.6) plays a role like the elastic

energy introduced by Skotheim and Secomb in [57]. But our simulations show, which will

be stated in next sections, a fully non–uniform biconcave natural state takes away too

much freedom from membrane particles, and will destroy some nice properties of the cell

with less non–uniformity. We believe that the cell has some effect of shape memory (which
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comes from non–uniformity) as well as some kind of freedom to let membrane particles

tank–tread (which behaves like the membrane particles are uniform). Unlike Tsubota et

al. [60] who scale the reference angles as {δθ0
i }N

i=1, which changes the memory of cell shape,

we choose to keep the reference angles as a biconcave shape and study the the effect of

shape memory. We modify the bending energy per unit thickness as a weighted sum of

ones from both uniform and nonuniform natural states:

Eb =
kb

2

(

(1 − α)

N
∑

i=1

tan2

(

θi

2

)

+ α

N
∑

i=1

tan2

(

θi − θ0
i

2

)

)

. (2.7)

Here, α indicates the effect of shape memory, called shape memory coefficient.

To obtain the initial shape which also serves as the reference, we preset the cell with

an uniform natural state (i.e., α = 1, θ0
i = 0 for i =1, . . . , N), the cell is assumed to be

a circle of radius R0 = 2.8 µm initially. The circle is discretized into N = 76 membrane

particles so that 76 springs are formed by connecting the neighboring particles. The shape

change is stimulated by reducing the total area of the circle through a penalty function

Γs =
ks

2
(
s− se

se
)2 (2.8)

where s and se are the time dependent area of the cell and the specified area of the cell,

respectively, and the total energy per unit thickness is modified as E + Γs. Based on the

principle of virtual work the force per unit thickness acting on the ith membrane particle

now is

Fi = −∂(E + Γs)

∂ri
(2.9)

where ri is the position of the ith membrane particle. When the area is reduced, each RBC

membrane particle moves on the basis of the following equation of motion:

mr̈i + γṙi = Fi (2.10)
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Here, (̇) denotes time differentiation, m and γ represent the membrane particle mass and

the membrane viscosity of the RBC, respectively. The position ri of the ith membrane

particle is obtained by discretizing (2.10) via a second order finite difference method.

In equations (2.7) and (2.8), kl, kb, and ks represent energies [N m] per unit thickness,

and thus the units of kl, kb, and ks are Newton [N]. In this paper, we only consider the

capillary number instead of shear rate, because it is the key number to determine the

behavior of a cell in two–dimensional flow. The value of the swelling ratio of a cell is

s∗ = se/(πR
2
0). The values of parameters for modeling cell membrane are as follows: The

spring constant is kl = 5× 10−8 N, the penalty coefficient is ks = 10−5 N, and the bending

constant is kb = 5× 10−10 N. The cell is suspended in a fluid which has a density ρ = 1.00

g/cm3 and a dynamical viscosity µ = 0.012 g/(cm s). The viscosity ratio which describes

the viscosity contrast of the inner and outer fluid of the cell membrane is fixed at 1.0.

2.2 Three–dimensional model

In 3D, we consider the computational domain as a tube as drawn in Figure 2.3. For

shear flow the governing equation is (2.1)-(2.2) with the following boundary and initial

conditions:

u = g on the top and the bottom of Ω, (2.11)

u is periodic in the x and z directions, (2.12)

u(x, 0) = u0(x), in Ω. (2.13)

where g = umax on the top of Ω and −umax on the bottom of Ω . Since our boundary

condition is periodic in x and z direction also, this give an insight how cell behaves when

channel is infinitely long and wide, so that only height of channel affects cell motions. For
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Poiseuille flow, we adopt the following boundary condition:

u is periodic in the z directions, (2.14)

u = 0 elsewhere on ∂Ω, (2.15)

u(x, 0) = u0(x), in Ω. (2.16)

With the same idea of the previous section where 2D case is considered, in 3D, the cell

membrane surface is composed of triangles whose three edges are elastic springs.

Following Tsubota et. al. in [61], and to assure the effect of shape memory, we have

considered the natural states in terms of spring lengths and angles between surfaces, where

the stretching and bending energies are defined as

El =
kl

2

(

Ns
∑

i=1

(li − lSi )2 + α

Ns
∑

i=1

(li − l0i )
2

)

(2.17)

Eb =
kbNs

2
∑Ns

i=1
lSi

(

Ns
∑

i=1

li tan2

(

θi

2

)

+ α
Ns
∑

i=1

li tan
2

(

θi − θ0
i

2

)

)

. (2.18)

In (2.17) and (2.18), Ns is the number of springs, kl and kb are corresponding stretching

and bending constants, Ns is the number of springs, li and θi is the instant length of the

ith spring and angle between the two neighbouring membrane elements whose common

edge is the ith spring. lSi is the spring length when membrane is a sphere in stress free

state, i.e. swelling ratio=1, and l0i , θ
0
i are the reference spring lengths and angles. The cell

shape would change from a sphere to a biconcave disk with carefully chosen parameters

which will be discussed in chapter 4. Since it is impossible to cover a sphere surface by

triangular elements that have all sides lengths the same, we cannot make the ideal case as

in 2D that all spring length are the same, which means, the membrane particles are not

identical and we have to find a weaker definition of nonuniform natural state. Similar to

[61], the nonuniform natural state can be set the same as the equilibrium initial biconcave
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Figure 2.3: Schematic diagram of a single red blood cell with the computational domain

Ω in shear flow (top) and Poiseuille flow (bottom).
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Figure 2.4: The elastic spring model for 3D red blood cell membrane.

shape, while the nonuniform natural state could be with spring lengths {lSi }Ns

i=1
and angles

of a flat membrane (all reference angles equal to 0 and hence not presented in (2.18). Just

as the model in 2D, the number α indicates the effect of shape memory, and is called shape

memory coefficient, α ≥ 0; when α takes the smallest value 0, the memory of biconcave

shape would not take any effect in the energy and therefore that corresponds to the uniform

natural state. With large α values, cell would have stronger effect of memory, and in our

simulation the strongest case would not exceed α = 1 (usually much smaller) because as

suggested in Chapter 3, to recover cell dynamics in flows, shape memory should exist and

”be small”.

Considering the incompressibility of the cell membrane, the elastic energy coming from

the change of local element-wise areal change, and change of global membrane surface area

are given by

Ea =
1

2
ka

Ne
∑

j=1

(

Aj −A0
j

A0
j

)2

A0
j (2.19)

EA =
1

2
kA

(

∑Ne

j=1
Aj −A0

A0

)2

A0, (2.20)
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In (2.19) and (2.20), Ne is the number of triangular elements, Aj and A0
j are the instant

and reference local areas of the jth element, A0 is the reference global area. ka and kA

are area expansion modulus for local triangular elements and global membrane surface,

respectively. These two constants are chosen to be large compared to kl and kb to ensure

the area incompressibility of the membrane.

To obtain the initial shape, which also serves as the reference shape of memory (recorded

by means of spring lengths l0i and angles between neighbouring elements θ0
i ), we preset the

cell with pure uniform natural state (i.e. α = 0), which assumes a sphere of surface area

135µm2. The sphere surface is approximated by Ne triangular elements, where the lengths

of all edges are adjusted to have similar values. We adopt a penalty function ΓV in addition

the aforementioned four elastics energies, to force the cell volume reduced from a sphere

to a biconcave disk with the target volume Vt (fixed to be 94µm3 in our simulation)

Γ =
1

2
kV

(

V − Vt

Vt

)2

Vt. (2.21)

Here V is the instant volume of cell, and kV is the penalty coefficient, which should be

large to maintain the fixed target volume of RBC. The total energy storing in cell membrane

is therefore the sum of (2.17)-(2.21), and hence the force acting on each membrane particle

is given by

Fi = −∂W
∂ri

, where W = El + Eb + Ea + EA + ΓV . (2.22)

Once the initial shape is obtained by (2.22) and (2.10), we choose this shape to be the

reference shape of memory, so that the energy through (2.17) - (2.20) is also minimized for

all choices of α ≥ 0, that ensured our cell preserves a biconcave shape when in stress-free

state.

Here are the values we take for the cell model: The stretching constant is kl = 7.5×10−6

[N/m], bending constant is kb = 60 × 10−19 [N m], the coefficients for global and local
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area conservation are kA = 5 × 10−3 [N/m], ka = 10−2 [N/m], respectively, the penalty

coefficient for volume conservation kV = 50 [N/m2]. The target volume Vt is fixed to be

94µm3, and the reference local/global area are set to be the values from sphere shape

considering areal preservation. The fluid inside and outside the cell membrane is to have

a density ρ = 1.00g/cm3 and a dynamical viscosity µ = 0.012g/(cms). The viscosity ratio

is fixed at 1.0 in our work.

2.3 Numerical Implementation

The motion of RBC in the fluid flow is simulated by combining the immersed boundary

method [47, 48, 49] and the aforementioned elastic spring models for membrane. The

Navier–Stokes equations for fluid flow have been solved by using an operator splitting

technique and finite element method [25, 53] with a regular triangular mesh so that the

specialized fast solver, such as FISHPAK by Adams et al. [2], can be used to solve the fluid

flow. The motion of RBC in a non-rectangular domain can be solve by using a fictitious

domain method with distributed Lagrange multipliers (DLM/FD) [24, 43].

2.3.1 Formulation of the problem

Consider equations (2.1)-(2.2), with given initial and boundary conditions, e.g., (2.3)-(2.5)

for 2D flows, or (2.11)-(2.13) for 3D shear flow and (2.14)-(2.16) for 3D Poiseuille flow.

The computational domain Ω ⊂ IRd, is a rectangle in dimension d, d = 2, 3. The body

force f is obtained by combining the force from the cell membrane, and will be discussed

in a later subsection.
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Applying the virtual power principle to system (2.1)-(2.2) yields the following formula-

tion:

For a.e. t > 0, f ind u(t) ∈ Vg, p(t) ∈ L2
0(Ω), such that



















ρ

ˆ

Ω

(

∂u

∂t
+ (u · ∇)u

)

· v dx + µ

ˆ

Ω

∇u : ∇v dx −
ˆ

Ω

p∇ · v dx

=

ˆ

Ω

f · v dx, ∀v ∈ V0,

(2.23)

ˆ

Ω

q∇ · u(t) dx = 0, ∀q ∈ L2(Ω), (2.24)

u(0) = u0, with ∇ · u0 = 0 (2.25)

with the functional spaces

Vg = {v | v ∈ H1(Ω)d, v satisfies the given boundary condition on Γ}, (2.26)

V0 = H1
0 (Ω)d, (2.27)

L2
0(Ω) = {q | q ∈ L2(Ω),

ˆ

Ω

q dx = 0}. (2.28)

2.3.2 Discretization

We use P1-iso-P2 and P1 finite elements for the velocity field and pressure, respectively (as

in [5] and [7]). More precisely with h a space discretization step we introduce a uniform

finite–element triangulation Th of Ω and then T2h a triangulation twice coarser (in practice

we should construct T2h first and then Th by joining the midpoints of the edges of T2h,

dividing thus each triangle of T2h into 4 similar sub-triangles).

We define the following finite dimensional spaces which approximate Vg, H1
0 (Ω)d, L2(Ω),
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and L2
0(Ω), respectively:

Vgh
= {vh | vh ∈ (C0(Ω))d, vh|T ∈ (P1)

d, ∀T ∈ Th,

vh|Γ satisfies the given boundary condition}, (2.29)

V0h = {vh | vh ∈ (C0(Ω))d, vh|T ∈ (P1)
d, ∀T ∈ Th, vh|Γ = 0}, (2.30)

L2
h = {qh | qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ T2h}, (2.31)

L2
0h = {qh | qh ∈ L2

h,

ˆ

Ω

qh dx = 0}; (2.32)

in (2.29)-(2.32), gh is an approximation of g verifying

ˆ

Γ

gh · n dΓ = 0 and P1 is the space

of the polynomials in dimension d = 2 or 3 of degree ≤ 1.

