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Abstract 

This thesis describes a hybrid optical/electronic network architecture that 

overcomes the limitations of using only modified commodity hardware in such 

networks, and is easy for industry to adopt. Test results show significant performance 

improvements when the proposed system is added to a highly oversubscribed electronic 

network and good performance with no detrimental effects when the system is added 

to a traditional electronic network that is not oversubscribed. This allows for greater 

oversubscription ratios in the electronic network and therefore cheaper and less 

complex hardware. The primary contributions of this work include a method of 

seamlessly integrating optical switching into an existing network using custom 

hardware, a research platform that allows greater flexibility in the analysis of hybrid 

optical/electronic networks, and a software platform for simulating such networks. 
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1. Introduction 

The capabilities of modern computer networks, especially those in data centers, 

have grown dramatically in the past decade due to seemingly insatiable demand for 

ever more massively-parallel processing capability and distributed storage. Search 

engine providers have their eyes set on continually re-indexing the entire Internet; 

online businesses keep a complete record of customers' purchases, always coming up 

with new ways to take advantage of the masses of information collected; and scientists 

continue to deal with ever larger data sets. Thus, data centers, large collections of 

computers that share support infrastructure such as power, cooling, security, and 

communication,  have become an important, quickly growing, and always in-demand 

part of the modern technology.  

Distributed computing frameworks such as MapReduce, Dryad, and many lesser-

known proprietary systems have allowed the efficient utilization of thousands of servers 

performing small pieces of a single large job. Most fundamentally, these frameworks 

take advantage of the fact that work can be divided into small pieces, distributed among 

many nodes, each of which performs a small part of the job, and results are later 

aggregated into a final product. These distribution and aggregation steps often create 

relatively localized hotspots with very high demand for network bandwidth. Modern 

packet-switched networking infrastructure has been struggling to keep up with demand 

without requiring prohibitively complex and expensive hardware. In recent times, much 

progress has been made by the research community in making network typologies more 

efficient, which led to massive network performance increases due to the deprecation 
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of naïve tree-structured networks and the increasing use of Fat-Trees and other 

significantly more efficient ways of structuring computer networks. However, 

networking is still a major bottleneck and resource sink in modern data centers – more 

efficient typologies dictate more complex wiring, making the tasks of design and 

maintenance increasingly difficult and expensive, requiring literally tons of wiring and 

thousands of switches [1]. In hopes of solving these problems, the research community 

is now turning to a new paradigm – optically switched networking, which promises 

simpler, cheaper, more energy-efficient, and higher-performance architecture for data 

center networks. 

The key idea behind optical switching is to physically set up a direct path for the 

data to travel from source to destination without intermediate decoding and routing 

steps. In the current generation of electronic networks, every packet has to be 

processed by a switching or routing device at every intermediate node.  In an optically 

switched network, a centrally controlled optical switch fabric would continuously 

measure demand and set up optical paths where they are most needed. A significant 

amount of research on this topic has been done. Systems proposed have varied in the 

methods of demand estimation, the presence or absence of an electronically switched 

overlay for handling light and latency-critical traffic, scheduling algorithms, switching 

fabric implementations, and topologies.  

All research so far has run into the problem of modern hardware not being 

designed for fast optical switching. Commodity optical switches tend to be slower than 

the technology allows due to lack of business demand for fast switching – most 
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currently available commodity optical switching devices are designed and used for long 

term circuit switching and network configuration. Network interface cards are not 

generally suitable for optical switching out-of-the-box because proprietary firmware 

dictates them to take a long time in reconfiguration when a loss of optical link is 

detected, while optical link teardowns and setups must happen quickly and routinely in 

an optically switched network.  

The quick adoption and resounding business success of Fat-Trees, VL2, and other 

relatively new network architectures can be attributed to the fact that they did not 

require businesses to completely replace existing hardware. All existing hardware could 

be re-used. In fact, a network operator could take 10-year old switches, rearrange the 

way they are connected, change the way subnets and IP addresses are arranged, add 

some routing rules, and have a significant improvement in performance. It was simply a 

matter of working smarter, not harder with existing commodity hardware and the 

industry was left wondering why no one thought of it sooner. In contrast, optically-

switched networks as they have been described in recent research are not practical 

without drastic hardware changes, including some devices that have not yet been 

commercialized at best, and purely theoretical components at worst.  

This thesis proposes the use of an Optical Crossconnect Interface (OXCI), a novel 

type of device that would allow data centers to keep as much hardware as possible 

while obtaining the benefits of an optically switched network. Essentially, the OXCI is an 

interface add-on that can be connected to existing switches and serve as an interface 

between a mostly electronic network edge and an optically switched core network. This 



 

4 

add-on device would aggregate packets suitable for transmission over the optical 

network and communicate with a central switch fabric controller to report bandwidth 

demand and determine when bursts of queued packets can be sent. This approach 

allows the system to overcome the inadequacies of multiple pieces of commodity 

hardware by inserting a single custom interface device. This thesis describes and 

analyzes a hybrid optical/electronic data center network where an optical circuit switch 

with a custom controller and OXCI devices at each rack functions to significantly 

increase the capacity of a data center network.  

The rest of this thesis is organized as follows: 

• Chapter 2 introduces key concepts relating to data centers and optical 

networking. An overview of past and current research is provided. 

• Chapter 3 describes the proposed network architecture in detail. 

• Chapter 4 provides a description of the simulator and model used to test 

the proposed system, followed by analysis of the simulation results. 

• Chapter 5 provides an interpretation of the test results and summarizes 

the implications of this work. 

  



 

5 

2. Background 

To understand the proposed method, with its benefits, drawbacks, and 

implementation details, one must understand the context in which this work is 

presented. To that end, this section provides an overview of the state-of-the-art of data 

center networking and optically-switched networking research. 

2.1. The Data Center 

A data center is a large collection of computers that share resources including 

networking infrastructure, locations, power systems, cooling systems, security, and 

management. Large groups of computers in data centers often work together to achieve 

a common goal such as performing large distributed calculations, serving a high-traffic 

website, or processing extremely large data sets. The history of data centers can in some 

respects be traced to historic mainframe computers that required entire rooms to house 

the computer and all support equipment. The mainframes of old eventually evolved into 

the modern supercomputers, retaining tight coupling and shared memory between 

processing units. Modern data centers inherited much of the philosophy about support 

infrastructure such as cooling and power from mainframes, but are very different in 

their core functionality. Modern data centers are usually not thought of as monolithic 

computers as mainframes and supercomputers are, but are large collections of 

individual servers. Thus, the coupling between processing resources is relatively loose, 

and each processing node is a self-sufficient server, usually having its own power supply, 

processing units, volatile and nonvolatile storage, and network interfaces. In recent 

years, data centers have become increasingly important as utilization of computing 
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power has been shifting from heavy use of local resources such as consumer desktops or 

servers owned and operated by businesses to cloud computing and computing-as-a-

service. Some examples of this trend are the recent shift of users from desktop-based e-

mail clients like Outlook to web-based mail and the increasing popularity of services 

such as Amazon EC2, where users and organizations can rent large pools of computing 

power on demand, without having to worry about the infrastructure, maintenance, and 

design of their own computing resources. 

2.1.1. Big Picture: The Anatomy of a Data Center 

Data centers are characterized by two key concepts: pooling of computing power 

and sharing of infrastructure. A typical data center is made of thousands of individual 

servers. Usually, large groups of these servers must be pooled together to achieve a 

single large task, such as creating an index of the entire public World Wide Web. 

Sharing infrastructure is important because it is what allows data centers to be 

so cost-effective and efficient. All computers in a data center have a common power 

distribution system, which allows for the efficient use of power and backup power 

capabilities. Most data centers have battery banks and diesel generators that would 

allow operations to continue without interruptions in case of power grid failures. 

Cooling systems are another infrastructural consideration. When thousands of 

computers are pooled together in one building and each of them is dissipating hundreds 

of watts of power, the building will overheat very quickly. To keep the ambient 

temperature down and the servers operating within temperature specifications, data 

centers use large cooling units, often termed Computer Room Air Conditioning, or CRAC 
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units. These machines transfer heat from the surrounding air to a coolant fluid which is 

pumped outside and cooled by large chiller of drycooler units in a similar manner to 

normal air conditioning, and expel cooled air back into the data center through some 

managed airflow system. Air flow management is important because allowing cold air to 

mix with hot air drastically reduces cooling system efficiency. Methods employed for 

controlling airflow include pressurizing the area under a raised floor with cooled air and 

letting the air out through strategically placed vents, or using a system of specially 

designed air conduits. 

Maintenance overhead is also often reduced by the use of a single common 

performance monitoring and management system for the data center. Operators can 

monitor the performance of the data center as a whole. Designing the servers to be 

extremely reliable would be prohibitively expensive. Instead, data center-grade servers 

are usually not much more reliable than desktop computers, and of thousands of units, 

some are expected to fail almost daily. In a well-designed data center, a common 

management and monitoring system quickly detects these failures, taking some 

automated steps to move the failed machine's workload to another machine and begin 

resolving the issue, possibly alerting a human operator to physically replace the failed 

unit [2]. 

A shared local network is the fabric that ties the data center together and allows 

many computers to contribute to the completion of a common task. Fast, scalable, well-

managed networking infrastructure facilitates efficient management and monitoring of 

the data canter, large scale data processing, distributed storage, and high reliability. 
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Recently, there have been many advances in the architecture of data center networks, 

with ideas about incorporating optical switching into the data center being one of the 

most prominent research topics is the field. 

2.1.2. Typical Workloads: The Purpose of a Data Center 

Although servers within data centers can technically perform the same kind of 

local single-machine computation tasks that desktop computers often perform, the 

typical workload of data center servers is somewhat different. Most modern data 

centers are utilized for massive computation jobs such as math-heavy scientific 

processing – for example, large scale image processing involving distributed Fast Fourier 

Transform (FFT) calculations. Serving massive, user heavy web-based applications such 

as Google maps or “Yahoo!” web search is also a very common workload. Perhaps most 

importantly, data centers are used for large scale data mining and processing, such as 

building web search indexes, analyzing usage patterns of online shopping sites, and 

determining the effectiveness of targeted advertising placement. Management tasks, 

such as backups and virtual machine migration also make up a significant portion of the 

work done within modern data centers.  

One of the most common applications seen within data centers is the 

MapReduce [3] parallel computing framework and similar tools such as Dryad [4]. This 

kind of application is often the go-to example and test workload for many data center 

related research studies due to its ubiquity, versatility, and high importance to the 

biggest players in the industry, such as Google, whose web indexing engine is a 

MapReduce program. MapReduce was born from the need to perform often 



 

9 

straightforward operations on extremely large and complex data sets – for example, 

counting the number of times a word occurs on all crawler-accessible web pages. This 

kind of task has long been the bread and butter of many Internet giants, and much code 

has been written to simplify it. The problem itself is extremely simple – simply read 

documents and increment a counter each time a certain sequence of characters is 

encountered. In practice, this cannot be done by a single computer because the data set 

is extremely large. The solution is as simple as the problem – split the data set into 

smaller chunks, and have each computer count the number of times the word occurs in 

its assigned chunks. Even if the data set is a petabyte in size, a reasonable estimate for 

the currently indexable Web, a cluster of 2000 servers can split the data set and have 

each server process 500GB of information. Given that the data has already been stored 

on the appropriate local disks within each server, something that can be arranged 

during the data collection process, assuming processing rates of 40MB/s for each server 

this task can be completed in under four hours. Having to do many similar large data 

mining tasks, one will notice that each task shares the same set of “boilerplate” logic. 

Any program running this kind of job will need perform the following tasks: 

1. Split the job into pieces and assign each piece of the work to a server. 

2. Have each server compute its intermediate or partial result. 

3. Monitor job progress and server performance, gracefully dealing with server 

failures as they occur. 

4. Aggregate intermediate results, computing the final result.  

5. Managing many other common book keeping details. 
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In recognition of these similarities in commonly performed data center work, Google 

developed the MapReduce framework, which in their own words, “hides the messy 

details of parallelization, fault-tolerance, data distribution, and load balancing in a 

library” [5]. Tasks numbered 2 and 4 are roughly corresponding to “map” and “reduce” 

respectively, and form the user logic of the program. 

The reality of MapReduce is somewhat more complicated and abstract than the 

simple description above. According to the canonical description of MapReduce, the 

user is responsible for writing two functions. The Map function takes a takes a key/value 

pair as an input and processes it, producing an intermediate result in the form of a list of 

other key/value pairs, often of different data types and taken from a different value 

domain than the original input pair. Each execution of the Reduce function accepts a 

single key ������ from the set of intermediate results and the set of values for that key. 

The reduce function then processes its data and generates a result, often a single value 

or some other data set much smaller than the input. Mathematically, given a set of 

�input key/value pairs, 

 {��������,��������, ���	
�����,��	
������, . . . , ��������,��������}	 (1) 

for each of�inputs, a mapping is performed generating 	. 
 new key/value pairs 

 ������
�����,��

������ → {���,�
����	,��,�

����		, ���,�
�
����	,��,�
�

����		, . . . , ���,�.�
����	,��,�.�

����		}  (2) 

followed by the reduction mapping executed for each intermediate key, 

 ������������� , {������� ,��	
����� , . . . ,�������}� → ������, (3) 

where ������is the final answer for the intermediate key �������. Let 		be the total 

number of unique intermediate keys generated. The final answer data set can be 
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generalized to the list of key/value pairs 

  {�������� ,�������, ���	
����� ,��	
�����, . . . , �������� ,�������}. (4) 

Data center processing frameworks, including MapReduce, are designed to be 

fault-tolerant, even to the point of being able to gracefully handle entire racks of servers 

becoming unavailable in the middle of a job. This is achieved by the master node 

detecting a failure and moving the affected work to other available nodes. 

Along with parallel processing frameworks, data centers employ highly-

distributed redundant storage systems like GFS [6]. Such systems ensure the availability 

of data in case of server or even rack failures. Several copies of every piece of data 

within the system are distributed throughout the network. 

The administration and monitoring done within a data center can often be 

viewed as a workload in itself. Prime examples of this are virtual machine migration and 

software updates, which take up significant network bandwidth and CPU time. In the 

context of this thesis, one should keep in mind that improving the performance of such 

common management tasks can result in significant performance improvements in the 

data center as a whole. Thus, such tasks are also of interest in modeling and observing 

the performance of data centers. 

2.1.3. Data Center Networking: What Holds it All Together 

Data center networks are connected by a hierarchy of switches. The analogy of a 

tree is of some use in this context. The smallest “branches” of this network tree are the 

individual servers within the data center. These server nodes are usually organized in 

racks, with each rack holding tens of servers. For simplicity, it is assumed that each 
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server has a single network interface for communication with other nodes. Each rack 

also contains a network switch that routes traffic within the rack and serves as the 

gateway for inter-rack communication. This is called a Top-of-Rack, or “ToR switch”. 

Recent developments in data center designs have introduced the concept of a “pod”, 

which can be thought of either as a bigger rack containing hundreds instead of tens of 

servers, or an aggregation of several racks into a bigger structural unit.  In the context of 

this thesis, terms “pod switch” and “ToR switch” are used interchangeably because the 

main concern here is the qualitative concept of the level of traffic aggregation above 

individual servers, but below the network core.  ToR switches are commodity switches 

with tens to hundreds of ports with the lowest bandwidth capability in the network. In 

practical networks, ToR switches are usually connected to another layer of aggregation 

switches, most often higher performance switches than the ToRs. Most research articles 

leave out this layer for simplicity. The next level, making up the “root” of the tree is the 

network core. The core has traditionally been composed of very expensive high-

bandwidth switches that route traffic between the aggregation switches. The core 

switches also act as gateways to wide area networks, and eventually, the Internet 

backbone. 

