APPLICATIONS OF THE THEORY OF MATRICES

TO
SLECTRIC NETWORÑS

A Thesis
 Presented to
 the Faoulty of the college of Arts and soiences The University of Houston

In Partial Pulfillment of the Requirements for the Degree Nastar of Arts in kathematics

By
James E. Scroges
June 1954

APPLICATIONS OF THE THEORY OF MATRICES

To

ELECTRIC NETYORKS

The objective of this thesis is the investigation of the application of the theory of matrices to analysis of electric networks. Various theorems from the theory of matrices which are applicable to matrix analysis of electrio networks are stated and proved in Part I. Part II, Chapters III and IV, consists of problems of electric network theory whose solutions are facilitated by use of the theory of matrices. Using matrix methods, the mesh and node pair equations are developed and solved in Chapter III. Applications of matrix methods to tranamission networks and trangmisgion Ines sre considered in chapter IV.

It ig the opinion of the author that the method of developement of equation (3.2.13), Theorems 4.1.1 and 4.2.1, and the proofs of Theorems 4.4 .1 and 4.4 .2 are original contributions. Equation (3.2.13) is one of the principal equationg used in noje pair analysis of eleatric networks. Theorems 4.1 .1 and 4.2 .1 are concerned with the matrix assooiated With a trangmission network. Some interesting properties of a particular matrix are stated in Theorems 4.4.1 and 4.4.2. This matrix is ugeful in the analysis of fully transposed transmission Ilnes.

TABLE OF CONTENTS

PART I
SOHE THEORENB ON MATRICES

OHAETER
PAGE
I. BASIC THEORY OF MATRICES 1

1. Introduction 1
2. Adaition and multiplication of matrices . . 3
3. Diazonal and scalar matrices 6
4. Elementary operations on matrices 7
5. The determinant 9
6. Ajjoint and inverse 12
7. Rank of a metrix 14
II. ALGEBRAIC RORNS, EZUALS RELATIONSHIPS, ANL THE Characthrigtic antrix 17
8. squivalence of two matrices 17
9. Linear forms and linear transformations . . 19
10. Bilinear anz quatratic forma 25
11. Congruence of matricas........... 26
12. H-affine congruence 30
13. R-matrices 33
14. . λ-matrices and the characteristic equation. 37

PART II
HATRICDS AND ELEOTRIC NETWORKS
CHAPTERPRGE
III. NETFORK DIESERENTIAL EQUATIONS AND EQUIVALEAT
NETGJEAS 42

1. Definitions and bagic laws 42
2. Levelopenent of the mesh ani node jairequations44
3. Solution of the networi differential equationsand the natural modes of the network 54
4. Energy relationships and equivalentnetvorks 62
IV. TRARSUSSION NETYORKS AND TRANSKIBSION LINES $6 ?$
5. The matrix associated with a transmisuionnetwork67
6. ?eversible transuission networks 72
7. The impedance associated with a network and thepropazation constant 74
8. Transmission lines 82

PART I

SOLE THEOREMS ON MATRICES
CHAPTER I
BASIC THEORY OF LATFICES
1.1. Introduction. This thesis is divided into two parts. In Part I the theorems of matrix theory, which are to be applied to glectric networks in Part II, will be atated and proved.

The word matrix was first used by J. J. Sylvester to describe a rectangular array of numbers "out of which determinants can be formed." ${ }^{1}$ The concept of matrix was used explicitly by Arthur cayley in 1858. ${ }^{2}$ He defined the matrix in a similar manner to sylvester but was insistent that "the 1dea of matrix precedes that of determinant."3 A matrix has been defined as a rectangular array of mn quantities, arranged in m rows and n columng. ${ }^{4}$ According to C. C. HacDuffee, a matrix 1 a an element of a total matric algebra. ${ }^{5}$ We will use the following definition: A matrix is a rectangular array of mn quantities arranged in m rows and n columns

[^0]\[

A=\left[$$
\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots
\end{array}
$$\right] \cdot\left($$
\begin{array}{c}
a_{1 j} \\
a_{m 1}
\end{array}
$$ a_{m 2}\right.
\]

with elements a_{1} in a field F.
In order to clarify this definition somewhat, we will define an goals relation and abolish group. Then using these definitions, a field will be defined.

An equals relation abb is characterized by the following properties ${ }^{1}$

1. Either a bor a $\neq \mathrm{b}$. (The relation ia determineactive.)
2. a = a. (The relation is reflexive.)
3. If $a b$, then b. (The relation is symmetric.)
iv. If $a b$ and $b=0$, then a o. (The relation is transitive.)

An abollan group ia mathematical system composed of elements, an equals relation, and one operation X subject to the following postulates ${ }^{2}$

1. The system is closed under the operation X, which

1\% well defined.
11. The operation X Ia associative.

1 C. C. Maoduffac, Introduction in Abstract Algebra (New York, 1940), p. 47. 2 IDle: p .47.
111. There exists an ldentity element I such that

$$
a X I=I X a=a
$$

for every element a of the group.
1v. Every element a has an inverse a^{-1} such that

$$
a^{-1} \times a-a \times a^{-1}=I
$$

v. The operation X is conmutative.

A field is a mathematical system composed of elements, an equals relation, and two well defined operations, addition and multiplication defined by the postulates: ${ }^{1}$

1. The elements constitute an abelian group relative to the operation of adilition, the identity element being denoter by z, and the inverse of a by - a.
2. The elements with z onitted constitute an abelian group relative to multiplication, the identity element being denoted by I and the inverse of a by a^{-1}.

1i1. ifultiplication is distributive with respect to addition.

We will be interested in two fields, the fleld of real numbers and the complex fleld. Unless otherwige specified, it will be understood that these are the fields under consideration.
1.2. Addition and multiplication of matrices. ${ }^{2}$ Two matrices $A=\left(a_{1 j}\right)$ and $B=\left(b_{1 j}\right)$ are equal if and only if

[^1]$a_{1 j}=b_{19}$ for overy 1 and 1.
The addition of two matrices A and B is defined to be a thiri matrix whose dements are ozual to the sums of corresponding elements of A ant $B, 1.9 .$,
\[

$$
\begin{equation*}
A+B-\left(a_{1 g}+b_{1 j}\right)-\left(c_{1 j}\right)=c \tag{1.2.1}
\end{equation*}
$$

\]

We define the product of two matrices A. (a_{1}) and B - $\left(b_{j k}\right)$ to be the array
(1.2.2) $\quad A B=\left(\sum_{j=1}^{n} a_{1} p j k\right)=\left(a_{1 j}\right)=c$,
or row by colum multipilcation of the matrices. From this definition, wo see that the number of colutens of A must equal the number of rows of E . The resulting matrix will have the asae number of rows as A and the same number of columns as B. Multiplication of matrices is in general not commatative. Multiplication of a matrix by a sealar number E la accomplished by multiplying each elswent of the matrix by k, $k A-\left(k a_{1}\right)$.

Theorem 1.2.1. Wultiplication of matrices la assoolative.

Proof. Let $A=\left(a_{1}\right), B=\left(b_{j k}\right)$, and $C=\left(c_{k i}\right)$ where
 2,t. t . B_{y} definition
(1.2.3)
$A B=\sum_{j=1}^{n} a_{1 j} j_{j k}-\left(a_{1 k}\right)$.

Then
(1.2.4)
$(A B)=-\sum_{k=1}^{a} a_{1 k} c_{i z}=\sum_{k=1}^{a}\left(\sum_{j=1}^{n} a_{1} j_{j k}\right) c_{k z}$.
wultiplication in a field is associative and distributive
with respect to adiction so that

$$
\begin{align*}
\sum_{k=1}^{g}\left(\sum_{j=1}^{n} a_{1} \rho_{j k}\right) o_{k 3} & =\sum_{k=1}^{B} \sum_{j=1}^{n}\left(a_{1} \rho b_{j k}\right) c_{k 3} \tag{1.2.5}\\
& =\sum_{k=1}^{B} \sum_{j=1}^{n} a_{1}\left(b_{j k} c_{k z}\right) .
\end{align*}
$$

31nce any finite double aum is independent of the order of summation
(1.2.6)

$$
\begin{aligned}
(A B) 0 & =\sum_{j=1}^{n} \sum_{k=1}^{8} a_{1}\left(b_{j k} c_{k z}\right) \\
& =\sum_{j=1}^{n} a_{1}\left(\sum_{k=1}^{s} b_{j k} a_{k i}\right)=A(B C) .
\end{aligned}
$$

Theorem 1.2.2. tultiplication of matrices is distributive with adition.