Using the above finite dimensional spaces leads to the following approximation of prob-

lem (2.23)-(2.25):

For t > 0 find uh(t) ∈ Vgh
, ph(t) ∈ L2

0h such that


















ρ

ˆ

Ω

∂uh

∂t
· v dx + ρ

ˆ

Ω

(uh · ∇)uh · v dx + µ

ˆ

Ω

∇uh : ∇v dx

=

ˆ

Ω

ph∇ · v dx +

ˆ

Ω

f · v dx, ∀v ∈ V0h, on (0, T ),

(2.33)

ˆ

Ω

q∇ · uh(t)dx = 0, ∀q ∈ L2
h, (2.34)

uh(0) = u0h; (2.35)

in (2.35), u0h is an approximation of u0 so that

ˆ

Ω

q∇ · u0h dx = 0, ∀q ∈ L2
h.

Following Chorin, e.g., in [9, 10], most “modern” Navier-Stokes solvers are based on

operator splitting algorithms (see, e.g., refs. [33], [63], [34] (Chapter 3) and [25] (Chapters

2 and 7)) in which the incompressibility condition is obtained via either a H1-projection

Stokes solver or a L2-projection method. This approach still applies to the initial value

problem (2.33)-(2.35) which contains two numerical difficulties to each of which can be

associated a specific operator, namely
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(a) The incompressibility condition and the related unknown pressure,

(b) An advection term.

The operator in (a) is a projection operator. From an abstract point of view, problem

(2.33)-(2.35) is a particular case of the following class of initial value problems

dϕ

dt
+A(ϕ, t) +B(ϕ, t) + C(ϕ, t) = f, ϕ(0) = ϕ0, (2.36)

where the operator A is associated to incompressibility, B to advection, and C to diffusion.

Among the many operator-splitting methods which can be employed to solve (2.36), we

have applied the Lie’s scheme [11] to obtain the simple scheme discussed below, which is

only first order accurate in time, but the low–order accuracy is compensated by its modular,

easy implementation, good stability, and robustness properties. After dropping some of the

subscripts h and applying the backward Euler’s method for time discretization, we have

u0 = u0h is given; (2.37)
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for n ≥ 0, un being known,



































ρ

ˆ

Ω

un+1/3 − un

4t · v dx−
ˆ

Ω

pn+1/3
∇ · v dx = 0, ∀v ∈ V0h,

ˆ

Ω

q∇ · un+1/3 dx = 0, ∀q ∈ L2
h;

un+1/3 ∈ Vgh
, pn+1/3 ∈ L2

0h,

(2.38)



































ˆ

Ω

∂u(t)

∂t
· v dx +

ˆ

Ω

(un+1/3 · ∇)u(t) · v dx = 0 on (tn, tn+1), ∀v ∈ V0h,

u(tn) = un+1/3,

u(t) ∈ Vh on (tn, tn+1),

(2.39)

un+2/3 = u(tn+1),














ρ

ˆ

Ω

un+1 − un+2/3

4t · v dx + µ

ˆ

Ω

∇un+1 : ∇v dx =

ˆ

Ω

f · v dx, ∀v ∈ V0h,

un+1 ∈ Vgh
.

(2.40)

Thanks to the operator-splitting, the three subproblems in (2.38)-(2.40) are very classical

problems and each one can be solved by many different available methods. This is really

the key point of the operator–splitting methods.

2.3.3 The Solution of Subproblem (2.38)

The subproblem (2.38) has the following form (some h and n have been dropped):

α

ˆ

Ω

u · vdx −
ˆ

Ω

p∇ · vdx = α

ˆ

Ω

u∗ · vdx,∀v ∈ V0h, (2.41)

ˆ

Ω

q∇ · u dx = 0,∀q ∈ L2
h, (2.42)

with {u, p} ∈ Vgh
× L2

0h, where α = ρ/4t.

Problem (2.41)-(2.42) is a a degenerated discrete Stokes problem, and u can be inter-

preted as the L2−projection of u∗ on the subspace of Vgh
consisting of those functions
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satisfying
ˆ

Ω

q∇ · v dx = 0,∀q ∈ L2
h. (2.43)

The pressure p is the Lagrange multiplier associated to the linear constraint in (2.42); p is

not unique unless we specify an additional relation, for example, p ∈ L2
0h.

The saddle point problem (2.41)-(2.42) can be solved by a Uzawa/Preconditioned Con-

jugate Gradient algorithm operating in the space L2
0h in [25] (Section 21), which is as

follows:

Step 0: Initialization

p0 ∈ L2
0h is given; (2.44)

solve the projection problem:















α

ˆ

Ω

u0 · vdx = α

ˆ

Ω

u∗ · vdx +

ˆ

Ω

p0
∇ · vdx,∀v ∈ V0h,

u0 ∈ Vgh
,

(2.45)

then














ˆ

Ω

r0qdx =

ˆ

Ω

q∇ · u0dx,∀q ∈ L2
h,

r0 ∈ L2
h,

(2.46)

and finally














ˆ

Ω

∇φ0 · ∇qdx =

ˆ

Ω

r0qdx,∀q ∈ L2
h,

φ0 ∈ L2
0h.

(2.47)

Then set

g0 = α φ0 (2.48)

w0 = g0. (2.49)
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Step 1: Descent

Then for k ≥ 0, assuming that uk, pk, rk, gk, wk are known, compute uk+1, pk+1, rk+1,

gk+1, wk+1 as follows:

solve:














α

ˆ

Ω

ūk · vdx =

ˆ

Ω

wk
∇ · vdx,∀v ∈ V0h,

ūk ∈ Vgh
,

(2.50)

then














ˆ

Ω

r̄kqdx =

ˆ

Ω

q∇ · ūkdx,∀q ∈ L2
h,

r̄k ∈ L2
h,

(2.51)

and finally














ˆ

Ω

∇φ̄k · ∇qdx =

ˆ

Ω

r̄kqdx,∀q ∈ L2
h,

φ̄k ∈ L2
0h.

(2.52)

Compute

ρk =

´

Ω
rkgkdx

´

Ω
r̄kwkdx

, (2.53)

and then

uk+1 = uk − ρk ūk, (2.54)

pk+1 = pk − ρk w
k, (2.55)

rk+1 = rk − ρk r̄
k, (2.56)

gk+1 = gk − ρkα φ̄k, (2.57)

Step 2: Convergence test and new descent direction

If
´

Ω
rk+1gk+1dx
´

Ω
r0g0dx

≤ ε,
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take p = pk+1 and u = uk+1; otherwise, compute

γk =

´

Ω
rk+1gk+1dx
´

Ω
rkgkdx

, (2.58)

and set

wk+1 = gk+1 + γkw
k. (2.59)

Do k=k+1 and go back to (2.50).

In above algorithm, problems (2.47) and (2.52) at preconditioned steps are classical

elliptic problems and are solved by a matrix-free fast solver from FISHPAK [2]. For the

problems (2.45) and (2.50), the mass matrix is a diagonal matrix so there is no need to

solve any linear system.

2.3.4 The Solution of the Advection Subproblem

Solving the pure advection problem (2.39) is a more delicate issue. Clearly, problem (2.39)

can be solved by a method of characteristics (see, e.g., refs. [23] and [50] and the references

therein). We solve the advection problem by a wave-like equation method (e.g., see [14]

and [25] (Section 31)). It follows from that after translation and dilation on the time axis,

each component of the velocity vector u and the configuration stress tensor A is a solution

of a transport equation of the following type:















∂ϕ

∂t
+ (U · ∇)ϕ = 0, inΩ × (0, 1),

ϕ(0) = ϕ0, ϕ = g on Γ− × (0, 1),

(2.60)
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The properties ∇ · U = 0 and ∂U/∂t = 0 on Ω × (0, 1) imply that problem (2.60) is

equivalent to the (formally) well-posed problem:































∂2ϕ

∂t2
− ∇ · ((U · ∇ϕ)U) = 0, inΩ × (0, 1),

ϕ(0) = ϕ0,
∂ϕ

∂t
(0) = −U · ∇ϕ0,

ϕ = g on Γ− × (0, 1), (U · n)(
∂ϕ

∂t
+ (U · ∇)ϕ) = 0 on Γ\Γ− × (0, 1).

(2.61)

Solving the wave-like equation (2.61) by a classical finite element/time stepping method is

quite easy since a variational formulation of (2.61) is given by



















































ˆ

Ω

∂2ϕ

∂t2
v dx +

ˆ

Ω

(U · ∇ϕ)(U · ∇v) dx

+

ˆ

Γ\Γ−

U · n∂ϕ
∂t
vdΓ = 0, ∀v ∈W0,

ϕ(0) = ϕ0,
∂ϕ

∂t
(0) = −U · ∇ϕ0,

ϕ = g on Γ− × (0, 1),

(2.62)

with the test function space W0 defined by

W0 = {v| v ∈ H1(Ω), v = 0 on Γ−}.

Let H1
h be a C0− conforming finite element subspace of H1(Ω) as discussed in, e.g.,

Ciarlet ([12],[13]). We define W0h = H1
h ∩W0; we suppose that limh→0W0h = W0 in the

usual element sense. Next, we define τ1 > 0 by τ1 = 4t/Q, where Q is a positive integer

(and we discretize problem (2.62) by

ϕ0 = ϕ0h(≈ ϕ0), (2.63)















ˆ

Ω

(ϕ−1 − ϕ1)v dx = 2τ1

ˆ

Ω

(Uh · ∇ϕ0)v dx, ∀v ∈W0h,

ϕ−1 − ϕ1 ∈W0h,

(2.64)
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and for q = 0, 1, · · · , Q− 1,



































ϕq+1 ∈ H1
h, ϕ

q+1 = gh on Γ−,
ˆ

Ω

ϕq+1 + ϕq−1 − 2ϕq

τ2
1

v dx +

ˆ

Ω

(Uh · ∇ϕq)(Uh · ∇v) dx

+

ˆ

Γ\Γ−

Uh · n
(

ϕq+1 − ϕq−1

2τ1

)

vdΓ = 0, ∀v ∈W0h,

(2.65)

where, Uh and gh are the approximates of U and g respectively.

Remark 2.3.1. Scheme (2.63)-(2.65) is a centered scheme which is formally second-order

accurate with respect to space and time discretizations. To be stable, scheme (2.63)-(2.65)

has to verify a condition such as

τ1 ≤ ch,

with c of order of 1/||U||. Since the advection problem is decoupled from the rest, we

can choose proper time step here so that the above condition is satisfied. If one uses the

trapezoidal rule to compute the first and the third integrals in (2.65), the above scheme

becomes explicit, i.e., ϕq+1 is obtained via the solution of a linear system with diagonal

matrix.

2.3.5 Immersed boundary method

The immersed boundary method developed by Peskin, e.g, [47, 48, 49], is employed here

because of its distinguish features in dealing with the problem of fluid flow interacting with

a flexible fluid/structure interface. Over the years, it has demonstrated its CFD capability

including blood flow simulations. Based on the method, the boundary of the deformable

structure is discretized spatially into a set of boundary nodes.

The force located at the immersed boundary node ri affects the nearby fluid mesh nodes
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x through a discrete δ-function Dh(x − ri):

fB(x) =
∑

FiDh(x− ri) for |x − ri| ≤ 2h, (2.66)

where h is the uniform finite element mesh size and

Dh(x − ri) =

d
∑

j=1

δh(xj − ri,j), (2.67)

with d = 2 or 3, xj is the jth component of x and ri,j is the jth component of ri . The 1D

discrete δ-functions being defined by

δh(z) =































1
8h

(

3 − 2|z|/h+
√

1 + 4|z|/h− 4(|z|/h)2
)

, |z| ≤ h,

1
8h

(

5 − 2|z|/h−
√

−7 + 12|z|/h− 4(|z|/h)2
)

, h ≤ |z| ≤ 2h,

0, otherwise.

