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Abstract 

To explore the temporal and spatial variability of precipitation, a statistical tool 

called Principal Component Analysis (PCA) is applied to precipitation data from Tropical 

Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP), 

and Community Atmosphere Model (CAM5). Results for the tropical domain reveal the 

first leading mode is related to the El Niño Southern Oscillation (ENSO).  Further, it is 

found that the second principal component mode demonstrates correlation with a separate 

phenomenon, named El Niño Modoki. Results show a positive phase of El Niño Modoki 

produces positive precipitation anomalies over central Pacific and negative over western 

and eastern Pacific, analogous to those of typical ENSO episodes. Both observations and 

the CAM5 model are able to capture the ENSO and El Niño Modoki signals in the 

tropical precipitation, although the signals in the model are weaker than the observation. 

In the polar regions, spatial analysis and time series correlations with Northern Annular 

Mode/Southern Annular Mode Indices suggest the strength of the polar vortex can 

influence the temporal and spatial variability of precipitation in the high and mid-

latitudes. The CAM5 precipitation simulations demonstrate patterns similar to that of the 

observed GPCP, although they slightly under predict magnitudes. 

Next, high and low precipitation areas are defined with climatological monthly 

mean precipitation larger than 200 millimeters per month (mm/mon) and less than 50 

mm/mon.  Observed temporal variation reveals that precipitation has an increasing 

tendency in the wet areas and a decreasing tendency in the dry areas. The NASA 

Goddard Institute for Space Studies (GISS) model is utilized, and simulations imply that 
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the increasing greenhouse gases can affect the temporal variation of precipitation over the 

wet and dry areas, consistent with the observed “rich-get-richer” mechanism. Results 

further reveal that the atmospheric dynamics related to the convective stability, and hence 

the vertical motions, contribute to the increased precipitation over the tropical area as a 

result of global warming. However, the vertical motion in the dry areas does not 

demonstrate significant change, making the physics of the negative trend of precipitation 

in these regions more complicated. 
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Chapter 1 

 

Introduction 

Broadly, this dissertation aims to investigate the temporal variability and spatial 

pattern of precipitation using satellite data, observations, and simulation models.   

 The atmospheric branch of the hydrological cycle is a crucial component of weather 

and climate in which water vapor leaves the surface by evaporation and returns to it by 

precipitation. The total mass of water vapor is related to the atmospheric temperature by 

the Clausius-Clapeyron equation. Unlike the relationship between water vapor and air 

temperature, there is no simple relationship between precipitation and temperature at the 

global scale even though surface temperature is correlated with local precipitation 

(Trenberth and Shea, 2005; Adler et al., 2008) and precipitation extremes (Allan and 

Soden, 2008; Liu et al., 2009). In addition, large discrepancies in the linear trend of 

global precipitation exist among different observational studies and climate models 

(Allen and Ingram, 2002; Adler et al., 2003; Trenberth et al., 2003; Held and Soden, 

2006; Gu et al., 2007; Wentz et al., 2007; Adler et al., 2008; Stephens and Ellis, 2008; 

Liepert and Previdi, 2009; Trenberth, 2010). The above debate makes it urgent to 

carefully examine this important scientific topic: How does precipitation vary with time 

in response to global warming?  

A recent observational study (Li et al., 2011) provides the spatial pattern of 

variations of precipitation over the last two decades (i.e., 1988-2009).  It gives evidence 
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that the areas of great precipitation are getting wetter while the areas of least precipitation 

are getting drier.   With these scenarios, it is apparent that precipitation extremes may 

occur in the form of more frequent severe storms and flooding in one region and of 

drought and extreme heat in the other.  

A proposed explanation for these phenomena is contained in the atmospheric 

response to the effects of global warming; altering precipitation, temperature, and water 

vapor.  In Li et al., 2011, two diverse circumstances were explored on a global scale: 

areas with precipitation less than 50 mm/month and areas with precipitation greater than 

200 mm/month.  The analysis of the data sets led to discovering the statistical 

characteristics of these variables, including intraseasonal variability, interannual 

variability, and long-term trend.  Also, current atmospheric models were used to capture 

the characteristics of precipitation in an attempt to quantitatively simulate the 

precipitation trend over the globe. 

In Li et al., 2011, a related parameter, recycling rate (R), was employed to 

examine the temporal variation of precipitation in response to global warming (Chahine 

et al., 1997; Li et al., 2011). The recycling rate of atmospheric moisture compares the 

rates of precipitation (P) to that of the rate of total column water vapor (W) via the 

equation ∆R/R = ∆P/P - ∆W/W; where ∆X and X represent the change and mean value of 

variable X (i.e., R, P, and W) during the time period.  In physics, the recycling rate is the 

same as other parameters, which include residence time (Chahine et al., 1992; Trenberth, 

1998) and a non-dimensional ratio between the precipitation sensitivity to water vapor 

sensitivity (Stephens and Ellis, 2008). 
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From the observational analysis, the results revealed that regions located at the 

Inter-Tropical Convergence Zone (ITCZ) illustrated a positive recycling rate; implying 

precipitation trend is increasing faster than water vapor trend.  Also, at the two sides of 

the ITCZ, a negative recycling rate demonstrated water vapor trend is increasing faster 

than precipitation trend.  This conveys that areas that already receive high precipitation 

are getting wetter, and areas that already receive low precipitation are getting drier. Since 

the global average of recycling rate has decreased, the implications are that the negative 

recycling is stronger, or spatially larger, than the positive recycling rate. The qualitative 

consistency between the two recycling rates confirms that, globally, the recycling rate of 

atmospheric moisture has decreased over the last two decades.  These findings over the 

wet and dry areas provide a new perspective to examine the amplification of precipitation 

extremes in response to global warming.  This study provides the background and basis 

for further research contained herein. 

 

1.1 Motivation 

Increasing greenhouse gases and their contribution to global warming have been 

studied and argued for years. We explore the effect and role global warming may have on 

the temporal variation and spatial pattern of precipitation and its possible influence on 

causing precipitation extremes. Scientists suggest some different mechanisms on 

evaluating the relationship between global warming and precipitation. One, the “rich-get-

richer” mechanism, is defined as the tendency of convergence zones with large 

climatological precipitation to receive more precipitation and for subsidence regions with 

low climatological precipitation to experience reductions under global warming.  This 
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mechanism tends to yield increased precipitation associated with moisture increase in a 

climatological convergence region (Chou and Neelin, 2004; Neelin et al., 2006; Chou et 

al., 2009). Some observational studies (Neelin et al., 2006; Allan and Soden, 2008; Li et 

al., 2011) have supplied qualitative evidence for the “rich-get-richer” mechanism. 

However, there are still some discrepancies between the observed amplifications of 

rainfall extremes and those predicted by models, implying that projections of future 

changes in rainfall extremes in response to global warming may be underestimated (Allan 

and Soden, 2008). Furthermore, the exploration of the spatial pattern of temporal 

variation is limited. Therefore, the motivation for this research comprises the following 

four main important goals:  

1. To quantitatively simulate the variability of precipitation in order to predict its 

fluctuation in the future 

2. To understand the hydrological cycle as a response to global warming 

3. To better understand the physics behind the temporal variation and spatial pattern 

of precipitation 

4. To alleviate, forecast, and prepare for the consequences of drought in one area 

and flooding in another 

In an attempt to quantitatively simulate the variability of precipitation, we investigate 

its temporal variation and spatial pattern on global and regional scales using multiple 

satellite-based data sets and observations.  Additionally, we explore the surface 

temperature and omega to examine possible causes of this variation and look into factors 

that contribute most to the variance in the data.  This will aid forecasters in the prediction 

of precipitation in the future and help in understanding the hydrological cycle as a 
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response to global warming.  In order to provide a numerical basis to better understand 

the physics that drive the temporal and spatial variability of precipitation, we investigate 

the meridional circulation through observations and global climate model simulations to 

see how they may possibly contribute to precipitation extremes in the future.  Also, by 

applying the Principal Component Analysis (PCA) method to both observations and 

model simulations, factors that contribute most to the variance in the data can be 

determined and further investigated.  These analyses and findings will provide valuable 

information and insight to decision makers as they prepare for the consequences of 

drought in one area and flooding in another.  

 

1.2 Dissertation Overview 

This dissertation focuses on studying the temporal and spatial variability of 

precipitation using satellites, observations, and simulation models.  Although each 

chapter here is listed separately, all are related, focusing on different meteorological 

scales and analyses.  Next, we will explain why this research is important and what it 

aims to achieve. 

In Chapter 2, we first explore the temporal and spatial variation of precipitation on a 

global scale; then we focus on a case study over Texas in 2011.  We use TRMM satellite 

precipitation data to study the global spatial variability. Then, we study the global surface 

temperature and 500 millibar (mb) omega using NCEP2 reanalysis data, revealing their 

spatial variance.  Next, a case study is explored over Texas during the historic drought of 

2011.  Spatial variations in climatological precipitation are plotted for Texas and 

compared with those from the summer months of 2011.  This allows for the investigation 
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of rainfall during La Niña episodes and its deviation from normal.  Temporal variations 

were plotted against Southern Oscillation Index (SOI).  As a result, the cross correlation 

between precipitation and SOI provided a possible forecasting factor for drought over 

Texas as increasingly positive values of SOI were found to precede the low rainfall 

events by 5 months.  Next, temporal and spatial variations in surface temperature from 

NCEP2 reanalysis data are used to discover the relationship between precipitation and 

surface temperature over Texas, disclosing related feedbacks.  Five hundred mb omega 

data from NCEP2 reanalysis are plotted over Texas revealing its temporal and spatial 

variability.  The correlation between precipitation and omega confirms that omega is 

related to rainfall experienced within a region by the increased sinking motion and 

atmospheric stability thus helping to limit thunderstorm development.  Finally, the PCA 

method is performed on the TRMM precipitation data over Texas, making known the 

modes that contribute most to the variance in the data.  It was found that the first mode 

captured 21% of the total variance and determined that El Niño Southern Oscillation 

(ENSO) was the likely contributor. 

In Chapter 3, we analyze the temporal and spatial variability of precipitation over 

tropical regions from observation and model.  GPCP precipitation data are utilized as 

well as the National Center for Atmospheric Research (NCAR) Community Atmosphere 

Model (CAM5). PCA is applied to the detrended, deseasonalized, and lowpass filtered 

precipitation data from GPCP and CAM5 model over 1979-2010. A linear trend is 

utilized for the time series, seasonal cycles are removed, and a lowpass filter is 

incorporated to the precipitation anomaly to remove the high frequency oscillation.   PCA 

is then utilized to analyze interannual variability of GPCP precipitation in the tropics 
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(30N-30S).  The first and second leading modes are identified and total variances 

calculated.  The spatial distribution of the first leading mode (EOF1) is plotted for the 

tropical domain.  A time series and power spectrum of the first leading mode (PC1) is 

plotted with Southern Oscillation Index (SOI) to help identify its correlation with ENSO.   

Next, the spatial distribution of the second leading mode (EOF2) is plotted for the 

tropical domain.  A time series and power spectrum of the second leading mode (PC2) is 

plotted with El Niño Modoki Index (EMI) to help identify its correlation with the 

phenomenon known as El Niño Modoki.  Similarly, PCA is applied to the CAM5 

precipitation over the tropics (30N-30S) to investigate if the model can correctly 

simulate the influence of ENSO and El Niño Modoki on precipitation. 

In Chapter 4, we analyze the variability of precipitation over subtropical and polar 

regions from observation and model.  In addition to the GPCP precipitation dataset and 

CAM5 model previously introduced, NCEP2 reanalysis data are analyzed in this chapter.  

PCA is applied to analyze interannual variability of the GPCP precipitation in the Arctic 

(30N-90N) and Antarctic (30S-90S).  The first leading modes are identified and total 

variances calculated.  The spatial distribution of the first leading mode (EOF1) is plotted 

for the Arctic and Antarctic domain.  A time series and power spectrum of the Arctic first 

leading mode (PC1) is plotted with the 300 mb Northern Annular Mode (NAM) index to 

aid in identifying negative and positive precipitation anomalies over the polar region and 

mid-latitudes.  Secondly, a time series and power spectrum of the Antarctic first leading 

mode (PC1) is plotted with the 300 mb Southern Annular Mode (SAM) index to identify 

the corresponding precipitation anomalies.  Similarly, PCA is applied to the CAM5 
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model simulations over the Arctic and Antarctic to investigate if the model can correctly 

simulate the variability of precipitation in the NH and SH high latitudes. 

In Chapter 5, we investigate precipitation variations over wet and dry areas from 

observation and model.  In addition to the GPCP dataset previously introduced, we 

employ the NASA Goddard Institute for Space Studies (GISS) atmospheric general 

circulation model coupled to the hybrid-isopycnic ocean model (HYCOM) to study 

precipitation, temperature, water vapor, and vertical pressure velocity.  The high 

precipitation and low precipitation areas are defined as the areas with climatological 

monthly mean precipitation larger than 200 millimeter per month (mm/mon) and less 

than 50 mm/mon, respectively.  Time series are plotted for each area, and from the 

temporal variation of precipitation, it is evident that the areas already receiving great 

precipitation tend to receive more while the areas already receiving little precipitation 

tend to receive less.  Then, we use the NASA GISS-HYCOM model to investigate 

whether the model can capture the overall trends seen in the observations and reproduce 

the characteristics of precipitation. We conduct experimental simulations in a control run 

where the greenhouse gases are fixed and a historic run where the historic greenhouse 

gases are included.  Similar simulations are conducted for temperature, water vapor, and 

vertical pressure velocity.  The GISS-HYCOM model is utilized to examine the affect 

anthropogenic greenhouse gas emissions may have on the temporal variation of the 

meridional circulation and its associated residual vertical velocity.  The increasing trend 

discovered in the historic simulation suggests an intensifying convection is occurring 

over the tropics, thus aiding in the enhanced precipitation experienced in those regions.  
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Chapter 2 

 

Examine the Variability and Trend of Precipitation with a Case 

Study over Texas during the Drought Year of 2011 

 
 
2.1 Introduction 

 The specific goals of this research include the examination of the variability and 

long-term trend of global precipitation.  This chapter will also focus on a case study that 

investigates the variability of precipitation over Texas, specifically the drought of 2011.  

Beginning in October 2010, the majority of Texas experienced a relatively dry fall and 

winter.  By March 2011, the state began to develop widespread extreme drought 

conditions.  Precipitation records were re-established for anomalously low values in 

March–May 2011.  This was followed by another record breaking dry spell in June–

August 2011 while average surface temperatures rose 2.5°F above any previous record 

ever established in the state.  Additionally, the 12 month rainfall total for October 2010–

September 2011 fell far below the previous record set in 1956 (Nielsen-Gammon, 2011).  

The extreme lack of rainfall and high temperatures resulted in continued hardships for 

those tending crops and livestock.  Conditions were so dry that many crops perished, and 

grass for livestock ceased to exist.  Rivers and reservoir levels diminished as recharge 

from stream flow was at a minimum.  By early fall of 2011, deep-rooted trees began to 

feel the impact, showing signs of declined health.  These combined conditions set the 

stage for wildfires to ignite and spread beyond control.  Several forest fires burned 
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intensely all around the state causing loss of homes and livestock, leaving behind charred 

ground and desolation.  The drought of 2011 was the most intense one year drought in 

Texas since 1895, when records in the state first began.  This study will explore the 

sources of these conditions and look for avenues to forecast their occurrence. 

 Herein, multiple data sets of precipitation, sea surface temperature, and reanalysis 

meteorological variables are introduced.  Each of the tasks performed by this research is 

chronicled and documented with conclusions and findings. The answers discovered will 

aid in a better understanding of the temporal and spatial variability of precipitation, along 

with the physics that drive them.  This will lead to accurate prediction of frequency and 

magnitude of precipitation assisting forecasters and scientists to alleviate, predict, and 

prepare for possible future precipitation extremes. 