2.2. Optical Networking 

The use of lasers and fiber optic cables to transmit data originally developed as a 

way of achieving communication over long distances. In computer networking, optical 

components have provided the building blocks of long haul and extremely high-

bandwidth Internet backbone networks. Recently, optical networking technologies have 
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been quickly making their way into corporate networks and data centers, and there has 

been significant research effort into making these technologies more suitable for use in 

non-backbone networks. Currently, the most common use for optics in the data center 

is high-bandwidth data transmission between electronic switches, due to the fact that 

data signals are getting too fast for electronic cables to handle efficiently over long 

distances. Research has been focusing on using optical switches to unload electronic 

switches and routers, making high data-rate transmissions more efficient. 

2.2.1. Switching Mechanisms 

Three primary switching mechanisms within networks have been identified and 

studied by the research community. These mechanisms are packet switching, circuit 

switching, and burst switching. Theoretically, each of these can be implemented in the 

optical or electronic domain, although optical packet switching is not currently practical, 

and electronic circuit switching along with electronic bust switching are generally not 

seen as useful. 

The traditional method most commonly used by the networking industry is 

electronic packet switching (EPS). Packet switching is defined as having packet-level 

granularity, where a packet is usually around 1500 bytes of data. This means that a 

separate routing decision can be made about every individual packet traversing the 

network at every node it passes. In electronic packet switching, this means that the 

packet's header is interpreted by the router and the next hop of the packet is 

determined by a routing algorithm based on the packet's final destination and the 

previous information the router has about the state of the network. If a packet to be 
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routed through EPS is transmitted as an optical signal, which is often the case, it must be 

converted to an electronic signal for processing and possibly back to an optical signal for 

transmission to the next-hop node. This requires expensive transceivers and a significant 

amount of power. Even if a packet is transmitted electronically, the high bit rates used 

by modern electronic Ethernet also require a lot of power and complex cable 

construction to ensure signal integrity. One of the ultimate goals of modern networking 

research is optical packet switching – a theoretical method in which routing decisions 

can be made about each packet individually at each node without converting the packet 

to an electronic signal. However, this has not been achieved with current technologies, 

so it is necessary to consider other switching methods that allow the packets to be kept 

in the optical domain. 

Optical burst switching has been the subject of much research emphasizing its 

potential benefits to long-haul backbone infrastructure. In optical burst switching, 

packets are queued until a large burst of packets with the same destination is collected. 

When the burst is ready to be sent, a control packet traverses the network, instructing 

core nodes to set up direct optical paths in anticipation of the burst's arrival. The burst 

itself is sent shortly after the control packet, such that by the time the burst arrives at 

any node, the node would have already processed the control packet and set up the 

appropriate optical path for the burst. Optical burst switching in its current incarnations 

involves significant scheduling complexity and extensive use of wavelength division 

multiplexing, as well as the possible necessity of wavelength conversion. Generally, 

optical burst switching networks deal with the need of bursts to travel through several 
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purely optical core nodes without optical-electronic-optical conversion. Implementation 

of true optical burst switching is currently seen as too complex and expensive for data 

center implementation. However, optical burst switching in simpler forms may also be 

seen as a subset of optical circuit switching where the circuit lifetime is relatively short. 

Optical circuit switching has been traditionally thought of as the ability to set up 

a direct optical path between two nodes for a relatively long time. In the trivial case this 

could involve a technician physically connecting two nodes to each other with an optical 

cable. More realistically, in modern networks, this corresponds to automated switching 

hardware configuring a direct optical path within the network either because some 

client has purchased the use of a direct optical link between specific machines, or 

because a network administrator (human or machine) has decided that such a direct link 

would be beneficial to performance. Traditionally, optical circuits have had lifetimes 

counted in days, months, or even years. However, more recently, optical link durations 

have been getting shorter. Ongoing research into data center networking has utilized 

optical circuits with lifetimes as short as tens of microseconds. There is no longer a hard 

semantic distinction between optical circuit switching and optical burst switching, but 

burst switching most often implies control packets going ahead of the burst through a 

complex core network with the possibility of wavelength conversion, while fast circuit 

switching most often refers to the case of a relatively simple optical core.  The OCS core 

is viewed as a single optical switch and not multiple switching nodes. It is reconfigured 

by a single central controller based on a centralized control algorithm in which the 

controller schedules and sets up optical circuits between nodes based on its perceptions 
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of present and future traffic demand. Such fast optical circuit switching is the subject of 

this thesis. 

2.2.2. Switching Hardware 

Optical switching is essentially the act of setting up a direct optical light path 

between two optical transceivers. Several devices are available for achieving this. The 

most common device is a MEMS (Micro ElectroMechanical System) switch. These 

devices contain several ports and a set of physical mechanically movable mirrors that 

can route the laser beam being used for communication from an input port to any 

output port. 

Another common switching device is the wavelength-selective switch (WSS). This 

device is a reconfigurable optical bandpass filter that can separate a range of 

wavelengths from an incoming signal containing many wavelengths from many sources 

multiplexed into a single fiber. A controller can use this device to select which data is 

going to which destination in much the same way this is possible with a MEMS switch.  

An important consideration in this area is the amount of time it takes to 

reconfigure a switch. WSS switches are generally orders of magnitude faster to 

reconfigure than MEMS switches, but they can only operate on limited sets of 

wavelengths, while MEMS switches are completely wavelength-agnostic and can 

generally switch signals carrying vast amounts of data on as many as 100 wavelengths. 

2.3. Current Research in Optical Data Center Networking 

The research community has been focusing on finding ways to use optical 

components to augment electronic networks. Of particular interest is the idea of 
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offloading traffic-heavy slowly changing flows from the electronic switch to optical 

circuits. This is most often achieved by adding an optical switching device to the core of 

the network and finding some way to monitor demand for high-traffic connections.  

2.3.1. Helios 

Helios [10] is one of the first prototype networks combining electronic packet 

switching with optical circuit switching to improve data center networking efficiency. It 

achieves this by adding an optical switching fabric on top of an oversubscribed 

electronic network. The research objective in Helios was to figure out a good way to 

manage the allocation of the optical switching resources and measure the performance 

improvement attained, comparing the cost and complexity of the novel system to an 

analogous traditional system. The key observation motivating Helios has been the fact 

that in current data center networks the designer must either go to great expense to 

 

Figure 1: The Helios network topology. 
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build a complex network able to handle worst-case traffic scenarios and allow most of 

the network to remain idle under most normal workloads, or run the risk of workloads 

being bottlenecked by inadequate network bandwidth. Rather than statically 

provisioning for the worst case, Helios provides a means of augmenting the network 

with a pool of bandwidth that can be allocated where it is deemed necessary and 

constantly reconfigured based on changing traffic patterns.  

The Helios network is architected as a two-level multi-rooted tree. There is a 

level of top-of-rack switches aggregating traffic from individual hosts, and a core level, 

composed of a mix of optical and electronic switches, as shown in Figure 1. Note that 

there is more than one possible path through the core between each pair of top-of-rack 

switches – each top-of-rack switch has connections to multiple optical switches. Most 

importantly, the network is designed to allow the strengths of the optical switches to 

compensate for the weaknesses of the electronic switches and vice-versa. When high-

bandwidth connections are necessary, the optical switches are configured to 

accommodate this need by taking on the heaviest flows of traffic. When traffic is bursty 

and granularity in switching is necessary, the electronic switch handles this less 

bandwidth-intensive demand. In the design of such a network there is a tradeoff to be 

made between the resources invested in the electronic part of the network and the 

resources invested into the optical part – a decision to be made based on the 

anticipated workload characteristics of the data center. The example network in Figure 

1 delivers full bisection bandwidth. However, only half of this bandwidth is usable at the 

packet granularity, and the other half must be allocated by the optical switch manager 
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based on traffic demand measurements. 

The Helios prototype that was constructed and tested consists of 24 rack-mount 

servers used as hosts on the network, several commercial electronic packet switches, 

and a 64-port Glimmerglass optical circuit switch. The optical and electronic switches 

were subdivided into smaller switch topologies as necessary. The optical switch was 

divided into up to 5 virtual 4-port switches, and the ToR switches were actually not 

independent, but subdivisions of a single optical switch. This allowed greater flexibility 

in configuring such a small-scale topology, making the prototype more realistic and 

allowing more efficient use of available hardware resources. 

The software implementation of Helios consisted of three primary components. 

The circuit switch manger (CSM) was the unmodified control software of the 

Glimmerglass switch. It provided an interface for managing the configuration of the 

optical switch, but did not provide any feedback about when the switch started or 

completed reconfiguration. The Pod Switch Manager (PSM) was a user-level program 

running on each ToR switch (or pod switch, to use Helios terminology). Its primary 

functions included initializing the switch hardware, managing the flow table for the 

network, and communicating with the optical topology manager. The PSM was 

responsible for multiplexing traffic between the optical network and the electronic 

network. It achieved this with the help of Link Aggregation Groups (LAGs). A link 

aggregation group is a way of combining multiple network connections in parallel – for 

example, when a single pair of pod switches utilizes multiple optical links for 

communication. The PSM on each pod switch kept a LAG for every other pod switch in 
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the network. Whenever an optical link was set up to another pod switch, the PSM would 

add the newly set up link to the LAG of the corresponding pod switch. Whenever an 

optical circuit was disconnected it would be removed from the corresponding LAG.  

The most complex and important part of Helios is the topology manager (TM). It 

is a software program running on a central management server, responsible for 

estimating traffic demand within the network based on data gathered from each PSM, 

and continuously recalculating the optimal switch configuration for the network based 

on demand. Once the optimal configuration is calculated, the TM notifies the PSM of a 

reconfiguration event and sends commands to the CSM to achieve the switch 

reconfiguration. 

The control loop run by the topology manager consists of six steps: 

1. Measurement of the traffic matrix: this is achieved by polling each PSM for flow 

rate data.  

2. Demand estimation: in this step, the TM takes flow rate data collected from the 

PSMs and calculates the max-min fair bandwidth allocation for each TCP flow. 

This is a measure of what the flow rate of each flow would be if it were 

traversing an ideal non-oversubscribed packet switch. In other words, this is a 

measure of how much bandwidth the flow would use if it could have unlimited 

bandwidth. 

3. Optimal topology computation: in this step, the TM computes the optimal 

network topology given the latest demand estimate. The problem formulated 

mathematically is a set of graphs, one graph per optical virtual switch, matching 
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source-destination sets of vertices with edges to achieve the maximum total 

edge weight, where edge weights are assigned from the estimated demand 

metrics computed in the demand estimation step.  

4. Notify down: the TM notifies all PSMs to stop sending packets to the optical 

switch while it is being reconfigured in order to avoid dropping packets by 

sending them into a vacuum. 

5. Change topology: the TM sends the reconfiguration commands to the CSM and 

waits for the reconfiguration to complete. 

6. Notify up: The TM notifies the PSMs of the new topology and signals them to add 

the newly configured links to LAGs in accordance with the newly configured 

topology. The PSMs now start sending packets – through the optical network 

when they are going to a destination to which an optical path is available and 

through the electronic network otherwise. 

The Helios team initially wanted to test the prototype using an implementation 

of MapReduce, since it is a real application very commonly used in modern data centers. 

However MapReduce only produced an aggregate throughput of at most 50 Gbps, which 

was not enough to achieve the goal of stressing the network to its limits. To solve this 

problem, the Helios team decided to use synthetic traffic generators, which are able to 

supply arbitrary amounts of traffic because they are not constrained by CPU and I/O 

speeds like real applications. The algorithms are parameterized by a stability variable, 

which indicates the period of time the generator generated a uniform traffic pattern 

before moving to the next iteration. Three synthetic traffic generation algorithms were 
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used: 

• Pod-Level Stride (PStride): Each host in a source pod sends one TCP flow to each 

host in a destination pod, rotating destination pods after every stability period. 

• Host-Level Stride (Hstride): Each host sends 6 flows to another host. The hosts 

rotate after each stability period, allowing for a gradual shift of traffic from one 

pod to the next. 

• Random: Each host sends 6 flows to another random host in a different pod. 

Note that hotspots occur when multiple sources are sending to the same 

destination.  

The results of these synthetic traffic trials are shown in Figure 2. It is clear from 

these results that the performance of Helios relies heavily on the characteristics of the 

workload – specifically, on the presence of long, sustained flows between pod switches. 

Bulk file transfers and virtual machine migration are ideal jobs for Helios, but 

 

Figure 2: Test results from [Far10]. 
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performance from other workloads where the traffic pattern changes slowly may also 

benefit.  

Another important factor for the performance of Helios is the directionality of 

flows traversing optical switches. Since symmetric flows in which the traffic volumes 

going in both directions are similar but not common in practice, Helios links should be 

unidirectional. This implies that in a TCP flow, the bulk the data transfer travels through 

an optical link, while lower-volume acknowledgment and control traffic goes through 

the electronic packet switches. The traditional network is a non-oversubscribed 

electronic network used as an upper bound of performance. The goal of Helios is not to 

outperform the fully provisioned electronic network, but to provide similar performance 

with significantly less cost and complexity. 

Some of the most important information gleaned from Helios has been the 

discovery of a set of inadequacies in the available hardware and corresponding control 

software when used for hybrid networking, admittedly, a purpose none of the tools 

were designed for. Most of the problems observed are relatively standard engineering 

challenges which can be solved in the design of hardware. Thus, one of the biggest 

contributions of Helios has been the presentation of new possible use cases for network 

hardware vendors, and especially optical switch vendors to consider. For example, it is 

noted in [10] that switching speed in the prototype was limited not by the laws of 

physics governing MEMS switching elements, but sub-optimal switch control software. 

Another example of this is a set of specific optimizations which improve the operation of 

devices when used for their intended purpose within purely electronic networks, but 
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hinder the operation of a hybrid network – these features include electronic dispersion 

compensation, link-down event handling, debouncing, and Ethernet's assumption that 

all links are bidirectional. All of these features can be modified to function properly 

within hybrid networks or at least not interfere with their operation, and Helios is the 

prototype which first shed light on this set of issues for equipment vendors and the 

research community to consider.  

2.3.2. C-Through 

C-Through [12] is another test platform for a hybrid electronic/optical switching 

architecture. Like the previously discussed Helios, it incorporates a traditional electronic 

packet-switched network alongside an emulated optical switching fabric. This testbed 

does not use real optical components, emulating the optical switch by constantly 

reconfiguring a traditional electronic packet switch to deliver packets only between 

pairs of “currently connected” nodes and preventing communication during simulated 

reconfiguration times, as would happen with a real optical switch. Simple testing shows 

that this provides reasonably realistic behavior in terms of restricting communication 

the same way a real optical switch would, but does avoid many problems that only 

come to light when using real optical components – for example, properly handling link-

down events seen by network interface cards while a real optical switch reconfigures 

connections. Note that this design decision also provides the benefit of bidirectional 

connections without much additional effort. Bidirectional communication can be 

achieved relatively easily when using most types of switches, especially wavelength-

agnostic ones like MEMS, by using circulators or multiplexing each data direction onto a 
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different wavelength, but it does not come so easily on other switching technologies, 

such as the WSS-based switches discussed in the next section. The application traffic 

tested is all TCP traffic and relies heavily on very short round trip delay between nodes 

to facilitate TCP ramp-up, meaning that low-latency bidirectional communication 

between any pair of nodes connected by an optical link is required. ACK packets must 

get back to the sender right away, and cannot be allowed to wait in a queue because 

the return connection is not currently available or are awaiting a decision on whether 

they should go through the optical or electronic network. 