(2.68)

The velocity of the immersed boundary node ri is also affected by the surrounding

fluid and therefore is enforced by summing the velocities at the nearby fluid mesh nodes x

weighted by the same discrete δ-function:

U(ri) =
∑

hdu(x)Dh(x− ri) for |x − ri| ≤ 2h. (2.69)

At each time step, the position of the immersed boundary node is updated by

rn+1
i = rn

i + ∆tU(rn
i ). (2.70)

Therefore, (2.37)-(2.40) can be updated to the following:

u0 = u0h is given; for n ≥ 0, un being known, we compute the approximate solution

via the following fractional steps:
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1. Solve


































ρ

ˆ

Ω

un+1/3 − un

4t · v dx−
ˆ

Ω

pn+1/3
∇ · v dx = 0, ∀v ∈ V0h,

ˆ

Ω

q∇ · un+1/3 dx = 0, ∀q ∈ L2
h;

un+1/3 ∈ Vgh
, pn+1/3 ∈ L2

0h,

(2.71)

2. Update the position of the membrane by (2.69) and (2.70)

3. Solve


































ˆ

Ω

∂u(t)

∂t
· v dx +

ˆ

Ω

(un+1/3 · ∇)u(t) · v dx = 0 on (tn, tn+1), ∀v ∈ V0h,

u(tn) = un+1/3,

u(t) ∈ Vh on (tn, tn+1),

(2.72)

un+2/3 = u(tn+1),

4. Use the position obtained in step 2 to compute the force acting on the membrane

by (2.9) for the 2D case or (2.22) for the 3D case, then obtain the force fB on the fluid/cell

interface by(2.66), (2.67), and (2.68). The force f is given by f = fp + fB .

5. Solve














ρ

ˆ

Ω

un+1 − un+2/3

4t · v dx + µ

ˆ

Ω

∇un+1 : ∇v dx =

ˆ

Ω

f · v dx, ∀v ∈ V0h,

un+1 ∈ Vgh
.

(2.73)

2.3.6 Fictitious–domain method for non-rectangular computational do-

mains

Suppose now the computational domain is not a rectangle, then it can be viewed as Ω \ω,

where Ω is a rectangular domain and ω is the blockade. For example, for d = 3, we consider

the following domain:
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The governing equations for the fluid-cell system then become

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ∆u + f in Ω \ ω, t ∈ (0, T ), (2.74)

∇ · u = 0 in Ω \ ω, t ∈ (0, T ), (2.75)

with the following boundary and initial conditions:

u is periodic in the z direction, (2.76)

u = 0 elsewhere on ∂(Ω \ ω), (2.77)

u(x, 0) = u0(x), in Ω \ ω. (2.78)

The distributed Lagrange multiplier/fictitious domain formulation for the flow problem

(2.74)-(2.78) in a channel of constriction reads as follow:

For a.e. t > 0, find u(t) ∈W0,P , p(t) ∈ L2
0, λ ∈ Λ such that



















ρ

ˆ

Ω

(

∂u

∂t
+ (u · ∇)u

)

· v dx + µ

ˆ

Ω

∇u : ∇v dx −
ˆ

Ω

p∇ · v dx

=

ˆ

Ω

f · v dx+ < λ,v >, ∀v ∈W0,P ,

(2.79)

ˆ

Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (2.80)

< µ,u(t) >= 0, ∀µ ∈ Λ, (2.81)

u(x, 0) = u0(x) (2.82)

with

W0,P = {v|v ∈ (H1(Ω))d, v is periodic in the z direction and

v = 0 elsewhere on ∂Ω},

L2
0 = {q|q ∈ L2(Ω),

ˆ

Ω

q dx = 0},

Λ = (H1(ω))d.
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In (2.79)-(2.82), λ is a Lagrange multiplier associated with relation (2.81) and < ·, · > is

an inner product on Λ (see [44] for further information). We also use, if necessary, the

notation φ(t) for the function x → φ(x, t).

A finite dimensional space approximating Λ is defined as follows: let {xi}M
i=1 be a set

of points from ω which cover ω (uniformly, for example); we define then

Λh = {µh|µh =

M
∑

i=1

µiδ(x − xi), µi ∈ IRd, ∀i = 1, ...,M},

where δ(·) is the Dirac measure at x = 0. Then we shall use < ·, · > defined by

< µh,vh >=

M
∑

i=1

µi · vh(xi), ∀µh ∈ Λh, vh ∈W0h

where W0h is the typical P1 finite element approximation for W0,P . A typical choice of

points for defining Λh is to take the grid points of the velocity mesh internal to the region

ω and whose distance to the boundary of ω is greater than, e.g. h/2, and to complete with

selected points from the boundary of ω, but we exclude those points which are also on the

boundary of Ω.

Then the scheme described in subsection 2.3.2 - 2.3.4 (or subsection 2.3.5) still applies

here, we can use exactly the same approach except that one should added to the right hand

side of equations 2.33 and 2.40 the term < λ,vh >.
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Chapter 3

Two–dimensional cell motion in

flows

3.1 Validation

3.1.1 A single RBC tank–treading in the shear flow

First, we present the results on the simulation of a single RBC with uniform nature state

(i.e., α = 0 in eq. (2.7)) suspended in a linear shear flow with shear rate γ = 500/s.

The dimensions of the computational domain are 100µm × 7µm and 100µm × 14µm. The

two degrees of confinement are 0.8 for the narrower domain and 0.4 for the wider domain,

respectively. The grid resolution for the computational domain is 80 grid points per 10µm.

The time step ∆t is 1 × 10−5ms. The initial velocity of the fluid flow is zero everywhere

and the initial positions of the mass center of the cell are the center of both domains. In

both wider and narrower domains, the cell performs a steady tank–treading motion with
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Figure 3.1: Steady inclination angle (left) and membrane tank-treading velocity (right) as

a function of the cell swelling ratio for two degrees of confinement R0/w= 0.4 and 0.8.

a fixed inclination angle depending on the swelling ratio s∗ and degree of confinement.

The steady inclination angles and the membrane tank–treading velocities of two different

degrees of confinement for five values s∗= 0.6, 0.7, 0.8 and 0.9 are presented in Figure

3.1, which show good agreement with the results by Kaoui, Harting and Misbah [29].

The inclination angle increases monotonically for both two degrees of confinement with

increasing the value of the swelling ratio s∗. For the same swelling ratio, the bigger is

the degree of confinement, the smaller is the steady inclination angle. On the other side,

tank–treading velocity increases almost linearly with respect to increasing of swelling ratio

in the narrower channel, while in the wider domain the increasing of tank–treading velocity

has slowed down until it arrives almost maximum around s∗ ∼ 0.9. The same qualitative

tendency is given in [21, 30, 31, 29, 45, 4]. We also keep track of the area and the perimeter

of the cell during the simulations. The variation is less than ±0.1% in the area and ±0.5%

in the perimeter.
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3.1.2 A go–and–stop experiment for the shape recovery

5

10

15

24.72ms 25.52ms 26.32ms 27.12ms 27.92ms 28.72ms 29.52ms0ms
Y

(µ
m

)

5

10

15

29.56ms 29.8ms 30ms 30.2ms 30.4ms 30.8ms 31.2ms 40ms

Y
(µ

m
)

0 10 20 30 40 50 60 70
0
2
4

x 10
−4

time (ms)en
er

gy
(1

0−
11

J)

Figure 3.2: A go–and–stop experiment: the snapshots (top and middle) and history of

energy (bottom) over the unit thickness of the cell in shear flow at Ca = 6.365. The

moving walls are stopped at time 29.52 ms.

A red blood cell is said to have the shape memory if after stopping the flow, the

deformed cell will go back to its initial shape with any part of the membrane regaining its

original position, i.e., the rim always returns to the rim and the dimple is always back to

the dimple. To show that the cell with a nonuniform natural state modeled by (2.6)–(2.9)

does have the shape memory property, we have simulated several cases of the go–and–stop.

Figure 3.2 shows a cell with α = 1 (fully non–uniform) of the swelling ratio s∗ = 0.481

suspended in a simple shear flow at the capillary number Ca = 6.365 in a channel of the

length 80µm and width 20µm. The top and bottom walls of the channel are driven at the

same speed in opposite directions as shown in Figure 2.1a. The cell is at its reference shape

at time t = 0 s, with a membrane particle at the dimple marked by a small ”o”. At the

beginning, the cell performs a swinging motion and the marked position tank–treads along

the membrane as in Figure 3.2 (top). We then suddenly stop the motion of two walls by
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setting the boundary conditions on them equal to zero, and observe (in Figure 3.2 (middle))

that the cell first returns to the biconcave shape very quickly and then the marked position

tank–treads back to its initial location on the membrane, this behavior is first observed

in experiments by T. M. Fischer in [22]. The cell energy, plotted in Figure 3.2 (bottom),

is minimized when the cell is at its natural state. During the swinging motion, the cell

energy changes periodically with the period equal to the half of the period of oscillation

due to the symmetry of the cell natural state. After stopping the motion of two walls, the

cell energy returns to the one at its natural state.
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Figure 3.3: Snapshots of the cell in shear flow with Ca = 0.182 in narrower channel. At

time t = 714.16 ms, the motion of two walls is stopped.
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Figure 3.4: Snapshots of the cell in shear flow with Ca = 0.091 in a wide channel. At time

t = 483.88 ms, the motion of two walls is stopped.

At lower α values, we get the same rim to rim, dimple to dimple behavior after the walls

stopped moving, as shown in Figure 3.3 which gives an example with α = 0.05. But when

α = 0 (Figure 3.4), the tank–treading motion stops right after the wall motion stops, the
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membrane particle from dimple does not go back to the dimple. This suggests that to have

the shape memory for the membrane in two–dimensional flow, we need the coefficient α to

be nonzero, and with larger α value, we get stronger memory of the reference shape in the

sense that membrane tank–treads back to the reference shape faster. But the intermittency

has always been there for the small values of α > 0 as discussed in Section 3.4.1.

3.2 Three types of the cell motion in shear flow

We have first considered a cell with a fully non–uniform natural state (α = 1) suspended in

shear flow at the capillary numbers Ca = 0.455, 9.093, and 90.934 in a channel of the length

80µm and width 20µm (called a wider channel). These three capillary numbers give rise to

three typical motions of the cell, namely, (i) a tumbling motion, (ii) a swinging, and (iii) a

tank–treading motion, respectively. The inclination angle θ and the phase angle φ defined

in Figure 2.1b and Figure 2.1c, respectively, are used to described the cell motion. Since the

shape of cell in shear flow is symmetric about its mass center and so is the reference angles

in the bending energy Eb, we can restrict the range of both inclination and phase angles to

[−90◦, 90◦]. If the inclination angle has the local maxima and minima within (−90◦, 90◦),

the cell is doing a swinging; otherwise if the inclination angle decreases monotonously to

−90◦ then jump to 90◦, it is a tumbling motion. The criteria for the phase angle are the

opposite. When the local maxima and minima of the phase angle are in (−90◦, 90◦), the

cell has the tumbling motion. If the phase angle increases monotonously to 90◦ and then

jumps to −90◦, it means that the cell is swinging (and tank–treading).

