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ABSTRACT

Introduction

Two important considerations for improving student achievement 

are the sequence of the curriculum and the developmental readiness 

of the learner. Gagne has developed an instructional strategy for 

improving the sequence of curriculum. Piaget has identified various 

stages of cognitive development and has described the logical think­

ing skills characteristic of each stage. The task analysis strategy 

of Gagne and the developmental theory of Piaget should be combined 

to enhance student learning. This can be accomplished if logical 

thinking skills necessary for learning specific concepts can be de­

termi ned.

Purpose

The purpose of this study was to determine the relationship 

between proportional reasoning and students' ability to demonstrate 

knowledge, comprehension, and application of simple machines, struc­

ture of matter, and equivalent fractions. If a relationship does 

exist, then a student's achievement of knowledge, comprehension, and 

application of the selected concepts should be a function of his level 

of proportional reasoning.

Procedure

A sample of 136 subjects was randomly selected from a population 

of 444 white, middle class students who were taking ninth-grade physical 
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science as a required class. Equal numbers of boys and girls were 

selected. These students had studied the selected science concepts 

as part of their regular science curriculum.

Piagetian tasks were administered to assess students1 propor­

tional reasoning skills and to group them into four levels of pro­

portional reasoning: high and low quantitative proportional rea- 

soners, and high and low qualitative proportional reasoners. A 

paper/pencil test was used to assess students1 achievement of know­

ledge and understanding (comprehension and application) of the select­

ed concepts.

Discriminant function analyses were applied to the data to 

determine if a relationship existed between proportional reasoning 

and achievement of the selected concepts at the knowledge, comprehen­

sion, and application levels.

Findings

In general, a positive relationship was found to exist between 

proportional reasoning and achievement of the selected science and 

mathematics concepts. Quantitative proportional reasoners (formal 

operational) achieved significantly greater knowledge of the science 

concepts and significantly greater understanding of equivalent frac­

tions concepts than qualitative proportional reasoners (concrete oper­

ational). Specifically, high quantitative proportional reasoners 

achieved significantly (p < .01) greater knowledge and application of 

simple machines, knowledge, and comprehension of structure of matter 

and application of equivalent fractions than high and low qualitative 
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proportional reasoners. Low quantitative proportional reasoners 

achieved significantly (p < .01) greater knowledge of simple machines 

and structure of matter than low qualitative proportional reasoners. 

Low quantitative proportional reasoners achieved significantly less 

application (p < .01) of simple machines and comprehension (p < .05) 

of structure of matter than low qualitative proportional reasoners. 

And low quantitative proportional reasoners achieved significantly 

greater application of equivalent fractions than high qualitative 

proportional reasoners (p < .05) and low qualitative proportional 

reasoners (p < .01).

Conclusions

The findings of this study generally support the hypotheses 

investigated: achievement of selected science and mathematics concepts 

is related to proportional thinking, and quantitative proportional 

reasoners achieve significantly greater knowledge, comprehension, and 

application of the selected concepts than qualitative proportional 

reasoners.

Analysis of the means suggests a particular interaction pattern 

between proportional reasoning and level of achievement (Bloom's 

taxonomy). It suggests that when achievement is low, proportional 

reasoning interacts at the knowledge level. When achievement is high, 

proportional reasoning interacts at the application level or higher.
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Recommendations

Since a general relationship was found between proportional 

reasoning and achievement, it is recommended that experimental 

studies be conducted to investigate a cause and effect relationship 

between proportional reasoning and achievement.

Implications

Because most high-school-age students would not be expected 

to possess quantitative proportional reasoning, teachers instructing 

students in these concepts would probably be unwise to teach for 

mastery at the application level. By employing a sound instructional 

program, they could probably teach for mastery at the knowledge and 

comprehension levels and minimal achievement at the application level.

The identified relationship between proportional reasoning 

and achievement of the selected concepts permits the task analysis 

strategies of Gagne and the developmental theory of Piaget to be com­

bined and utilized to enhance student achievement of these concepts.
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CHAPTER I

INTRODUCTION AND BACKGROUND

Two areas of research related to student learning which are 

currently receiving considerable attention in the literature are the 

task analyses of Gagne and the developmental theory of Piaget. Gagne 

has sought to enhance student learning by improving the internal 

logic and organization of the curriculum. Piaget has attempted to 

identify stages of cognitive development, describing the logical 

thinking skills at the various levels. Both researchers have an 

important contribution to make to education; however, the realization 

of these contributions has not been achieved to a great extent in 

American education, even though considerable effort has been made 

to discuss their techniques and theories. If the logical thinking 

skills necessary for learning specific concepts can be identified 

along with the necessary prerequisite learning tasks for these con­

cepts, then student learning can be greatly enhanced. The following 

is a discussion of the Gagnean and Pi agetian positions with emphasis 

on their strengths and limitations for enhancing student learning.

Gagnean Task Analysis

According to Gagne (1970), "Learning is a change in human 

disposition or capability, which can be retained and which is not 

simply ascribable to the process of growth" (p. 3). It produces in 

the child a new capability. Gagne defines knowledge as "...that 
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inferred capability which makes possible the successful performance 

of a class of tasks that could not be performed before the task was 

undertaken" (Gagne, 1962, p. 355). Thus, learning derives from the 

acquisition of knowledge.

Gagne (1970) views the learning situation as consisting of 

the learner, the stimulus situation, and the response or performance. 

The learner brings to the learning situation a set of internal capa­

bilities obtained from previous learning and from heredity. The 

stimulus situation is the event or events external to the learner 

which cause the learning to occur. Learning is inferred from the 

response which ensues from the stimulus situation.

Gagne (1970) has identified eight types of learning, each 

deriving from a different set of conditions. Different types of 

learning are classified according to the conditions from which they 

derive. The eight types of learning Gagne describes are as follows: 

signal learning, stimulus-response learning, chaining, verbal associa­

tion, discrimination learning, concept learning, rule learning, and 

problem solving.

Gagne (1970) recognizes that the term "learning," in its 

most comprehensive sense, includes the learning of motivations and 

attitudes as well as subject-matter content. However, he limits his 

instructional theory to the acquisition of subject-matter knowledge. 

His techniques pertain to methods of structuring the curriculum to 

produce conditions that will obtain desired types of learning. In 

other words, he concerns himself with "what to teach." He does not 
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concern himself with arranging learning conditions which captivate a 

student's interest or which motivate a student to pursue a learning 

task. Thus, he is not concerned with the "management of learning" 

or with "modes of instruction."

For Gagne (1970), learning is cumulative and hierarchical.

Learning to solve a particular problem (type 8, problem solving) 

requires as prerequisites knowledge of certain rules (type 7, rule 

learning). Rule learning requires knowledge of concepts (type 6, 

concept learning). Readiness to learn any task depends only upon the 

possession of all the prerequisite subordinate knowledge and skills. 

Although Gagne recognizes the neurological and physiological limita­

tions placed upon learning by maturation, he takes the position that 

learning subsumes development. He states, "...differences in de­

velopmental readiness are primarily attributable to differences in 

the number and kind of previously learned intellectual skills"

(p. 290). Because learning is viewed as cumulative, complex learning 

such as problem solving and rule learning is thought to be possible 

for even young learners. He states:

Limitations of intellectual growth do not prevent 
a young learner from solving an abstract problem, 
or from learning new higher-order rules that are 
symbolically represented. Such learning may be 
readily accomplished if the learner has acquired, 
or will undertake to acquire, the intellectual 
skills that are prerequisite to the task. (p. 290)

Because the acquisition of a learning objective requires 

the learning of subordinate intellectual skills, it becomes necessary 

to identify these skills and to organize them hierarchically. This 
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is accomplished by a technique called task analysis. The learning hier­

archy which results from a task analysis delineates "...an entire 

set of capabilities having an ordered relation to each other, in

the sense that in each case prerequisite capabilities are represented 

as subordinate in position, indicating that they need to be previously 

learned" (Gagne, 1970, p. 238). Gagne (1962) describes the process 

of task analysis as follows:

Beginning with the final task, the question is asked, 
"What kind of capability would an individual have 
to possess if he were able to perform this task suc­
cessfully, were we to give him only instructions?" 
The answer to this question...identifies a new class 
of tasks which appears to have several important 
characteristics. Although it is conceived as an 
internal "disposition," it is directly measurable 
as a performance. Yet it is not the same performance 
as the final task from which it was derived. It is 
in some sense simpler, and it is also more general. 
In other words, it appears that what we have defined 
by this procedure is an entity of "subordinate know­
ledge" which is essential to the performance of 
more specific final tasks, (p. 356)

The hierarchy obtained from a task analysis becomes the scope 

and sequence of the curriculum. It is a progression of separate 

learning events that lead the learner to the acquisition of the 

final task. Gagne states (1970) that if the hierarchy is valid, 

there will be positive transfer from the prerequisite capabilities 

to higher-order capabilities. Thus, Gagne's task analysis provides 

a technique for logically organizing and sequencing subject matter.

It provides a method for determining exactly "what to teach" to bring 

the learner to mastery of particular learning objectives.
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Gagne's instructional strategies have been widely received 

by educators as an effective technique for organizing curriculums. 

Case (1975) describes Gagne's instructional theory as one of the most 

powerful models of learning. Tennyson and Merrill (1971) state 

that Gagne's model "...enables translation of a given set of essen­

tial conditions into instructional strategy that can then be manip­

ulated for maximally efficient and effective learning" (p. 27).

Gagne's task analysis model is based upon the hypothesis 

that hierarchically sequencing of subject matter can increase the 

effectiveness and efficiency of learning (Tennyson, 1972). Many re­

searchers, however, have not been able to empirically verify this 

hypothesis. As obvious as this hypothesis seems to be, a review of 

literature reveals a surprisingly large number of studies that do 

not support the sequencing hypothesis. Roe, Case, and Roe (1962) 

investigated the performance differences between logically sequenced 

topics and randomly sequenced topics with college students studying 

elementary probability. Their results showed no significant differ­

ence between the two treatment groups. Garvin and Donahue (1961) 

conducted an experiment in which they presented a logically sequenced 

curriculum to one group and a randomly sequenced curriculum to another 

group. Students were required to work until they reached a given 

criterion. They found no significant difference in retention of the 

two groups when tested a month later. Levin and Baker (1963) inves­

tigated the effects of presenting logically and randomly sequenced 

mathematics curriculums to second-grade students and found no 
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significant difference between the performances of the two groups. 

Hamilton (1964) investigated the effects of logically vs. randomly 

sequenced subject matter under two covert response conditions: 

specific-reading and thinking-up-responses to fill-in-blanks vs. non­

specific reading only. They found the random non-specific version 

to be the most successful. Payne and Krathwohl (1967) investigated 

the effect of logically vs. randomly sequenced subject matter on achieve­

ment of university psychology students. Their results showed no 

significant difference in achievement among the three groups.

Several researchers have expressed views which might help 

to account for the lack of empirical support for the sequencing 

hypothesis. Niedermeyer, Brown and Sulzen (1969), after reviewing 

the sequencing studies in the literature, hypothesized that the se­

quence effects depend upon the subject matter being taught and the 

individual learner's ability and age. They concluded that the se­

quencing studies have failed to consider these factors. Case (1975) 

suggests that the effectiveness of Gagne's sequencing strategies is 

limited by the cognitive ability of the learner. He points out that 

Gagne's strategy does not acknowledge the developing cognitive capaci­

ties of children and suggests that it is possible for a learner 

advancing along a hierarchy to be advanced into subject matter beyond 

his present cognitive capacity to learn. Piaget (1964) has advanced 

the position that the cognitive development of children is ontigenetical, 

hierarchical, and evolves through stages. He has demonstrated that 

there are cognitive characteristics, representative of each stage.
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which place limitations on learning. Therefore, attempts to teach a 

child subject matter requiring cognitive structures which he does not 

yet possess will not succeed. The work of Neidermeyer, Brown and 

Sulzen, Case, and Piaget emphasizes the notion that improper con­

sideration for cognitive development might be contributing to the 

lack of empirical support of the sequencing hypothesis.

Gagne's task analysis techniques for determining the scope 

and sequence of subject matter hold great potential for curriculum 

development. It is especially helpful to the classroom teacher in 

determining "what to teach" in order to bring students to mastery 

of specific learning objectives. Although this technique has been 

used extensively in curriculum development by textbook writers, 

classroom teachers, and programmed instruction developers, its 

effectiveness in promoting increased student achievement has been 

disappointing (Tennyson, 1972). Perhaps its effectiveness could be 

increased if the cognitive development of the learner were accounted 

for in developing the hierarchy.

Piagetian Developmental Theory

Piaget (1969) views intelligence as deriving from psycho­

logical adaptation to the environment. To Piaget, contact with the 

environment results in the formation of psychological "schemes" which 

are "...the structures or organization of actions as they are trans­

formed or generalized by repetition in similar or analogous circum­

stances" (p. 4). For example, he speaks of the operational schemata 
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of ordering, measuring, and counting. As a child interacts with 

his environment, his experiences are either "assimilated" into exist­

ing schemes or existing schemes are modified to "accommodate" the 

new experiences. Cognitive structures are formed and organized 

as a child adapts psychologically to his environment by assimilating 

and accommodating experiences. Piaget (1973) defines intelligence 

as constituting

...the state of equilibrium towards which tend 
all the successive adaptations of a sensori­
motor and cognitive nature, as well as all 
assimilatory and accommodatory interactions be­
tween the organism and the environment, (p. 11)

According to Piaget, the development of intelligence in the 

child passes through distinct stages, which are invarient in sequence 

but which may vary as to duration and chronological age. Wadsworth 

(1971) describes this mode of cognitive development as being

...a coherent process of successive qualitative 
changes of cognitive structures (schemata), each 
structure and its concommitant changes deriving 
logically and inevitably from the preceding one. 
(p. 25)

The first stage is the sensori-motor period, which extends 

from birth to about 18 months and is the period of development when 

the child acquires sensori-motor control through trial and error. 

The next stage, preoperations, extends from about 18 months to about 

age 7 and is the period when language develops. Thought and language 

are egocentric, and the child solves problems perceptually rather 

than logically. The stage of concrete operations begins somewhere 
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around age 7 and estends to about age 11 or 12 and is manifest by the 

child's ability to solve concrete problems using logical operations. 

The final stage, formal operations, begins somewhere around ages 

11 or 12 and is characterized by the student's ability to solve 

problems through logical deduction of possibilities and consequences.

Piaget (1964) suggests that, if learning is to occur, the 

conceptual difficulty of the cirriculum must parallel the learner's 

level of cognitive development. He has stated.

The child can receive valuable information via 
language or via education directed by an adult 
only if he is in a state where he can understand 
this information. That is, to receive the infor­
mation, he must have a structure which enables him 
to assimilate this information. This is why you 
cannot teach higher mathematics to a five-year old. 
He does not yet have structures which enable him 
to understand, (p. 180)

Therefore, it is not only necessary to determine "what to teach" 

to bring the learner to mastery of particular learning objectives, 

but from the Pi agetian point of view, it is necessary to determine 

"when to teach" a given concept or principle. Many researchers are 

emphasizing the importance of determining the stage of cognitive 

development of the learner and of providing subject matter having 

a level of conceptual difficulty matching the learner's logical 

thinking skills. Hartford and Good (1976) suggest that Piaget's 

model of cognition provides the best framework for assessing the 

cognitive demands of instructional materials so that subject matter 

may be presented at the proper time or stage in the student's cog­

nitive development. Brady (1970) states, "An essential component of 
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any successful teaching situation is an awareness by the teacher of 

a pupil's level of comprehension, so that teaching is meaningful" 

(p. 765). Rowell and Hoffmann (1975) comment, "Any attempt to adapt 

curricula to the (cognitive) developmental levels of the intended 

population must be applauded as an important step toward improving 

the quality of our educational system" (p. 157). Bass and Montague 

(1972) have urged educators to organize instruction to parallel the 

sequence of development of the child's ideas.

Although Piaget has described in detail the logical thinking 

skills characteristic of each stage of cognitive development, his 

work has been of little help to the classroom teacher in providing 

subject matter appropriate to the cognitive capacities of students. 

The problem stems from the fact that Piaget used very few concepts 

commonly taught in the public schools to illustrate the logical 

thinking skills characteristic of each stage of cognitive development. 

Consequently, the cognitive demands of most concepts taught in the 

public schools are conjecture. Even though Piaget has provided 

educators with techniques for determining the developmental stages 

of children, researchers have not yet developed techniques for deter­

mining the developmental stage in which specific concepts can be 

appropriately taught. Bridgham (1969), commenting on the need for 

research to determine the cognitive demands of specific concepts, 

states.

It is only after particular effects of development 
have been demonstrated in the classroom learning of 
children that we will be able to use the extensive 
Piagetian work with confidence, (p. 119)
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Synthesis of Gagnean Instructional Strategies and 
Piagetian Developmental Theory

Student learning could be significantly enhanced if an effec­

tive technique for matching subject matter with students1 cognitive 

capacities could be developed and implemented. Gagne's task analysis 

provides techniques for determining the subject matter necessary 

to enable students to learn specific concepts of the curriculum, or, 

in other words, "what to teach." However, it does not make adequate 

provision for determining the logical thinking skills necessary for 

learning concepts, or "when to teach" prescribed concepts. Piaget's 

theory provides direction regarding "when to teach" various concepts; 

however, researchers have not yet successfully utilized this theory 

and identified the logical thinking skills required to learn specific 

concepts of the curriculum. Thus, his theory has not been adequately 

utilized to determine when students are cognitively ready to learn 

specific subject matter.

If an effective technique could be developed for determining 

the logical thinking skills necessary for learning specific concepts, 

then the instructional strategies of Gagne and the developmental 

theory of Piaget could be combined and utilized to enhance student 

learning. Until the present time, almost all studies investigating 

these relationships have attempted to relate general levels of cog­

nitive development to concept attainment. These studies have been 

helpful because they have shown that a positive relationship does 

exist between cognitive development and concept attainment. However, 
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they have been of little utility in promoting student learning of 

specific concepts.

The present study attempts to determine the relationships 

among a specific logical thinking skill, proportional reasoning, and 

understanding of specific science and mathematics concepts taught 

in the public schools. Several concepts which appear to require 

the same logical thinking skill for their understanding were selected 

for this study. They are: the science concepts associated with 

the particulate structure of matter, simple machines, and the mathe­

matics concept of equivalent fractions. The logical thinking skill 

which appears to be necessary for understanding these concepts is 

what Piaget terms "quantitative proportionality." According to 

Piaget, this logical thinking skill does not develop until after age 

11 or 12, when formal operations begin to develop. The concept of 

equivalent fractions was selected because its structure is almost iden­

tical to the structure of proportions. The structure of matter 

concepts were selected because their abstract nature requires the use 

of models to teach them. It will be shown later that the use of 

models requires an analogous-type thinking similar in structure to 

proportional thinking. These concepts were also selected because 

structure of matter is the most commonly taught concept in elementary 

and junior high school science books. The concepts associated with 

simple machines were selected because they require the use of mathe­

matical proportions for their understanding (Inhelder & Piaget, 

1958).
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Before proceeding, it is necessary to define more precisely 

what is meant by "understanding" these concepts. For the purposes 

of this study, understanding is defined according to Bloom's 

Taxonomy of Educational Objectives (Bloom, 1956).

Bloom's Taxonomy

According to Bloom (1956), knowledge is the lowest level 

of educational objectives that a student can achieve, and it does 

not represent understanding. Comprehension, the next level of educa­

tional objectives, is defined as the first level at which understanding 

occurs. Comprehension is evidenced when the student "...knows what 

is being communicated without necessarily relating it to other material 

or seeing its fullest implications" (p. 204). The next level of 

educational objectives is application, which is evidenced when the 

student can "...make use of abstractions in particular and concrete 

situations. The abstractions may be in the form of general ideas, 

rules of procedure or generalized methods" (p. 205).

