

© Copyright by Dmytro Chenchykov 2014

All Rights Reserved

INTEGRATING OPTICAL SWITCHING INTO DATA CENTERS USING OPTICAL

CROSSCONNECT INTERFACE DEVICES

A Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

in Partial Fulfillment

Of the Requirements for the Degree

Master of Science

in Electrical and Computer Engineering

by

Dmytro Chenchykov

December 2014

INTEGRATING OPTICAL SWITCHING INTO DATA CENTERS USING OPTICAL

CROSSCONNECT INTERFACE DEVICES

Dmytro Chenchykov

Approved:

 Chair of the Committee

 Yuhua Chen, Associate Professor

 Electrical and Computer Engineering

Committee Members:

 Earl J. Charlson, Professor

 Electrical and Computer Engineering

 Pauline Markenscoff, Associate Professor

 Electrical and Computer Engineering

 Cumaraswamy Vipulanandan, Professor

 Civil Engineering

Suresh K. Khator, Associate Dean, Badri Roysam, Professor and Chair
Cullen College of Engineering Electrical and Computer Engineering

v

Acknowledgements

I would like to thank my advisor, Dr. Yuhua Chen, for her continuous guidance

and support in this endeavor. I am also grateful to all professors who taught me the

essential skills required to complete this project and the ones to come. I thank my lab

mates for being great partners in learning, and my family and friends for their support.

This work was supported in part by the National Science Foundation (NSF) under

Grants 0923481 and 0926006.

vi

INTEGRATING OPTICAL SWITCHING INTO DATA CENTERS USING OPTICAL

CROSSCONNECT INTERFACE DEVICES

An Abstract

of a

Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

in Partial Fulfillment

Of the Requirements for the Degree

Master of Science

in Electrical and Computer Engineering

by

Dmytro Chenchykov

December 2014

vii

Abstract

This thesis describes a hybrid optical/electronic network architecture that

overcomes the limitations of using only modified commodity hardware in such

networks, and is easy for industry to adopt. Test results show significant performance

improvements when the proposed system is added to a highly oversubscribed electronic

network and good performance with no detrimental effects when the system is added

to a traditional electronic network that is not oversubscribed. This allows for greater

oversubscription ratios in the electronic network and therefore cheaper and less

complex hardware. The primary contributions of this work include a method of

seamlessly integrating optical switching into an existing network using custom

hardware, a research platform that allows greater flexibility in the analysis of hybrid

optical/electronic networks, and a software platform for simulating such networks.

viii

Table of Contents

Acknowledgements .. v

Abstract .. vii

Table of Contents .. viii

List of Figures ... x

1. Introduction ... 1

2. Background .. 5

2.1. The Data Center ... 5

2.1.1. Big Picture: The Anatomy of a Data Center .. 6

2.1.2. Typical Workloads: The Purpose of a Data Center 8

2.1.3. Data Center Networking: What Holds it All Together 11

2.2. Optical Networking .. 12

2.2.1. Switching Mechanisms ... 13

2.2.2. Switching Hardware .. 16

2.3. Current Research in Optical Data Center Networking 16

2.3.1. Helios... 17

2.3.2. C-Through.. 24

2.3.3. Mordia ... 32

3. Proposed System ... 40

3.1. Motivation .. 40

3.2. Proposed Network Architecture .. 41

3.2.1. System Architecture Overview ... 42

3.3. Optical Switch Controller ... 45

3.3.1. Data Collection .. 46

3.3.2. Optical Switch Schedule Computation ... 47

3.3.3. Schedule Distribution .. 50

3.3.4. Optical Switch Schedule Fulfillment ... 51

3.3.5. System-Wide Time Synchronization ... 55

3.4. Optical Crossconnect Interface Device (OXCI) ... 57

3.4.1. Ingress Traffic Queuing ... 57

3.4.2. Optical-Electronic Multiplexing .. 58

ix

3.4.3. Per-Destination Queues .. 60

3.4.4. Demand Metric Reporting .. 61

3.4.5. Time Synchronization.. 65

3.4.6. Schedule Fulfillment and Data Transmission .. 65

3.4.7. Multi-Hop Delivery .. 67

3.5. Performance Monitoring and Evaluation ... 68

4. System Simulation ... 73

4.1. Prototyping and Initial Simulation ... 73

4.1.1. Traffic Generation ... 74

4.1.2. Optical Switch Control .. 77

4.2. Detailed Simulation with NS-3 ... 79

4.2.1. Architecture of the NS-3 Simulator .. 80

4.2.2. NS-3 Model Implementation .. 84

4.2.3. Experimental Setup ... 88

4.3. Simulation Results and Analysis ... 89

5. Conclusions .. 96

References .. 98

x

List of Figures

Figure 1: The Helios network topology. .. 17

Figure 2: Test results from [10]. .. 22

Figure 3: Test results of Hadoop sort on C-Through, copied from [12]............................ 28

Figure 4: Diminishing returns of decreasing	tstable. ... 30

Figure 5: Proposed network architecture. .. 41

Figure 6: Traffic Demand Report packet format; headers not to scale. 46

Figure 7: Demand report collection. ... 47

Figure 8: Demand-proportional schedule calculation. ... 49

Figure 9: Schedule Notification packet format ... 50

Figure 10: Two types of fundamental switching elements... 52

Figure 11: A 4x4 Benes network can be built from 6 crossbar elements. 53

Figure 12: Topology information maintained by the switch controller. 53

Figure 13: Role of low level switch driver within the optical switch controller. 54

Figure 14: PTP synchronization within the proposed network .. 56

Figure 15: Examples of multi-hop transmission in the optical network. 68

Figure 16: Simulated data center workload. .. 74

Figure 17: Progress of simulated job with different link rates. .. 76

Figure 18: Vital parameters of various switch types. ... 77

Figure 19: The structure of a node in NS-3. .. 82

Figure 20: Network Topology with four racks. ... 85

Figure 21: Four OXCI nodes connected to a 4x4 optical switch. 86

Figure 22: Time to complete simulated job for various electronic core link rates, a

comparison of plain EPS to the hybrid network. .. 90

Figure 23: Effect of switching to guard tome ratio on system performance. 91

Figure 24: Effect of scheduling period on job completion time. 93

Figure 25: Effect of scheduling period on latency. ... 94

Figure 26: Individual packet latencies with 50ms scheduling period. 95

1

1. Introduction

The capabilities of modern computer networks, especially those in data centers,

have grown dramatically in the past decade due to seemingly insatiable demand for

ever more massively-parallel processing capability and distributed storage. Search

engine providers have their eyes set on continually re-indexing the entire Internet;

online businesses keep a complete record of customers' purchases, always coming up

with new ways to take advantage of the masses of information collected; and scientists

continue to deal with ever larger data sets. Thus, data centers, large collections of

computers that share support infrastructure such as power, cooling, security, and

communication, have become an important, quickly growing, and always in-demand

part of the modern technology.

Distributed computing frameworks such as MapReduce, Dryad, and many lesser-

known proprietary systems have allowed the efficient utilization of thousands of servers

performing small pieces of a single large job. Most fundamentally, these frameworks

take advantage of the fact that work can be divided into small pieces, distributed among

many nodes, each of which performs a small part of the job, and results are later

aggregated into a final product. These distribution and aggregation steps often create

relatively localized hotspots with very high demand for network bandwidth. Modern

packet-switched networking infrastructure has been struggling to keep up with demand

without requiring prohibitively complex and expensive hardware. In recent times, much

progress has been made by the research community in making network typologies more

efficient, which led to massive network performance increases due to the deprecation

2

of naïve tree-structured networks and the increasing use of Fat-Trees and other

significantly more efficient ways of structuring computer networks. However,

networking is still a major bottleneck and resource sink in modern data centers – more

efficient typologies dictate more complex wiring, making the tasks of design and

maintenance increasingly difficult and expensive, requiring literally tons of wiring and

thousands of switches [1]. In hopes of solving these problems, the research community

is now turning to a new paradigm – optically switched networking, which promises

simpler, cheaper, more energy-efficient, and higher-performance architecture for data

center networks.

The key idea behind optical switching is to physically set up a direct path for the

data to travel from source to destination without intermediate decoding and routing

steps. In the current generation of electronic networks, every packet has to be

processed by a switching or routing device at every intermediate node. In an optically

switched network, a centrally controlled optical switch fabric would continuously

measure demand and set up optical paths where they are most needed. A significant

amount of research on this topic has been done. Systems proposed have varied in the

methods of demand estimation, the presence or absence of an electronically switched

overlay for handling light and latency-critical traffic, scheduling algorithms, switching

fabric implementations, and topologies.

All research so far has run into the problem of modern hardware not being

designed for fast optical switching. Commodity optical switches tend to be slower than

the technology allows due to lack of business demand for fast switching – most

3

currently available commodity optical switching devices are designed and used for long

term circuit switching and network configuration. Network interface cards are not

generally suitable for optical switching out-of-the-box because proprietary firmware

dictates them to take a long time in reconfiguration when a loss of optical link is

detected, while optical link teardowns and setups must happen quickly and routinely in

an optically switched network.

The quick adoption and resounding business success of Fat-Trees, VL2, and other

relatively new network architectures can be attributed to the fact that they did not

require businesses to completely replace existing hardware. All existing hardware could

be re-used. In fact, a network operator could take 10-year old switches, rearrange the

way they are connected, change the way subnets and IP addresses are arranged, add

some routing rules, and have a significant improvement in performance. It was simply a

matter of working smarter, not harder with existing commodity hardware and the

industry was left wondering why no one thought of it sooner. In contrast, optically-

switched networks as they have been described in recent research are not practical

without drastic hardware changes, including some devices that have not yet been

commercialized at best, and purely theoretical components at worst.

This thesis proposes the use of an Optical Crossconnect Interface (OXCI), a novel

type of device that would allow data centers to keep as much hardware as possible

while obtaining the benefits of an optically switched network. Essentially, the OXCI is an

interface add-on that can be connected to existing switches and serve as an interface

between a mostly electronic network edge and an optically switched core network. This

4

add-on device would aggregate packets suitable for transmission over the optical

network and communicate with a central switch fabric controller to report bandwidth

demand and determine when bursts of queued packets can be sent. This approach

allows the system to overcome the inadequacies of multiple pieces of commodity

hardware by inserting a single custom interface device. This thesis describes and

analyzes a hybrid optical/electronic data center network where an optical circuit switch

with a custom controller and OXCI devices at each rack functions to significantly

increase the capacity of a data center network.

The rest of this thesis is organized as follows:

• Chapter 2 introduces key concepts relating to data centers and optical

networking. An overview of past and current research is provided.

• Chapter 3 describes the proposed network architecture in detail.

• Chapter 4 provides a description of the simulator and model used to test

the proposed system, followed by analysis of the simulation results.

• Chapter 5 provides an interpretation of the test results and summarizes

the implications of this work.

5

2. Background

To understand the proposed method, with its benefits, drawbacks, and

implementation details, one must understand the context in which this work is

presented. To that end, this section provides an overview of the state-of-the-art of data

center networking and optically-switched networking research.

2.1. The Data Center

A data center is a large collection of computers that share resources including

networking infrastructure, locations, power systems, cooling systems, security, and

management. Large groups of computers in data centers often work together to achieve

a common goal such as performing large distributed calculations, serving a high-traffic

website, or processing extremely large data sets. The history of data centers can in some

respects be traced to historic mainframe computers that required entire rooms to house

the computer and all support equipment. The mainframes of old eventually evolved into

the modern supercomputers, retaining tight coupling and shared memory between

processing units. Modern data centers inherited much of the philosophy about support

infrastructure such as cooling and power from mainframes, but are very different in

their core functionality. Modern data centers are usually not thought of as monolithic

computers as mainframes and supercomputers are, but are large collections of

individual servers. Thus, the coupling between processing resources is relatively loose,

and each processing node is a self-sufficient server, usually having its own power supply,

processing units, volatile and nonvolatile storage, and network interfaces. In recent

years, data centers have become increasingly important as utilization of computing

6

power has been shifting from heavy use of local resources such as consumer desktops or

servers owned and operated by businesses to cloud computing and computing-as-a-

service. Some examples of this trend are the recent shift of users from desktop-based e-

mail clients like Outlook to web-based mail and the increasing popularity of services

such as Amazon EC2, where users and organizations can rent large pools of computing

power on demand, without having to worry about the infrastructure, maintenance, and

design of their own computing resources.

2.1.1. Big Picture: The Anatomy of a Data Center

Data centers are characterized by two key concepts: pooling of computing power

and sharing of infrastructure. A typical data center is made of thousands of individual

servers. Usually, large groups of these servers must be pooled together to achieve a

single large task, such as creating an index of the entire public World Wide Web.

Sharing infrastructure is important because it is what allows data centers to be

so cost-effective and efficient. All computers in a data center have a common power

distribution system, which allows for the efficient use of power and backup power

capabilities. Most data centers have battery banks and diesel generators that would

allow operations to continue without interruptions in case of power grid failures.

Cooling systems are another infrastructural consideration. When thousands of

computers are pooled together in one building and each of them is dissipating hundreds

of watts of power, the building will overheat very quickly. To keep the ambient

temperature down and the servers operating within temperature specifications, data

centers use large cooling units, often termed Computer Room Air Conditioning, or CRAC

7

units. These machines transfer heat from the surrounding air to a coolant fluid which is

pumped outside and cooled by large chiller of drycooler units in a similar manner to

normal air conditioning, and expel cooled air back into the data center through some

managed airflow system. Air flow management is important because allowing cold air to

mix with hot air drastically reduces cooling system efficiency. Methods employed for

controlling airflow include pressurizing the area under a raised floor with cooled air and

letting the air out through strategically placed vents, or using a system of specially

designed air conduits.

Maintenance overhead is also often reduced by the use of a single common

performance monitoring and management system for the data center. Operators can

monitor the performance of the data center as a whole. Designing the servers to be

extremely reliable would be prohibitively expensive. Instead, data center-grade servers

are usually not much more reliable than desktop computers, and of thousands of units,

some are expected to fail almost daily. In a well-designed data center, a common

management and monitoring system quickly detects these failures, taking some

automated steps to move the failed machine's workload to another machine and begin

resolving the issue, possibly alerting a human operator to physically replace the failed

unit [2].

A shared local network is the fabric that ties the data center together and allows

many computers to contribute to the completion of a common task. Fast, scalable, well-

managed networking infrastructure facilitates efficient management and monitoring of

the data canter, large scale data processing, distributed storage, and high reliability.

8

Recently, there have been many advances in the architecture of data center networks,

with ideas about incorporating optical switching into the data center being one of the

most prominent research topics is the field.

2.1.2. Typical Workloads: The Purpose of a Data Center

Although servers within data centers can technically perform the same kind of

local single-machine computation tasks that desktop computers often perform, the

typical workload of data center servers is somewhat different. Most modern data

centers are utilized for massive computation jobs such as math-heavy scientific

processing – for example, large scale image processing involving distributed Fast Fourier

Transform (FFT) calculations. Serving massive, user heavy web-based applications such

as Google maps or “Yahoo!” web search is also a very common workload. Perhaps most

importantly, data centers are used for large scale data mining and processing, such as

building web search indexes, analyzing usage patterns of online shopping sites, and

determining the effectiveness of targeted advertising placement. Management tasks,

such as backups and virtual machine migration also make up a significant portion of the

work done within modern data centers.