At the capillary number Ca = 90.934, the cell is elongated to an elliptical shape and

performs a tank–treading motion with about the same shape and inclination angle. When

reducing the capillary number to 9.093, a swinging motion of the cell with the membrane
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Figure 3.5: Snapshots of the cell shape and orientation at the capillary number Ca= 0.455

(top), 9.093 (middle), and 90.934 (bottom) illustrate the tumbling, swinging, and tank–

treading motions, respectively.

tank–treading and the inclination angle oscillating is obtained. The shape of the cell is

deformed periodically. And finally, the cell keeps tumbling periodically at the capillary

number Ca = 0.455. These motions are illustrated by the snapshots and histories of

the inclination and phase angles of the cell in Figures 3.5 and 3.6. During the tank–

treading motion and swinging, the cell keeps changing its shape periodically with respect

to the period of tank–treading. When tumbling at the capillary number close to the

threshold for the transition to the intermittent behavior, the cell also keeps changing its

shape periodically with respect to the tumbling period. Those shape deformations come

from the fact that during these motions the membrane tends to reduce the difference

between the current bending angle θi and the reference angle θ0
i to minimize the elastic

energy. The swinging motion obtained in this paper is always coupled with the tank–

treading motion. The purely tank–treading motion is actually a special case of swinging

where the oscillation of inclination angle is so small and can be neglected (see Figure 3.6).
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Figure 3.6: Histories of the inclination angle (left) and the phase angle (right) at the

capillary number Ca= 0.455 (top), 9.093 (middle), and 90.934 (bottom) associated with

the tumbling, swinging, and tank–treading motions, respectively.
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To demonstrate that the effect of the bending term Eb given in equations (2.6) and

(2.7) is also a key factor (besides the viscosity ratio) on the cell motion in shear flow, we

have presented in Figure 3.7 that the cell of the swelling ratio s∗ = 0.481 at different shape

memory coefficient α undergoes either tank–treading motion or tumbling at a shear rate

500 s−1 in a channel of the length 80µm and width 10µm (called a narrow channel). As

the effect of the nonuniform natural state is weaker, the cell just tank-treads; but under

stronger effect, the cell does tumble as shown in Figure 3.7. We have also obtained that,

for all choices of capillary numbers, the capsule with the uniform natural state undergoes

tank–treading motion, which is same as in [60].
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Figure 3.7: Snapshots of the capsule motion of s∗ = 0.481 with different nonuniform natural

states at α=0, 0.05, 0.1, 0.5 and 1 (from top to bottom), respectively, and Ca= 0.455. The

motion is TT at α=0, 0.05 and 0.1 and tumbling at α=0.5 and 1.
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The inclination and phase angles do behave as expected. Figures 3.8 and 3.9, as an

example, illustrate the angles with respect to the capillary numbers for the case α = 1.

While the cell swings, the range of inclination angle decreases as the capillary number

is increasing. Also a larger confinement ratio results in the speeding up of the rate of

decreasing. On the other hand, the range of phase angle increases with the increasing of

capillary number while the cell tumbles, but it does not show much dependence on the

confinement ratio.

3.3 The swinging motion

The cell deformation appears to be stronger when the effect of shape memory is strong.

At lower values of α, the cell can hardly be deformed at low and moderate capillary

numbers. Figures 3.10 shows the swing of the cell with different values of α. Based on the
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Figure 3.10: Snapshots of cell swinging motion in a narrower channel 80µm × 20µm with

the following shape memory coefficients and capillary numbers: (top) α = 0.5, Ca = 1.818;

(middle) α = 0.1, Ca = 0.364; (bottom) α = 0.05, Ca = 0.182.
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experimental results by Abkarian et al. [1], a RBC does not change its shape very much

during swinging motion, which gives us a hint that the effect of shape memory should be

relatively small .

Figures 3.11 and 3.12 together show a swinging motion, where cell swings upwards

then downwards, and return to the same shape and inclination angle as the beginning

of the cycle (but phase angle has a shift of 180 degrees). One quick observation is that

swinging downwards takes much more effort than swinging upwards. The main reason is

the following. When swinging upwards, the membrane just finished the jump in the phase

angle φ, i.e., the membrane particle located the dimple has just passed through the rim and

is now on the way back to the dimple; therefore the elastic force is helping the cell tank-

treading along the membrane and shortens the time for dimple particle travelling from rim

back to dimple. On the other hand, when the inclination angle θ is at its local maximum,

the cell is about to swing downwards and the dimple particle has just passed through

dimple and is tank-treading to the rim; the elastic force is working against the force from

flow which makes the cell tank-treading by moving the dimple particle back and then slow

down the tank-treading motion. With the classical KS model[30] which does not assume

a shape memory effect, the cell is predicted to have a fixed inclination angle for a given

flow rate. In [57], the analytical model proposed by Skotheim and Secomb considering the

elastic energy (which corresponds to the shape memory effect) does suggest such periodic

change in inclination angle.
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Figure 3.11: Velocity fields of cell swinging from lowest position to highest position: at

time t=1.739s (top) inclination angle θ is at local min; at time t=1.752s (middle) cell is

swinging upwards, θ is increasing; at time t=1.766s (bottom) cell is θ is at local max.
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Figure 3.12: Velocity fields of cell swinging from highest position to lowest position: at

time t=1.766s (top) inclination angle θ is at local max; at time t=1.850s (middle) cell is

swinging downwards, θ is increasing; at time t=1.930s (bottom) cell is θ is at local min.
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3.4 The intermittent behavior

When the capillary number is in the right range, the intermittent behavior of cell motion

has been predicted by a reduced model proposed by Skotheim and Secomb [57]. In this

section, our computational results show that the bending energy Eb in equation (2.6)

proposed by Tsubota et al. [60] or the one in (2.7) does play a role like the elastic energy

term introduced by Skotheim and Secomb in [57] and give rise to the intermittent behavior

of the cell. Here is a typical intermittent behavior: at the capillary number Ca = 4.410,

with α = 1, the cell performs one tumbling and one tank–treading in each cycle in a wider

channel of dimensions 80µm ×20µm. Figure 3.13 shows the snapshots of the cell motion

in one cycle as well as the histories of the inclination angle, the phase angle and the cell

energy. Since the cell performs one tumbling and one tank–treading in each cycle, both

angles show jumps in the middle two of Figure 3.13. The energy required for the tumbling

in each cycle appears to be higher than that for the swinging, because when the cell swings,

it has an elongated shape which is much closer to the original biconcave shape than those

shapes when the cell tumbles.

Here we only show details for the case α = 1, where the cell has a relatively strong

memory so that the intermittency range is larger than those with the weak memory coef-

ficients. Actually, according to our simulations shown in Section 3.4.1, the value of α only

effects the critical Capillary number where intermittent behavior occurs and the range of

intermittency. As shown in Figure 3.14a, the cell performs tumbling motion in a wider

channel when the capillary number Ca is less than a critical value of 4.274 and swinging

motion for Ca greater than 4.456. Intermittency occurs if Ca is in (4.274, 4.456). The em-

bedded sub–figure in Figure 3.14a corresponds to the contrast ratio between the number of

the tumbling (TB) and the number of the swinging with tank–treading (TT) in one cycle
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Figure 3.13: Snapshots of the cell shape and orientation in one cycle (top), histories of the

inclination angle (middle left), the phase angle (middle right), and the energy over the unit

thickness (bottom) of the cell at Ca= 4.410.
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of cell motion at the intermittent state. When the capillary number is very close to and

below the threshold for the transition to the swinging motion, the cell tumbles once after

a series of swinging in one cycle. The number of swinging in each cycle decreases with

respect to the decreasing of the capillary number, until the cell tumbles once and swings

once alternatively. This should be a relatively stable mode in the intermittent regime since

we observed it happens over a range of the capillary number. Then the cell performs more

tumbling between each swinging when we keep reducing the capillary number, until the

capillary number passes through the threshold for the transition between the tumbling and

the intermittent behavior, and the cell just tumbles.

In a narrower channel of dimensions 80µm ×10µm, the cell enters the intermittent state

at a critical capillary number 3.237, and performs pure swinging for the capillary number

Ca > 3.242, which gives a smaller range of the capillary number for the intermittency

(see Figure 3.14b). The embedded sub–figure in Figure 3.14b also show the cell behaves

similarly at the intermittent state in a narrower channel.

An interesting observation is that the period has a sharp raise when the cell motion

is close to the intermittent state as in Figure 3.14c. For the capillary number right above

the intermittent range, one of the explanations is that while the cell changes its shape, the

membrane particle leaves its natural–state position during the tumbling motion. But the

force caused by the bending energy is tending to pull the membrane back to its original

natural state, which obviously is against the viscous force of flow which would like to push

the membrane particles moving along the membrane. Hence when the capillary number is

right above the intermittent range, the tank–treading motion is slower since the contrast

between these two forces is not significant. For the capillary number right below the

intermittent range, the cell just tumbles and has a shape of long body. In the non-Stokes
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Figure 3.14: Histories of period of tumbling and tank–treading of the cell of s∗ = 0.481 in

(a) a wider channel, (b) a narrower channel and (c) the enlargement of the intermittent

region of Fig. (a) (left) and Fig. (b) (right).
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flow regime, a neutrally buoyant rigid particle of elliptic shape in shear flow has a transition

from the tumbling motion to the state with a fixed inclination angle (i.e., no rotation at

all). As the shear rate increases, the circulation before and after the long body becomes

stronger and then can hold the long body with a fixed inclination angle (see, e.g., [15, 8]).

But in Stokes flow regime, the long body just keeps rotating in shear flow. In this paper,

the cell of a long body shape suspended in shear flow is actually a neutrally buoyant entity.

Similarly the cell slows down its rotation when the capillary number is less than and closer

to the threshold for the transition to the intermittent behavior. Figure 3.15 shows the

circulation of the velocity filed before and after the cell and the history of the inclination

angle of the cell in a wider channel at Ca= 4.274 in which the cell rotation slows down

at the inclination angle around 5◦ degrees. Thus the period of tumbling increases as the

capillary number increases since the strength of the flow field circulation before and after

the cell is increased.
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Figure 3.15: History of the inclination angle (top) and a velocity filed snapshot (bottom)

of the cell in a wider channel at Ca= 4.274.
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Figure 3.16: Histories of period of tumbling and tank–treading of the cell of s∗ = 0.9 (left)

and the enlargement of the intermittent region (right) in (a) a wider channel and (b) a

narrower channel.

For the effect of the swelling ratio, we have tested the values of s∗ = 0.6, 0.7, 0.8 and 0.9

and obtained that for the cell of swelling ratio greater than 0.6, it is almost impossible to

capture the intermittent behavior since the range of the capillary number for such behavior

is about zero if it exists. In Figure 3.16, results similar to those in Figure 3.14 are shown

for the case of the cell of the swelling ratio s∗ = 0.9, whose shape is about an elliptical
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shape. The cell of the swelling ratio s∗ can be characterized by its excess circumference

4c = 2π(
1√
s∗

− 1). For the biconcave shape of s∗ = 0.481, its 4c is 2.77638; but the one

for an elliptical shape of s∗ = 0.9 is 0.33987. The excess circumference 4c is similar to

the excess area used in [66]. For the small values of 4c, we do not expect to obtain the

intermittency. Our result is consistent with the results obtained by Tsubota et al. in [60]

since the cell used in their simulations has the swelling ratio of 0.7.
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Figure 3.17: The effect of the confinement ratio to the motion transition and intermittent

state.

Finally, the effect of confinement ratio is studied by fixing α = 1, domain length

L = 80 µm, and varying the height W between 10 µm and 60 µm. In Figure 3.17, blue

squares stands for pure tumbling motion, black circle for pure tank–treading, and red

triangle for intermittent states. It is not surprised that in a wider channel, the range of

the bending capillary number CaB in which the cell performs pure tumbling is higher, and

the range for having the intermittent state is wider. The intermittent state converges to a
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fixed range of CaB as the wall effect converges to almost zero when increasing the channel

width.

3.4.1 The effect of the shape memory coefficient
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Figure 3.18: Snapshots of a tank–treading motion of a single cell with α = 0.05 at the

intermittent state in shear flow with the capillary number 0.163.

As mentioned in the previous subsection, with lower values of α, the cell does not

tend to change shape as much as cell with α = 1. Even in intermittent state, it prefers

keeping the biconcave shape (see Figure 3.18 for an example). Figure 3.19 shows that the

critical value of the capillary number for the transition from tumbling to intermittent state

is proportional to the value of α, this can be explained by defining a weighted bending

capillary number with respect to α: Caα
B = µR3

0γ̇/(αkB l0) which is similar to the bending

capillary number defined by Tsubota et al. in [60]. This number represents the relative

effect of fluid viscous force versus surface tension which comes from the memory of the

reference angles {θ0
i }, and therefore a scale of α should be added. The cell has tumbling

motion when the viscous force from outer fluid is less than the force pulling it back to

initial position, and swinging motion with tank–treading when the viscous force is larger.