Bloom (1956) does not define knowledge as understanding. 

To him, it represents the "...recall of specific and isolated bits 

of information" (p. 201), which can be accomplished without an under­

standing of what is being recalled. For example, a student may be 

able to rotely compute the solution to the problem 2/3 = ?/12 by 

recalling and following a memorized procedure and yet have no compre­

hension of the equivalence relationship existing between 2/3 and 

8/12. This is consistent with Piaget's description of true under­
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standing of concepts. For example, Ginsburg (1969) states Piaget's 

position concerning the child's understanding of the concept of number 

as opposed to his ability to rotely compute as follows:

The reason for Piaget's lack of interest in these 
matters (rote computation) is that simple addition 
and subtraction of whole numbers, as well as other 
manipulations of them, can be carried out entirely 
by rote and without understanding. The child can 
simply memorize the addition and subtraction tables 
and fail to comprehend the basic concepts underlying 
them. Piaget does not deny that it is necessary 
to memorize the facts of addition and subtraction; 
for purposes of computation, we all must do so. 
He asserts, however, that for the mature under­
standing of number, such rote memorization is not 
sufficient and must be accompanied by mastery of 
certain basic ideas, (p. 142)

For the purposes of this study, rote computation and recita­

tion of fact were defined as being knowledge and not understanding, 

because they can be carried out rotely without understanding. 

Evaluation of student achievement of the science and mathematics 

concepts was made at the knowledge level and the understanding levels 

of comprehension and application. The logical thinking skill of 

quantitative proportionality was postulated as being necessary for 

understanding these concepts. This logical thinking skill is posited 

(by Piaget) as being necessary for understanding certain concepts 

associated with equivalent fractions, the particulate structure of 

matter, and simple machines, because of the similarity of structure 

between these concepts and the structure of proportions.

The following is a discussion of the structure of proportions 

and the logical thinking skills which underlie proportional thinking.
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The structure of selected concepts associated with equivalent frac­

tions, structure of matter, and simple machines will then be compared 

to the structure of proportions; and the logical skill thought to 

be related to the understanding of these two concepts will be dis­

cussed.

Proportions

To describe the structure of proportions, it is necessary 

to define ratio. A ratio is a comparison between two entities that 

expresses their quantitative relationship. For example, the quan­

titative relationship between six students and three pairs of scissors 

is expressed by the ratio 6/3. Two ratios are equivalent when they 

express the same quantitative relationship. For example, the quan­

titative relationship between two students and one pair of scissors, 

as expressed by the ratio 2/1, is the same relationship that exists 

between six students and three pairs of scissors or eight students 

and four pairs of scissors.

A proportion is defined by Inhelder and Piaget (1958) as 

being a statement of equality between the ratios. The structure of 

a proportion is given by: X/Y = X'/Y1. An example of a proportion 

would be the statement of equality between the two ratios describing 

the same relationship between six students and three pairs of scissors 

and eight students and four pairs of scissors: 6/3 = 8/4. Both 

of these ratios express the quantitative relationship of 2/1.

Inhelder and Piaget (1958) describe the logical thinking 

skills necessary for understanding proportions as deriving from two 
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schemata. The first is an anticipatory scheme for qualitative pro­

portionality which can develop during the stage of concrete opera­

tions. This scheme is based upon logical multiplication, the idea 

that two factors acting together are equivalent to the action of 

two other factors acting together. For example, a student performing 

Piaget's balance task demonstrates that he has developed this scheme 

when he can visually balance two unequal weights without resorting to 

trial and error manipulations. Possession of this scheme enables 

the student to discover the inverse relationship between the size 

of a weight and the distance it needs to be from the fulcrum to 

balance a given weight placed on the opposite balance arm. The 

concrete operational child can develop this scheme when interacting 

with concrete material.

The second scheme is a numerical quantification deriving 

from the anticipatory scheme. This scheme enables the child to metri­

cally quantify proportions. Once this scheme has developed, the child 

is able to metrically quantify the relationship between the two 

ratios comprising a proportion. According to Lunzer (1965), this 

requires the perception of three relationships: the relationship 

between the two terms of one ratio in the proportion, the relation­

ship between the two terms of the other ratio in the proportion, 

and an "identity" relationship between the first two relationships. 

This identity relationship is a second-order operation characteristic 

only of formal operational thought. Concrete operational thinkers 

do not possess a scheme for quantitative proportionality. This scheme 
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can develop during transition from concrete to formal operations and 

is fully developed in formal operational thinkers. A student per­

forming the balance task demonstrates that he has developed this 

scheme when he can discover the quantitative relationship between 

weight and the distance it needs to be placed from the fulcrum to 

balance another weight placed in a particular position on the oppo­

site end of the balance arm. This enables him to mathematically 

calculate size of weights and specific distances needed to achieve 

balance. The structure of equivalent fractions and the logical 

thinking skills necessary for understanding equivalent fractions 

will now be presented.

Equivalent Fractions

A fraction expresses a quantitative relationship between a 

part of a whole and the whole itself. For example, the quantitative 

relationship between a whole divided into two equal parts and one of 

its parts, as expressed by the fraction 1/2, is the same relationship 

that exists between a whole divided into six equal parts and three 

of its parts or a whole divided into eight equal parts and four of 

its parts.

Equivalent fractions are defined as fractions which name 

the same number (Keedy, 1970). The structure of two equivalent 

fractions is given by: X/Y = X'/Y'. For example, the fraction 1/2 

is named by the equivalent fractions 3/6 and 4/8. These two equi­

valent fractions are expressed in the form 3/6 = 4/8. Equivalent 
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fractions name the same number because they express the same quan­

titative part/whole relationship.

The Relationship Between Proportional Thinking 
and Understanding Equivalent Fractions

A comparison between equivalent fractions and proportions 

reveals almost identical structures. If an understanding of pro­

portions requires the concrete operational thinking skills of logical 

multiplication and the formal operational thinking skills of numerical 

quantification of qualitative proportions, then an understanding 

of equivalent fractions probably requires these same thinking skills. 

Since the minimum age posited by Piaget for the beginning of the 

development of formal operations is about 11 or 12, any instruction 

in equivalent fractions to students below this age will probably 

not succeed in producing understanding at the comprehension or 

application levels. Rote computation could be taught, and the stu­

dents could become skillful in rotely computing answers to problems 

such as: 2/8 = ?/24; however, students would not be able to solve 

story problems or other tasks that required understanding at the com­

prehension or application levels.

The Particulate Structure of Matter

The structure of matter commonly taught in the school curri­

culum depicts matter as being composed of small particles called 

atoms and molecules. Because these particles are sub-microscopic 

and cannot be perceived directly by students, models are used to teach 
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about them. These models are analogies which represent atoms and 

molecules (Pella and Ziegler, 1968). For a student to achieve 

understanding of the particulate structure of matter, he must possess 

the logical thinking skills necessary for understanding analogies.

Lunzer (1965) investigated the logical thinking skills 

necessary for students to understand verbal and numerical analogies. 

He constructed analogies of varying complexity and abstractness. 

Simple analogies such as "Leather is to shoe as wool is to 11

were assumed to require only the logical thinking skills of concrete 

operations. Lunzer (1965) reasoned that "...the child would simply 

'read off the relation between the first two terms and apply it to 

the third, so discovering (or selecting) the fourth" (p. 32). More 

complex and abstract analogies were thought to require the logical 

thinking skills of formal operations. After experimenting with 

students from age 9 to 17, he stated, "Analogies, whether verbal or 

numerical, demand a more complex process of reasoning than is available 

at the concrete level" (p. 39). He further stated:

An analogy of the form, leather is to shoe as 
wool is to cardigan, necessarily involves three 
relations: a relationship between the first 
pair of terms, a relationship between the second 
pair of terms, and, finally, a third (of identity) 
between the first two relations. In point of fact, 
the logical structures of such a system exactly 
parallels that of a statement of proportionality, 
(pp. 40-41)

Pella and Ziegler (1968) investigated the effectiveness 

of two kinds of mechanical models in teaching elementary school 
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children the particulate structure of matter. They described their 

models as analogies:

Such models may be mechanistic, mathematical, or 
verbal, but they must function as analogies in 
either the hypothetical or the real world, 
(p. 138)

Students were organized into two treatment groups, modelers and 

nonmodelers. Modelers were students who spontaneously used "models" 

or analogies to explain natural phenomena observed in their day-to- 

day experiences. Both treatment groups viewed demonstrations illu­

strating the particulate structure of matter and explanations of 

the demonstrations using mechanical models. Students were post­

tested at the recall, transfer, and invention levels of understanding 

by giving verbal explanations to a series of previously unobserved 

demonstrations. The recall, transfer, and invention levels of 

understanding as defined by the researchers are comparable to the 

knowledge, comprehension, and application levels of Bloom's taxonomy.

Pella and Ziegler's analysis of their data and conclusion 

that neither model was significantly superior to the other is of 

little significance to this paper; however, an analysis of their data 

concerning students' success in using models (i.e., analogies) to 

gain understanding of the particulate structure of matter is of con­

siderable interest and is summarized as follows. The modelers explained 

79% of all problems correctly. The nonmodelers explained 48% of 

all problems correctly. The percent of correct explanations by 

level of difficulty is shown below.
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Knowledge Comprehension Application

Modelers 96% 94% 63%

Nonmodelers 96% 56% 20%

It is important to note that both modelers and nonmodelers gained 

a high degree of knowledge of the structure of matter; however, 

modelers achieved significantly greater understanding of the concept 

at the comprehension and application levels than nonmodelers.

The Relationship Between Proportional Thinking and 
Understanding the Particulate Structure of Matter

From the research reviewed, it appears that the ability to 

understand analogies is necessary to understanding the particulate 

structure of matter. Since understanding analogies requires pro­

portional thinking, it follows that understanding the particulate 

structure of matter should also require proportional thinking. If 

this is true, a review of the literature should reveal poor student 

understanding of the structure of matter in studies of students less 

than age 11 or 12, the minimum age postulated by Piaget for the 

beginning of proportional reasoning.

Simple Machines

Two kinds of simple machines commonly taught in physical 

science curriculums of junior high school textbooks are the lever and
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the inclined plane. One of the main concepts presented by most text­

books is that an object can be moved by a force less than its weight 

if a simple machine is used. The kind of problem students are com­

monly given to solve when studying simple machines is to calculate 

the force needed to move a given weight with a particular simple 

machine. The formulas for solving these kinds of problems are as 

follows.

For the lever:

LI distance from force to the fulcrum 
L_1  W2 L2 distance from the fulcrum to weight
L2 W1 W2 weight associated with L2

W1 weight associated with LI

For the inclined plane:

DI distance weight #1 moves up the 
inclined plane

DI  HI D2 vertical distance moved by weight #1
D2 W2 W1 weight of object moved up the inclined

plane
W2 weight needed to move weight #1 up the 

inclined plane

Since these formulas require proportions to set up and solve, 

proportional reasoning is probably required for a student to under­

stand the concepts associated with levers and inclined planes.

Purpose and Significance of the Study

The purpose of this study was to allow the writer to inves­

tigate the relationship between proportional reasoning and students1 

ability to demonstrate knowledge, comprehension and application of 

simple machines, structure of matter, and equivalent fractions concepts.
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The major research question to be answered was:

Are the differences among students' knowledge, 
comprehension, and application test scores on 
simple machines, structure of matter, and equi­
valent fractions related to their level of pro­
portional reasoning?

If the nature of the relationship between proportional 

reasoning and the achievement of knowledge, comprehension, and appli­

cation of the concepts can be determined, it will lay the foundation 

for experimental research to determine the specific proportional 

reasoning skills necessary for achieving knowledge, comprehension, 

and application of the selected concepts. When this is done, it will 

then be possible to combine the task analysis strategies of Gagne 

to develop hierarchies of concepts to teach students to bring them 

to specific levels of achievement of knowledge and understanding 

and the developmental theory of Piaget to determine when the student 

possesses the logical thinking skills necessary to achieve knowledge 

and understanding of each concept of the hierarchy.

Definition of Terms

The following definitions, taken from Pi agetian theory, 

will be used in this study.

Logical operations. An operation is a type of an action; 

it can be carried out either directly, in the manipulation of an 

object, or internally, when it is categories or (in the case of 

formal logic) propositions which are manipulated. Roughly, an opera­

tion is a means for mentally transforming data about the real world 



24

so that they can be organized and used selectively in the solution 

of problems. An operation differs from simple action or goal-directed 

behavior in that it is internalized and reversible (Inhelder & Piaget, 

1958, p. xiii).

Concrete operations. These are operations characteristic 

of the first stage of operational intelligence and develop between 

7 and 11 years of age. A concrete operation implies underlying 

general systems or "groupings" such as classification, seriation, 

and number. These mental operations are termed concrete because 

they operate on objects and not on verbally expressed hypotheses. 

They represent a means for structuring immediately present reality 

(Lawson, 1973, p. 3).

Formal operations. Formal operations typically manifest 

themselves in propositional thinking and a combinatory system that 

considers the real as one among other hypothetical possibilities. 

Formal operations are characteristic of the second and final stage 

of operational intelligence, which "reflects" on concrete operations 

through the elaboration of formal "group" structures (Furth, 1975, 

p. 157). This type of thinking begins to develop somewhere around 

11 or 12 years of age.

Scheme. A scheme is the structure or organization of actions 

as they are transferred or generalized by repetition in similar or 

analogous circumstances (Piaget, 19 ). For example, Piaget speaks 

of a "sucking scheme" which is innate and a scheme for proportions 

which is constructed through experience and characteristic of formal 

operational thinking.
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Stages. Stages are defined by Furth (1975) as being, 

...successive developmental periods of intelli­
gence, each one characterized by a relatively 
stable general structure that incorporates 
developmentally earlier structures in a higher 
synthesis. The regular sequence of stage­
specific activities is decisive for intellec­
tual development rather than chronological age. 
(p. 163)

Concept. Bruner (1956) defines a concept as:

...a continuum of inferences by which a set of 
observed characteristics of an object or event 
suggests a class identity, and then additional 
inference about other unobserved characteristics 
of the object or event, (p. 244)

According to Martorell a (1972), concepts classify objects, events, 

and people according to common characteristics. They are categories 

of experiences having a rule which defines the relevant category 

and a set of positive instances or exemplars with attributes.

Quantitative proportionality. A logical thinking skill based 

upon the quantification of logical multiplication, quantitative 

proportionality enables comprehension of mathematical proportions.

Qualitative proportionality. This logical thinking skill

is based upon logical multiplication, in which the idea that "two 

factors acting together are equivalent to the action of two other 

factors acting together" is comprehended (Inhelder and Piaget, 1958, 

p. 177).



CHAPTER II

REVIEW OF THE LITERATURE

This chapter presents a review of the literature pertinent 

to this study. The literature review is divided into three categories:

(1) Piagetian logical thinking skill of quantitative proportionality,

(2) mathematics concepts studies, and (3) science concept studies.

Pi agetian Logical Thinking Skill of 
Quantitative Proportionality

The purpose of this section is to present an overview of 

Piaget's theoretical framework concerning this logical thinking skill. 

The findings of the research studies reviewed in the following sections 

will be compared to the framework to determine if this logical thinking 

skill might appear to underlie understanding of the selected science 

and mathematics concepts.

Describing the logical thinking skill of proportionality, 

Inhelder and Piaget (1958) state that proportionality does not develop 

until around age 11. Even though 8-11 year old children may be able 

to construct fractions and numerical ratios, they are not able to 

discover the equality between ratios and form proportions. They are 

also unable to quantify logical multiplications, two factors acting to­

gether which are equivalent to the action of two other factors acting 

together, which are characteristic of concrete operational thinking 

and form proportions. Thus, the quality of concrete operational 

26
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thinking involved with logical multiplications is qualitatively 

different from the quality of formal operational thinking involved 

in proportional thinking.

Attempting to relate logical proportionality and numerical 

proportionality, Lunzer (1965) seriously questioned the Pi agetian 

postulate that numerical quantification of logical multiplication 

produces proportional thinking at a level qualitatively different 

from logical multiplication of concrete thinking. He stated,

The matter may be put even more sharply by 
asking whether Piaget is justified in postu­
lating the existence of two successive levels 
in the development of logical reasoning or, 
whether, when the child has achieved the level 
of "concrete" reasoning and is, therefore, capable 
of argument in terms of fixed (because operation­
ally definable) terms, his reasoning is ipso 
facto logical, insofar as the problem is not 
unduly complex and does not demand experience 
that he lacks. From this stage on, further 
progress would be a matter of quantitative gains 
rather than a difference in type of reasoning, 
(p. 31)

To test his hypothesis, Lunzer selected verbal and numerical 

analogies having structures identical to numerical proportions. He 

selected analogies ranging from very simple to very complex. The very 

simple analogies were thought to require only the concrete operational 

thinking skill of simple classification, while more complex analogies 

were thought to require formal operational thinking skills. If it 

could be demonstrated that simple analogies could be solved by con­

crete operational students, then it could be established that simple 

proportional thinking is characteristic of concrete operations and 
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not qualitatively different from the more complex proportional thinking.

The difference would therefore be quantitative.

Lunzer (1965) tested 153 students, ages 9 through 17. Sum­

marizing his results, he stated.

We are forced to conclude that the elementary 
analogies of group A represent something more 
than mere concrete reasoning. Indeed, the 
steep rise that occurs after the age of 10 
strongly suggests that these problems involve 
a type of reasoning, that is, formal reasoning, 
that is not present at the earlier level and 
is only elaborated about the age of 11. (p. 38)

Lovell and Butterworth (1966) investigated the logical thinking 

skills underlying formal operational thinking of students ages 9 

through 15. Many of their test items were verbal and numerical 

analogies similar to Lunzer's. Their results parallelled those of 

Lunzer's and they concluded that, “The scheme of proportionality 

depends on some central intellective ability which underpins perfor­

mance on all tasks involving proportion" (p. 2).

Mathematics Concepts Studies

The purpose of this section is to review studies concerning 

students' understanding of equivalent fractions. If quantitative 

proportionality is necessary for understanding equivalent fractions, 

then few students before about 6th grade (11 - 12 year-olds) would 

be expected to demonstrate understanding.

Novi 11 is (1976) sought to validate an hypothesized hierarchy 

of subconcepts leading to the understanding of the fraction concept.
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Following Gagne's (1970) procedure, she developed a hierarchy of 16 

subconcepts thought to be requisite to development of the fraction 

concept. Six of these subconcepts dealt with equivalent fractions. 

A test was developed for each subconcept of the hierarchy, and a 

criterion level of 75% was established for each subtest. The six 

equivalent fractions subconcepts were tested at the comprehension 

level of understanding. Two-hundred-and-seventy-nine fourth, fifth, 

and sixth-grade students were tested. Of the six equivalent fraction 

subconcepts tested, the largest percent of students to reach criterion 

was only 7%. Discussing these results, she states:

Many students can associate the fraction 1/5 with 
a set of 5 objects, one which is shaded, but most 
cannot associate the fraction 1/5 with a set of 
ten objects, two of which are shaded, even when 
the objects are arranged in an array that clearly 
indicated that one out of every five is shaded, 
(p. 143)

Since the age level of most fourth, fifth, and sixth-graders 

is 9, 10, and 11 respectively, the majority of the students would 

probably be concrete operational, and would not possess the scheme of 

quantitative proportionality.