As with any hybrid network, C-Through must measure the traffic demand for 

each possible optical switch configuration and provision optical links accordingly. Unlike 

Helios, this demand estimation is achieved at the host. The size of TCP per-flow buffers 

used by the Linux kernel is increased from its default value around 128KB to a value on 

the order of 300MB. A user-space management application periodically queries buffer 

utilization for each flow using the netstat command and adds together the numbers for 

all flows communicating with the same destination rack. The total utilization of buffers 

within rack A whose destination hosts are in rack B is a measure of the demand for a 

direct optical connection between racks A and B. In general, if this number gets high 

enough relative to the demand between all other possible connections, then the 

connection will be established until some other connection obtains a high-enough 

demand metric to replace it. Note that while an optical connection is active, that 

connection’s demand metric is being quickly depleted because the queues generating 

the demand are being emptied through a high-bandwidth direct connection. 
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Mathematically, Wang et. al. formulate this as a maximum-weight perfect matching 

problem [12]. The cross-rack traffic demand matrix is viewed as a graph, where each 

top-of-rack switch is represented by a vertex, and each optical link is represented by an 

edge. The weight of any vertex is the total demand metric for the hypothetical optical 

connection it represents. The goal of the optical configuration manager is to find the 

mapping such that each vertex is connected to one other vertex by a single edge and the 

total weight of all edges utilized is the maximum possible. That is, the configuration 

pushed to the switch should have the maximum aggregate demand matrix of all possible 

configurations at the time step being considered. C-Through uses Edmonds' [11] 

algorithm to solve this problem, observing that it runs in polynomial time and can 

recompute the schedule for a thousand racks in several hundred milliseconds. While for 

optical links lasting hundreds of milliseconds, this is adequate, faster switching requires 

a much faster way of computing desired optical configurations, but the system would be 

more forgiving of sub-optimal configurations. 

One practical problem that C-Through runs into is the need to multiplex traffic 

between optical and electronic networks. How does the system decide which packets 

should go to the optical switch and which go to the electronic one? What if some 

packets associated with a particular connection travel through the optical network, but 

later the connection becomes unavailable? Traditionally, different network interface 

devices connected to the same server would have different IP addresses, or at the very 

least, different MAC addresses, making it difficult to switch interfaces once a connection 

has been established. C-Through solves this problem by having only one physical 
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network interface at each host, but splitting traffic into two virtual interfaces, each of 

which tags the traffic for use with a different VLAN – either the optical “VLAN-c” or the 

electronic “VLAN-e”. The ToR switch is able to properly route traffic based on the VLAN 

tag, and the higher layers of the network stack need not be concerned about which path 

a packet traverses. The management application on each server keeps track of the 

optical path availability information it receives from the central configuration controller, 

and configures its own host's network stack to multiplex packets between the two 

VLANs as appropriate: optical if possible, and electronic if necessary. 

C-Through puts significant effort into making sure the traffic patterns used for 

testing closely match those in real data centers. This is very important to C-Through 

because the primary goal of the project is proving that hybrid EPS/OCS network 

architectures are feasible in today's data centers with minimal to no modifications to 

hardware and applications, and would deliver significant performance gains or cost 

savings not on synthetically generated ideal-case traffic, but on real workloads and 

applications running in modern data centers. The experiments performed track and 

analyze the performance of three real applications: virtual machine migration, 

MapReduce, and the MPI Fast Fourier Transform algorithm. These applications were 

chosen because they are commonly performed workloads with varying degrees of 

suitability for optical switching. Virtual machine transfers are the ideal workload for an 

optically switched network because they involve long duration, bursty, highly 

concentrated, high-bandwidth, one-to-one data transfers. MapReduce represents 

distributed computing frameworks – one of the most commonly used classes of 
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applications in modern data centers. The traffic patterns generated by distributed 

computing algorithms exhibit periods of bursty one-to-many and many-to-one traffic [7, 

8], creating 'hostspots' of relatively latency-insensitive traffic which could potentially 

benefit from the addition of a high-bandwidth optical switch to the network. The third 

application, MPI FFT, was chosen as an adversarial case because it lacks centralization 

[12]. 

The virtual machine migration test simulates a scenario in which all of the virtual 

machines in a single rack are to be migrated to different racks, as would typically 

happen when an administrator needs to shut down an entire rack for maintenance. As 

expected, the performance of virtual machine migration was drastically improved by the 

addition of an optical network when the electronic network was oversubscribed (as is 

usually the case in data centers). In fact, an electronic network with a 40:1 

oversubscription ratio augmented by an optical switch achieved performance 

comparable to that of a network with full bisection bandwidth without the added cost 

of complexity associated with full bisection bandwidth. This means that augmenting a 

 

Figure 3: Test results of Hadoop sort on C-Through, copied from [Wan10]. 
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data center network with C-Through would allow for much higher oversubscription 

ratios in the electronic network without significant loss of performance during times of 

high demand, significantly reducing the cost of network hardware. 

While workloads involving virtual machine migration are run in the data center 

only occasionally, parallel computing frameworks like MapReduce take up most of the 

working life of many data centers of big data giants like Amazon and Google.  

The test results of C-Through running such workloads show much promise. In the 

case of 40:1 oversubscription, a purely-electronic network was crippled by a Hadoop 

Sort (Hadoop is an implementation of MapReduce). When this network was augmented 

with C-Through, it showed results that outperformed purely-electronic networks with 

significantly lower oversubscription, as shown in Figure 3. 

The MPI FFT algorithm looks like a difficult case for optical switching because it 

requires tight synchronization and a significant amount of all-to-all communication. To 

compute the FFT of a large matrix, a central node divides the original matrix into sub-

matrices and transmits each sub-matrix to a worker node. At run time, the algorithm 

involves many exchanges of intermediate results between all nodes – a pattern 

seemingly not suited for the slow switching times of an optical network. However, much 

to their surprise, the C-Through team noted significant improvements to the 

performance of the FFT computation. 

As predicted, the reconfiguration time of the optical switch had significant effect 

on performance. When the switch was reconfigured every 0.3 seconds, the addition of 

the optical switch improved performance significantly. With longer reconfiguration 
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intervals, performance was still improved significantly, but not nearly as much as with 

short reconfiguration intervals. This is logical, because a shorter configuration interval 

more readily facilitates a fast system-wide synchronization which necessarily involves 

all-to-all traffic. 

The tradeoff that must be made when decreasing the reconfiguration time is the 

duty cycle of the network. This is the percentage of total time that the switch is stable 

and can be used for data transmission. This is expressed specifically in [9] as  

 � � �������

��������������	
, (5) 

where ������ is the amount of time it takes to reconfigure the switch and ����	
�  is the 

amount of time the switch remains stable before being reconfigured again. 

Figure 4 shows the duty cycle of an optical network as a function of the 

reconfiguration interval � � ������ � ����	
�. Note that this relationship is a hyperbolic 

curve with the horizontal asymptote at unity (100% duty cycle). After T gets to be about 

 

Figure 4: Diminishing returns of decreasing	����	
�. 
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ten times bigger than the switching time, the returns from further increasing �������  

diminish significantly. This coupled with the fact that performance of tightly 

synchronized applications like FFT calculation benefits significantly from shorter 

reconfiguration intervals, leads to the conclusion that reconfiguration intervals should in 

general be kept as short as possible, given adequate duty cycle. It is not surprising that 

better granularity is good for application performance – recall that the ultimate goal in 

this research endeavor is completely optical switching at packet granularity, and the 

theme of most current research in this field is proving feasibility while balancing 

tradeoffs to achieve optimal performance. 

In hybrid network research, one must always be aware of cases where it is 

tempting or even necessary to “compare apples to oranges”. The C-Through test results 

are a good example of such a scenario. The conclusions drawn from the previously 

discussed performance analysis are valid and no doubt promising, but there is an 

alternative way of looking at the test results that one must keep in mind. The addition of 

an optical network in parallel with an existing electronic network will, except perhaps 

under certain adversarial workloads, improve performance because no matter how well 

or how poorly the optical network is utilized, it still adds to the total available 

bandwidth of the network. Consider the native bit rate of the purely electronic network, 

designated as ����, as well as the bit rate of an optical links, designated ����, in the 

trivial case of C-Through with an infinite reconfiguration time. This is equivalent to a 

purely electronic network in which the bit rate of all links except one is ����, and one 

link has a bit rate of ���� + ����. Given that the fast link is not completely unused, it is 
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not necessary to run any experiments to see that performance will improve when 

compared to the original electronic network. Perhaps this would have been a better 

base case for comparison with non-trivial C-Through.  Another example would be an N-

node hybrid network in which the optical links simply traverse all nodes in a round-robin 

fashion. It can be seen intuitively that such a network would outperform an 

unaugmented electronic network with link rates equal to ����	for each link. Given a 

workload of latency-agnostic all-to-all traffic, such a network would have performance 

equivalent to a purely electronic network with all links operating at ���� + ����. If the 

workload is such that each node is only interested in communicating with one other 

node, the equivalent link rate would be ���� +
���
�

. To reiterate, this simply means that 

the exact magnitude of the improvement is to some extent open to interpretation, but 

it does not cast doubt on the fact that performance does improve. In general, a C-

Through network with 40:1 EPS oversubscription still significantly outperforms a pure 

EPS network with only 10:1 oversubscription under most workloads. 

2.3.3. Mordia 

 The Mordia system [9], created at the University of California: San Diego, is an 

improvement on previous work in the fast optical switching field. The most important 

contribution of Mordia is the use of switching times in microseconds rather than tens of 

milliseconds as seen in previous work. The work argues that the assumption that each 

optical circuit must exist for close to a hundred milliseconds in order to justify several 

milliseconds of switch setup time is not necessary and proposes a new network built 

around an optical switch that takes only around 10 microseconds per reconfiguration. 
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The key component of the hardware testbed used is a novel optical switch that 

uses a ring of wavelength selective switches along with several other components to 

achieve switching times in the microseconds. The current system supports a total of 

twenty four wavelengths for communication in a unidirectional ring topology. Each node 

on the ring can inject a single wavelength. The wavelength that any given node injects 

into the ring cannot change – it is determined by the laser wavelength of the SFP+ 

interface module of that particular node. Each node on the ring injects a different 

wavelength using a passive add/drop multiplexer. The same multiplexer is also used to 

filter out (drop) the wavelength injected by the current node in order to prevent the 

same signal from traveling more than one lap around the ring and interfering with 

subsequent transmissions. On the ingress side, each node has a passive optical coupler 

with one input port and two output ports. This splitter takes in all of the optical signal 

power traversing the ring and splits it into two fibers. One fiber continues the ring, while 

the other fiber goes into a wavelength selective switch. Each node can configure its 

wavelength selective switch to receive any one wavelength from the ring. Technically, 

this topology can support unicast, multicast, broadcast, or loopback signal transmission, 

but the implementation of the Mordia system is interested only in unicast transmissions 

(single transmitter and single receiver). The authors describe this system as a “broadcast 

and select network in which each fixed wavelength signal from each transmitter port 

can be routed to any receiver port,” [13] noting that each of the SFP+ transceivers 

utilized in such a system must be able to receive any wavelength used for transmission. 

Additionally, since each coupler drops a percentage of total power from the ring to the 
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corresponding node's WSS, there must be amplifiers along the ring to keep up the signal 

power. In the practical implementation constructed by the group at UCSD, the network 

is actually split into six stations, each serving four nodes instead of having a completely 

separate set of equipment for each node. Each set of four nodes shares a four-channel 

WSS, a four-wavelength (bandpass) add/drop multiplexer, a coupler, and an amplifier, 

along with some variable optical attenuators used for fine tuning signal power for each 

node. There are two aspects of measuring the switching performance of such a system. 

First, the switching time was measured using a test signal and an oscilloscope. It was 

found that switch reconfiguration actually begins about 3 �� after the trigger signal is 

sent to the switch. This is followed by about 2.25 �� of reconfiguration time, which is 

followed by 6-7 �� of ringing. It was noted in [9] that communication may start before 

the ringing stops completely. Secondly, there is the time that the phase-locked loop in 

the network interface card takes to lock on to the signal – something that needs to 

happen before communication can be established. In order to take both parts of the 

switching time into account, Farrington, et. al. set up a test where the switch was put 

between a sender PC transmitting sequence-numbered Ethernet frames and three 

receiver nodes, and the switching time was determined based on the number of 

dropped frames during each switch event. After the test was conducted over a sample 

of a million Ethernet frames with 705 switch events, a mean switching time of 11.5 �� 

with standard deviation of 2.5 �� was obtained. 

The other major contribution of the Mordia system is a novel scheduling 

algorithm called Traffic Matrix Scheduling (TMS). While previous hybrid network 
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implementations performed “hotspot scheduling” methods in which relatively slow and 

complex algorithms were used to identify only the pairs of nodes where the extra 

bandwidth provided by the optical switch was needed most, [13] argues that with 

microsecond switching, serious attention must be paid to the computation time of the 

schedule because schedule updates must now happen fast enough to keep up with a 

10	�� switching time. Such fast switching also allows the assumption that the majority 

of traffic can be transmitted over the optical network, not only the highest-demand 

flows. The key idea is that the scheduling algorithm aims to connect each host to every 

other host within a set scheduling cycle. For example, in a hypothetical network where 

the scheduler needs to provide communication between eight nodes, the scheduler will 

interconnect the nodes to each other in a round-robin fashion, with the amount of time 

allotted to each configuration being proportional to a measure of total demand for that 

configuration. The process repeats indefinitely with a fixed period, with the scheduler 

computing the schedule for the next cycle while the current cycle is being run. The first 

step of the algorithm is the acquisition of a traffic demand matrix (TDM). This is a matrix 

that represents the current total traffic demand between each pair of nodes. In practice, 

this could be the number of bytes buffered for each source-destination pair, or could be 

obtained from some other source – the algorithm is independent of the specific source 

of demand estimation data. Once the TDM is obtained, it is scaled into a bandwidth 

allocation matrix (BAM), which represents the fraction of the total bandwidth 'desired' 

by each source-destination pair, such that the sum of the values in each row of the 

matrix is 1. Once the BAM is obtained it is decomposed such that 
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 ��� = ∑ ���
� �� ,  (6) 

where ��is the fraction of total cycle time allocated to each possible switch assignment 

matrix (permutation matrix) ��. Note that the set of matrices �� is pre-determined by the 

network topology: every node must be connected to every other node at some point in 

the schedule. There exist well-studied algorithms for achieving this decomposition, 

which run in polynomial time or better.  

The primary argument used by the Mordia team for the requirement of 

millisecond switching and the infeasibility of TMS without such fast switching times is 

the queue size required to support it. The equation given is 

  � = ��	 − 1��, (7) 

where �	is the queue size required, in bits, 		is the total number of ToR nodes, and �	is 

the total slot duration which is also seen in the duty cycle calculation as ������ + �������. 