Intermittency occurs when Caα
B ∼ k, where k depends on swelling ratio and degree of

confinement, etc. This implies that γ̇ ∼ αkB l0/(µR
3
0), i.e. the capillary number of the
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intermittency is proportional to the value of α (because the capillary number is proportional

to the shear rate). The range of the capillary number for the intermittent behavior is

increasing as α increases. When α is small, the rate of increasing is almost linear. But as α

raising up, this rate slows down as the cell becomes more deformable and can change shape

accordingly to achieve periodic tumbling or swinging, which is more preferred because the

energy change is more stable than in intermittent states.
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Figure 3.19: The intermittent state versus the shape memory coefficient α: the plot of the

critical value of the capillary number for the transition from tumbling to intermittent state

(left) and the range of the capillary number for having the intermittent state (right).

The behavior of the intermittent state in a narrow channel with respect to the weighted–

bending–capillary number Caα
B is plotted in Figure 3.20, where the y-axis interprets the

number of tank–treading over the number of tumbling in each cycle, and x-axis is the

difference between 1/Caα
B and its value at the boundary of pure tank–treading regime and

intermittency. In the “more tank–treading than tumbling per cycle” regime, the tendency

is almost linear with the slope of −0.45 until slope becomes a little sharper when close to

the “one tank–treading and one tumbling alternatively” regime, which is consistent with
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Figure 3.20: The intermittent state with effect of shape memory α varies from 0.05 to 1,

in a narrower channel.

the results obtained by Skotheim and Secomb in [57].

One major observation through Figure 3.20 is that the “one tumbling and one tank–

treading alternatively” regime is not eliminated when reducing the effect of shape memory,

even with α values as small as 0.05, where the cell is only little deformable, this suggests

this is a relative stable state in the intermittent regime. To understand this issue more, we

have plotted in Figure 3.21 two examples of intermittent state with one tumbling and one

tank–treading per cycle in a narrow channel with the weighted bending capillary numbers

Caα
B = 0.8137 and 0.8140 for α = 0.05. With these given conditions, the shape of the

cell can maintain almost a biconcave shape, which is for the convenience of the following

discussion. In each cycle, after the tumbling (the middle one among the nine different
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orientations shown in each subplot in Figure 3.21), the cell tends to return to its natural

state (i.e., dimple back to dimple). But the flow viscous force prevents the cell from the
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Figure 3.21: Two examples of intermittent state with one tumbling and one tank–treading

per cycle: the histories of the phase angle (top) and the energy over the unit thickness

(bottom) of the cases Caα
B = 0.8137 (left) and Caα

B = 0.8140 (right) in a narrower channel.

complete recovery, thus the phase angle is not back to zero degree after the tumbling. With

the larger Caα
B value, the phase angle after the tumbling motion is larger and then the

associated maximal energy is much closer to the needed energy for having tank–treading

motion. When the cell starts to tank-tread with a higher starting phase angle, it needs less

effort from the flow to complete a tank–treading. After having a tank–treading motion,
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there will be an instant at which the cell shape almost has its natural state. But if the

angular speed at this instance is not fast enough, the cell may not be able to achieve

another tank–treading and a new “one tumbling one tank–treading” cycle shall start.
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Figure 3.22: The peaks of energy over several periods around intermittent state with

α = 0.05, in a narrower channel. The erroe bars represent the range of the peak values.

Figure 3.22 shows an example of energy peaks around the intermittent state with re-

spect to Caα
B, with α = 0.05 in a narrow channel. The dash line is the energy barrier

where the cell has the initial biconcave shape but its phase angle is shifted by 90 degrees

since such conditions can be interpreted as the barrier about whether the cell can perform

tank–treading motion. The very left one in the Figure 3.22 is associated with the pure

tumbling case and the very right two are associated with the pure swinging cases, others

are associated with the intermittent state. It is safe to assume these energy peaks occur

when the phase angle is at its local maximum, which determines either the cell is per-

forming tumbling motion (local maximum of the phase angle is less than 90 degrees) or
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tank–treading motion (local maximum of the phase angle reaches 90 degrees) around that

peak. We can see that during the transition from pure tumbling to pure tank–treading, the

average of the peaks is almost increasing with respect to the increasing of Caα
B, and the

maximum value of the peaks reaches the dash line if at least one tank–treading is performed

in each cycle. On the other hand, the minimum value of the peaks will below the dash line

if at least one tumbling is performed. There are two cases where the average energies are

higher than expected compare to the other cases, one with several tumbling during each

tank–treading and another with several tank–treading during each tumbling, this might

also suggest that these two modes are relatively unstable than the “one tumbling and one

tank–treading alternatively” mode.

3.5 Cell motions in Poiseuille flow

In Poiseuille flow, cells can also perform tumbling, swinging (also called breathing), and

tank-treading, but the swinging is not necessarily coupled with tank-treading. Cell shape

may be deformed into a slipper or a parachute, therefore, it makes no sense to look at

the inclination angle which is determined by the long axis of cell shape as long axis is

only defined when the shape is symmetric about its mass center. In this case, we focus

on the orientation angle η (it shares the same symbol as inclination angle in shear flow)

which is formed by the line connecting the mass center of cell and a some fixed position

on the membrane. A series of smooth monotonic changing of η between −180◦ and 180◦

combined with a jump would indicate that cell has tumbling motion, otherwise swinging

motion, with or without tank-treading. For example, (see Figure 3.23), in wider channel

(Ω = 80µm × 20µm) where wall effect is very small, with fully non-uniform natural state

(α = 1) at which cell behaves similarly to a neutrally buoyant rigid particle. Cell performs
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tumbling motion after a series of swingings for all values of capillary number, and does not

stay in the middle of the channel.
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Figure 3.23: Schematic diagram of how to determine orientation angle η (top left), history of

η (top right) and history of mass center (bottom) for cell in wider channel with Ca = 9.093,

α = 1.

First, to illustrate the effect of α, we have fixed the domain to be a narrow channel,

Ω = 80µm × 10µm, the max velocity umax = 2.5 cm/s, which yields Ca = 9.093. At α as

low as 0.05, as shown in Figure 3.24, the equilibrium state of cell is a breathing slipper with

tank-treading. The bottom two figures shows one cycle of breathing of the cell. Here the

small circle denotes the same membrane particle, which indicates that the cell membrane

is tank-treading clockwise in addition to breathing.

If α value is raised to 0.1, with the same flow speed, the cell exhibits more compli-

cated motion than the one with lower α values. In Figure 3.25, the small circle in the
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Figure 3.24: Snapshots tank-treading motion with breathing of a cell in Poiseuille flow at

Ca = 9.093 and α = 0.05.
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Figure 3.25: Snapshots (top and middle) and history of angle η (bottom) for the cell motion

in Poiseuille flow at Ca=9.093 and α = 0.1.
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snapshots denotes a fixed membrane particle which was in the dimple at stress-free state,

at t=469.6ms, as the dimple particle is travelling to the rim by flow viscous force, the

cell is performing tank-treading motion in slippery shape. the cell is rotation clockwise,

with orientation angle decreasing, until the dimple particle has passed the rim and start

heading back to dimple, the orientation angle then starts to increase. The cell get to a

parachute-like shape as tank-treading goes on. As η keeps increasing, the cell has achieved

half tumbling, but could not continue because the fluid viscous force (which is greater than

cell elastic force as dimple particle get closer dimple) is pushing cell to tank-tread in the

other direction, then the reverse of the above half cycle happens. At this value of α, a cell

can perform neither pure tumbling nor pure tank-treading motion.

Continue increase the value to α = 0.5, with the same flow speed, the cell first swings

several times and get to an equilibrium shape without tank–treading (see Figure 3.26).
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Figure 3.26: Equilibrium shape (left) and history of the orientation angle η (right) for the

cell motion in Poiseuille flow at Ca=9.093 and α = 0.5.

With fully non-uniform natural state (α = 1), with the same flow speed, cell behave

similarly as α = 0.5, which will not be plotted here.

As mentioned at the beginning of this section, cell can exhibit different shapes in
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Poiseuille flow depending on the Capillary number, and value of α. As shown in Figure

3.27, cell gets to a slippery shape with a smaller Ca number, and becomes more like

a parachute when increasing the value of capillary number. For smaller α values, cell

perform tank–treading motion while having slippery shape and breathing. The breathing

and tank–treading behavior disappear when cell has a parachute equilibrium shape.
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Figure 3.27: The equilibrium shape of cell in Poiseuille flow for Ca =

9.093, 18.187, 27.280, 36.373, from left to right, with α = 0 and α = 0.05. (for Ca=9.093,

shape has small perturbations, see Figure 3.24)

If α value is larger (see Figure 3.28), cells do not tank–tread even with slippery shape,

it gets to an equilibrium, unchanged shape in the Poiseuille flow at all tested Capillary

numbers. And higher Capillary number is needed to give a parachute shape.

In Table 3.1 we have recorded the period of tank–treading in Poiseuille flow, varying

the value of α and Capillary number Ca. Period increases when Ca number decreases or α

value increases. In the special case α = 0.01 and Ca = 3.637, cell keeps swinging without

full tank-treading, this may cause from relatively week fluid viscous force comparing to the
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Figure 3.28: The equilibrium shapes for cells with α = 0.05 (top) and α = 1 (bottom) in

Poiseuille flow.

elastic force to drive dimple membrane particle to the rim.

Table 3.1: Period of tank-treading in Poiseuille flow

α = 0.05 α = 0.01 α = 0

Ca=3.637 swinging without TT 187.82 170.81 ms

Ca=5.456 283.78 ms 81.98 ms 80.49 ms

Ca=7.275 62.16 ms 51.20 ms 50.84 ms

Ca=9.093 49.66 ms 41.50ms 41.30 ms
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3.6 Conclusions

In this chapter, we have analysed the motion of a single cell with the shape memory

suspended in two–dimensional shear flow and Poiseuille flow. We have studied the inter-

mittency between tumbling and swinging in shear flow in a narrow range of the capillary

number. When the capillary number is very close to and below the threshold for the swing-

ing motion, the cell tumbles once after a series of swinging in each cycle. The number of

swinging in one cycle decreases with respect to the decreasing of the capillary number,

until cell tumbling once and swinging once alternatively. And then the cell performs more

tumbling between each swinging when we keep reducing the capillary number, and finally

shows pure tumbling. Surprisingly the “one tumbling and one tank–treading alternatively”

mode is very persistent.

The critical value of the swelling ratio for having the intermittent behavior has been

estimated. For those greater than 0.6 (4c=1.82837), it is almost impossible to capture the

intermittent behavior since the range of the capillary number for such behavior is about

zero if it exists. For the small values of 4c (associated with large swelling ratio s∗), we do

not expect to obtain the intermittency.

An interesting observation is that the period has a sharp raise when the cell motion

is close to the intermittent state. For the capillary number right above the intermittent

range, the force caused by the bending energy is tending to pull the membrane back to its

original natural state, which obviously is against the viscous force of flow which would like

to push the membrane particles moving along the membrane. Hence when the capillary

number is right above the intermittent range, the tank–treading motion is slower since the

contrast between these two forces is not significant. For the capillary number right below

the intermittent range, the cell is a neutrally buoyant entity and slows down its rotation
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when the capillary number is less than and closer to the threshold for the transition to the

intermittent behavior, which is closely related to the case of a neutrally buoyant particle

in shear flow.

Another observation is that in the intermittent regime, the change of contrast between

numbers of tumbling and tank–treading is not linear, especially when the weighted bend-

ing capillary number is close to or in the range of a relatively stable “one tumbling and

one tank–treading per cycle” mode, we discussed this phenomenon may result from the de-

formability of RBC, even with shape memory coefficient α as small as 0.05, the cell may still

have some invisible shape changes and is able to perform one tumbling one tank–treading

in each cycle with a range of weighted bending capillary numbers.