Proof. Let A and B be m by n matrices and C be an n by a matrix. Then
(1.2.7) $(A+B) c=\sum_{j=1}^{n}\left(a_{1 j}+b_{1 j}\right) c_{j k}=\sum_{j=1}^{n}\left(a_{1 j}{ }^{0} j k+b_{1 j}^{0} j_{j k}\right)$ $-\left(\sum_{j=1}^{n} a_{1 j}{ }_{j} j k\right)+\left(\sum_{j=1}^{n} b_{1} j^{c} j k\right)=A C+B C$.
Similarily wo seo that

$$
C(A+B)=C A+C B
$$

The watrix $A^{\prime}-\left(a_{j 1}\right)$ obtained froin $A=\left(a_{1 j}\right)$ by changing rows to columis is callod the tranazoge of A. A watrix $5^{\prime}=5$ is called gympetris, and a matrix Q guch that a^{\prime}. - a 13 sald to be skew or gkem-symmetric.

Theorem 1.2.3. The transpose of a product of two matrioes is the product of their transposes in reverse order.

Proof. If $A=\left(x_{1} g\right)$ and $B=(b j k)$, then (1.2.8)

$$
A B=\sum_{j=1}^{n} a_{i j} b_{j k}=\left(c_{i k}\right)=0 .
$$

By definition
(1.2.9) $\quad O^{\prime}=\left(\sum_{j=1}^{n} a_{1 j} b_{j k}\right)^{\prime}=\sum_{j=1}^{n} b_{k j} a_{j i}=B^{\prime} A^{\prime}$.

If a matrix B is obtained from the matrix A by striking out certain rows or columns of A, then we refer to B as a gubmatrix of the matrix A. At times it may be desirable to refer to a given matrix as being made up of its submatrices. If A is an m by n matrix and $a_{1 j}(i=1,2, \ldots, m ; j=1,2$, $\ldots, n)$, is in one and only one of the submatrices of A, then A may be written $A=\left(A_{1} j\right),(i=1,2, \ldots, s ; j=1,2, \ldots, t)$, where each $A_{1 j}$ is a natrix. If for a fixed $1, A_{11}, A_{12}, A_{13}$, $\ldots A_{1 t}$ all have the same number of rows and for fixed j. $A_{1 j}, A_{2 j}, \ldots, A_{s j}$ all have the same number of columns, then $A=\left(A_{1 j}\right)$ is a pgrtitioning of A. The partitioning of a matrix may algo be thought of as drawing lines parallel to the rowa and columns of A, and between them, and representing the submatrices thus formed by $A_{i}{ }^{*}$

If a partitioned matrix B is to be multiplied on the left by a partitioned matrix A, then the partitioning of the columns of A must be the same as the partitioning of the rows of E .
1.3. Diggonal and gegiar matrices. A square matrix D, whose non-zero elements occupy the principel aiagonal, of the type
$D=\left[\begin{array}{lllll}k_{1} & 0 & 0 & 0 & 0 \\ 0 & k_{2} & 0 & 0 & 0 \\ 0 & 0 & k_{3} & 0 & 0 \\ 0 & 0 & 0 & k_{4} & 0 \\ 0 & 0 & 0 & 0 & k_{5}\end{array}\right]=\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)$
Is said to be of diagonal form. If D has n rows and coluans and $k_{1}=k,(1,1,2, \ldots, n)$, and k is a constant, the matrix is aid to be a gaiar matrix.

From the definition of multiplication, it is evident that the multiplication of matrix A by a soalar matrix is equivalent to sultiplying a by a scalar number.

A scalar matrix whose non-zero elaconta are the identity of the fiold are oalled lentity catrices. The I is coanonly used to denote such a matrix. A matrix with elewents all zero is the zoro or gull matrix and is designated by 0 . 1.4. Glementary operations on natrioeg. ${ }^{1}$ The alewentary operations are:

1. Interchange of two rows or of two colume.
2. Araition to pow of multiple of another row, or aftlition to a column of a multiple of another column.
3. Kultiplication of a row or a column by a nonvanishing conatant.

Theorem 1.4.1 Each elementary operstion on the rows (colums) of a matrix A can be socompishod by multiplying A

[^2]on the left(right) by the matrix J whioh is obtaines by performing the given elementary operation upon the unit matrix I. The matrix $J i s$ sometimea called an elementary matrix. ${ }^{1}$

Proof. Let J be a matrix obtained by interchanging the 1-th and j-th row (or columna) of I. Then the only nonzero element in the 1 -th row of J is a in the (1, 1) position, and the only non- $\bar{z} e r o$ element in the y-th row of J is a $1 n$ the (3,1) position. Hence in the produet JA, when the 1-th row of 118 multiplied by the $k-t h$ colum of A, the product Will be the eleant of A in the ($1, k$) position. Similariy. the product of the j-th row of J times tho $k-t h$ column of A will be the element of A in the ($1, k$) position. Therefore the result w111 be the interchanging of row 1 and g. In the product AJ, when the $k-t h$ row of $A 13$ wultiplled by the $1-t h$ column of J_{2} the result will he the element. in the (k, j) position of A. The product of the $k-t h$ row of A and the $j-t h$ ool-
 eequently, the produot $A J$ will simply interohange the $1-t h$ and j-th columne of A.

Ry exanining the product $N J$, were J is obtained from I by asding a multiple of the $1-$ th column of I to the j-th column of I, in a sinilar manner we 300 that the result is addition of the same multigle of the $1-\mathrm{th}$ colum of A to the
1.C. C. Hac Duffee, Theory of Hatrioes (New York, 1946), p. 32.

J-th colum of A. gimilarly for the product JA, where J 1 a obtained from I by alding a multiple of the 1 -th row of I to the $j-t h$ row of I, the result is adaition of the sane multiple of the 1-th row of A to the g -th row of A.

If J is the otrix obtainel by multiplying the i-th row (or column) of I by a non-vanishing constant, then it follow from the definition of multiplication, the product da resulte in the multiplying of the 1 -th row of in by the same non-vanishing oonstant. The product AJ rosults in the multiplying of tha 1-th colum of A by the same non-vanishing oonatant.
1.5. The fotsrminant. If A is an n by n (sometimes said to bo of oriar n and writton n^{2}) matrix, there is associatod चith A a number $1(A)$ which serves as absolute value of A. This number a(A) is charmstorized by

1. For every $A, A(A) 18$ a non oonstant rational integral funation of the olowents of A of lowst degree suoh that 11. $d(A B)=d(A) d(B) 1^{1}$

In general

$$
\text { (1.5.1) } \quad d(A) \cdot \sum_{1} n_{1} h_{2} \ldots h_{n}^{s} \ln _{1} a_{2 n_{2}} \ldots \operatorname{lnh}_{n}
$$

where the buination 1 ¥over all parmutations ($h_{1}, h_{2}, \ldots, n_{n}$) of (1, 2, n) and on $h_{1} \ldots \ldots h_{n}$ is 1 or-1 according to the permutation being oven or ods.

[^3]The determinant of the $(n-1)^{2}$ matrix Aerived from A $\left(a_{1},\right)$ by delating the 1 -th row and the j-th oolumn of A and assigning to it the sign of $(-1)^{1+j}$ is the gofactor of $a_{1}{ }^{\text {a }}$ We will designate this determinant by $A_{i j}{ }^{\circ}$

A few woll known theorems of determinent theory will be atated hare without proof.