 

2.2 Data  

The scope of this research consists of performing detailed data analysis of 

multiple datasets to interpret trends and variability. 

In this dissertation, Tropical Rainfall Measuring Mission (TRMM) precipitation is 

employed. TRMM precipitation data (Version 7 3A12) are available at 0.25º  0.25º 

(latitude by longitude) from 50ºS-50ºN. These data are 3 hourly averaged data from 1998 

to the present. TRMM calibrated precipitation data combine precipitation estimates from 

several different instruments, including TMI, AMSR-E, SSM/I, and AMSU-B (Huffman 

et al., 2007). 

 The long-term global precipitation data set from the Global Precipitation 
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Climatology Project (GPCP) will also be utilized for this dissertation and was chosen 

because of its long period of record. This data set is constructed by combining 

precipitation information from many different sources (SSM/I, geostationary satellites, 

AIRS, TOVS, OPI, and gauge data).  GPCP Version 2.2 precipitation data are obtained 

by merging infrared and microwave satellite estimates of precipitation with rain gauge 

data from more than 6,000 stations (Huffman et al., 2009). GPCP global monthly mean 

precipitation data are from 1979 to the present with grid size of 2.5  2.5 (latitude by 

longitude).  These data are available for both land and ocean, with the latest version 

improved by applying a new updated climate anomaly analysis method for the gauge data 

and several correction schemes.  These data combine several different components, 

including infrared, microwave, in situ, merged satellite, gauge data, and a calibration / 

validation component.   

 The extended reconstructed sea surface temperature (SST) data (1979-2001), 

containing a spatial resolution of 2º in both latitude and longitude directions, are utilized 

in this dissertation. Extended SST data are from Physical Sciences Division in the 

National Oceanic and Atmospheric Administration (NOAA) Earth System Research 

Laboratory.   

 Additionally, two meteorological reanalysis datasets, which include some 

dynamical fields, are used to conduct diagnostic studies. The two reanalysis data sets 

from the National Centers for Environmental Prediction/Department of Energy 

(NCEP/DOE) reanalysis 2 (NCEP2) and the European Center for Medium-Range 

Weather Forecasts (ECMWF) 40 year reanalysis (ERA40) have a horizontal spatial 

resolution of 2.5º × 2.5º (latitude by longitude). The NCEP2 data range from 1979 to the 
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present while the ERA40 data range from 1958-2001. The two modern reanalysis 

datasets have already been introduced in related documents (Kanamitsu et al., 2002; 

Uppala et al., 2005). Moreover, another data set named ERA-Interim is applied to the 

research, which is available from 1979-2013.   

 For the purpose of this chapter, we use Tropical Rainfall Measuring Mission 

(TRMM) precipitation data, chosen because of its fine spatial resolution of 0.25º  0.25º 

(latitude by longitude) from 40ºS-40ºN.  We employ the time period of January 1999-

May 2013 for this research. TRMM calibrated precipitation data combine precipitation 

estimates from several different instruments, including TMI, AMSR-E, SSM/I, and 

AMSU-B.    

 Also, the National Centers for Environmental Prediction/Department of Energy 

(NCEP2) derived reanalysis data are calculated via monthly mean method for 

measurements of both omega and temperature.  Omega data are utilized for the 500 mb 

pressure level reported in units of Pascal/day.  Temperature data are employed for the 

surface level and reported in units of Kelvin.  

 The Southern Oscillation Index (SOI) is also studied within this chapter.  The SOI 

is the atmospheric component of the El Niño Southern Oscillation (ENSO) and offers an 

indication of the development and intensity of an El Niño or La Niña event in the Pacific 

Ocean.  The SOI is calculated by using the pressure anomaly differences between Tahiti, 

located in the central/eastern Pacific, and Darwin, located in the western Pacific.  The 

pressure anomaly is obtained by subtracting the long-term mean from the monthly mean. 

The pressure anomaly difference is then divided by the standard deviation of the 

difference and multiplied by a factor of 10.  Sustained negative values of SOI often 
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indicate an El Niño episode may occur, characterized by decreased trade winds and a 

warmer central and eastern Pacific Ocean.  Sustained positive values of SOI often suggest 

a La Niña episode is probable, which is indicative of increased trade winds and a warmer 

western Pacific Ocean.  These data are available online1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
____________________________ 
1 Available at: http://www.cpc.noaa.gov/data/indices/soi 
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2.3 Trend and Spatial Variability of TRMM Precipitation, Surface 
Temperature, and Omega 

 
The specific goal of this task includes the examination of the variability and long- 

term trend of global precipitation with a case study over Texas.  This research aims to 

answer the following questions:  

1. What is the spatial variation of global precipitation, temperature, and omega for 

the last several decades? 

2. What is the spatial and temporal variation of precipitation, temperature, and 

omega over Texas? 

3. Can the SOI be used to aid in forecasting drought? 

4. Which factors contribute most to the variance in precipitation over Texas?  

In the next section, we focus on investigating the spatial variability of TRMM 

precipitation, monthly mean temperature, and monthly mean omega on a global scale. 

 

2.3.1 Global Analysis 

One specific goal of this research incorporates the examination of the spatial 

variability of global precipitation. Results of precipitation data from TRMM climatology 

are shown in Figure 2.1 between 40N-40S, illustrating more rainfall in the tropical 

region than in the mid-latitudes.  
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Figure 2.1. TRMM precipitation climatology averaged from Jan 1999 to May 2013 between 
40N-40S. Units are mm/mon. 

 

The high precipitation area is roughly the same as the Inter-Tropical Convergence 

Zone (ITCZ) identified by the highly reflective clouds (Waliser and Gautier, 1993). The 

low precipitation area comprises most of the other regions in the tropics and mid-

latitudes. When examining the possible factors that influence the spatial variability of 

global precipitation, the occurrence and magnitude of several different events around the 

globe can play a significant role. The development and magnitude of the El Niño 

Southern Oscillation (ENSO) is one such event.   

There exists several indicators in the Pacific Ocean that aid in the formation of an 

El Niño or La Niña episode. Monthly mean surface temperature climatology derived 
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from NCEP2 reanalysis data is shown in Figure 2.2. Surface temperature is higher in the 

tropics than in the high latitudes. Over the Pacific Ocean, surface temperature is high 

over the western Pacific and low over the eastern Pacific during the normal years. The 

influence of ENSO on the sea surface temperature (SST), surface pressure, winds, and 

convection is well known (Trenberth and Shea, 1987; Trenberth, 1997).  Generally, 

ENSO causes warmer water to accumulate over the central and eastern Pacific via 

changes in the trade winds, ocean currents, and upwelling.  These warmer waters create 

lower atmospheric pressure just above the ocean surface, in turn, causing negative values 

of omega and promoting vertical rising motion consistent with changes in the Walker 

circulation (Jiang et al., 2010).  Convection and thunderstorm development is enhanced 

over those regions and, via transport, can cause changes in the spatial pattern of 

precipitation around the globe. Furthermore, sustained negative values of the Southern 

Oscillation Index (SOI) often indicate the development of El Niño episodes, 

demonstrating decreased or even reversed trade winds.  During La Niña conditions, SST 

tends to be cooler in the eastern Pacific, with sustained positive values of SOI and 

increased trade winds.  Also associated with La Niña events are positive values of omega 

over the eastern Pacific and the promotion of the associated vertical sinking motion.  

These repress convection and thunderstorm development and can lead to a decrease in 

precipitation over the eastern Pacific. 
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Figure 2.2. NCEP2 monthly mean surface temperature climatology averaged from Jan 1999 to 

May 2013. Units are Kelvin. 
 

To investigate the differences in trade winds, several instances can occur that 

promote or negate the change.  Opposing the normal Northern Hemisphere flow of the 

trade winds, Kelvin waves move eastward (Gill, 1982). As the wave propagates, the sea 

surface will rise and fall by up to several inches over a period of weeks to months. Often 

these effects are minimal, but if the magnitude and duration are great, they can help 

nudge the Pacific Ocean into or out of an El Niño pattern.  

Another phenomenon, the Madden-Julian Oscillation (MJO), can have its 

influence as well.  Known as a pulse of atmospheric energy generated in the Indian 

Ocean every few weeks, MJO events can drive clusters of showers and thunderstorms 
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eastward across the tropical Pacific (Zhang, 2005). Additionally, westerly wind bursts 

(WWBs) can also assist in supplying energy to generate Kelvin waves. These clumps of 

west to east wind push directly against the trade winds, opposing their normal flow.  

They may span hundreds of miles with durations of a few days to several weeks.  WWBs 

are an important aspect of ENSO’s dynamics and should be treated as being partially 

stochastic and partially affected by the large scale ENSO dynamics themselves 

(Eisenman et al., 2005).  WWBs can be bolstered by the flow funneling between pairs of 

low pressure centers, or cyclones, straddling the Equator.  These can cause west to east 

ocean currents to progress into the central Pacific, counteracting the usual trade wind 

driven flow.  The change in ocean currents can be the main source for warm water build-

up in the central and eastern Pacific, creating minimal upwelling of deep, cold ocean 

water to the surface.  

Demonstrated in Figure 2.3 is the monthly mean 500 mb omega climatology from 

derived NCEP2 reanalysis data.  Omega () is defined as the vertical change in pressure 

with time: mathematically,  = dP/dt, where P is pressure and t is time.  It is used to 

describe the magnitude of vertical motion and may be converted into a parameter known 

as vertical velocity, given in units of meters per second.  Since pressure in the Earth’s 

atmosphere decreases with height from the surface, positive values of omega exhibit 

sinking vertical motion while negative values indicate rising motion.  Discovering these 

values within a region can help assign probabilities of where convection and 

thunderstorm development might occur. There are negative omega over the western 

Pacific and positive over the eastern Pacific as shown in Figure 2.3, which suggest air is 

rising over the western Pacific and sinking over the eastern Pacific during typical years.  
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Figure 2.3. NCEP2 monthly mean 500 mb omega climatology averaged from Jan 1999 to May 
2013. Units are Pa/day. 

 

 Another important component of the tropical ocean atmosphere interaction system, 

separate from the El Niño Southern Oscillation (Chang and Li, 2000), is known as the 

Tropospheric Biennial Oscillation (TBO). Over the Indo-Pacific region, monsoon rainfall 

exhibits this quasi-biennial oscillation (Mooley and Parthasarathy, 1984; Yasunari and 

Suppiah, 1988; Yasunari, 1990, 1991; Tian and Yasunari, 1992; Shen and Lau, 1995; 

Webster et al., 1998). One of the climate systems that influence atmospheric circulation, 

TBO, is defined as a tendency for a relatively strong “Indo-Australian” monsoon to be 

followed by a relatively weak one (Mooley and Parthasarathy, 1984; Yasunari and 

Suppiah, 1988; Yasunari, 1990, 1991; Tian and Yasunari, 1992; Shen and Lau, 1995; 
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Webster et al., 1998). It occurs in the season prior to the monsoon and involves coupled 

land-atmosphere-ocean processes over a large area of the Indo-Pacific region (Meehl, 

1997). Observations show that the TBO signals appear not only in the Indian-Australian 

rainfall records but also in the tropospheric circulation, sea surface temperature (SST), 

and upper ocean thermal fields (Yasunari, 1991; Ropelewski et al., 1992; Lau and Yang, 

1996; Chang and Li, 2001).  

 Following the TBO theory (Chang and Li, 2000), the warming in the western 

Pacific induces not only a strong monsoon but also a stronger Western Walker Cell, and 

thus, a surface westerly anomaly over the Indian Ocean. This westerly anomaly helps the 

cold sea surface temperature anomalies (SSTA) to persist through the succeeding 

seasons, leading to a weaker Asian monsoon and weaker Western Walker Cell in the 

following summer. The Western Walker Cell blows from the Indian Ocean to the western 

Pacific and creates a convergence area with the Eastern Walker Cell at the Indo-Pacific 

region (Meehl and Arblaster, 2002). Although considered separated from ENSO, the 

SSTA resembles those resulting from El Niño / La Niña conditions (Chang and Li, 2000).  

In the next section, we focus on investigating the spatial and temporal variability 

of precipitation, temperature, and omega over Texas to better understand fluctuations in 

La Niña years compared to normal years.  Additionally, the SOI will be examined to 

discover consistency at forecasting drought. 

 

2.3.2 Case Study: Texas 2011 

The case study for the drought of 2011 over Texas was chosen for its anomalous 

nature, as it was one of the worst droughts the state had ever recorded.  In order to 
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investigate the variability of precipitation over Texas, TRMM precipitation climatology 

from January 1999 to May 2013 is displayed in Figure 2.4.  

 

 

Figure 2.4. TRMM precipitation climatology averaged from Jan 1999 to May 2013 over Texas. 
Units are mm/mon.  

 
 

From Figure 2.4, normal rainfall is more prevalent in the northeast/north-central 

region of the state.  This is primarily associated with the seasonal southward migration of 

the subtropical jet and associated synoptic scale waves (Lydolph, 1989), coupled with the 

passage of cold fronts and the predominately southeast flow inland from the Gulf of 

Mexico, transporting ample moisture that evaporates from the ocean’s surface.  

Background climatology during the wintertime suggests that precipitation anomalies over 
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the land areas that surround the Gulf of Mexico are also associated with cold air 

outbreaks (Cavazos, 1999).  Cold air outbreaks are linked to changes in the sea-level 

pressure as well as the atmospheric thickness.  When the warm waters of the Gulf of 

Mexico modify cold air masses, moisture and transport of moisture becomes significant.  

The divergent circulation associated with the subtropical jet entrance region tends to 

favor low-level northerlies across Mexico and Central America (Schultz et al., 1998), 

assisting in transport of moisture and convection from the Pacific Ocean into the Gulf of 

Mexico (Iskenderian, 1995; Rasmusson and Mo, 1993).   

During analysis of the overall synoptic scale weather conditions of 2011, several 

weather charts were studied illustrating multiple meteorological variables available 

online2.  A predominately zonal flow was found across much of the western United States 

with a very defined ridge of high pressure in the north-central and northeast regions for 

the majority of the summer months.  This allowed for the typical seasonal southward 

migration of the subtropical jet into Texas to be diverted eastward of the state.  

Additionally, several high pressure centers were located all along the southern United 

States. These several factors helped to account for the drought-like conditions observed 

across Texas in 2011 as well as explain the flooding conditions experienced in the 

northeast, as mid-latitude cyclones would tend to track along the defined ridge. 

 

 

 

 
____________________________ 
2 Available at: http://www.hpc.ncep.noaa.gov 
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Statewide observations were continuously gathered and monitored during the 

anomalous event.  Toward the end of 2011, the drought monitor indicated 69.6% of the 

state of Texas was in D4 conditions, the worst category on the scale, with 90% of the 

state in either D3 or D4 conditions. It is interesting to note that in December 2010 none of 

the state of Texas was in D4 drought conditions and only 9.5% was in D3 conditions.  

Drought monitor data are available online3.  To examine an example on a local scale, the 

City of Pasadena, located within Harris County along the Gulf Coast, only received 9.62 

inches of rainfall from January 1-October 8, 2011, which is just above the amount of 

rainfall El Paso, on the border of New Mexico in west Texas, would normally receive for 

the same time period. Regionally, precipitation departures were astounding.  Table 2.1 

illustrates selected rainfall departures from normal for October 2010-October 2011. 

TABLE 2.1. Selected precipitation departures from normal for October 2010–October 2011. 
Units for rainfall departure are inch. 