Steffe and Parr (1968) interpreted equivalent fractions as 

being proportions similar in structure to equal ratios. After re­

viewing Inhelder's and Piaget's (1958) and Lunzer's (1965) research 

on proportions, they questioned the ability of most fourth, fifth, 

and sixth-grade students to solve equivalent fractions and equal ratio 

problems. They selected 346 fourth, fifth, and sixth-grade students 

who had studied equivalent fractions and ratios as part of their 
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regular mathematics curriculum and tested their ability to solve pro­

portions composed of either equivalent fractions or ratios. Two kinds 

of tests were given, symbolic and pictorial. Symbolic test items 

were rote computation problems such as 2/3 = 4/?, which tested students 

at the knowledge level. Pictorial test items were problems which 

required the student to perceive and solve a proportional relationship 

between two arrays, and tested students at the application level.

They found that about 25% of the fourth-graders could correctly 

compute the computational test items, and about 71% of the fifth-graders, 

and about 83% of the sixth-graders could correctly compute these 

problems. Success in solving the pictorial test ranged from about 

45% of the fourth-grade students to 55% of the fifth-grade students, 

and 65% for the sixth-grade students. They concluded by stating:

These results seem to be very consistent with the 
facts that (1) Piaget sees formal thinking emerging 
at about 23 years of age—or at about the sixth-grade 
level, (2) Lunzer observes a steep rise in scores 
on verbal and numerical analogies after the age of 
10, and (3) that Lunzer sees formal reasoning being 
elaborated only at about the age of 11. (p. 23)

Coburn (1974) compared the effectiveness of teaching equiva­

lent fractions by using a ratio model which compared equivalent part/part 

relationships and a region model which compared equivalent part/whole 

relationships. Models were used to generate equivalent fractions 

describing particular regions or sets. This develops understanding 

at the comprehension level. The subjects consisted of 254 fourth­

grade students (9 year-olds) from ten self-contained classrooms. 

Students were taught for four weeks and posttested. Coburn found no 
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significant difference in effectiveness between either model and 

found that the level of achievement of both groups was only slightly 

greater than 50%. He stated that the students did not utilize the 

generalization used to generate equivalent fractions from models 

during the four weeks of instruction. Instead, they tended to rely 

on perceptual clues or counting. He concluded by questioning the 

appropriateness of teaching equivalent fractions in fourth grade. 

Since fourth-grade students are typically nine-year-olds, the 

majority of them were probably concrete operational and therefore 

would not possess the logical thinking skills of quantitative propor­

tionality.

Bohan (1971) investigated the effectiveness of three different 

instructional methods for teaching equivalent fractions to 171 fifth­

grade students (ten-year-olds) during a six-week instruction period. 

One method utilized models and numberlines to generate equivalent 

fractions. A second method used a paper-folding technique, and the 

third method utilized multiplication of a fraction by different forms 

of "one" (e.g., 6/6) to generate equivalent fractions. He posttested 

students for understanding and administered a retention test three 

weeks later. He found that 72% achieved his criterion for understand­

ing, and 53% reached criterion on the retention test. Since most 

fifth-graders are about ten years old, and would probably be concrete 

operational and would not possess the logical thinking skill of 

quantitative proportionality, his results are higher than would be 

expected.
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Science Concepts Studies

The purpose of this section is to review studies illustrating 

the levels of children's understanding of the selected science con­

cepts. If the logical thinking skill of quantitative proportionality 

is necessary for understanding of these concepts, then few students 

before sixth grade (ages 11 to 12) would be expected to demonstrate 

understanding.

Particulate Structure of Matter

Anderson (1965) investigated the extent to which children are 

able to form mental models to explain their observations of natural 

phenomena illustrating the particulate structure of matter. He showed 

183 third through sixth-grade children five demonstrations illustrating 

natural phenomena such as the melting of ice and the decrease of total 

volume observed when alcohol is mixed with water. Each student was 

shown five demonstrations during a Pi agetian-type interview, and his 

ability to formulate mental models to explain each phenomenon observed 

was assessed using problem-type questions. A mechanical model was 

then used to demonstrate to the student that marbles and BB's (steel 

air rifle shot) take up less total volume when mixed together than the 

sum of their individual volumes. Students were then re-shown the 

material used in the alcohol-water demonstration and asked, “Do the 

marbles and BB's give you any idea about what alcohol and water could 

be like so that alcohol and water take up less space when they are 

mixed together?" The models postulated by the students to explain the 
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phenomena were classified as atomistic, non-atomistic, magical- 

animistic and no explanation.

Anderson (1965) found a significant difference between the 

models proposed for the alcohol and water demonstration when it was 

viewed initially and after observing the mechanical model. Only 13% 

of the students initially gave an atomistic model, whereas 30% gave 

atomistic models after viewing the model. From this, Anderson con­

cluded that children can develop models to explain natural phenomena.

It is important to note that 70% of the students did not formu­

late an atomistic model even after having been individually taught by 

a teacher using a mechanical model. If the structure of matter concept 

does require the logical thinking skill of quantitative proportionality, 

as postulated, then Anderson's findings are fairly consistent with 

what would be expected. Since the students in his sample ranged from 

third-graders (8 year-olds) to sixth-graders (11 and 12 year-olds), 

most students would probably be concrete operational, and therefore lack 

the logical thinking skill of quantitative proportionality. This would 

account for the 70% who did not learn the particulate structure of 

matter concept. The 30% who were successful in acquiring the concept 

could probably be accounted for primarily by the 11 and 12 year-old 

sixth-graders, some of whom were in transition from concrete to formal 

operations and were developing the logical thinking skills of quanti­

tative proportionality. Several other findings reported by Anderson are 

consistent with the above view point. Anderson (1965) reported that 

the ability of children involved in the study to formulate mental models 
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increased with the age of the children, and the consistency of the 

children's explanations for the observed phenomena increased with age.

Harris (1964) investigated the ability of fourth, fifth, and 

sixth-grade children to understand concepts basic to the molecular or 

kinetic theory of heat. Seventy-four students were taught these con­

cepts using audio-tutorial instruction. Pretests and posttests were 

administered individually by interviewing the student using a Piagetian- 

type clinical interview. Students' responses were analyzed in terms of 

content, accuracy of observation, understanding, and reasoning, derived 

in part from Bloom's and Broder's (1950) model for the analysis of oral 

responses to problem solving situations. The criterion for determining 

if a particular concept could be appropriately taught at a given grade 

level was established to be the 50% level of efficiency. That is, 

when at least 50% of the students at a given grade level correctly 

answered the posttest questions evaluating the concept, it was judged 

to be appropriate for the grade level. The average level of efficiency 

over all concepts was 62% for sixth-graders, 50% for fifth-graders, 

and 31% for fourth-graders.

Harris (1964) concluded that grade placement of most concepts 

of molecular-kinetic theory at the fourth-grade level was inappropriate 

for these students. If the logical thinking skill of quantitative pro­

portionality is necessary for understanding the particulate structure of 

matter concept, then Harris' conclusion would be appropriate since 

fourth-grade students are typically nine and ten year-olds and few would 

be expected to have developed the logical thinking skill of quantitative 



35

proportionality. Because of the 62% and 50% levels of efficiency 

of the sixth-graders and fifth-graders respectively, Harris concluded 

that certain concepts of the molecular or kinetic theory of heat could 

appropriately be taught at these grade levels. Since fifth and sixth­

graders range in age from about ten to twelve, it is conceivable that 

some of them might have developed the logical thinking skill of quan­

titative proportionality and partially account for the students who 

demonstrated understanding of these concepts. However, these per­

centages are still much higher than would have been expected.

Pella and Carey (1967) investigated levels of maturity and 

levels of understanding of concepts concerning the structure of matter. 

Their purpose was to determine the grade levels at which certain concepts 

could be learned at the knowledge, comprehension, and application levels 

as defined by Bloom's taxonomy. The criterion selected for determining 

grade placement of concepts was if the earned mean score (posttest) was 

significantly different from guessing and if more than 50% of the 

members earned a score of 65% or greater. The subjects selected for 

the study consisted of 82 second, third, fourth, and fifth-grade stu­

dents randomly selected from an average ability group and a high ability 

group as defined by student I.Q. scores. Subjects were taught and 

tested over 16 concepts such as the particulate structure of matter, 

the structure of atoms and molecules, atomic weight, and atomic number.

Many concepts such as "molecules are composed of atoms" and 

"particles which make up matter are in motion" were found to be in­

appropriate for all grade levels when the comprehension and application
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levels of understanding were sought. Several concepts such as "par­

ticles which make up matter are in motion" were found to be appro­

priate at all grade levels if only the knowledge level of achievement 

was sought. These results would be expected since oldest students in 

the study were fifth-graders (10 and 11 year-olds) and few of them 

would be expected to possess quantitative proportionality. Some of 

the results are difficult to explain. For example, several concepts 

such as "A neutron does not have a charge" were found to be appropriate 

for high ability fifth-grade students at the comprehension and applica­

tion levels of understanding. The concepts "Atoms may be composed 

of protons, neutrons and electrons" and "Atoms have the same number 

of protons and electrons" were appropriate at the comprehension level 

for third, fourth, and fifth grade. If quantitative proportionality 

is required for understanding these concepts, then success of these 

students, most of whom are less than age 11, is difficult to explain.

McNeil (1962) tested the ability of first-graders to form and 

use particular concepts related to molecular theory. In a prestudy, 

he analyzed first and third-graders' explanations of certain natural 

phenomena related to the particulate structure of matter, such as 

"Why do clothes dry?" He found that almost without exception, percep­

tual (direct sensory) approaches such as "Clothes dry because of the 

heat" rather than theoretical solutions predominated their explanations. 

In fact, he found essentially no explanations indicating an understanding 

of the particulate structure of matter. Few, if any, third-graders 

(ages 8 and 9) would be expected to possess the logical thinking skills 

of quantitative proportionality; therefore, McNeil's findings were 

exactly what would be expected.
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Ward (1973) sought to determine if chronological age is a main 

factor in a child's ability to develop a particulate concept of 

matter. He used four physical demonstrations, such as gas diffusion 

and dissolving of substances, in a Piagetian-type clinical interview 

to determine the child's ability to understand the concept. He found 

that children under 10 years of age seemed to be unable to develop 

the abstract conceptualization. He found an interstage transitional 

"readiness" in some ten, eleven, and twelve year-old students, which 

he interpreted as indicating that the full particulate structure of 

matter concept requires the formal operational stage.

Simple Machines

A review of the literature revealed only a few articles per­

taining to simple machines. Most of the articles described various 

techniques for teaching concepts about levers. None of these articles, 

however, were reports of research investigating children's learning 

of the concepts concerning simple machines.

Summary

The studies discussed in this review indicate that quantitative 

proportionality may be necessary for understanding the selected science 

and mathematics concepts. Students below the age of 11 or 12, the 

age postulated by Piaget as the beginning of quantitative proportional 

reasoning for most children, have in general shown poorer understanding 

of the selected science and mathematics concepts than the students above 

this age.



CHAPTER III

METHODS, PROCEDURES, AND HYPOTHESES

The purpose of this study was to allow the researcher to 

determine the relationship between proportional thinking and students1 

abilities to demonstrate knowledge, comprehension, and application of 

simple machines, structure of matter, and equivalent fractions. If a 

relationship does exist, then a student's achievement of knowledge, 

comprehension, and application of the selected concepts should be a 

function of his level of proportional reasoning. The nature of this 

relationship could be investigated by assessing the achievement of 

knowledge, comprehension, and application of the selected concepts by 

students differing in level of proportional reasoning who had studied 

these concepts.

Sample

To determine if a relationship does exist between proportional 

thinking and achievement of knowledge, comprehension, and application 

of the selected concepts, it was necessary to identify a population of 

students differing in proportional reasoning abilities, and who had 

studied the selected concepts. A population of ninth-grade physical 

science students was selected because students of this 14 and 15 year- 

old age group would be expected to range in level of proportional 

thinking from low concrete to high formal (Chiappetta, 1976). Ninth-grade 

38
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was also selected because the concept of simple machines and structure 

of matter comprise a major part of the physical science curriculum 

in the high school selected for the study.

A sample of 136 students was randomly selected from a suburban, 

middle-class population of 444 ninth-grade physical science students 

who were taking physical science as a required course. The sample 

was composed of predominantly white students and a few Mexican- 

American students. The sample was randomly selected from 13 sections 

of physical science being taught by 7 different teachers. All students 

in each section used the same two physical science textbooks during 

the course. These textbooks were the Laidlaw Physical Science and 

the Ginn Modern Physical Science. All teachers followed the same 

sequence of chapters in the textbooks and generally followed the same 

time frame. Each teacher used a lecture/discussion approach in class 

and assigned homework problems from the textbook. Labs were inter­

spersed with lecture sessions, and each teacher followed the same lab 

guide. Each teacher prepared and administered his/her own tests for 

grading purposes.

Instruments

The instruments used to assess students1 knowledge, comprehen­

sion, and application levels of achievement of the selected science 

and mathematics concepts were developed by the researcher. Each in­

strument contained 12 test items which measured achievement at the 

knowledge level, 12 items which measured achievement at the comprehension 
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level, and 12 items which measured achievement at the application 

level. The three instruments were composed primarily of four alter­

native multiple choice questions with some matching questions.

Validity of the instruments was provided for as follows: 

Content validity of the mathematics instrument was established by 

selecting test questions from elementary and junior high school mathe­

matics testbooks and from the instrument developed by Steffe and Parr 

(1968). Content validity of the science instruments was established 

by examining the physical science textbooks used by the students in the 

sample and from this information, test questions were constructed.

A major task in constructing the instruments was to prepare 

items which assessed achievement at each of the three levels: know­

ledge, comprehension, and application. This was done by consulting 

Bloom's (1956) Taxonomy of Educational Objectives and constructing test 

items having the characteristics of each level as described in the 

taxonomy. The test items were then rated by a panel of judges consisting 

of public school teachers enrolled in graduate education programs at 

the University of Houston. Four science teachers rated the science 

questions, and four mathematics teachers rated the mathematics questions. 

Each judge was given a written description of the characteristics of 

knowledge, comprehension, and application-type questions and asked to 

rate the level of achievement assessed by each question. Items for 

the instruments were selected from questions which received the same 

rating by all four judges or by three out of four judges. Almost all 

items included in the instruments received unanimous rating by the 

judges.
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The reliability of the instruments was estimated by adminis­

tering them to a sample of 36 ninth-grade physical science students 

in a high school having a population of students very similar to the 

high school students investigated in the study. Kuder-Richardson 

formula 20 was used to obtain reliability estimates. A reliability 

estimate was obtained for each instrument and for each of the three 

sets of 12 items measuring knowledge, comprehension, and application. 

The results are given in Table 1. The reliability estimates for 

equivalent fractions and structure of matter were .91 and .90 respec­

tively. The reliability estimate of simple machines was .79. The 

estimated reliabilities for all subtests were greater than .70 

except for comprehension and application of simple machines, which had 

estimates of .40 and .43 respectively.

Results of the simple machines test were analyzed to determine 

why comprehension and application test reliabilities were low. It 

was found that most students scored very low on both subtests, and this 

probably accounted for the low reliability. It was hypothesized that 

most students in the sample were probably qualitative proportional 

reasoners and not capable of achieving a great deal of comprehension and 

application. Therefore, the only way to obtain an accurate reliability 

estimate would have been to use subtest scores of the quantitative pro­

portional reasoners in the sample. This was not possible, since the 

students' proportional reasoning level had not been assessed. There­

fore, the researcher decided to use test scores from the quantitative 

proportional reasoners in the main study to estimate the reliability 

of the two simple machines subtests.
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Table 1

Reliability Estimates for Simple Machines, 

Structure of Matter and Equivalent

Fractions Tests

Subtest
Equivalent
Fractions

Simple 
Machines

Structure of 
Matter

Knowledge .76 .80 .71

Comprehension .87 .40 .80

Application .74 .43 .71

Total Tests .90 .80 .90

When the simple machines test scores in the main study were 

analyzed, it was found that only high quantitative proportional rea- 

soners scored above the chance level. This made it necessary to use 

only the test scores of high quantitative proportional reasoners to es­

timate reliability. This was done, and the reliability estimates for 

comprehension and application were found to be .95 and .86 respectively.

Two Piagetian tasks, the Balance and the Quantification of 

Probabilities, were administered to students to assess their levels of 

proportional reasoning. Protocols for these tasks were developed by the 

researcher from the tasks described by Inhelder and Piaget (1958) 

in The Growth of Logical Thinking and Piaget and Inhelder (1975) in 
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The Origin of the Idea of Chance in Children. The tasks were adminis­

tered to students by the investigator and a professor from the College 

of Education, University of Houston. The investigator administered 

about 82% of the tasks. Previous to this study, the two researchers 

trained together in administering these tasks and conducted a research 

study in which the same two tasks were administered to ninth-grade 

students. This background experience seemed to be adequate for in­

suring a high level of agreement on assessing students' levels of pro­

portional reasoning. Other similar studies involving more than one in­

vestigator have reported high interrater agreement (Sayer and Ball, 

1975).

Students were classified as having demonstrated either low 

qualitative, high qualitative, low quantitative or high quantitative 

proportionality and arranged into groups according to their classifica­

tions. Because all students did not demonstrate the same level of 

proportional reasoning on both tasks, four different procedures were 

used to group students. One procedure grouped students by their classi­

fication on the balance task, and another by their classification on 

the quantifications of probability task. A third procedure used their 

lowest classification on the two tasks, and a fourth procedure used 

their highest classification on the two tasks.

The reason for grouping students by their highest and lowest 

scores is as follows. If a student possesses cognitive structure 

enabling him to demonstrate proportional thinking on one of the two 

tasks, then perhaps that structure will be sufficient to enable him 
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to achieve comprehension and application of the selected concepts.

If a student does not possess enough cognitive structure to enable him 

to demonstrate proportional thinking on both tasks, then perhaps he 

will not yet possess enough proportionality to enable him to achieve 

comprehension and application of the selected concepts. When students 

were grouped according to these four procedures, the number of students 

classified as low qualitative proportional reasoners for the balance 

and the highest score grouping procedures were 5 and 3 respectively. 

Because of the small number of low qualitative proportional reasoners, 

their group was dropped from the discriminant function analyses for 

the balance and highest score grouping procedures.

Gathering the Data

The science and mathematics instruments were administered to 

students by a tester during their regular physical science period. All 

testing was given on the same day. The methods and procedures for 

test administration were standardized by the researcher and followed in 

each classroom tested. All ninth-grade physical science students in 

the high school received the science and mathematics instruments.

Sixty-eight boys and sixty-eight girls were randomly selected 

from each physical science classroom and were given the two Piagetian 

tasks. The tasks were administered to each student individually by 

a previously trained tester. Students were drawn from their regular 

physical science class and tested privately in a room near their class. 

All tasks were administered during a two-week period and begun the day 
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following the administration of the science and mathematics instru­

ments.

Statistical Analysis and Hypotheses

The relationship between proportional thinking and knowledge, 

comprehension, and application of the selected concepts was analyzed 

by applying discriminant function analyses. This statistical technique 

permits the researcher to classify individuals into groups on the 

basis of their scores on various tests (Kerlinger, 1973). With 

discriminant function analysis, the dependent or criterion variable 

is categorical and represents group membership. The independent 

variables are continuous and are called the predictor variables. 

Discriminant function analysis enables the researcher to analyze a 

student's scores on the predictor variables and determine which group 

of students his scores are the most like (Tiedeman, 1951).