One of the most common applications seen within data centers is the

MapReduce [3] parallel computing framework and similar tools such as Dryad [4]. This

kind of application is often the go-to example and test workload for many data center

related research studies due to its ubiquity, versatility, and high importance to the

biggest players in the industry, such as Google, whose web indexing engine is a

MapReduce program. MapReduce was born from the need to perform often

9

straightforward operations on extremely large and complex data sets – for example,

counting the number of times a word occurs on all crawler-accessible web pages. This

kind of task has long been the bread and butter of many Internet giants, and much code

has been written to simplify it. The problem itself is extremely simple – simply read

documents and increment a counter each time a certain sequence of characters is

encountered. In practice, this cannot be done by a single computer because the data set

is extremely large. The solution is as simple as the problem – split the data set into

smaller chunks, and have each computer count the number of times the word occurs in

its assigned chunks. Even if the data set is a petabyte in size, a reasonable estimate for

the currently indexable Web, a cluster of 2000 servers can split the data set and have

each server process 500GB of information. Given that the data has already been stored

on the appropriate local disks within each server, something that can be arranged

during the data collection process, assuming processing rates of 40MB/s for each server

this task can be completed in under four hours. Having to do many similar large data

mining tasks, one will notice that each task shares the same set of “boilerplate” logic.

Any program running this kind of job will need perform the following tasks:

1. Split the job into pieces and assign each piece of the work to a server.

2. Have each server compute its intermediate or partial result.

3. Monitor job progress and server performance, gracefully dealing with server

failures as they occur.

4. Aggregate intermediate results, computing the final result.

5. Managing many other common book keeping details.

10

In recognition of these similarities in commonly performed data center work, Google

developed the MapReduce framework, which in their own words, “hides the messy

details of parallelization, fault-tolerance, data distribution, and load balancing in a

library” [5]. Tasks numbered 2 and 4 are roughly corresponding to “map” and “reduce”

respectively, and form the user logic of the program.

The reality of MapReduce is somewhat more complicated and abstract than the

simple description above. According to the canonical description of MapReduce, the

user is responsible for writing two functions. The Map function takes a takes a key/value

pair as an input and processes it, producing an intermediate result in the form of a list of

other key/value pairs, often of different data types and taken from a different value

domain than the original input pair. Each execution of the Reduce function accepts a

single key ������ from the set of intermediate results and the set of values for that key.

The reduce function then processes its data and generates a result, often a single value

or some other data set much smaller than the input. Mathematically, given a set of

�input key/value pairs,

 {��������,��������, ���	
�����,��	
������, . . . , ��������,��������}	 (1)

for each of�inputs, a mapping is performed generating 	.
 new key/value pairs

 ������
�����,��

������ → {���,�
����	,��,�

����		, ���,�
�
����	,��,�
�

����		, . . . , ���,�.�
����	,��,�.�

����		} (2)

followed by the reduction mapping executed for each intermediate key,

 ������������� , {������� ,��	
����� , . . . ,�������}� → ������, (3)

where ������is the final answer for the intermediate key �������. Let 		be the total

number of unique intermediate keys generated. The final answer data set can be

11

generalized to the list of key/value pairs

 {�������� ,�������, ���	
����� ,��	
�����, . . . , �������� ,�������}. (4)

Data center processing frameworks, including MapReduce, are designed to be

fault-tolerant, even to the point of being able to gracefully handle entire racks of servers

becoming unavailable in the middle of a job. This is achieved by the master node

detecting a failure and moving the affected work to other available nodes.

Along with parallel processing frameworks, data centers employ highly-

distributed redundant storage systems like GFS [6]. Such systems ensure the availability

of data in case of server or even rack failures. Several copies of every piece of data

within the system are distributed throughout the network.

The administration and monitoring done within a data center can often be

viewed as a workload in itself. Prime examples of this are virtual machine migration and

software updates, which take up significant network bandwidth and CPU time. In the

context of this thesis, one should keep in mind that improving the performance of such

common management tasks can result in significant performance improvements in the

data center as a whole. Thus, such tasks are also of interest in modeling and observing

the performance of data centers.

2.1.3. Data Center Networking: What Holds it All Together

Data center networks are connected by a hierarchy of switches. The analogy of a

tree is of some use in this context. The smallest “branches” of this network tree are the

individual servers within the data center. These server nodes are usually organized in

racks, with each rack holding tens of servers. For simplicity, it is assumed that each

12

server has a single network interface for communication with other nodes. Each rack

also contains a network switch that routes traffic within the rack and serves as the

gateway for inter-rack communication. This is called a Top-of-Rack, or “ToR switch”.

Recent developments in data center designs have introduced the concept of a “pod”,

which can be thought of either as a bigger rack containing hundreds instead of tens of

servers, or an aggregation of several racks into a bigger structural unit. In the context of

this thesis, terms “pod switch” and “ToR switch” are used interchangeably because the

main concern here is the qualitative concept of the level of traffic aggregation above

individual servers, but below the network core. ToR switches are commodity switches

with tens to hundreds of ports with the lowest bandwidth capability in the network. In

practical networks, ToR switches are usually connected to another layer of aggregation

switches, most often higher performance switches than the ToRs. Most research articles

leave out this layer for simplicity. The next level, making up the “root” of the tree is the

network core. The core has traditionally been composed of very expensive high-

bandwidth switches that route traffic between the aggregation switches. The core

switches also act as gateways to wide area networks, and eventually, the Internet

backbone.

2.2. Optical Networking

The use of lasers and fiber optic cables to transmit data originally developed as a

way of achieving communication over long distances. In computer networking, optical

components have provided the building blocks of long haul and extremely high-

bandwidth Internet backbone networks. Recently, optical networking technologies have

13

been quickly making their way into corporate networks and data centers, and there has

been significant research effort into making these technologies more suitable for use in

non-backbone networks. Currently, the most common use for optics in the data center

is high-bandwidth data transmission between electronic switches, due to the fact that

data signals are getting too fast for electronic cables to handle efficiently over long

distances. Research has been focusing on using optical switches to unload electronic

switches and routers, making high data-rate transmissions more efficient.

2.2.1. Switching Mechanisms

Three primary switching mechanisms within networks have been identified and

studied by the research community. These mechanisms are packet switching, circuit

switching, and burst switching. Theoretically, each of these can be implemented in the

optical or electronic domain, although optical packet switching is not currently practical,

and electronic circuit switching along with electronic bust switching are generally not

seen as useful.

The traditional method most commonly used by the networking industry is

electronic packet switching (EPS). Packet switching is defined as having packet-level

granularity, where a packet is usually around 1500 bytes of data. This means that a

separate routing decision can be made about every individual packet traversing the

network at every node it passes. In electronic packet switching, this means that the

packet's header is interpreted by the router and the next hop of the packet is

determined by a routing algorithm based on the packet's final destination and the

previous information the router has about the state of the network. If a packet to be

14

routed through EPS is transmitted as an optical signal, which is often the case, it must be

converted to an electronic signal for processing and possibly back to an optical signal for

transmission to the next-hop node. This requires expensive transceivers and a significant

amount of power. Even if a packet is transmitted electronically, the high bit rates used

by modern electronic Ethernet also require a lot of power and complex cable

construction to ensure signal integrity. One of the ultimate goals of modern networking

research is optical packet switching – a theoretical method in which routing decisions

can be made about each packet individually at each node without converting the packet

to an electronic signal. However, this has not been achieved with current technologies,

so it is necessary to consider other switching methods that allow the packets to be kept

in the optical domain.

Optical burst switching has been the subject of much research emphasizing its

potential benefits to long-haul backbone infrastructure. In optical burst switching,

packets are queued until a large burst of packets with the same destination is collected.

When the burst is ready to be sent, a control packet traverses the network, instructing

core nodes to set up direct optical paths in anticipation of the burst's arrival. The burst

itself is sent shortly after the control packet, such that by the time the burst arrives at

any node, the node would have already processed the control packet and set up the

appropriate optical path for the burst. Optical burst switching in its current incarnations

involves significant scheduling complexity and extensive use of wavelength division

multiplexing, as well as the possible necessity of wavelength conversion. Generally,

optical burst switching networks deal with the need of bursts to travel through several

15

purely optical core nodes without optical-electronic-optical conversion. Implementation

of true optical burst switching is currently seen as too complex and expensive for data

center implementation. However, optical burst switching in simpler forms may also be

seen as a subset of optical circuit switching where the circuit lifetime is relatively short.

Optical circuit switching has been traditionally thought of as the ability to set up

a direct optical path between two nodes for a relatively long time. In the trivial case this

could involve a technician physically connecting two nodes to each other with an optical

cable. More realistically, in modern networks, this corresponds to automated switching

hardware configuring a direct optical path within the network either because some

client has purchased the use of a direct optical link between specific machines, or

because a network administrator (human or machine) has decided that such a direct link

would be beneficial to performance. Traditionally, optical circuits have had lifetimes

counted in days, months, or even years. However, more recently, optical link durations

have been getting shorter. Ongoing research into data center networking has utilized

optical circuits with lifetimes as short as tens of microseconds. There is no longer a hard

semantic distinction between optical circuit switching and optical burst switching, but

burst switching most often implies control packets going ahead of the burst through a

complex core network with the possibility of wavelength conversion, while fast circuit

switching most often refers to the case of a relatively simple optical core. The OCS core

is viewed as a single optical switch and not multiple switching nodes. It is reconfigured

by a single central controller based on a centralized control algorithm in which the

controller schedules and sets up optical circuits between nodes based on its perceptions

16

of present and future traffic demand. Such fast optical circuit switching is the subject of

this thesis.

2.2.2. Switching Hardware

Optical switching is essentially the act of setting up a direct optical light path

between two optical transceivers. Several devices are available for achieving this. The

most common device is a MEMS (Micro ElectroMechanical System) switch. These

devices contain several ports and a set of physical mechanically movable mirrors that

can route the laser beam being used for communication from an input port to any

output port.

Another common switching device is the wavelength-selective switch (WSS). This

device is a reconfigurable optical bandpass filter that can separate a range of

wavelengths from an incoming signal containing many wavelengths from many sources

multiplexed into a single fiber. A controller can use this device to select which data is

going to which destination in much the same way this is possible with a MEMS switch.

An important consideration in this area is the amount of time it takes to

reconfigure a switch. WSS switches are generally orders of magnitude faster to

reconfigure than MEMS switches, but they can only operate on limited sets of

wavelengths, while MEMS switches are completely wavelength-agnostic and can

generally switch signals carrying vast amounts of data on as many as 100 wavelengths.

2.3. Current Research in Optical Data Center Networking

The research community has been focusing on finding ways to use optical

components to augment electronic networks. Of particular interest is the idea of

17

offloading traffic-heavy slowly changing flows from the electronic switch to optical

circuits. This is most often achieved by adding an optical switching device to the core of

the network and finding some way to monitor demand for high-traffic connections.

2.3.1. Helios

Helios [10] is one of the first prototype networks combining electronic packet

switching with optical circuit switching to improve data center networking efficiency. It

achieves this by adding an optical switching fabric on top of an oversubscribed

electronic network. The research objective in Helios was to figure out a good way to

manage the allocation of the optical switching resources and measure the performance

improvement attained, comparing the cost and complexity of the novel system to an

analogous traditional system. The key observation motivating Helios has been the fact

that in current data center networks the designer must either go to great expense to

Figure 1: The Helios network topology.

18

build a complex network able to handle worst-case traffic scenarios and allow most of

the network to remain idle under most normal workloads, or run the risk of workloads

being bottlenecked by inadequate network bandwidth. Rather than statically

provisioning for the worst case, Helios provides a means of augmenting the network

with a pool of bandwidth that can be allocated where it is deemed necessary and

constantly reconfigured based on changing traffic patterns.

The Helios network is architected as a two-level multi-rooted tree. There is a

level of top-of-rack switches aggregating traffic from individual hosts, and a core level,

composed of a mix of optical and electronic switches, as shown in Figure 1. Note that

there is more than one possible path through the core between each pair of top-of-rack

switches – each top-of-rack switch has connections to multiple optical switches. Most

importantly, the network is designed to allow the strengths of the optical switches to

compensate for the weaknesses of the electronic switches and vice-versa. When high-

bandwidth connections are necessary, the optical switches are configured to

accommodate this need by taking on the heaviest flows of traffic. When traffic is bursty

and granularity in switching is necessary, the electronic switch handles this less

bandwidth-intensive demand. In the design of such a network there is a tradeoff to be

made between the resources invested in the electronic part of the network and the

resources invested into the optical part – a decision to be made based on the

anticipated workload characteristics of the data center. The example network in Figure

1 delivers full bisection bandwidth. However, only half of this bandwidth is usable at the

packet granularity, and the other half must be allocated by the optical switch manager

19

based on traffic demand measurements.

The Helios prototype that was constructed and tested consists of 24 rack-mount

servers used as hosts on the network, several commercial electronic packet switches,

and a 64-port Glimmerglass optical circuit switch. The optical and electronic switches

were subdivided into smaller switch topologies as necessary. The optical switch was

divided into up to 5 virtual 4-port switches, and the ToR switches were actually not

independent, but subdivisions of a single optical switch. This allowed greater flexibility

in configuring such a small-scale topology, making the prototype more realistic and

allowing more efficient use of available hardware resources.

The software implementation of Helios consisted of three primary components.

The circuit switch manger (CSM) was the unmodified control software of the

Glimmerglass switch. It provided an interface for managing the configuration of the

optical switch, but did not provide any feedback about when the switch started or

completed reconfiguration. The Pod Switch Manager (PSM) was a user-level program

running on each ToR switch (or pod switch, to use Helios terminology). Its primary

functions included initializing the switch hardware, managing the flow table for the

network, and communicating with the optical topology manager. The PSM was

responsible for multiplexing traffic between the optical network and the electronic

network. It achieved this with the help of Link Aggregation Groups (LAGs). A link

aggregation group is a way of combining multiple network connections in parallel – for

example, when a single pair of pod switches utilizes multiple optical links for

communication. The PSM on each pod switch kept a LAG for every other pod switch in

20

the network. Whenever an optical link was set up to another pod switch, the PSM would

add the newly set up link to the LAG of the corresponding pod switch. Whenever an

optical circuit was disconnected it would be removed from the corresponding LAG.

The most complex and important part of Helios is the topology manager (TM). It

is a software program running on a central management server, responsible for

estimating traffic demand within the network based on data gathered from each PSM,

and continuously recalculating the optimal switch configuration for the network based

on demand. Once the optimal configuration is calculated, the TM notifies the PSM of a

reconfiguration event and sends commands to the CSM to achieve the switch

reconfiguration.

The control loop run by the topology manager consists of six steps:

1. Measurement of the traffic matrix: this is achieved by polling each PSM for flow

rate data.

2. Demand estimation: in this step, the TM takes flow rate data collected from the

PSMs and calculates the max-min fair bandwidth allocation for each TCP flow.

This is a measure of what the flow rate of each flow would be if it were

traversing an ideal non-oversubscribed packet switch. In other words, this is a

measure of how much bandwidth the flow would use if it could have unlimited

bandwidth.

3. Optimal topology computation: in this step, the TM computes the optimal

network topology given the latest demand estimate. The problem formulated

mathematically is a set of graphs, one graph per optical virtual switch, matching

21

source-destination sets of vertices with edges to achieve the maximum total

edge weight, where edge weights are assigned from the estimated demand

metrics computed in the demand estimation step.

4. Notify down: the TM notifies all PSMs to stop sending packets to the optical

switch while it is being reconfigured in order to avoid dropping packets by

sending them into a vacuum.

5. Change topology: the TM sends the reconfiguration commands to the CSM and

waits for the reconfiguration to complete.