On the other hand, we observe that as effect of shape memory increases, the cell be-

comes more rigid-body like, and show less fluidity of the membrane, i.e., the skeleton

structure dominates cell behavior. If we keep reducing the shape memory coefficient α,

membrane particles gets more freedom to travel around the membrane which indicates

that the membrane becomes more fluid-like. Therefore, in our weighted bending energy,

the first term corresponds to the uniform natural state and give the cell membrane fluidity,

which, together with El and Γs, represents the property of the lipid bilayer, and the second

term of the bending energy corresponds to the non-uniform natural state, i.e. give raise to

a 2-dimensional simplified elastic energy, which may represent the shape memory property

of the skeleton structure.

We have also simulated cell motions in Poiseuille flow with different capillary numbers,

with lower α value, cell exhibit tank–treading motion with breathing in slower flow and

get to a stationary parachute shape in faster flow; with higher α value, the tank–treading

behavior in slower flow disappears, the cell shows more rigid-body like behavior, and needs
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larger flow speed to become parachute.
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Chapter 4

Three–dimensional cell motion in

fluid flows

4.1 The initial shape

Getting the initial shape of RBC in the 3D case is more delicate compared to the 2D case,

thus, we want to first summarize here how to get a biconcave disk as the initial shape.

First, we shall approximate the sphere surface by triangular elements. Our mesh gen-

erator on sphere is to divide each big triangle into four congruent smaller ones and adjust

their positions then repeat until desired resolution. Meshes are identified by levels, higher

level means finer mesh, one level higher results in four times the number of elements. The

level 0 (see Figure 4.1) mesh is given by















x = R sinφ cosψ, y = R sinφ sinψ, z = R cosφ,

φ = 0, π
3
, 2π

3
, ψ = 0, π

3
, 2π

3
, π, 4π

3
, 5π

3
, 2π.

(4.1)
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Figure 4.1: The level 0 mesh. Here R is the sphere radius.

Having level n mesh, the level n+ 1 mesh can be obtained by first adding the mid-points

of all edges of each face which makes 4 small triangles within one big element, and then

projecting the new points to the sphere and adjusting the nodes on the surface by the

following minimization problem

Minimize

Ns
∑

i=1

(li − lmean)2 , (4.2)

Subject to ||rj || = R for all j = 1, ..., Np. (4.3)

Here in (4.2)-(4.3) li represents the length of edge i, rj is the jth node point, lmean is the

mean value of lengths of all edges.

Figure 4.2 shows levels 1-4 meshes. For each surface, Np is the number of nodes, Ns is

the number of edges, and Ne is number of elements.
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Figure 4.2: The generated mesh points and elements on the sphere surface with four differ-

ent coarse levels: (a) level 1, Np=50, Ns=144, Ne=96; (b) level 2, Np=194, Ns=576,

Ne=384; (c) level 3, Np=770, Ns=2304, Ne=1536; (d) level 4, Np=3074, Ns=9216,

Ne=6144.
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Once the mesh points are generated, one can use the model (2.17)-(2.21) to compute

the initial shape of RBC by setting α = 0. Figure 4.3 shows the initial shapes obtained for

the level form one to four, using meshes presented in Figure 4.2. Although all levels can

give a biconcave initial shape with the same parameters, we observe that the cell in level 1

appears to be much thicker than those in the other levels. The reason could be that level

1 mesh is too coarse, and may not be fine enough to represent cell dynamics. There are

no visible differences in length and width among the cells in the other three higher levels,

the level 2 cell is only slightly thicker than the ones of level 3 and level 4. The level 3 and

level 4 cells have almost the identical shape.

(a) (b)

(c) (d)

Figure 4.3: The initial shape of cell associated with four different coarse levels: (a) level

1, Np=50, Ns=144, Ne=96; (b) level 2, Np=194, Ns=576, Ne=384; (c) level 3, Np=770,

Ns=2304, Ne=1536; (d) level 4, Np=3074, Ns=9216, Ne=6144.
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4.2 Validation

4.2.1 The stretching test

We have performed the stretching test on the fine level (Np = 3074) and two coarser levels

(Np = 770, Np = 194) of cells at uniform natural state. The stretching force F is added

evenly onto 5% of nodes around the two ends of the cell axial diameter with opposite

directions, so that at each end there is a force F/2 acting on those nodes (see Figure 4.4,

there is an example, in which the red asterisks denote the nodes having stretching forces).

Here we denote DA and DT as the axial and transverse diameters. These two values are

� � �� �
� �

� � 	 


Figure 4.4: The scheme diagram of a RBC with stretching force F added onto the nodes

with ”∗”.

obtained, for each given force, after the cell reaches its equilibrium shape and the energy has

become steady. They serve as an evaluation on how the cell is deformed to the stretching

force.

73



−4−2 0 2
−8 −6 −4 −2 0 2 4 6 8

−1
0
1 F=0pN

−4−2 0 2
−8 −6 −4 −2 0 2 4 6 8

−1
0
1 F=48pN

−4−2 0 2
−8 −6 −4 −2 0 2 4 6 8

−1
0
1 F=96pN

−4−2 0 2
−8 −6 −4 −2 0 2 4 6 8

−1
0
1 F=144pN

−4−2 0 2
−8 −6 −4 −2 0 2 4 6 8

−1
0
1 F=192pN

Figure 4.5: Deformated RBCs with level 3 mesh in the stretching test with different stretch-

ing forces F=0,...,192 pN.
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In Figure 4.5, the cell shapes associated with different stretching forces are presented.

When F = 0, the cell is at rest shape, with its biconcave initial shape. As stretching force

raising, the cell shape is stretched to a more elongated biconcave shape with a longer axial

diameter and shorter transverse diameter.
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Figure 4.6: The stretching test, in our simulation, the stretching force F varies from 0pN

to 192pN. Here we perform tests for the same set of parameters with different mesh levels.

As shown in Figure 4.6, the error bars correspond to the cell deformations obtained

by optical tweezers [36], here red squares are for the coarse mesh (level 2, Np=194), green

asterisks correspond to the fine mesh (level 3, Np=770), and black triangles are for the

finer level (level 4, Np=3074). The results from all three levels agree each other very well

and also fit nicely into the experimental measurements. During the stretching test, with

level 2 cell, the change of cell volume is within 0.1%, and the changes of local area and

total surface area are within 0.5% and 0.006%, respectively; with level 3 cell, the change

of cell volume is within 0.09%, and the changes of local area and total surface area are
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within 0.8% and 0.005%, respectively; with level 4 cell, the change of cell volume is within

0.07%, and the changes of local area and total surface area are within 1% and 0.004%,

respectively. The global errors of the surface area and cell volume do converge as mesh

level becomes higher, and for the local surface area, the change only indicates the largest

percentage change among all the elements, the local area preservation is much better on

most of the other elements.

4.2.2 The tank–treading of RBC in shear flow

Now we suspend the cell with uniform natural state at the middle between two parallel

walls. The top and bottom walls are set to move with the same speed in opposite directions

(along z direction, see Figure 2.2). Periodic boundary conditions are adopted in the x and y

directions. Initially the flow field is at rest. Following Sui et al. in [58], we choose scale a =

(3VT /4π) = 2.8µm, which is the effective radius of the RBC, and the flow is characterised

by the Capillary number Ca = µKa/Gs, where µ is the viscosity of the surrounding

fluid, K is the shear rate, and Gs is the shear elasticity modulus of the membrane. The

Reynolds number Re = ρKa2/µ is fixed at 0.1 in [58], and varies between 0.014 and 0.072

in [65]. In our simulations, the range of Reynolds number is between 0.027 and 0.164. The

computational domain is Ω = 6.4a×5a×5a, with grid resolution ∆x = ∆y = ∆z = 1/4µm

which is about a/11.

In our simulations, at the highest Capillary number Ca = 2.8, the change of cell volume

with level 2 mesh is within 0.4% and the changes of cell membrane global area and local

element area are within 0.7% and 1%, respectively; the change of cell volume with level 3

mesh is within 0.3% and the changes of cell membrane global area and local element area

are within 0.5% and 2%, respectively; the change of cell volume with level 4 mesh is within
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Figure 4.7: The RBC tank–treading in shear flow, the left figure shows the dimensionless

frequency of tank–treading, and the right one shows the cell average length and width,

with respect to different Capillary numbers.

0.2% and the changes of cell membrane global area and local element area are within 0.3%

and 5%, respectively.

In Figure 4.7 we have compared our results with those in [58] and [65] (the case of fine

resolution with bending). The left sub-figure corresponds to the cell dimensionless tank–

treading frequency f/K versus the Capillary number. As we refine the membrane mesh,

the dimensionless frequency are closer to the values from the other two works. The cell

tank–treading frequency shows almost the same tendency as Wu and Feng in [65] but it is

overall higher than theirs. The reason could be that even we have used a very similar model

for cell membrane approximation, but our parameters are different from theirs. With their

choices of kl and ks, the biconcave shape cannot be obtained by reducing volume from a

sphere as ours. In their work, they obtain the cell initial shape by an empirical formula

developed by Evans and Fung in [19]. The right sub-figure in Figure 4.7 plots the cell

average length and width with respect to Capillary number, our results agree well with the
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reported values obtained in [58] and [65].

4.2.3 The go-and-stop experiments in shear flow

From the results obtained in the previous two subsections, the level 2 cell can capture cell

behaviors well, keep the same tendency and does not lose too much accuracy comparing to

the level 3 and level 4 cells. In addition, it saves a huge amount of computational time when

using level 2 mesh. Therefore, in this subsection, we perform the go-and-stop experiments

on level 2 cells only, since we only care about the cell behavior after the outside force is

removed.

In the go-and-stop experiments, all parameters or conditions are the same except the

values of α. The computational domain is Ω = 20µm × 20µm × 20µm. The mesh size is

∆x = ∆y = ∆z = 5/16µm, and the time step is ∆t = 10−4ms. The parameters for the

spring networks are chosen to be the same as in the previous subsections. At the beginning

cell was suspended in shear flow with a fixed Capillary number Ca = 1.1, with the periodic

boundary conditions in the x and z directions, the top and bottom of Ω has Dirichlet

boundary condition which is determined by the Capillary number. With all the α values

in [0, 1], the cell behaves quite similar at the beginning. The cell exhibits tank–treading

motion and gets to an (almost) elongated ellipsoidal shape. The tank–treading motion

can be easily identified by following a marked membrane particle which was at the dimple

initially with a blue dot. When the flow is stopped, the motion of the cell and the position

of the marked particle have been checked for a long period of time to determine whether

the shape memory effect is presented. In this subsection, figures are plotted with the same

scale, so that one can easily identify if cell is elongated or not directly from comparing the

cell lengths.
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Figure 4.8 shows the case of uniform natural state (α = 0). At time t = 0ms, the

cell is suspended in the fluid with a flat inclination angle and the marked particle is at its

initial position, the dimple. As the flow starts, the cell exhibits tank–treading motion in an

elongated ellipsoidal shape, with the marked particle travelling along the cell membrane.

After stopping the motion of the two walls at time t = 16.7ms, the cell quickly changes the

shape back to a biconcave disk by shrinking the cell length and increasing the cell thickness.

However, the marked particle does not go back to the dimple even after a long time (more

than 40ms) of resting. Here the view in the plots is from the front of the channel, i.e. the

observer is at position (10µm, 0µm, 0µm).

t=0ms t=6.5ms t=9ms

t=11.5ms t=14ms t=16.7ms

t=17.5ms t=19ms t=22.1ms

t=27ms t=37ms t=67ms

Figure 4.8: The go-and-stop experiment for the cell with uniform natural state (α = 0),

the cell is suspended in a shear flow with Ca = 1.1. The motion of the two walls is stopped

at time t = 16.7ms.