With discriminant function analysis, the discriminating vari­

ables are linearly combined to form discriminant function equations 

which statistically force groups apart by maximizing differences be­

tween the groups relative to the differences within the groups 

(Kerlinger, 1973). Discriminant functions are regression equations 

having the general form of: D=K1X^+K2X2..’Knxn » where D represents 

a discriminant function score, Kn represents weighted coefficients, 

and Xn represents the discriminating variables which significantly 

discriminated between the groups. Each discriminant function analysis 

equation derived in an analysis will contain at least one of the 
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discriminating variables entered into the analysis. The maximum 

number of discriminant functions that can be derived in an analysis 

is either one less than the number of groups or equal to the number 

of discriminating variables, whichever is smaller (Nie, Hull et al., 

1975).

Discriminant functions can be used to categorize students and 

to determine group differences. When a student's scores on each 

of the discriminating variables are entered into the discriminant 

function equations, the resulting D scores can be used to categorize 

him into one of the criterion groups. When a group's means on each 

of the discriminating variables are entered into the equations, the 

D scores obtained collectively define the group's centroid in dis­

criminant function space. A comparison of the D scores of all the 

groups for a particular function indicates the distance between group 

centroids along that dimension (Nie et al., 1975). The efficacy of the 

set of discriminating variables, from which a particular function is 

derived, to discriminate between groups is indicated by the magnitude 

of differences between the D scores. The efficacy of each discrimina­

ting variable in a discriminant function equation is indicated by the 

magnitude of the coefficients of the discriminating variables.

In this study, knowledge, comprehension, and application test 

scores were used as discriminating variables and levels or proportional 

reasoning demonstrated by students on the Piagetian tasks were used 

as the criterion for forming groups. Discriminant function analysis 

was performed to investigate the degree to which knowledge, comprehension 
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and application test scores discriminated among the four groups 

differing in proportional thinking. If a relationship exists between 

students1 levels of proportional thinking and their achievements of 

knowledge, comprehension, and application for a given concept, then 

their test scores should be effective in discriminating among the 

groups.

If groups of students differing in proportional thinking do 

score differently on knowledge, comprehension, and application tests, 

then mean vectors^ of the groups should be significantly different. 

These differences can be tested for significance by applying Wilks1 

lambda.In this study, the primary research hypotheses stated the 

expected differences among the mean vectors of the groups and were 

tested by applying Wilks' lambda. Since quantitative proportionality 

was not thought to be necessary for achieving knowledge of the concepts, 

the expected differences among group means were anticipated to be 

attributable to comprehension and application score differences.

The following primary hypotheses were tested:

Hp There is a significant difference between the mean vectors 

of knowledge, comprehension, and application test scores of simple 

machines concepts for the four groups of students differing in propor­

tional reasoning.

M group's mean vector consists of the group's means on the 
knowledge, comprehension, and application tests.

^Wilks' lambda is the portion of the variance in the criterion 
variable not accounted for by the regression of the criterion variable 
on the predictor variables.
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H2: There is a significant difference between the mean 

vectors of knowledge, comprehension and application test scores of 

structure of matter concepts for the four groups of students differing 

in proportional reasoning.

Hg: There is a significant difference between the mean vectors 

of knowledge, comprehension and application test scores of equivalent 

fractions concepts for the four groups of students differing in 

proportional reasoning.

Secondary hypotheses stated the expected differences among 

centroids of the four groups differing in proportional thinking. The 

centroids of the two qualitative proportionality groups were expected 

to differ from the centroids of the two quantitative proportion 

groups. These differences were investigated by application of dis­

criminant function analysis in which discriminant functions were 

generated from knowledge, comprehension, and application test scores 

and were used to compute group centroids. Since knowledge of the con­

cepts was thought to be attainable by both quantitative and qualitative 

proportionality students, knowledge test scores were not expected to 

discriminate between groups. Comprehension and application test scores, 

however, were expected to discriminate between qualitative and quan­

titative proportionality students and produce significantly different 

group centroids. Therefore, the following secondary hypotheses were 

devised.

The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the high quantitative 



49

proportionality group are significantly different from the group 

centroids of knowledge, comprehension, and application test scores of 

simple machines for the high qualitative proportionality group.

H5: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the high quantitative 

proportionality group are significantly different from the group 

centroids of knowledge, comprehension, and application test scores 

of simple machines for the low qualitative proportionality group.

Hg: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the low quantitative 

proportionality group are significantly different from the group 

centroids of knowledge, comprehension, and application test scores of 

simple machines for the low qualitative proportionality group.

H?: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the low quantitative 

proportionality groups are significantly different from the group cen­

troids of knowledge, comprehension, and application test scores of 

simple machines for the high qualitative proportionality group.

Hg: The group centroids of knowledge, comprehension, and appli­

cation test scores of simple machines for the high and low quantitative 

proportionality groups combined is significantly different from the 

group centroids of knowledge, comprehension and application test scores 

for the high and low qualitative proportionality groups combined.

Hg_i8: Same for structure of matter and equivalent fractions.

To test the secondary hypotheses, Mahalonobis1 test for pairwise 

differences between group centroids was applied. This test ascertained 
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significant differences between all possible pairs of group centroids 

spread by either knowledge, comprehension, or application, or any 

combination of these test scores.

Directional differences between significantly different centroids 

were investigated by plotting the group centroids in reduced dis­

criminant space and comparing their locations. Because quantitative 

proportionality students were expected to consistantly score higher 

on comprehension and application test items than qualitative propor­

tionality students, the group centroids of quantitative proportionality 

students were expected to be located above and to the right of the 

group centroids of the qualitative proportionality students.



CHAPTER IV

RESULTS AND DISCUSSION

This study was concerned with the relationship between propor­

tional thinking and students' abilities to demonstrate knowledge, 

comprehension, and application of simple machines, structure of 

matter, and equivalent fractions. If a relationship does exist, 

then a discriminant function analysis should spread the group centroids 

when level of proportional thinking is used as a four-group criterion 

variable and knowledge, comprehension, and application test scores 

are used as the discriminating variables. The nature of the relation­

ship should be evident by determining which of the three variables, 

individually or collectively, spread the group centroids and by ob­

serving the direction in which the centroids are spread.

Two tasks, the Balance and Quantifications of Probabilities, 

were used to assess students' levels of proportional reasoning. Four 

different procedures were used to group students according to their 

assessed levels of proportional reasoning.

Four discriminant function analyses were performed on the data 

obtained on each of the three selected concepts. Although each analysis 

used a different procedure for grouping students, the same set of 

discriminating variable scores were used in each case. Sets of dis­

criminating variable scores consisted of the knowledge, comprehension, 

and application test scores for a particular concept.

51
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Findings Relative to Simple Machines

The primary hypothesis tested in this study is stated in full 

form as follows:

HqI: There is no significant difference between the mean 

vectors of knowledge, comprehension, and application test scores of 

simple machines concepts for the four groups of students differing 

in proportional reasoning.

The means of each proportionality group on the simple machines 

tests are summarized in Table 2 for each of the grouping procedures. 

Analysis of Table 2 reveals two expected patterns. First of all, 

group means are generally highest for knowledge and lowest for applica­

tion, with comprehension means falling in between. A puzzling aspect 

of this pattern needs to be noted, however. Because comprehension and 

application were assumed to represent levels of understanding, it 

was anticipated that these means would be similar to each other and 

considerably lower in magnitude than the knowledge means. This was 

not the case. Comprehension means tended to be more similar to know­

ledge means than to application means.

A second expected pattern was that the magnitude of the group 

means would generally follow the level of proportional reasoning of 

the students: the higher the level of proportional reasoning, the 

larger the group means. This pattern was observed. For example, the 

low qualitative proportionality group (Group 1) tended to have the 

lowest group means for knowledge, comprehension, and application, while
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Table 2

Means of the Four Groups Differing in Proportional 
Reasoning on Knowledge, Comprehension and 
Application of Simple Machines Concepts

*Group omitted from analysis because of insufficient number of subjects.

Proportionality 
Group Knowledge Comprehension Application
Quantifications of Probabilities Grouping Procedure

1 (low qualitative) 6.8182 6.6212 3.7424

2 (high qualitative) 8.3571 7.3810 3.9762

3 (low quantitative) 9.5000 8.1875 3.0000

4 (high quantitative) 9.6364 9.2727 6.6364

Balance Grouping Procedure

1 (low qualitative)*

2 (high qualitative) 7.2603 6.7808 3.8493

3 (low quantitative) 8.1304 7.5000 3.4783

4 (high quantitative) 9.8182 8.9091 6.5455

Lowest Score on Tasks Grouping Procedure

1 (low qualitative) 6.9265 6.7353 3.7794

2 (high qualitative) 8.5102 7.3256 3.7755

3 (low quantitative) 9.2500 8.8750 3.1250

4 (high quantitative) 9.7000 9.2000 6.8000

Highest Score on Tasks Grouping Procedure

1 (low qualitative)*

2 (high qualitative) 7.0303 6.7576 3.9848

3 (low quantitative) 8.3704 7.5000 3.3889

4 (high quantitative) 9.7500 9.0000 6.4167
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the high quantitative proportionality group (Group 4) tended to have 

the highest group means. The high qualitative proportionality group 

(Group 2) and the low quantitative proportionality group (Group 3) 

tended to have means which fell in order between the means of the two 

extreme groups. One exception to this pattern occurred with the 

means on the application test. Without exception, the means of the 

low quantitative proportionality group were the lowest of all the 

group means in each of the four analyses.

Hypothesis HqI was tested for each of the four grouping procedures

by the application of Wilks1 Lambda. The results are summarized in

Table 3.

Wilks1 Lambda was found to be significant (p < .01) for each

of the four grouping procedures. This indicated that there were

significant differences between the mean vectors of the four groups 

differing in proportional reasoning. Therefore, proportional reason­

ing was found to be related to knowledge and understanding of the 

selected concepts. The researcher did not accept hypothesis HqI.

If understanding of the selected concepts is related to propor­

tional reasoning ability, then the students' knowledge, comprehension, 

and application test scores should discriminate between groups of 

students differing in proportional reasoning when discriminant function 

analysis is applied. The group centroids generated from knowledge, 

comprehension, or application, or any combination of these test 

scores, should be significantly different. Therefore, the following 

secondary hypotheses stated in null form were developed to ascertain
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Table 3

Wilks1 Lambda Test of Primary Hypothesis

Table 4

Grouping Procedure Wilks1 Lambda Chi-Square df Significance

Balance task .8288 23.740 6 .01

Quantification task .7440 38.736 6 .01

Highest score on tasks .7983 29.431 6 .01

Lowest score on tasks .7581 36.136 6 .01

Discriminant Function Analyses Results for 

the Grouping Procedures

Analysis
Grouping 
Procedure

Discriminant 
Function Eigenvalue

Relative 
Percentage

Canonical 
R

1 Balance task 1 .1704 84.67 .382
2 .0309 15.33 .173

2 Quantification of 1 .1974 61.50 .406
probabilities task 2 .1225 38.80 .330

3 Highest score on 1 .1620 66.35 .373
tasks 2 .0821 33.65 .275

4 Lowest score on 1 .1891 63.74 .399
tasks 2 .0893 36.17 .286
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the significance of differences in student achievement of knowledge, 

comprehension, and application of the concepts.

Hq4: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the high quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores 

of simple machines for the high qualitative proportionality group.

Hq5: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the high quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension and application test scores of 

simple machines for the low qualitative proportionality group.

Hq6: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the low quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores of 

simple machines for the low qualitative proportionality group.

Hq7: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the low quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores of 

simple machines for the high qualitative proportionality group.

Hq8: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the high and low quan­

titative proportionality groups combined is not significantly different 

from the group centroids of knowledge, comprehension, and application 
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test scores for the high and low qualitative proportionality groups 

combined.

Discriminant function analysis was used to test these secon­

dary hypotheses. Four analyses, each using a different grouping 

procedure, were performed. The step-wise method was used to enter 

the discriminating variables into the analysis. This method allows 

the computer to enter the variables into the analysis on the basis of 

their discriminating power. Variables that do not significantly dis­

criminate between the criterion groups are not a part of the discriminant 

functions produced. Two discriminant functions were generated by each 

of the four analyses. These results are listed in Table 4.

The eigenvalues listed in Table 4 show the relative potency 

of each function in discriminating between groups. Therefore, the 

larger the eigenvalue, the greater the discrimination between groups 

(Nie, 1975). The relative percentage gives the percent of the total 

variance existing in the discriminating variables that are accounted 

for by the eigenvalue with which it is associated. With the exception 

of the first analysis, the first function in each analysis accounted 

for about twice as much variance in the discriminating variable than 

did the second function. In the first analysis, the first function 

accounts for about five times as much variance.

The canonical correlation indicates the correlation between the 

function and the criterion defining the groups. The canonical corre­

lation squared is an estimate of the proportion of the variance in the 

discriminant function which is explained by the groups (Nie et al..
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1975). With the exception of the two functions in analysis number 1, 

the canonical correlation of the function in each analysis is about 

one-third larger than the canonical correlation of the second function.

Functions 1 and 2 of all four analyses were derived from 

the knowledge and application variables. Comprehension did not 

discriminate between groups strongly enough to be included in the 

two functions. The relative contributions of knowledge and applica­

tion to each function can be seen by examining the standardized dis­

criminant function coefficients in Table 5. The absolute value of a 

coefficient represents its relative contribution to the function 

(Nie, 1975). In analyses numbers one and three, application test 

scores contributed about twice as much discriminating power to the 

first function as did knowledge test scores. The reverse pattern is 

seen in function number two. In analysis number four, knowledge and 

application test scores contributed about equally to the function.

Coefficients of the discriminating variables can be used to 

create a discriminant function prediction equation for each function. 

Table 6 summarizes these equations for each of the analyses.

By substituting the appropriate test scores of each student 

into the discriminant function prediction equations, group membership 

can be predicted for each student. The accuracy with which the 

equations correctly predict group membership reflects the utility of 

the discriminating variables. Predicted group memberships for each 

of the four grouping procedures are listed in Table 7. The actual 

number of students in each group, as determined by the Piagetian tasks.
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Table 5

Standardized Discriminant Function Coefficients

Table 6

Analysis
Grouping 
Procedure

Discriminating 
Variable Function 1 Function 2

1 Balance task Knowledge 
Application

.4740

.8038
.7819

-.5247

2 Quantifications 
of probabilities 
task

Knowledge 
Application

.7935

.4877
-.5325

.7531

3 Highest score on 
tasks

Knowledge 
Application

.4809

.7940
.7709

-.5325

4 Lowest score on 
tasks

Knowledge 
Application

.5317

.5431
-.4778

.6377

Discriminant Function Prediction Equations

K - Knowledge A - Application

Analysis
Grouping 
Procedure Function 1 Function 2

1 Balance task D .4740Xk .8038XA D .7819Xk - .5247Xa

2 Quantifications 
of probabilities 
task

D .7935Xk ,4877Xa D .5323Xk .7531XA

3 Highest score 
on tasks

D .4809X! .7940X2 D .7709Xk .5325Xa

4 Lowest score 
on tasks

D .5317X! .5431X2 D .4778Xk .6377XA
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is listed on the left. The number of predicted students in each group 

is listed in the remainder of the table. Percents are listed below 

the predicted numbers. For example, of the 66 students classified 

as the low qualitative proportionality group (Group 1) by the quan­

tifications of probabilities task, the discriminant function analysis 

correctly classified 32 students (48.5%) into that group. Nine students 

(13.6%) were incorrectly classified into Group 2, and 16 students 

(24.2%) were incorrectly classified into Group 3. Nine students (13.6%) 

were incorrectly classified into Group 4.

As can be seen in Table 7, there is some overlap among the 

groups in level of achievement on the discriminating variables resulting 

in misclassification of students by the discriminant function analysis. 

Consequently, the percent of students correctly classified by the 

discriminant function analysis routines for the four grouping procedures 

ranged from 42.22% to 53.03%. Had little overlap occurred in level 

of achievement, the percent of correctly classified students would 

have approached 100%.

Analysis of Table 7 reveals that high quantitative proportion­

ality students were classified more accurately in all four analyses 

than were the students in the other three groups. The number of high 

formal students correctly classified in the four analyses ranged from 

63.6% to 70.0%. This means that there was less variability among 

the test scores of students in the high quantitative proportional group

than among the test scores of students in each of the other three 

groups. The second-most accurately classified group of students were
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Table 7

Predicted Group Memberships of 136 Students Differing 
in Proportional Reasoning for the Four Grouping Procedures

Actual Group
No. of 
Cases

Predicted Group Membership
1 2 3 4

1 (low qualitative) 66 32
48.5%

9
23.6%

16
24.2%

9
13.6%

2 (high qualitative) 43 9
21.4%

12
26.2%

13
31.0%

9
21.4%

3 (low quantitative) 16 4
25.0%

2
12.5%

8
50.0%

2
12.5%

4

%

(high quantitative) 

correctly classified:

11

42.96%

1
9.1%

1
9.1%

2
18.2%

7
63.6%

Balance
2 (high qualitative) 73 32

43.8%
28
38.4%

13
17.8%

3 (low quantitative) 46 10
21.7%

27
58.7%

9
19.6%

4

%

(high quantitative) 

correctly classified:

11

50.77%

1
9.0%

3
27.3%

7
63.6%

Lowest Scores on Tasks
1 (low qualitative) 68 31

45.6%
16
23.5%

13
19.1%

8
11.8%

2 (high qualitative) 50 11
22.0%

16
32.0%

14
28.0%

9
18.0%

3 (low quantitative) 8 1
12.5%

3
37.5%

4
50.0%

9
18.0%

4

%

(high quantitative) 

correctly classified:

10

42.27%

1
10.0%

1
10.0%

1
10.0%

7
70.0%

Highest Scores ori Tasks
2 (high qualitative) 66 30

45.5%
24
36.4%

12
18.2%

3 (low quantitative) 55 11
20.0%

33
60.0%

11
20.0%

4

%

(high quantitative) 

correctly classified:

12

53.03%

1
8.3%

3
25.0%

8
66.7%
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the low quantitative proportional group. The number of these stu­

dents correctly classified ranged from 50.0% to 60.0%.

The discriminating power of each derived function can be deter­

mined by computing group centroids. A centroid summarizes a group's 

location in the space defined by its discriminant functions (Nie, 1975). 

Group centroids were computed by substituting appropriate means from 

a group's mean vector into the two discriminant function prediction 

equations of each analysis and deriving a value on a standard scale. 

Table 8 lists the group centroids for analyses 1-4. Because func­

tions number 1 and 2 were derived from knowledge and application 

scores, the differences between group centroids lies in the students' 

knowledge and application test scores. Mahalonobis' test for pair- 

wise differences between group centroids was applied to determine 

which centroids were significantly different and to ascertain if 

the significant differences were caused by knowledge or application 

test scores or both. The F-test scores obtained and their levels 

of significance are listed in tables 9 and 10.

An examination of tables 9 and 10 reveals that the quantifica­

tions of prababilities grouping procedure yielded the largest number 

of group centroids significantly spread apart, while the balance 

grouping procedure yielded the smallest number. The range was from 

4 to 8. Because the quantifications of probability grouping procedure 

yielded the most potent discriminant function analysis, the researcher 

selected this analysis to test the secondary hypothesis.