6. Notify up: The TM notifies the PSMs of the new topology and signals them to add

the newly configured links to LAGs in accordance with the newly configured

topology. The PSMs now start sending packets – through the optical network

when they are going to a destination to which an optical path is available and

through the electronic network otherwise.

The Helios team initially wanted to test the prototype using an implementation

of MapReduce, since it is a real application very commonly used in modern data centers.

However MapReduce only produced an aggregate throughput of at most 50 Gbps, which

was not enough to achieve the goal of stressing the network to its limits. To solve this

problem, the Helios team decided to use synthetic traffic generators, which are able to

supply arbitrary amounts of traffic because they are not constrained by CPU and I/O

speeds like real applications. The algorithms are parameterized by a stability variable,

which indicates the period of time the generator generated a uniform traffic pattern

before moving to the next iteration. Three synthetic traffic generation algorithms were

22

used:

• Pod-Level Stride (PStride): Each host in a source pod sends one TCP flow to each

host in a destination pod, rotating destination pods after every stability period.

• Host-Level Stride (Hstride): Each host sends 6 flows to another host. The hosts

rotate after each stability period, allowing for a gradual shift of traffic from one

pod to the next.

• Random: Each host sends 6 flows to another random host in a different pod.

Note that hotspots occur when multiple sources are sending to the same

destination.

The results of these synthetic traffic trials are shown in Figure 2. It is clear from

these results that the performance of Helios relies heavily on the characteristics of the

workload – specifically, on the presence of long, sustained flows between pod switches.

Bulk file transfers and virtual machine migration are ideal jobs for Helios, but

Figure 2: Test results from [Far10].

23

performance from other workloads where the traffic pattern changes slowly may also

benefit.

Another important factor for the performance of Helios is the directionality of

flows traversing optical switches. Since symmetric flows in which the traffic volumes

going in both directions are similar but not common in practice, Helios links should be

unidirectional. This implies that in a TCP flow, the bulk the data transfer travels through

an optical link, while lower-volume acknowledgment and control traffic goes through

the electronic packet switches. The traditional network is a non-oversubscribed

electronic network used as an upper bound of performance. The goal of Helios is not to

outperform the fully provisioned electronic network, but to provide similar performance

with significantly less cost and complexity.

Some of the most important information gleaned from Helios has been the

discovery of a set of inadequacies in the available hardware and corresponding control

software when used for hybrid networking, admittedly, a purpose none of the tools

were designed for. Most of the problems observed are relatively standard engineering

challenges which can be solved in the design of hardware. Thus, one of the biggest

contributions of Helios has been the presentation of new possible use cases for network

hardware vendors, and especially optical switch vendors to consider. For example, it is

noted in [10] that switching speed in the prototype was limited not by the laws of

physics governing MEMS switching elements, but sub-optimal switch control software.

Another example of this is a set of specific optimizations which improve the operation of

devices when used for their intended purpose within purely electronic networks, but

24

hinder the operation of a hybrid network – these features include electronic dispersion

compensation, link-down event handling, debouncing, and Ethernet's assumption that

all links are bidirectional. All of these features can be modified to function properly

within hybrid networks or at least not interfere with their operation, and Helios is the

prototype which first shed light on this set of issues for equipment vendors and the

research community to consider.

2.3.2. C-Through

C-Through [12] is another test platform for a hybrid electronic/optical switching

architecture. Like the previously discussed Helios, it incorporates a traditional electronic

packet-switched network alongside an emulated optical switching fabric. This testbed

does not use real optical components, emulating the optical switch by constantly

reconfiguring a traditional electronic packet switch to deliver packets only between

pairs of “currently connected” nodes and preventing communication during simulated

reconfiguration times, as would happen with a real optical switch. Simple testing shows

that this provides reasonably realistic behavior in terms of restricting communication

the same way a real optical switch would, but does avoid many problems that only

come to light when using real optical components – for example, properly handling link-

down events seen by network interface cards while a real optical switch reconfigures

connections. Note that this design decision also provides the benefit of bidirectional

connections without much additional effort. Bidirectional communication can be

achieved relatively easily when using most types of switches, especially wavelength-

agnostic ones like MEMS, by using circulators or multiplexing each data direction onto a

25

different wavelength, but it does not come so easily on other switching technologies,

such as the WSS-based switches discussed in the next section. The application traffic

tested is all TCP traffic and relies heavily on very short round trip delay between nodes

to facilitate TCP ramp-up, meaning that low-latency bidirectional communication

between any pair of nodes connected by an optical link is required. ACK packets must

get back to the sender right away, and cannot be allowed to wait in a queue because

the return connection is not currently available or are awaiting a decision on whether

they should go through the optical or electronic network.

As with any hybrid network, C-Through must measure the traffic demand for

each possible optical switch configuration and provision optical links accordingly. Unlike

Helios, this demand estimation is achieved at the host. The size of TCP per-flow buffers

used by the Linux kernel is increased from its default value around 128KB to a value on

the order of 300MB. A user-space management application periodically queries buffer

utilization for each flow using the netstat command and adds together the numbers for

all flows communicating with the same destination rack. The total utilization of buffers

within rack A whose destination hosts are in rack B is a measure of the demand for a

direct optical connection between racks A and B. In general, if this number gets high

enough relative to the demand between all other possible connections, then the

connection will be established until some other connection obtains a high-enough

demand metric to replace it. Note that while an optical connection is active, that

connection’s demand metric is being quickly depleted because the queues generating

the demand are being emptied through a high-bandwidth direct connection.

26

Mathematically, Wang et. al. formulate this as a maximum-weight perfect matching

problem [12]. The cross-rack traffic demand matrix is viewed as a graph, where each

top-of-rack switch is represented by a vertex, and each optical link is represented by an

edge. The weight of any vertex is the total demand metric for the hypothetical optical

connection it represents. The goal of the optical configuration manager is to find the

mapping such that each vertex is connected to one other vertex by a single edge and the

total weight of all edges utilized is the maximum possible. That is, the configuration

pushed to the switch should have the maximum aggregate demand matrix of all possible

configurations at the time step being considered. C-Through uses Edmonds' [11]

algorithm to solve this problem, observing that it runs in polynomial time and can

recompute the schedule for a thousand racks in several hundred milliseconds. While for

optical links lasting hundreds of milliseconds, this is adequate, faster switching requires

a much faster way of computing desired optical configurations, but the system would be

more forgiving of sub-optimal configurations.

One practical problem that C-Through runs into is the need to multiplex traffic

between optical and electronic networks. How does the system decide which packets

should go to the optical switch and which go to the electronic one? What if some

packets associated with a particular connection travel through the optical network, but

later the connection becomes unavailable? Traditionally, different network interface

devices connected to the same server would have different IP addresses, or at the very

least, different MAC addresses, making it difficult to switch interfaces once a connection

has been established. C-Through solves this problem by having only one physical

27

network interface at each host, but splitting traffic into two virtual interfaces, each of

which tags the traffic for use with a different VLAN – either the optical “VLAN-c” or the

electronic “VLAN-e”. The ToR switch is able to properly route traffic based on the VLAN

tag, and the higher layers of the network stack need not be concerned about which path

a packet traverses. The management application on each server keeps track of the

optical path availability information it receives from the central configuration controller,

and configures its own host's network stack to multiplex packets between the two

VLANs as appropriate: optical if possible, and electronic if necessary.

C-Through puts significant effort into making sure the traffic patterns used for

testing closely match those in real data centers. This is very important to C-Through

because the primary goal of the project is proving that hybrid EPS/OCS network

architectures are feasible in today's data centers with minimal to no modifications to

hardware and applications, and would deliver significant performance gains or cost

savings not on synthetically generated ideal-case traffic, but on real workloads and

applications running in modern data centers. The experiments performed track and

analyze the performance of three real applications: virtual machine migration,

MapReduce, and the MPI Fast Fourier Transform algorithm. These applications were

chosen because they are commonly performed workloads with varying degrees of

suitability for optical switching. Virtual machine transfers are the ideal workload for an

optically switched network because they involve long duration, bursty, highly

concentrated, high-bandwidth, one-to-one data transfers. MapReduce represents

distributed computing frameworks – one of the most commonly used classes of

28

applications in modern data centers. The traffic patterns generated by distributed

computing algorithms exhibit periods of bursty one-to-many and many-to-one traffic [7,

8], creating 'hostspots' of relatively latency-insensitive traffic which could potentially

benefit from the addition of a high-bandwidth optical switch to the network. The third

application, MPI FFT, was chosen as an adversarial case because it lacks centralization

[12].

The virtual machine migration test simulates a scenario in which all of the virtual

machines in a single rack are to be migrated to different racks, as would typically

happen when an administrator needs to shut down an entire rack for maintenance. As

expected, the performance of virtual machine migration was drastically improved by the

addition of an optical network when the electronic network was oversubscribed (as is

usually the case in data centers). In fact, an electronic network with a 40:1

oversubscription ratio augmented by an optical switch achieved performance

comparable to that of a network with full bisection bandwidth without the added cost

of complexity associated with full bisection bandwidth. This means that augmenting a

Figure 3: Test results of Hadoop sort on C-Through, copied from [Wan10].

29

data center network with C-Through would allow for much higher oversubscription

ratios in the electronic network without significant loss of performance during times of

high demand, significantly reducing the cost of network hardware.

While workloads involving virtual machine migration are run in the data center

only occasionally, parallel computing frameworks like MapReduce take up most of the

working life of many data centers of big data giants like Amazon and Google.

The test results of C-Through running such workloads show much promise. In the

case of 40:1 oversubscription, a purely-electronic network was crippled by a Hadoop

Sort (Hadoop is an implementation of MapReduce). When this network was augmented

with C-Through, it showed results that outperformed purely-electronic networks with

significantly lower oversubscription, as shown in Figure 3.

The MPI FFT algorithm looks like a difficult case for optical switching because it

requires tight synchronization and a significant amount of all-to-all communication. To

compute the FFT of a large matrix, a central node divides the original matrix into sub-

matrices and transmits each sub-matrix to a worker node. At run time, the algorithm

involves many exchanges of intermediate results between all nodes – a pattern

seemingly not suited for the slow switching times of an optical network. However, much

to their surprise, the C-Through team noted significant improvements to the

performance of the FFT computation.

As predicted, the reconfiguration time of the optical switch had significant effect

on performance. When the switch was reconfigured every 0.3 seconds, the addition of

the optical switch improved performance significantly. With longer reconfiguration

30

intervals, performance was still improved significantly, but not nearly as much as with

short reconfiguration intervals. This is logical, because a shorter configuration interval

more readily facilitates a fast system-wide synchronization which necessarily involves

all-to-all traffic.

The tradeoff that must be made when decreasing the reconfiguration time is the

duty cycle of the network. This is the percentage of total time that the switch is stable

and can be used for data transmission. This is expressed specifically in [9] as

 � � �������

��������������	
, (5)

where ������ is the amount of time it takes to reconfigure the switch and ����	
� is the

amount of time the switch remains stable before being reconfigured again.

Figure 4 shows the duty cycle of an optical network as a function of the

reconfiguration interval � � ������ � ����	
�. Note that this relationship is a hyperbolic

curve with the horizontal asymptote at unity (100% duty cycle). After T gets to be about

Figure 4: Diminishing returns of decreasing	����	
�.

31

ten times bigger than the switching time, the returns from further increasing �������

diminish significantly. This coupled with the fact that performance of tightly

synchronized applications like FFT calculation benefits significantly from shorter

reconfiguration intervals, leads to the conclusion that reconfiguration intervals should in

general be kept as short as possible, given adequate duty cycle. It is not surprising that

better granularity is good for application performance – recall that the ultimate goal in

this research endeavor is completely optical switching at packet granularity, and the

theme of most current research in this field is proving feasibility while balancing

tradeoffs to achieve optimal performance.

In hybrid network research, one must always be aware of cases where it is

tempting or even necessary to “compare apples to oranges”. The C-Through test results

are a good example of such a scenario. The conclusions drawn from the previously

discussed performance analysis are valid and no doubt promising, but there is an

alternative way of looking at the test results that one must keep in mind. The addition of

an optical network in parallel with an existing electronic network will, except perhaps

under certain adversarial workloads, improve performance because no matter how well

or how poorly the optical network is utilized, it still adds to the total available

bandwidth of the network. Consider the native bit rate of the purely electronic network,

designated as ����, as well as the bit rate of an optical links, designated ����, in the

trivial case of C-Through with an infinite reconfiguration time. This is equivalent to a

purely electronic network in which the bit rate of all links except one is ����, and one

link has a bit rate of ���� + ����. Given that the fast link is not completely unused, it is

32

not necessary to run any experiments to see that performance will improve when

compared to the original electronic network. Perhaps this would have been a better

base case for comparison with non-trivial C-Through. Another example would be an N-

node hybrid network in which the optical links simply traverse all nodes in a round-robin

fashion. It can be seen intuitively that such a network would outperform an

unaugmented electronic network with link rates equal to ����	for each link. Given a

workload of latency-agnostic all-to-all traffic, such a network would have performance

equivalent to a purely electronic network with all links operating at ���� + ����. If the

workload is such that each node is only interested in communicating with one other

node, the equivalent link rate would be ���� +
���
�

. To reiterate, this simply means that

the exact magnitude of the improvement is to some extent open to interpretation, but

it does not cast doubt on the fact that performance does improve. In general, a C-

Through network with 40:1 EPS oversubscription still significantly outperforms a pure

EPS network with only 10:1 oversubscription under most workloads.

2.3.3. Mordia

 The Mordia system [9], created at the University of California: San Diego, is an

improvement on previous work in the fast optical switching field. The most important

contribution of Mordia is the use of switching times in microseconds rather than tens of

milliseconds as seen in previous work. The work argues that the assumption that each

optical circuit must exist for close to a hundred milliseconds in order to justify several

milliseconds of switch setup time is not necessary and proposes a new network built

around an optical switch that takes only around 10 microseconds per reconfiguration.

33

The key component of the hardware testbed used is a novel optical switch that

uses a ring of wavelength selective switches along with several other components to

achieve switching times in the microseconds. The current system supports a total of

twenty four wavelengths for communication in a unidirectional ring topology. Each node

on the ring can inject a single wavelength. The wavelength that any given node injects

into the ring cannot change – it is determined by the laser wavelength of the SFP+

interface module of that particular node. Each node on the ring injects a different

wavelength using a passive add/drop multiplexer. The same multiplexer is also used to

filter out (drop) the wavelength injected by the current node in order to prevent the

same signal from traveling more than one lap around the ring and interfering with

subsequent transmissions. On the ingress side, each node has a passive optical coupler

with one input port and two output ports. This splitter takes in all of the optical signal

power traversing the ring and splits it into two fibers. One fiber continues the ring, while

the other fiber goes into a wavelength selective switch. Each node can configure its

wavelength selective switch to receive any one wavelength from the ring. Technically,

this topology can support unicast, multicast, broadcast, or loopback signal transmission,

but the implementation of the Mordia system is interested only in unicast transmissions

(single transmitter and single receiver). The authors describe this system as a “broadcast

and select network in which each fixed wavelength signal from each transmitter port

can be routed to any receiver port,” [13] noting that each of the SFP+ transceivers

utilized in such a system must be able to receive any wavelength used for transmission.