Theorem 1.5.1. The sum of the producta of the elements of a row (or column) of a matrix by their respective cofactors is equal to the determinant, while the sum of the producte of the elemonts of a row (or column) by the cofactors of the olements of a different row (or oolumn) is zero. Notationally this is equivalont to
(2.5.2)

$$
\sum_{1=1}^{n} A_{1 r} a_{1 s}-\sum_{i=1}^{n} a_{r 1} A_{g 1}=\delta_{r g} d(A),
$$ where $\delta_{r s}$ is on operator such that $\delta_{r a}=0$ if $\mu \notin \theta, \delta_{r g}=1$ if $r=8 . \delta_{r g}$ is Eronscker's delta.

Theoram 1.5.2. If B is obtained irou a by multiplying any row or any column of A by k, then (1.5.3)

$$
d(E)=\operatorname{kd}(A) .
$$

Theorem 1.5.3. If B is obtainod from A by the interohange of two rows or of two onluma (1.5.4)

$$
A(B)=-A(A) .
$$

Theorem 1.5.4. If A is a square matrix each olement of whose k-th row is a sum

$$
d_{k s 1}+d_{k s 2}+\ldots+d_{k s \infty} \quad(s=1,2, \ldots, n)
$$

then
(2.5.5) $d(A)+d\left(A_{1}\right)+d\left(A_{2}\right)+\ldots+d\left(A_{m}\right)$,

Where An is the array obtaines by replacing the elenenta of the $k-t h$ row by $d_{k i n} d_{k 2 n}, \ldots d_{k n h}$ respectively. Similarly for oolumne.

Theorem 1.5.5. If g is obtained from A by adaing to any row (or column) a Iinear combination of tho other rowa(or oolumns), then

Thoorem 2.5.6. The dotarminant of a partioned matrix of the form

$$
A=\left[\begin{array}{lllll}
\hat{A}_{11} & 0 & 0 & \ldots & 0 \\
0 & A_{22} & 0 & \ldots & 0 \\
\cdots & \ldots & \ldots & \cdots & \cdots
\end{array}\right] \cdot \cdots \cdot\left[\begin{array}{c}
n n
\end{array}\right]
$$

1a equal to the product of tho ieterminants of the matrices making up the diagonal.

$$
a(A)=a\left(A_{11}\right) d\left(A_{22}\right) d\left(A_{33}\right) \ldots d\left(A_{n n}\right) 0^{1}
$$

A watrix A is said to be singhar if $A(A)$. O, other-
wise it is non-singular. If A is a reatangular matrix then we may and a suificiont number of rows of zaros to A on the botton or a sufficient number of colums of zeros to A on the right to mexe A a square matrix without changing the gfiectiveness of A. The new matrix will be singular. Te will define

[^4]a reotangular matrix to be a singular aatrix.
1.6. Adjoint and Inverge. The transpose of the matrix obtained from $A=\left(a_{1 j}\right)$ by replacing each element $a_{1 j}$ by ita cofactor is the adsoint of A, writton A^{A} or adj. A. It is evident from equation (1.5.2) that

Theorem 1.6.1. If A is an n by n matrix
$A^{A} A=A A^{A}=I d(A)$.
For obvious reasons the matrix defined by $A^{A} / d(A) 18$ called the daverge of A written A^{-1}.

Theorem 1.6.2. The inverse of product of two matrioes is the product of their inverses in reverse ordor. Proof. ${ }^{1}$ Consider the product of the two n by n matrioes A and B. Let $A B$. C. Kultiplying this equation on the left by A^{-1} and then B^{-1}, we have $I=B^{-1} A^{-1} C$. Then multiplying on the right by $0^{-1}, C^{-1} \cdot \mathrm{~B}^{-1} A^{-1}$.

Theorem 1.5.3. Lat 3 be non-aingular, aymetric matrix. If K is any gkow matrix such that $(S+K)(S-K)$ is non-aingular and $P=(S+K)^{-1}(S-K)$, then ${ }^{2}$

$$
P^{\prime} S P=\theta_{0}
$$

Proof. Let $T=S^{-1} K$, then

$$
\begin{aligned}
P-[S(I+T)]^{-1} S(I-T) & =(I+T)^{-1}(I-T) \\
P^{\prime}-\left(S^{\prime}-K^{\prime}\right)\left(S^{\prime}+K^{\prime}\right)^{-1} & =(S+K)(S-K)^{-1} \\
& =3(I+T)(I-T)^{-1} S^{-1}
\end{aligned}
$$

[^5]Then

$$
\begin{aligned}
p^{\prime} g P & =g(I+T)(I-T)^{-1} S^{-1} I(I+T)^{-1}(I-T) \\
& =S(I+T)[(I+T)(I-T)]^{-1}(I-T) \\
& =S(I+T)[(I-T)(I+T)]^{-1}(I-T)
\end{aligned}
$$

Using Thoorem 1.5.2,
$P^{\prime} \operatorname{SP}=S(I+T)(I+T)^{-1}(I-T)^{-1}(I-T)-S$.
Theorem 1.6.4. The inverse, A^{-1}, of a aymmetric matrix, A. is symmetric.

Proof. Consider the cofactor of a_{1}. It is obtained from A by deleting the $1-t h$ row and $j-t h$ colum, taking the doterminant of the resulting matrix and affixing the $62 g n$ $(-1)^{1+1}$ to the determinant. Since the $1-t h$ row of $A \operatorname{ls} 1 d e n-$ tical with the 1-th column, the cofactor of aij is the aame as the cofactor of agi. Hence A^{A} is aymatria and the theorem follows from the definition of A^{-1}.

If $A^{-1}=A^{\prime}$, then A is an orthogonal matrix.
If p is any positive integer and A any matrix we undorstand by A^{p} the product $A A A \ldots A$ to p eactors. If A is a nonsingular matrix, we define its negative and zero powers by the formula

$$
\begin{equation*}
A^{-p} \cdot\left(A^{-1}\right)^{D} \cdot A^{0}=I .^{1} \tag{1.6.2}
\end{equation*}
$$

From this definition wo have
Theorem 2.6.5. The laws of exponents

1 kaxime Bocher, Introduction to Higher Algebra, (New York, 1931). p. 75.

$$
A^{p} A^{q}=A^{p+q} \cdot\left(A^{p}\right)^{q}=A^{p q}
$$

hold for all watrices when the exponents p and q are positive integers, and for all non-singular matrices when p and q are any integers. ${ }^{1}$
1.7. Rank of getrix. A matrix is said to be of rank r if it contains at least one r-rowed determinent which is not zero, while all its determinants of order higher than r are zero. ${ }^{2}$ If A is square matrix of order n, then $n-r$ is oelled the nullity of $A{ }^{3}$ If A is a m by n matrix there are two different nullities, a row-nullity and a column nullity. ${ }^{4}$

Theorem 1.7.1. Let A be an mby matrix partitioned into $m 1$ by $n f$ submatrioes and let B be an n by p matrix partitioned into $n\{$ by $p j$ submatrioes auch that $A B \cdot C$, then if O has the same row partitioning as A and the same coluan partitioning as B,

$$
\begin{equation*}
o_{1 g}=\sum_{k=1}^{t} A_{1 k} B_{k g} \tag{1.7.1}
\end{equation*}
$$

where t is the number of column in A and the number of rows In B after they have beon partitioned.

Proof. Since the row partitioning of C is the same as that of $A, C_{1 j}$ will have the same number of rows as $A_{1 x} \cdot$ Sim1larly. C_{1} gas the same number of columns as $B_{k g}$. Let $C_{1 g}=$ ($0_{u v}$), where (u, v) is the index of the element in C. since

[^6]$A B=C$.
(2.7.2)
$$
o_{u v}=\sum_{r=1}^{n} a_{u r} b_{r v}
$$

Now the $(u, y)-$ th element of the product on the right of (1.7.1) is
(1.7.3) $a_{u v}=\sum_{r=1}^{n_{1}^{\prime}} a_{r r^{b}} b_{r v}+\sum_{r=1}^{n_{1}^{\prime}+n_{2}^{\prime}+1} a_{u r} b_{r v}+\sum_{i}^{t^{\cdots}}$

However,

$$
r=\left(\sum_{1}^{t-1} n_{1}\right)+1
$$

$$
n 1+n f+\ldots+n t+n_{1}
$$

Hence, combining the summations in (1.7.3),
(1.7.4) $\quad d_{u v}-\sum_{r=2}^{n} a_{u r} b_{r v}$.