Because quantitative proportionality was thought necessary 

for achieving understanding (comprehension and application), but not
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Table 8

Group Centroids in Discriminant Space

Analysis
Grouping 
Procedure Group Function 1 Function 2

1 Balance task 2 - .1219 - .1248
3 - .1015 .2010
4 1.2331 - .0126

2 Quantifications of 1 - .3364 .1244
probabilities task 2 .1480 - .0932

3 .2692 - .6231
4 1.0620 .5157

3 Highest score on 2 - .1287 - .2237
tasks 3 - .1040 .2796

4 1.0620 .5157

4 Lowest score on 1 - .2674 .1343
tasks 2 .0896 - .1679

3 .2309 - .5518
4 1.1968 .3511

Group 1 was eliminated in analyses one and three because of insuffi­
cient numbers.
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Table 9

Pair-Wise F-Tests for Knowledge Differences

Between Group Centroids

Analysis df
Grouping 
Procedure Group 1 2 3

1 2,126 Balance task 3 1.9494

4 10.9973** 9.5463

2 1,130 Quantification 
of probabilities

2 8,9375**

task 3 13,6023** 2.2224

4 10,9973** 2.0949 .0128

3 2,126 Highest score on 3 5.2627**
tasks

4 10.1007** 9.7370

4 2,130 Lowest score on 2 10.1438*
tasks

3 5.4878* .5345

4 9.5235** 1.6696 .1278

* significant .05
** significant .01
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Table 10

Pair-Wise F-Tests for Application

Differences Between Group Centroids

Grouping
Analysis df Procedure Group 1 2 3

1 2,126 Balance task 3 .7863

4 .0630** 16.9011**

2 1,130 Quantification 
of probabilities

2 4.4386*

task 3 8.2043** 2.5608

4 11.8676** 6.7017** 8.7909**

3 2,136 Highest score 3 2.1406
on tasks

4 12.2433** 18.3505**

4 2,120 Lowest score 
on tasks

2 5.1148*

3 3.3050 .6342

4 11.3307** 7.9187** 5.9987*

* significant .05
** significant .01
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knowledge of simple machines concepts, it was anticipated that com­

prehension and application test scores would significantly discrimi­

nate between the four groups and produce the group centroids. This 

was not the case. The group centroids produced in the discriminant 

function analysis were derived from knowledge and application test 

scores. Tables 9 and 10 reveal five significant pair-wise differences 

between these centroids. These differences were between the centroids 

of groups: 1 and 3, 1 and 4, 2 and 4, 1 and 2, and 3 and 4. Three 

of these differences were predicted by research hypotheses Hg,

and Hg.

Research hypothesis stated in null form, predicted no sig­

nificant difference between centroids of groups 2 and 4. It was stated 

as follows.

Hq4: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the high quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores of 

simple machines for the high qualitative proportionality group.

Mahalonobis' test for pair-wise differences between group cen­

troids produced a significant F (p < .01) of 6.7017 for the application 

scores. In this instance, the significant differences between centroids 

of groups 2 (high qualitative proportional) and 4 (high quantitative 

proportional) resulted from differences in students*  application test 

scores on the simple machines test. Because application test scores 

successfully discriminated between these students, it appeared that pro­
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portional reasoning ability was related to the achievement of appli­

cation of simple machines concepts by high qualitative proportionality 

and high quantitative proportionality students. Therefore, Hq4 was 

not accepted.

Research hypothesis H5, stated in null form, predicted no 

significant differences between centroids of groups 1 and 4. It was 

stated as follows:

Hq5: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the high quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores 

of simple machines for the low qualitative proportionality group.

Mahalonobis' test for pair-wise differences between group cen­

troids produced a significant F (p < .01) of 10.9973 for knowledge 

score differences and a significant F (p < .01) of 11.8676 for applica­

tion score differences. In this instance, the significant difference 

between centroids of groups 1 (low qualitative proportional) and 4 

(high quantitative proportional) resulted from differences in both 

knowledge and application scores on the simple machines test. Because 

both knowledge and application test scores successfully discriminated 

between these students, it appeared that proportional reasoning ability 

was related to the achievement of application and knowledge of simple 

machines concepts by low qualitative proportionality and high quan­

titative proportionality students. Therefore, Hq5 was not accepted.

Research hypothesis Hg, stated in null form, predicted no sig­

nificant differences between centroids of groups 1 (low qualitative 
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proportional) and 3 (low quantitative proportional). It was stated 

as follows:

Hq6: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the low quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores 

of simple machines for the low qualitative proportionality group.

Mahalonobis' test for pair-wise differences between group cen­

troids produced a significant F (p < .01) of 13.6023 for knowledge 

score differences and a significant F (p < .01) of 8.2042 for applica­

tion score differences. Because knowledge and application test scores 

successfully discriminated between these students, it appeared that 

proportional reasoning ability was related to the achievement of know­

ledge and application of simple machines concepts by low qualitative 

proportionality and low quantitative proportionality students. There­

fore, Hq6 was not accepted.

Research hypothesis H?, stated in null form, predicted no 

significant differences in centroids of groups 2 (high qualitative 

proportional) and 3 (low quantitative proportional). It was stated 

as follows:

Hq7: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the low quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores 

of simple machines for the high qualitative proportionality group.
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Mahalonobis1 test for pair-wise differences between group 

centroids produced a non-signifleant F score of 2.2224 and 2.5608 

for knowledge and application scores, respectively. This means that 

Group 2 and Group 3 students did not score significantly different 

on the simple machines test for knowledge and application. If pro­

portional reasoning ability is related to the achievement of applica­

tion of these concepts, then Group 3 students (low quantitative 

proportional) would be expected to achieve significantly different 

from Group 2 students (high qualitative proportional) on the applica­

tion test. This would result in significantly different group centroids. 

This was not the case; therefore, the researcher did not reject Hq7.

In summary, three of the four secondary research hypotheses 

predicting a relationship between proportional reasoning ability and 

achievement of knowledge, comprehension, and application of simple 

machines concepts have been supported by these data. Specifically, 

the achievement of comprehension was found to be related to propor­

tional reasoning ability in three of the four pair-wise comparisons: 

groups 1 and 3, groups 2 and 4, and groups 1 and 4. The achievement 

of knowledge was found to be related to proportional reasoning in two 

of the four pair-wise comparisons: groups 1 and 4, and groups 1 and 

3. Achievement of comprehension proved to be insignificantly related 

to proportional reasoning ability.

The nature of the relationship between proportional reasoning 

ability and achievement of knowledge and application of simple machines 

was determined by examining the directional differences between the 
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pairs of significantly different centroids when plotted in reduced 

discriminant space. Group centroids are plotted by using D scores 

from the discriminant function analyses to define a point on a 

graph. These graphs are referred to as territorial maps. The D 

score derived from the first function of the analysis is plotted on 

the horizontal axis. A territorial map for the quantifications of 

probabilities analysis is given in Figure 1.

Examination of Figure 1 shows that the Group 4 centroid is 

above and to the right of the Group 1 and Group 2 centroids. This 

means that the Group 4 centroid has greater magnitude than the Group

1 and Group 2 centroids. To have a significantly greater centroid. 

Group 4 students had to score consistently higher on the simple 

machines test than the Group 1 and Group 2 students. Because the sig­

nificant difference between the centroids of groups 1 and 4 was 

found to be attributable to both knowledge and application score dif­

ferences, the Group 4 students had scores consistently higher on both 

knowledge and application test items than the Group 1 students. This 

indicates possession of high quantitative proportionality may facili­

tate achievement of both knowledge and application of simple machines. 

Because the significant difference between centroids of groups 4 and

2 were found to be attributable to application scores only, the Group 

4 students had scores consistently higher on the application test 

items than the Group 1 students. This finding also indicates that high 

quantitative proportionality may facilitate achievement of application 

of simple machines concepts.
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Figure 1

Territorial Map of the Quantifications 

of Probabilities Task
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Figure 1 shows the Group 3 centroid to be below and to the 

right of the Group 1 centroid. Being to the right of Group 1 means 

that the Group 3 centroid was greater on the dimension defined by 

the first function than was the Group 1 centroid. Examination of 

the knowledge and application coefficients in the discriminant equation 

of the first function in Table 6 shows that the equation is primarily 

a knowledge dimension. Therefore, Group 3 students scored higher 

more consistently on the knowledge test questions than the Group 1 

students. This finding indicates that low quantitative proportionality 

may also facilitate achievement of knowledge of simple machines con­

cepts. Being below the Group 1 centroid means that the Group 3 cen­

troid was not as great on the dimension defined by the second function. 

Table 6 shows that this equation is primarily an application dimension. 

Therefore, Group 3 students scored consistently lower than Group 1 

students on the application test. This finding indicates that low 

quantitative proportionality may inhibit achievement of application of 

simple machines concepts. One possible explanation for this apparent 

inhibiting effect might be that low quantitative proportional students 

are in transition between equilibrium of qualitative proportionality 

and equilibrium of quantitative proportionality. When faced with tasks 

requiring proportional reasoning, they vacillate between the logic of 

qualitative proportional reasoning and their incomplete logic system 

of quantitative proportionality.

In summary, the significant difference between the centroids of 

Group 3 and Group 1 resulted from knowledge test scores of Group 3 

students being consistently higher than the knowledge score of Group 1 
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students and the application test scores of Group 3 students being 

consistently lower than the application test scores of Group 1 stu­

dents.

Research hypothesis Hg, stated in null form, predicted no 

significant difference in centroids between groups 3 and 4 combined 

and groups 1 and 2 combined. A discriminant function analysis pro­

duced one discriminant function using students' knowledge and compre­

hension scores. Application did not discriminate sufficiently to 

be included in the functions. The standardized discriminant function 

coefficients for knowledge and comprehension, .6837 and .4565, respec­

tively, showed knowledge to be the more potent of the two discriminat­

ing variables. The group centroids in reduced discriminant space for 

groups 1 and 2 combined and for groups 3 and 4 combined were found to 

be -.1654 and .6612, respectively. Mahalonobis1 test for pair-wise 

differences between group centroids produced a significant (p < .01) 

F score of 13.7920 with 1 and 133 degrees of freedom and a signifi­

cant (p < .01) F of 8.3121 with 2 and 132 degrees of freedom for 

knowledge and comprehension, respectively.

These findings indicate that proportional reasoning may be 

related to achievement of both knowledge and comprehension of the 

simple machines concepts. Therefore, Hq8 was not accepted.

Since only one discriminant function was produced, the resultant 

territorial map was unidimensional, as shown in Figure 2. The location 

of these centroids indicates that quantitative proportionality may 

facilitate achievement of knowledge and comprehension of simple machines
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Figure 2

Group 1,2 Group 3,4

-2.250 -.750 ' °.750 2.250

concepts. Because the significant difference between the centroids 

of Group 1,2 and Group 3,4 was found to be attributable to both 

knowledge and comprehension tests score differences, the Group 3,4 

students must have scored higher more consistently on the knowledge 

and comprehension test questions than the Group 1,2 students. This 

finding indicates that quantitative proportionality may facilitate 

achievement of both knowledge and comprehension of simple machines con­

cepts.

In summary, the location of the centroids of groups 1,2 and 4 

plotted in reduced discriminant space indicated that quantitative pro­

portionality may facilitate achievement of knowledge and application of 

simple machines concepts for qualitative proportional students and 

high quantitative proportional students. The location of the Group 3 

centroid indicated that quantitative proportionality may facilitate 

achievement of knowledge, but inhibit achievement of application of 

simple machines concepts for low quantitative proportional students. 

The location of the centroids of groups 1,2 and 3,4 indicated that 

quantitative proportionality may facilitate achievement of knowledge 

and comprehension of simple machines concepts.
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Findings Relative to Structure of Matter

The following primary hypothesis, stated in null form, was 

tested in this study:

Hq2: There is no significant difference between the mean 

vectors of knowledge, comprehension, and application test scores of 

structure of matter concepts for the four groups of students differ­

ing in proportional reasoning. The means of each proportionality group 

on the structure of matter test are summarized in Table 11 for each 

of the grouping procedures.

Analysis of Table 11 reveals two expected patterns. First, 

group means are generally highest for knowledge and lowest for applica­

tion, with comprehension means falling in between. A notable excep­

tion to this pattern, however, is the comprehension means of the low 

qualitative proportionality students (Group 2). Without exception, 

these means are slightly larger than the group's knowledge means. 

Because comprehension and application were assumed to represent levels 

of understanding, it was anticipated that these means would be similar 

to each other and considerably lower in magnitude than the knowledge 

means. This was not the case, as comprehension means tended to be more 

similar to knowledge means than to application means. The second 

expected pattern was that the magnitude of the group means would 

generally follow the level of proportional reasoning of the students: 

the higher the level of proportional reasoning, the larger the group 

means. This pattern is observed in Table 11.
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Table 11

Means of the Four Groups Differing in Proportional 
Reasoning on Knowledge, Comprehension and 

Application of Structure of Matter Concepts

Proportionality 
Group Knowledge Comprehension Application

Quantifications of Probabilities Grouping Procedure

1 (low qualitative) 5.6970 6.3182 4.6212

2 (high qualitative) 7.1667 6.9048 4.5000

3 (low quantitative) 8.5000 7.1875 5.0625

4 (high quantitative) 9.9091 9.4545 6.1818

Balance Grouping Procedure

1 (low qualitative)*

2 (high qualitative) 6.0548 6.1918 4.4795

3 (low quantitative) 7.5652 7.5000 4.8478

4 (high quantitative) 9.5455 9.1818 6.1818

Lowest Score ion Tasks Grouping Procedure

1 (low qualitative) 5.7206 6.2941 4.6029

2 (high qualitative) 7.3061 6.6980 4.6029

3 (low quantitative) 9.5000 8.2500 5.6250

4 (high quantitative) 9.9000 9.4000 6.4000

Highest Score on Tasks Grouping Procedure

1 (low qualitative)*

2 (high qualitative) 5.8333 6.1212 4.4697

3 (low quantitative) 7.5556 7.2963 4.4963

4 (high quantitative) 9.5833 9.2500 6.0000

*Group omitted from analysis because of insufficient number of subjects.
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Hypothesis Hq2 was tested for each of the four grouping pro­

cedures by the application of Wilks1 lambda. The results are summar­

ized in Table 12.

Wilks' lambda was found to be significant (p < .01) for each 

of the four grouping procedures. This indicated that significant 

differences existed between the mean vectors in each of the four 

grouping procedures. Therefore, the researcher did not accept hypoth­

esis Hq2.

Secondary hypotheses, which predicted differences between the 

group centroids of groups possessing quantitative proportionality and 

groups possessing qualitative proportionality, were tested by applica­

tion of discriminant function analysis. The following secondary 

hypotheses, stated in null form, were tested:

Hg: The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the high quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores of 

structure of matter for the high qualitative proportionality group.

Hlo: The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the high quantitative 

proportionality group are not significantly different from the group 

centroids of knowledge, comprehension, and application test scores 

of structure of matter for the low qualitative proportionality group.

Hjp The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the low quantita­

tive proportionality group are not significantly different from the
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Table 12

Wilks' Lambda Test of Primary Hypotheses

Grouping Procedure Wilks' Lambda Chi-Square df Significance

Balance task .8548 19.843 4 .001

Quantification of 
probabilities task .8068 28.123 6 .000

Highest score on 
tasks .8364 22.954 4 .000

Lowest score on 
tasks .7894 31.095 3 .000

Table 13

Discriminant Function Analysis Results 

for Grouping Procedures

Analysis
Grouping 
Procedure

Discriminant 
Function Eigenvalue

Relative 
Percentage

Canonical 
R

1 Balance task 1 .1698 100 .382
2 .0001 0 .002

2 Quantification of 1 .2080 88.97 .415
probabilities task 2 .0258 11.03 .159

3 Highest score on 1 .1929 98.81 .402
tasks 2 .0023 1.19 .048

4 Lowest score on 
tasks

1 .2668 100 .459
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group centroids of knowledge, comprehension, and application test 

scores of structure of matter for the low qualitative proportionality 

group.

The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the low quantita­

tive proportionality groups are not significantly different from the 

group centroids of knowledge, comprehension, and application test 

scores of structure of matter for the high qualitative proportionality 

group.

Hjg: The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the high and low 

quantitative proportionality groups combined are not significantly 

different from the group centroids of knowledge, comprehension, and 

application test scores for the high and low qualitative proportionality 

groups combined.

Two discriminant functions were generated for all analyses 

except number 4, in which only one function was produced. As evidenced 

by the eigenvalues, the relative potencies of the second functions 

are insignificant. Thus, the first function in each analysis accounts 

for almost 100% of the variance in the eigenvalues. Squaring the 

canonical correlations indicated that very little variance in the 

second discriminant functions is accounted for by the proportionality 

groups; however, the groups are accounting for about 16% of the 

variance in the first functions.

The two functions in all four analyses were derived from know­

ledge and comprehension scores. Application did not discriminate 
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between groups strongly enough to be included in the two functions. 

The relative contribution of knowledge and comprehension to each 

function can be determined by examining the standardized discriminant 

function coefficients in Table 13.

Coefficients of the discriminating variables can be used to 

create a discriminant function prediction equation for each function. 

Table 14 summarizes these equations for each analysis. In analysis 

number 4, knowledge was the only variable that discriminated between 

groups strongly enough to be included in a function. Because the 

function was derived solely from one discriminant variable, only one 

standardized discriminant function coefficient was generated. This 

coefficient equals 1; therefore, the discriminant function prediction 

equation generated is equal to 1 times , the knowledge scores of 

the students. In other words, a student's knowledge score predicts 

his group membership.

The accuracy with which these discriminant function prediction 

equations correctly predict group membership can be seen in Table 15. 

Because of overlap among groups in level of achievement on the dis­

criminating variables, the percent of students correctly classified 

by the four discriminant function analyses ranged from 41.5% to 45.5%. 

Analysis of Table 16 reveals that high formal operational students 

were classified more accurately in all four analyses than were the 

students in the other three groups. The number of high quantitative 

proportional students correctly classified ranged from 70.0% to 81.8%. 

This means that there was less variability among the test scores of
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Table 14

Standardized Discriminant Function Coefficients

Analysis
Grouping 
Procedure

Discriminating
Variable Function 1 Function 2

1 Balance task Comprehension 
Knowledge

.5915

.5168
.5490

-.5881

2 Quantifications 
of probabilities 
task

Comprehension 
Knowledge

.1802

.7962
.6304

-.4577

3 Highest score 
on task

Comprehension 
Knowledge

.5162

.6042
.5690

-.5465

4 Lowest score 
on task

Knowledge 1.0000 .5690

Table 15

Discriminant Function Prediction Equations

K - Knowledge C - Comprehension

Analysis
Grouping 
Procedure Function 1 Function 2

1 Balance task D .5915XC .5168Xk D .5490Xc -.5881Xk

2 Quantifications 
of probabilities 
task

D .7962XK .1802Xc D -.4577Xk .6304XC

3 Highest score 
on task

D .6042Xk .5162XC D -.5465Xk .5690Xc

4 Lowest score 
on task

D 1.000XK
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Table 16

Predicted Group Memberships of 136 Students Differing 
In Proportional Reasoning for the Four Grouping Procedures

No. of Predicted Group Membership
Actual Group Cases 1 2 3 4

Quantification of Probabilities
1 (low qualitative) 66 40 4 13 9

60.6% 6.1% 19.7% 13.6%

2 (high qualitative) 43 19 5 10 9
43.2% 11.9% 23.8% 21.4%

3 (low quantitative) 16 3 1 6 6
18.2% 6.3% 37.5% 37.5%

4 (high quantitative) 11 0 1 1 9
0% 9.1% 9.1% 81.8%

% correctly classified: 44.44%
Balance

2 (high qualitative) 73 39 21 13
53.4% 28.8% 17.8%

3 (low quantitative) 46 17 9 20
37.0% 19.6% 43.5%

4 (high quantitative) 11 1 2 8
9.1% 18.2% 72.7%

% correctly classified: 43.08%
Lowest Scores on Tasks

1 (low qualitative) 68 41 11 8 8
60.3% 16.2% 11.8% 11.8%

2 (high qualitative) 50 22 6 5 16
44.9% 12.2% 10.2% 32.7%

3 (low quantitative) 8 0 1 2 5
0% 12.5% 25.0% 62.7%

4 (high quantitative) 10 0 2 1 7
0% 20.0% 10.0% 70.0%

% correctly classified:
Highest Scores ori Tasks

2 (high qualitative) 66 40 18 8
60.6% 27.3% 12.1%

3 (low quantitative) 55 23 11 21
40.8% 20.4% 38.9%

4 (high quantitative) 12 1 2 9
8.3% 16.7% 75.0%

% correctly classified: 45.45%
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students in the high quantitative proportional group than among the 

test scores of students in each of the other three groups. The 

second-most accurately classified group of students was the low 

qualitative proportional group. The number of these students cor­

rectly classified ranged from 60.3% to 60.6%.