Additionally, since each coupler drops a percentage of total power from the ring to the

34

corresponding node's WSS, there must be amplifiers along the ring to keep up the signal

power. In the practical implementation constructed by the group at UCSD, the network

is actually split into six stations, each serving four nodes instead of having a completely

separate set of equipment for each node. Each set of four nodes shares a four-channel

WSS, a four-wavelength (bandpass) add/drop multiplexer, a coupler, and an amplifier,

along with some variable optical attenuators used for fine tuning signal power for each

node. There are two aspects of measuring the switching performance of such a system.

First, the switching time was measured using a test signal and an oscilloscope. It was

found that switch reconfiguration actually begins about 3 �� after the trigger signal is

sent to the switch. This is followed by about 2.25 �� of reconfiguration time, which is

followed by 6-7 �� of ringing. It was noted in [9] that communication may start before

the ringing stops completely. Secondly, there is the time that the phase-locked loop in

the network interface card takes to lock on to the signal – something that needs to

happen before communication can be established. In order to take both parts of the

switching time into account, Farrington, et. al. set up a test where the switch was put

between a sender PC transmitting sequence-numbered Ethernet frames and three

receiver nodes, and the switching time was determined based on the number of

dropped frames during each switch event. After the test was conducted over a sample

of a million Ethernet frames with 705 switch events, a mean switching time of 11.5 ��

with standard deviation of 2.5 �� was obtained.

The other major contribution of the Mordia system is a novel scheduling

algorithm called Traffic Matrix Scheduling (TMS). While previous hybrid network

35

implementations performed “hotspot scheduling” methods in which relatively slow and

complex algorithms were used to identify only the pairs of nodes where the extra

bandwidth provided by the optical switch was needed most, [13] argues that with

microsecond switching, serious attention must be paid to the computation time of the

schedule because schedule updates must now happen fast enough to keep up with a

10	�� switching time. Such fast switching also allows the assumption that the majority

of traffic can be transmitted over the optical network, not only the highest-demand

flows. The key idea is that the scheduling algorithm aims to connect each host to every

other host within a set scheduling cycle. For example, in a hypothetical network where

the scheduler needs to provide communication between eight nodes, the scheduler will

interconnect the nodes to each other in a round-robin fashion, with the amount of time

allotted to each configuration being proportional to a measure of total demand for that

configuration. The process repeats indefinitely with a fixed period, with the scheduler

computing the schedule for the next cycle while the current cycle is being run. The first

step of the algorithm is the acquisition of a traffic demand matrix (TDM). This is a matrix

that represents the current total traffic demand between each pair of nodes. In practice,

this could be the number of bytes buffered for each source-destination pair, or could be

obtained from some other source – the algorithm is independent of the specific source

of demand estimation data. Once the TDM is obtained, it is scaled into a bandwidth

allocation matrix (BAM), which represents the fraction of the total bandwidth 'desired'

by each source-destination pair, such that the sum of the values in each row of the

matrix is 1. Once the BAM is obtained it is decomposed such that

36

 ��� = ∑ ���
� �� , (6)

where ��is the fraction of total cycle time allocated to each possible switch assignment

matrix (permutation matrix) ��. Note that the set of matrices �� is pre-determined by the

network topology: every node must be connected to every other node at some point in

the schedule. There exist well-studied algorithms for achieving this decomposition,

which run in polynomial time or better.

The primary argument used by the Mordia team for the requirement of

millisecond switching and the infeasibility of TMS without such fast switching times is

the queue size required to support it. The equation given is

 � = ��	 − 1��, (7)

where �	is the queue size required, in bits, 		is the total number of ToR nodes, and �	is

the total slot duration which is also seen in the duty cycle calculation as ������ + �������.

Given the typical setup of a network like the previously-discussed C-Through or Helios,

� = 9����;	 = 64;� = 100����, yields � = 7.1��, which is too big to be practical.

If � is decreased by a factor of 1000, the queue memory required also decreases

proportionally, and 7.1MB queues per port are easy to handle. While convincing, the

importance of this argument should not be overstated – modern MEMS systems have

switching times on the order of 1	��, allowing for � = 20	�� → � = 140��, which is

not unreasonable. Additionally, this calculation takes into account full link utilization for

an indefinite period of time. In such cases, EPS networks run out of queue space and

start dropping packets as well. In practice, the general assumption is that networks are

rarely used at capacity. TMS does not necessarily require the use of an expensive

37

custom-built WSS switching system such as the one in the Mordia prototype, but the

fastest switches available are strongly preferred.

As of this writing, there has been no published implementation of TMS as

described in [13] in an optically-switched network. Farrington et al only provide a

general description of the method in order to present a feasible scheduling algorithm

for use with a microsecond-switched optical network, but do not test it – the Mordia

prototype as of the latest paper about it does not implement any demand estimation,

which is the required input for any kind of scheduling algorithm. The traffic used for the

published round of testing is synthetic all-to-all traffic, which results in a trivial switching

schedule in which each possible switch configuration gets an equal amount of time. The

idea itself, however, appears feasible and warrants further research, including

simulation and prototype testing.

To prototype the system, the Mordia team used commodity servers to emulate

ToR switches. This involved modifying the NIC drivers to ignore link-down events seen

by the card in order to keep the system ready to transmit during switch reconfiguration.

To achieve the necessary queuing behavior, they modified the operating system's

network stack and developed a custom queuing discipline which managed a separate

queue for every possible destination ToR switch. Whenever each node received

synchronization data indicating which destination node it was connected to, it would

drain the corresponding queue, while enqueueing all packets destined for any other

nodes. The switch would then reconfigure itself, during which time all packets coming

from the TCP/IP stack would be enqueued, until the next connection is established and

38

synchronized, and the cycle would repeat.

Originally the synchronization of ToRs to the optical switch schedule was to be

achieved by moving to the next schedule slot whenever a link-down event is detected

by the NIC. Due to limitations imposed by using commodity servers running non-real-

time operating systems and the fact that the NIC firmware was closed-source and could

not be modified, this could not be implemented. Instead, a separate all-electronic

control plane (and therefore separate set of NICs) was used to send synchronization

packets from the switch controller to each host. Good synchronization, accurate within

1 �� was generally achieved, but sometimes packets were dropped due to

synchronization “misses” caused by the non-real-time nature of the Linux operating

system. About 1% of sync messages were received at the wrong time, causing delays

and a 0.5% overall drop rate. Another hardware challenge turned out to be the 23	��

delay of the NIC, which forced packet transmission to stop 23	�� before link

reconfiguration started. In general, there were many hardware challenges that would

have been solved through the use of custom intermediate hardware which could be

designed specifically to facilitate OCS.

The Mordia system fared well in a performance evaluation using constant-rate

all-to-all synthetic traffic. The goal of the experiment was to see how Mordia compares

to traditional EPS in UDP and TCP data rates under ideal conditions. Given a 300 �� per

channel schedule slot duration (that is, ������� = 300����), UDP performance within

4.6% of EPS and TCP performance within 12.1% of EPS was achieved. The law of

diminishing returns starts applying to this setup for circuit duration greater than 200-

39

250 ��, but below that, network performance is significantly reduced – with TCP

performance falling by 66% with a slot length of 61 ��. Latency was not mentioned in

the paper, but assuming that the network is utilized below full capacity, a latency bound

is easy to estimate:

 ��� = � ∗ 	. (8)

For example, �300��� �ℎ!""#$⁄ ���23��ℎ!""#$��� = 6.9���� in the unfavorable case of

a packet arriving in the queue just after the time slot for its destination has ended. In

this case, the latency seems acceptable for most applications. However, latency may

pose scalability problems for networks with a large number of ToR nodes and optical

switches with high port counts. This becomes another compelling argument for using

fast switches, like the novel WSS-based design presented by Mordia, in OCS/hybrid

networks. Mordia claims the ability to create a high port count optical switch by stacking

rings and gives an example of stacking eight 88-channel rings to obtain a 704 channel

switch. However, note what this does to the queuing delay bound for packets:

�300��� �ℎ!""#$⁄ ���704��ℎ!""#$��� = 211.2����, not including any other delays the

packet may encounter and with network demand remaining below the link rate. Many

data center applications have been shown to work well with comparable or higher

latencies [12], but such potential delays warrant the extra effort involved in reducing

them, for example, including a low-bandwidth EPS network alongside the OCS network

to alleviate this problem for packets that require lower latency, as was done in previous

OCS/hybrid network implementations.

40

3. Proposed System

This thesis work proposes a hybrid electronic/optical network architecture in

which unmodified traditional electronic network hardware can be augmented by the

insertion of an optical switch with controller hardware and an optical crossconnect

interface (OXCI) device at every rack. The OXCI will sit between the ToR switch and the

core network, multiplexing traffic between electronic core and the optical core switch,

while collecting traffic demand data to allow the optical switch controller to make

appropriate switching decisions.

3.1. Motivation

The primary motivation for this work is the fact that simply modifying existing

commodity hardware is becoming inadequate as a method of implementing a hybrid

data center network. First of all, commercial data centers cannot forgo the use of

closed-source hardware and software which cannot be modified in the ways required to

make a hybrid network functional. Secondly, hybrid networks require fast switching

times for traffic granularity. Recently, major improvements have been made in switching

element design. Technology is now reaching a point at which scheduling algorithms and

control loops running on general-purpose computing hardware are unable to keep up

with switching times and manage the optical switch efficiently. Third, as the basic

concept has been proven, it is getting harder for researchers to try new algorithms and

network topologies in an environment where all readily available components are

closed-source and all but impossible to modify. A separate piece of hardware to manage

the interaction between the optical and electronic networks is the next logical step in

41

this field of research. Initial commercialization of this technology can occur with

separate hardware for the optical section of the network as described in this work. Once

the technology has been proven and industry is willing to use it on a larger scale, switch

manufacturers will likely be motivated to integrate already existing OXCI functionality

into their new hardware designs.

3.2. Proposed Network Architecture

To overcome the limitations and challenges described above, a new data center

network architecture is proposed, incorporating the previously described idea of a high-

bandwidth optical core augmenting a heavily-oversubscribed electronic core network.

This system adds hardware to the hybrid network that would prevent any kernel and

hardware modifications to the servers, electronic switches, and network interface cards,

 Figure 5: Proposed network architecture.

42

while still providing necessary data collection, queuing, and scheduling to implement a

hybrid network and manage the optical switch.

3.2.1. System Architecture Overview

The proposed network shares significant similarity with both traditional data

center networks and previous optical circuit switching proposals. The key differences

are the introduction of custom electronic management and support hardware purpose-

built for this application and a much cleaner interface between optical and electronic

sections of the network, which make the added optical network completely transparent

to standard data center components.

The overall architecture of the proposed network is shown in

 Figure 5. All of the traditional electronic network components are present within

the proposed network with unchanged roles and configuration. Servers and the

applications running on them are the primary users of the network, providing the

workload. Currently, data center applications tend to be written to take advantage of

existing network topologies [5], and future applications can and should be optimized for

future network architectures. However, it is desirable that the current generation of

applications and servers be able to achieve good performance on a new network

architecture without modifications. In view of this, the proposed architecture is

designed to require no modifications to the applications or system software running on

the servers. In fact, the performance of the proposed network is evaluated with the

primary goal of good performance on workloads that model the unmodified behavior of

applications currently used in data centers.

43

Electronic Top-of-Rack (ToR) switches are also kept in their original state within

the proposed network. As in traditional networks, they provide communication within

the rack and serve as the gateway for communication with destinations that are not on

the rack-local network. The only difference is in the way they are connected to the other

ToR switches. Instead of connecting directly to an electronic core that facilitates

communication between racks in the data center, each top-of-rack switch is connected

to an Optical Crossconnect Interface (OXCI), which performs management functions

related to interfacing with the optical section of the network.

The Optical Crossconnect interface is the novel aspect of this research. It is a

hardware device that sits between the top-of-rack switch and the two core networks. Its

primary job is to multiplex traffic between the electronic and optical network, while

transmitting and receiving high-bandwidth traffic to and from the high-bandwidth

optically switched network. Although this thesis work presents a specific

implementation of this device as an example, the key innovation is the addition of a

separate device that handles the functions specific to hybrid optical/electronic networks

while allowing all pre-existing network hardware and software to operate without any

modifications or even knowledge of the hybrid nature of the core data center network.

The electronic network core remains largely the same as in traditional networks.

Instead of being connected directly to ToRs, it is now connected to the OXCI devices,

which decide which traffic traverses the electronic core. As in traditional networks, it

can be composed of either a small number of large switches or many smaller

commodity switches arranged in a multi-rooted tree utilizing multipath routing. The

44

benefit of new hybrid network architectures, including the architecture proposed in this

work, is the possibility of significantly increasing the oversubscription factor of the

electronic network without losing performance due to the addition of an optical

network to relieve congestion of the electronic network by bandwidth-heavy flows. It is

desirable to allow the optical network’s control plane to monitor congestion within the

electronic network in order to efficiently manage the amount of traffic it routes to the

electronic network. Fortunately, the facilities for such congestion monitoring already

exist within modern electronic switching hardware and can be taken advantage of. One

new task to be performed by the electronic core is the routing of control and

synchronization packets for the optical network. Existing quality of service (QoS)

features of electronic switches can be used to give these most important packets a high

priority.

The optical switch is the hardware component that ties the optical part of the

core network together, providing direct connections between nodes. There are many

architecture and switching technology options for implementing such a device. Many

different topologies can be built from different basic elements that vary in switching

speed and reliability. While the proposed architecture is technically independent of

specific optical switch type, this work assumes sub-millisecond and millisecond

switching times, such as the ones achieved in the Mordia testbed [9] or the ones

available with the fastest modern MEMS switching elements [14].

The optical switch is managed by a central optical network controller. While

OXCI devices can be seen metaphorically as the “nerve centers” of the network, this

45

central controller is the brain. It is the central entity that collects information from all

OXCI devices, making network-level decisions and distributing scheduling and other

information to the rest of the network. This device directly controls the optical switch,

implementing the decisions it has made.

The proposed network architecture is described solely in the context of IPv4 and

Layer-3 switching at the core for simplicity, but can be extended to IPv6 with some

additional hardware resource use to handle the longer IP addresses.

3.3. Optical Switch Controller

Most past research has used general-purpose computers for evaluating demand

data and calculating the optical switch schedule while using separate FPGA-based

hardware to control the switching elements. Since switch controllers from most

previous systems already were based on high-performance field-programmable gate

array (FPGA) reconfigurable logic hardware that was being underutilized, and schedule

computation time is becoming increasingly more important, the proposed system

merges management functionality into the optical switch controller. Specifically, the

optical switch controller performs the following tasks:

• Gather real time demand data from all OXCI devices.

• Compute the optical switch schedule.

• Send forward scheduling data to all OXCI nodes.

• Interface with optical switch hardware and carry out the switching

schedule.

• Act as a clock master for timing synchronization.

46

3.3.1. Data Collection

The optical switch controller gathers real time demand data from all OXCI

devices. To avoid the extra latency associated with polling, all OXCI devices periodically

send demand statistics to the optical switch controller. The controller is assigned an IP

address on the electronic network. Any packet with the controller’s IP address as the

destination is assumed to be a control packet.

The packet format for Traffic Demand Report (TDR) packets is specified in

Figure 6. The TDR packet can contain traffic demand data for up to 180

destinations, with each listing taking up 8 bytes for a total of 1440 bytes which, with

headers, fills the standard 1500-byte Maximum Transmission Unit of Ethernet (normal

frame).

To facilitate scalability, ToRs do not report the demand metric for every possible

destination. Instead, only the destinations whose demand metrics meet the reporting

threshold are reported.

Figure 6: Traffic Demand Report packet format; headers not to scale.