Given the typical setup of a network like the previously-discussed C-Through or Helios, 

� = 9����;	 = 64;� = 100����,  yields � = 7.1��, which is too big to be practical. 

If � is decreased by a factor of 1000, the queue memory required also decreases 

proportionally, and 7.1MB queues per port are easy to handle. While convincing, the 

importance of this argument should not be overstated – modern MEMS systems have 

switching times on the order of 1	��, allowing for � = 20	�� → � = 140��, which is 

not unreasonable. Additionally, this calculation takes into account full link utilization for 

an indefinite period of time. In such cases, EPS networks run out of queue space and 

start dropping packets as well. In practice, the general assumption is that networks are 

rarely used at capacity. TMS does not necessarily require the use of an expensive 
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custom-built WSS switching system such as the one in the Mordia prototype, but the 

fastest switches available are strongly preferred.  

As of this writing, there has been no published implementation of TMS as 

described in [13] in an optically-switched network. Farrington et al only provide a 

general description of the method in order to present a feasible scheduling algorithm 

for use with a microsecond-switched optical network, but do not test it – the Mordia 

prototype as of the latest paper about it does not implement any demand estimation, 

which is the required input for any kind of scheduling algorithm. The traffic used for the 

published round of testing is synthetic all-to-all traffic, which results in a trivial switching 

schedule in which each possible switch configuration gets an equal amount of time. The 

idea itself, however, appears feasible and warrants further research, including 

simulation and prototype testing.  

To prototype the system, the Mordia team used commodity servers to emulate 

ToR switches. This involved modifying the NIC drivers to ignore link-down events seen 

by the card in order to keep the system ready to transmit during switch reconfiguration. 

To achieve the necessary queuing behavior, they modified the operating system's 

network stack and developed a custom queuing discipline which managed a separate 

queue for every possible destination ToR switch. Whenever each node received 

synchronization data indicating which destination node it was connected to, it would 

drain the corresponding queue, while enqueueing all packets destined for any other 

nodes. The switch would then reconfigure itself, during which time all packets coming 

from the TCP/IP stack would be enqueued, until the next connection is established and 
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synchronized, and the cycle would repeat. 

Originally the synchronization of ToRs to the optical switch schedule was to be 

achieved by moving to the next schedule slot whenever a link-down event is detected 

by the NIC. Due to limitations imposed by using commodity servers running non-real-

time operating systems and the fact that the NIC firmware was closed-source and could 

not be modified, this could not be implemented. Instead, a separate all-electronic 

control plane (and therefore separate set of NICs) was used to send synchronization 

packets from the switch controller to each host. Good synchronization, accurate within 

1 �� was generally achieved, but sometimes packets were dropped due to 

synchronization “misses” caused by the non-real-time nature of the Linux operating 

system. About 1% of sync messages were received at the wrong time, causing delays 

and a 0.5% overall drop rate. Another hardware challenge turned out to be the 23	�� 

delay of the NIC, which forced packet transmission to stop 23	�� before link 

reconfiguration started. In general, there were many hardware challenges that would 

have been solved through the use of custom intermediate hardware which could be 

designed specifically to facilitate OCS. 

The Mordia system fared well in a performance evaluation using constant-rate 

all-to-all synthetic traffic. The goal of the experiment was to see how Mordia compares 

to traditional EPS in UDP and TCP data rates under ideal conditions. Given a 300 �� per 

channel schedule slot duration (that is, ������� = 300����), UDP performance within 

4.6% of EPS and TCP performance within 12.1% of EPS was achieved. The law of 

diminishing returns starts applying to this setup for circuit duration greater than 200-
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250 ��, but below that, network performance is significantly reduced – with TCP 

performance falling by 66% with a slot length of 61 ��. Latency was not mentioned in 

the paper, but assuming that the network is utilized below full capacity, a latency bound 

is easy to estimate: 

   ��� = � ∗ 	. (8) 

For example, �300��� �ℎ!""#$⁄ ���23��ℎ!""#$��� = 6.9���� in the unfavorable case of 

a packet arriving in the queue just after the time slot for its destination has ended. In 

this case, the latency seems acceptable for most applications. However, latency may 

pose scalability problems for networks with a large number of ToR nodes and optical 

switches with high port counts. This becomes another compelling argument for using 

fast switches, like the novel WSS-based design presented by Mordia, in OCS/hybrid 

networks. Mordia claims the ability to create a high port count optical switch by stacking 

rings and gives an example of stacking eight 88-channel rings to obtain a 704 channel 

switch. However, note what this does to the queuing delay bound for packets: 

�300��� �ℎ!""#$⁄ ���704��ℎ!""#$��� = 211.2����, not including any other delays the 

packet may encounter and with network demand remaining below the link rate. Many 

data center applications have been shown to work well with comparable or higher 

latencies [12], but such potential delays warrant the extra effort involved in reducing 

them, for example, including a low-bandwidth EPS network alongside the OCS network 

to alleviate this problem for packets that require lower latency, as was done in previous 

OCS/hybrid network implementations.  
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3. Proposed System 

This thesis work proposes a hybrid electronic/optical network architecture in 

which unmodified traditional electronic network hardware can be augmented by the 

insertion of an optical switch with controller hardware and an optical crossconnect 

interface (OXCI) device at every rack. The OXCI will sit between the ToR switch and the 

core network, multiplexing traffic between electronic core and the optical core switch, 

while collecting traffic demand data to allow the optical switch controller to make 

appropriate switching decisions. 

3.1. Motivation 

The primary motivation for this work is the fact that simply modifying existing 

commodity hardware is becoming inadequate as a method of implementing a hybrid 

data center network. First of all, commercial data centers cannot forgo the use of 

closed-source hardware and software which cannot be modified in the ways required to 

make a hybrid network functional. Secondly, hybrid networks require fast switching 

times for traffic granularity. Recently, major improvements have been made in switching 

element design. Technology is now reaching a point at which scheduling algorithms and 

control loops running on general-purpose computing hardware are unable to keep up 

with switching times and manage the optical switch efficiently. Third, as the basic 

concept has been proven, it is getting harder for researchers to try new algorithms and 

network topologies in an environment where all readily available components are 

closed-source and all but impossible to modify. A separate piece of hardware to manage 

the interaction between the optical and electronic networks is the next logical step in 
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this field of research. Initial commercialization of this technology can occur with 

separate hardware for the optical section of the network as described in this work. Once 

the technology has been proven and industry is willing to use it on a larger scale, switch 

manufacturers will likely be motivated to integrate already existing OXCI functionality 

into their new hardware designs. 

3.2. Proposed Network Architecture 

To overcome the limitations and challenges described above, a new data center 

network architecture is proposed, incorporating the previously described idea of a high-

bandwidth optical core augmenting a heavily-oversubscribed electronic core network. 

This system adds hardware to the hybrid network that would prevent any kernel and 

hardware modifications to the servers, electronic switches, and network interface cards, 

 

 Figure 5: Proposed network architecture. 
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while still providing necessary data collection, queuing, and scheduling to implement a 

hybrid network and manage the optical switch. 

3.2.1. System Architecture Overview 

The proposed network shares significant similarity with both traditional data 

center networks and previous optical circuit switching proposals. The key differences 

are the introduction of custom electronic management and support hardware purpose-

built for this application and a much cleaner interface between optical and electronic 

sections of the network, which make the added optical network completely transparent 

to standard data center components.  

The overall architecture of the proposed network is shown in  

 Figure 5. All of the traditional electronic network components are present within 

the proposed network with unchanged roles and configuration. Servers and the 

applications running on them are the primary users of the network, providing the 

workload. Currently, data center applications tend to be written to take advantage of 

existing network topologies [5], and future applications can and should be optimized for 

future network architectures. However, it is desirable that the current generation of 

applications and servers be able to achieve good performance on a new network 

architecture without modifications. In view of this, the proposed architecture is 

designed to require no modifications to the applications or system software running on 

the servers. In fact, the performance of the proposed network is evaluated with the 

primary goal of good performance on workloads that model the unmodified behavior of 

applications currently used in data centers. 
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Electronic Top-of-Rack (ToR) switches are also kept in their original state within 

the proposed network. As in traditional networks, they provide communication within 

the rack and serve as the gateway for communication with destinations that are not on 

the rack-local network. The only difference is in the way they are connected to the other 

ToR switches. Instead of connecting directly to an electronic core that facilitates 

communication between racks in the data center, each top-of-rack switch is connected 

to an Optical Crossconnect Interface (OXCI), which performs management functions 

related to interfacing with the optical section of the network. 

The Optical Crossconnect interface is the novel aspect of this research. It is a 

hardware device that sits between the top-of-rack switch and the two core networks. Its 

primary job is to multiplex traffic between the electronic and optical network, while 

transmitting and receiving high-bandwidth traffic to and from the high-bandwidth 

optically switched network. Although this thesis work presents a specific 

implementation of this device as an example, the key innovation is the addition of a 

separate device that handles the functions specific to hybrid optical/electronic networks 

while allowing all pre-existing network hardware and software to operate without any 

modifications or even knowledge of the hybrid nature of the core data center network. 

The electronic network core remains largely the same as in traditional networks. 

Instead of being connected directly to ToRs, it is now connected to the OXCI devices, 

which decide which traffic traverses the electronic core. As in traditional networks, it 

can be composed of either a small number of large switches or many smaller 

commodity switches arranged in a multi-rooted tree utilizing multipath routing. The 
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benefit of new hybrid network architectures, including the architecture proposed in this 

work, is the possibility of significantly increasing the oversubscription factor of the 

electronic network without losing performance due to the addition of an optical 

network to relieve congestion of the electronic network by bandwidth-heavy flows. It is 

desirable to allow the optical network’s control plane to monitor congestion within the 

electronic network in order to efficiently manage the amount of traffic it routes to the 

electronic network. Fortunately, the facilities for such congestion monitoring already 

exist within modern electronic switching hardware and can be taken advantage of. One 

new task to be performed by the electronic core is the routing of control and 

synchronization packets for the optical network. Existing quality of service (QoS) 

features of electronic switches can be used to give these most important packets a high 

priority. 

The optical switch is the hardware component that ties the optical part of the 

core network together, providing direct connections between nodes. There are many 

architecture and switching technology options for implementing such a device. Many 

different topologies can be built from different basic elements that vary in switching 

speed and reliability. While the proposed architecture is technically independent of 

specific optical switch type, this work assumes sub-millisecond and millisecond 

switching times, such as the ones achieved in the Mordia testbed [9] or the ones 

available with the fastest modern MEMS switching elements [14]. 

The optical switch is managed by a central optical network controller. While 

OXCI devices can be seen metaphorically as the “nerve centers” of the network, this 
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central controller is the brain. It is the central entity that collects information from all 

OXCI devices, making network-level decisions and distributing scheduling and other 

information to the rest of the network. This device directly controls the optical switch, 

implementing the decisions it has made. 

The proposed network architecture is described solely in the context of IPv4 and 

Layer-3 switching at the core for simplicity, but can be extended to IPv6 with some 

additional hardware resource use to handle the longer IP addresses. 

3.3. Optical Switch Controller 

Most past research has used general-purpose computers for evaluating demand 

data and calculating the optical switch schedule while using separate FPGA-based 

hardware to control the switching elements. Since switch controllers from most 

previous systems already were based on high-performance field-programmable gate 

array (FPGA) reconfigurable logic hardware that was being underutilized, and schedule 

computation time is becoming increasingly more important, the proposed system 

merges management functionality into the optical switch controller. Specifically, the 

optical switch controller performs the following tasks: 

• Gather real time demand data from all OXCI devices. 

• Compute the optical switch schedule. 

• Send forward scheduling data to all OXCI nodes. 

• Interface with optical switch hardware and carry out the switching 

schedule. 

• Act as a clock master for timing synchronization. 
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3.3.1. Data Collection 

The optical switch controller gathers real time demand data from all OXCI 

devices. To avoid the extra latency associated with polling, all OXCI devices periodically 

send demand statistics to the optical switch controller. The controller is assigned an IP 

address on the electronic network. Any packet with the controller’s IP address as the 

destination is assumed to be a control packet.  

The packet format for Traffic Demand Report (TDR) packets is specified in   

Figure 6. The TDR packet can contain traffic demand data for up to 180 

destinations, with each listing taking up 8 bytes for a total of 1440 bytes which, with 

headers, fills the standard 1500-byte Maximum Transmission Unit of Ethernet (normal 

frame).  

To facilitate scalability, ToRs do not report the demand metric for every possible 

destination. Instead, only the destinations whose demand metrics meet the reporting 

threshold are reported.  

  

Figure 6: Traffic Demand Report packet format; headers not to scale. 
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The report for each scheduling cycle is generated immediately after the ToR 

node receives the upcoming optical switch schedule. The switch controller waits until a 

reporting deadline has passed and begins to process the demand data it has collected 

from the network. If data from a node does not arrive before the deadline, it is 

considered dropped, and the demand data from the last report received from the node 

is used in the current schedule computation. This process is shown in Figure 7.  

3.3.2. Optical Switch Schedule Computation 

The optical switch controller must use demand data collected from the OXCI 

devices to compute an optical switch schedule. Unlike Helios and C-Through, the 

proposed network does not schedule the optical switch to constantly provide 

bandwidth to the few flows that need it most. Instead, the proposed system follows 

Mordia’s approach of having a schedule computation cycle in which every possible set 

of connections is established in a cycle. Unlike Morida, which does not retain a parallel 

electronic core network, the proposed system is able to make up for scheduling 

 

Figure 7: Demand report collection. 
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mistakes with the help of the electronic network, so the scheduling algorithm can be 

simpler, and therefore significantly faster. 

One of the schedule computation algorithms that the proposed network can use 

is Traffic Matrix Scheduling (TMS), the algorithm described in [9] and summarized in 

Section 2.3.3 of this thesis. Recall from Section 2.3.3 that traffic demand data is 

aggregated into a traffic demand matrix (TDM), which is scaled to form the bandwidth 

allocation matrix (BAM) such that its row sums and column sums are equal to 1. The 

BAM is then decomposed such that 

 ��� = ∑ �����
� , (9) 

where each �� 	represents a switch configuration and the constant �� represents the 

fraction of the scheduling cycle’s time spent in that configuration. As suggested by [9], 

Sinkhorn’s Algorithm [15] can be implemented for matrix scaling and von Neuman’s 

Algorithm [16] for decomposing the bandwidth allocation matrix to obtain the optimal 

list of ��, which is the resulting optical schedule, to be calculated every scheduling cycle. 

Since these algorithms can form the basis of the scheduler, it is most convenient to 

implement them to utilize application-specific coprocessors in a field programmable 

gate array or even application specific integrated circuit. 

The proposed network takes another step in reducing the complexity of the 

scheduling algorithm, further reducing computation time. While there can be up to 	! 

connection permutations possible with an 	&	 optical switch, it is sufficient to select a 

subset of 	 of these to connect every pair of nodes. If a constant subset of 	 

permutations is selected to be traversed in 	 scheduling cycles in a constant order (the 
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order makes no difference), the only variable that remains is the amount of time 

allotted to each schedule slot. The amount of time in a fixed-length schedule cycle can 

be allocated proportionally to the sum of all source nodes’ demands for each 

permutation. An example of this process is given in Figure 8. A randomly-generated 

demand matrix (top left) is given where each row represents a possible source node for 

an optical circuit, and each column represents a destination. Note the zero-based 

numbering in this instance. The value of the entry for each source-destination pair is the 

demand metric for a connection to the destination as reported by the source. The top 

right frame shows the demand matrix with boxes around entries corresponding to 

permutation �1, where node zero is connected to node one, node one to node two, and 

so on. The total demand for each switch permutation is calculated in this manner, giving 

a result in arbitrary units. Finally, the demand numbers for each permutation are 

normalized to the total amount of available time in the scheduling cycle. This algorithm 

has linear computation complexity, meaning it can be used when controlling even 

extremely fast switches. 