The discriminating power of each derived function can be de­

termined by computing group centroids. The group centroids, summar­

izing each group's location in reduced discriminant space, are 

summarized in Table 17.

Because functions number 1 and 2 were derived from knowledge 

and comprehension test scores, differences between centroids were 

caused by differences in these scores. F scores obtained from 

Mahalonobis' test for pair-wise differences between group centroids 

derived from knowledge and comprehension test scores are given in 

tables 18 and 19.

An examination of F values in tables 18 and 19 reveals that, 

of the four grouping procedures used to group students by their level 

of proportional reasoning, the quantifications of probabilities was 

the most effective grouping procedure for significantly spreading 

apart group centroids. Therefore, the quantifications of probabili­

ties analysis was used to test the secondary hypotheses.

Because quantitative proportionality was thought to be necessary 

for achieving understanding (comprehension and application) but not 

knowledge of structure of matter concepts, it was anticipated that 

comprehension and application test scores would significantly
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Table 17

Group Centroids in Discriminant Space

Analysis
Grouping 
Procedure Group Function 1 Function 2

1 Balance task 2 - .2915 - .0005
3 .2402 .0015
4 .9300 - .0027

2 Quantifications of 1 - .3144 .0312
probabilities task 2 .0857 - .0367

3 .4318 - .1575
4 .9624 .1823

3 Highest score 2 - .3432 .0125
on task 3 .2056 - .9264

4 .9624 .0499

4 Lowest score 1 - .3415
on task 2 .1467

3 .8223
4 .9455
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Table 18

Pair-Wise F-Tests for Knowledge Differences

Between Group Centroids

Analysis df
Grouping 
Procedure Group 1 2 3

1 2,126 Balance task 3 4.6466*

4 8.3065** 2.4599

2 1,131 Quantifications 
of probabilities

2 6.1827**

task 3 11.2838** 2.2971

4 18.6551** 7.3112** 1.4434

3 1,129 Highest scores 
on tasks

3 9.5221**

4 15.4344** 4.3639*

4 1,131 Lowest scores 
on tasks

2 8.0367**

3 11.4772** 3.7157

4 17.0941** 6.2725 .0798

* significant .05

** significant .01
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Table 19

Pair-Wise F-Tests for Comprehension Differences

Between Group Centroids

Analysis df
Grouping 
Procedure Group 1 2 3

1 1,127 Balance task 3 7.5492**

4 13.3597** 3.9250*

2 2,130 Quantifications 
of probabilities

2 3.0992

task 3 5.8870 1.2919

4 10.6413 5.1525** 2.5670

3 2,128 Highest score 
on tasks

3 5.3008**

4 10.1174** 3.3875*

* significant .05
** significant .01
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discriminate between the four groups and produce the group cen­

troids. This was not the case. The group centroids produced in 

the discriminant function analysis were derived from knowledge and 

comprehension test scores. Tables 18 and 19 reveal four signifi­

cant pair-wise differences between these centroids. These differ­

ences were between the centroids of groups 1 and 3, 1 and 4, 

2 and 4, and 1 and 2. Three of these differences were predicted 

by research hypotheses Hg, H10, and H^.

Research hypothesis Hg, stated in null form, predicted no 

significant differences between centroids of groups 2 and 4. It 

was stated as follows:

Hq9: The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the high quan­

titative proportionality group are not significantly different from 

the group centroids of knowledge, comprehension, and application test 

scores of structure of matter for the high qualitative proportionality 

group. Mahalonobis' test for pair-wise differences between group 

centroids produced a significant F (p < .01) of 7.3112 for knowledge 

score differences and a significant F (p < .05) of 5.1525 for the 

comprehension scores. In this instance, the significant difference 

between centroids of groups 2 (high qualitative proportional) and 

4 (high quantitative proportional) resulted from differences in 

both knowledge and comprehension scores on the structure of matter 

test. Because both knowledge and comprehension test scores success­

fully discriminated between students demonstrating high qualitative 
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proportionality and high quantitative proportionality, it appears 

that proportional reasoning ability is related to achievement of 

both knowledge and comprehension of structure of matter. Therefore, 

Hq9 was not accepted.

Research hypothesis Hjg, stated in null form, predicted no 

significant difference between centroids of groups 1 and 4. It 

was stated as follows:

HqIO: The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the high quan­

titative proportionality group are not significantly different from 

the group centroids of knowledge, comprehension, and application 

test scores of structure of matter for the low qualitative propor­

tionality group. Mahalonobis' test for pair-wise differences between 

group centroids produced a significant F (p < .01) of 18.6551 for 

knowledge score differences and a significant F (p < .01) of 10.6413 

for comprehension scores. In this instance, the significant dif­

ferences between centroids of groups 1 (low qualitative propor­

tionality) and 4 (high quantitative proportionality) also resulted 

from differences in both knowledge and comprehension test scores. 

Because knowledge and comprehension test scores successfully dis­

criminated between students demonstrating low qualitative and high 

quantitative proportionality, it appears that proportional reasoning 

ability is related to achievement of both knowledge and comprehension 

of structure of matter. Therefore, HqIO was not accepted.

Research hypothesis H^, stated in null form, predicted 

no significant differences between centroids of groups 1 and 3.
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It was stated as follows:

HqII: The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the low quan­

titative proportionality group are not significantly different from 

the group centroids of knowledge, comprehension, and application 

test scores of structure of matter for the low qualitative propor­

tionality group. Mahalanobis' test for pair-wise differences between 

group centroids produced a significant F (p < .01) of 11.2838 for 

knowledge score differences and a significant F (p < .05) of 5.8870 

for comprehension score differences. Here again, the significant dif­

ference between group centroids, resulting from knowledge and compre­

hension test scores, indicates that proportional reasoning ability 

is related to achievement of both knowledge and comprehension of 

structure of matter concepts. Because of these findings, Hgll was 

not accepted.

Research hypothesis Hj2’ stated in null form, predicted no 

significant difference in centroids of groups 2 and 3. It was stated 

as follows:

Hgl2: The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the low quanti­

tative proportionality group are not significantly different from the 

group centroids of knowledge, comprehension, and application test 

scores of structure of matter for the high qualitative proportion­

ality group. Mahalonobis1 test for pair-wise differences between 

group centroids produced a non-significant F score of 2.2971 and 
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1.2919 for knowledge and comprehension scores, respectively. This 

means that Group 2 and Group 3 students did not score significantly 

different on the structure of matter test for knowledge and compre­

hension. If proportional reasoning ability is related to the 

achievement of comprehension of these concepts, then Group 3 students 

(low quantitative proportional) would be expected to achieve sig­

nificantly different from Group 2 students (high qualitative propor­

tional) on the comprehension test items. This would result in sig­

nificantly different group centroids. This was not the case; there­

fore, the researcher did not reject Hq12.

In summary, three of the four secondary hypotheses predicting 

a relationship between proportional reasoning ability and achievement 

of knowledge, comprehension, and application of structure of matter 

concepts have been supported by these data. Specifically, the achieve­

ment of comprehension was found to be related to proportional reason­

ing ability in three of the four pair-wise comparisons: groups 1 

and 3, groups 2 and 4, and groups 1 and 4. The achievement of knowledge 

was found to be related to proportional reasoning in three of the 

four pair-wise comparisons: groups 1 and 4, groups 1 and 3, and 

groups 2 and 4. Achievement of application proved to be insignificantly 

related to proportional reasoning ability.

The nature of the relationship between proportional reasoning 

ability and achievement of knowledge and comprehension of structure 

of matter was determined by examining the directional differences 

between the pairs of significantly different centroids when plotted 
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in reduced discriminant space. The resulting territorial map is 

given in Figure 3.

Examination of Figure 3 shows that the Group 4 centroid, 

being above and to the right of the other centroids, had the greatest 

magnitude. This means that Group 4 students scored consistently 

higher on the structure of matter than the students of groups 1, 

2, and 3. Because the significant difference between the centroids 

of Group 4 and Group 1 and between the centroids of Group 4 and 

Group 2 was found to be attributable to both knowledge and compre­

hension score differences, the Group 4 students must have scored 

consistently higher on knowledge and comprehension test items than 

the Group 1 and Group 2 students. This indicates that possession 

of high quantitative proportionality may facilitate achievement of 

both knowledge and comprehension of structure of matter concepts. 

Although the centroid of Group 4 was larger than the centroid of 

Group 3, the difference was not statistically significant.

Figure 3 shows the Group 3 centroid to be below and to the 

right of the Group 1 and Group 2 centroids. Being to the right 

means that the Group 3 centroid was greater on the dimension defined 

by the first function than were the centroids of groups 1 and 2. 

Examination of the knowledge and comprehension coefficients in 

the discriminant equation of the first function in Table 15 shows 

that the equation is primarily a knowledge dimension. Because know­

ledge contributed to the significant difference between centroids 

of Group 3 and 1 and Group 3 and 2, Group 3 students must have scored
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Figure 3

Territorial Map of the Quantifications 

of Probabilities Task
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higher more consistently on the knowledge test questions than Group 1 

or Group 2 students. This finding indicates that low quantitative 

proportionality may facilitate achievement of knowledge of structure 

of matter concepts. Being below the Group 1 and Group 2 centroids 

means that the Group 3 centroid was not as great on the dimension 

defined by the second function. Table 15 shows that this equation 

is primarily a comprehension dimension. Because comprehension con­

tributed to the significant difference between the centroids of 

groups 3 and 1 and groups 3 and 2, Group 3 students had to have 

scored lower more consistently on the comprehension test questions 

than Group 1 and Group 2 students. This finding indicates that 

low quantitative proportionality may inhibit achievement of compre­

hension of structure of matter concepts. This apparent inhibiting 

effect might be attributable to the fact that low quantitative pro­

portional students are in transition between equilibrium of quali­

tative proportionality and equilibrium of quantitative proportion­

ality. When attempting to solve problems requiring proportional 

reasoning, they vacillate between the logic of qualitative propor­

tionality and their incomplete logic system of quantitative pro­

portionality.

Research hypothesis Hjg, stated in null form, predicted no 

significant difference in centroids between groups 1 and 2 combined 

(Group 1,2) and groups 3 and 4 combined (Group 3,4). It was stated 

as follows:

Hq13: The group centroids of knowledge, comprehension, and 

application test scores of structure of matter for the high and low 
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quantitative proportionality groups combined is not significantly 

different from the group centroids of knowledge, comprehension, and 

application test scores for the high and low qualitative propor­

tionality groups combined.

A discriminant function analysis produced only one discrim­

inant function using the students' knowledge scores. Application 

and comprehension did not discriminate sufficiently to be included 

in the functions. The group centroids in reduced discriminant 

space for Group 1,2 and for Group 3,4 were found to be -.1728 and 

.6912, respectively. Mahalonobis' test for pair-wise differences 

between group centroids produced a significant (p < .01) F score 

of 18.1907 with 1 and 133 degrees of freedom. Because knowledge 

test scores successfully discriminated between qualitative propor­

tional students (Group 1,2) and quantitative proportional students 

(Group 3,4), it appeared that proportional reasoning ability was re­

lated to the achievement of knowledge of structure of matter concepts. 

Therefore, Hq14 was not accepted.

The nature of the relationship between proportional reasoning 

ability and achievement of knowledge of structure of matter was deter­

mined by examining directional differences between the centroids of 

groups 1,2 and 3,4 when plotted in reduced discriminant space. 

Because only one discriminant function was produced, the territorial 

map generated was unidimensional, as shown in Figure 4.

The location of these centroids indicates that quantitative 

proportionality may facilitate the acquisition of knowledge of structure
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Figure 4

Territorial Map of Group Centroids
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of matter concepts. Figure 4 shows that the Group 3,4 centroid, 

being to the right of the Group 1,2 centroid, has the greater 

magnitude. Therefore, Group 3,4 students must have scored consist­

ently higher on the knowledge test than Group 1,2 students. This 

indicates that possession of quantitative proportionality may 

facilitate acquisition of knowledge of structure of matter concepts.

Findings Relative to Equivalent Fractions

Wilks' Lambda was applied to the following primary hypothesis, 

stated in null form:

Hq3: There is no significant difference between the mean 

vectors of knowledge, comprehension, and application test scores of 

equivalent fractions concepts for the four groups of students 

differing in proportional reasoning.

The means of each proportionality group on the equivalent 

fractions are summarized in Table 20 for each of the grouping pro­

cedures.

Analysis of Table 20 reveals two expected patterns. First, 

group means are generally highest for knowledge and lowest for 

application, with comprehension means falling in between. Because 
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comprehension and application were assumed to represent levels of 

understanding, it was anticipated that these means would be similar 

to each other and considerably lower in magnitude than the knowledge 

means. This was not the case. Comprehension means are virtually 

equal to the knowledge means, and these two sets of means are 

considerably lower than the application means.

A second expected pattern was that the magnitude of the 

group means would generally follow the level of the proportional 

reasoning of the students: the higher the level of proportional 

reasoning, the larger the group means. This pattern was observed. 

One significant aspect of this pattern needs to be noted. Although 

comprehension and application means of the two qualitative proportional 

groups are lower than for the quantitative groups, they are well 

above chance level. This is significant, because quantitative pro­

portionality was thought to be necessary for achieving comprehension 

and application of these concepts.

Hypothesis Hgl was tested for each of the four grouping 

procedures by the application of Wilks1 Lambda. The results are 

summarized in Table 21.

Wilks' Lambda was found to be significant for each of the four 

grouping procedures, indicating that significant differences exist 

between the mean vectors of the four groups. The researcher, there­

fore, did not accept Hypothesis Hgl.

Secondary hypotheses which predicted differences between the 

group centroids of groups possessing quantitative proportionality and
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Table 20

Means of the Four Groups Differing in Proportional 
Reasoning on Knowledge, Comprehension and 

Application of Equivalent Fractions

*Group omitted from analysis because of insufficient number of subjects.

Proportionality 
Group Knowledge Comprehension Application

Quantifications of Probabilities Grouping Procedure

1 (low qualitative) 9.4091 9.2424 5.9697

2 (high qualitative) 9.5476 9.1905 6.4524

3 (low quantitative) 10.3125 11.3125 8.9375

4 (high quantitative) 11.7273 11.7273 10.2727

Balance Grouping Procedure

1 (low qualitative)*

2 (high qualitative) 9.0685 9.1918 5.6712

3 (low quantitative) 10.3478 10.1087 7.7826

4 (high quantitative) 11.6364 11.5455 10.1818

Lowest Score on Tasks Grouping Procedure

1 (low qualitative) 9.4412 9.2353 6.0000

2 (high qualitative) 9.6327 9.6735 6.8367

3 (low quantitative) 10.6250 10.8750 9.6250

4 (high quantitative) 11.7000 11.7000 10.1000

Highest Score on Tasks Grouping Procedure

1 (low qualitative)*

2 (high qualitative) 8.9545 8.8333 5.3030

3 (low quantitative) 10.2963 10.3519 7.8519

4 (high quantitative) 11.6667 11.5833 10.3333
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Table 21

Wilks1 Lambda Test of Primary Hypotheses

Grouping Procedure Wilks1 Lambda Chi-Square df Significance

Balance task .7814 31.327 2 .000

Quantification of 
probabilities task .7768 33.210 3 .000

Highest score on 
tasks .7221 42.003 2 .000

Lowest score on 
tasks .8101 27.200 3 .000

Table 22

Discriminant Function Analysis Results 

for Grouping Procedures

Analysis
Grouping 
Procedure

Discriminant 
Function Eigenvalue

Relative 
Percentage

Canonical 
R

1 Balance task 1 .2798 100 .467

2 Quantification of 
probabilities task

1 .2873 100 .472

3 Highest score on 
tasks

1 .3849 100 .527

4 Lowest score on 
tasks

1 .2344 100 .436
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groups possessing qualitative proportionality were tested by appli­

cation of discriminant function analysis. The following secondary 

hypotheses, stated in null form, were tested:

Hq14: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the high quantita­

tive proportionality group are not significantly different from the 

group centroids of knowledge, comprehension, and application test 

scores of equivalent fractions for the high qualitative proportion­

ality group.

Hq15: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the high quan­

titative proportionality group are not significantly different from 

the group centroids of knowledge, comprehension, and application 

test scores of equivalent fractions for the low qualitative group.

Hq16: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the low quantita­

tive proportionality group are not significantly different from the 

group centroids of knowledge, comprehension, and application test 

scores of equivalent fractions for the low qualitative proportion­

ality group.

Hq17: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the low quan­

titative proportionality groups are not significantly different from 

the group centroids of knowledge, comprehension, and application test 

scores of equivalent fractions for the high qualitative proportion­

ality group.



100

Hq18: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the high and low 

quantitative proportionality groups combined is not significantly 

different from the group centroids of knowledge, comprehension, and 

application test scores for the high and low qualitative proportion­

ality groups combined.

Only one discriminant function was generated in each of the 

four analyses. The canonical correlations of all four analyses are 

quite similar and indicate that the groups are accounting for about 

20% of the variance in the functions (Table 22).

The discriminant function generated in all four analyses 

was derived solely from the application variable. Knowledge and 

comprehension did not discriminate between groups strongly enough to 

be included in the function. Consequently, only one standardized 

discriminant function coefficient was generated in each analysis. 

This coefficient equals one in all analyses. Therefore, all the dis­

criminant function prediction equations produced are equal to 1 times 

X/\ , the students' application score (tables 23 and 24).

The accuracy with which the students' application scores 

correctly predicted their group membership can be seen in Table 25. 