47

The report for each scheduling cycle is generated immediately after the ToR

node receives the upcoming optical switch schedule. The switch controller waits until a

reporting deadline has passed and begins to process the demand data it has collected

from the network. If data from a node does not arrive before the deadline, it is

considered dropped, and the demand data from the last report received from the node

is used in the current schedule computation. This process is shown in Figure 7.

3.3.2. Optical Switch Schedule Computation

The optical switch controller must use demand data collected from the OXCI

devices to compute an optical switch schedule. Unlike Helios and C-Through, the

proposed network does not schedule the optical switch to constantly provide

bandwidth to the few flows that need it most. Instead, the proposed system follows

Mordia’s approach of having a schedule computation cycle in which every possible set

of connections is established in a cycle. Unlike Morida, which does not retain a parallel

electronic core network, the proposed system is able to make up for scheduling

Figure 7: Demand report collection.

48

mistakes with the help of the electronic network, so the scheduling algorithm can be

simpler, and therefore significantly faster.

One of the schedule computation algorithms that the proposed network can use

is Traffic Matrix Scheduling (TMS), the algorithm described in [9] and summarized in

Section 2.3.3 of this thesis. Recall from Section 2.3.3 that traffic demand data is

aggregated into a traffic demand matrix (TDM), which is scaled to form the bandwidth

allocation matrix (BAM) such that its row sums and column sums are equal to 1. The

BAM is then decomposed such that

 ��� = ∑ �����
� , (9)

where each �� 	represents a switch configuration and the constant �� represents the

fraction of the scheduling cycle’s time spent in that configuration. As suggested by [9],

Sinkhorn’s Algorithm [15] can be implemented for matrix scaling and von Neuman’s

Algorithm [16] for decomposing the bandwidth allocation matrix to obtain the optimal

list of ��, which is the resulting optical schedule, to be calculated every scheduling cycle.

Since these algorithms can form the basis of the scheduler, it is most convenient to

implement them to utilize application-specific coprocessors in a field programmable

gate array or even application specific integrated circuit.

The proposed network takes another step in reducing the complexity of the

scheduling algorithm, further reducing computation time. While there can be up to 	!

connection permutations possible with an 	&	 optical switch, it is sufficient to select a

subset of 	 of these to connect every pair of nodes. If a constant subset of 	

permutations is selected to be traversed in 	 scheduling cycles in a constant order (the

49

order makes no difference), the only variable that remains is the amount of time

allotted to each schedule slot. The amount of time in a fixed-length schedule cycle can

be allocated proportionally to the sum of all source nodes’ demands for each

permutation. An example of this process is given in Figure 8. A randomly-generated

demand matrix (top left) is given where each row represents a possible source node for

an optical circuit, and each column represents a destination. Note the zero-based

numbering in this instance. The value of the entry for each source-destination pair is the

demand metric for a connection to the destination as reported by the source. The top

right frame shows the demand matrix with boxes around entries corresponding to

permutation �1, where node zero is connected to node one, node one to node two, and

so on. The total demand for each switch permutation is calculated in this manner, giving

a result in arbitrary units. Finally, the demand numbers for each permutation are

normalized to the total amount of available time in the scheduling cycle. This algorithm

has linear computation complexity, meaning it can be used when controlling even

extremely fast switches.

Figure 8: Demand-proportional schedule calculation.

50

3.3.3. Schedule Distribution

The optical switch controller must communicate the upcoming schedule to the

OXCI nodes attached to each rack. As with demand data collection, for ease of

processing, the protocol is kept as simple as possible. Since all OXCI nodes and the

optical switch controller are synchronized in time, and schedule computation takes a

deterministic amount of time, each OXCI device knows exactly when the switch

controller is ready with the schedule.

The switch control node sends the schedule to all nodes as soon as it is available,

utilizing a broadcast IP address that includes the core-side interfaces of all OXCI devices

on the network. Note that the set of all possible boolean matrices �� describing optical

switch configurations is known, so specific matrices need not be transmitted. Thus, the

packet format for schedule transmission can be kept small. In the proposed

architecture, the schedule notification packet is formatted as described in Figure 9.

Figure 9: Schedule Notification packet format.

51

This packet contains a list of permutation/duration pairs that compose the

schedule. Both of these quantities are 16-bit values. A schedule notification packet that

fits within the standard Ethernet MTU can contain up to 360 records. The unit of the

specified duration is timer ticks, where the duration of a timer tick, �� is the

fundamental unit of time measure within the network’s timing system. The exact value

of this parameter is determined by system parameters such as achievable time

synchronization accuracy and total scheduling cycle length. If a particular permutation is

to last longer than 65535	��, its permutation number can be repeated more than once

in adjacent records.

3.3.4. Optical Switch Schedule Fulfillment

The optical switch controller must interface with optical switch hardware and

carry out the switching schedule. The act of carrying out the computed switch schedule

must be abstracted away from the specifics of switching technology as much as

possible. This is achieved by designing an abstraction layer and switch driver interface

into the switch controller that would allow any switching technology and switch

topology to be used without affecting any of the higher-level algorithms.

The schedule computed by the switch controller is a list of configurations over

time, but does not indicate what signals need to be sent to the optical switch hardware.

To actually interface with the switch, the controller needs switch driver hardware that

will power the optical switching components and provide a means of transmitting

control signals to the raw optical switches, such as GPIO pins or a full featured

communication bus like SPI or I2C. The controller also needs knowledge of the

52

communication and control protocol implemented by the fundamental building blocks

of the switch. This can be as simple as the respective meanings of zero and one states

on a GPIO line or as complex as a set of configuration registers to be written. The

controller may also need knowledge of the specifics of the internal topology of the

optical switch and an algorithm for mapping sets of source-destination pairs to the

signals required to achieve the desired configuration. To better grasp the potential

complexity of this task, some concrete examples are considered. Figure 10 shows two

switching element types commonly used in the construction of larger switches. These

and other basic switching elements can be implemented using a variety of technologies

[14, 17, 18]. In practice, a large quantity of these basic switching elements can be

interconnected to form a switch with a high port count. There are many different

topologies for interconnecting such switching elements, some of the most common

ones and their characteristics are described in detail in [19].

Figure 10: Two types of fundamental switching elements.

53

Figure 12: Topology information maintained by the switch controller.

If one is controlling each switching element directly, the act of achieving a

certain input to output port mapping in a non-trivial switching topology, such as a larger

version of the Benes network in Figure 11, is far from trivial and requires a specialized

algorithm. Alternatively, one can use bigger fundamental building blocks, such as the

16x16 integrated optical switch described in [20]. Such high port count integrated

modules will probably be the optimal choice when they become commercially available,

but interconnecting and controlling them will still not be a trivial task. In light of this

Figure 11: A 4x4 Benes network can be built from 6 crossbar elements.

54

great variety and constant change in optical switching hardware, the network proposed

in this paper does not limit itself to any particular type of switching fabric, but provides

an interface for the use of interchangeable control hardware and firmware drivers. To

describe the implementation of such an interface, begin with the fact that the optical

switch controller maintains in memory a list of all possible switch configurations ��.

Although in discussions of scheduling algorithms, it is easier to think of each �� as

a boolean matrix, it is more practical for them to be stored as ordered source-

destination port pairs 	
�
�� ,
�

����� where
 represents an optical switch port. The

optical switch controller also maintains another list of ordered pairs �� ,
�� where �

represents a rack-level OXCI node identified by its IP address, and
 represents an

optical switch port, identified by its port number. This relationship is illustrated in Figure

12. These lists are populated during system configuration and maintenance, but are not

changed during normal operation.

Figure 13: Role of low level switch driver within the optical switch controller.

55

The set of �� is defined by the low level switch driver, since it is the only element

with knowledge of the switch fabric’s physical capabilities. In order to carry out the

schedule, the switch controller places configuration/duration pairs (��,������) into a

FIFO maintained by the low-level switch driver, where ��represents the configuration to

be executed and ������ is the total time allotted to the schedule slice with configuration

��, including switch configuration delay. This flow of information is illustrated in Figure

13. Once ������ has elapsed, the low level switch driver moves on to the next entry in the

FIFO, or maintains the current configuration if the FIFO is empty. The scheduler may

choose to use only a subset of the complete list of configurations. For example, the

switch in Figure 12 has loopback capability, represented by �
. In practice, OXCI devices

have no reason to report any demand for loopback traffic since all rack-local traffic

would have been already handled by the ToR switches, so the configuration �
 will not

be used during normal operation.

3.3.5. System-Wide Time Synchronization

In order to allow other parts of the network to determine accurately what part

of the schedule the switch in currently in, the switch controller must also act as a clock

master for timing synchronization between all OXCI devices. This task is key to the

operation of the entire system, because any inaccuracy in time synchronization between

OXCI nodes and the switch controller can lead to significant and consistent data loss.

Early implementations of hybrid data center networks either switched optical

paths too slowly to need precise timing synchronization between nodes [10] or were

willing to put up with some timing inconsistency to simplify implementation.

56

Experiences with Mordia [9] made it clear that any commercial implementation of a

hybrid network must be able to keep consistent timing synchronization across the entire

network and that this synchronization must be precise to microseconds or better. It is

possible to implement timing synchronization using a custom synchronization protocol,

but such methods introduce too much cost and complexity for this application, and

would alone constitute significant research effort. Fortunately, a technology for

achieving the timing synchronization requirements of hybrid data canter networks

already exists. Precision Time Protocol, IEEE standard 1588 [21], is a protocol for

achieving tight timing synchronization between network-connected devices. Under

nearly ideal conditions, it has been reported [22] to achieve accuracy better than 10 ��,

and there is research [23] showing that given enterprise-grade “cut-through” switches,

such as the ones typically used in data centers, it will achieve sub-millisecond precision

even in cases of significant network congestion. PTP support is already available in

Figure 14: PTP synchronization within the proposed network.

57

mass-produced switches from manufacturers like Cisco [24] and IBM [25], making it an

obvious choice for this application.

The topology of the network from a PTP point of view is shown in

Figure 14. PTP synchronization within the proposed data center network is

achieved through the electronic side of the network, with the optical switch controller

acting as the “grandmaster clock”, the EPS core switch or switches configured to be

transparent clocks, and the OXCI devices acting as slave clocks synchronized to the

grandmaster.

3.4. Optical Crossconnect Interface Device (OXCI)

The optical crossconnect interface is placed between the ToR switch and the

hybrid network core. It performs the following tasks within the system:

• Queue traffic coming in from the ToR until it can be classified as EPS or

OCS.

• Multiplex traffic between the OCS and EPS core networks.

• Manage per-destination queues for the OCS network.

• Compute and report demand metrics for each destination.

• Synchronize timing with optical switch controller.

• Send packets from optical queues, as indicated by the optical switch

schedule.

• Facilitate multi-hop OCS delivery.

3.4.1. Ingress Traffic Queuing

The OXCI device must queue traffic coming in from the ToR until it can be

58

classified as EPS or OCS. This can be achieved using a modest amount of fast memory

such as commercially available DDR3. Multiple chips need to be used in parallel to

achieve sufficient data rate.

3.4.2. Optical-Electronic Multiplexing

In order for the system to operate efficiently, traffic must be optimally

multiplexed between OCS and EPS core networks. In general, slowly-changing flows

transmitting large amounts of data should be routed to the optical network, while low-

data, latency-sensitive flows should avoid queuing as much as possible and are best left

to traverse the electronic network.

This multiplexing is one of the most complex tasks that must be performed

within a hybrid network. Ideally, the OXCI device would constantly have knowledge of

future traffic patterns and be able to make optimal queuing and multiplexing decisions

about every packet before it arrives. In general, such knowledge is impossible to possess

but in practice, one can often make a set of safe assumptions about future traffic based

on the characteristics of present traffic. For example, it is often the case that if the TCP

transmission window continues to grow at the maximum allowed rate for the first

several packets, it will continue to grow for some time. There has been research

specifically focusing on the prediction of future traffic within a data center environment

based on observations of the recent past. For example, the B-Alarm [26] algorithm

claims 85% accuracy in predicting traffic bursts within a data center. Another, simpler

approach which has already been used in a hybrid data center network [10] is TCP fix

point prediction, which predicts the size of a flow’s transmit window if it were operating

59

in an ideal non-oversubscribed environment, an algorithm described in [27]. These

algorithms would take significant effort to implement in practice, but would likely give

performance more worthy of commercial use. The key observation when considering

traffic prediction in the context of multiplexing traffic between the two branches of a

hybrid optical/electronic network is simply that flows with constant heavy traffic are

better suited for optical transmission, while flows with intermittent traffic are best left

traversing the electronic packet-switched network.

The proposed system keeps a list of all destinations potentially reachable

through the optical network along with a Circuit Demand Metric (CDM) for each of these

destinations. Currently, this is the TCP fixpoint quantity as discussed above, although

many other algorithms may be used. The fixpoint algorithm generates a metric that

measures a flow’s total traffic demand. Only flows that meet a threshold are considered

for queuing for the optical network. This reduces fairness because greedier flows are the

ones the get the most bandwidth, but it also significantly improves network

performance. Although the scheduling algorithm traverses all source-destination

combinations and packets can eventually get to any destination using only the optical

network, the electronic network is still present and must be utilized optimally. Especially

with a fast optical switch, the focus should be on picking the flows that are most likely to

benefit from the electronic network.

To optimize the use of the optical network, the OXCI also keeps track of a

parameter called the Packet Congestion Metric (PCM). This is an indication of the

amount of congestion in the electronic network. In the proposed network, it is the total

60

throughput handled by the electronic switch.

The decision on whether to send a particular packet to the optical queues or the

electronic network is handled at the destination level, not at the flow level. Each

destination is periodically classified as either an “optical destination” or “electronic

destination”. The decision about whether each destination is an optical or electronic

destination is based on whether the CDM of the flow is higher than the CDM threshold,

������� , where ��������	is a function of the PCM such that

 �������� = �(1 − # �	�"�), (10)

where A and m are empirically-determined tunable parameters. This relationship

between optical-electronic multiplexing and electronic network congestion ensures that

the electronic network is never overly congested, even though it can be significantly

oversubscribed. This is extremely important because the electronic network carries all

control traffic within the hybrid network, and without the proper operation of the

electronic network, the optical network cannot be utilized optimally.

3.4.3. Per-Destination Queues

For traffic that has been multiplexed into the optical section of the core network,

the OXCI must manage per-destination queues. Possible problems that must be

prevented at this point are queue overflows and excessive latency due to a packet

waiting in queue longer than one scheduling cycle.

The OXCI maintains an independent queue for each possible destination ToR

within the network. At current switching speeds, this is feasible and scales even to

relatively large networks. For example, assume the case of a 3000-server cluster

61

containing 30 servers per rack in 100 racks. With a 20Gbps incoming link rate from the

ToR switch to each OXCI, and a 20ms scheduling period (the set of all source-destination

combinations scheduled every 20ms), the worst-case optical queue utilization would be

20	���� ∗ 20	��/8
#$%&

#'%(
	= 	50�� per queue. This could require a total of 5GB of

memory for the per-destination optical queues. In a typical use case, the system would

not be driven to such extremes, and memory would be dynamically shared for all

queues, but the proposed would be able to handle even difficult cases with statically

allocated memory.

It is important to ensure that packet latency is kept to a minimum. Packets

heading to all destinations that are classified as packet-switched destinations by the

multiplexing algorithm are never put into optical queues. Packets remaining in any

optical queue that has not been serviced by the optical scheduler are drained into the

electronic network as soon as possible. For example, consider the situation where a

queue has 10MB of data in it, but has only been allocated time to transmit 8MB during

the next optical scheduling cycle. This queue will be partially drained by 2MB into the

electronic network to reduce the number of packets that have to wait for more than

one scheduling cycle for transmission.