 

Figure 8: Demand-proportional schedule calculation. 
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3.3.3. Schedule Distribution 

The optical switch controller must communicate the upcoming schedule to the 

OXCI nodes attached to each rack. As with demand data collection, for ease of 

processing, the protocol is kept as simple as possible. Since all OXCI nodes and the 

optical switch controller are synchronized in time, and schedule computation takes a 

deterministic amount of time, each OXCI device knows exactly when the switch 

controller is ready with the schedule.  

The switch control node sends the schedule to all nodes as soon as it is available, 

utilizing a broadcast IP address that includes the core-side interfaces of all OXCI devices 

on the network. Note that the set of all possible boolean matrices ��  describing optical 

switch configurations is known, so specific matrices need not be transmitted. Thus, the 

packet format for schedule transmission can be kept small. In the proposed 

architecture, the schedule notification packet is formatted as described in Figure 9. 

 

Figure 9: Schedule Notification packet format. 
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This packet contains a list of permutation/duration pairs that compose the 

schedule. Both of these quantities are 16-bit values. A schedule notification packet that 

fits within the standard Ethernet MTU can contain up to 360 records. The unit of the 

specified duration is timer ticks, where the duration of a timer tick, �� is the 

fundamental unit of time measure within the network’s timing system. The exact value 

of this parameter is determined by system parameters such as achievable time 

synchronization accuracy and total scheduling cycle length. If a particular permutation is 

to last longer than 65535	��, its permutation number can be repeated more than once 

in adjacent records.  

3.3.4. Optical Switch Schedule Fulfillment 

The optical switch controller must interface with optical switch hardware and 

carry out the switching schedule. The act of carrying out the computed switch schedule 

must be abstracted away from the specifics of switching technology as much as 

possible. This is achieved by designing an abstraction layer and switch driver interface 

into the switch controller that would allow any switching technology and switch 

topology to be used without affecting any of the higher-level algorithms. 

The schedule computed by the switch controller is a list of configurations over 

time, but does not indicate what signals need to be sent to the optical switch hardware. 

To actually interface with the switch, the controller needs switch driver hardware that 

will power the optical switching components and provide a means of transmitting 

control signals to the raw optical switches, such as GPIO pins or a full featured 

communication bus like SPI or I2C. The controller also needs knowledge of the 
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communication and control protocol implemented by the fundamental building blocks 

of the switch. This can be as simple as the respective meanings of zero and one states 

on a GPIO line or as complex as a set of configuration registers to be written. The 

controller may also need knowledge of the specifics of the internal topology of the 

optical switch and an algorithm for mapping sets of source-destination pairs to the 

signals required to achieve the desired configuration. To better grasp the potential 

complexity of this task, some concrete examples are considered. Figure 10 shows two 

switching element types commonly used in the construction of larger switches. These 

and other basic switching elements can be implemented using a variety of technologies 

[14, 17, 18]. In practice, a large quantity of these basic switching elements can be 

interconnected to form a switch with a high port count. There are many different 

topologies for interconnecting such switching elements, some of the most common 

ones and their characteristics are described in detail in [19].  

 

Figure 10: Two types of fundamental switching elements. 
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Figure 12: Topology information maintained by the switch controller. 

 

If one is controlling each switching element directly, the act of achieving a 

certain input to output port mapping in a non-trivial switching topology, such as a larger 

version of the Benes network in Figure 11, is far from trivial and requires a specialized 

algorithm.  Alternatively, one can use bigger fundamental building blocks, such as the 

16x16 integrated optical switch described in [20]. Such high port count integrated 

modules will probably be the optimal choice when they become commercially available, 

but interconnecting and controlling them will still not be a trivial task. In light of this 

 

Figure 11: A 4x4 Benes network can be built from 6 crossbar elements. 
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great variety and constant change in optical switching hardware, the network proposed 

in this paper does not limit itself to any particular type of switching fabric, but provides 

an interface for the use of interchangeable control hardware and firmware drivers. To 

describe the implementation of such an interface, begin with the fact that the optical 

switch controller maintains in memory a list of all possible switch configurations ��.  

Although in discussions of scheduling algorithms, it is easier to think of each ��  as 

a boolean matrix, it is more practical for them to be stored as ordered source-

destination port pairs 	
�
�� , 
�

����� where 
 represents an optical switch port. The 

optical switch controller also maintains another list of ordered pairs �� , 
�� where � 

represents a rack-level OXCI node identified by its IP address, and 
 represents an 

optical switch port, identified by its port number. This relationship is illustrated in Figure 

12. These lists are populated during system configuration and maintenance, but are not 

changed during normal operation.  

 

Figure 13: Role of low level switch driver within the optical switch controller. 
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The set of ��  is defined by the low level switch driver, since it is the only element 

with knowledge of the switch fabric’s physical capabilities. In order to carry out the 

schedule, the switch controller places configuration/duration pairs (��,������) into a 

FIFO maintained by the low-level switch driver, where ��represents the configuration to 

be executed and ������ is the total time allotted to the schedule slice with configuration 

��, including switch configuration delay. This flow of information is illustrated in Figure 

13. Once ������ has elapsed, the low level switch driver moves on to the next entry in the 

FIFO, or maintains the current configuration if the FIFO is empty. The scheduler may 

choose to use only a subset of the complete list of configurations. For example, the 

switch in Figure 12 has loopback capability, represented by �
. In practice, OXCI devices 

have no reason to report any demand for loopback traffic since all rack-local traffic 

would have been already handled by the ToR switches, so the configuration �
 will not 

be used during normal operation. 

3.3.5. System-Wide Time Synchronization 

In order to allow other parts of the network to determine accurately what part 

of the schedule the switch in currently in, the switch controller must also act as a clock 

master for timing synchronization between all OXCI devices. This task is key to the 

operation of the entire system, because any inaccuracy in time synchronization between 

OXCI nodes and the switch controller can lead to significant and consistent data loss. 

Early implementations of hybrid data center networks either switched optical 

paths too slowly to need precise timing synchronization between nodes [10] or were 

willing to put up with some timing inconsistency to simplify implementation. 
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Experiences with Mordia [9] made it clear that any commercial implementation of a 

hybrid network must be able to keep consistent timing synchronization across the entire 

network and that this synchronization must be precise to microseconds or better. It is 

possible to implement timing synchronization using a custom synchronization protocol, 

but such methods introduce too much cost and complexity for this application, and 

would alone constitute significant research effort. Fortunately, a technology for 

achieving the timing synchronization requirements of hybrid data canter networks 

already exists. Precision Time Protocol, IEEE standard 1588 [21], is a protocol for 

achieving tight timing synchronization between network-connected devices. Under 

nearly ideal conditions, it has been reported [22] to achieve accuracy better than 10 ��, 

and there is research [23] showing that given enterprise-grade “cut-through” switches, 

such as the ones typically used in data centers, it will achieve sub-millisecond precision 

even in cases of significant network  congestion. PTP support is already available in 

 

Figure 14: PTP synchronization within the proposed network. 
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mass-produced switches from manufacturers like Cisco [24] and IBM [25], making it an 

obvious choice for this application.  

The topology of the network from a PTP point of view is shown in 

Figure 14. PTP synchronization within the proposed data center network is 

achieved through the electronic side of the network, with the optical switch controller 

acting as the “grandmaster clock”, the EPS core switch or switches configured to be 

transparent clocks, and the OXCI devices acting as slave clocks synchronized to the 

grandmaster. 

3.4. Optical Crossconnect Interface Device (OXCI) 

The optical crossconnect interface is placed between the ToR switch and the 

hybrid network core. It performs the following tasks within the system: 

• Queue traffic coming in from the ToR until it can be classified as EPS or 

OCS. 

• Multiplex traffic between the OCS and EPS core networks. 

• Manage per-destination queues for the OCS network. 

• Compute and report demand metrics for each destination. 

• Synchronize timing with optical switch controller. 

• Send packets from optical queues, as indicated by the optical switch 

schedule. 

• Facilitate multi-hop OCS delivery. 

3.4.1.  Ingress Traffic Queuing 

The OXCI device must queue traffic coming in from the ToR until it can be 



 

58 

classified as EPS or OCS. This can be achieved using a modest amount of fast memory 

such as commercially available DDR3. Multiple chips need to be used in parallel to 

achieve sufficient data rate. 

3.4.2. Optical-Electronic Multiplexing 

In order for the system to operate efficiently, traffic must be optimally 

multiplexed between OCS and EPS core networks. In general, slowly-changing flows 

transmitting large amounts of data should be routed to the optical network, while low-

data, latency-sensitive flows should avoid queuing as much as possible and are best left 

to traverse the electronic network. 

This multiplexing is one of the most complex tasks that must be performed 

within a hybrid network. Ideally, the OXCI device would constantly have knowledge of 

future traffic patterns and be able to make optimal queuing and multiplexing decisions 

about every packet before it arrives. In general, such knowledge is impossible to possess 

but in practice, one can often make a set of safe assumptions about future traffic based 

on the characteristics of present traffic. For example, it is often the case that if the TCP 

transmission window continues to grow at the maximum allowed rate for the first 

several packets, it will continue to grow for some time. There has been research 

specifically focusing on the prediction of future traffic within a data center environment 

based on observations of the recent past. For example, the B-Alarm [26] algorithm 

claims 85% accuracy in predicting traffic bursts within a data center. Another, simpler 

approach which has already been used in a hybrid data center network [10] is TCP fix 

point prediction, which predicts the size of a flow’s transmit window if it were operating 
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in an ideal non-oversubscribed environment, an algorithm described in [27]. These 

algorithms would take significant effort to implement in practice, but would likely give 

performance more worthy of commercial use. The key observation when considering 

traffic prediction in the context of multiplexing traffic between the two branches of a 

hybrid optical/electronic network is simply that flows with constant heavy traffic are 

better suited for optical transmission, while flows with intermittent traffic are best left 

traversing the electronic packet-switched network.  

The proposed system keeps a list of all destinations potentially reachable 

through the optical network along with a Circuit Demand Metric (CDM) for each of these 

destinations. Currently, this is the TCP fixpoint quantity as discussed above, although 

many other algorithms may be used. The fixpoint algorithm generates a metric that 

measures a flow’s total traffic demand. Only flows that meet a threshold are considered 

for queuing for the optical network. This reduces fairness because greedier flows are the 

ones the get the most bandwidth, but it also significantly improves network 

performance. Although the scheduling algorithm traverses all source-destination 

combinations and packets can eventually get to any destination using only the optical 

network, the electronic network is still present and must be utilized optimally. Especially 

with a fast optical switch, the focus should be on picking the flows that are most likely to 

benefit from the electronic network. 

To optimize the use of the optical network, the OXCI also keeps track of a 

parameter called the Packet Congestion Metric (PCM). This is an indication of the 

amount of congestion in the electronic network. In the proposed network, it is the total 
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throughput handled by the electronic switch. 

The decision on whether to send a particular packet to the optical queues or the 

electronic network is handled at the destination level, not at the flow level. Each 

destination is periodically classified as either an “optical destination” or “electronic 

destination”. The decision about whether each destination is an optical or electronic 

destination is based on whether the CDM of the flow is higher than the CDM threshold, 

�������  , where ��������	is a function of the PCM such that 

 �������� = �(1 − # �	�"�), (10) 

where A and m are empirically-determined tunable parameters. This relationship 

between optical-electronic multiplexing and electronic network congestion ensures that 

the electronic network is never overly congested, even though it can be significantly 

oversubscribed. This is extremely important because the electronic network carries all 

control traffic within the hybrid network, and without the proper operation of the 

electronic network, the optical network cannot be utilized optimally. 

3.4.3. Per-Destination Queues 

For traffic that has been multiplexed into the optical section of the core network, 

the OXCI must manage per-destination queues. Possible problems that must be 

prevented at this point are queue overflows and excessive latency due to a packet 

waiting in queue longer than one scheduling cycle. 

The OXCI maintains an independent queue for each possible destination ToR 

within the network. At current switching speeds, this is feasible and scales even to 

relatively large networks. For example, assume the case of a 3000-server cluster 
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containing 30 servers per rack in 100 racks.  With a 20Gbps incoming link rate from the 

ToR switch to each OXCI, and a 20ms scheduling period (the set of all source-destination 

combinations scheduled every 20ms), the worst-case optical queue utilization would be 

20	���� ∗ 20	��/8
#$%&

#'%(
	= 	50�� per queue. This could require a total of 5GB of 

memory for the per-destination optical queues. In a typical use case, the system would 

not be driven to such extremes, and memory would be dynamically shared for all 

queues, but the proposed would be able to handle even difficult cases with statically 

allocated memory.  

It is important to ensure that packet latency is kept to a minimum. Packets 

heading to all destinations that are classified as packet-switched destinations by the 

multiplexing algorithm are never put into optical queues. Packets remaining in any 

optical queue that has not been serviced by the optical scheduler are drained into the 

electronic network as soon as possible. For example, consider the situation where a 

queue has 10MB of data in it, but has only been allocated time to transmit 8MB during 

the next optical scheduling cycle. This queue will be partially drained by 2MB into the 

electronic network to reduce the number of packets that have to wait for more than 

one scheduling cycle for transmission. 

3.4.4. Demand Metric Reporting 

The network can be thought of as a control loop, which must have a feedback 

path for stability and good control. The OXCI provides such feedback in the form of 

demand metric reports for each destination sent to the optical switch controller. Using 

this information, the switch controller can calculate the schedule, which is the control 
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system’s output. After each scheduling cycle, the OXCI determines how much optical 

switch time to request based on the performance of the previous scheduling cycle and 

how much new data has arrived into the per-destination queues discussed above. 

The simplest demand metric usable for the allocation of optical circuits is queue 

utilization. With this demand estimation scheme, the demand metric for a given 

destination is simply the number of bytes in the corresponding optical output queue. 

This approach suffers from several disadvantages. First, it does not take into account the 

fact that each queue is serviced at a different time. Consider an example where two 

optical circuit queues are being filled at the same rate and are being completely drained 

with each scheduling cycle as the electronic/optical multiplexing algorithm attempts to 

combat latency. The two destinations are serviced at different times, but the demand 

metric is taken at a single point in time for all destinations. The total throughput is 

higher for the flow that gets serviced earlier by the scheduler because it consistently has 

a higher demand metric during the time at which the queue utilization is sampled. To 

prevent this, the proposed system does not sample the queue utilization directly, but 

counts the amount of new data that arrived from the ToR switch for the given 

destination since the last sampling point. This allows the demand metric to account for 

demand regardless of whether it was met in the current cycle. This is desirable if the 

assumption that the throughput any flow does not often change rapidly holds true. This 

is the first term to be used for the calculation of the total demand metric – the input 

parameter��). 