Because of overlap among groups on the discriminating variable 

(application), the percent of students correctly classified by the 

four discriminant function analyses ranged from 39.3% to 53.8%. Analy­

sis of Table 25 reveals that high formal operational students were 

classified more accurately in all four analyses than were students in
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Table 23

Standardized Discriminant Function Coefficients

Analysis
Grouping 
Procedure

Discriminating
Variables Function 1

1 Balance 
task

Application 1.000

2 Quantification 
of probabilities 
task

Application 1.000

3 Highest score 
on tasks

Application 1.000

4 Lowest score 
on tasks

Application 1.000

Table 24

Discrimi nant Function Prediction Equations

Analysis
Grouping 
Procedure Function

1 Balance task D 1.000Xa

2 Quantifications of 
probabilities task

D 1.000Xa

3 Highest score on 
tasks

D 1.000Xa

4 Lowest score on 
tasks

D 1.000Xa
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Table 25

Predicted Group Memberships of 136 Students Differing 
in Proportional Reasoning for the Four Grouping Procedures

Actual Group
No. of 
Cases 1

Predicted Group Membership
2 3 4

Quantification of Probabilities
1 (low qualitative) 66 37

56.1%
9

13.6%
10
15.2%

10
15.2%

2 (high qualitative) 42 21
50.0%

4
9.5%

6
14.3%

11
26.2%

3 (low quantitative) 16 4
25.0%

0
0%

4
25.0%

8
50.0%

4

%

(high quantitative) 

correctly classified:

11 2
18.2%

0
0%

1
9.1%

8
72.7%

Balance
2 (high qualitative) 73 45

61.6%
11
15.1%

17
23.3%

3 (low quantitative) 46 15
32.6%

9
19.6%

22
47.8%

4

%

(high quantitative) 

correctly classified:

11

47.69%

2
18.2%

1
9.1%

8
72.7%

Lowest Scores on Tasks

1 (low qualitative) 68 38
55.9%

13
19.1%

7
10.3%

10
14.7%

2 (high qualitative) 49 22
44.9%

7
14.3%

5
10.2%

15
30.6%

3 (low quantitative) 8 2
25.0%

0
0%

1
12.5%

5
62.5%

4

%

(high quantitative) 

correctly classified:

10

39.26%

2
20.0%

1
10.0%

0
0%

7
70.0%

Highest Scores on Tasks
2 (high qualitative) 66 44

66.7%
14
21.2%

8
12.1%

3 (low quantitative) 54 17
31.5%

18
33.3%

19
35.2%

4

%

(high quantitative) 

correctly classified:

12

53.79%

2
16.7%

1
8.3%

9
75.0%
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the other three groups. The number of high quantitative proportional 

students correctly classified ranged from 70.0% to 75.0%. This 

means that there was less variability among the test scores of stu­

dents in the high quantitative proportional group than among the 

test scores of students in each of the other three groups. The 

second-most accurately classified group of students were the low 

qualitative proportional group. The number of these students cor­

rectly classified ranged from 55.9% to 66.7%.

The discriminating power of each derived function can be 

determined by computing group centroids. The group centroids, sum­

marizing each group's location in reduced discriminant space, are 

summarized in Table 26.

Because knowledge test scores were the only test scores that 

discriminated between groups, differences between group centroids 

were caused exclusively by differences in knowledge scores. F scores 

obtained from Mahalonobis1 test for pair-wise differences between 

group centroids derived from knowledge test scores are given in 

Table 27.

Examination of Table 27 reveals that the quantifications of 

probabilities grouping procedure yielded the largest number of group 

centroids significantly spread apart. Therefore, the quantifica­

tions of probabilities analysis was used to test the secondary 

hypotheses.

Because quantitative proportionality was thought to be neces­

sary for achieving understanding (comprehension and application), but
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Table 26

Group Centroids in Discriminant Space

Analysis
Grouping 
Procedure Group Function 1

1 Balance task 2 -.3161
3 .2752
4 .9471

2 Quantifications 1 -.2401
of probabilities 2 -.1042
task 3 .5957

4 .9717

3 Highest score 2 -.4223
on tasks 3 .2953

4 .9939

4 Lowest score 1 -.2315
on tasks 2 .0041

3 .7893
4 .9320
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Table 27

Pair-Wise F-Tests for Application Differences

Between Group Centroids

Analysis df
Grouping 
Procedure Group 1 2 3

1 1,127 Balance task 3
4 4.6972*

2 2,131 Quantifications 2 .5445
of probabilities 3 10.3659** 6.5391*

4 15.9544** 11.6267** 1.0621

3 1,129 Highest score 3 19.2138**
on tasks 4 25.5857** 6.0205*

4 1,131 Lowest score 2 1.7727**
on tasks 3 8.3624** 4.7535*

4 13.0290 7.8628** .0892

* significant .05
** significant .01
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not knowledge of equivalent fraction concepts, it was anticipated 

that comprehension and application test scores would significantly 

discriminate between the four groups and predict the group centroids. 

This was not the case. The group centroids produced in the dis­

criminant function analysis were derived from application scores 

only.

Table 27 reveals four significant pair-wise differences between 

the four groups in the quantifications of probabilities analysis. 

These differences were between the centroids of the following pairs 

of groups: 1 and 3, 1 and 4, 2 and 3, and 2 and 4. These four 

differences were predicted by hypotheses H^, H^, Hjg, and Hp.

Research hypothesis stated in null form, predicted no 

significant differences between centroids of groups 2 and 4. It 

was stated as follows:

Hq14: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the high quantita­

tive proportionality group are not significantly different from the 

group centroids of knowledge, comprehension, and application test 

scores of equivalent fractions for the high qualitative proportion­

ality group.

Mahalonobis1 test for pair-wise differences between group 

centroids produced a significant F of 11.6267 for the application 

score differences. Because application test scores successfully dis­

criminated between Group 2 (high qualitative proportional) and Group 

4 (high quantitative proportional) students, it appeared that 
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proportional reasoning ability was related to the achievement of 

application of equivalent fractions concepts by high qualitative 

proportionality and high quantitative proportionality students. 

Therefore, Hq14 was not accepted.

Research hypothesis Hjg, stated in null form, predicted no 

significant differences between centroids of groups 1 and 4. It 

was stated as follows:

Hq15: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the high quanti­

tative proportionality group are not significantly different from 

the group centroids of knowledge, comprehension, and application test 

scores of equivalent fractions for the low qualitative proportionality 

group.

Mahalonobis1 test for pair-wise differences between group 

centroids produced a significant F (p < .01) of 15.9544 for the 

application score differences. This finding indicated that propor­

tional reasoning ability was related to the achievement of application 

of equivalent fractions concepts by low qualitative proportionality 

and high quantitative proportionality students. Therefore, Hq15 

was not accepted.

Research hypothesis H^g, stated in null form, predicted no 

significant differences between centroids of groups 1 and 3. It was 

stated as follows:

Hq16: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the low quan­
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titative proportionality group are not significantly different from 

the group centroids of knowledge, comprehension, and application test 

scores of equivalent fractions for the low qualitative proportion­

ality group.

Mahalonobis' test for pair-wise differences between group 

centroids produced a significant F (p < .01) of 10.3659 for the appli­

cation score differences. This finding indicated that proportional 

reasoning ability was related to the achievement of application of 

equivalent fractions concepts by low quantitative proportionality 

and low qualitative proportionality students. Therefore, Hq16 was 

not accepted.

Research hypothesis H|j, stated in null form, predicted no 

significant difference in centroids of groups 2 and 3. It was stated 

as follows:

Hgl7: The group centroids of knowledge, comprehension, and 

application test scores of equivalent fractions for the low quanti­

tative proportionality group are not significantly different from the 

group centroids of knowledge, comprehension, and application test 

scores of equivalent fractions for the high qualitative proportion­

ality group.

Mahalonobis' test for pair-wise differences between group cen­

troids produced a significant F score of 6.5391 (p < .05) for the 

application score differences. Because application test scores 

successfully discriminated between Group 2 (high qualitative propor­

tionality) and Group 3 (low quantitative proportionality) students. 
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it appeared that proportional reasoning ability was related to the 

achievement of application of equivalent fractions concepts. Hypo­

thesis Hq17 was not accepted.

The nature of the relationship between proportional reasoning 

ability and achievement of application of equivalent fractions was 

determined by examining the directional differences between the pairs 

of significantly different centroids when plotted in reduced dis­

criminant space. The resulting territorial map is given in Figure 5. 

Because only one discriminant function was produced, the territorial 

map produced was unidimensional.

Figure 5

Territorial Map of Group Centroids

Group 1 Group 2 Group 3 Group 4
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The location of the centroids in Figure 5 indicates that 

quantitative proportionality may facilitate achievement of application 

of equivalent fractions concepts. Figure 5 shows that the centroid 

of Group 4, being to the right of the other three centroids, had the 

greatest magnitude. Because the significant difference between the 

centroids of groups 4 and 1 and between the centroids of groups 4 and 

2 was attributable solely to application score differences, Group 4 

students must have scored consistently higher on the application test 
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than students in groups 1 and 2. This indicates that possession 

of high quantitative proportionality may facilitate achievement of 

application of equivalent fractions concepts.

Figure 5 indicates that the centroid of Group 3 was of greater 

magnitude than the centroids of groups 1 and 2. Because the Group 3 

centroid was found to be significantly different from the centroids 

of groups 1 and 2, Group 3 students must have scored consistently 

higher on the application test than the students in groups 1 and 2. 

This indicates that possession of low quantitative proportionality 

may facilitate achievement of equivalent fractions concepts.

Research hypothesis Hjg, stated in null form, predicted no 

significant difference in centroids between groups 3 and 4 combined 

and groups 1 and 2 combined. It was stated as follows:

Hq18: The group centroids of knowledge, comprehension, and 

application test scores of simple machines for the high and low quanti­

tative proportionality groups combined is not significantly different 

from the group centroids of knowledge, comprehension, and application 

test scores for the high and low qualitative proportionality groups 

combined. A discriminant function analysis produced one discriminant 

function using students' comprehension and application scores. Know­

ledge did not discriminate sufficiently to be included in the functions. 

The standardized discriminant function coefficients for comprehension 

and application, .3141 and .7400, respectively, showed application 

to be the more potent of the two discriminating variables. The 

group centroids in reduced discriminant space for groups 1 and 2
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combined and groups 3 and 4 combined were found to be -.1872 and 

.7487, respectively. Mahalonobis' test for pair-wise differences 

between group centroids produced a significant (p < .01) F score 

of 21.8756 with 1 and 133 degrees of freedom for application score 

differences, and a significant (p < .01) F score of 11.5443 with 

2 and 132 degrees of freedom for comprehension score differences.

The nature of the relationship between proportional reasoning 

ability and achievement of comprehension and application of equiva­

lent fractions was determined by examining directional differences 

between the centroids of groups 1,2 and 3,4 when plotted in reduced 

discriminant space. Because only one discriminant function was pro­

duced, the territorial map generated was unidimensional, as shown in 

Figure 6.

The location of these centroids indicated that quantitative 

proportionality may facilitate the acquisition of comprehension and 

application of equivalent fractions concepts. Figure 6 shows that the 

Group 3,4 centroid, being to the right of Group 1,2 centroid, has 

the greater magnitude. Therefore, Group 3,4 students must have 

scored consistently higher on the application and comprehension test 

items than the Group 1,2 students. This indicates that possession 

of quantitative proportionality may facilitate acquisition of compre­

hension and application of equivalent fractions concepts.

Figure 6 

Territorial Map of Group Centroids

Group 1,2 Group 3,4

-2.250 -.750 .750 2.250



112

Discussion of the Findings

The achievement of application by high quantitative proportional 

reasoners on simple machines, structure of matter, and equivalent 

fractions was found to be significantly (p< .01) greater than the 

achievement by high and low qualitative reasoners. This finding sug­

gests that quantitative proportional reasoning may be related to and 

necessary for achievement of application of the selected concepts.

The expected relationship occurred between level of achieve­

ment and proportional reasoning for equivalent fractions. Quantitative 

proportionality was considered to be necessary for achieving appli­

cation of the selected concepts; therefore, a significant difference 

in application level achievement was anticipated between qualitative 

and quantitative proportional reasoners. This was the case. Applica­

tion was the primary discriminating variable between the groups for 

equivalent fractions.

An unexpected relationship occurred between level of achieve­

ment and proportional reasoning for the science concepts. Knowledge, 

rather than application or comprehension, proved to be the primary 

discriminating variable. Knowledge was not expected to discriminate 

between groups because quantitative proportionality was not considered 

essential for knowledge level achievement.

One possible explanation for why knowledge rather than applica­

tion was the primary discriminating variable for the science concepts 

is as follows. The level of achievement was rather low on knowledge, 

comprehension, and application level test items. When this occurs 
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proportional reasoning ability will probably interact with lower 

levels of achievement. On the other hand, achievement of equivalent 

fractions was generally at the mastery level for knowledge and compre­

hension, and generally below mastery for application. When this 

occurs, proportional reasoning will probably interact at the 

application level. This pattern of achievement is reflected in the 

group means for the science and mathematics concepts. These means 

are summarized in Table 20.

The means in Table 20 reveal that knowledge, comprehension, 

and application scores for science concepts are considerably lower 

than for equivalent fractions. Knowledge and comprehension means 

for science concepts were 5.70 to 9.91, respectively (with 12 points 

possible). Knowledge and comprehension means for equivalent frac­

tions were 9.24 to 11.73, respectively. Application means for the 

science concepts were 3.00 (chance level) and 6.64 for comprehension, 

while application means for equivalent fractions were 5.97 and 10.27 

for application means. The fact that application means for the 

science concepts were at the chance level and slightly above may 

account for why knowledge proved to be the primary discriminating 

variable for the science concepts. The fact that knowledge and 

comprehension scores of equivalent fractions were generally at the 

mastery level may account for why application was the primary dis­

criminating variable for equivalent fractions.

Another important variable which may have contributed to the 

interaction between achievement and proportional reasoning with respect 



114

to mathematics and science concepts was the difference in the 

instructional programs in which the students participated. The 

science concepts were taught by the traditional group-paced 

lecture/discussion method. Because teachers were required to teach 

the entire content in their physical science textbook within two 

semesters, they presumably moved their classes very rapidly through 

the science concepts. On the other hand, students had definitely 

experience more classroom instruction in equivalent fractions.

Equivalent fractions are introduced in third-grade mathe­

matics texts by virtually all textbook series and developed exten­

sively in fourth, fifth, and sixth grades. These students un­

doubtedly had instruction in equivalent fractions over a several 

year period. In addition, they had certainly experienced numerous 

practical applications of equivalent fractions in their day-to-day 

experiences between third and ninth grades. The greater amount of 

time and experience with equivalent fractions may account for the 

higher achievement in equivalent fractions demonstrated by these 

students.

If this inference is correct, it has implications for class­

room instruction. For instance, students may be capable of much 

greater achievement of knowledge and understanding of the science 

concepts if given more learning time and experience, regardless of 

their logical thinking abilities. Perhaps self-paced/modularized 

instructional programs would be an effective alternative to the group- 

paced lecture/discussion method for teaching the science concepts.
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A study comparing the effectiveness of self-paced and group- 

paced instruction has recently been reported by Chiapetta et al. 

(1977). They investigated the difference between self-paced/ 

modularized instruction and the traditional lecture/discussion 

method on achievement of the solubility concept by ninth-grade 

students differing in logical thinking skills. They found that 

concrete operational students in the self-paced/modularized program 

achieved significantly (p < .05) larger gain scores than formal 

operational students in the traditional lecture/discussion program. 

In fact, achievement of the concrete operational students in the 

self-paced/modularized program was at the level of the formal 

operational students in the traditional group-paced lecture/dis­

cussion program. These findings, in conjunction with the findings 

of this study, suggest that student achievement of the selected con­

cepts might be improved if instruction provided students with 

self-paced learning rather than the group-paced learning given by 

the traditional lecture/discussion method.

Mastery learning may be another effective alternative to 

group-paced lecture/discussion methods. Bloom's (1976) "Mastery 

Learning Model" is based, in part, on Carroll's (1963) "School 

Learning Model." Carroll's model proposed that the degree to which 

a student could be expected to learn was a function of the ratio 

between the amount of time actually spent in learning and the amount 

of time needed. Bloom (1976) transformed Carroll's model into a 

three-part paradigm which states that student learning is a function 
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of cognitive entry behaviors, affective entry characteristics, and 

quality of instruction. Quality of instruction increases when it 

is well designed and when feedback and corrective instruction are 

given to individual students. Considered in the light of mastery 

learning strategy, student achievement of the selected concepts 

might be significantly improved if mastery learning instruction 

were provided, regardless of their proportional reasoning ability.



CHAPTER V

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Introduction

Two important considerations for improving student achieve­

ment are the sequence of the curriculum and the developmental 

readiness of the learner. Gagne has developed an instructional 

strategy for improving the sequence of curriculum. Piaget has 

identified various stages of cognitive development and has de­

scribed the logical thinking skills characteristic of each stage. 

The task analysis strategy of Gagne and the developmental theory 

of Piaget should be combined to enhance student learning. This can 

be accomplished if logical thinking skills necessary for learning 

specific concepts can be determined.

This study had attempted to determine the relationship between 

a specific logical thinking skill and student achievement of selected 

science and mathematics concepts. The logical thinking skill of 

proportional reasoning was selected for investigation because it 

appears to be directly related to understanding of simple machines, 

structure of matter, and equivalent fractions concepts. An analysis 

of related literature suggests that quantitative proportionality may 

be necessary for achieving understanding of the selected concepts. 

Hypotheses were generated which predicted that quantitative propor­

tional students would achieve greater understanding (comprehension

117
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and application) of the selected science and mathematics concepts 

than qualitative proportional students.

A population of students having a wide range in proportional 

thinking skills and who had studied the selected science and mathe­

matics concepts in their ninth-grade physical science classes were 

selected for the study. Piagetian tasks were administered to assess 

students1 proportional reasoning skills and to group them into four 

levels of proportional reasoning: high and low quantitative propor­

tional reasoners and high and low qualitative proportional reasoners. 

A paper/pencil test was used to assess students1 achievement of 

knowledge and understanding (comprehension and application) of the 

selected concepts.

Discriminant function analysis was applied to the data to 

determine if a relationship existed between proportional reasoning 

and achievement of the selected concepts. The effectiveness of know­

ledge, comprehension, and application test scores for discriminating 

between qualitative proportional reasoners and quantitative propor­

tional reasoners indicated the nature of the expected relationship.

Summary of the Findings

The findings of this study are summarized as follows:

1. High quantitative proportional reasoners demonstrated 

significantly (p < .01) greater achievement on knowledge and applica­

tion level test items for simple machines than high and low qualita­

tive proportional reasoners.
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2. High quantitative proportional reasoners demonstrated 

significantly (p < .01) greater achievement on knowledge and compre­

hension level test items for structure of matter than high and low 

qualitative proportional reasoners.

3. High quantitative proportional reasoners demonstrated 

significantly (p< .01) greater achievement on application level 

test items for equivalent fractions than high and low qualitative 

proportional reasoners.

4. Low quantitative proportional reasoners demonstrated sig­

nificantly (p < .01) greater achievement of knowledge level test items 

for simple machines and structure of matter than low qualitative 

proportional reasoners.

5. Low quantitative proportional reasoners demonstrated sig­

nificantly less (p < .01) achievement of application level test 

items for simple machines than low qualitative proportional reasoners.

6. Low quantitative proportional reasoners demonstrated 

significantly less (p < .05) achievement of comprehension level 

test items for structure of matter than low qualitative proportional 

reasoners.

7. Low quantitative proportional reasoners demonstrated sig­

nificantly greater (p< .05) achievement of application level test 

items for equivalent fractions than high and low qualitative pro­

portional reasoners.

8. In general, all groups achieved more knowledge of the 

concepts than comprehension and more comprehension than application.
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9. Comprehension means of the four groups on all concepts 

tended to be more similar to knowledge means than application means.

10. Application means were in all cases much lower than 

knowledge and comprehension means.

11. Achievement of equivalent fractions was considerably 

higher at all levels than achievement of the science concepts.

Conclusions

The findings of this study are generalizable to the popula­

tion sampled and, with reservation, to similar populations. Within 

these limitations, the findings of this study generally support 

the hypotheses investigated: achievement of selected science and 

mathematics concepts is related to proportional thinking, and quan­

titative proportional reasoners generally achieve significantly 

greater knowledge, comprehension, and application of the selected 

concepts than qualitative proportional reasoners.

Analysis of the means suggests a particular interaction 

pattern between proportional reasoning and level of achievement 

(Bloom's taxonomy). It suggests that as achievement increases, 

proportional reasoning may interact at the higher levels of achieve­

ment. Therefore, when achievement of knowledge, comprehension, and 

application is low, knowledge will yield the strongest interaction 

with proportional reasoning. When achievement of knowledge, compre­

hension, and application is high, application will yield the strong­

est interaction with proportional reasoning.
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Recommendations

Since a general relationship was found between proportional 

reasoning and achievement, it is recommended that experimental 

studies be conducted to investigate a cause and effect relationship 

between proportional reasoning and achievement. The following 

studies are recommended:

1. A training study using a sound instruction program such 

as mastery learning or self-paced/modularized instruction in which 

ninth-grade students (14 or 15 year-olds) possessing qualitative 

proportionality and possessing little, if any, knowledge, comprehen­

sion, or application of the science and mathematics concepts are 

trained to determined to what extent they can achieve these concepts 

and to what extent qualitative proportionality limits their ability 

to achieve these concepts.