3.4.4. Demand Metric Reporting

The network can be thought of as a control loop, which must have a feedback

path for stability and good control. The OXCI provides such feedback in the form of

demand metric reports for each destination sent to the optical switch controller. Using

this information, the switch controller can calculate the schedule, which is the control

62

system’s output. After each scheduling cycle, the OXCI determines how much optical

switch time to request based on the performance of the previous scheduling cycle and

how much new data has arrived into the per-destination queues discussed above.

The simplest demand metric usable for the allocation of optical circuits is queue

utilization. With this demand estimation scheme, the demand metric for a given

destination is simply the number of bytes in the corresponding optical output queue.

This approach suffers from several disadvantages. First, it does not take into account the

fact that each queue is serviced at a different time. Consider an example where two

optical circuit queues are being filled at the same rate and are being completely drained

with each scheduling cycle as the electronic/optical multiplexing algorithm attempts to

combat latency. The two destinations are serviced at different times, but the demand

metric is taken at a single point in time for all destinations. The total throughput is

higher for the flow that gets serviced earlier by the scheduler because it consistently has

a higher demand metric during the time at which the queue utilization is sampled. To

prevent this, the proposed system does not sample the queue utilization directly, but

counts the amount of new data that arrived from the ToR switch for the given

destination since the last sampling point. This allows the demand metric to account for

demand regardless of whether it was met in the current cycle. This is desirable if the

assumption that the throughput any flow does not often change rapidly holds true. This

is the first term to be used for the calculation of the total demand metric – the input

parameter��).

Although it is undesirable to always force dependence of the total demand

63

metric on the amount of traffic already serviced or to be serviced during the current

cycle, there may be cases where it should be included in the calculation while being able

to control the extent of such dependence. Therefore, the concept of already-serviced

traffic is re-introduced back into the equation using the parameters��.���, defined as the

amount of throughput already serviced by the EPS network this cycle, and ��.���, defined

as the amount of traffic that can be or has been serviced in the optical time slot

allocated to the current flow in the most recent optical switch schedule received. The

advantage of ensuring that these have no direct effect on any other terms in the

equation is that they can be weighted independently.

While the multiplexing algorithm will try to route any packets remaining in the

optical queue to the electronic network, other uses of the electronic network take

priority over this queue flushing operation, and it may not always occur, especially when

the electronic network is already loaded. When this happens, the OXCI should be able to

increase its demand metric in an attempt to prevent any packets from experiencing

unusually high latencies. To facilitate this, each packet entering the queue will be time

stamped. Each time the demand metric is calculated, the term �*� will serve as an

indicator of the age of the oldest packet in the queue. The parameter �*� need not be

the packet age itself. In fact, it is preferable for it to generalize to a nonlinear function of

the age depending on the emphasis to be placed on latency reduction.

Due to the nature of TCP and its congestion control and avoidance algorithms,

the transmission rate of any flow that has been observed to grow in the recent past can

often be expected to continue growing until it levels off at a maximum. This behavior

64

makes the derivative of the input rate parameter very useful in determining the demand

metric. The system can make the assumption that if ��)has grown in the last cycle, it can

be expected to grow at the same rate next cycle. Keeping in mind that the goal of the

demand metric is not only to indicate the current demand for an optical circuit at the

time it is calculated, but also to predict the demand for the time of the next scheduled

optical circuit, the input rate change parameter �+�) is included as part of the demand

metric calculation.

Finally, the general equation for the demand metric for destination ' at OXCI

number	
 is:

 �,
�,�

= (�)��) + (�,�����,��� + (�,�����,��� + (*��*� + (+�)�+�). (11)

The constants (in this equation represent the weights of the various terms. They are

all empirically determined from simulation and experiments, and their optimal values

can vary depending on specific work load and network. The complete network can be

thought of as a discrete-time control system with the demand metric equation

representing one of many transfer functions. The inputs of this control system represent

the incoming data rates and other characteristics of the traffic coming in from the ToR

switches. The actual optical and electronic network throughputs for each flow can be

thought of as the outputs of the system. There are also many different feedback loops.

In general, this system is too complex to be modeled analytically, but it can be

simulated, prototyped, examined, and most importantly, empirically tuned like any

other control system.

65

3.4.5. Time Synchronization

The OXCI device uses Precision Time Protocol to synchronize to the master clock

run by the optical switch controller as described in Section 3.3.5. The time reference

allows the OXCI to accurately coordinate the following events with the optical controller

and other OXCI devices:

• Transmission of packets into the optical network.

• Sampling of the various components of the demand metric.

• Transmission of the demand metric report to the optical switch

controller.

3.4.6. Schedule Fulfillment and Data Transmission

Given adequate time synchronization, the OXCI device knows what state the

optical switch is in, and therefore knows which destination it has an optical link to at any

time. The OXCI must send packets from optical queues, as indicated by the optical

switch schedule: this is the function of the OXCI that all other components are designed

to support and optimize.

When the time slot allotted to any given destination comes, the queue for that

destination is drained into the optical output port. Significantly, for a certain amount of

time, the OXCI is not transmitting any packets at all into the optical network because the

switch is in the process of being reconfigured and no connection is actually established.

Along with reconfiguration time, there is additional guard time around each period of

reconfiguration. The length of this guard time consists of two components: switch

reconfiguration uncertainty and time synchronization uncertainty. Many switching

66

fabric vendors specify their products’ switching time with a very significant safety factor.

For example, the Helios team discovered [10] that the switching time specified for

Glimmerglass is actually much faster than specified, due to the fact that the

manufacturer includes a long period of ringing after the switch as part of the switching

time, even though the connection is usable for digital communication long before the

switch’s control loop stops ringing. The trend in hybrid networking research so far has

been to overlook manufacturer’s switching time specifications, which usually specify

switching time for analog signaling purposes, and measure the average time from the

breaking of the previous connection to the time the switch stabilizes enough to support

a digital communication and call that the “reconfiguration time” of the switch. The

actual switching time varies for every switching event and can generally be modeled by

a normal distribution for most switches. Due to this, if the OXCI simply waited for the

average reconfiguration time between each destination’s time slot, it would be

guaranteed to lose some packets half of the time. To prevent this, a reconfiguration

uncertainty guard time �-� is necessary. This is a set of constants that is experimentally

determined for a particular switching fabric. For some optical switching fabrics, this time

may be different depending on the specific reconfiguration event (depending on the

number of series switching elements being reconfigured, etc.), so this value is best

handled by the low-level switch driver, as described in Section 3.3.4. Generally, it should

be some multiple of standard deviations of the actual switching time.

The second part of the guard time, namely, the PTP synchronization guard time,

�-�, is meant to account for inaccuracy of time synchronization between the optical

67

switch controller and the OXCI device . This can either be a safe constant given normal

conditions, or can be derived from observing the actual quality of the PTP

synchronization between the optical switch controller’s grandmaster clock and each

OXCI device from factors such as jitter observed in PTP synchronization, or an empirical

model based on the electronic network congestion as seen in [23].

Finally, the average switch reconfiguration time is referred to as ��and the total

silent time between time slots is defined as

 ������� = �� + �-� + �-� . (12)

The proposed system is designed to support, but does not require the dynamic

calculation of this time based on specific details of network congestion and optical

switch state.

3.4.7. Multi-Hop Delivery

One optional feature of the OXCI is the facilitation of multi-hop delivery. This is

an optimization and does not necessarily need to be included in the system, but it is an

interesting optimization to examine and may prove useful in practice.

Consider a case of 8 racks with OXCI nodes connected to the hybrid network,

designated N1-N8. The schedule is composed of 8 time slots T1-T8 as illustrated in

Figure 15. In case a), the system is in time slot T3, where the node N1 is directly

connected to N3. Suppose N1 has run out of data to send to N3 but has some time left

before the end of the time slot. Also suppose N1 has data to send to N2 but will not

reach that state in the scheduling cycle soon because it has just left it. The data can be

transmitted from N1 to N3 during time slice T3, and take another hop from N3 to N2 in

68

the next time slice T4. This could significantly reduce latency. Cases b) and c) illustrate

other possibly useful two-hop routes that save some time. It is possible to enable such

an optimization by having the OXCI check the destination of each packet arriving from

the optical network.

Although multi-hop delivery in the optical network can save significant latency, it

also carries the risk of causing serious problems like out-of-order TCP delivery. The

advantages of all such optimizations must weighed against the disadvantages and if they

are worth implementing, steps must be taken to mitigate the disadvantages and

dangers.

3.5. Performance Monitoring and Evaluation

The primary goal of networking research is to improve the performance of a

network. The performance of a data center network can be measured using the

following metrics:

• Network throughput

• Packet latency

Figure 15: Examples of multi-hop transmission in the optical network.

69

• Fairness

• Completion time of particular tasks

• Cost efficiency

• Power efficiency

The most often cited quantity in network research is throughput. When looking

at low-level components such as transceivers, throughput can be a relatively simple

concept, reduced down to bit rate or the user data rate achievable in a single test flow.

However, when modeling an entire network, the concept of throughput becomes more

complex because there are many flows within the network. For example, many real

routers are limited by the number of packets they can process as well as the bit rate of

each network interface, so even in a synthetic traffic test, the performance of a real

router is often a function of the packet size distribution. When measuring the

performance of an entire network at heavy load, one may choose to measure the

aggregate network throughput, obtained by summing the throughputs of all flows, or

one may choose some single flow of interest and monitor its throughput individually.

In the proposed network, every packet of interest is processed by the OXCI

device and source and destination data for each of these packets is read in order to

multiplex them between the optical and electronic networks, route them to the proper

ports, and collect raw data for demand estimation and scheduling. In this way,

throughput statistics are naturally available and easily accessible in a hardware

implementation of the proposed system. Since this work concerns itself with simulation

of the system, all data is readily available to the simulator and the question becomes

70

which throughput data should be collected.

Packet latency is the time it takes for a packet to traverse a path from source to

destination. This is an important performance metric because many applications require

not only that data arrives at a certain rate, but also that data arrives within certain

deadlines. There are also applications whose performance depends heavily on how fast

traffic can travel between processing nodes. In practice, true one-way latency

measurement can be somewhat difficult because it involves time measurements at

multiple nodes. It is often measured using synthetic traffic between two time-

synchronized nodes or more often, the round trip time of an echo packet, as in the case

of ICMP ping or the arrival time of an acknowledgement, as in TCP.

In the case of a hardware implementation of the proposed system, latency will

be measured using synthetic traffic. If a more precise result is desired, direct

measurement of latency is also possible because OXCI nodes are synchronized using

PTP. To perform direct measurement of latency, a sample of packets may be time

stamped and hashed when they arrive at the OXCI node, the hashes from multiple

nodes compared later, and latencies calculated from timestamps of packets with the

same hashes. In the investigation done in this work, the network is simulated, and the

simulator has full access to time stamps of all events, so the latency of every packet can

be calculated. The latency characteristics of packets within the system at different

configurations are used as a key metric in analyzing the performance of the proposed

system.

Fairness of scheduling is another metric often used to evaluate the performance

71

of computer networks. One of the most popular canonical formulas for quantitatively

measuring the fairness of some resource allocation is Jain’s Fairness Index [28]:

)��&
, &., … , &)� =
/∑ ��

�
��� 1

�

) ∑ ��
��

���

, (13)

where the total amount of some resource is allocated among "	clients such that &� is the

amount allocated to the
�2client. For example, one can calculate the fairness index)�

of the allocation of bandwidth within a network link among " flows sharing the link.

Note that when the allocation is equal for all flows,)� = 1 indicates perfect fairness.

In the proposed system, as in other hybrid networks, it is not given that fairness

is necessary or even desired. In fact, the system is designed to give more bandwidth to

flows with higher bandwidth demand. Even so, fairness can be evaluated in the analysis

of the proposed system and parameters to be tuned if an improvement in fairness is

desired can be identified. Alternative definitions of &� can be used to make this kind of

analysis more meaningful in hybrid optical networks – for example, the fraction of a

flow’s demand met by the network at some point in time can be used as &� instead of

the raw throughput value.

The ultimate test of any computer system is the job it was designed to perform.

Although data center networks are built for general purpose computing and perform a

variety of tasks, certain tasks and traffic patterns have been established as useful

benchmarks. These include MapReduce jobs, large file transfers such as VM migration,

and highly parallel scientific computations such as parallel FFT computation. The time

taken to complete a certain job serves as a reasonable benchmark of overall network

performance, given that the test is set up such that network performance is a

72

bottleneck in system performance.

The proposed system is evaluated using synthetically generated traffic designed

to simulate a real workload. The idea is that traffic generators on several hosts are

linked such that a traffic generator in a given node does not continue generating packets

until it has received a “prerequisite set” of packets from another node or set of multiple

nodes. The specifics of the prerequisite relationships between packets determine the

degree of synchronization between nodes to be simulated. Many small sets of

prerequisite packets between nodes would simulate a tightly synchronized task such as

FFT computation, while relatively large responses with bursts from a “master” node as

prerequisites may simulate MapReduce.

73

4. System Simulation

The proposed system is evaluated in simulation. Two stages of simulations are

performed. First, individual algorithms are prototyped in Python and tested as part of a

custom event-based network simulator. This allows the behavior of the algorithms to be

analyzed and tuned on a more theoretical level without the distraction of the details

present in a more realistic simulator. Synthetic traffic can be generated specifically for

exercising any given algorithm in the system. This data is used to gain a general intuition

about the behavior of the system. Finally, the system is ported to NS-3, a powerful and

highly realistic network simulator and the network is modeled and evaluated in a way

that would more closely predict the behavior of a future hardware prototype.

4.1. Prototyping and Initial Simulation

The simulation of the proposed system can be logically divided into a set of key

components:

• Traffic Generation

• Demand Metric Calculation

• Schedule Calculation

• Optical/Electronic Multiplexing

• Optical Switch Control

Each of these logical blocks is prototyped separately and tested with synthetic

inputs, allowing for the individual characterization of each block’s functionality without

the possibility of destabilizing interference from other blocks – a problem that cannot be

74

solved until every block works as desired at the individual level. The components are

organized as a Python library and available for inclusion in a basic full-system simulator

written in Python. Later, these are ported to C++ classes usable in NS-3.

4.1.1. Traffic Generation

Besides the standard theoretical traffic generators like uniform and Poisson

traffic sources, the proposed system is tested with a custom application designed to

resemble the kind of network traffic generated by distributed computing applications.

The key idea behind this traffic generator is the fact that the progress of a distributed

computing job at any given node can depend on the progress of the tasks assigned to

other nodes. For example, each node computing a distributed FFT must wait for all

other nodes to complete their pieces of the calculation before it can move on to the

next stage of the job. Many MapReduce jobs cannot start the Reduce stage until the

total completion of the Map stage. If a job depends on nodes exchanging data very

often, it is said to by “tightly synchronized”. If a job only needs a few synchronizations

over a long time, it is said to be “loosely synchronized”.

The simulated job is cyclical in nature, with a “request, compute, response” cycle

Figure 16: Simulated data center workload.