 

 

 

 

 

 

 

 

 

 

 

 

 
____________________________ 
3 Available at: http://droughtmonitor.unl.edu/Home.aspx 

Location 
Rainfall 

Departure 

Brenham -29.70 

Conroe -33.00 

Galveston -22.36 

Hobby -29.89 

Bush IAH -30.94 

Livingston -34.88 

Matagorda -29.93 

Tomball -38.43 

Victoria -26.73 
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Houston Hobby Airport recorded its driest year ever, while Bush IAH ended 2011 

with its third driest year on record. The lengthy time intervals between one inch rainfall 

events ended October 9, 2011, for the City of Houston, recording 3.02 inches of rainfall 

that day. The city went an astounding 257 days between one inch rainfall events with the 

previous record being only 192 days in 1917-1918. The 3.02 inches of rainfall on October 

9 was the single greatest amount of rainfall for Houston since the landfall of Hurricane 

Alex in Mexico on July 2, 2010.  

Table 2.2 illustrates observations all across the state of Texas for the entire 2011 

year.  It shows precipitation in inches and demonstrates the observational sites driest year 

on record.  For comparison is 2011’s precipitation along with how it ranked with the 

previous years.  Highlighted in bold are those sites in which 2011 was within the top 

three driest years on record.  Of the sites listed in the table, 10 out of 18 had one of their 

top three driest years ever. 
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TABLE 2.2. Precipitation observations for multiple locations in the state of Texas for 2011.  
Those highlighted in bold represent the sites where their 2011 rank was in the top three driest 
years on record.  For comparison, the previous driest year and amount are shown. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

After taking a look at the precipitation observations of 2011, an update is given to 

the drought situation over Texas as of May 2014. Although some improvements have 

occurred, the current dryness continues the multi-year drought that has gripped Texas 

since late 2008. The drought monitor indicates severe to exception drought conditions 

across nearly all of central and northwest Texas and into most of the panhandle. D4 

conditions, or exceptional drought, have risen from 13% of the state to 18% of the state. 

Currently 90% of the state is in some form of drought, up from 86% a month before this 

update and 80% three months ago. Across most of southeast Texas, regional 

           Location 
Precipitation (inches) 

2011 (Rank)
Record Driest 

(Year) 
Abilene, TX 16.83 (19th) 9.78 (1956) 
Amarillo, TX 7.00 (1st) 9.56 (1970) 
Austin, TX 19.68 (8th) 11.40 (1954) 
Beaumont, TX 31.02 (2nd) 28.90 (1917) 
Brownsville,  TX 17.93 (14th) 11.59 (1953) 
College Station, TX 19.91 (2nd) 17.80 (1988) 
Corpus Christi, TX 12.06 (2nd) 5.38 (1917) 
Dallas/Fort Worth, TX 25.88 (28th) 17.21 (1921) 
El Paso, TX 5.27 (13th) 2.22 (1891) 
Houston, TX 24.57 (3rd) 17.66 (1917) 
Midland, TX 5.49 (3rd) 4.60 (1951) 
Lubbock, TX 5.86 (1st) 8.73 (1917) 
Lufkin, TX 33.75 (14th) 26.49 (1963) 
San Angelo, TX 9.23 (3rd) 7.41 (1956) 
San Antonio, TX 17.58 (14th) 10.11 (1917) 
Victoria, TX 13.08 (1st) 15.89 (1988) 
Waco, TX 27.63 (27th) 13.39 (1917) 
Wichita Falls, TX 12.97 (1st) 16.07 (1970) 
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improvements have increased, with only moderate drought conditions found from Lake 

Livingston southward and westward to The Woodlands, as well as across Fort Bend, 

Brazoria, Wharton, and Matagorda counties; yet, severe drought conditions are found 

over Jackson and Victoria counties.  Along the Gulf Coast, local counties have received 

total rainfall 25% of normal for the last five months with much of the area experiencing 

30-50% of normal.   Regionally across north Texas, Waco has recorded its 2nd driest 

January-April period ever with a total rainfall of only 3.39 inches.  Dallas has 

encountered its 3rd driest with 3.93 inches of rainfall for the same time period.  All 

precipitation station data are available online4 from NOAA National Climatic Data 

Center. 

In order to better understand the fluctuation of rainfall during La Niña years 

compared to normal years, we calculate the spatial variability of TRMM precipitation 

during the summer of 2011, specifically June through August, illustrated here in Figure 

2.5.  Typically, El Niño episodes allow for a persistent extended Pacific jet stream and 

amplified storm track from a residing low pressure located in the eastern Pacific (Ahrens, 

2006).  This enables a predominately zonal flow across the Pacific Ocean, assisting in 

transport of moisture and convection from the Pacific Ocean into the Gulf of Mexico and 

Texas. Conversely, typical La Niña events form a residing high pressure in the eastern 

Pacific, causing the Pacific jet stream to divert and minimize transport of moisture and 

convection into Texas (Ahrens, 2006).  As such, the extreme La Niña year of 2011 aided 

in the abnormal lack of precipitation observed in Texas.  

 
____________________________ 
4 Available at: http://www.ncdc.noaa.gov  
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Figure 2.5. TRMM precipitation in June-August 2011 over Texas. Units are mm/mon. 
 
 

A year of extremely low rainfall over an area can be observed by its effect on the 

water supply.  Water is not only imperative for mere survival, but also serves as a major 

component for economic stability, logistics, and recreation.  Toward the end of 2011, the 

total water storage for the state of Texas was 31,831,330 acre-feet, or 58.95% full, mainly 

due to the lack of inflow from dry rivers and streams coupled with increased water 

withdrawal to meet demands of statewide water utility districts.  Consider this example: 

in mid-October 2011, the City of Houston increased its water withdrawal from Lake 

Conroe to 165 million gallons per day.  This extraction resulted in approximately 17 

inches per month of loss to the conservation pool, consequently placing the lake 2.47 feet 
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below its record low pool elevation. Conservation pool refers to water in a reservoir that 

lies above the dead pool and below the flood pool.  In central Texas, a typical year of 

average inflow into the Highland Lakes Chain on the Colorado River is around 1.3 

million acre-feet.  For 2011, the inflow was around 100,000 acre-feet, an astounding lack 

of water inflow into these lakes.  Table 2.3 illustrates selected lake levels in feet below 

conservation pool with percent capacity toward the end of 2011. 

TABLE 2.3. Selected lake levels in feet below conservation pool in conjunction with percent 
capacity toward the end of 2011. 

 

 

 

 

 

 

 

 

 

 

To update as of May 2014, lake levels across southeast Texas are up since the 

drought of 2011 while conditions in central, west, and north Texas continue to become 

more dire. Several lakes in north Texas fell to record low levels in April 2014 even 

though it tends to be the wetter time of year for that region of the state. The multi-year 

drought conditions continue to have significant impacts on lake levels and water supply.  

The total state water storage is 24,538,797 acre-feet or 64% of normal.  Lake levels east 

Lake 
Feet Below Conservation 

Pool  (% Capacity) 

Conroe -5.47 (69%) 

Houston -5.68 (77%) 

Buchanan -30.83 (38%) 

Travis -53.96 (35%) 

Toledo Bend -12.15 (58%) 

Livingston -3.88 (82%) 

Somerville -10.22 (38%) 

Sam Rayburn -13.52 (55%) 

Texana -11.99 (43%) 
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of I-35 are averaging 80-100% of capacity while lakes across west Texas are generally 

averaging 0-10% of capacity. Table 2.4 illustrates selected lake levels in feet below 

conservation pool with percent capacity as of May 2014. 

TABLE 2.4. Selected lake levels in feet below conservation pool in conjunction with percent 
capacity as of May 2014. 
 

 
  

  

 

 

 

 

 

 

 

North Texas low lake levels include Lake Granbury, which established a new 

record low of 682.48 feet on April 20, 2014, with a previous record of 685.28 feet in 

August 1978.  Lake Nocona established a record low of 815.62 feet on April 20, 2014, 

with a previous record of 816.95 feet in October 2000.  Lake Ray Hubbard also set a new 

record low of 427.90 feet on April 3, 2014, with a previous record of 429.72 feet in 

October 2000.  Inflow into the Travis and Buchanan lakes in March 2014 was 8,102 acre-

feet or 9% of normal. For comparison, inflows in January-March 2014 were lower than 

that in 2011 (51,275 acre-feet in 2011 vs. 29,860 acre-feet in 2014) and, without 

significant rainfall, forecasts call for a continued decline in these storage levels.  

Lake 
Feet Below Conservation 

Pool  (% Capacity) 

Conroe -0.62 (97%) 

Houston 0.00 (100%) 

Buchanan -30.03 (38%) 

Travis -55.37 (34%) 

Toledo Bend -1.45 (94%) 

Livingston +0.14 (100%) 

Somerville -2.73 (81%) 

Sam Rayburn -1.97 (92%) 

Texana -3.86 (78%) 
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 There are seventeen key groundwater aquifer locations across the state. As of 

May 2014, eight locations saw an increase in ground water while nine experienced a 

decrease. Furthermore, the level of the Edwards Aquifer in central Texas is 0.79 feet 

away from reaching the stage 3 critical management level.  With north and central Texas 

levels this low, water restrictions are being enforced.  Thirty municipalities across the 

state have less than 90 days of remaining water supply and 7 have less than 45 days. 768 

jurisdictions have mandatory water restrictions in place with an additional 389 having 

voluntary restrictions. A total of 1,157 systems out of 4,639 statewide are being affected 

or about a quarter of the state’s systems.  All lake and groundwater data are available 

online5 from the Texas Water Development Board. 

  To further understand the anomalies between La Niña and normal years, we 

calculate TRMM precipitation difference between the summer of 2011 and climatology, 

specifically June–August.  The difference is calculated by subtracting the climatology 

from the summer of 2011 precipitation.  Figure 2.6 illustrates the spatial difference for 

the state of Texas and, with mostly negative values, acknowledges the deviation from 

normal.  It is evident that the La Niña event of 2011 had a monumental effect on rainfall 

over Texas with almost the entire state below average. 

 

 

 

 

 
_____________________________ 
5 Available at: http://www.twdb.texas.gov 
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Figure 2.6. TRMM precipitation difference between the summer of 2011 and climatology. Units 
are mm/mon.  

 
 

To further investigate the possible relationship between precipitation and 

Southern Oscillation Index (SOI), mean precipitation data from TRMM are calculated 

over Texas from January 1999 to May 2013 and plotted against SOI. Detrended and 

deseasonalized precipitation and inversed SOI data are shown in Figure 2.7a, revealing 

the temporal variation of precipitation over the Texas area.  Precipitation averaged over 

Texas is shown as the black solid line with the inversed SOI overlain as the red dashed 

line. To better understand the relationship between precipitation and SOI, a lowpass filter 

is applied to remove the high frequency signals from both time series. The filter is 

constructed as the convolution of a step function with a Hanning window and chosen to 
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obtain a full signal from periods above 15 months and no signal from periods below 12.5 

months. Lowpass filtered Texas precipitation data (black solid line) are plotted against 

lowpass filtered and inversed SOI data (red dashed line) in Figure 2.7b.  

 

Figure 2.7. (a) Detrended and deseasonalized TRMM precipitation (black solid line) and 
detrended and inversed SOI (red dashed line) averaged over Texas from Jan 1999 to 
May 2013. (b) Lowpass filtered precipitation (black solid line) and lowpass filtered 
& inversed SOI (red dashed line). A 15 month lowpass filter was applied to the time 
series to remove the high frequency signals. 
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Since SOI and precipitation are anticorrelated, we plot the inverse of SOI to 

reveal its relationship with precipitation. Of considerable note are years 2006 and 2011, 

in which increases in SOI preemptively predict the possibility for below average rainfall.  

The maximum cross correlation coefficient between lowpass filtered precipitation and 

lowpass/inversed SOI is 0.5 when the lag is 5 months, suggesting that drought over Texas 

appears five months after a La Niña event or positive SOI index. This correlation 

provides a possible forecasting factor for drought over Texas by giving evidence of large 

scale circulation contributions from the tropical Pacific with below average sea surface 

temperatures, leading to strong sinking air and less precipitation over Texas. 

One of the most significant developments in 2011 was the falling of the Palmer 

Drought Severity Index (PDSI) to its lowest level ever for the state of Texas.  PDSI is 

thought to be the most influential index of meteorological drought used in the United 

States (Heim, 2002).  It was developed with intentions of measuring the cumulative 

departure from mean in atmospheric moisture supply and demand at the surface, 

incorporating antecedent precipitation and surface temperature into a hydrological 

accounting system (Dai et al., 2004).  In 2011, the PDSI fell a staggering 10 points from 

2010, recording one of the worst droughts for the state.  The value of -7.97 was 

established in September 2011, breaking the previous record of -7.80 in September 1956.  

To highlight the severity, the next closest value occurred in August 1918 at -7.09 

(Nielsen-Gammon, 2011).  

Monthly mean surface temperature climatology derived from NCEP2 reanalysis 

data is shown in Figure 2.8.  It illustrates the spatial pattern of surface temperature 

climatology over Texas.  Lower surface temperatures generally occur closer to the Gulf 
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Coast and increase westward as the atmosphere becomes drier and precipitable water 

values diminish.  Precipitable water can be defined as the depth of liquid water that 

would be obtained at the Earth’s surface if the total amount of water vapor within a 

column above it were to fully condense (Tuller, 1968). 

 

Figure 2.8. NCEP2 monthly mean surface temperature climatology averaged from Jan 1999 to 
May 2013. Units are Kelvin. 

 

As precipitation and soil moisture decrease, a feedback occurs that causes higher 

than average surface temperatures (Brutsaert, 1998; Wang et al., 2008).  This feedback is 

explained in the differences between latent and sensible heat.  As energy is added to 

water, it changes its state or phase. The heat added during evaporation breaks the bonds 

between clusters of water molecules, creating individual molecules that escape the 
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surface as a gas. The heat used in the phase change from a liquid to a gas is called the 

latent heat of vaporization. It is referred to as "latent" because the heat is being stored in 

the water molecule to later be released during the condensation process. Latent heat is not 

felt or sensed as it does not raise the temperature of the water molecule and hence does 

not affect the air temperature.  On the other hand, sensible heat can be sensed and is 

evident by its temperature: the higher the temperature, the greater the sensible heat 

content.  When little water is available at the surface for evaporation, minimal transfer of 

latent heat energy occurs, and an absence of a latent heat energy flux exists at the surface. 

Therefore, most of the available energy is allocated to sensible heat transfer creating 

warmer air temperatures.  

 

Figure 2.9. NCEP2 monthly mean surface temperature in June-August 2011 over the state of 
Texas. Units are Kelvin. 
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Figure 2.9 demonstrates the monthly mean surface temperature in June-August 

2011 from derived NCEP2 reanalysis data over the state of Texas.  Here, abnormally 

warmer than normal surface temperatures are shown when compared to the climatology.  

For convenience, we calculate the difference between the June-August 2011 temperature 

and climatology in Figure 2.10.  The difference is calculated by subtracting the 

climatology from the June-August 2011 temperature.  The spatial difference is shown for 

the state of Texas, revealing the deviation from average.  This can be accounted for by 

the aforementioned decrease in precipitation and soil moisture, with less associated 

evaporation, supplying an abundance of solar energy for sensible heating of the 

atmosphere.   

 

Figure 2.10. NCEP2 monthly mean surface temperature difference between the summer of 2011 
and climatology.  Units are Kelvin. 
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Table 2.5 gives observations noted all across the state of Texas for the entire 2011 

year.  It illustrates the average temperature in degrees Fahrenheit and shows the 

observational sites hottest year on record.  For comparison is 2011’s average temperature 

along with how it ranked with the previous years.  Highlighted in bold, we see those sites 

in which 2011 was within the top three hottest years on record.  Of the sites listed in the 

table, 14 out of 18 had one of their top three hottest years ever.  Temperature station data 

are available online6 from the National Climatic Data Center. 