Then from (1.7.2) and (1.7.4), it follows that

$$
o_{u v}=d_{u v}
$$

and the theorem is true.
Corollary 2.7.1. If A is any matrix with n columns and $B 18$ any matrix with n rows, any trowed determinant D of matrix $A B$ is equal to a $a n$ of tara each a product of a t-rowed determinant of A by a trowed determinant of $B .^{1}$

Proof. The corollary follows from the application of property (11) of a determinant and Theorem 1.5 .4 to equation (1.7.1).

Corollary 1.7.2. The rank of the product of two matries cannot exceed the rank of either factor. ${ }^{2}$

1. L. E. Dickson, modern Algebraic Theories (Chicago, 1926), 2 Ibid. p. 51.

Proof. If all t-rowed determinants of A(or of g) are zero, the same 1 a true of all t-rowed jeteminanta of AB. Thoorem 1.7.2. If A is any matrix with m rows and n columns and $B 18$ any non-singular n-rowed square matrix, then A and $A B$ have the same rank. If C is eny non-singular m-rowed square matrix, then A and $C A$ have the same rank. ${ }^{1}$

Proof. If r is the rank of A and p is the rank of P o $A B$, then according to the Corollary 1.7.2, $p \leq r$. Applying the same ldea to $A=P B^{-1}, r \leq p ; c o n s e q u e n t l y, r=p$. The same reasoning show that A and $C A$ have the same rank.

1 DLokson, p. 51.

Chayter II

ALGESRAIC EJRAS, EqUALB SELATIONGHIPS

AND

ThE GHAEACTERETIC zATAIX

2.1. Equivalence of two matriogs. Two matrioes are said to be equivalent if one can be derived arom the other by any finite number of elementary operations. ${ }^{1}$ The relation of equivalence is an equals relation. ${ }^{2}$

Theorem 2.1.1. Every matrix A of rank r is equivelent to a matrix C whose elements are all zero with the exoeption of r ones occupying the eirst r places in the principal diagonal.

Proof. If the matrix is a null matrix the theorem 1s obviously true. If A 1 a not nuil, then at nost two elomentary operations of the type (1) will be required to bring a non-zaro element to the $(1,1)$ position of A. Then by an operation of the type (111), we can reace this element to unity. Next we reduce all other elenents of the ilrat row and firat colum to zero by operations of the type (11). If elements lying below the firgt row are not all zero, we bring a non-zero elerent to the eecond place in the principal dia-

1 Bôcher, p. 55.
2 Wac Duffee, the Theory of watrices, p. 41.
gonal. This can be done without altering the first row or first column. We can now reduce the element in the $(2,2)$ position to unity and all other elements in the second row and column to zero. If not all the elements below the second row are zero, we bring a non-zero element to the third place in the principal diagonal. In this way, after a finite number of elementary operations on A, we have a diagonal matrix C with units occupying the first t places in the principal diagonal and all other elements of C are zeros. By Corollary 1.7.2, $t \leq r$.

Acoording to Theorem 1.4.1, we may perform any of the elementary operations on A by multiplying A on the left by a matrix U if the operation is on the rows of A, and on the right by a matrix V if the operation is on the columns of A. U and V are obtained by performing the given operation on I. Suppose n operations are required on the rows of A and m operations on the columns of A in order to obtain C. Then (2.1.1) $\quad U_{n} J_{n-1} \ldots U_{2} U_{1} A V_{1} V_{2} \ldots V_{m}=c$. By Theorems 1.5.2, 1.5.3, and 1.5 .5 we know that each U_{1} and $V_{g},(1,1,2, \ldots, n ; j=1,2, \ldots ., m$, is non-singular. Then, since n and m are finite, (2.1.2) $B=U_{n} U_{n-1} \ldots U_{2} U_{1}, D=V_{1} V_{2} \ldots V_{m-1} V_{m}$ are non-singular. since
(2.1.3) BAD $=C$,
from Theorem 1.7.2, C has rank r. Hence $t-r$.

Theorem 2.1.2. Two matrices h and B are equivalent if and only if they have the same rank.

Proof. If A is oquivalent to B, then from Theorem 1.7.2, A and B have the ame rank.
suppose A and B have the same rank r. Both A and B can be refluoed to the Alaronal form described in Theorem 2.2.1. Henco there oxista a E_{1}, P_{2}, A_{1} and χ_{2}, each having the same form as B and D in equation (2.1.2), such that
(2.1.4) $\quad P_{1} A P_{2}-2_{1} B A_{2}$

And aince $P_{1}, P_{2}, 2_{1}$, and Q_{2} are non-singular
(2.1.5) $A=P_{1}^{-1} Q_{1} P_{Q_{2}}{ }_{2}^{-1}$.

Gince the invarse of an elemontary matrix 13 an elementary matrix, A is equivalent to B.
2.2. Linear forms and lingar transformations. A innoar homogeneous function, suoh as $5 y-6 z$ is called a lingar form. ${ }^{1}$ The set of m equations

$$
y_{1}-a_{11} x_{1}+a_{12} x_{2}+a_{1} 3^{x_{3}}+\ldots+a_{1 n} x_{n}
$$

(2.2.1)

$$
y_{m}=a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m} 3^{x_{3}}+\ldots+a_{m n} x_{n}
$$

 the n varlablea $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ can be written in the matrix form as

1 Diokson, p. 39.
(2.2.2)

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\cdots \\
y_{m}
\end{array}\right] \cdot\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \cdots & \cdots \\
a_{m n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]
$$

or more precisely

$$
Y=A X
$$

If m - n, then (2.2.1) is said to be a in near transformation. ${ }^{1}$ The set of lines equations (2.2.1) may also be written in the compact notations
(2.2.3)

$$
y_{1}-\sum_{j=1}^{n} 2_{1} g x_{j}
$$

$$
(1,1,2, \ldots, m)
$$

suppose the n variables $x g$ are expressible linearly in terms of new variables $\mathrm{z}, \mathrm{z}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}$. Then

$$
\begin{equation*}
x_{j}=\sum_{k=1}^{n} g_{j k} z_{k} \tag{2.2.4}
\end{equation*}
$$

$$
(j=2,2, \ldots, n)
$$

Substituting (2.2.4) into (2.2.3), we have
$y_{i}=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{1} j_{b j k} z_{k}$
(1-1, 2, \quad (1).
Since a finite sum is independent of the order of summation (2.2.6)

$$
y_{1}-\sum_{k=1}^{n} \sum_{j=1}^{n} a_{1} j_{j} j_{k} z_{k}
$$

(1-1, 2,
四)
But

$$
\begin{equation*}
A^{n}=\sum_{j=1}^{n} a_{i} j^{b j k} \tag{2.2.7}
\end{equation*}
$$

Hence we have
Theorem 2.2.1. A linear transformation with the matrix B replaces a system of linear forms with the matrix A by a system of linear forms with the matrix AB.

1 Dickson, p. 41.

Consiler a get of m oquations in n unknown suoh as (2.2.1) suoh that $y_{1}=y_{2}=\ldots . y_{m}=0$. Such a set of equations are linear homogeneoug equations in the n unisnown x_{1}, $x_{2}, x_{3}, \ldots, x_{n}$.

Theorem 2.2.2. A necessary and sufficient conition that m ilnear homogeneous equations in n unknowne have solutions not all zero is that the matrix of the coaficionts of the unknowng have rank $r<n$.