75

repeating several times over the course of the job, as shown in Figure 16.The simulated

job is divided into 	 synchronization cycles. Each cycle is defined by the following set of

parameters:

• Request length in bytes, ���3

• Computation time in seconds, �"4��

• Response length in bytes, ����

Each of these values is an exponentially-distributed random variable, defined in

[29] by the probability density function

)��&� = *+	# 5�, & ≥ 0

0, & < 0
 , (14)

where + is referred to as the rate parameter. For the purposes of this investigation, base

values ���3,���, �"4��,���, and ����,��� are also used to assure appropriate minimum

values. Note that the addition of a base value shifts the mean of the random variable by

the base value. For example, given that the mean of an exponential variable is

5
 and its

variance is

5�
, the computation time random variable �"4�� would have a mean of

�"4��,��� +

5
 and the variance would remain

5�
 . New random variables are generated

for each node and each synchronization cycle within the job. Thus, a simulated job is

parameterized as follows:

• Number of cycles, 	,

• Request length parameters, +��3 and ���3,���,

• Computation time parameters, +"��" and �"��",���,

• Response length parameters, +��� and ����,���.

76

A tightly synchronized job can be simulated by setting these parameters such

that � is a large number, the minimum values are relatively small, and � is large.

Conversely, a loosely synchronized job can be modeled using small values for � with

large ����,���. The total duration of the job is determined by the length of each cycle

and the total number of cycles in the job.

The progress of a simulated job is tracked in Figure 17. Each line represents a

separate run of the simulation with a different scheduling period. The job running on

the network with a 100 ms scheduling period completes quickly, while the network with

a 500 ms scheduling period backlogs the job because multiple nodes must synchronize

with each other by exchanging intermediate results. This is the kind of behavior

observed in real data centers as well as other hybrid network research projects such as

C-through [12], so it can be concluded that the simulated workload is realistic.

Figure 17: Progress of simulated job with different link rates.

77

4.1.2. Optical Switch Control

While the proposed network architecture does not force any specific switch

topology, technology, or architecture, it is important to test the network with a realistic

simulated switch. This section explores one of the more complex cases of using a

MEMS-based Benes network to construct a switch with and the details involved in

simulating it with some accuracy. The most important question for the simulator to

answer is “given the probability density function of a single switching element’s

switching time, how long does a switch reconfiguration take in reality?”

Figure 18 shows the characteristics of several switch topologies of an � � � as

reported in [19]. Assuming a network of 32 racks, a 32x32, � � 32 optical switch is

required. This can be constructed using
��� ���	����

�
� ���� ���	 �����

�
� 144 switching

elements. One of the advantages of a Benes network is that the number of switching

elements traversed in the switch does not vary with configuration. The number of

switching elements the signal traverses is always 2 log� � � 1 � 2 log� 32 � 1 � 9

switching elements.

Figure 18: Vital parameters of various switch types.

78

In order for the signal to be able to travel through the switch, all switching

elements must be stabilized. Conversely, data loss will occur if one or more elements is

not finished switching by the time data transmission starts. Since the switch is a

mechanical device, it is not guaranteed to stabilize at any particular time, but the

switching time can be modeled by a probability distribution. While at the time of this

writing detailed probability distributions of MEMS switching times are not readily

available, the team responsible for the WSS based switch in [13] observed a normal

distribution or reconfiguration times. It is reasonable to assume that MEMS switching

time can also be modelled by a normal distribution, but the method described here

applies regardless of the specific probability distribution. The probability of successful

transmission in the optical switch can be calculated using basic statistics.

The random variable ,67,8 is defined as the time after the reconfiguration signal

is sent that the
�2 switching element in the chain takes to stabilize in a single switching

event. In this example, all switching elements within the switch follow an identical

switching time probability distribution. The probability of a successful transmission in a

one-element switch is this given by

 ��,� = �{,67,8 ≤ �������}, (15)

where ������� is the time between switch reconfiguration signal transmission and

beginning of data transmission into the switch, as defined in chapter 3.2. This is easily

extended for an � switching elements in the path being reconfigured by taking the

intersection of success probabilities for every switch, expressed as

79

 ��,����� = 	 ��,
 ∩ ��,� ∩ … ∩ ��,�. (16)

There is no mechanism by which the value of a switching element’s ��,� can affect the

value of ��,� for another element, so the random variables are independent, which

means that

 ��,����� = 	∏ ��,��
�9
 . (17)

Since it is assumed that the switching time for each individual switching element has the

same probability density function, the success events are all equally likely and

 ��,
 = 	 ��,� = ⋯ = 	 ��,� = ��	. (18)

The total probability of success is expressed simply as

 ��,����� = ����� = ��.,67 ≤ �������/��. (19)

In the 32x32 Benes network example, � can be assumed to always have the

worst-case value of 9, or if further optimization is desired, a table of �-values can be

created for every possible configuration change. The probability �� is found by simply

evaluating the probability distribution function of ,67 at	�������. Note that if the total

guard time ������� is selected such that a single switching element has a 99% chance of

being reconfigured on time, the success rate if 9 elements need to be reconfigured is

�0.99�: = 0.914, leaving the switch with a nearly 9% chance of data loss for every

connection in every reconfiguration event.

4.2. Detailed Simulation with NS-3

To obtain realistic results, the proposed network is modeled and simulated in

NS-3, a powerful network simulation tool that can provide detailed data about a

theoretical network, including simulating the behavior of TCP/IP. The advantage of using

80

NS-3 is the level of detail and flexibility it is able to provide. Most importantly, this

simulator models the behavior of the TCP/IP stack and ARP with good accuracy. This is a

complex feature critical to the evaluation of the proposed network architecture because

the majority of data center applications depend on TCP/IP for reliable delivery, flow

control, and congestion avoidance.

4.2.1. Architecture of the NS-3 Simulator

NS-3 is an event-based simulator that uses object-oriented C++ to model many

aspects of computer networking in detail. To understand the advantages, goals, and

limitations of the simulation used to evaluate the proposed system, it is helpful to have

a general idea of the way NS-3 itself operates. This section presents a description of NS-

3 that is pertinent to simulating the network proposed in this thesis, but is simplified for

the ease of explanation. Those wishing to gain an accurate and general understanding of

NS-3 are referred to the NS-3 manual [30].

NS-3 makes heavy use of the features of C++; especially object oriented design

and generic programming (templates). Devices and algorithms in the simulator are

represented by C++ objects, and specialization is handled using inheritance – for

example, an “echo server application” inherits common attributes from the class

“application”. At the highest level a simulated network in NS-3 is composed of node

objects connected by communication channel objects.

A communication channel in NS-3 is meant to represent a physical

communication medium, such as a point-to-point copper or fiber optic link, or a wireless

communication channel. As a general rule, communication channels are characterized

81

by their inability to do any logical processing on the data they are handling. That is, they

cannot make decisions based on the data traversing them. However, they can delay

data, and possibly even introduce errors into the data, while transporting it from source

to destination.

Ethernet networks in NS-3 are often represented by carrier-sense multiple

access (CSMA) channels which model an environment in which only one device can

transmit at any time. This makes the CMSA channel a fitting model for Ethernet

switches, since modern Ethernet switches can receive data coming from multiple ports

at the same time and queue it, later sequentially sending it out of a single port to a

single destination to avoid data loss due to collision. In an NS-3 simulation, the buffering

is actually done at the node until the CSMA channel becomes available, but this

behavior is in many ways indistinguishable from buffering in an Ethernet switch. For

example, a traditional Ethernet network with a switch at the center and hosts

connected in a star topology can be reasonably represented in simulation using a CSMA

communication channel object. CSMA communication channels have data rates and

delay attributes which represent the corresponding real quantities: the data rate is the

rate at which transmission can take place, while the link delay is the amount of time

data takes to traverse the channel in a manner analogous to traversing a real

electromagnetic transmission line such as copper wire or optical cable. Note that a

CSMA communication channel itself makes no routing or queuing decisions like a real

Ethernet switch, but it can reproduce behavior similar enough to a real Ethernet switch

in most cases, and as it happens, it can model a ToR switch accurately enough for the

82

purposes of simulating the proposed network architecture.

Another important communication channel in NS-3 is the point-to-point link. This

is a fundamental theoretical communication link that allows full-duplex communication

between two network entities. This is analogous to simply connecting two nodes with a

cable. This communication channel is also governed by transmission rate and link delay

attributes, but can only be used to connect two nodes.

The Node object in NS-3 represents any entity that can process data traversing

the network, modify it, and make decisions based on the contents of packets and

frames. Nodes can serve as the sources and final destinations of data in the network as

well as intermediate decision makers that route data through the network. Thus a node

can represent a server on the network running applications, a network-layer router

making decisions about the path data takes in the network, or a custom data-handling

device like the proposed OXCI.

Figure 19 shows the composition of a node object in NS-3 and the relationships

Figure 19: The structure of a node in NS-3.

83

between its components. Any node can act as a router, much the same way that a

computer with multiple network interfaces can route packets between networks. Each

node is connected to the other nodes in the network by one or more communication

channels.

The interface to the communication channel is a NetDevice matching that

communication channel. For example, CSMA and point-to-point channels use

CSMANetDevice and PointToPointNetDevice objects, respectively. A NetDevice object in

NS-3 corresponds to a network interface card (NIC) or router port in physical hardware.

NetDevice objects take care of link-layer considerations such as physical (MAC) address

checking, scheduling packet arrivals on the other end of the channel based on the link

rate, delay, and packet size, and queuing data until the channel required for

transmission becomes available.

A node contains a network-layer protocol object, in the case of the simulations

performed in this work, this happens to be a model of Internet Protocol Version 4

(IPV4). This object handles routing using function calls to a routing protocol object

(Ipv4RoutingProtocol) and multiplexing between transport protocols in the case of local

delivery. The transport protocol models, in this case TCP and UDP, handle

communication with applications installed on the node.

An application is a piece of software that generates and processes traffic.

Applications useful in simulation can be simple statistics-based traffic generators, which

generate traffic according to some statistical model or models of real application-level

protocols such as FTP. The packets traversing the simulated network have real payloads

84

and can therefore be used to make decisions, even decisions about management of the

network itself.

4.2.2. NS-3 Model Implementation

In modeling the proposed network, a topology must be developed and

generated in NS-3. The topology of the hybrid section of the proposed system can be

described as a star with two centers, or “bipyramid”, because it has two cores – an

optical core composed of a fast optical circuit switch and optical switch controller, and

an electronic core composed of a traditional electronic switch. Each simulated rack

contains a top-of-rack switch connected to the core network via an OXCI device and

some number of servers, usually between 20 and 60 in practice, fewer in simulations.

The topology to be generated is shown in Figure 20, where the “rack” nodes

include the ToR switch and all hosts in the rack. The simulator is written to take the

number of racks in the network and the number of hosts per rack as parameters and

automatically generate a topology with these characteristics. The simulated nodes must

have information to use for routing packets through the network. Normally, NS-3 can

automatically populate routing tables in each node, but the topology of the proposed

network is constantly changing and the fact that the network has an optical core switch

in parallel with the standard electronic core router makes the standard automatic

routing table management scheme ineffective. Instead, the simulated network uses only

static routing, set up during topology creation and modified as needed on optical switch

reconfiguration events.

85

In order to model this system, custom modules must be added to the core of NS-

3. First, the optical switch is modeled as a CommunicationChannel object, and optical

transceivers are modeled as NetDevices. The functions of the OXCI and optical switch

controller are modelled as Applications running on NS-3 Node objects.

The OpticalSwitchChannel object is loosely based on the model for a point-to-

point link, but instead of connecting two devices to each other, it acts as an N x N optical

switch. Up to N network devices can be connected to the switch, such that the

transmitter of the node is connected to one end of the switch, and the receiver is

connected to the other end.

Figure 21 shows the logical model for the connections between the optical

switch and four OXCI nodes. The arrows indicate direction of data travel. In the

simulations, the switch can be configured in four different permutations, designated �

possible for this switch. Permutation �! is a loopback connection, so the transmitter of

Figure 20: Network Topology with four racks.

86

each node is connected to its own receiver, �� indicates the connection scheme

�1 → �2;�2 → �3;�3 → �4;�4 → �1, and so on. In general, if � ports are labeled

!	through	
�, and the transmitter from port
� is connected to the receiver at port

", the destination port number � for any source port number $ while the switch is

configured in permutation number % is expressed by

 � � $ � ��&'(��. (20)

In the NS-3 implementation, the OpticalSwitchChannel upon receiving a packet checks

the source port the packet is coming from, and based on the current permutation

number %, settable through a function call, figures out the destination port number �

which serves as the array index of a pointer to the NetDevice connected to port �, and

forwards the packet to that NetDevice.

Technically, reconfiguring the switch is as simple as setting the variable

representing the current permutation number, but the switch must also simulate the

time it takes for the components within a real switch to be physically reconfigured. After

Figure 21: Four OXCI nodes connected to a 4x4 optical switch.

87

the reconfiguration function is called, the destination port number is set, but all packets

attempting to traverse the switch are dropped until the simulated reconfiguration time

elapses. The generation of this time interval was described in detail in Section 4.1.2. To

summarize, a number of instances of the random variable ,67 are generated, and the

biggest of these is used as the total switching time.

Another custom component in the simulator is the OpticalSwitchNetDevice. This

component simulates not only the optical transceiver, but a large part of the OXCI

functionality – namely, queuing and demand monitoring. This simulation object houses

a queue for every OXCI destination reachable through the optical switch and interfaces

directly with the OXCI application running on the node to multiplex traffic between

electronic and optical networks, report data to the application, and drain the

appropriate per-destination queues based on the known current configuration of the

optical switch.

Along with low-level modifications, there are three custom Applications

simulating vital network functions. The OXCIApplication object in NS-3 models the logic

and functionality associated with most of the OXCI functionality described in Section

3.4. An instance of this application runs on every OXCI node.

The switch controller is also modeled by an application running on a dedicated

node connected to the electronic network. This application performs switch control

tasks as described in Section 3.3. It maintains a pointer to the OpticalSwitchChannel

object and reconfigures it as needed through direct function calls.

88

4.2.3. Experimental Setup

There is no limit on the data rates or the number of hosts being simulated, and

the simulator is written to be as general as possible. However, the computing resources

available for simulations are not unlimited, and there are tradeoffs to be made between

the number of simulated computers and simulated data rates and the amount of data

points that can be taken. The experiments conducted in this work focus on exploring the

qualitative effects of parameter changes rather than specific magnitudes of metrics in

highly specific situations. One must keep in mind that the goal is to characterize the

behavior of the system rather than predict a detailed outcome in a specific situation.

Since the experimental results come from an event-based numerical simulator,

increasing all data rates in the system simply amounts to multiplying intermediate

quantities by a constant, and in most cases, obtaining the same qualitative behavior.

The experimental setup consists of 12 simulated servers connected to four racks.

Each node has a traffic generator application running on it. This traffic generator is

designed to simulate the network traffic generated by a typical distributed computing

workload within a data center. The traffic pattern is characterized by many-to-one and

one-to-many behavior with most nodes not changing their communication partners

often, as described in Section 4.1.1. Recall the network topology from Figure 20. The link

rates vary throughout the network. The optical simulated link rates are set to 100Mbps,

while the link rate (and therefore oversubscription ratio) of the electronic core is varied

from extremely low (500kbps) to on par with the optical link rate (100Mbps). The nodes

within each rack are interconnected using a simulated Carrier Sense Multiple Access

89

channel which models the ToR switch. The link rate from the ToR switch to the OXCI

devices is also 100Mbps to provide the ability to test the system under heavy traffic

through the core. In a real system, it is straightforward to aggregate traffic from many

servers into a single high-bandwidth link, but it is much more difficult to create a high-

port-count and high-bandwidth core. Due to this, the core EPS switch in the simulated

network is simulated with low link rates. The ability of a simpler hybrid core to replace a

high-performance electronic core is tested.