TABLE 2.5. Temperature observations for multiple locations in the state of Texas for 2011.  
Those highlighted in bold represent the sites where their 2011 rank was in the top three hottest 
years on record.  For comparison, the previous hottest temperature and year are shown. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
___________________________ 
6 Available at: http://www.ncdc.noaa.gov  

          Location 
Average Temperature (°F) 

2011 
(Rank) 

Record Highest 
(Year) 

Abilene, TX 67.5 (2nd) 67.6 (1933) 
Amarillo, TX 59.7 (7th) 61.5 (1934) 
Austin, TX 72.0 (1st) 71.6 (2006) 
Beaumont, TX 70.7 (2nd) 71.3 (1946) 
Brownsville,  TX 76.1 (1st) 76.0 (2006) 
College Station, TX 71.7 (1st) 70.3 (2006) 
Corpus Christi, TX 73.5 (5th) 74.2 (2006) 
Dallas/Fort Worth, TX 68.6 (3rd) 69.4 (2006) 
El Paso, TX 66.7 (3rd) 67.4 (1994) 
Houston, TX 71.8 (2nd) 71.9 (1962) 
Midland, TX 66.7 (1st) 66.4 (1998) 
Lubbock, TX 62.9 (2nd) 63.3 (1934) 
Lufkin, TX 69.0 (2nd) 69.1 (1998) 
San Angelo, TX 69.2 (1st) 67.7 (2000) 
San Antonio, TX 71.8 (3rd) 72.1 (1933, 2006) 
Victoria, TX 72.6 (3rd) 73.7 (1933) 
Waco, TX 69.6 (6th) 71.0 (1933) 
Wichita Falls, TX 66.6 (6th) 67.8 (1933) 
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By May 2014, KBDI values somewhat recovered from those in 2011, although 

areas in central and north Texas continued to suffer.  KBDI values, ranging from 0 

(saturated) to 800 (void of soil moisture to 8 inches deep), averaged 300-400 across much 

of the southeast Texas region. Jackson County reported values of 500-600 with a few 

locations showing 600-700 in the northwest areas. Portions of western Brazoria County 

and southern Montgomery County also illustrated higher values than the remainder of the 

region.  

To better understand the possible relationship between precipitation and sea 

surface temperature, mean precipitation data from TRMM (V007 3A12) and sea surface 

temperature data from NCEP2 were calculated over Texas from January 1999 to May 

2013. Detrended and deseasonalized precipitation and surface temperature are shown in 

Figure 2.11a, in which linear trends and annual cycles calculated from the monthly mean 

data, were removed. Detrended precipitation averaged over Texas is shown as the black 

solid line with the detrended and inversed surface temperature overlain as the blue dashed 

line. To further explore the relationship between precipitation and temperature, a lowpass 

filter is applied to remove the high frequency signals from both time series, thus 

eliminating large biases in the trend due to significant interannual variability.  The filter 

is constructed as the convolution of a step function with a Hanning window and chosen to 

obtain a full signal from periods above 15 months and no signal from periods below 12.5 

months. Lowpass filtered Texas precipitation (black solid line) are plotted against 

lowpass filtered and inversed surface temperature (blue dashed line) and lowpass filtered 

and inversed Southern Oscillation Index (SOI) (red dotted line) in Figure 2.11b. The 

correlation coefficient between the lowpass filtered precipitation and lowpass filtered and 
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inversed surface temperature is 0.5. This correlation between precipitation and surface 

temperature suggests that high temperature is related to drought over Texas.  

 

Figure 2.11. (a) Detrended and deseasonalized TRMM precipitation (black solid line) and 
detrended and inversed NCEP2 temperature (blue dashed line) averaged over 
Texas from Jan 1999 to May 2013. (b) Lowpass filtered precipitation (black solid 
line) and lowpass filtered & inversed SOI (red dotted line) and temperature (blue 
dashed line). A 15 month lowpass filter was applied to the time series to remove 
the high frequency signals. 
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To better explore the influence of La Niña episodes on drought over Texas, we 

evaluate omega during the La Niña event of 2011. Results of omega during the drought 

year are compared with those from average years. 

Omega is defined as the vertical change in pressure with time and is used to 

describe the magnitude of vertical motion (Hoskins et al., 1978).  Since pressure in the 

Earth’s atmosphere decreases with height from the surface, positive values of omega 

exhibit sinking vertical motion while negative values indicate rising motion.  To better 

understand where convection and thunderstorm development might occur, we plot omega 

over the state of Texas. Shown in Figure 2.12 is the monthly mean 500 mb omega 

climatology derived from NCEP2 reanalysis data in units of Pascal/day.  The spatial 

climatology pattern reveals all positive values of omega for the state with the highest 

values in the panhandle and central/west Texas, indicating greater sinking air in those 

regions.  This greater subsidence, coupled with the lack of atmospheric moisture, 

confirms the precipitation observations and the desert-like environments notorious in 

these areas.   
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Figure 2.12. NCEP2 monthly mean 500 mb omega climatology from Jan 1999 to May 2013. 
Units are Pa/day. 

 

Next, we calculate omega for the June–August 2011 time frame.  Figure 2.13 

displays the monthly mean 500 mb omega from NCEP2 reanalysis data given in 

Pascal/day.  Illustrated here are higher values of omega in most of the state with a 

decrease toward both the east/southeast and west ends.   

With these conditions apparent in 2011, vegetation across the state suffered and 

fire weather incidents increased.  Toward the end of 2011, totals indicated almost 3.9 

million acres had burned across the state of Texas.  A total of 4,956 structures had been 

lost with 47,891 structures threatened but saved. Fire weather concerns increased as the 

first killing freezes of 2011 affected the area, resulting in a heavier fuel loading of finer 
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fuels. The larger ladder and canopy fuels remained extremely dry; and once finer fuels 

were cured for the winter season, wildfires would persist.  Additionally, the threat for 

wind driven wildfires was significant across the state with critical days occurring during 

the passage of typical fall season cold fronts.  

 

   

 Figure 2.13. NCEP2 monthly mean 500 mb omega for June-August 2011. Units are Pa/day. 
 

Vegetative health is a precursor to the fuel loading that affects the development of 

wildfires.  During 2011, trees continued to suffer across the entire state as rainfall 

remained below average and temperatures rose. Drought stress led to the invasion of 

harmful disease and pests that attack and kill weakened trees. Many went dormant in late 
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summer 2011, due to lack of water aiding to shed leaves.  Pine and Water Oak trees took 

the hardest hit with estimates of at least 2-3 million dying in Harris County and the 

immediate surrounding counties, with an additional 66-80 million dying in the following 

years. Native trees such as Cedar and Juniper displayed signs of drought stress and in the 

Waco/Temple corridor died from lack of water. 

 

 

Figure 2.14. NCEP2 monthly mean 500 mb omega difference between the summer of 2011 and 
climatology. Units are Pa/day. 

 

To investigate anomalies in La Niña years, we calculate the difference between 

the June-August 2011 omega and climatology in Figure 2.14.  It is calculated by 

subtracting the climatology from the June-August 2011 omega at the 500 mb pressure 
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level.   Shown for approximately half of the state, specifically portions of north, central, 

and south Texas, omega is more positive than normal, resulting in increased sinking 

motion during 2011.  This supplies an explanation for the decrease in precipitation and 

can help account for the drought conditions experienced in that year.  Moreover, portions 

of east and west Texas exhibit values of omega less positive than average, showing a 

slight decrease in sinking motion for those regions. 

Fire weather conditions as of May 2014 have shown some improvement since 

2011, although very dry air masses, regional lack of rainfall, and warming temperatures 

caused a significant decline in fine fuels, making wildfire ignition more probable. Large 

and canopy fuels remain in good condition while ladder fuels become increasingly dry, 

thus amplifying the potential for large and hot wild land fires. One hundred-hour fuels 

across much of the north/central region are classified as critically dry and ten-hour fuels 

contain very minimal moisture, making conditions increasingly dire across central and 

west Texas where the potential for fast moving, wind driven wildfires is extreme.  As of 

May 2014, eighty six Texas counties have burn bans in effect for these areas, due to 67 

wildfires having burned over 16,000 acres. 

Vegetative health as of May 2014 has recently declined due to the severe lack of 

moisture over most of the state. Spring crops had just enough moisture to germinate but 

are showing signs of wilting with approximately half the expected heights for this time of 

year. Soil moisture losses have been the greatest in and around the City of Victoria where 

deficits are averaging between -80 mm to -100 mm.  
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Figure 2.15. (a) Detrended and deseasonalized TRMM precipitation (black solid line) and 
detrended and inversed NCEP2 omega (green dashed line) averaged over Texas 
from Jan 1999 to May 2013. (b) Lowpass filtered precipitation (black solid line) 
and lowpass filtered & inversed SOI (red dotted line) and omega (green dashed 
line). A 15 month lowpass filter was applied to the time series to remove the high 
frequency signals. 

 

To further explore the possible relationship between precipitation and omega, 

mean precipitation data from TRMM and omega data from NCEP2 were calculated over 
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Texas from January 1999 to May 2013. Detrended and deseasonalized precipitation and 

omega are shown in Figure 2.15a, in which linear trends and annual cycles, calculated 

from the monthly mean data, were removed.  Detrended precipitation averaged over 

Texas is shown as the black solid line with the detrended and inversed omega overlain as 

the green dashed line. To examine the relationship between precipitation and omega 

further, a lowpass filter is applied to remove the high frequency signals from both time 

series. Lowpass filtered Texas precipitation (black solid line) are plotted against lowpass 

filtered and inversed omega (green dashed line) and lowpass filtered and inversed 

Southern Oscillation Index (SOI) (red dotted line) in Figure 2.15b. The correlation 

coefficient between the lowpass filtered precipitation and lowpass filtered and inversed 

omega was found to be 0.41. This correlation between precipitation and omega suggests 

that omega is related to the rainfall experienced within a region by the increased sinking 

motion and atmospheric stability, thus helping to limit thunderstorm development. This 

relationship supplies another approach in examining the temporal and spatial variability 

of precipitation.  

In summary, the economic impacts of the historic drought of 2011 resulted in $5.2 

billion in losses accumulated, mainly in the agriculture arena. This accumulation in losses 

surpassed the $4.1 billion record of 2006.  During 2011, the Texas pecan harvest 

decreased by 20 million pounds compared to the typical crop.  A massive red tide bloom 

affected much of the Texas Gulf Coast and closed the oyster harvesting season, partially 

due to the lack of fresh water runoff from inland rivers reaching the bays. In fact, many 

of the Texas bay systems experienced hypersaline water conditions due to lack of 

freshwater runoff.  Wheat crop yields were down about 800,000 acres, and corn suffered 
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heavily as its yield decreased 40%. Sorghum crop yield diminished 50% and a staggering 

52% of the cotton crop was abandoned in 2011, adding about $1.8 billion in losses.  

Across Texas, grass that had long since died during the hot summer months 

resulted in casualties of cattle and wildlife. Truckloads of hay were brought into Texas to 

supplement the declining supplies of feed.  It is estimated that 10,000 head of cattle were 

relocated to other areas of the country to sustain their needs. A combination of severely 

reduced feed and lowering water supplies had a tremendous effect on the ability of cattle 

to survive, thus complicating the situation and adding millions in losses.  All data 

concerning vegetation, fire weather, and economic impacts are available online7.  

 

 

 

 

 

 

 

 

 

 

 

 
 
___________________________ 
7 Available at: http://www.fs.usda.gov/texas/ and http://texasforestservice.tamu.edu/main/default.aspx 
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2.4 PCA Analysis of TRMM Precipitation over Texas  

 To better understand the temporal variation and spatial pattern of precipitation, we 

utilize a statistical tool named Principal Component Analysis (PCA), which has already 

been used in a previous study (Jiang et al., 2008) to analyze the temporal and spatial 

variability of precipitation.  

 

 

Figure 2.16. Cumulative variance for TRMM precipitation data over Texas.   X-axis displays the 
Eigenvalue numbers with their subsequent percentage of variance explained 
illustrated along Y-axis.  

 
 

PCA provides a decomposition of a multivariate dataset into orthogonal functions, 

known as empirical orthogonal functions (EOFs), with associated time-dependent 
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amplitude, known as principal component (PC) time series. The EOFs are the 

Eigenfunctions of the covariance matrix of the dataset sorted by the decreasing values of 

associated Eigenvalues. Since these Eigenvalues represent the variance captured by each 

EOF, PCA guarantees that the leading n EOFs capture more of the total variance of the 

dataset than any other n orthogonal vectors. By applying PCA to precipitation, we can 

decompose the data to different modes, thus enabling a more thorough investigation of its 

spatial pattern and temporal variability. 

We use the PCA method to analyze the TRMM precipitation results in the Texas 

region.  Figure 2.16 illustrates the cumulative variance in the TRMM precipitation data. 

Displayed are the Eigenvalue numbers from the analysis and their subsequent percentage 

of variance explained.  The leading mode of the PCA captures 21% of the total variance 

in precipitation over Texas, respectively. Illustrated in Figure 2.17a are the spatial 

variability of the leading mode (EOF1) and its associated contribution of precipitation. 

The spatial pattern demonstrates the leading mode has minimal effect on the panhandle 

and west Texas areas and the greatest effect on south, central, and southeast Texas.  
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Figure 2.17. (a) Spatial pattern of TRMM precipitation anomalies over Texas from the 
PCA leading mode (EOF1). Units are mm/month.  (b) Southern Oscillation 
Index (dashed line) and leading PC time series (solid line). A lowpass filter 
was applied to the inversed and detrended SOI.  (c) Power spectrum of the 
PC1 leading mode displayed in frequency and year.  

 

The Southern Oscillation Index (SOI) is used to calculate the correlations between 

ENSO and leading PC time series, shown in Figure 2.17b.  For a fair comparison, we 
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applied a lowpass filter and inversed the detrended SOI. Comparison of the time series of 

the detrended and lowpass filtered SOI and the first mode (PC1) of the TRMM 

precipitation reveals a moderate correlation. The correlation between the two time series 

is 0.42, suggesting the greatest variance in precipitation over Texas is related to the phase 

and cycle of ENSO. Likewise, the power spectrum of the PC1 mode, shown in Figure 

2.17c, demonstrates strongest spectral peaks at 2-5 years, which are the dominant peaks 

in ENSO. 

 

2.5 Conclusions 

The anomalies between La Niña and normal years for TRMM precipitation show 

an extreme deviation from normal with below average rainfall for the majority of the 

state during 2011 with the exception of a few small areas in northeast and south/central 

Texas, illustrating above average rainfall.  The findings show the maximum cross 

correlation coefficient between TRMM precipitation and Southern Oscillation Index 

(SOI) was 0.5 when the lag is 5 months, suggesting that decreasing rainfall over Texas 

may appear five months after a period of increasing SOI, providing a possible forecasting 

factor for drought over Texas.   

Secondly, the relationship between precipitation and surface temperature was 

examined.  The correlation between TRMM precipitation and surface temperature 

suggests that high temperature is related to drought over Texas. Previous analysis of 

global temperature and water vapor profiles suggest variations of gross moist stability of 

the atmospheric boundary layer and the related adjusting of convection and precipitation 
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(Held and Soden, 2006; Chou et al., 2009).  It is understood that a warmer atmosphere 

has the potential to contain increased water vapor, reducing the gross moist stability of 

the atmospheric boundary layer; and hence the convection and the related precipitation is 

amplified in the wet areas (Chou and Neelin, 2004; Chou et al., 2009).  Furthermore, a 

previous study shows the recycling rate displays a strong negative temporal variation in 

the dry areas and a positive temporal variation in the wet areas, implying the rate of water 

vapor in the global atmosphere is increasing more rapidly than the rate of precipitation 

(Li et al., 2011). With increased water vapor contained in the atmosphere, a reduced 

temperature gradient exists between the surface and the atmosphere aloft, increasing the 

overall stability and implying a condition less conducive to produce precipitation.  In the 

Texas case, it is further complicated by influences from the tropical Pacific Ocean and 

mesoscale meteorological phenomena such as the land/sea breeze interaction with the 

Gulf of Mexico. 