Proof. Suppose run. Then $\geq n$. By rearrangenent of the equations or by glouentary operations, if necesjary, we can obtain an n by n submatrix Ai of the coefficient astrix A, such that A_{1} is non-singular arid consists of the cirst n rows of A. since solutiong of the m equations must al so be solutions of the ifst n, the solutions muat satigfy (2.2.9) $\quad A_{1} X=0$.

But since A_{1} is non-singular (2.2.9)

$$
A_{2}^{-1} A_{2} X=X=0
$$

Renoe the assumption that r. n has les to tha identiosily zero solution of the mequations. Hence $r<n 1 s$ a necessary conjition that $x \nsim 0$.

If $r<n$, then wo can grrange the equations and the unknowns so that the r by r subentrix of A consiating of the firgt r elementig of the firgt rows of A is non-aingular. Now we partition A so trat
(2.2.10) $\quad A=\left[\begin{array}{ll}\lambda_{11} & A_{12} \\ \hat{n}_{21} & A_{22}\end{array}\right]$,
 r by r and A_{22} is $m-r$ by $n-r$, Multiplying A on the left by the elementary matrix
(2.2.11)

$$
J=\left[\begin{array}{lll}
I & 0 \\
-A_{21} 1_{11}^{-1} & I
\end{array}\right]
$$

we have
(2.2.12) $\quad J A=\left[\begin{array}{ll}A_{11} & A_{12} \\ 0 & A_{22}-A_{21} A_{11}^{-1} A_{12}\end{array}\right]$.
$A_{22}-A_{21} A_{11}^{-1} A_{12} 18$ a null matrix. for if it contained a nonzero element, this element could be moved to the (r $4, r+1$) position of J Λ, making JA of rank $r+1$. By Theorem 1.7.2, this cannot bo true.

Writing equations (2.2.1) in the form
$(2.2 .13)$
$\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=0$
ant multiplying (2.2.13) on the left by J, we have

$$
\left[\begin{array}{ll}
{ }_{1}^{11} & A_{12} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0
$$

Hence

$$
A_{11} X_{1}+A_{12} x_{2}=0
$$

Therefore

$$
\left(2.2 .13^{\prime}\right) \quad x_{1}-A_{11^{-1}} 12^{x_{2}}
$$

Then r <n is sufficient to insure solutions to a set of
homogeneous equations in n unknowns.
Corollary 2.2.2. If the coefficient matrix of a homogeneous equations in n unknowns is of rank $r<n$, then $n-r$ unknown oan be arbitrarily assigned. These $n-r$ unknowns are parameters in terms of which the other r unknowns can be innearly and uniquely expressed.

Corollary 2.2.21. A syatem of m homogeneous equations In n unknown, where $m<n$, always has solutions not all zero.

A system of equations (2.2.1) such that the y_{1} are not all zero 1 s a syatem of pon-homogenepug oquations. The oatrix $[A, Y]$ associated with auch a set of equations is celled the auzmented matrix of the set.

A set of mequations in n unknown is said to be gengigtent if there exists values of the unknown Fhioh satisfy all the equations. Otherwise the equations are inoonglatent. Theorem 2.2.3. Any m non-homogeneous equations in n unknowns with coefficient eatrix A of rank r are oonsistent and aolvable in terms of $n-r$ parameters if and only if the rank of the augmented matrix $[A, Y]$ is equal to the rank of A.

Prooi. Let A be the coefficient matrix of mon-homogeneous equations in n unknowns. guppose A and $[A, Y]$ are each of rank r. Partition A in the same manner as in the proot of Theorem 2.2.2. Then we have
(2.2.14) $\quad\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{l}Y_{1} \\ Y_{2}\end{array}\right]$.

Where X_{1} and Y_{1} is an r by 1 matrix, X_{2} is an $n-r$ by one matrix and Y_{2} is m $-r$ by one. Multiplying equation (2.2.14) on the left by the matrix J of equation (2.2.11), $(2.2 .15) \quad\left[\begin{array}{ll}A_{11} & A_{12} \\ 0 & A_{22}-A_{21} A_{11}^{-1} A_{12}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}Y_{1} \\ Y_{2}-A_{21} A_{11}^{-1} Y_{1}\end{array}\right]$. aline the coefficient matrix is of rank $r, A_{22}-A_{21} A_{11}^{-1} A_{12} O_{0}$ and, since the auganted matrix is of rank $r, Y_{2}-A_{21} A_{12} Y_{1}-0$. Then (2.2.15) can be written

$$
\begin{equation*}
A_{11} X_{1} \cdot A_{12} X_{2}-Y_{1} \tag{2.2.16}
\end{equation*}
$$

From which we have the solution
(2.2.17) $\quad X_{1}-A_{11}^{-1} Y_{1}-A_{11}^{-1} A_{12} X_{2}$
of (2.2.14). The elements of X_{2} are arbitrarily assigned, which uniquely determines the r elements of X_{1}. Hence, if the rank of the augmented matrix 13 the ane as the rank of the coefficient matrix, the equations are consistent.

Suppose the equations are consistent. Equation (2.2.17)
satisfies the first r of the equations. If the equations are consistent, then (2.2.17) must satisfy all of the other equaltrons al so. Now the rank of $J[4, Y]$ is the $\operatorname{san} \theta$ as $[A, Y]$ $(2.2 .18) J[A, Y]=\left[\begin{array}{ll}A_{11} & A_{12} \\ 0 & A_{22}-A_{21} A_{11}^{-1} A_{12}\end{array}\right]\left[\begin{array}{l}Y_{1} \\ Y_{2}-A_{21} A_{11}^{-1} Y_{1}\end{array}\right]$. Since A is of rank $r, A_{22}-A_{21} A_{11}^{-1} A_{12}-0$. Consider $Y_{2}-$ $A_{21} A_{11}^{-1} Y_{1}$.
Prom equation (2.2.14)
(2.2.19)

$$
y_{2}-A_{21} x_{1}+A_{22} x_{2}
$$

Therefore，
（2．2．20）$\quad Y_{2}-A_{22} A_{11}^{-1} Y_{1}=A_{21} X_{1}+A_{22} X_{2}-A_{21} A_{11}^{-1} Y_{1}$. Then using（2．2．17）

$$
\begin{aligned}
Y_{2}-A_{21} A_{11}^{-1} Y_{1} & =A_{21}\left(A_{11}^{-1} Y_{1}-A_{11}^{-1} A_{12} X_{2}\right)+A_{22} X_{2}- \\
& =A_{21} A_{11}^{-1} Y_{1}+\left(i_{22}-A_{21} A_{11}^{-1} A_{12}\right) X_{2}- \\
& A_{21} \hat{N 1}_{11}^{-1} Y_{1} \\
& =0
\end{aligned}
$$

Hence，［A Y has rank r 。
2．3．Bilinear and quadratic forme．A polynomial in the $m+n$ variables $x_{1}, \ldots, x_{m}, y_{1}, \ldots y_{n}$ is called a bilinear form if asch of its terms is of the fleet ogre in the x＇s and also of the first wastes in the y＇s．${ }^{1}$ In compact notation $(2,3.1) \quad A(x, y)=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{j} x_{1} y_{j}$ 。
In matrix notation
（2．7．2）$A(x, y)-\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{\text {回 }}\end{array}\right]$
$\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{11} & a_{22} & \cdots & a_{n n} \\ \cdots \cdots \cdots \cdots \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{m 2} & \cdots & a_{n n}\end{array}\right]$
or more precisely
（2．3．3）

$$
A(x, y)=X A Y
$$

in which X is an one by matrix and Y is an n by one matrix．
If m－n and $a_{1 j}=a_{j 1}$ ，then（2．3．1）is a symmetric bilinear

1 Dickson，p． 51.

1
form. y, ther the billnear form becomes a quadratic form. ${ }^{2}$
2.4. Congruence of gatrices. Any two n-rowod matrices A and B are coneruent if there exists a non-aingular n-rowed square matrix P such thet A. E'fr. ${ }^{3}$

Theorem 2.4.1. Every real square aymotric matrix A of ordor n and of rark r is ocregruent to a diafonal catrix whose diggonal elements are efther $1,-1$, or 0 . The number of i's plus the nuinber of -1's equals r.
iroof. If $r=0$, the theorem is true. We asgurie $r>0$. If $a_{11} * O_{1}$ then sone $a_{1} \nmid 0$. We concidar first the elewents of the first row and flrst colum, If $a_{l j}<0$ and $2 a_{1 j}+a g j \neq 0$, we ade tne j-th row of to to the first row and the $j-t h$ coluin of A to the ilret column. The result is a matrix B congruent to $\&$ with $b_{11} \leqslant 0$. If $a_{1 g} / 0$, but $2 a_{1 j}+$ $a_{j j}-0$, we multiply the first row and column of A by -1. Then if the g-th row is adted to the pirst row and the j-th column is arief to the first column, we obtain a atrix B congruent to A with $b_{11} \neq 0$.