Although it is undesirable to always force dependence of the total demand 
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metric on the amount of traffic already serviced or to be serviced during the current 

cycle, there may be cases where it should be included in the calculation while being able 

to control the extent of such dependence. Therefore, the concept of already-serviced 

traffic is re-introduced back into the equation using the parameters��.���, defined as the 

amount of throughput already serviced by the EPS network this cycle, and ��.���, defined 

as the amount of traffic that can be or has been serviced in the optical time slot 

allocated to the current flow in the most recent optical switch schedule received. The 

advantage of ensuring that these have no direct effect on any other terms in the 

equation is that they can be weighted independently. 

While the multiplexing algorithm will try to route any packets remaining in the 

optical queue to the electronic network, other uses of the electronic network take 

priority over this queue flushing operation, and it may not always occur, especially when 

the electronic network is already loaded. When this happens, the OXCI should be able to 

increase its demand metric in an attempt to prevent any packets from experiencing 

unusually high latencies. To facilitate this, each packet entering the queue will be time 

stamped. Each time the demand metric is calculated, the term �*� will serve as an 

indicator of the age of the oldest packet in the queue. The parameter �*� need not be 

the packet age itself. In fact, it is preferable for it to generalize to a nonlinear function of 

the age depending on the emphasis to be placed on latency reduction. 

Due to the nature of TCP and its congestion control and avoidance algorithms, 

the transmission rate of any flow that has been observed to grow in the recent past can 

often be expected to continue growing until it levels off at a maximum. This behavior 
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makes the derivative of the input rate parameter very useful in determining the demand 

metric. The system can make the assumption that if ��)has grown in the last cycle, it can 

be expected to grow at the same rate next cycle. Keeping in mind that the goal of the 

demand metric is not only to indicate the current demand for an optical circuit at the 

time it is calculated, but also to predict the demand for the time of the next scheduled 

optical circuit, the input rate change parameter �+�) is included as part of the demand 

metric calculation. 

Finally, the general equation for the demand metric for destination ' at OXCI 

number	
 is: 

 �,
�,�

= (�)��) + (�,�����,��� + (�,�����,��� + (*��*� + (+�)�+�).  ( 11) 

The constants ( in this equation represent the weights of the various terms. They are 

all empirically determined from simulation and experiments, and their optimal values 

can vary depending on specific work load and network. The complete network can be 

thought of as a discrete-time control system with the demand metric equation 

representing one of many transfer functions. The inputs of this control system represent 

the incoming data rates and other characteristics of the traffic coming in from the ToR 

switches. The actual optical and electronic network throughputs for each flow can be 

thought of as the outputs of the system. There are also many different feedback loops. 

In general, this system is too complex to be modeled analytically, but it can be 

simulated, prototyped, examined, and most importantly, empirically tuned like any 

other control system.  
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3.4.5. Time Synchronization 

The OXCI device uses Precision Time Protocol to synchronize to the master clock 

run by the optical switch controller as described in Section 3.3.5. The time reference 

allows the OXCI to accurately coordinate the following events with the optical controller 

and other OXCI devices: 

• Transmission of packets into the optical network. 

• Sampling of the various components of the demand metric. 

• Transmission of the demand metric report to the optical switch 

controller. 

3.4.6. Schedule Fulfillment and Data Transmission 

Given adequate time synchronization, the OXCI device knows what state the 

optical switch is in, and therefore knows which destination it has an optical link to at any 

time. The OXCI must send packets from optical queues, as indicated by the optical 

switch schedule: this is the function of the OXCI that all other components are designed 

to support and optimize.  

When the time slot allotted to any given destination comes, the queue for that 

destination is drained into the optical output port. Significantly, for a certain amount of 

time, the OXCI is not transmitting any packets at all into the optical network because the 

switch is in the process of being reconfigured and no connection is actually established. 

Along with reconfiguration time, there is additional guard time around each period of 

reconfiguration. The length of this guard time consists of two components: switch 

reconfiguration uncertainty and time synchronization uncertainty. Many switching 
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fabric vendors specify their products’ switching time with a very significant safety factor. 

For example, the Helios team discovered [10] that the switching time specified for 

Glimmerglass is actually much faster than specified, due to the fact that the 

manufacturer includes a long period of ringing after the switch as part of the switching 

time, even though the connection is usable for digital communication long before the 

switch’s control loop stops ringing. The trend in hybrid networking research so far has 

been to overlook manufacturer’s switching time specifications, which usually specify 

switching time for analog signaling purposes, and measure the average time from the 

breaking of the previous connection to the time the switch stabilizes enough to support 

a digital communication and call that the “reconfiguration time” of the switch. The 

actual switching time varies for every switching event and can generally be modeled by 

a normal distribution for most switches. Due to this, if the OXCI simply waited for the 

average reconfiguration time between each destination’s time slot, it would be 

guaranteed to lose some packets half of the time. To prevent this, a reconfiguration 

uncertainty guard time �-� is necessary. This is a set of constants that is experimentally 

determined for a particular switching fabric. For some optical switching fabrics, this time 

may be different depending on the specific reconfiguration event (depending on the 

number of series switching elements being reconfigured, etc.), so this value is best 

handled by the low-level switch driver, as described in Section 3.3.4. Generally, it should 

be some multiple of standard deviations of the actual switching time.  

The second part of the guard time, namely, the PTP synchronization guard time, 

�-�, is meant to account for inaccuracy of time synchronization between the optical 
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switch controller and the OXCI device . This can either be a safe constant given normal 

conditions, or can be derived from observing the actual quality of the PTP 

synchronization between the optical switch controller’s grandmaster clock and each 

OXCI device from factors such as jitter observed in PTP synchronization, or an empirical 

model based on the electronic network congestion as seen in [23].  

Finally, the average switch reconfiguration time is referred to as ��and the total 

silent time between time slots is defined as 

 ������� = �� + �-� + �-� . (12) 

The proposed system is designed to support, but does not require the dynamic 

calculation of this time based on specific details of network congestion and optical 

switch state. 

3.4.7. Multi-Hop Delivery 

One optional feature of the OXCI is the facilitation of multi-hop delivery. This is 

an optimization and does not necessarily need to be included in the system, but it is an 

interesting optimization to examine and may prove useful in practice.   

Consider a case of 8 racks with OXCI nodes connected to the hybrid network, 

designated N1-N8. The schedule is composed of 8 time slots T1-T8 as illustrated in 

Figure 15. In case a), the system is in time slot T3, where the node N1 is directly 

connected to N3. Suppose N1 has run out of data to send to N3 but has some time left 

before the end of the time slot. Also suppose N1 has data to send to N2 but will not 

reach that state in the scheduling cycle soon because it has just left it. The data can be 

transmitted from N1 to N3 during time slice T3, and take another hop from N3 to N2 in 
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the next time slice T4. This could significantly reduce latency. Cases b) and c) illustrate 

other possibly useful two-hop routes that save some time. It is possible to enable such 

an optimization by having the OXCI check the destination of each packet arriving from 

the optical network. 

Although multi-hop delivery in the optical network can save significant latency, it 

also carries the risk of causing serious problems like out-of-order TCP delivery. The 

advantages of all such optimizations must weighed against the disadvantages and if they 

are worth implementing, steps must be taken to mitigate the disadvantages and 

dangers. 

3.5. Performance Monitoring and Evaluation 

The primary goal of networking research is to improve the performance of a 

network. The performance of a data center network can be measured using the 

following metrics: 

• Network throughput 

• Packet latency 

 

Figure 15: Examples of multi-hop transmission in the optical network. 
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• Fairness 

• Completion time of particular tasks 

• Cost efficiency 

• Power efficiency 

The most often cited quantity in network research is throughput. When looking 

at low-level components such as transceivers, throughput can be a relatively simple 

concept, reduced down to bit rate or the user data rate achievable in a single test flow. 

However, when modeling an entire network, the concept of throughput becomes more 

complex because there are many flows within the network. For example, many real 

routers are limited by the number of packets they can process as well as the bit rate of 

each network interface, so even in a synthetic traffic test, the performance of a real 

router is often a function of the packet size distribution. When measuring the 

performance of an entire network at heavy load, one may choose to measure the 

aggregate network throughput, obtained by summing the throughputs of all flows, or 

one may choose some single flow of interest and monitor its throughput individually. 

In the proposed network, every packet of interest is processed by the OXCI 

device and source and destination data for each of these packets is read in order to 

multiplex them between the optical and electronic networks, route them to the proper 

ports, and collect raw data for demand estimation and scheduling. In this way, 

throughput statistics are naturally available and easily accessible in a hardware 

implementation of the proposed system. Since this work concerns itself with simulation 

of the system, all data is readily available to the simulator and the question becomes 
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which throughput data should be collected. 

Packet latency is the time it takes for a packet to traverse a path from source to 

destination. This is an important performance metric because many applications require 

not only that data arrives at a certain rate, but also that data arrives within certain 

deadlines. There are also applications whose performance depends heavily on how fast 

traffic can travel between processing nodes. In practice, true one-way latency 

measurement can be somewhat difficult because it involves time measurements at 

multiple nodes. It is often measured using synthetic traffic between two time-

synchronized nodes or more often, the round trip time of an echo packet, as in the case 

of ICMP ping or the arrival time of an acknowledgement, as in TCP. 

In the case of a hardware implementation of the proposed system, latency will 

be measured using synthetic traffic. If a more precise result is desired, direct 

measurement of latency is also possible because OXCI nodes are synchronized using 

PTP. To perform direct measurement of latency, a sample of packets may be time 

stamped and hashed when they arrive at the OXCI node, the hashes from multiple 

nodes compared later, and latencies calculated from timestamps of packets with the 

same hashes. In the investigation done in this work, the network is simulated, and the 

simulator has full access to time stamps of all events, so the latency of every packet can 

be calculated. The latency characteristics of packets within the system at different 

configurations are used as a key metric in analyzing the performance of the proposed 

system. 

Fairness of scheduling is another metric often used to evaluate the performance 
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of computer networks. One of the most popular canonical formulas for quantitatively 

measuring the fairness of some resource allocation is Jain’s Fairness Index [28]: 

 )��&
, &., … , &)� =
/∑ ��

�
��� 1

�

	) ∑ ��
��

���

, (13) 

where the total amount of some resource is allocated among "	clients such that &�  is the 

amount allocated to the 
�2client. For example, one can calculate the fairness index )� 

of the allocation of bandwidth within a network link among " flows sharing the link. 

Note that when the allocation is equal for all flows, )� = 1 indicates perfect fairness. 

In the proposed system, as in other hybrid networks, it is not given that fairness 

is necessary or even desired. In fact, the system is designed to give more bandwidth to 

flows with higher bandwidth demand. Even so, fairness can be evaluated in the analysis 

of the proposed system and parameters to be tuned if an improvement in fairness is 

desired can be identified. Alternative definitions of &�  can be used to make this kind of 

analysis more meaningful in hybrid optical networks – for example, the fraction of a 

flow’s demand met by the network at some point in time can be used as &�  instead of 

the raw throughput value. 

The ultimate test of any computer system is the job it was designed to perform. 

Although data center networks are built for general purpose computing and perform a 

variety of tasks, certain tasks and traffic patterns have been established as useful 

benchmarks. These include MapReduce jobs, large file transfers such as VM migration, 

and highly parallel scientific computations such as parallel FFT computation. The time 

taken to complete a certain job serves as a reasonable benchmark of overall network 

performance, given that the test is set up such that network performance is a 
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bottleneck in system performance. 

The proposed system is evaluated using synthetically generated traffic designed 

to simulate a real workload. The idea is that traffic generators on several hosts are 

linked such that a traffic generator in a given node does not continue generating packets 

until it has received a “prerequisite set” of packets from another node or set of multiple 

nodes. The specifics of the prerequisite relationships between packets determine the 

degree of synchronization between nodes to be simulated. Many small sets of 

prerequisite packets between nodes would simulate a tightly synchronized task such as 

FFT computation, while relatively large responses with bursts from a “master” node as 

prerequisites may simulate MapReduce.  
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4. System Simulation 

The proposed system is evaluated in simulation. Two stages of simulations are 

performed. First, individual algorithms are prototyped in Python and tested as part of a 

custom event-based network simulator. This allows the behavior of the algorithms to be 

analyzed and tuned on a more theoretical level without the distraction of the details 

present in a more realistic simulator. Synthetic traffic can be generated specifically for 

exercising any given algorithm in the system. This data is used to gain a general intuition 

about the behavior of the system. Finally, the system is ported to NS-3, a powerful and 

highly realistic network simulator and the network is modeled and evaluated in a way 

that would more closely predict the behavior of a future hardware prototype.  

4.1. Prototyping and Initial Simulation 

The simulation of the proposed system can be logically divided into a set of key 

components: 

• Traffic Generation 

• Demand Metric Calculation 

• Schedule Calculation 

• Optical/Electronic Multiplexing 

• Optical Switch Control 

Each of these logical blocks is prototyped separately and tested with synthetic 

inputs, allowing for the individual characterization of each block’s functionality without 

the possibility of destabilizing interference from other blocks – a problem that cannot be 
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solved until every block works as desired at the individual level. The components are 

organized as a Python library and available for inclusion in a basic full-system simulator 

written in Python. Later, these are ported to C++ classes usable in NS-3. 

4.1.1. Traffic Generation 

Besides the standard theoretical traffic generators like uniform and Poisson 

traffic sources, the proposed system is tested with a custom application designed to 

resemble the kind of network traffic generated by distributed computing applications. 

The key idea behind this traffic generator is the fact that the progress of a distributed 

computing job at any given node can depend on the progress of the tasks assigned to 

other nodes. For example, each node computing a distributed FFT must wait for all 

other nodes to complete their pieces of the calculation before it can move on to the 

next stage of the job. Many MapReduce jobs cannot start the Reduce stage until the 

total completion of the Map stage. If a job depends on nodes exchanging data very 

often, it is said to by “tightly synchronized”. If a job only needs a few synchronizations 

over a long time, it is said to be “loosely synchronized”.  

The simulated job is cyclical in nature, with a “request, compute, response” cycle 

 

Figure 16: Simulated data center workload.  
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repeating several times over the course of the job, as shown in Figure 16.The simulated 

job is divided into 	 synchronization cycles. Each cycle is defined by the following set of 

parameters: 

• Request length in bytes, ���3 

• Computation time in seconds, �"4�� 

• Response length in bytes, ���� 

Each of these values is an exponentially-distributed random variable, defined in 

[29] by the probability density function 

 )��&� = *+	# 5�, & ≥ 0

0, & < 0
 , (14) 

where + is referred to as the rate parameter. For the purposes of this investigation, base 

values ���3,���, �"4��,���, and ����,��� are also used to assure appropriate minimum 

values. Note that the addition of a base value shifts the mean of the random variable by 

the base value. For example, given that the mean of an exponential variable is 



5
 and its 

variance is 



5�
, the computation time random variable �"4�� would have a mean of 

�"4��,��� +



5
 and the variance would remain 




5�
 . New random variables are generated 

for each node and each synchronization cycle within the job. Thus, a simulated job is 

parameterized as follows: 

• Number of cycles, 	, 

• Request length parameters, +��3 and ���3,���, 

• Computation time parameters, +"��"  and �"��",���, 

• Response length parameters, +��� and ����,���. 
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A tightly synchronized job can be simulated by setting these parameters such 

that � is a large number, the minimum values are relatively small, and � is large. 