To further explain the temporal variability of precipitation over Texas, we 

explored the relationship between 500 mb omega and rainfall during 2011.  For 

approximately half of the state of Texas, specifically portions of north, central, and south 

Texas, omega was found to be more positive than normal during the summer of 2011, 

resulting in increased sinking motion, limiting convection and thunderstorm 

development.  This supplies an explanation for the decrease in precipitation and can help 

account for the drought conditions experienced in that year.  Subsequently, portions of 

east and west Texas exhibit values of omega less positive than normal, showing a slight 

decrease in sinking motion for those regions.  The time series for TRMM precipitation 

and omega suggests they are related by the enhanced sinking motion and increased 
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atmospheric stability.  This relationship supplies another approach in examining the 

temporal and spatial variability of precipitation. 

The leading mode (EOF1) of the TRMM PCA captured 21% of the total variance 

in precipitation over Texas.  The spatial variability of EOF1 revealed minimal effect on 

the panhandle and west Texas and the greatest effect on south, central, and southeast 

portions of the state.  The correlation between PC1 and SOI suggests the greatest 

variance in the TRMM data is related to the phase and cycle of ENSO. Additionally, the 

power spectrum of the PC1 mode is calculated and compared with that of the frequency 

of ENSO events.  The PC1 mode demonstrated its strongest spectral peaks near 2-5 years, 

similar to that in more recent ENSO cycles. 
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Chapter 3 

 

Temporal and Spatial Variability of Precipitation over Tropical 

Regions from Observation and Model 

 

3.1 Introduction 

 
 Precipitation can be influenced by different factors such as atmospheric 

temperature, circulation, and clouds (Trenberth and Shea, 2005; Adler et al., 2008; Allan 

and Soden, 2008; Liu et al., 2009; Li et al., 2011; Bony et al., 2013). As a response to 

global warming, it is found that global mean precipitation is increasing with a slower 

trend than the total mass of water vapor (Allen and Ingram, 2002; Adler et al., 2003; 

Held and Soden, 2006; Gu et al., 2007; Adler et al., 2008; Stephens and Ellis, 2008; Li et 

al., 2011). In addition to the global mean precipitation, some studies (Chou and Neelin, 

2004; Allan and Soden, 2007; Chou et al., 2009; Li et al., 2011; Durack et al., 2012; 

Polson et al., 2013; Chou et al., 2013; Trammell et al., 2015) explored precipitation 

variations over different regions and found that precipitation has an increasing tendency 

in wet areas and a decreasing tendency in dry areas. In addition to the external forcing, 

changes in the precipitation can also be attributed to natural climate variability (Gu and 

Adler, 2012; Marvel and Bonfils, 2013). In this chapter, we explore the variability of 

precipitation over tropical regions from observation and model, using a statistical tool 

called Principal Component Analysis.  
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 3.2 Model 

In addition to the GPCP precipitation dataset previously introduced, the 

simulation output from the National Center for Atmospheric Research (NCAR) 

Community Atmosphere Model (CAM5) for the period of 1979-2010 is used in this 

chapter. CAM5 is the atmospheric component of the Community Earth System Model, 

version 1 (CESM1). In the CAM5, the radiation scheme uses the Rapid Radiative 

Transfer Method for GCMs (RRTMG) (Iacono et al., 2008). The moist boundary layer is 

parameterized using the Park and Bretherton (2009) scheme, and the large-scale cloud 

and precipitation processes are parameterized with a prognostic two-moment bulk cloud 

microphysics scheme (Morrison and Gettelman, 2008). Shallow convection is 

parameterized using Park and Bretherton (2009), and deep convection is parameterized 

using the Zhang and McFarlane (1995) convection scheme with a dilution approximation 

for the calculation of convective available potential energy (Neale et al., 2008). The 

CAM5 simulation incorporates observed sea surface temperature as lower boundary 

conditions with a horizontal resolution of 2.5º × 1.9º (latitude by longitude).  

 

3.3 Principal Component Analysis 

The specific goal of this chapter includes the examination of the temporal and 

spatial variability of precipitation via a statistical tool called Principal Component 

Analysis (PCA).  The research aims to answer questions such as follows:  

1. What are the temporal and spatial variability of precipitation over tropics? 
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2. What is the dominant variability of tropical precipitation that explains the 

maximum amount of variance in the data? 

3.  How will the model simulate the variability of tropical precipitation? 

In the next section, we focus on investigating the spatial and temporal variability of 

GPCP precipitation for the tropical domain. 

 

3.3.1 GPCP Precipitation at Tropics 

 To explore the temporal and spatial variability of precipitation, a statistical tool 

called Principal Component Analysis (PCA) (Richman, 1986; Preisendorfer, 1988; 

Thompson and Wallace, 2000; Camp et al., 2003; Jiang et al., 2008a; Jiang et al., 2008b) 

is applied to the detrended, deseasonalized, and lowpass filtered precipitation data from 

GPCP and CAM5 model from 1979-2010. A linear trend is applied to the time series. 

Seasonal cycles for each time series are removed, and a lowpass filter is applied to the 

precipitation anomaly to remove the high frequency oscillation. The filter is constructed 

as the convolution of a step function with a Hanning window and chosen to obtain a full 

signal from periods above 15 months and no signal from periods below 12.5 months 

(Jiang et al., 2004).  

 PCA provides a decomposition of a multivariate dataset into orthogonal functions, 

known as empirical orthogonal functions (EOFs), with associated time-dependent 

amplitude, known as principal component (PC) time series. The EOFs are the 

Eigenfunctions of the covariance matrix of the dataset sorted by the decreasing values of 

associated Eigenvalues. All Eigenvectors of a matrix are orthogonal, regardless of the 
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number of dimensions. Since these Eigenvalues represent the variance captured by each 

EOF, PCA guarantees that the leading n EOFs capture more of the total variance of the 

dataset than any other n orthogonal vectors. However, PCA is not a scale-independent 

method. Therefore, it is necessary to weight each element of the covariance matrix by the 

area it represents; i.e., scale each time series by square root of area, √cos  where  is)	ߠ

the latitude), prior to constructing the covariance matrix (Baldwin et al., 2007). 

Eigenfunctions of the covariance matrix of the dataset are the EOFs with associated time-

dependent amplitude PC time series. In order to recover the spatial patterns for the 

original (unscaled) precipitation anomaly, we perform a multiple linear regression for 

each grid point, using as predictors the PC time series. The resulting linear regression 

coefficients are the spatial patterns of the precipitation variability associated with the ith 

PC time series.  
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Figure 3.1. (a) The spatial pattern of the first mode of GPCP precipitation anomalies in 
the tropics. Units are mm.  (b) PC1 of the tropical GPCP precipitation (solid 
line) and Southern Oscillation Index (dashed line). The correlation coefficient 
is 0.90 (0.1% significance level). (c) Power spectral estimate of the PC1 
(Solid), red noise spectrum (Dotted), 90% and 95% confidence interval 
(Dashed). The first mode explains 31.9% of the total variance. 
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 PCA is utilized to analyze interannual variability of the GPCP precipitation in the 

tropics (30N-30S). The first leading mode accounts for 31.9% of the total variance of 

GPCP tropical precipitation. The spatial pattern of the precipitation anomalies regressed 

on the first PC is shown in Figure 3.1a. There are positive precipitation anomalies over 

western Pacific and negative anomalies over central and eastern Pacific. Values range 

from 60 mm in the western Pacific and -60 mm over central and eastern Pacific. The 

spatial pattern is similar with a recent study between GPCP rainfall anomalies and Niño3 

Index (Ashok et al., 2007). The Southern Oscillation Index (SOI) is used to calculate the 

correlation between ENSO and PC1, shown in Figure 3.1b.  For a fair comparison, a 

lowpass filter is applied to the detrended SOI. Comparison of the time series of the 

detrended and lowpass filtered SOI and the first mode (PC1) of the GPCP tropical 

precipitation reveals a good correlation. The correlation between the two time series is 

0.90. The corresponding significance level is 0.1%. The significance statistics for 

correlations were generated by a Monte Carlo method (Press et al., 1992; Jiang et al., 

2004). Positive SOI represents La Niña months, in which there are positive precipitation 

anomalies over western Pacific and negative precipitation anomalies over central and 

eastern Pacific. Negative SOI represents El Niño months, in which there are negative 

precipitation anomalies over western Pacific and positive precipitation anomalies over 

central and eastern Pacific. We also applied the power spectral analysis to PC1. The 

power spectrum of the PC1, shown in Figure 3.1c, demonstrates strong spectral peaks 

near 2-7 years, similar to those in ENSO.  
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Figure 3.2. (a) The spatial pattern of the second mode of GPCP precipitation anomalies in 
the tropics. Units are mm.  (b) PC2 of the tropical GPCP precipitation (solid 
line) and inverted El Niño Modoki Index (EMI) (dashed line). The correlation 
coefficient is 0.75 (0.1% significance level). (c) Power spectral estimate of 
PC2 (Solid), red noise spectrum (Dotted), 90% and 95% confidence interval 
(Dashed). The second mode explains 15.6% of the total variance. 
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 The statistical significance of signals in a power spectrum is obtained by comparing 

the amplitude of a spectral peak to the red noise spectrum (Gilman et al., 1963). The 90% 

and 95% confidence intervals for the power spectrum are found using F-statistics to 

compare the spectrum to the red noise spectrum (Jiang et al., 2008a). 

 The second leading mode accounts for 15.6% of the total variance of GPCP tropical 

precipitation. Illustrated in Figure 3.2a is the spatial pattern of the precipitation anomalies 

regressed on the second PC of GPCP tropical precipitation. There are positive 

precipitation anomalies over central Pacific and negative precipitation anomalies over 

western and eastern Pacific. Values range from 60 mm in the central Pacific to -40 mm 

over western and eastern Pacific. The El Niño Modoki Index (EMI) is used to calculate 

the correlation between the phenomenon known as El Niño Modoki and the second PC 

time series, shown in Figure 3.2b. EMI is defined as area-averaged Sea Surface 

Temperature Anomaly (SSTA) difference between central tropical Pacific SSTA and the 

average of western and eastern tropical Pacific SSTA (Ashok et al., 2007). We have 

applied a lowpass filter to the detrended EMI time series. The correlation coefficient 

between the detrended and lowpass filtered EMI and the PC2 of the GPCP precipitation 

is 0.75 (0.1% significance level), suggesting the second mode of GPCP tropical 

precipitation is related to the phenomenon known as El Niño Modoki. During positive 

phase of El Niño Modoki, there are positive SSTA over central Pacific and negative 

SSTA over western and eastern Pacific, which will bring more precipitation to the central 

area and less to the western and eastern regions. The power spectrum of the PC2 time 

series, shown in Figure 3.2c, demonstrates 90% significant spectral peaks at 2.6 years and 

8.5 years.  The derived El Niño Modoki Index (EMI) is defined as EMI = C - 0.5(E + W), 
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where C, E, and W are the area-averaged SSTA over central tropical Pacific (165°E-

140°W, 10°S-10°N), eastern tropical Pacific (110°W-70°W, 15°S-5°N), and western 

tropical Pacific (125°E-145°E, 10°S-20°N). 

 The EMI supplies an avenue of measuring events where warmer than normal SSTs 

occur primarily in the central Pacific with cooler than normal SSTs in the eastern and 

western portions of the ocean.  Compared to traditional ENSO events indicative of 

warmer SSTs in the eastern Pacific, EMI allows for investigation of the western and 

central portions of the Pacific as well.  Central-based El Niño Modoki events and 

traditional eastern-based ENSO episodes share seasonal and global weather patterns, but 

they also have separate pattern features and affect global precipitation patterns differently 

(Ashok et al., 2007).  Hence the word "Modoki" means "same but different" in Japanese.  

El Niño Modoki involves ocean atmosphere coupled processes which include a unique 

tripolar sea-level pressure pattern during its evolution, analogous to the Southern 

Oscillation in the case of traditional El Niño events.  For this reason, El Niño Modoki is 

argued to be a separate phenomenon and not part of the evolution of typical ENSO 

episodes.  Previous studies have found that some of the strongest traditional ENSO events 

were rarely preceded by an El Niño Modoki episode, therefore verifying its contrasting 

nature (Weng et al., 2007; Ashok et al., 2007).  Precipitation and temperature influences 

were discovered with impacts over regions in the Far East including Japan and New 

Zealand, and the western coast of the United States.  These are opposite to those of the 

conventional ENSO, making El Niño Modoki a phenomenon of its own, unrelated to the 

evolution of ENSO.  El Niño Modoki is thought to be produced by the weakening of 

equatorial easterlies related to a weakened zonal sea surface temperature gradient leading 
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to an increased flattening of the oceanic thermocline. The warming in the central Pacific 

is thus strengthened owing to the arrival of downwelling, equatorial Kelvin waves from 

the west and Rossby waves from the east.  This appears to be a cause of more frequent 

and persistent occurrences of El Niño Modoki during recent decades. 

 

3.3.2 CAM5 Precipitation at Tropics 

 PCA is also applied to the CAM5 precipitation over tropics (30N-30S) to 

investigate if the model can correctly simulate the influence of ENSO and El Niño 

Modoki on precipitation. The first leading mode accounts for 24.3% of the total variance 

of CAM5 tropical precipitation. Illustrated in Figure 3.3a is the spatial pattern of the 

CAM5 precipitation anomalies regressed on the first PC of CAM5 precipitation over 

tropics. This mode demonstrates patterns similar to the leading mode of the observed 

GPCP precipitation; however, magnitudes are somewhat under predicted. Comparison of 

the time series of the detrended and lowpass filtered SOI and the PC1 of the CAM5 

precipitation simulation is shown in Figure 3.3b. The correlation coefficient between the 

two time series is 0.87 (0.1% significance level). Additionally, the PC1 of CAM5 tropical 

precipitation correlates well with PC1 from GPCP tropical precipitation with a 

correlation coefficient of 0.94 (0.1% significance level).  The power spectrum of the PC1 

mode, shown in Figure 3.3c, demonstrates strong spectral peaks between 2-7 years. 
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Figure 3.3. (a) The spatial pattern of the first mode of CAM5 precipitation anomalies in 
the tropics. Units are mm.  (b) PC1 of the tropical CAM5 precipitation (solid 
line) and Southern Oscillation Index (dashed line). The correlation coefficient 
is 0.87 (0.1% significance level). (c) Power spectral estimate of the PC1 
(Solid), red noise spectrum (Dotted), 90% and 95% confidence interval 
(Dashed). The first mode explains 24.3% of the total variance. 
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Figure 3.4. (a) Spatial pattern of the second mode of CAM5 precipitation anomalies in the 

tropics. Units are mm.  (b) PC2 of the tropical CAM5 precipitation (solid 
line) and inverted El Niño Modoki Index (EMI) (dashed line). The correlation 
coefficient is 0.69 (0.1% significance level). (c) Power spectral estimate of  
PC2 (Solid), red noise spectrum (Dotted), 90% and 95% confidence interval 
(Dashed). The second mode explains 11.6% of the total variance. 
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The second mode of CAM5 tropical precipitation captures 11.6% of the total 

variance in the CAM5 tropical precipitation. Illustrated in Figure 3.4a is the spatial 

pattern of the CAM5 precipitation anomalies regressed on the second PC of CAM5 

tropical precipitation. This mode demonstrates patterns similar to that of the observed 

GPCP second mode, although magnitudes are somewhat under predicted. The correlation 

coefficient between the PC2 and lowpass and detrended EMI is 0.69 (0.1% significance 

level), demonstrated in Figure 3.4b. Moreover, the PC2 of CAM5 tropical precipitation 

correlates well with PC2 from GPCP tropical precipitation with a correlation coefficient 

of 0.89 (0.1% significance level). The power spectrum of the PC2 of CAM5 tropical 

precipitation, shown in Figure 3.4c, reveals 90% significant spectral peaks at 2.5 years, 5-

6 years, and 8 years. 