If evary elament of the first row and first column is zero then there is sone $a_{i g}$. 0 . By interchangins the first row and 1-th row and tho firat column and 1-th column, wo ar-

[^7]rive at a matrix 0 congruent to A with asae $o_{i j} \neq 0$. We then proceed as before to obtain a matrix $B \times 1 t h b_{11} \neq 0$.

If we add $-b_{1 k} / b_{11}$ times the Ilret row to the $k-t h$ row of B and similarly for the coluans, wo redude all elements exoept b_{11} of the first row and first coluan to 0 .

Consiter b_{22}. If $b_{22}=0$, we operate on E in a manner analogous to the operations described on A to obtain a matgix whose second principal diagonal element is not zero. These operations leave b_{11} unchanged. Then we have a matrix whose first two slagonal elements are not zero, but all other elements in the first and second rows and colums are zero. Continuing this process until a diagonal porn is obtained, we have a matrix E of rank r . Honce its first r diagonal elementa are not zero, but the remaining diegonal eleronts are zero.

Next we multiply E on the right and on the left by a diayonal matrix D whose first r dis, onal elements are determined as follows: If e_{11} is positive, then $a_{11}-1 / e_{11}^{b}$. If θ_{11} is negative, then $d_{11}-1 /-\theta_{11}^{\frac{1}{1}}$. The remaining $n-r$ alagonal elenents of D are one.

The resulting matrix is tha desired diagonal fora. Corollary 2.4.1. Every square complex symatric matrix A of order n and of rank r is congruent to a diagonal matrix whose flrst r flagonal elenents are one and the remaining elements are zero.

If p ia the number of ones in the diagonal form of the-
orem 2.4.1 and $r 1 s i t s$ rank, then the number $2 p-r$ s $1 s$ called the signature of A. An n by n bymetrio matrix A ia called positive definite if r. s. n, negative definite if $r-s-n$. It is seri-sefinite if r or or $r-3.1$

If we have several sets of variables ($\left.x_{1}, x_{2}, \ldots\right)$. (y_{1}, y_{2}, \ldots) and $\left(z_{1}, z_{2}, \ldots\right)$ and agree that whenever one of these sets is subjected to a transformation every other set shall be subjected to the same transformation, then we gay that we have sets of cogrediont variabiog. ${ }^{2}$ Such a transformation 1 a cogrealent trangrormation.

Theorem 2.4.2. Two symmetric bilinear corms are equivalent under non-gingular cogredient transformations if and only If their matrices are congruent. ${ }^{3}$

Proof. Consider the cogredient transformation
(2.4.1)
$x-\sum_{j=1}^{n} b_{1 j} x_{j}$
(1, 1, 2,n)
$y=\sum_{j=1}^{n} b_{1} j_{j}$
$(1 \ldots 1,2, \ldots n)$
with non-singular matrix $B=\left(b_{1} j\right)$.
We may write the symmetric bilinear form

28
$(2.4 .3) \quad A(x, y)-\sum_{j=1}^{n} c_{j} y{ }_{j}, \quad c_{j} \cdot \sum_{i=1}^{n} a_{1} x_{i} \quad(j=1, \ldots, n)$.

[^8]The matrix of the linear forms $c_{1}, c_{2}, \ldots . c_{n} 18$ the transpose A^{\prime} of A. Since A 18 symmetric, A^{\prime}. A. Applying Theorem 2.2.1, the transformation (2.4.1) withamatrix roplaces ol, co. c_{n} by a set of linear functiong whose coefficient matrix $1 s A^{\prime} B$. Hance this transformation replaces the bilinear form $A(x, y)$ with a bilinear form with the matrix ($\left.A^{\prime} B\right)^{\prime}$. By Therem 2.2.3, $\left(A^{\prime} B\right)^{\prime}=B^{\prime} A$.

Let
(2.4.4) $\quad B^{\prime} A=D$.

Then we have the bilinear form
(2.4.5)

$$
D(x, y)-\sum_{1, j=1}^{n} 1_{1} g x_{1} y g
$$

which may bo writton

$$
\begin{equation*}
D(x, y)=\sum_{i=1}^{n} x_{1} 1_{1}, \quad 1_{1} \cdot \sum_{j=1}^{n} d_{1 j} y_{j} \tag{2.4.6}
\end{equation*}
$$

$$
(1 \ldots 1, \ldots n)
$$

By Theorem 2.2.1, the Ilnear transformation (2.4.1) with matrix seplaces I_{1} with a linesr form with matrix ra. Honce the cogredient transformation defined by aquations (2.4.1) replaoes a symatric bilinear form with matrix A with a gymetric bilinear form with matrix $A 1=B^{\prime} A B$.

By Theorea 1.7.2. A1 and A have the same rank, hence are equivalant. From the definitions it follows that if the two matrices A_{1} and A are congruent, they are equivalent.

From the definition of a quadratic form it follows that
Theorem 2.4.3. Two quadratic forms are equivalent unfer a non-singular transformation if and only if their matricea
are congruent. ${ }^{1}$
Corollary 2.4.3. Two gymetrio bilinear forms with matrices A and A_{1} are equivalent under oogredient transformation if and only if the quadratic froms with matrices A and A_{1} are equivalent.
2.5. y-gifing gengruence. ${ }^{2}$ Consider the quadratic form

$$
\begin{equation*}
F=\sum_{1, j=1}^{n} a_{1} x_{i j} x_{j} \tag{2.5.1}
\end{equation*}
$$

whose matrix is $A=\left(a_{1}\right)$. If the x 's are subjected to the transformation

$$
\begin{array}{ll}
x_{1}=x_{1} & (1=1,2, \ldots, m), \\
x_{1}=\sum_{j=1}^{n} b_{1} x_{j} & (1 \cdots m+1, \ldots, n)
\end{array}
$$

with matrix

Then
(2.5.3)

$$
T^{\prime} A T=\bar{A}
$$

is the matrix of the transforms quadratic form.
Two matrioes A and B are sail to be m-gffine congruent If and only if there existe a non-aingular matrix T of the

1 Dickson, p. 65.
2 R. S. Burington, "On the Equivalence of zuadrics in maffine n-space and ite relation to the equivalence of 2π-pole networks", Tranagitions of the aterican 4 sthemation society, 1935. XXXVIII, pp. 163-176.
form (2.5.2) such that A - T'BT.
If we have a system of polynowials in the set of variables (x_{1}, x_{2}, \ldots) and a set of transformations of these varlables, then any function of the coefficients la called an 1nvariant(or absolute invariant) with regard to these transformations if it is unchanger when the polynomials are subjected to the transformation of the set. ${ }^{1}$

A rational function of the ooeffloients of a form or syatem of forme which, when these forms are subjected to any non-aingular ilnear transformation, is merely multipliod by the j-th power of the determinant of the transformation is oalled a relative invariant of weight g of the form or aystem. ${ }^{2}$

If $\bar{A}_{r_{1}} \ldots r_{s}$ is \bar{A} with the r_{1}, \ldots, r_{s} row and columns deleted, the r_{1} 's boing all distinct and such that $r_{1} \leq m$ for all 1, then

$$
\begin{equation*}
\bar{A}_{r_{1}} \cdots r_{s}=T_{r_{1}} \cdots r_{s} A_{r_{1}} \cdots r_{s} T_{r_{1}} \cdots r_{s} \tag{2.5.4}
\end{equation*}
$$

Thus $A_{r_{1}} \cdots r_{s}$ is an invariant matrix of A under T in the sense that $\bar{A}_{r_{1}} \cdots r_{g}$ oan be formed elther by trangrorming and then deleting the rows and colums, or by deleting the rows and oolums of A and T and then transforming.