2. Similar studies investigating the relationship between 

proportional reasoning and other science concepts.

3. Similar studies investigating the relationship between 

other logical thinking skills and other concepts.

Implications

The positive relationship identified between proportional 

reasoning and achievement of the selected science and mathematics 

concepts has implications for classroom instruction. Because most 

high-school-age students would not be expected to possess quantita­

tive proportional reasoning, teachers instructing students in these 
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concepts would probably be unwise to teach for mastery at the 

application level. By employing a sound instructional program, they 

could probably teach for mastery at the knowledge and comprehension 

levels. Application could probably be developed, but only at a 

minimal level of achievement for most students.

The identified relationship between proportional reasoning 

and achievement of the selected concepts permits the task analysis 

strategies of Gagne and the developmental theory of Piaget to be 

combined and utilized to enhance student achievement of these con­

cepts. Task analysis could be applied to develop hierarchical 

sequences of the selected concepts. Teachers applying sound instruc­

tional programs could teach the sequences of concepts at the know­

ledge and comprehension levels and could teach for mastery. Se­

quences of concepts could be followed until a concept requiring 

application level achievement is reached. If only a minimal level 

of application of the concept is required to continue the sequence, 

it could be taught and the sequence continued. If application at 

the mastery level is required, only students possessing high quan­

titative proportionality would be permitted to continue the sequence. 

Other students would be permitted to study the concept and expected 

to attain a minimal achievement of application level understanding. 

These students would then begin to study other concepts, rather 

than attempting to learn the given concepts at the application or 

higher levels.
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By utilizing the findings of this study as just described, 

educators can employ the task analysis strategy of Gagne to deter­

mine "what to teach" and the developmental theory of Piaget to 

determine "when to teach" a given concept.
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Quantification of Probabilities—Protocol

A. E presents S with

1. (2,2) (2,3); 2/4 and 2/5.

E: Do you have a better chance of pulling out a red chip 
from here or there, or are the chances the same? 
(E circle S choice.)

Why?

What chance is there for getting a red chip out of 
each set?

How do you know?

2. (1,2) (2,1); 1/3 and 2/3.

E: ....Better chance?

Why?

What chance is there for getting a red chip out of each 
set?

How do you know?

B. 3. (2,6) (1,3); 2/8 and 1/4.

E: ....Better chance?

Why?

....chance red chip from each set?

How do you know?

****If S fails:

E: Watch! (E separates (2,6) into two groups of (1,3).)

What do you think now?

125
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If S succeeds with the separated set, E mixes the set 
and asks,

Now? Why?

****If s succeeds in (B): E presents

4. (1,2) (2,4); 1/3 and 2/6.

E: ....Better chance?

Why?

(To S who say SAME): Wouldn't there be a better chance 
with this set (1,2) because there are only two blue 
chips?

S: Why?

****If s succeeds, E removes one blue chip from (2,4) and presents

C. 5. (1,2) (2,3); 1/3 and 2/5.

E: ....Better chance?

Why?

....chance red chip each set?

How do you know?

****If s succeeds, E presents

6. (4,5) (2,3); 4/9 and 2/5.

++N.B. (4,6) = 4/10 = 2/5 = (2,3)++

E: ....Better chance?

Why?

....chance red chip each set?

How do you know?
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****If s says (4,5) has better chance, E says

Wouldn't they be the same? Here (4,5), there are 2 
more red chips and 2 more blue chips than there (2,3).

S:

D. If S maintains that set (4,5) has a better chance than set
(2,3), E presents

7. (2,3) (6,7); 2/5 and 6/13.

E: ....Better chance?

Why?

....chance red chip each set?

How do you know which one gives the better chance of 
getting a red chip?

8. (4,3) (5,4); 4/7 and 5/9.

E: ....Better chance?

Why?

How do you figure out which set gives you the better 
chance of getting a red chip?

****0n close calls for levels IIIA or Level IIIB, E gives

9. (1,2) (2,1); 1/3 and 2/3.

E: How many blue chips must you add so that the chances 
are the same?

10. E: If you had to tell a friend how to figure out these kinds 
of problems, what would you say?

Why?
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Balance Protocol

E: This is a balance. The arm goes up and down (demonstrate). 
And these are a bunch of weights we can hang on the balance 
like this (demonstrate).

***N.B. "Heavy" refers to the heavy weight, which is twice the 
weight of the light weight, "Light." Numbers without the 
apostrophe (') refer to left side of the fulcrum; numbers 
with the (') refer to page on the right side of the fulcrum.

1. E: Use some of these weights to make the arm level. Why does 
that balance?

2. (Heavy and Light weights) E: How can you make the arm level 
with these two weights? Why does that balance?

3. (Light at 10, Heavy at 5') E: If I move this (Light) weight 
to here (5), what will happen?

How can you make it balance again?

How else?

4. (Heavy at 5 and Light at 10') E: If I put another weight 
(Light) here (101), what will happen?

How can you make it balance again?

How else?

5. E: If I put this one (Heavy) here (1) and give you this one 
(Light), how can you make it balance?

Why does that work?

E: I'll move mine (Heavy) out one peg. Where will you put 
yours (Light)? Why?

***E may repeat until Heavy is on 5 and S's Light is on 10'. 
E may use same sequence with Heavy and Light starting on 
1, and S has Light starting on 3.
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E: Can you figure out a rule for what we've been doing? How 
did you tell how many pegs to move yours? Why do you 
think a balance works like that?

6. (Light at 5 and Heavy at 5') E: How could you make the arm 
level?

How else?

7. (Heavy at 3) E: Tell me without trying where you would put 
this weight (Heavy) to make the arm level.

Why there?

8. (Light at 6') E: Tell me without trying where you would put 
this weight (Heavy) to make the arm balance.

Why there?

9. E: If I put these two (Light) here (1), where would you put 
this one (Light) to make the arm level? Why?

Repeat for three, four nine, etc. Light weights. Why?

10. E: So, if I put this one (Heavy) on 3', where will you put this 
one (Light) to make the arm level?

Why there?

If you switched these weights around so that each one went to 
the opposite side, where would you put them to keep the arm 
level?

Why?

Is that the only way you can do it? Why? How do you know?

11. E: Now, suppose I put these four (Light) here (3). Tell me 
without trying where you will put these three (Light) to make 
it level. Why?
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E: Repeat, giving S two (Light).

12. Suppose you want to tell a friend about all this. What would 
you say so that he would be able to get these questions right 
the first time he tried? What would be your general rule about 
how the balance works? Why?
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Simple Machines

Date Name

Matching: Select the phrase on the right that matches the word on 
the left.

(e) number of times a machine multi­
plies the force applied to the 
machine.

1. efficiency (a) any device used to change the force 
a person is able to exert.

2. lever (b) basic kind of machine consisting

3. mechanical advantage

of a rigid bar that pivots about 
a point.

4. inclined plane

(c) basic kind of machine consisting 
of a sloping, or slanting, surface.

5. machine

(d) in a machine, the ratio of the 
useful work output to the work 
input.

Matching:

6. fulcrum (a) distance from the fulcrum to
the applied force.

7. effort arm (b) pivot point of a lever.

8. wheel and axle
(c) distance from the weight lifted 

to the fulcrum.

9. resistance arm
(d) a circular kind of 1st class 

lever.

Matching:

 10. 1st class lever

 11. 2nd class lever

 12. 3rd class lever

, n ............t.
(a)

t n.
(b) A

n _ I
tc) A

132
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Matching:

 13. 1st class lever

 14. 2nd class lever

 15. 3rd class lever

Matching:

 16. 1st class lever

(a) prying with a 
crowbar

casting a 
fishing pole 
with two hands

moving a 
heavy load

(a) pumping water

 17. 3rd class lever(b)c swinging a 
sledge hammer

Multiple choice:

18. Which of the following is not an example of an inclined plane? 
(a) wedge (b) wood screw (c) highway overpass (d) cylinder

19. A 50 lb. rock could be lifted with the least effort using a 
lever with a mechanical advantage of (a) 5 (b) 3 (c) 10 
(d) 8 .

20. A machine having which of the following inputs and outputs 
would be the most efficient? (a) input 3 lbs., output 6 lbs. 
(b) input 6 lbs., output 3 lbs. (c) input 3 lbs., output, 
3 lbs. (d) input 6 lbs., output 6 lbs.

21. A 25 lb. effort could lift the heaviest weight if which of the 
following is used: (a) first class lever (b) second class 
lever (c) third class lever (d) the lever with the largest 
mechanical advantage.
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22. The arrangement of pulleys that will give pulley Y the 
lowest speed of rotation is:

23. A box placed on rollers is pushed up each of the inclined 
planes below. Disregarding friction, for which inclined 
plane will the least force be required to move the box?

(d)

24. Which of the following is not an example of an inclined 
plane? (a) ramp (b) elevator (c) escalator (d) staircase

25. When the effort moves 12 ft., 
how far does the resistance 
arm move? (a) 12 (b) 6 
(c) 3 (d) 10

|/o Ib^l__________________

2 /£. A 4

26. What is the mechanical ad­
vantage? (a) 12 (b) 3 
(c) 6 (d) 4

2 rt-polU—-=
Effort

<> ft. ,

27. What effort is required to 
lift the weight? (a) 40 
(b) (c) 50 (d) 15

28. What force is required to move 
a 100 lb. weight up the in­
clined plane? (a) 25 lb. (b) 50 
lb. (c) 13 lb. (d) 30 lb.
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29.

30.

What is the heaviest weight that 
could be moved up the inclined 
plane by a 25 lb. force? (a) 20 lb. 
(b) 10 lb. (c) 100 lb. (d) 80 lb.

What length would this inclined 
plane need to be for a 160 lb. _________
weight to be moved up with a 
force of 80 lbs.? (a) 2 ft.
(b) 4 ft. (c) 6 ft. (d) 8 ft.

2 ft.

31. By using a lever, a 300 lb. rock is lifted 8 inches with an 
effort of 50 lb. How far does the effort move? (a) 8“
(b) 100" (c) 48" (d) 96"

32. What effort is needed to lift a 198 lb. box using a first 
class lever having an effort arm 6 feet long and a resistance 
arm 2 feet long? (a) 33 lb. (b) 26 lb. (c) 99 lb.
(d) 66 lb.

33. What is the maximum weight a 1st class lever can lift with 
an effort of 30 lbs. if it has a resistance arm of 2 and 
an effort arm of 10 ft.? (a) 150 (b) 300 (c) 60 (d) 600

 34. What is the maximum weight a 2nd class lever can lift with
an effort of 10 lb. if it has a resistance arm of 3 and an 
effort arm of 9 ft.? (a) 30 lb. (b) 20 lb. (c) 35 (d) 45

35. What effort is needed to lift a 300 lb. object using a 2nd 
class lever having an effort arm of 6 ft. and a resistance 
arm of 2 ft.? (a) 100 lb. (b) 300 lb. (c) 150 lb.
(d) 200 lb.

36. What force is required to move a 5 lb. object with a third 
class lever, having an effort arm of 1 ft. and a resistance 
arm of 4 ft.? (a) 10 lbs. (b) 15 lbs. (c) 20 lbs.
(d) 25 lbs.

Structure of Matter

Use these relative atomic weights to answer questions 37 through 44.

Calcium 40 Oxygen 16 Potassium 19 Chlorine 35
Carbon 12 Hydrogen 1 Sulfur 32 Sodium 23

Find the atomic weight.

 37. CaCl2 (a) 110 (b) 75 (c) 30 (d) 82
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 38. H2C03 (a) 71 (b) 58 (c) 29 (d) 62

 39. H2S04 (a) 49 (b) 66 (c) 98 (d) 89

 40. NaOH (a) 40 (b) 49 (c) 24 (d) 17

Find the number of moles.

 41. 18 grams of KOH (a) 1^ (b) 2 (c) (d) 1

 42. 68 grams of H2S (a) 1 (b) 2 (c) 1^ (d) 1^

 43. 87 grams of NaCl (a) 2 (b) H (c) 3 (d)

 44. 132 grams of C02 (a) (b) 3 (c) 2 (d) 1^

45. If an atom has 17 protons, 17 neutrons, and 17 electrons, 
the arrangement of its electrons in the three energy levels 
would be (a) 2-8-7 (b) 8-2-7 (c) 8-7-2 (d) 7-2-8

46. If an atom has five electrons, how many would be in the energy 
level farthest from the nucleus? (a) 1 (b) 2 (c) 3 (d) 5

47. If carbon has an atomic number of 6 and oxygen has an atomic 
number of 8, then (a) carbon atoms have 2 more protons than 
oxygen atoms (b) oxygen has 2 more protons than carbon
(c) carbon and oxygen atoms have the same number of atoms
(d) oxygen has 1 more proton than carbon.

48. If two atoms have the same atomic number but have different 
atomic weights, then they differ in (a) number of protons 
(b) number of electrons (c) size (d) number of neutrons.

49. If two atoms of different elements have the same atomic weight, 
then they (a) differ in the number of protons (b) have the 
same number of electrons (c) are ions (d) do not have protons.

50. An alpha particle would be repelled if it came near a nucleus 
because (a) the nucleus is very large (b) the alpha particle 
is very light (c) they both have positive charges (d) they 
both have negative charges.

51. If an atom having an atomic number of 5 loses two electrons, 
its charge is (a) neutral (b) -2 (c) +2 (d) +3 .

52. If two atoms have the same atomic number, they must be (a) the 
same element (b) different elements (c) have the same total 
number of electrons and protons (d) have the same total 
number of protons and neutrons.
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Matching:

53. Molecule (a) particles of matter that are too small 
to be seen and that combine to form 
molecules.

54. Nucleus
(b) tiny particle of matter having almost 

the same mass as a proton and having
55. Electron no electrical charge.

(c) smallest particle of a substance that
56. Atom retains all the properties of that 

substance.

57. Neutron (d) very small particle found within an atom 
and having a negative electrical charge.

(e) central part of an atom.

Matching:

____58. Atomic mass (a) tiny particle of matter found within 
an atom and having the smallest possible 
positive electrical charge.

____59. Isotopes
(b) average mass of the atoms in a natural 

sample of an element.
____60. Protons

(c) forms of the same element that differ 
only in atomic mass.

____61. Ion
(d) atom or atomic fragment that is elec­

trically charged.

Use the valence chart to write the correct formula:

ammonium NH4 +1 carbonate C03 -2

nitrate NOg -1 sodium Na +1

____62. ammonium nitrate (a)
(d)

NH4N03 (b) (NH4)2N03 (c) NH4(N03)2 
(nh3)2no3

____63. sodium carbonate (a)
(d)

NaC03 (b) (Na)2C03 (c) Na(C03)2 
(Na)3C03

____64. sodium nitrate (a)
(d)

NaN03 (b) Na2N03 (c) Na(N03)2 
Na2(N03)2



138

. 65. ammonium carbonate (a) (NH^JgCOg (b) NH^(C03)2
(c) NH4C03 (d) (NH4)2(co3)2

66. The molecular weight in grams of a compound is called (a) 
ion (b) a mole (c) an isomer (d) a compound.

67. Avagadro's number tells (a) the number of grams in a mole 
(b) the number of molecules in a mole (c) the number of 
molecules in a gram.

68. Which of the following gives the three basic parts of the 
atom? (a) proton, neutron, electron (b) proton, mole, 
electron (c) neutron, amu, proton (d) ion, electron, 
proton.

Matching:
Atomic Atomic

Element Number Weight

69. B 5 11

 70.N 7 14

 71.Be 4 9

 72.Li 3 7

Equivalent fractions:

 (a) 4 (b) 2 (c) 3 (d) 5

 74. A=_
15 30 (a) 9 (b) 18 (c) 14 (d) 6

an
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75. | =  (a) 45 (b) 36 (c) 40 (d) 14

 76. 3 =  (a) 12 (b) 4 (c) 18 (d) 9
4 16

 77. 4 =_ (a) 30 (b) 32 (c) 14 (d) 24
7 56

Do the following example and then do the problems. Show your work.

Look at the circle. Notice the solid line 
and the dotted line. The solid line divides the 
circle into how many parts? . The solid 
line and the dotted line together divide the 
circle into how many parts? . Write the  
two fractions describing the shaded parts of the 
circle. . (Answer: 1/2 and 
2/4.) For each of the following circles, select 
the two fractions that describe the shaded part.

(a) 1/2, 1/4

(c) 1/2, 2/3

(a) 2/3, 2/6

(c) 4/6, 2/3

(a) 2/6, 4/10

(c) 3/4, 2/6

(b) 1/4, 2/8

(d) 2/4, 2/8

(b) 4/6, 3/4

(d) 4/6, 2/6

(b) 6/8, 3/4

(c) 6/10, 3/4

81.

(a) 2/3, 2/6

(c) 2/4, 2/6

(b) 2/6, 1/3

(d) 1/3, 2/8
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Matching:

 82. Fraction (a) top part of a fractional number

 83. Numerator (b) part of a whole

 84. Denominator (c) bottom part of a fractional number

85. Equivalent (d) describes the same fractional
part of a whole

86. Equivalent fraction (e) same size

87. The total number of parts into which a whole is divided 
is represented by the (a) numerator (b) denominator 
(c) the numerator and the denominator (d) neither the 
numerator nor the denominator.

 88. How many fourths of a pie are the same as half of a pie?

(a) 2 (b) 9 (c) 3 (d) 4

89. George has two-thirds of a pie that is cut into ninths. 
How many pieces of the pie does he have?

(a) 4 (b) 9 (c) 3 (d) 6

90. Julie cut a pie in eighths and gave her brother three- 
fourths of it. How many eighths of the pie did he get?

(a) 3 (b) 4 (c) 8 (d) 6

91. How many fifths of a pie are the same as nine-fifteenths 
of a pie?

(a) 6 (b) 3 (c) 8 (d) 2

92. Two sevenths of a pie are as much as how many twenty-firsts 
of a pie?

(a) 6 (b) 3 (c) 8 (d) 2
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Look at the shaded part of each circle. For each of the following 
pairs of fractions, select the circle whose shaded part shows that 
the two fractions are equivalent.

95. Four-fifths (a) 5/4 (b) 4/5 (c) 4-5 (d) 45

96. ten-fifteenths (a) 1015 (b) 10/15 (d) 10-15 (d) 15/10

Matching:

97. 1/2

98. 3/4

99. 4/5

100. 1/6

Look at each of the following
equal parts would you have to 
shade one of its equal parts, 
both circles?

pairs of circles. Into how many 
cut the blank circle so that if you 
the same amount will be shaded in

(a) 6 (b) 4 (c) 2 (d) 3
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102.

(a) 10 (b) 6 (c) 2 (d) 3

103.

(a) 6 (b) 2 (c) 5 (d) 4

104. In the fraction 2/5, the 2 is called the (a) denominator 
(b) numerator (c) equivalent (d) quotient.

,105. 9/12 = 12/?

(a) 10 (b) 16 (c) 8 (d) 12

106. 16/28 = ?/35

(a) 20 (b) 18 (c) 35 (d) 28

107. 10/15 = ?/21

(a) 16 (b) 20 (c) 14 (d) 30

108. 12/16 = ?/24

(a) 18 (b) 16 (c) 24 (d) 20
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