 

3.4 Conclusions  

The first leading mode of the GPCP PCA captured 31.9% of the total variance in 

tropical precipitation. The spatial pattern of the precipitation anomalies regressed on the 

first PC illustrates positive precipitation anomalies over western Pacific and negative 

anomalies over central and eastern Pacific, which is verified by a recent study between 

GPCP rainfall anomalies and Niño3 Index (Ashok et al., 2007).  The correlation between 

PC1 and SOI suggests the first leading mode is related to ENSO.  Additionally, the power 

spectrum of the PC1 time series demonstrates strong spectral peaks near 2-7 years, 

similar to those in ENSO.   
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The second mode of the GPCP PCA captured 15.6% of the total variance in 

tropical precipitation.  The spatial pattern of the precipitation anomalies regressed on the 

second PC of GPCP tropical precipitation show positive precipitation anomalies over 

central Pacific and negative precipitation anomalies over western and eastern Pacific.  

This precipitation pattern can be explained by the unique tripole nature of the SSTA 

caused by El Niño Modoki.  The correlation between PC2 and EMI suggests the second 

mode is related to the phenomenon known as El Niño Modoki.  The power spectrum of 

the PC2 time series demonstrates 90% significant spectral peaks at 2.6 years and 8.5 

years. 

The first leading mode of the CAM5 model simulation PCA accounts for 24.3% 

of the total variance in tropical precipitation. The spatial pattern of the CAM5 

precipitation anomalies regressed on the first PC of CAM5 precipitation over the tropics 

demonstrates patterns similar to the leading mode of the observed GPCP precipitation, 

although magnitudes are somewhat under predicted. Comparison of SOI and PC1 of 

CAM5 precipitation produced a very similar correlation with that of the observed GPCP 

precipitation.  Furthermore, the PC1 of CAM5 tropical precipitation correlates well with 

PC1 from GPCP tropical precipitation with a correlation coefficient of 0.94 (0.1% 

significance level).  The power spectrum of the PC1 mode demonstrates strong spectral 

peaks between 2-7 years, which is also consistent with that of the observed GPCP PC1.   

The second mode of CAM5 tropical precipitation captured 11.6% of the total 

variance in the CAM5 tropical precipitation. The spatial pattern of the CAM5 

precipitation anomalies regressed on the second PC of CAM5 tropical precipitation 

demonstrates patterns similar to that of the observed GPCP second mode, although 
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magnitudes are again somewhat under predicted. The correlation between the PC2 and 

EMI once again supplies evidence of the relationship between this mode and El Niño 

Modoki. The PC2 of CAM5 tropical precipitation also correlates well with the PC2 from 

GPCP tropical precipitation with a correlation coefficient of 0.89 (0.1% significance 

level). The power spectrum of the PC2 of CAM5 tropical precipitation reveals 90% 

significant spectral peaks at 2.5 years, 5-6 years, and 8 years, capturing 2 of the 3 

significant peaks as the observations. Both observation and CAM5 model can capture the 

ENSO and El Niño Modoki signals in the tropical precipitation, although the signals in 

the CAM5 model are weaker than the observation.  
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Chapter 4 

 

Analyze the Variability of Precipitation over Polar Regions 

from Observation and Model 

 

4.1 Introduction 

The polar regions are very important to climate change. The processes in these 

regions influence the climate at all latitudes and are thought to be particularly sensitive to 

climate change (IPCC, 2001; Räisänen, 2001; Holland and Bitz, 2003). Since most of 

Earth's snow and ice are in the polar regions, these areas are expected to be the most 

affected by the snow/ice - surface albedo feedback effect (Curry and Schramm, 1994). 

Therefore, it is vital to study these regions and their response to global warming, for they 

should warm faster than other locations on Earth due to changing surface albedo 

projections (IPCC, 2001; Räisänen, 2001; Holland and Bitz, 2003). However, 

observations at the polar regions are limited and accompanied by many uncertainties.  

In this chapter, we explore the influence of the annular modes on the precipitation 

over the polar region. The annular modes are hemispheric scale patterns of climate 

variability, which are the most important patterns of climate variability in the middle and 

high latitudes. There are two kinds of annular modes in Earth's atmosphere: the Northern 

Annular Mode (NAM) and Southern Annular Mode (SAM) (Limpasuvan and Hartmann, 

1999). Since it is related closely to the North Atlantic Oscillation, NAM is also referred 
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to as the “Arctic Oscillation” (Thompson and Wallace, 1998; 2000). NAM’s structure 

covers the larger part of the Arctic, and its variability is more closely related to surface 

air temperature fluctuations over the Eurasian continent. The annular modes are able to 

explain variances of week-to-week, month-to-month, or year-to-year in the extratropical 

atmospheric flow. It is not associated with the seasonal cycle.  

 The annular modes (NAM/SAM) are the first empirical orthogonal function (EOF) 

of geopotential height (GPH) over Arctic/Antarctic regions and represent an important 

tool in the study of winter hemisphere variability (Thompson and Wallace, 1998; 2000). 

By the PCA method, the original data GPH can be decomposed into two functions: the 

time function a which produces the principal component (PC) time series, and the space 

function f which produces the empirical orthogonal functions (EOFs). EOF1 (f1) 

represents the spatial pattern for the leading mode of GPH. PC1 (a1) refers to the leading 

PC time series of GPH, which is also called the “NAM index”.  The strength of the polar 

vortex is characterized by the NAM/SAM index, defined as the leading principal 

component time series of geopotential heights (Baldwin and Dunkerton, 2001).  Positive 

NAM/SAM values represent a strong polar vortex and negative values show a weak one. 

 

4.2 Data and Model 

In addition to the GPCP precipitation dataset and CAM5 model previously 

introduced, NCEP2 reanalysis data are utilized in this chapter.  NCEP2 reanalysis data is 

a joint product from the National Centers for Environmental Prediction (NCEP) and the 

National Center for Atmospheric Research (NCAR). These are global data incorporating 
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observations and numerical weather prediction (NWP) model output dating back to 1948. 

The data include near surface meteorological fields (temperature, geopotential height, 

zonal wind, and meridional wind) and surface fluxes. The grid size is 2.5  2.5 in 17 

levels from 1000 hPa to 10 hPa. 
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4.3 Results 
 

 

 

Figure 4.1. (a) The spatial pattern of the first mode of GPCP precipitation anomalies in the NH. 
Units are mm.  (b) PC1 of the NH GPCP precipitation (solid line) and 300 mb NAM 
Index (dashed line). The correlation coefficient is 0.50 (0.1% significance level). (c) 
Power spectral estimate of the PC1 (Solid), red noise spectrum (Dotted), 90% and 
95% confidence interval (Dashed). The first mode explains 8.3% of the total 
variance. 
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PCA is utilized to analyze interannual variability of the GPCP precipitation in the 

Arctic (30N-90N). The first leading mode accounts for 8.3% of the total variance of 

Arctic GPCP precipitation. The polar projection of the spatial pattern of the precipitation 

anomalies regressed upon PC1 of Arctic GPCP precipitation is shown in Figure 4.1a. The 

first mode is approximately zonally symmetric and illustrates negative precipitation 

anomalies in the polar region and positive precipitation anomalies in the mid-latitudes, 

which are coincident with the storm track regions. As shown in Figure 4.2a, the positive 

precipitation anomalies are related to the storm track activities calculated as the variance 

of sea-level pressure (Chang and Fu, 2002).  The temporal behavior of PC1 in the 

northern hemisphere is demonstrated in Figure 4.1b.  For comparison, we overlay the 300 

mb Northern Annular Mode (NAM) index as a dashed line. The NAM index is the PC 

associated with the first leading mode, capturing 14.7% of the total variance for the 

NCEP2 geopotential height at 300 mb from 1979 to 2010 (Baldwin and Dunkerton, 1999; 

Thompson and Wallace, 2000). The correlation coefficient between the detrended PC1 

and the detrended and lowpass filtered NAM index is 0.50 (0.1% significance level). 

When the polar vortex is stronger and the NAM index is positive, there are negative 

precipitation anomalies over the polar region and positive anomalies over the mid-

latitudes. The power spectrum of the PC1 of Arctic precipitation in Figure 4.1c reveals 

90% significant spectral peaks at 17 months, 32 months, and 8 years.  

To explore the possible relationship between precipitation and storm track 

activities, we regress PC1 of precipitation with storm track data calculated by the 

variance of ECMWF-Interim sea-level pressure filtered by the 24 hour difference (Chang 

and Fu, 2002). PC1 of Arctic precipitation is used to regress with storm track data in the 
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northern hemisphere, shown in Figure 4.2a. Illustrated are positive storm track anomalies 

over north Pacific, North America, north Atlantic, and Europe.  In the southern 

hemisphere, PC1 of Antarctic precipitation is used to regress with storm track data. As 

shown in Figure 4.2b, there are positive storm track anomalies over south Pacific Ocean. 

Regressed storm track magnitudes are up to 10 hPa2, which is similar to 10% of the local 

storm track climatological value. The positive storm track anomalies are consistent with 

the positive precipitation anomalies in the first leading modes of precipitation for both 

hemispheres. 

The statistical significance of signals in a power spectrum is obtained by 

comparing the amplitude of a spectral peak to the red noise spectrum. The red noise 

spectrum used in constructing null hypothesis for significance is the spectrum associated 

with the autocorrelation function, ρ (Gilman et al., 1963). Here, ρ is the average of one-

lag autocorrelation and the square root of the two-lag autocorrelation. The red noise 

spectrum associated with the autocorrelation function is illustrated by the following 

formula: 

, 

where h  is frequency and M  is the maximum lag (Gilman et al., 1963). The 90% and 

95% confidence interval for the power spectrum are found using F-statistics to compare 

the spectrum to the red noise spectrum. 
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Figure 4.2. (a) Regress Arctic PC1 from ECMWF-Interim storm track data. (b) Regress Antarctic 
PC1 from ECMWF-Interim storm track data. Units are hPa2. 
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Figure 4.3. (a) The spatial pattern of the first mode of CAM5 precipitation anomalies in the NH. 
Units are mm.  (b) PC1 of the NH CAM5 precipitation (solid line) and PC1 of 
CAM5 300 mb geopotential height (dashed line). The correlation coefficient is 0.8 
(0.1% significance level). (c) Power spectral estimate of the PC1 (Solid), red noise 
spectrum (Dotted), 90% and 95% confidence interval (Dashed). The first mode 
explains 8.2% of the total variance. 
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PCA is also applied to the CAM5 precipitation over Arctic (30N-90N) to 

investigate if the model can correctly simulate the variability in the high latitudes. The 

first leading mode accounts for 8.2% of the total variance of CAM5 precipitation in the 

Arctic. Illustrated in Figure 4.3a is the spatial pattern of the CAM5 precipitation 

anomalies regressed on the first PC of CAM5 Arctic precipitation. This mode 

demonstrates patterns similar to that of the observed GPCP leading mode; yet, it does not 

capture the high precipitation anomalies over the Pacific Ocean. To explore the possible 

relationship between this mode and the polar vortex simulated in the CAM5 model, we 

calculate the leading mode and PC of the CAM5 300 mb geopotential height from 1979 

to 2010. Detrended and lowpass filtered PC1 of the CAM5 300 mb geopotential height is 

overlain with PC1 of Arctic CAM5 precipitation in Figure 4.3b. The correlation between 

the two time series is 0.8 (0.1% significance level). Additionally, the CAM5 PC1 

correlates well with GPCP PC1 with a correlation coefficient of 0.44 (0.1% significance 

level).  The power spectrum of the model PC1 mode, shown in Figure 4.3c, demonstrates 

90% significant spectral peaks at 30 months and 8 years.  

 

 

 

 

 



 78

 

 

 
Figure 4.4. (a) The spatial pattern of the first mode of GPCP precipitation anomalies in the SH. 

Units are mm.  (b) PC1 of the SH GPCP precipitation (solid line) and 300 mb SAM 
Index (dashed line). The correlation coefficient is 0.40 (0.1% significance level). (c) 
Power spectral estimate of the PC1 (Solid), red noise spectrum (Dotted), 90% and 
95% confidence interval (Dashed). The first mode explains 13.2% of the total 
variance. 
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In the southern hemisphere (SH), the first mode accounts for 13.2% of the total 

variance, illustrated in Figure 4.4a. The first mode is zonally symmetric and strongly 

resembles the first mode in the northern hemisphere (NH); it is associated with the 

Southern Hemisphere Annular Mode (SAM) (Thompson and Wallace, 2000). The first 

mode has negative precipitation anomalies in the polar region and positive precipitation 

anomalies in the mid-latitudes. The positive precipitation anomalies are coincident with 

the positive storm track anomalies over south Pacific Ocean, as shown in Figure 4.2b.  

PC1 of Antarctic GPCP precipitation is compared with lowpass filtered 300 mb SAM 

index (dotted line) in Figure 4.4b. The correlation between the detrended PC1 and 

detrended and lowpass filtered SAM index is 0.40 (0.1% significance level). A stronger 

polar vortex in the SH (positive SAM index) will lead to less precipitation in the SH high 

latitudes. The power spectrum of PC1, demonstrated in Figure 4.4c, reveals 90% 

significant peaks at 30 months, 4 years, and 10 years.  

PCA is now applied to the CAM5 precipitation over Antarctic (30S-90S) to 

investigate if the model can correctly simulate the variability in the SH high latitudes. 

The first leading mode accounts for 10.3% of the total variance of CAM5 precipitation at 

Antarctic. Illustrated in Figure 4.5a is the spatial pattern of the CAM5 precipitation 

anomalies regressed on the first PC of CAM5 Antarctic precipitation. This mode 

demonstrates patterns similar to that of the observed GPCP leading mode, although the 

positions for the positive precipitation anomalies are a little different than the 

observation. Comparison of the time series of the PC1 of CAM5 precipitation over 

Antarctic and the PC1 of the CAM5 300 mb geopotential height reveals a good 

correlation coefficient of 0.5 (0.1% significance level), shown in Figure 4.5b.  Moreover, 
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the model PC1 corresponds well with the PC1 of Antarctic GPCP data with a correlation 

coefficient of 0.75 (0.1% significance level).  The power spectrum of the PC1 mode, 

shown in Figure 4.5c, demonstrates 90% significant spectral peaks at 22 months, 3.5 

years, and 11 years.  
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Figure 4.5. (a) The spatial pattern of the first mode of CAM5 precipitation anomalies in the SH. 

Units are mm.  (b) PC1 of the SH CAM5 precipitation (solid line) and PC1 of 
CAM5 300 mb geopotential height (dashed line). The correlation coefficient is 0.5 
(0.1% significance level). (c) Power spectral estimate of the PC1 (Solid), red noise 
spectrum (Dotted), 90% and 95% confidence interval (Dashed). The first mode 
explains 10.3% of the total variance. 
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4.4 Conclusions 
 

The leading mode of the GPCP precipitation PCA in the Arctic (30N-90N) 

captured 8.3% of the total variance in Arctic precipitation.  The spatial pattern of the 

precipitation anomalies regressed upon PC1 of Arctic GPCP precipitation was found to 

be approximately zonally symmetric with negative precipitation anomalies in the polar 

region and positive precipitation anomalies in the mid-latitudes, which is related to NAM.  

These anomalies are coincident with the storm track regions within the subtropics and 

help explain the significance of the observed spatial pattern.  The correlation between 

Arctic PC1 and NAM index suggests that when a stronger polar vortex exists, the NAM 

index is positive, there are negative precipitation anomalies over the Arctic, and positive 

precipitation anomalies exist in the NH mid-latitudes.  Additionally, the power spectrum 

of the PC1 of Arctic precipitation revealed 90% significant spectral peaks at 17 months, 

32 months, and 8 years.   