Let the ranks of $A_{r_{1}} \cdots r_{s}$ bo denoted by $\rho_{r_{1}} \cdots r_{s}$.
Theorem 2.5.1. The $\rho_{1} \rho_{1}, \ldots \rho_{r_{1}} \cdots r_{s}$ are integer invariants of $A, A_{1}, \ldots, A_{r_{1}} \ldots r_{B}$, respectively and hence of

[^9]matrix A.
Proot. This follows from Theorems 2.1.2 and 2.4.3, equation (2.5.4) and the definition of m-affine congruence.

By taking determinants of equation (2.5.4), it follows that

$$
d\left(\bar{A}_{r_{1} \ldots} \ldots r_{\Delta}\right)=\left(d\left(T_{1} \ldots \dot{r}_{8}\right)\right)^{2} d\left(A_{r_{1}} \ldots r_{g}\right)
$$

Then
Pheorem 2.5.2. The $d(A), d(A 1), \ldots, d\left(A_{r_{1}} \ldots r_{g}\right)$ are relative invarianta of A under T.
w. denote by

$$
A_{r_{1} \ldots S_{t}}^{s_{1} \ldots s_{t}}
$$

the submatrix of a obtained from a by atriking out the rows numbered $r_{1}, r_{2}, \ldots, r_{t}$ and $a l l$ the columns numbered 1_{10} ... st. It follows from the definitions that, for $r_{i} \leq m$, $s_{1} \leqq m,(1 \ldots 1,2, \ldots, t)$,

Theorem 2.5.3.

$$
\begin{equation*}
\bar{A}_{r_{1} \ldots r_{t}}^{81 \ldots T_{r_{1}} \ldots r_{t}{ }^{A_{1}} r_{1} \ldots r_{t^{2}} s_{1} \ldots \theta_{t}} \tag{2.5.6}
\end{equation*}
$$

$1 s$ an invariant matrix, and $\left(A_{r l}^{8} \ldots \ldots r_{t}\right)$ is a relative invarlant of A under T.
 s_{1} - m, (1-1, 2, ...t $\left.t\right)$,

Theorem 2.5.4. If R_{1} and R_{2} are any two of the above relative invariants, then (2.5.7)

$$
I_{1,2}-R_{1} / R_{2}
$$

is an absolute invariant of A under T.
2.6. R-motriceg. A real square matrix B ($b_{1 j}$) of order n is said to be an g-matrix if ans only if $\sum_{i=1}^{n} b_{1 j} j 2 b_{j j}$, for each $j=1,2, \ldots n$.

If $(x)=\left(x_{1}, x_{2}, \ldots . x_{n}\right.$, is an one by n matrix, then so is (x) B, where A is an n by n matrix. Let γ_{1} be an operator such that

$$
\begin{aligned}
& \gamma_{1} b_{19}=-\left|b_{19}\right| \quad 1 \neq g_{2} \\
& \gamma_{1} b_{1 j}=b_{j 1}
\end{aligned}
$$

Letting $x_{1}-\gamma 1$ and $(x)=(\gamma)$, the statement $(\gamma) B=0 w 111$ be used to mean that asch element of this one by matrix 1 a greater than or equal 0 .

Theorem 2.6.1. A necessary and sufficient condition that a real matrix B be an $R-m a t r i x i s(y) B \geq 0$.

Proof. From the definition, we see that if E is an Rmatrix then $(\gamma) B \geqslant 0$.

Each element of (Y)E is leas than or equal to each oledent of ($b_{11}-b_{21}-\ldots-b_{n 19} \ldots .-b_{1 k}-b_{2 x}-\ldots+b_{k k}$ $\left.-b_{k+1, k}-\ldots-b_{n k}, \ldots .-b_{1 n}-\ldots+b_{n n}\right)$. Then $1 f(r) B$ ≥ 0
(2.6.1)

$$
0 \leq b_{j 1}-\sum_{\substack{i \neq j \\ i=1}}^{n} b_{1 j}
$$

or

$$
b_{11} \geq \sum_{\substack{1=1 \\ i=1}}^{n} b_{1 g}
$$

1 R. 3. Burington, "R-Matrices and Equivalent Networks", Journal of Mathematics and Physics. it.I.T., 1937, XVI, pp. 85102.

Adding $b \mathrm{gj}$ to both sides

$$
2 b_{1 j} \geq \sum_{1=1}^{n} b_{1 j}
$$

which is the definition of an Romatrix.
Consider the get of all possible distinct one by n matrices $\left(x_{q}\right)$ ($\left.x_{q 1} x_{q 2} \ldots . . x_{q n}\right)$. in which tho $x_{q 1}$ are one or minus one, $1,1,2, \ldots, n$. There are 2^{n} such matriceps, $\left(x_{1}\right),\left(x_{2}\right), \ldots .\left(x_{2}^{n)}\right.$.

Let $x_{q}=\left(x_{q}\right) A,\left(q \ldots 1,2, \ldots, 2^{n}\right)$, be the set of functions generated from the real matrix A and the matrices $\left(x_{q}\right)$. Denote by $\left(x_{q}^{(k)}\right)=\left(x_{q 1}, \ldots, x_{q, k-1}, 1, x_{q, k+1}, \ldots\right.$ $\left.x_{q n}\right),(k \cdots 1, \ldots, n), 1.0 \ldots x_{q k}=1$. Since there are 2^{n-1} such matrices, $q=1,2, \ldots, 2^{n-1}$. Then let $x^{(k)}-\left(x^{(k)} q_{q}\right.$. $(k=1,2, \ldots, n)$.
 (2.6.2) $\quad \sum_{i=1}^{n} x_{q 1}{ }_{1 k} \geq \sum_{i=1}^{n} i^{a_{i k}}(k=1,2, \ldots, n ; q-1,2$, $\ldots 2^{n-1}$.

Since all possible signs will be assigned to $a_{i k}$ in (2.6.2). equality will hold once for each k. Then if

$$
\begin{equation*}
\sum_{i=1}^{n} x_{q 1^{n}} \geq 0 \tag{2.6.3}
\end{equation*}
$$

for all q and $k,(\gamma) A$. O. Therefore, it follows from Theorem (2.6.1) that

Theorem 2.6.2. A necessary and sufficient condition that $A=T A T, T$ non-aingular, be an R-matrix is

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{11} a_{1 k} t 0,\left(k=1,2, \ldots \ldots n ; q \ldots 1,2, \ldots, 2^{n-1}\right) . \\
& \text { be an } n^{2} \text { space consisting of the totality of real }
\end{aligned}
$$

 of the matrix x of Theorem 2.6.2. In ponoral, from the nature of the product T ' B, orch member of X_{q} is a quadric in $2 n$ varfables imbedded in 7 .

Lot $\gamma^{(k)} \cdot \sum_{i=1}^{n} x_{q i^{a} 1 k}(k \ldots 1,2, \ldots . n ; q \ldots 1,2, \ldots$ $\left.2^{n-1}\right)$
(k) $=0, q=1, \ldots, 2^{n-1}, k 11 x-$ ed, divide 7 into regions $\pi^{(k)}$ and $\eta^{(k)}$, where $\pi^{(k)}$ contains all points of 7 such that $\gamma^{(k)} 20, q \ldots 1,2, \ldots, 2^{n-1}$, and $\eta^{(k)}$ contains all other points of 7 not in $\pi^{(k)}$.