Conversely, a loosely synchronized job can be modeled using small values for � with 

large ����,���. The total duration of the job is determined by the length of each cycle 

and the total number of cycles in the job. 

The progress of a simulated job is tracked in Figure 17. Each line represents a 

separate run of the simulation with a different scheduling period. The job running on 

the network with a 100 ms scheduling period completes quickly, while the network with 

a 500 ms scheduling period backlogs the job because multiple nodes must synchronize 

with each other by exchanging intermediate results. This is the kind of behavior 

observed in real data centers as well as other hybrid network research projects such as 

C-through [12], so it can be concluded that the simulated workload is realistic. 

 

Figure 17: Progress of simulated job with different link rates.  
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4.1.2. Optical Switch Control 

While the proposed network architecture does not force any specific switch 

topology, technology, or architecture, it is important to test the network with a realistic 

simulated switch. This section explores one of the more complex cases of using a 

MEMS-based Benes network to construct a switch with and the details involved in 

simulating it with some accuracy. The most important question for the simulator to 

answer is “given the probability density function of a single switching element’s 

switching time, how long does a switch reconfiguration take in reality?” 

Figure 18 shows the characteristics of several switch topologies of an � � � as 

reported in [19]. Assuming a network of 32 racks, a 32x32, � � 32 optical switch is 

required. This can be constructed using 
��� ���	����

�
� ���� ���	 �����

�
� 144 switching 

elements. One of the advantages of a Benes network is that the number of switching 

elements traversed in the switch does not vary with configuration. The number of 

switching elements the signal traverses is always 2 log� � � 1 � 2 log� 32 � 1 � 9 

switching elements.  

 

Figure 18: Vital parameters of various switch types. 
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In order for the signal to be able to travel through the switch, all switching 

elements must be stabilized. Conversely, data loss will occur if one or more elements is 

not finished switching by the time data transmission starts. Since the switch is a 

mechanical device, it is not guaranteed to stabilize at any particular time, but the 

switching time can be modeled by a probability distribution. While at the time of this 

writing detailed probability distributions of MEMS switching times are not readily 

available, the team responsible for the WSS based switch in [13] observed a normal 

distribution or reconfiguration times. It is reasonable to assume that MEMS switching 

time can also be modelled by a normal distribution, but the method described here 

applies regardless of the specific probability distribution. The probability of successful 

transmission in the optical switch can be calculated using basic statistics.  

The random variable ,67,8 is defined as the time after the reconfiguration signal 

is sent that the 
�2 switching element in the chain takes to stabilize in a single switching 

event. In this example, all switching elements within the switch follow an identical 

switching time probability distribution. The probability of a successful transmission in a 

one-element switch is this given by 

  ��,� = �{,67,8 ≤ �������}, (15) 

where ������� is the time between switch reconfiguration signal transmission and 

beginning of data transmission into the switch, as defined in chapter 3.2. This is easily 

extended for an � switching elements in the path being reconfigured by taking the 

intersection of success probabilities for every switch, expressed as 
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 ��,����� = 	 ��,
 ∩ ��,� ∩ … ∩ ��,�. (16) 

There is no mechanism by which the value of a switching element’s ��,� can affect the 

value of  ��,� for another element, so the random variables are independent, which 

means that 

 ��,����� = 	∏ ��,��
�9
 . (17) 

Since it is assumed that the switching time for each individual switching element has the 

same probability density function, the success events are all equally likely and  

 ��,
 = 	 ��,� = ⋯ = 	 ��,� = ��	. (18) 

The total probability of success is expressed simply as 

 ��,����� = ����� = ��.,67 ≤ �������/��. (19) 

In the 32x32 Benes network example, � can be assumed to always have the 

worst-case value of 9, or if further optimization is desired, a table of �-values can be 

created for every possible configuration change. The probability �� is found by simply 

evaluating the probability distribution function of ,67 at	�������. Note that if the total 

guard time ������� is selected such that a single switching element has a 99% chance of 

being reconfigured on time, the success rate if 9 elements need to be reconfigured is 

�0.99�: = 0.914, leaving the switch with a nearly 9% chance of data loss for every 

connection in every reconfiguration event.  

4.2. Detailed Simulation with NS-3 

To obtain realistic results, the proposed network is modeled and simulated in 

NS-3, a powerful network simulation tool that can provide detailed data about a 

theoretical network, including simulating the behavior of TCP/IP. The advantage of using 
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NS-3 is the level of detail and flexibility it is able to provide. Most importantly, this 

simulator models the behavior of the TCP/IP stack and ARP with good accuracy. This is a 

complex feature critical to the evaluation of the proposed network architecture because 

the majority of data center applications depend on TCP/IP for reliable delivery, flow 

control, and congestion avoidance. 

4.2.1. Architecture of the NS-3 Simulator 

NS-3 is an event-based simulator that uses object-oriented C++ to model many 

aspects of computer networking in detail. To understand the advantages, goals, and 

limitations of the simulation used to evaluate the proposed system, it is helpful to have 

a general idea of the way NS-3 itself operates. This section presents a description of NS-

3 that is pertinent to simulating the network proposed in this thesis, but is simplified for 

the ease of explanation. Those wishing to gain an accurate and general understanding of 

NS-3 are referred to the NS-3 manual [30]. 

NS-3 makes heavy use of the features of C++; especially object oriented design 

and generic programming (templates). Devices and algorithms in the simulator are 

represented by C++ objects, and specialization is handled using inheritance – for 

example, an “echo server application” inherits common attributes from the class 

“application”. At the highest level a simulated network in NS-3 is composed of node 

objects connected by communication channel objects.  

A communication channel in NS-3 is meant to represent a physical 

communication medium, such as a point-to-point copper or fiber optic link, or a wireless 

communication channel. As a general rule, communication channels are characterized 
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by their inability to do any logical processing on the data they are handling. That is, they 

cannot make decisions based on the data traversing them. However, they can delay 

data, and possibly even introduce errors into the data, while transporting it from source 

to destination.  

Ethernet networks in NS-3 are often represented by carrier-sense multiple 

access (CSMA) channels which model an environment in which only one device can 

transmit at any time. This makes the CMSA channel a fitting model for Ethernet 

switches, since modern Ethernet switches can receive data coming from multiple ports 

at the same time and queue it, later sequentially sending it out of a single port to a 

single destination to avoid data loss due to collision. In an NS-3 simulation, the buffering 

is actually done at the node until the CSMA channel becomes available, but this 

behavior is in many ways indistinguishable from buffering in an Ethernet switch. For 

example, a traditional Ethernet network with a switch at the center and hosts 

connected in a star topology can be reasonably represented in simulation using a CSMA 

communication channel object. CSMA communication channels have data rates and 

delay attributes which represent the corresponding real quantities: the data rate is the 

rate at which transmission can take place, while the link delay is the amount of time 

data takes to traverse the channel in a manner analogous to traversing a real 

electromagnetic transmission line such as copper wire or optical cable. Note that a 

CSMA communication channel itself makes no routing or queuing decisions like a real 

Ethernet switch, but it can reproduce behavior similar enough to a real Ethernet switch 

in most cases, and as it happens, it can model a ToR switch accurately enough for the 
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purposes of simulating the proposed network architecture. 

Another important communication channel in NS-3 is the point-to-point link. This 

is a fundamental theoretical communication link that allows full-duplex communication 

between two network entities. This is analogous to simply connecting two nodes with a 

cable. This communication channel is also governed by transmission rate and link delay 

attributes, but can only be used to connect two nodes. 

The Node object in NS-3 represents any entity that can process data traversing 

the network, modify it, and make decisions based on the contents of packets and 

frames. Nodes can serve as the sources and final destinations of data in the network as 

well as intermediate decision makers that route data through the network. Thus a node 

can represent a server on the network running applications, a network-layer router 

making decisions about the path data takes in the network, or a custom data-handling 

device like the proposed OXCI. 

Figure 19 shows the composition of a node object in NS-3 and the relationships 

 

Figure 19: The structure of a node in NS-3. 
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between its components. Any node can act as a router, much the same way that a 

computer with multiple network interfaces can route packets between networks. Each 

node is connected to the other nodes in the network by one or more communication 

channels.  

The interface to the communication channel is a NetDevice matching that 

communication channel. For example, CSMA and point-to-point channels use 

CSMANetDevice and PointToPointNetDevice objects, respectively. A NetDevice object in 

NS-3 corresponds to a network interface card (NIC) or router port in physical hardware. 

NetDevice objects take care of link-layer considerations such as physical (MAC) address 

checking, scheduling packet arrivals on the other end of the channel based on the link 

rate, delay, and packet size, and queuing data until the channel required for 

transmission becomes available. 

A node contains a network-layer protocol object, in the case of the simulations 

performed in this work, this happens to be a model of Internet Protocol Version 4 

(IPV4). This object handles routing using function calls to a routing protocol object 

(Ipv4RoutingProtocol) and multiplexing between transport protocols in the case of local 

delivery. The transport protocol models, in this case TCP and UDP, handle 

communication with applications installed on the node. 

An application is a piece of software that generates and processes traffic. 

Applications useful in simulation can be simple statistics-based traffic generators, which 

generate traffic according to some statistical model or models of real application-level 

protocols such as FTP. The packets traversing the simulated network have real payloads 
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and can therefore be used to make decisions, even decisions about management of the 

network itself. 

4.2.2. NS-3 Model Implementation 

In modeling the proposed network, a topology must be developed and 

generated in NS-3. The topology of the hybrid section of the proposed system can be 

described as a star with two centers, or “bipyramid”, because it has two cores – an 

optical core composed of a fast optical circuit switch and optical switch controller, and 

an electronic core composed of a traditional electronic switch. Each simulated rack 

contains a top-of-rack switch connected to the core network via an OXCI device and 

some number of servers, usually between 20 and 60 in practice, fewer in simulations. 

The topology to be generated is shown in Figure 20, where the “rack” nodes 

include the ToR switch and all hosts in the rack. The simulator is written to take the 

number of racks in the network and the number of hosts per rack as parameters and 

automatically generate a topology with these characteristics. The simulated nodes must 

have information to use for routing packets through the network. Normally, NS-3 can 

automatically populate routing tables in each node, but the topology of the proposed 

network is constantly changing and the fact that the network has an optical core switch 

in parallel with the standard electronic core router makes the standard automatic 

routing table management scheme ineffective. Instead, the simulated network uses only 

static routing, set up during topology creation and modified as needed on optical switch 

reconfiguration events. 
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In order to model this system, custom modules must be added to the core of NS-

3. First, the optical switch is modeled as a CommunicationChannel object, and optical 

transceivers are modeled as NetDevices. The functions of the OXCI and optical switch 

controller are modelled as Applications running on NS-3 Node objects. 

The OpticalSwitchChannel object is loosely based on the model for a point-to-

point link, but instead of connecting two devices to each other, it acts as an N x N optical 

switch. Up to N network devices can be connected to the switch, such that the 

transmitter of the node is connected to one end of the switch, and the receiver is 

connected to the other end. 

Figure 21 shows the logical model for the connections between the optical 

switch and four OXCI nodes. The arrows indicate direction of data travel. In the 

simulations, the switch can be configured in four different permutations, designated �  

possible for this switch. Permutation �! is a loopback connection, so the transmitter of 

 

Figure 20: Network Topology with four racks. 
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each node is connected to its own receiver, �� indicates the connection scheme 

�1 → �2;�2 → �3;�3 → �4;�4 → �1, and so on. In general, if � ports are labeled 


!	through	
�, and the transmitter from port 
� is connected to the receiver at port 


",  the destination port number � for any source port number $ while the switch is 

configured in permutation number % is expressed by 

 � � $ � ��&'(��. (20) 

In the NS-3 implementation, the OpticalSwitchChannel upon receiving a packet checks 

the source port the packet is coming from, and based on the current permutation 

number %, settable through a function call, figures out the destination port number � 

which serves as the array index of a pointer to the NetDevice connected to port �, and 

forwards the packet to that NetDevice. 

Technically, reconfiguring the switch is as simple as setting the variable 

representing the current permutation number, but the switch must also simulate the 

time it takes for the components within a real switch to be physically reconfigured. After 

 

Figure 21: Four OXCI nodes connected to a 4x4 optical switch. 
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the reconfiguration function is called, the destination port number is set, but all packets 

attempting to traverse the switch are dropped until the simulated reconfiguration time 

elapses. The generation of this time interval was described in detail in Section 4.1.2. To 

summarize, a number of instances of the random variable ,67 are generated, and the 

biggest of these is used as the total switching time. 

Another custom component in the simulator is the OpticalSwitchNetDevice. This 

component simulates not only the optical transceiver, but a large part of the OXCI 

functionality – namely, queuing and demand monitoring. This simulation object houses 

a queue for every OXCI destination reachable through the optical switch and interfaces 

directly with the OXCI application running on the node to multiplex traffic between 

electronic and optical networks, report data to the application, and drain the 

appropriate per-destination queues based on the known current configuration of the 

optical switch. 

Along with low-level modifications, there are three custom Applications 

simulating vital network functions. The OXCIApplication object in NS-3 models the logic 

and functionality associated with most of the OXCI functionality described in Section 

3.4. An instance of this application runs on every OXCI node. 

The switch controller is also modeled by an application running on a dedicated 

node connected to the electronic network. This application performs switch control 

tasks as described in Section 3.3. It maintains a pointer to the OpticalSwitchChannel 

object and reconfigures it as needed through direct function calls. 
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4.2.3. Experimental Setup 

There is no limit on the data rates or the number of hosts being simulated, and 

the simulator is written to be as general as possible. However, the computing resources 

available for simulations are not unlimited, and there are tradeoffs to be made between 

the number of simulated computers and simulated data rates and the amount of data 

points that can be taken. The experiments conducted in this work focus on exploring the 

qualitative effects of parameter changes rather than specific magnitudes of metrics in 

highly specific situations. One must keep in mind that the goal is to characterize the 

behavior of the system rather than predict a detailed outcome in a specific situation. 

Since the experimental results come from an event-based numerical simulator, 

increasing all data rates in the system simply amounts to multiplying intermediate 

quantities by a constant, and in most cases, obtaining the same qualitative behavior. 

The experimental setup consists of 12 simulated servers connected to four racks. 

Each node has a traffic generator application running on it. This traffic generator is 

designed to simulate the network traffic generated by a typical distributed computing 

workload within a data center. The traffic pattern is characterized by many-to-one and 

one-to-many behavior with most nodes not changing their communication partners 

often, as described in Section 4.1.1. Recall the network topology from Figure 20. The link 

rates vary throughout the network. The optical simulated link rates are set to 100Mbps, 

while the link rate (and therefore oversubscription ratio) of the electronic core is varied 

from extremely low (500kbps) to on par with the optical link rate (100Mbps). The nodes 

within each rack are interconnected using a simulated Carrier Sense Multiple Access 
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channel which models the ToR switch. The link rate from the ToR switch to the OXCI 

devices is also 100Mbps to provide the ability to test the system under heavy traffic 

through the core. In a real system, it is straightforward to aggregate traffic from many 

servers into a single high-bandwidth link, but it is much more difficult to create a high-

port-count and high-bandwidth core. Due to this, the core EPS switch in the simulated 

network is simulated with low link rates. The ability of a simpler hybrid core to replace a 

high-performance electronic core is tested. 