The first leading mode of CAM5 model precipitation in the Arctic accounts for 

8.2% of the total variance, almost exactly that of the GPCP PC1. The spatial pattern of 

the CAM5 precipitation anomalies regressed on the first PC of CAM5 Arctic 

precipitation demonstrates patterns similar to that of the observed GPCP leading mode; 

however, it does not capture the high precipitation anomalies over the NH Pacific Ocean.  

PC1 of the CAM5 300 mb geopotential height compared with PC1 of Arctic CAM5 

precipitation demonstrates a very good correlation, which suggests this mode and the 

simulated polar vortex are related.  Furthermore, the CAM5 PC1 correlates well with 

GPCP PC1, illustrating the model’s ability in simulating the observations.   The power 

spectrum of the model PC1 mode demonstrates 90% significant spectral peaks at 30 
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months and 8 years, achieving 2 of the 3 spectral peaks similar to that of the observations.   

In the southern hemisphere (SH), the leading mode of the GPCP precipitation 

PCA in the Antarctic (30S-90S) captured 13.2% of the total variance in Antarctic 

precipitation. The first mode is zonally symmetric and strongly resembles the first mode 

in the northern hemisphere (NH) when associated with the Southern Hemisphere Annular 

Mode (SAM). The first mode demonstrates negative precipitation anomalies in the polar 

region and positive precipitation anomalies in the mid-latitudes. The leading PC1 of 

Antarctic GPCP precipitation compared with SAM index shows a good correlation. This 

correlation gives evidence of a stronger polar vortex in the SH when the SAM index is 

positive, leading to less precipitation over the Antarctic and more over the SH mid-

latitudes. The power spectrum of PC1 revealed 90% significant peaks at 30 months, 4 

years, and 10 years.   

The PCA of the CAM5 precipitation leading mode accounts for 10.3% of the total 

variance in precipitation over the Antarctic. The spatial pattern of the precipitation 

anomalies regressed on the first PC of CAM5 Antarctic precipitation demonstrates 

patterns similar to that of the observed GPCP leading mode, revealing the model can 

correctly simulate the variability in the SH high latitudes. Nevertheless, the position of 

the positive precipitation anomalies is slightly different. Comparison of the time series of 

the PC1 of CAM5 precipitation and the PC1 of the CAM5 300 mb geopotential height 

reveals a good correlation.  The model PC1 corresponds well with the PC1 of Antarctic 

GPCP observed data.  The power spectrum of the CAM5 PC1 mode demonstrates 90% 

significant spectral peaks at 22 months, 3.5 years, and 11 years, showing 2 of the 3 

significant peaks occurring approximately 6-8 months earlier than the observations.  
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Chapter 5 

 

Investigation of Precipitation Variations over Wet and Dry 

Areas from Observation and Model 

 

5.1 Introduction 

 The influence of greenhouse gases on global warming has been investigated in 

numerous studies (Dickinson and Cicerone, 1986; IPCC, 2007; IPCC, 2013). This paper 

focuses on the effect global warming may have on the temporal variation and spatial 

pattern of precipitation and its possible influence on causing precipitation extremes. 

Compared with the Clausius-Clapeyron equation relating water vapor to the atmospheric 

temperature (Trenberth et al., 2005; Santer et al., 2007), there is no simple relationship 

between precipitation and the atmospheric temperature (Trenberth and Shea, 2005; Adler 

et al., 2008; Allan and Soden, 2008; Liu et al., 2009; Li et al., 2011). This is because 

precipitation is influenced by more factors such as atmospheric circulation and cloud 

(Bony et al., 2013). It is also found that changes in the precipitation can be attributed to 

natural climate variability and external influences (Bosilovich et al., 2005; Richard et al., 

2010; Marvel and Bonfils, 2013). Most observational studies (Adler et al., 2003; Gu et 

al., 2007; Adler et al., 2008; Li et al., 2011) and climate models (Allen and Ingram, 

2002; Held and Soden, 2006; Stephens and Ellis, 2008; Lambert et al., 2008; John et al., 

2009) suggest that global precipitation is increasing more slowly than the total mass of 
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water vapor in response to global warming. Previous studies (Chou and Neelin, 2004; 

Allan and Soden, 2007; Chou et al., 2009; Li et al., 2011; Durack et al., 2012; Polson et 

al., 2013) tried to separate the data into wet versus dry regions; they found that 

precipitation has an increasing tendency in the wet areas and has a decreasing tendency in 

dry areas, which is referred to as the “rich-get-richer” mechanism. Recently, Chou et al. 

(2013) found that the wet seasons become wetter, and the dry seasons become dryer. 

Here, we investigate whether a current climate model can capture the characteristics of 

the temporal variations of the precipitation by emphasizing the role of the greenhouse 

gases. Quantitatively simulating the precipitation trend will not only help predict the 

variation of precipitation in the future, but also will provide a numerical basis to better 

understand the physics behind the temporal and spatial variability of precipitation.  

 

5.2 Methodology and Data 

Both observations and numerical simulations are employed to examine 

precipitation under two different regions within 40ºS-40ºN: dry areas with precipitation 

less than 50 mm/month and wet areas with precipitation greater than 200 mm/month. By 

comparing the current atmospheric model to observations, we can explore how well the 

model performs in simulating precipitation. In addition, a diagnostic analysis of the 

numerical simulation will be conducted to investigate the physics behind the temporal 

trends of precipitation over different areas.  

We use the NASA Goddard Institute for Space Studies (GISS) model historic run 

to study the precipitation, temperature, and water vapor. Specifically, the GISS 
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atmospheric general circulation model coupled to the hybrid-isopycnic ocean model 

(HYCOM) (Shindell et al., 2006) is utilized. It is an updated version that is used for the 

IPCC AR4 report (IPCC, 2007).  The GISS model has a grid size of 4◦ × 5◦ (latitude by 

longitude) and uses the Model E atmospheric code with 20 layers in the vertical, a model 

top at 0.1 hPa, and is coupled to the HYCOM ocean model (v. 0.9, 2×2×L16).  The 

atmosphere model includes a gravity-wave drag parameterization in the stratosphere. The 

HYCOM dynamic ocean model can produce a reasonable magnitude of El Niño Southern 

Oscillation (ENSO)-like variability (Shindell et al., 2006). This model has been used to 

study the influence of solar and anthropogenic forcing on the tropical hydrology (Shindell 

et al., 2006) and explore the climate drift on twenty-first century projections (Liang et al., 

2013). The control run starts with year 1850 atmospheric conditions containing fixed 

amounts of greenhouse gases. The historic model simulation includes the historic 

greenhouse gas changes in the radiative forcing. 

The observational studies of precipitation are based on the data sets from the 

Global Precipitation Climatology Project (GPCP), which is an international project to 

construct the global long-term record of precipitation over the whole world on behalf of 

the World Meteorological Organization (WMO), the World Climate Research 

Programme (WCRP), and the Global Energy and Water Experiment (GEWEX) (Huffman 

et al., 1997). There are many investigators and organizations contributing to this project 

(Adler et al., 2003; Schneider et al., 2008; Huffman et al., 2009). The data sets of 

precipitation from the latest version of the GPCP (i.e., Version 2.2) are available on the 

public websites maintained by the Physical Sciences Division (PSD) of the Earth System 

Research Laboratory (ESRL) in the National Oceanic & Atmospheric Administration 
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(NOAA).  GPCP Version 2.2 precipitation data are derived from satellite and gauge 

measurements. It incorporates data from SSM/I emission estimates, F17 SSMIS, SSM/I 

scattering estimates, GPI and OPI estimates and rain gauge analysis, and TOVS estimates 

(Huffman et al., 2012). The spatial resolution of GPCP V2.2 precipitation is 2.5◦ × 2.5◦ 

(latitude by longitude). Analyses based on the observational data sets are conducted to 

examine the consistency between the historic simulation and the observational study from 

1988 to 2012, where GPCP data overlap with Special Sensor Microwave Imager data and 

are believed to be more reliable (Allan et al., 2010).   

 

5.3 Results 

The spatial pattern of the observed climatological GPCP V2.2 precipitation for 

1988-2012 is shown in Figure 5.1a.  The high precipitation and low precipitation areas 

are defined as the areas with climatological monthly mean precipitation larger than 200 

millimeters per month (mm/mon) and less than 50 mm/mon, respectively. The high 

precipitation areas and low precipitation areas are respectively highlighted by the solid 

white contours and dotted white contours in Figure 5.1a. Figure 5.1a illustrates that the 

high precipitation area is roughly the same as the Inter-Tropical Convergence Zone 

(ITCZ), identified by the highly reflective clouds (Waliser and Gautier, 1993). The low 

precipitation area comprises most of the other regions in the tropics and mid-latitudes. 

Two different approaches were attempted when evaluating these data in preparation for 

plotting a time series.  Since the ITCZ fluctuates in position throughout the year, one way 

to prepare the data is to allow the wet and dry areas to change position with month to 
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follow the movement of the ITCZ. Another way is to calculate the precipitation over the 

climatological wet and dry areas as shown in Figure 5.1a.  Both approaches yielded 

similar results. Time series of the observed precipitation over the climatological wet and 

dry areas are plotted in Figures 5.1b and 5.1c, which include data over both land and 

ocean between 40S-40N. From this temporal variation of precipitation, it is evident that 

the areas already receiving great precipitation tend to receive more, while the areas 

already receiving little precipitation tend to receive less.  The trend and uncertainty 

associated with the wet areas are 6.57 ± 0.27 mm/mon/decade, while for the dry areas are 

-0.98 ± 0.23 mm/mon/decade. Details for trends are listed in Table 5.1. El Niño Southern 

Oscillation (ENSO) signals have been removed from the precipitation time series at each 

location by a multiple regression method to avoid large biases in the trend due to 

significant interannual variability.  Also applied to the data was a 20-month lowpass filter 

to remove the high frequency signals. The lowpass filter is constructed as a convolution 

of a step function with a Hanning window and chosen to obtain a full signal from periods 

above 20 months. The linear trend coefficient for the time series is calculated from the 

least-square fitting method.  The standard error of the linear trend is estimated by 

ሺܾሻܧܵ ൌ ሺߪ/√ ሻ/√ሺ1/ ሻ∑ 2 (Bevington and Robinson, 2003), where ߪ is the 

standard deviation of the data, N1 is the number of degrees of freedom of the data, N2 is 

the length of the data set, and xi is the time series corresponding to a number of 

measurements with
 
∑  = 0. The number of degrees of freedom N1 is estimated by a 

formula  suggested by Bretherton et al. (1999), where 

 is the autocorrelation corresponding to a lag of time interval .  

N1 N2 xi

xi



 90

 

 

Figure 5.1. (a) Spatial pattern of the mean GPCP V2.2 precipitation (P) for 1988-2012 over the 
tropical and subtropical regions (40ºS-40ºN). (b) Lowpass filtered time series of 
precipitation averaged over high precipitation areas (P > 200 mm/mon). (c) Lowpass 
filtered time series of precipitation averaged over low precipitation areas (P < 50 
mm/mon). El Niño Southern Oscillation (ENSO) signals have been removed from 
the time series by a regression method based on the Niño3.4 index. A lowpass filter 
is also applied to remove the high frequency signals. Solid white contours refer to 
the wet area where the precipitation is higher than 200 mm/month. Dotted white 
contours refer to the dry area where the precipitation is lower than 50 mm/month. 
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Figure 5.2. Lowpass filtered time series for precipitation (P) from GISS-HYCOM. (a) P over 
high precipitation (P > 200 mm/mon) from the control run (solid line) and trend 
(dashed line). (b) P over high precipitation area from the historic run (solid line) and 
trend (dashed line). (c) Same as (a) except for areas with precipitation < 50 
mm/mon. (d) Same as (b) except for areas with precipitation < 50 mm/mon. 

 

Next, we use the NASA GISS-HYCOM model to investigate whether the model 

can capture the overall trends seen in the observations and reproduce the characteristics 

of precipitation. We conduct experimental simulations in a control run where the 

greenhouse gases are fixed and a historic run where the historic greenhouse gases are 

included.  Figure 5.2 illustrates the identified areas of high and low precipitation and 

contains each of their precipitation trends for both the control and historic simulations.  
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Corresponding trends and uncertainties in the control simulation for the wet areas are 

0.02 ± 0.19 mm/mon/decade with -0.03 ± 0.24 mm/mon/decade for the dry areas, as 

shown in Figures 5.2a and 5.2c. There is no significant trend in the precipitation over the 

wet and dry areas when the greenhouse gas concentrations are fixed. In contrast, the 

historic run demonstrates trends of 3.8 ± 0.17 mm/mon/decade and -0.48 ± 0.21 

mm/mon/decade for the wet and dry areas, respectively, as shown in Figures 5.2b and 

5.2d. The trends (3.8 ± 0.17 mm/mon/decade and -0.48 ± 0.21 mm/mon/decade) in the 

GISS precipitation are smaller than those seen in the observations (Figures 5.1b and 

5.1c), which might be related to the weakness of the model in simulating the Pacific 

Decadal Variability (PDV). As suggested by Gu and Adler (2012), the PDV can also 

contribute to the long-term trend of precipitation in addition to global warming. The 

GISS-HYCOM model cannot simulate the PDV well, which might contribute to the weak 

trends in the model precipitation. 
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Figure 5.3. Lowpass filtered time series for column water vapor (W) from GISS-HYCOM. (a) W 
over high precipitation (P > 200 mm/mon) from the control run (solid line) and trend 
(dashed line). (b) W over high precipitation area from the historic run (solid line) 
and trend (dashed line). (c) Same as (a) except for areas with precipitation < 50 
mm/mon. (d) Same as (b) except for areas with precipitation < 50 mm/mon. 

 

The concentration of water vapor is one factor that can influence precipitation. 

Figure 5.3 illustrates the trends of column water for both the historic and control runs in 

the wet and dry areas. Corresponding trends in the control simulation for the wet areas 

are -0.06 ± 0.18 mm/mon/decade with 0.057 ± 0.20 mm/mon/decade for the dry areas. 

Column water trends for the historic run are 1.15 ± 0.21 mm/mon/decade over the wet 

areas with 0.49 ± 0.20 mm/mon/decade for the dry areas, as shown in Figures 5.3b and 
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5.3d. The historic run exhibits a strong positive trend for both the wet and dry areas, 

while the control run reveals virtually no trend in either.  Furthermore, of considerable 

note is the strength of the trend in column water and the model’s ability to simulate it 

with low uncertainties and small deviations.  

 

 

Figure 5.4. Lowpass filtered time series for 337 hPa temperature (T) from GISS-HYCOM. (a) T 
over high precipitation (P > 200 mm/mon) from the control run (solid line) and trend 
(dashed line). (b) T over high precipitation area from the historic run (solid line) and 
trend (dashed line). (c) Same as (a) except for areas with precipitation < 50 
mm/mon. (d) Same as (b) except for areas with precipitation < 50 mm/mon. 
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The concentration of water vapor is related to the atmospheric temperature by the 

Clausius-Clapeyron equation (Salby, 2012). Therefore, we further examine the temporal 

variation of atmospheric temperature from the simulations by the GISS model. Results of 

the GISS 337 hPa temperature averaged in the identified areas of high and low 

precipitation are shown in Figure 5.4 for both the historic and control runs. 

Corresponding trends and uncertainties found in the control simulation for the wet areas 

are -0.04 ± 0.19 C/decade and -0.04 ± 0.20 C/decade for the dry areas. Trends for the 

337 hPa temperature in the historic run are 0.61 ± 0.23 C/decade over the wet areas and 

0.52 ± 0.22 C/decade over the dry areas, as illustrated in Figures 5.4b and 5.4d. 