4.3. Simulation Results and Analysis

The most important goal of the proposed system is to allow a complex, high-

performance electronic core network to be replaced by a low-performance electronic

core supplemented by a managed optical circuit switch without significantly reducing

the performance of the network. The ability of the proposed system to do this

effectively can be measured by the completion time of a simulated distributed

computing workload. This job starts with one-to-many “request” transfers from several

servers assigned to be job master nodes to other servers assigned to be workers. Once

a worker has received all of the request data it waits for some time to simulate

processing and it begins sending response data. The master waits until it has finished

receiving responses from all workers and begins another request/response cycle. In the

simulations performed, there are three masters communicating with nine worker nodes

arranged throughout the network. The workload completion time is measured from first

packet sent to the time all three masters complete their full workloads. Each workload

consists of 50 cycles. Requests are set to be around 8 kilobytes of data, while compute

90

wait times are around 100 milliseconds and responses are about 120 kilobytes of data.

The specific values for each cycle are random in order to facilitate a more realistic

simulation. The random number generator can be seeded with a constant value, so

results are reproducible. The job completion times for various EPS network link rates

with and without the optical components added by the proposed system are shown in

Figure 22. The scheduling cycle period of the system is kept a constant 50 ms for this

experiment. The proposed system still relies on the electronic core for control traffic

and transmission of TCP acknowlegements; an extremely low-speed electronic network

will adversely affect its performance. The hybrid network significantly outperforms a

pure EPS network with even extremely low EPS link rates, and nearly matches the

performance of pure EPS once network bandwidth is sufficient to no longer bottleneck

the simulated workload.

Figure 22: Time to complete simulated job for various electronic core link rates, a

 comparison of plain EPS to the hybrid network.

91

One important concern for hybrid networks is the possibility of transmission into

the optical switch starting before it has been fully reconfigured. The optical switch in the

simulations is modeled to realistically reflect the random behavior of a real switch, as

described in Section 4.1.2. Experiments are performed to determine the effect of the

relationship between the guard time and the averagre switching time on data loss and

job completion time. The switching time can use any statistical model that fits the

specific phyical properties of the switch being modeled. In this particular simulation, the

switch is modeled as having a switching time that is composed of a constant base and

with an exponentially distributed additional time added to it. In this case, the average

switching time turns out to be ��;.< + 1/+ where ��;.< is the base switching time, and

+ is the rate parameter of the exponential distribution. The variance of the switching

time is simply the variance of the exponential random variable used,

5�
. In the

Figure 23: Effect of switching to guard tome ratio on system performance.

-500

0

500

1000

1500

2000

2500

3000

3500

0

50

100

150

200

250

300

350

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

N
u

m
b

e
r

o
f

P
a

ck
e

ts
 D

ro
p

p
e

d

Jo
b

 C
o

m
p

le
ti

o
n

 T
Im

e
,

S
e

co
n

d
s

Ratio: Average Switching Time / Total Guard Time

Job Completion Time

Packets Dropped

92

experiment, the EPS link rate is set to 5 Mbps while the other link rates are kept as 100

Mbps. The schedule period is set to 10 ms, while the guard time is kept constant at 125

μs. Note that the guard time referred to here is the total time from switch

reconfiguration command transmission to beginning of data transmission by the OXCI

into the optical switch. The base switching time is set to one half of the guard time. The

independent variable in the experiment is the ratio between the average switching time

and the guard time. The effect of varying the average switching time, which in this case

also changes the variance of the switching time, is shown in Figure 23. The experimental

data makes it clear that a hybrid network should never start transmitting after only the

average switching time of the switch has passed, since that would cause data loss after

more than half of all switching events. The results also show that any packet drops

caused by packets being transmitted into the void have a drastic effect workload

performance, especially if the workload depends on TCP for reliable data delivery.

Another important parameter in the proposed system as well as other hybrid

optical/electronic networks is the scheduling period. The proposed system does not use

a hotspot scheduler, but cycles through a predetermined set of switch configurations,

varying the time alloted to each permutation according to demand. This is significantly

more computationlly efficient than a hotspot scheduler, and provides better data

granularity. Of primary interest is the effect of schedule period on the completion time

of the simulated workload. An experiment was performed where the optical link rate

was kept constant at 5 Mbps, with the other link rates constant at 100 Mbps. The

scheduling period of the system was varied and effects of these changes recorded. The

93

effect of changing the scheduling period on job completion time is shown in Figure 24.

The system’s duty cycle was kept constant at 95% by varying the switching/guard time

such that

 95% =
������ �∗������

������
∗ 100%, (21)

where 	 is the number of scheduling slots, ��"��= is the schedule period, and �-���= is

the time from transmission of the switch reconfiguration command by the switch

controller to the beginning of data transmission into the optical network by the OXCI.

Although the workload is not latency sensitive, it can suffer from a scheduling

period that is too long because job progress depends on many parties exchanging

information relatively quickly. A more tightly synchronized workload, i.e. one where the

servers involved exchange data more often, would begin to suffer performance loss with

a smaller scheduling period. Given sufficiently fast switches to keep the duty cycle at

95%, no detrimental effect was observed from continuing to decrease the scheduling

Figure 24: Effect of scheduling period on job completion time.

0

10

20

30

40

50

60

5 10 50 100 500 1000

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
,

S
e

co
n

d
s

Schedule Period, Milliseconds

94

period. In practice, it becomes difficult to maintain a high duty cycle while decreasing

schedule period once sufficiently fast switches can no longer be found or become

prohibitively expensive. However, significant progress is being made in optical switching

speed and a 5 ms schedule period for an implementation of the proposed system is not

overly optimistic.

Another quantity that should be affected by the scheduling period is the average

latency of the traffic. Theoretically, it should be directly proportional to the scheduling

period itself. However, Figure 25 shows that for very small scheduling periods the

average latency stays around 30 ms. This could be caused by the nature of the

workload, time the packet spends waiting in queues before it gets to the optical core, or

some other bottleneck in the network. A closer look at packet latency is given in Figure

26, which shows the latencies for about 30000 packets from the simulation with the 50

ms scheduling period, plotted over 1.4 seconds. Each point represents a packet’s

Figure 25: Effect of scheduling period on latency.

95

latency, and the time indicated on the x-axis is the arrival time of the packet. The

straight lines are characteristic of large groups of packets queueing up after each other,

then being drained from the queue. Packets generally experience latencies close to 50

ms, as expected, since the the optical network operates in quick bursts spaced 50 ms

apart. There are also some outliers with approximately 150 ms latency, which probably

waited in OXCI queues for multuiple schedule cycles because bandwidth was not

available to send them or because other packets were deemed by the scheduler to have

higher priority.

Figure 26: Individual packet latencies with 50ms scheduling period.

96

5. Conclusions

The main goal of this thesis is to design a platform that overcomes limitations of

using only modified commodity hardware in hybrid optical/electronic data center

networks, and is easy for industry to adopt quickly once the subject has been sufficiently

researched and developed to warrant enough confidence for commercial adoption. The

system exhibits simulation performance improvements similar to those observed in

previous hybrid network research. The simulation platform developed can be used to

experiment with and further improve algorithms.

In the presence of workloads with relatively bursty network demand and

sufficiently loose synchronization relative to switching speed, the optical fabric

significantly improves workload completion times and allows for a large increase in

oversubscription of the electronic core fabric. Most importantly, this work demonstrates

the feasibility of a platform more suitable for future research than the previous methods

of using commercial hardware, but modifying it in ways that would be unacceptable in a

production environment, such as pretending that high-end servers with modified Linux

kernels are ToR switches, modifying NIC drivers, or disabling optimization algorithms in

network devices. As expected, system performance in distributed workloads still

degrades as the scheduling cycle period increases.

The idea of leaving an electronic core in the network even with very fast optical

switches has proven successful, because it allows the network to deliver timing-sensitive

packets without introducing an unacceptable amount of latency to packets delivered

through the optical network. This is especially important in the case of TCP

97

acknowledgement packets, which are sent directly to the electronic network in the

proposed system to ensure that TCP is not bottlenecked by the lack of constant

bidirectional communication in the optical network. The electronic core also provides

some redundancy in case of optical switch failure.

The network architecture described in this thesis can be used in a commercial

setting. Although the cost benefits of using OXCI devices in a small to medium-sized

commercial network would be only marginal due to the cost of high-performance FPGAs

currently required to implement them, even a small network would benefit from the

ease of expansion offered by this new network architecture, since in traditional

networks adding core capacity requires either extremely complex and costly rewiring for

multi-rooted trees or similar topologies, or large electronic switches whose cost

increases exponentially with port count. In contrast, the cost of an OXCI-based hybrid

network increases linearly with rack count, given the availability of suitable switches.

In the future, if an FPGA-based version of the proposed architecture is

successful, manufacturers will be able to build ASIC implementations of OXCI devices,

drastically reducing costs and making the proposed architecture commercially

advantageous in nearly all data center networks. The drive to optimize applications to

work with a hybrid core network would further improve performance.

As optical switches become faster, the proposed network architecture can

provide for a smooth transition from electronic switching to optical switching in the

core, allowing the electronic core to become more oversubscribed until it disappears

completely.

98

References

 [1] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T.S. E. Ng, K. Papagiannaki, M.

Glick and L. Mummert. "Your Data Center Is a Router: The Case for

Reconfigurable Optical Circuit Switched Paths." in Proceedings of ACM SIGCOMM

HotNets-VIII, Barcelona, Spain, 2009.

[2] L. A. Barroso, and U. Hölzle. "The Data Center as a Computer: An Introduction to the

Design of Warehouse-Scale Machines," Synthesis Lectures on Computer

Architecture, vol. 4, no. 1, pp. 1-108, 2009.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, Commodity Datacenter

Network Architecture,” in Proceedings of the ACM SIGCOMM 2008 Conference

on Data Communication, Seattle, WA, 2008.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and Fetterly, “Dryad: Distributed Data-Parallel

Programs from Sequential Building Blocks,” in Proceedings of the 2nd ACM

Sigops/Eurosys European Conference on Computer Systems, Lisbon, Portugal,

2007.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[6] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google File System”, in Proceedings

of the 19th ACM Symposium on Operating Systems Principles, Lake George, NY,

2003.

 [7] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The Nature of Data

Center Traffic: Measurements & Analysis,” in Proceedings of the 9th ACM

99

SIGCOMM Conference on Internet Measurement, Chicago, IL, 2009.

[8] T.Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data Center Traffic

Characteristics,” in Proceedings of the ACM Workshop on Research on Enterprise

Networking, Barcelona, Spain, 2009.

[9] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman,

G. Papen, and A. Vahdat, "Integrating Microsecond Circuit Switching Into the

Data Center," in Proceedings of the ACM SIGCOMM 2013 conference on Data

Center Networks, Hong Kong, China, 2013.

[10] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman,

G. Papen, and A. Vahdat, “Helios: A Hybrid Electrical/Optical Switch Architecture

for Modular Data Centers,” in Proceedings of ACM SIGCOMM, New Delhi, India,

2010.

[11] J. Edmonds, "Paths, Trees and Flowers." Canadian Journal on Mathematics, pp.

449–467, 1965.

[12] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and

M. Ryan, “C-Through: Part-time Optics in Data Centers,” in Proceedings of ACM

SIGCOMM, New Delhi, India, 2010.

[13] N. Farringon, A. Forencich, G. Porter, P. C, Sun, J.E. Ford, Y. Fainman, G.C. Papen,

and A. Vahdat, "A Multiport Microsecond Optical Circuit Switch for Data Center

Networking," IEEE Photonics Technology Letters, vol.25, no.16, pp. 1589-1592,

Aug. 2013.

[14] X. Ma and G.S. Kuo, "Optical Switching Technology Comparison: Optical MEMS vs.

100

Other Technologies," IEEE Communications Magazine, vol.41, no.11, pp.S16,S23,

Nov. 2003.

[15] U. G. Rothblum, H. Schneider, and M. H. Schneider, "Scaling Matrices to Prescribed

Row and Column Maxima," SIAM Journal of Matrix Analysis Applications, vol. 15,

no. 1, pp. 1-14, Jan. 1994.

[16] J. von Neumann, "A Certain Zero-Sum Two-Person Game Equivalent to the Optimal

Assignment Problem," Contributions to the Theory of Games, vol. 2, pp. 5–12,

1953.

[17] K. Noguchi, "Transparent Optical Crossbar Switch Using Liquid-Crystal Optical Light

Modulator Arrays, Integrated Optics and Optical Fibre Communications," 11th

International Conference on, and 23rd European Conference on Optical

Communications, Conf. Publ. No.: 448, vol.4, 1997.

[18] A. Bazin, K. Lenglé, M. Gay, P. Monnier, L. Bramerie, R. Braive, G. Beaudoin, I.

Sagnes, R. Raj, and F. Raineri, "Ultrafast All-Optical Switching and Error-Free 10

Gbit/s Wavelength Conversion in Hybrid InP-Silicon on Insulator Nanocavities

Using Surface Quantum Wells," AIP Applied Physics Letters, No. 104, 2014.

[19] N.A. Shalmany and A.G.P. Rahbar, "On the Choice of All-Optical Switches for Optical

Networking," in Proceedings of the HOTNETS 2007 International Symposium on

High Capacity Optical Networks and Enabling Technologies, Atlanta, GA, 2007.

[20] A. Wonfor, H. Wang, R.V. Penty, and I.H. White, "Large Port Count High-Speed

Optical Switch Fabric for Use Within Data centers [Invited]," IEEE Journal of

Optical Communications and Networking, vol. 3, no. 8, pp. A32,A39, Aug. 2011.

101

[21] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems," IEEE Std. No. 1588, 2002.

[22] "IEEE 1588 Precision Time Protocol Time Synchronization Performance,” Texas

Instruments, Application Note AN-1728, Apr. 2013.

[23] R. Zarick, M. Hagen, and R. Bartos, "Transparent Clocks vs. Enterprise Ethernet

Switches," in Proceedings of the International IEEE Symposium on Precision Clock

Synchronization for Measurement Control and Communication, Munich,

Germany, 2011.

[24] "Cisco Connected Grid Switch Software Configuration Guide, Cisco IOS Release

12.2(58)EY.” Cisco, Manual, Jul. 2011.

[25] "IBM Networking OS 7.4 Features Summary.” IBM Corp., Technical Document

BMD00326, 2012.

[26] H. Wu, J. Taheri, and A. Zomaya, "B-Alarm: An Entropy Based Burst Traffic

Prediction Approach for Ethernet Switches in Data Centers," In Proceedings of

the IEEE 10th International Conference on High Performance Computing and

Communications & 2013 IEEE International Conference on Embedded and

Ubiquitous Computing, Dalian, China, 2013.

[27] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, "Hedera:

Dynamic Flow Scheduling for Data Center Networks." in Proceedings of the 7th

USENIX Conference on Networked Systems Design and Implementation, San Jose,

CA, 2010.

[28] R. Jain, D.M. Chiu, W. Hawe, "A Quantitative Measure of Fairness and

102

Discrimination for Resource Allocation in Shared Computer Systems," DEC,

Hudson, MA, Research Report TR-301, 1984.

[29] A. Papoulis, S. U. Pillai. “The Axioms of Probability.” in Probability, Random

Variables and Stochastic Processes, 4th ed. Boston: McGraw Hill, 2003, ch. 2, pp.

15-44.

[30] “NS-3.20 Manual,” Internet: http://www.nsnam.org/ns-3-20/documentation/,

Jun.17, 2014 [Jul. 10, 2014].