When α = 1 (i.e. the cell with a strong memory of the biconcave disk shape), as shown
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in Figure 4.9, the cell also gets to an elongated ellipsoid, but its shape seems to be slightly

shorter in length than the one with α = 0. Similar to the previous case, the marked

membrane particle also travels along the membrane when the cell is tank–treading in the

shear flow. After stopping the motion of the two walls at time t = 16.6ms, the cell recovers

its biconcave disk shape very quickly with little rotation. Right after that, the cell rotates,

while the marked particle tank–treads back to the dimple of the biconcave shape, which is

its initial position before deformation. For t ≤ 22ms, the cell is viewed from the position

(10µm, 0µm, 0µm), as in Figure 4.9. But after t = 27ms, we have to view the cell from a

t=0ms t=11.5ms t=14ms

t=16.6ms t=17.5ms t=19ms

t=22ms t=27ms t=37ms

t=47ms t=57ms t=67ms

Figure 4.9: The go-and-stop experiment for the cell with nonuniform natural state (α = 1),

at first cell is suspended into shear flow with Ca = 1.1, and the flow is stopped at time

t = 16.6ms.

carefully chosen position at each time to plot the longitude axis of the cell. One possible
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explanation on why the cell rotates is about the forced acting on the cell and the surround

fluid. When the motion of the two walls is stopped, the cell shape is still elongated at first.

Then the force to pull the cell back to its biconcave shape is dominating, and this force

is acting towards the center of the cell (see Figure 4.9, t = 16.6ms). But when the cell is

almost back to its biconcave shape, the dominating force is one takes the dimple particle

back to dimple. Since the membrane tank–treads about the mass center, and in return it

gives a rotational force to the surrounding fluid.

We have also tested cases with some values of α between (0, 1). For example, at α = 0.3

(see Figure 4.10), the elongated ellipsoid formed in shear flow is quite similar to the previous

two cases, the length of ellipsoid is longer than the one for the case α = 1 and slightly

shorter than the one for the case α = 0. The cell behavior, after stopping the motion of

the two walls, is the same as in the case α = 1, since they both take into account the

nonuniform natural state. The cell has some rotation about its mass center during the

dimple back to dimple motion, but the rotational behavior is not as strong as the cases

with larger values of α. Figure 4.11 shows the dimple to dimple motion after the two walls

stop moving(viewed from top of the cell): (i) at t = 16.6ms, the two walls stop moving and

the cell is still in an elongated ellipsoid shape, and the marked dimple membrane particle is

at some position other than its initial position at the natural state; (ii) between t = 16.6ms

and t = 22ms, the cell changes its shape from an elongated ellipsoid back to a biconcave

disk. Hence the top view of the cell shows almost a round shape at t = 22ms. During

this period, no visible tank–treading occurs and the marked dimple particle almost keeps

the same position on the membrane; and (iii) after the cell returns to a biconcave disk,

the membrane starts to tank–tread and the dimple particle is back to the dimple. Thus,

we believe that the non-uniform cell surface mesh (i.e., every point on the membrane is

not identical) at our so called ”uniform natural state”, cannot move the dimple back to
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t=0ms t=11.5ms t=14ms

t=16.6ms t=17.5ms t=19ms

t=22ms t=27ms t=37ms

t=47ms t=67ms t=87ms

t=107ms
t=147ms t=167ms

Figure 4.10: The go-and-stop experiment for the cell with α = 0.3, the flow is stopped at

time t = 16.6ms.

t=167mst=87mst=22mst=16.6ms

Figure 4.11: Cell bevior: dimple back to dimple after flow stopped at t = 16.6ms for the

cell with α = 0.3. The figures are viewed from the top of the RBC.
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its initial position and rim back to rim (which is called the shape memory property) in

shear flow once the motion of two walls is stopped. But such non-uniform surface mesh

can cause the swinging mode during tank–treading motion with cells in such state (which

will be discussed in the next subsection). To ensure the shape memory property, the cell

does need some memory of the ”nonuniform natural state” related to the biconcave disk

(or an ellipsoid as adopted in [61, 62], for example) as proposed in this thesis.

4.3 RBC motion in shear flow

As in the 2D case, cell can exhibit different motions in shear flow at different shear rates

(characterized by Capillary numbers). In this section, we want to consider the cell motion

in 3D shear flow with periodic boundary condition along the x and z directions, and

Dirichlet condition on the top and bottom of the channel, as described in equations (2.11)

- (2.13) and Figure 2.3(top). The computational domain is Ω = 20µm × 20µm × 20µm.

The mesh size is ∆x = ∆y = ∆z = 5/16µm. To find the transition between the tumbling

and tank–treading motions, we have studied the cell behaviors in shear flow, with low shear

rates K = 15, 20, 25, and 30s−1. The corresponding Reynolds numbers are 9.8 × 10−5,

1.3066× 10−4 , 1.6333× 10−4 , and 1.96× 10−4, respectively, and the Capillary numbers are

0.0155, 0.0207, 0.0259, and 0.0310, respectively. In this section, we fix α = 0 and vary the

membrane mesh among level 2, level 3, and level 4.

At the shear rate K = 25s−1, as shown in Figure 4.12, the cell with level 2 mesh

performs tumbling motion. Here we only plot the skeleton structure via the coarse grained

spring networks, and to follow the phase shift of the cell membrane we have marked the

membrane particle which was originally at the dimple in reference shape with a blue dot.

Figure 4.12 shows a typical half cycle of tumbling motion, during which cell keeps its
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t=904mst=800mst=720mst=640ms

t=1050mst=1000mst=960mst=904ms

Figure 4.12: Snapshots of the level 2 cell tumbling in shear flow, which completes a half

cycle from t = 32ms to t = 52.5ms, with shear rate K = 25s−1.

biconcave shape. At t = 32ms, the dimple particle is at a position which is the farthest

during the tumbling, and at the instance the cell forms some angle with the xz-plane. As

the cell slowly rotates clockwisely, the dimple particle starts to tank–tread closer to the

dimple, until some time t = 45.2ms, it reaches a position that is closest to the dimple. And

from then the cell rotates faster, with the dimple particle pushed away from the dimple and

reaches the farthest position again at t = 52.5ms. This procedure makes a 180◦ orientation

shift (look at the change of the axial axis), while the phase shift (look at the change of the

marked particle position on the membrane) is 0◦.

If the shear rate is raised to be 30s−1 or greater, the cell with level 2 mesh tank–treads

instead of tumbling. Figure 4.13 shows a typical half cycle of tank–treading motion, during

which the cell orientation is swinging upwards and downwards alternatively, with an almost
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t=640mst=600mst=520mst=474ms

t=942mst=916mst=820mst=704ms

Figure 4.13: Snapshots of the level 2 cell tank–treading in shear flow, which completes a

half cycle from t = 23.7ms to t = 47.1ms, with shear rate K = 30s−1.

biconcave disk shape. Following the marked membrane particle, we can see that the dimple

particle is travelling along the cell membrane from a dimple to the one in the other side of

the cell. Therefore the half cycle of cell tank–treading makes a 0◦ orientation shift and a

180◦ phase shift.

With the level 2 cell, the tumbling-to-tank–treading transition occurs between shear

rates 25s−1 and 30s−1. For finer level cells, the transition occurs at lower shear rates. For

example, the level 3 cell tumbles when K = 20s−1, but tank–treads as we raise the shear

rate to be 25s−1 (See Figures 4.14 and 4.15). For the level 4 cell, the transition happens

when shear rate is within [15, 20]s−1, and we can expect that by using finer and finer levels

of membrane mesh, the transition between tumbling and tank–treading in shear flow would

decrease and converge to the experimental measured value obtained in [17]. Next we have

plotted in Figure 4.16 the histories of energy for the tumbling cells at levels 2 and 3, with

different shear rates. At higher shear rates, both the local maxima and the local minima
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t=1138mst=1060mst=880mst=806ms

t=1328mst=1280mst=1240mst=1200ms

Figure 4.14: Snapshots of the level 3 cell tumbling in shear flow, which completes a half

cycle from t = 40.3ms to t = 66.4ms, with shear rate K = 20s−1.

t=500mst=420mst=274mst=166ms

t=746mst=640mst=584mst=550ms

Figure 4.15: Snapshots of the level 3 cell tank–treading in shear flow, which completes a

half cycle from t = 8.3ms to t = 37.3ms, with shear rate K = 25s−1.
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are higher. It is because the cell energy is related to the membrane structure. At lower

shear rates, the dimple particle does not move out very much and hence causes little energy

change, also the maximal energy would be smaller; at higher shear rates, the dimple particle

has moved farther, which gives more energy change to reach a higher maximal energy.
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Figure 4.16: Histories of the energy of cell tumbling in shear flow: the energies of the cell

with level 2 mesh at shear rates K = 15, 20, 25s−1 (left); and the energies of the cell with

level 3 mesh at shear rates K = 10, 15, 20s−1 (right).

4.4 RBC motion in tube Poiseuille flow

Shi et al. has studied in [56] the cell behaviors in a narrow tube, as well as in a slit Poiseuille

flow. They found that in the narrow tube with radius 5µm and channel length 50µm, the

cell equilibrium shapes are parachutes. And in slit Poiseuille flow where periodic boundary

condition is adopted in two directions, except the the top and bottom of the channel, the

equilibrium shapes appear to be dependent on the flow velocities (and hence dependent

on Capillary numbers). The cell has a slippery shape in slowly moving fluid. In their

paper, they have fixed the computational domain to be 28µm in channel length, 14µm in

87



height, and 28µm in width. The periodic boundary condition in the x and z directions

in their work gives in some sense like a 2d profile while using 3d settings, this confirms

the results of equilibrium shapes in 2D Poiseuille flow. However, we are interested here in

some questions such as: (i) will the same equilibrium shapes appear in a tube Poiseuille

flow with a rectangular cross section? (ii) Is there anything to do with the channel height?

Having these thoughts in mind, we now want to consider a computational domain with

periodic boundary condition only in the z direction, and has Dirichlet boundary conditions

elsewhere as illustrated in equations (2.14) - (2.16) and Figure 2.3(bottom). Here we

first present the results regarding to the effect of channel height, as well as the pressure

gradient in the z direction. In our study, we have chosen the channel with the length of

40µm, the width of 20µm, and the heights of either 20µm, 15µm, or 10µm. And we have

only used the cell with the level 2 mesh in this section. The Reynolds number is defined

by Re = ρHUmax/µ, where H is the height of the channel, and Umax is the maximum

velocity without cell for the same pressure gradient. The Capillary number is defined as

Ca = µUave/Gs, where Uave is the average velocity of the flow without cell, and Gs =
√

3

4
kl

is the shear modulus. The flow profiles are preset to be at rest initially, and a pressure

gradient in the z direction is added onto the whole domain when t > 0ms. We have

used here ∇p = 1 × 10−7N , 2.5 × 10−7N , 5 × 10−7N , 7.5 × 10−7N , and 1 × 10−6N (per

unit volume) in our simulations. Due to the change of the channel heights, the maximum

velocity will vary and hence the Reynolds numbers and Capillary numbers will also take

different values even the pressure gradients are the same. For the case that H = 20µm, the

corresponding Reynolds numbers are 0.0409, 0.1023, 0.2046, 0.3068, 0.4092, respectively,

and the Capillary numbers are 0.4536, 1.1339, 2.2679, 3.4018, 4.5358, respectively; for the

case H = 15µm, the corresponding Reynolds numbers are 0.0220, 0.0549, 0.1098, 0.1647,

0.2196, respectively, and the Capillary numbers are 0.3246, 0.8114, 1.6229, 2.4343, 3.2458,
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respectively; for the case H = 10µm, the corresponding Reynolds numbers are 0.0079,

0.0198, 0.0395, 0.0593, 0.0791, respectively, and the Capillary numbers are 0.1753, 0.4382,

0.8764, 1.3146, 1.7527, respectively.