Temperature has positive trends over both wet and dry areas, which are responses to the 

greenhouse forcing in the historic simulation. According to the Clausius-Clapeyron law, 

air with high temperature will hold more water vapor. Column water vapor also shows 

positive trends in both the wet and dry areas in Figure 5.3. This behavior is different from 

the temporal variation of precipitation for the wet and dry areas.  
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Figure 5.5. Lowpass filtered time series for 337 hPa vertical pressure velocity Ω (dP/dt) from 
GISS-HYCOM. (a) Ω over high precipitation (P > 200 mm/mon) from the control 
run (solid line) and trend (dashed line). (b) Ω over high precipitation area from the 
historic run (solid line) and trend (dashed line). (c) Same as (a) except for areas with 
precipitation < 50 mm/mon. (d) Same as (b) except for areas with precipitation < 50 
mm/mon. 

 

 To better understand the possible physics in the temporal variation of precipitation, 

we examine omega (vertical pressure velocity) Ω = dP/dt, in the GISS model over the wet 

and dry areas. Results for Ω at 337 hPa are given in Figure 5.5. Corresponding trends in 

the control simulation for the wet areas are -0.016 ± 0.17 Pa/day/decade with -0.04 ± 0.18 

Pa/day/decade for the dry areas. Trends for the 337 hPa Ω in the historic run are -0.32 ± 

0.18 Pa/day/decade over the wet areas and -0.03 ± 0.21 Pa/day/decade over the dry areas, 
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as demonstrated in Figures 5.5b and 5.5d. Figure 5.5b illustrates a significant negative 

trend in the 337 hPa vertical pressure velocity. This negative trend suggests that the rising 

air is strengthening over the wet areas and, in turn, can lead to enhanced precipitation 

there. The temporal variation of the vertical pressure velocity is consistent with a 

mechanism suggested in some previous studies (Chou and Neelin, 2004; Chou et al., 

2009), in which the gross moist stability of the atmospheric boundary layer is reduced 

due to increased moisture; and hence, the convection and the related precipitation is 

amplified. Our investigation of the column water vapor and temperature suggests positive 

trends of column water vapor and temperature over the dry areas. Furthermore, the GISS 

historic run reveals that the vertical pressure velocity did not significantly change during 

the past two decades over the dry areas. The temporal trend of precipitation over the dry 

areas poses a challenge to our current understanding, which will be explored in the future. 
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Table 5.1: Trends for precipitation (P), column water (W), temperature (T), and 
omega (Ω) over wet area (P > 200 mm/mon) and dry area (P < 50 mm/mon). 
 
 
 Wet Area (P > 200 mm/mon)

 
Dry Area (P < 50 mm/mon) 

GPCP P 6.57 ± 0.27 mm/mon/decade 
 

-0.98 ± 0.23 mm/mon/decade 

GISS P 
(Control Simulation) 

0.02 ± 0.19 mm/mon/decade -0.03 ± 0.24 mm/mon/decade 

GISS P 
(Historic Simulation) 

3.8 ± 0.17 mm/mon/decade -0.48 ± 0.21 mm/mon/decade 

GISS W 
(Control Simulation) 

-0.06 ± 0.18 mm/mon/decade 0.057 ± 0.20 mm/mon/decade

GISS W 
(Historic Simulation) 

1.15 ± 0.21 mm/mon/decade 0.49 ± 0.20 mm/mon/decade 

GISS T 
(Control Simulation) 

-0.04 ± 0.19 C/decade -0.04 ± 0.20 C/decade 

GISS T 
(Historic Simulation) 

0.61 ± 0.23 C/decade 0.52 ± 0.22 C/decade 

GISS Ω 
(Control Simulation) 

-0.016 ± 0.17 Pa/day/decade -0.04 ± 0.18 Pa/day/decade 

GISS Ω 
(Historic Simulation) 

-0.32 ± 0.18 Pa/day/decade -0.03 ± 0.21 Pa/day/decade 
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5.4 Residual Meridional Stream Function from Model Simulation 

Having achieved robust results examining the multiple observational data sets and 

performing statistical analyses, we now study the physics behind the temporal variations 

and spatial patterns of precipitation and their response to global warming.  The GISS-

HYCOM model is utilized to examine the temporal variation of residual meridional 

circulations over the last twenty years. Residual meridional circulation can be calculated 

using the following formulas:  

 

, 

 

where * is the residual meridional circulation. v * and w * are the meridional and 

vertical residual velocities, which can be calculated using the following equations:  

  

zvvv z   /)/''(* 00
1

0    

yvww z  /)/''(* 0 ,   

 

where v and w are the meridional and vertical velocity, ρ is the density, θ is the potential 

temperature, and z0  is the vertical derivative of the reference potential temperature. The 

overbar and prime denote the zonal average and its deviation from zonal mean, 

respectively.  

* v* dz * w* dy
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Figure 5.6.  Climatological residual meridional stream function from the GISS-HYCOM model 
simulation historic run. 

 

  

The resulting climatological residual meridional stream function from the GISS-

HYCOM historic simulation is shown in Figure 5.6. From Figure 5.6, areas represented 

by red and yellow colors signify positive values, which demonstrate clockwise flow 

within the northern hemisphere. Areas represented by blue and purple colors signify 

negative values that show counterclockwise flow within the southern hemisphere.  The 

model simulation supplies a good qualitative comparison with the observed stream 

function.  The residual meridional circulation consists of a single thermally direct 

overturning in each hemisphere, with the strongest cell in the winter hemisphere owing to 
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a stronger horizontal temperature gradient present between the equator and pole and 

stronger wave activity (Chen, 2013).  The tropical circulation is characterized by an 

intense updraft within 10° latitude of the summer hemisphere, crossing the equator in the 

upper troposphere, and then descending some in the subtropics of the winter hemisphere. 

The extratropical circulation rises from the subtropical lower troposphere to the 

extratropical upper troposphere. The high-latitude subsidence moves equatorward near 

the surface where it intersects the ground, completing the mean circulation.   

 

 

Figure 5.7.  Climatological residual meridional stream function from the GISS-HYCOM model 
simulation control run. 
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Figure 5.7 illustrates the climatological residual meridional stream function from 

the GISS-HYCOM model simulation control run.  The residual circulation transfers mass 

and trace chemicals upward across the tropopause in the tropics and downward in the 

extratropics (Holton, 2004). The wave-induced hemispheric scale circulation consists of 

upward and poleward motion across the isentropes in low latitudes, accompanied by 

diabatic heating, and downward motion across the isentropes at high latitudes, 

accompanied by diabatic cooling. In the lower stratosphere, zonal mean transport mainly 

takes the form of advection by the mean diabatic circulation in the meridional plane and 

eddy mixing approximately along isentropic surfaces (Holton, 2004).  According to 

Holton, only if there is net diabatic heating or cooling can there be mean transport across 

the isentropes; that is, the circulation in which parcels that rise are diabatically heated and 

those that sink are diabatically cooled in order that their potential temperatures adjust to 

the local environment. The time-averaged residual meridional circulation approximates 

the mean motion of air parcels and provides an approximation to the mean meridional 

and vertical transport of trace substances. The spatial pattern of the climatological 

residual meridional circulation from the GISS-HYCOM control run is similar to that of 

the GISS-HYCOM historic run. 

To better explore the influence of greenhouse gases on the meridional circulation, 

we calculated the time series of residual vertical velocity w * averaged over 15°N-15°S 

from the GISS-HYCOM control run and GISS-HYCOM historic run. Results are shown 

in Figure 5.8. In general, the increasing precipitation over the ITCZ area (i.e., rich-get-

richer) is accompanied by an intensifying convection over the tropical region.  This 

intensifying convection can be seen by the increasing trend of residual vertical velocity 
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shown in Figure 5.8a of the model simulation.  The residual vertical velocity displayed in 

Figure 5.8a is the result of the GISS-HYCOM model historic simulation containing 

varying greenhouse gases. Detailed data analysis reveals a 1.59 ± 0.8 m/day/decade 

increasing trend for years 1988-2013. Figure 5.8b illustrates the GISS-HYCOM model 

control simulation containing greenhouse gas concentrations at pre-industrial levels.  

Detailed data analysis reveals a 0.06 ± 0.76 m/day/decade trend for years 1988-2013. The 

historic simulation reveals a robust trend while the control run does not.  The lack of an 

increasing trend in the control simulation supplies evidence of the influence 

anthropogenic greenhouse gas emissions have on the residual vertical velocity.  The 

increasing trend demonstrated in the historic simulation suggests an intensifying 

convection is occurring over the tropical region, and thus aiding in the enhanced 

precipitation experienced in those regions.  Such an intensifying convection is associated 

with a strong meridional circulation, making the large scale meridional circulation one 

more perspective in examining the temporal variation of tropical precipitation.   
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Figure 5.8. (a) Residual vertical velocity from GISS-HYCOM model historic simulation 
containing varying greenhouse gases from 15°N-15°S latitude.  (b) Same as (a) 
except control simulation containing greenhouse gas concentrations at pre-
industrial levels.  

 

Comparison of the control and perturbed simulations from the GISS residual 

vertical velocity illustrates variations in meridional circulation as a result of global 
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warming, which can further aid in the increased precipitation over the tropical regions.  

Correct simulation of these important features by the climate model help to elucidate the 

physics behind the different temporal variations of precipitation, paving the way for more 

accurate prediction of future climate change driven by anthropogenic activities. 

 

5.5 Conclusions 

The GISS model simulations imply that the increasing greenhouse gases can 

affect the temporal variations of precipitation over the wet and dry areas, consistent with 

the observed “rich-get-richer” mechanism.  The historic precipitation data in the wet 

areas illustrate an increasing trend of getting wetter while the dry areas are trending to be 

drier.  The control run precipitation data containing fixed amounts of greenhouse gases 

do not demonstrate trends over the wet and dry areas. Additionally, the diagnostic studies 

of the simulations from the GISS model residual meridional stream function reveal that 

the atmospheric dynamics related to the convective stability, and hence the vertical 

motions, contribute to the increased precipitation over the tropical area. The residual 

vertical velocity from the GISS-HYCOM historic simulation shows a robust trend while 

the control run does not.  The lack of an increasing trend in the control simulation 

supplies evidence of the influence anthropogenic greenhouse gas emissions have on the 

residual vertical velocity.  The increasing trend demonstrated in the historic simulation 

suggests an intensifying convection is occurring over the tropical region. This aids in the 

enhanced precipitation experienced in those regions from which such an intensifying 

convection associates with a strong meridional circulation.  



 106

5.6 Acknowledgements 

 This work was supported by the NASA ROSES-2010 NEWS grant NNX13AC04G.  

Additionally, I would like to thank Dr. Liming Li, whose comments, insight, and 

previous research were invaluable to me concerning this chapter. 

 

   

  

  

   

 

 

 

 

 

 

 

 

 

 

 

 



 107

Chapter 6 

 
 

Conclusions 

This work utilized meteorological data sets, satellite observations, and climate 

models to study the temporal and spatial variability of precipitation. 

First, our study revealed that the maximum cross correlation coefficient between 

precipitation and Southern Oscillation Index (SOI) was 0.5 when the lag is 5 months, 

suggesting that decreasing rainfall over Texas may appear five months after a period of 

increasing SOI, providing a possible forecasting factor for drought over Texas.   To 

further explain the temporal variability of precipitation over Texas, we explored the 

relationship between vertical velocity and rainfall during 2011.  The time series for 

precipitation and vertical velocity reveals they are related by the enhanced sinking motion 

and increased atmospheric stability.  A statistical tool called Principal Component 

Analysis (PCA) was used to further explore the temporal and spatial variability of 

precipitation.  The correlation between TRMM PC1 and SOI suggests the greatest 

variance is related to ENSO.   

Second, further PCA was applied to the GPCP precipitation data set and CAM5 

model.  Results for the tropical domain show the spatial pattern of the precipitation 

anomalies regressed on the first PC illustrate positive precipitation anomalies over 

western Pacific and negative anomalies over central and eastern Pacific, which is verified 

by a recent study between GPCP rainfall anomalies and Niño3 Index (Ashok et al., 
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2007).  Spatial patterns of the PC2 mode illustrate positive precipitation anomalies over 

central Pacific and negative precipitation anomalies over western and eastern Pacific, 

which can be explained by the unique tripole nature of the SSTA caused by El Niño 

Modoki.  The correlation between GPCP PC1 and SOI illustrates relation to ENSO while 

the correlation between GPCP PC2 and EMI suggests the second mode is related to the 

phenomenon known as El Niño Modoki.  Comparison of CAM5 precipitation simulations 

produced a very similar correlation with that of the observed GPCP.  CAM5 spatial 

patterns are consistent with the observed GPCP, although magnitudes are somewhat 

under predicted for both modes.  

Third, results for the polar domain show the spatial pattern of precipitation 

anomalies regressed upon PC1 of Arctic GPCP precipitation were found to be 

approximately zonally symmetric with negative precipitation anomalies in the polar 

region and positive precipitation anomalies in the mid-latitudes.  The spatial pattern of 

Antarctic GPCP precipitation was found to strongly resemble the first mode in the 

northern hemisphere (NH) when associated with the Southern Hemisphere Annular Mode 

(SAM). The correlation between Arctic GPCP PC1 and NAM index suggests when a 

stronger polar vortex exists, the NAM index is positive, and there are negative 

precipitation anomalies over the polar region and positive anomalies in the mid-latitudes.  

The leading PC1 of Antarctic GPCP precipitation compared with SAM index shows a 

good correlation and gives evidence of a stronger polar vortex in the SH when the SAM 

index is positive, leading to less precipitation in the SH high latitudes.  CAM5 

precipitation simulations demonstrate patterns similar to that of the observed GPCP; yet, 
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they do not capture the high precipitation anomalies over the NH Pacific Ocean and 

additionally position the positive precipitation anomalies slightly different in the SH.    

Finally, the GISS model simulations imply that the increasing greenhouse gases can 

affect the temporal variations of precipitation over the wet and dry areas, consistent with 

the observed “rich-get-richer” mechanism.  The historic precipitation data in the wet 

areas illustrate an increasing trend of getting wetter while the dry areas are trending to be 

drier.  The control run precipitation data containing fixed amounts of greenhouse gases 

do not demonstrate trends over the wet and dry areas. The consistency between the 

historic GISS simulation and the GPCP precipitation suggests that the model can 

qualitatively capture the temporal trends of precipitation over the wet and dry areas. 

However, the precipitation trends are weaker in the model than in the observation. 

Additionally, the diagnostic studies of the simulations from the GISS model residual 

meridional stream function reveal that the atmospheric dynamics related to the 

convective stability, and hence the vertical motions, contribute to the increased 

precipitation over the tropical area. The residual vertical velocity from the GISS-

HYCOM historic simulation illustrates a robust trend while the control run does not 

demonstrate a significant trend.  The lack of an increasing trend in the control simulation 

supplies evidence of anthropogenic greenhouse gas influence on the residual vertical 

velocity.  The increasing trend demonstrated in the historic simulation suggests an 

intensifying convection is occurring over the tropical region thus aiding in the enhanced 

precipitation experienced in those regions from which such an intensifying convection 

associates with a strong meridional circulation.  However, the vertical motion in the dry 



 110

areas does not show significant change, making the physics of the negative trend of 

precipitation in these regions more complicated. 

With increasing numbers of weather extremes related to climate change, it is 

important to investigate precipitation, temperature, and water vapor trends and their 

associated spatial distribution. The significance and broader impacts are evident when we 

look at the consequences of increased drought in some areas and flooding in others.  

Droughts create a heightened threat for fire weather and diminish the water supply with 

economic impacts taking years of recovery.  On the other hand, rapid and abundant 

rainfall causes flooding and threatens life and property.  My hope is that this research will 

provide insight into the causes of precipitation extremes that may be related to the 

influence of global warming.  Armed with this knowledge, forecasters can better predict 

when and where these extremes may happen, and scientists can forge a path to alleviate 

their occurrences and severity. 
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