4.3. Simulation Results and Analysis 

The most important goal of the proposed system is to allow a complex, high-

performance electronic core network to be replaced by a low-performance electronic 

core supplemented by a managed optical circuit switch without significantly reducing 

the performance of the network. The ability of the proposed system to do this 

effectively can be measured by the completion time of a simulated distributed 

computing workload. This job starts with one-to-many “request” transfers from several 

servers assigned to be job master nodes to other servers assigned to be workers.  Once 

a worker has received all of the request data it waits for some time to simulate 

processing and it begins sending response data. The master waits until it has finished 

receiving responses from all workers and begins another request/response cycle. In the 

simulations performed, there are three masters communicating with nine worker nodes 

arranged throughout the network. The workload completion time is measured from first 

packet sent to the time all three masters complete their full workloads. Each workload 

consists of 50 cycles. Requests are set to be around 8 kilobytes of data, while compute 
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wait times are around 100 milliseconds and responses are about 120 kilobytes of data. 

The specific values for each cycle are random in order to facilitate a more realistic 

simulation. The random number generator can be seeded with a constant value, so 

results are reproducible. The job completion times for various EPS network link rates 

with and without the optical components added by the proposed system are shown in 

Figure 22. The scheduling cycle period of the system is kept a constant 50 ms for this 

experiment. The proposed system still relies on the electronic core for control traffic 

and transmission of TCP acknowlegements; an extremely low-speed electronic network 

will adversely affect its performance. The hybrid network significantly outperforms a 

pure EPS network with even extremely low EPS link rates, and nearly matches the 

performance of pure EPS once network bandwidth is sufficient to no longer bottleneck 

the simulated workload. 

 
Figure 22:  Time to complete simulated job for various electronic core link rates, a  

   comparison of plain EPS to the hybrid network. 
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One important concern for hybrid networks is the possibility of transmission into 

the optical switch starting before it has been fully reconfigured. The optical switch in the 

simulations is modeled to realistically reflect the random behavior of a real switch, as 

described in Section 4.1.2. Experiments are performed to determine the effect of the 

relationship between the guard time and the averagre switching time on data loss and 

job completion time. The switching time can use any statistical model that fits the 

specific phyical properties of the switch being modeled. In this particular simulation, the 

switch is modeled as having a switching time that is composed of a constant base and 

with an exponentially distributed additional time added to it. In this case, the average 

switching time turns out to be ��;.< + 1/+ where ��;.< is the base switching time, and 

+ is the rate parameter of the exponential distribution. The variance of the switching 

time is simply the variance of the exponential random variable used, 



5�
. In the 

 

 

Figure 23: Effect of switching to guard tome ratio on system performance. 
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experiment, the EPS link rate is set to 5 Mbps while the other link rates are kept as 100 

Mbps. The schedule period is set to 10 ms, while the guard time is kept constant at 125 

μs. Note that the guard time referred to here is the total time from switch 

reconfiguration command transmission to beginning of data transmission by the OXCI 

into the optical switch. The base switching time is set to one half of the guard time. The 

independent variable in the experiment is the ratio between the average switching time 

and the guard time. The effect of varying the average switching time, which in this case 

also changes the variance of the switching time, is shown in Figure 23. The experimental 

data makes it clear that a hybrid network should never start transmitting after only the 

average switching time of the switch has passed, since that would cause data loss after 

more than half of all switching events. The results also show that any packet drops 

caused by packets being transmitted into the void have a drastic effect workload 

performance, especially if the workload depends on TCP for reliable data delivery. 

Another important parameter in the proposed system as well as other hybrid 

optical/electronic networks is the scheduling period. The proposed system does not  use 

a hotspot scheduler, but cycles through a predetermined set of switch configurations, 

varying the time alloted to each permutation according to demand. This is significantly 

more computationlly efficient than a hotspot scheduler, and provides better data 

granularity. Of primary interest is the effect of schedule period on the completion time 

of the simulated workload. An experiment was performed where the optical link rate 

was kept constant at 5 Mbps, with the other link rates constant at 100 Mbps. The 

scheduling period of the system was varied and effects of these changes recorded. The 
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effect of changing the scheduling period on job completion time is shown in Figure 24.  

The system’s duty cycle was kept constant at 95% by varying the switching/guard time 

such that 

 95% =
������ �∗������

������
∗ 100%, (21) 

where 	 is the number of scheduling slots, ��"��= is the schedule period, and �-���= is 

the time from transmission of the switch reconfiguration command by the switch 

controller to the beginning of data transmission into the optical network by the OXCI. 

Although the workload is not latency sensitive, it can suffer from a scheduling 

period that is too long because job progress depends on many parties exchanging 

information relatively quickly. A more tightly synchronized workload, i.e. one where the 

servers involved exchange data more often, would begin to suffer performance loss with 

a smaller scheduling period. Given sufficiently fast switches to keep the duty cycle at 

95%, no detrimental effect was observed from continuing to decrease the scheduling 

 

Figure 24: Effect of scheduling period on job completion time. 
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period. In practice, it becomes difficult to maintain a high duty cycle while decreasing 

schedule period once sufficiently fast switches can no longer be found or become 

prohibitively expensive. However, significant progress is being made in optical switching 

speed and a 5 ms schedule period for an implementation of the proposed system is not 

overly optimistic.  

Another quantity that should be affected by the scheduling period is the average 

latency of the traffic. Theoretically, it should be directly proportional to the scheduling 

period itself. However, Figure 25 shows that for very small scheduling periods the 

average latency stays around 30 ms. This could be caused by the nature of the 

workload, time the packet spends waiting in queues before it gets to the optical core, or 

some other bottleneck in the network. A closer look at packet latency is given in Figure 

26, which shows the latencies for about 30000 packets from the simulation with the 50 

ms scheduling period, plotted over 1.4 seconds. Each point represents a packet’s 

 

Figure 25: Effect of scheduling period on latency. 
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latency, and the time indicated on the x-axis is the arrival time of the packet. The 

straight lines are characteristic of large groups of packets queueing up after each other, 

then being drained from the queue. Packets generally experience latencies close to 50 

ms, as expected, since the  the optical network operates in quick bursts spaced 50 ms 

apart. There are also some outliers with approximately 150 ms latency, which probably 

waited in OXCI queues for multuiple schedule cycles because bandwidth was not 

available to send them or because other packets were deemed by the scheduler to have 

higher priority.  

  

 

Figure 26: Individual packet latencies with 50ms scheduling period. 
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5. Conclusions 

The main goal of this thesis is to design a platform that overcomes limitations of 

using only modified commodity hardware in hybrid optical/electronic data center 

networks, and is easy for industry to adopt quickly once the subject has been sufficiently 

researched and developed to warrant enough confidence for commercial adoption. The 

system exhibits simulation performance improvements similar to those observed in 

previous hybrid network research. The simulation platform developed can be used to 

experiment with and further improve algorithms. 

In the presence of workloads with relatively bursty network demand and 

sufficiently loose synchronization relative to switching speed, the optical fabric 

significantly improves workload completion times and allows for a large increase in 

oversubscription of the electronic core fabric. Most importantly, this work demonstrates 

the feasibility of a platform more suitable for future research than the previous methods 

of using commercial hardware, but modifying it in ways that would be unacceptable in a 

production environment, such as pretending that high-end servers with modified Linux 

kernels are ToR switches, modifying NIC drivers, or disabling optimization algorithms in 

network devices. As expected, system performance in distributed workloads still 

degrades as the scheduling cycle period increases.  

The idea of leaving an electronic core in the network even with very fast optical 

switches has proven successful, because it allows the network to deliver timing-sensitive 

packets without introducing an unacceptable amount of latency to packets delivered 

through the optical network. This is especially important in the case of TCP 
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acknowledgement packets, which are sent directly to the electronic network in the 

proposed system to ensure that TCP is not bottlenecked by the lack of constant 

bidirectional communication in the optical network. The electronic core also provides 

some redundancy in case of optical switch failure. 

The network architecture described in this thesis can be used in a commercial 

setting. Although the cost benefits of using OXCI devices in a small to medium-sized 

commercial network would be only marginal due to the cost of high-performance FPGAs 

currently required to implement them, even a small network would benefit from the 

ease of expansion offered by this new network architecture, since in traditional 

networks adding core capacity requires either extremely complex and costly rewiring for 

multi-rooted trees or similar topologies, or large electronic switches whose cost 

increases exponentially with port count. In contrast, the cost of an OXCI-based hybrid 

network increases linearly with rack count, given the availability of suitable switches. 

In the future, if an FPGA-based version of the proposed architecture is 

successful, manufacturers will be able to build ASIC implementations of OXCI devices, 

drastically reducing costs and making the proposed architecture commercially 

advantageous in nearly all data center networks. The drive to optimize applications to 

work with a hybrid core network would further improve performance. 

As optical switches become faster, the proposed network architecture can 

provide for a smooth transition from electronic switching to optical switching in the 

core, allowing the electronic core to become more oversubscribed until it disappears 

completely.  



 

98 

References 

 [1] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T.S. E. Ng, K. Papagiannaki, M. 

Glick and L. Mummert. "Your Data Center Is a Router: The Case for 

Reconfigurable Optical Circuit Switched Paths." in Proceedings of ACM SIGCOMM 

HotNets-VIII, Barcelona, Spain, 2009. 

[2] L. A. Barroso, and U. Hölzle. "The Data Center as a Computer: An Introduction to the 

Design of Warehouse-Scale Machines," Synthesis Lectures on Computer 

Architecture, vol. 4, no. 1, pp. 1-108, 2009. 

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, Commodity Datacenter 

Network Architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference 

on Data Communication, Seattle, WA, 2008. 

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and Fetterly, “Dryad: Distributed Data-Parallel 

Programs from Sequential Building Blocks,” in Proceedings of the 2nd ACM 

Sigops/Eurosys European Conference on Computer Systems, Lisbon, Portugal, 

2007. 

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large 

Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008. 

[6] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google File System”, in Proceedings 

of the 19th ACM Symposium on Operating Systems Principles, Lake George, NY, 

2003. 

 [7] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The Nature of Data 

Center Traffic: Measurements & Analysis,” in Proceedings of the 9th ACM 



 

99 

SIGCOMM Conference on Internet Measurement, Chicago, IL, 2009. 

[8] T.Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data Center Traffic 

Characteristics,” in Proceedings of the ACM Workshop on Research on Enterprise 

Networking, Barcelona, Spain, 2009. 

[9] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, 

G. Papen, and A. Vahdat, "Integrating Microsecond Circuit Switching Into the 

Data Center," in Proceedings of the ACM SIGCOMM 2013 conference on Data 

Center Networks, Hong Kong, China, 2013. 

[10] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, 

G. Papen, and A. Vahdat, “Helios: A Hybrid Electrical/Optical Switch Architecture 

for Modular Data Centers,” in Proceedings of ACM SIGCOMM, New Delhi, India, 

2010. 

[11] J. Edmonds, "Paths, Trees and Flowers." Canadian Journal on Mathematics, pp. 

449–467, 1965. 

[12] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and 

M. Ryan, “C-Through: Part-time Optics in Data Centers,” in Proceedings of ACM 

SIGCOMM, New Delhi, India, 2010. 

[13] N. Farringon, A. Forencich, G. Porter, P. C, Sun, J.E. Ford, Y. Fainman, G.C. Papen, 

and A. Vahdat, "A Multiport Microsecond Optical Circuit Switch for Data Center 

Networking," IEEE Photonics Technology Letters, vol.25, no.16, pp. 1589-1592, 

Aug. 2013. 

[14] X. Ma and G.S. Kuo, "Optical Switching Technology Comparison: Optical MEMS vs. 



 

100 

Other Technologies," IEEE Communications Magazine, vol.41, no.11, pp.S16,S23, 

Nov. 2003. 

[15] U. G. Rothblum, H. Schneider, and M. H. Schneider, "Scaling Matrices to Prescribed 

Row and Column Maxima," SIAM Journal of Matrix Analysis Applications, vol. 15, 

no. 1, pp. 1-14, Jan. 1994. 

[16] J. von Neumann, "A Certain Zero-Sum Two-Person Game Equivalent to the Optimal 

Assignment Problem," Contributions to the Theory of Games, vol. 2, pp. 5–12, 

1953. 

[17] K. Noguchi, "Transparent Optical Crossbar Switch Using Liquid-Crystal Optical Light 

Modulator Arrays, Integrated Optics and Optical Fibre Communications," 11th 

International Conference on, and 23rd European Conference on Optical 

Communications, Conf. Publ. No.: 448, vol.4, 1997. 

[18] A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I. 

Sagnes, R. Raj, and F. Raineri, "Ultrafast All-Optical Switching and Error-Free 10 

Gbit/s Wavelength Conversion in Hybrid InP-Silicon on Insulator Nanocavities 

Using Surface Quantum Wells," AIP Applied Physics Letters, No. 104, 2014. 

[19] N.A. Shalmany and A.G.P. Rahbar, "On the Choice of All-Optical Switches for Optical 

Networking," in Proceedings of the HOTNETS 2007 International Symposium on 

High Capacity Optical Networks and Enabling Technologies, Atlanta, GA, 2007. 

[20] A. Wonfor, H. Wang, R.V. Penty, and I.H. White, "Large Port Count High-Speed 

Optical Switch Fabric for Use Within Data centers [Invited]," IEEE Journal of 

Optical Communications and Networking, vol. 3, no. 8, pp. A32,A39, Aug. 2011. 



 

101 

[21] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked 

Measurement and Control Systems," IEEE Std. No. 1588, 2002. 

[22] "IEEE 1588 Precision Time Protocol Time Synchronization Performance,” Texas 

Instruments, Application Note AN-1728, Apr. 2013. 

[23] R. Zarick, M. Hagen, and R. Bartos, "Transparent Clocks vs. Enterprise Ethernet 

Switches," in Proceedings of the International IEEE Symposium on Precision Clock 

Synchronization for Measurement Control and Communication, Munich, 

Germany, 2011. 

[24] "Cisco Connected Grid Switch Software Configuration Guide, Cisco IOS Release 

12.2(58)EY.” Cisco, Manual, Jul. 2011. 

[25] "IBM Networking OS 7.4 Features Summary.” IBM Corp., Technical Document 

BMD00326, 2012. 

[26] H. Wu, J. Taheri, and A. Zomaya, "B-Alarm: An Entropy Based Burst Traffic 

Prediction Approach for Ethernet Switches in Data Centers," In Proceedings of 

the IEEE 10th International Conference on High Performance Computing and 

Communications & 2013 IEEE International Conference on Embedded and 

Ubiquitous Computing, Dalian, China, 2013. 

[27] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, "Hedera: 

Dynamic Flow Scheduling for Data Center Networks." in Proceedings of the 7th 

USENIX Conference on Networked Systems Design and Implementation, San Jose, 

CA, 2010. 

[28] R. Jain, D.M. Chiu, W. Hawe, "A Quantitative Measure of Fairness and 



 

102 

Discrimination for Resource Allocation in Shared Computer Systems," DEC, 

Hudson, MA, Research Report TR-301, 1984. 

[29] A. Papoulis, S. U. Pillai. “The Axioms of Probability.” in Probability, Random 

Variables and Stochastic Processes, 4th ed. Boston: McGraw Hill, 2003, ch. 2, pp. 

15-44. 

[30] “NS-3.20 Manual,” Internet: http://www.nsnam.org/ns-3-20/documentation/, 

Jun.17, 2014 [Jul. 10, 2014]. 

 