Figure 4.17: Equilibrium shapes of the cell in a narrow channel Ω = 20µm × 10µm ×

40µm (top), a wider channel 20µm × 15µm × 40µm (middle), and the widest channel

Ω = 20µm × 20µm × 40µm (bottom), with pressure gradients 1 × 10−7N , 2.5 × 10−7N ,

5× 10−7N , 7.5× 10−7N , 1× 10−6N , from left to right, respectively. For all cases, we have

α = 0 (i.e., no effect of shape memory).

Figure 4.17 shows the equilibrium shapes for the cell with uniform natural state (α = 0).

The cell gets to a parachute shape for all choices of pressure gradients if the channel width is

20µm. Because for such a channel, the flow profile is symmetric and that gives a parachute

shaped cell for all choices of pressure gradients, similar to the cell shapes in a narrow tube
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in [56]. As we narrow the width of the channel, the equilibrium shapes become more 2D

like (the shapes look similar to the cell equilibrium shapes obtained in 2D Poiseuille flow as

in Figure 3.27 and reffig.29), let us call such a shape ”2D parachute”. For higher pressure

gradients, which corresponds to faster flows, the parachute shape is deeper, and the length

of the cell (the distance from highest to lowest positions) is shorter. The cell equilibrium

shapes do not depend on the initial inclination angles between cell orientation and the

xz-plane ( in our work the initial position of cell is always placed perpendicular to the

yz-plane, only the angle between the cell and xz-plane may change). As shown in Figure

4.18, even if the initial inclination angle is not vertical, the cell with uniform natural state

still changes to a symmetric shape as a (2D) parachute. In these cases, it is first driven

to a slipper very quickly, and then changes slowly into the final equilibrium shape, while

in our simulations, cells with a vertical inclination angle is driven into a parachute or 2D
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Figure 4.18: Snapshots of the cell in the narrow channel Ω = 20µm× 10µm× 40µm, with

pressure gradients 1 × 10−7N (top) and 2.5 × 10−7N (bottom), for the case α = 0.

parachute shape for all choices of pressure gradients at the beginning (See Figure 4.19 for
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the cells with nonuniform natural state. Not shown here for the cell with uniform natural

state, because we observe that the behavior at the very beginning is almost the same for

both α = 0 and α > 0).

When taking the nonuniform natural state into account, for example, in the case α = 0.1

(see Figure 4.19), the cell gets to a slippery shape for lower pressure gradients in narrow

channel. At higher pressure gradients, it changes to a 2D parachute. The cells is initially

suspended vertically, everything was symmetric about the z-axis at t = 0ms, and therefore

the cell is driven to a parachute shape which matches the Poiseuille flow profile the best.

But since the cell is under the effect of shape memory, the 2D parachute shape needs higher

energy to sustain its shape which slow fluids cannot provide, and thus the cell changes to

a slippery shape afterwards.
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Figure 4.19: Snapshots of the cell in the narrow channel Ω = 20µm× 10µm× 40µm, with

pressure gradients 1 × 10−7N (top) and 2.5 × 10−7N (bottom), for the case α = 0.1.

In Figure 4.20, we present the equilibrium shapes of the cell with the same channel
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heights and pressure gradients as in Figure 4.17, for the case of α = 0.1, the figures are

Figure 4.20: Equilibrium shapes of the cell in a narrow channel Ω = 20µm×10µm×40µm

(top), a wider channel 20µm×15µm×40µm (middle), and the widest channel Ω = 20µm×

20µm× 40µm (bottom), with pressure gradients per unit volume 1× 10−7N , 2.5× 10−7N ,

5 × 10−7N , 7.5 × 10−7N , 1 × 10−6N , from left to right, respectively.

Figure 4.21: Replot of the two lower left subfigures in Figure 4.20, view from the opposite

side of the channel.

plotted with a observer at (10µm, 0, 0). For those plots with low pressure gradients in the
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wide channels, i.e. the subfigures in the lower-left corners of Figure 4.20, the cell equilibrium

shape is not symmetric with respect to the yz-plane. For example, for H = 20µm and

pressure gradients 1 and 2.5× 10−7N per unit volume, the cell was viewed at (-10µm, 0, 0)

as presented in Figure 4.21 and the cell equilibrium shape is not symmetric with respect

to the yz-plane any more.

4.5 RBC going through a micro-channel with blockage

In [6], Braunmuller et al. found that after cell flowing through micro-channels with abrupt

constrictions, two stage of relaxation processes were observed in experiments: in a short

period of time, the cell first relaxes into a cup shape, and then the relaxation of cell from

the cup shape into the well-known biconcave rest shape takes much more time and it is

usually coupled with reorientation.
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Figure 4.22: Schemetic diagram of a single red blood cell suspended in a micro-channel

with blockage.

Here, as shown in Figure 4.22, we have designed a similar micro-channel as described

in (2.74) - (2.78), where the computational domain Ω = (−5, 5)× (−5, 5)× (0, 50), and the

blockage ω̄ is defined as ω̄ = ((−5, 5) × (−5, Y1(z)) × (0, 50))∪((−5, 5) × (Y2(z), 5) × (0, 50)),
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with

Y1(z) =















−5
2
(1 + exp(5

2
(1 − z

10
))) if 10 ≤ z ≤ 40,

−5 elsewhere;

(4.4)

and Y2(z) = −Y1(z) for all z ∈ (0, 50). A RBC is to pass through a narrowest part with

height 5µm, which is less than the diameter of the cell. A pressure gradient is added so

that Umax = 0.1cm/s in the wider part of the channel. As entering the narrower part of

the micro-channel (see Figure 4.23 as an example when the cell is in uniform natural state),

cell is compressed into a (2D) parachute shape and then keeps almost parachute during

most of the time. When the cell is out from the narrower part, it quickly changes to a cup

shape.
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Figure 4.23: Shapes of the cell at different locations in the channel: (top), side view,

observe from (10,0,0); (bottom), top view, observe from (0,10,0). Both figures are plotting

exactly the same cell at same locations. The corresponding times are t = 0ms, 15ms, 30ms,

45ms, 60ms, 77ms, 95ms, 115ms, 137.2ms, respectively, for the case α = 0.

Figure 4.24 shows the cell behavior after the flow maximum velocities is reduced into
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Figure 4.24: Shapes of the cell at different locations in the channel: (top), side view,

observe from (10,0,0); (middle), top view, observe from (0,10,0); (bottom), view from the

side of RBC such that longitude is presented in figure. All the three figures plots the same

cell at same times, which are t = 137.2ms, 160ms, 200ms, 250ms, 300ms,350ms, 400ms,

respectively, for the case α = 0.

1% of the original. We chose this setting because, in the experiment, the wider part of the

micro-channel is about 50 times the width of the narrow part; but, in practice, it requires

very heavy computations. However, since the flow velocity in the very wide part of the

channel is almost stationary, we can instead reduce the flow speed and adopt a channel with

the wider part only twice the width of the narrower part to mimic this ”narrow-to-wide”

transition. We observe that after getting out from the narrow part of the micro-channel,
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the cell becomes a cup shape very quickly and keeps in this state for about 200ms. Then it

changes to a biconcave disk without tank–treading dimple back to dimple, and at the same

period of time, the cell orientation keeps unchanged after the cell coming out from the

narrower part of the channel. As we keep relaxing the cell for another 200ms, the dimple

particle just stays at the same place and the cell does not show a tendency to rotate or

tank–tread.
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Figure 4.25: Shapes of the cell in different locations in the channel: (top), side view,

observe from (10,0,0); (bottom), bottom view, observe from (0,-10,0). Both figures are

plotting exactly the same cell at same locations. The corresponding times are t = 0ms,

15ms, 30ms, 46ms, 66ms, 86ms, 106ms, respectively, for the case α = 0.3.

Next we show in Figure 4.25 the results of a RBC with nonuniform natural state going

through the micro-channel. As discussed in the previous subsection, the cell with higher

effect of shape memory tends to need more energy to keep a parachute shape. Hence,

with the same maximum velocity, the cell is in a slipper shape (with tank–treading) while
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passing through the narrower part.

Similarly to the cell with uniform natural state, the cell under effect of shape memory

also gets to a cup shape very fast after coming out from the narrower part of the micro-

channel. After that, it changes back to a biconcave disk, as plotted in Figure 4.26. One
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Figure 4.26: Shapes of the cell in different locations in the channel: (top), side view,

observe from (10,0,0); (middle), top view, observe from (0,10,0); (bottom), view from the

side of RBC such that longitude is presented in figure. All the three figures plots the same

cell at same times, which are t = 115.4ms, 125ms, 140ms, 160ms, 180ms,200ms, 220ms,

respectively. Here α = 0.3.

observation is that, when the cell changes towards the biconcave shape, the marked mem-

brane particle almost did not tank–tread, and after the cell obtains a biconcave shape (at
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first the biconcave shape has one side deeper than the other), the cell membrane starts to

tank–tread dimple back to dimple. Another observation is that during the process of the

cell getting back to its nonuniform natural state (similar to the go-and-stop experiments),

it keeps rotating as in Figure 4.26. This behavior was observed in experiments done in [6].

4.6 Conclusions

In this Chapter, we have proposed a modified RBC model with effect of shape memory

to simulate cell dynamics in both shear flow and Poiseuille flow. Similar to the 2D case,

we have first considered the cell model with uniform natural state, and obtain the cell’s

biconcave disk shape by shrinking the cell volume from a whole sphere into a volume about

64% of the original ball volume. After obtaining the initial shape, we have used it as the

shape which the cell memorizes (the nonuniform natural state). Using the cell energy to

store the cell shape has an advantage since the rest shape is always the reference shape for

all choices of α.

With this model, we have done the validations with the published works in literature as

follows: (i) we have performed the stretching test on the cell with uniform natural state and

compared the cell length and width with the experimental results; (ii) we have suspended

the cell with uniform natural state into shear flow with high shear rates, and compared the

results with numerical simulation results in literature; (iii) we have carried the go-and-stop

experiments for cells with both uniform and nonuniform natural states and obtained that

with nonuniform natural states, the cell does have the dimple back to dimple behavior

after outside force is removed.

When the cell with uniform natural state is suspended into shear flow with very low
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shear rates, it performs tumbling motion, instead of tank–treading. The transitions of

the cell with a coarser grained level and those with finer levels have been studied. The

transition occurs at lower shear rate when using finer membrane mesh. The threshold is

approaching to the value suggested by the experimental results.

When the cell with uniform natural state is suspended into Poiseuille flow, with periodic

boundary condition only in the flow direction, the cell shape changes to an equilibrium

shape, which depends on the channel height, the flow velocity, and the shape memory

coefficient α. It is found that only with nonzero α value, cell can change to a slippery

shape at very low flow rate. When the flow rate is higher, the cell has a parachute shape

or 2D parachute shape, depending on the height of the channel. If the channel height from

top to bottom is the same as the channel width from front to back, the cell equilibrium

shape is parachute shape, if such symmetric domain does not exist, the cell will change to

a 2D parachute shape.

It is reported that, in the experiments, a RBC going through a micro-channel with

blockage will first rapidly change to a cup shape, and then recover the biconcave shape

with cell orientation rotated, our simulations do suggest such behavior if the cell adopts

nonuniform natural state, i.e., the cell has the shape memory property.

99



Bibliography

[1] M. Abkarian, M. Faivre and A. Viallat, Swinging of red blood cells under shear
flow, Phys. Rev. Lett. 98, 188302 (2007).

[2] J. Adams, P. Swarztrauber and R. Sweet, FISHPAK: A package of Fortran sub-
programs for the solution of separable elliptic partial differential equations, The
National Center for Atmospheric Research, Boulder, CO, 1980.

[3] D. Barthes-Biesel, A. Diaz, and E. Dhenin, Effect of constitutive laws for two-
dimensional membranes on flow-induced capsule deformation, J. Fluid. Mech. 460,
211 (2002).
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