Let Π denote that portion of 7 composed of all points common to $\pi^{(1)}, \pi^{(2)}, \ldots, \pi^{(n)}$, and no other points. Delete from π all points for which T is singular. Denote this region by $\%$. Then

Theorem 2.6.3. A necessary and sufficient condition that the matrix. $A=T$ 'BT be an R-matrix, where B is real and T is real and non-singular, is that the elements of T belong to the region in 7 .

If we restrict the space to be an n by $n-m$ space, then Theorem 2.6 .3 holds for m-affine congruence as well as congruence.

From Theorem 2.4.1. we know that any real square symmetric positive semi-definite matrix s of order n and rank r is congruent to a diagonal matrix wo se diagonal consists of r ones in the erst r places and $n-r$ zeros in the remaining
places. Let J be such a diagonal matrix. Evidently J is an R-matrix. Consider the matrix A congruent to $J, A=T 2_{2}{ }_{2}$ where

$$
I_{2}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right] . .
$$

In other words. T_{2} is a unit aatrix whioh has been altered so that the element in the (r, r) pogition is t. Then A is a diagonal matrix whose diagonal consigts of ones in the firat $r-1$ positions, t^{2} in the ruth position and the remainaer of the positions docupied by zeros. Obvioualy A is an R-matrix for
 Hence there is region containing an infinite number of points for which A is an R-matrix.

Theorem 2.6.4. If B 1s a real square symetrio matrix, there exists an infinite number of points in 7 for which A T'BT is an R-matrix. E need not be an R-matrix.

If \mathbb{N}_{1} is the region of 7 for whion $A_{1}-I^{\prime \prime} B_{1} T$ and wi2 1. the region of 7 for which $A_{2}-T^{\prime} B_{2} T$, where A_{1} and A_{2} are R-matrices, then if w_{22} is the interseotion of \forall_{1} and W_{2} we have

Theorem 2.6.5. If E_{1} and B_{2} are real aquare symmetric
positive semi-desinite matrices, there oxists a region H_{12} in Ffor whioh $A_{1}-T^{\prime} B_{1} T_{2} A_{2}-T^{\prime} B_{2}$ are both R-matrices. The region 12 containg infinitely many points.

In similar manner Theorem 2.6 .4 can be extended to any finite number of matrioes.
2.7. λ-matriges gnd the ghacacteristig equation. The matrix $A-\lambda I$ - $f(\lambda)$ is called the oharacterigtic matrix of $A ;$ it way be obtained by subtracting λ fromeach element in the principal diagonal of $A .^{1}$ The determinant $d(A-\lambda I)$ is the charagteristic determinant of A and is a polynomial of dagree n.
(2.7.1) $d(f(\lambda))=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0} a_{n} \cdot(-1)^{n}$. The equation $d(I(\lambda))$ - 018 callad the ghargcterigtic equation of A. The roots of the characteriatic equation of A are the gharactorigtic coptge Latent rooti or etsen-yaluen of A. Theorem 2.7.1. (Hamilon-Cayley) Any square matrix sat1sfies its characteristio equation.

Proof. Let (2.7.1) be the characteriatio deterainant of A. gince the olements of $A-\lambda I$ are linear functions of λ. and the elements of $1 t s$ adjoint C are ($n-1$) rowed determinants, they are polynomials in λ of degree less than or equal to $n-1$. If the elewent in the $1-t h$ row and $j-t h$ column of cis $\sum_{k=0}^{n-1} c_{1 j k} \lambda^{k}$, then

1 Dickson, p. 65.

$$
c=\sum_{k=1}^{n-1} c_{k} \lambda_{1}^{k} c_{k}=\left(c_{1} g k\right)
$$

$$
(1,1=1,2, \ldots, n)
$$

From Theorem 2.6.1, we have

$$
\begin{equation*}
(A-\lambda I) C=\mathbb{d}\left(f\left(\lambda_{1}\right)\right) I . \tag{2.7.3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
A_{k=0}^{n-1} c_{k} \lambda^{k}-\sum_{k=0}^{n-1} c_{k} \lambda^{k+1}-\sum_{k=0}^{n} a_{k} \lambda^{k} I_{1} \tag{2.7.4}
\end{equation*}
$$

Equating lite coefficients in equation (2.7.4), we get
multiplying these equations on the left by I, A, A^{2}, $\ldots A^{n-1}, A^{n}$ respectively and adding, the result is $0=a_{0} I+a_{1} A+a_{2} A^{2}+\ldots+a_{n-1} A^{n-1}+a_{n} A^{n}=a(f(A))$.

Suppose the elements of matrix A are functions of a variable, say t. Then if t receives an increment Δt, the olements of A receive a corresponding increment. The matrix of increments assigned to the elements of A way be denoted by ΔA. Then

$$
\frac{d A}{d t}=D^{(1)} A=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \Delta}{\Delta t} \cdot{ }^{1}
$$

Theorem 2.7.2. If λ_{a} is a staple root of the oharectorfistic equation of the n by matrix $f(\lambda)$, then $f\left(\lambda_{B}\right)$ is of

1 Frazer, Duncan, and collar, p. 43.

$$
\begin{aligned}
& A C_{0} \quad-a_{0} \\
& A G_{1}-C_{0}=A_{1} I_{3} \\
& \mathrm{AC}_{2}-\mathrm{C}_{1}-\mathrm{a}_{2} \mathrm{I} . \\
& A C_{n-1}-C_{n-2}-a_{n-1} I_{0} \\
& -c_{n-1} \cdot a_{n 1} \text {. }
\end{aligned}
$$

rank $n-10^{2}$
Proof. Let $d(f(\lambda)) \cdot D(\lambda)$. $D\left(\lambda_{g}\right)=0$; therefore, by definition $f\left(\lambda_{s}\right)$ has rank less than n. If λ_{s} is a aple root of $D(\lambda)$, then $D^{(1)}\left(\lambda_{s}\right) \nLeftarrow 0$, where $D^{(1)}\left(\lambda_{s}\right)$ is the first derive ative of $D(\lambda)$ with respect to λ evaluated at λ - λ since $D^{(1)}(\lambda)$ is a innear homogeneous function of the first minors of $f(\lambda)$, It then follows that $f\left(\lambda_{8}\right)$ has at least one $n=1$ by $n-1$ dinor whoge determinant 1 s not zero. Hence $f\left(\lambda_{g}\right)$ is of rank n-1.

Theorem 2.7.3. If $P(\lambda)$ is the adjoint of $f(\lambda)$, and $f\left(\lambda_{s}\right)$ is of rank $n-1$, then $T\left(\lambda_{s}\right)$ is of rank one and

$$
F\left(\lambda_{g}\right)-k_{B} h_{g}
$$

Where the elements of the n by one matrix k_{a} and one by n matrix h_{g} are appropriate to the root $\lambda_{g} \cdot^{2}$

Proof. $f\left(\lambda_{g}\right)$ 1s of rank $n-18$ therefore, $F\left(\lambda_{g}\right)$ cannot be a null matrix. From Theorem 2.6.1, $f\left(\lambda_{B}\right) F\left(\lambda_{B}\right)=D\left(\lambda_{B}\right) I$. $31 \mathrm{nce} f\left(\lambda_{g}\right)$ is of rank $n-1$, this leads to $f\left(\lambda_{B}\right) F\left(\lambda_{B}\right)=0$. The p-th coluan of thla produot can be written as (2.7.5)

$$
f\left(\lambda_{B}\right)\left[\begin{array}{c}
F_{I p} \\
F_{2 p} \\
\cdots \\
F_{n p}
\end{array}\right]=0
$$

Applying Corollary 2.2 .2 and equation (2.2.13') to oquation (2.7.5), we can arrive at an expression of every other row

[^10]of $F\left(\lambda_{8}\right)$ as multiple of some given row of $F\left(\lambda_{B}\right)$. Hence $F\left(\lambda_{s}\right)$ must be of rank 1 .

Now if we let h_{g} be any row of $F\left(\lambda_{g}\right)$, we have shown that wo con express any other row of $F\left(\lambda_{B}\right)$ as a multiple of h_{g}. Hence

$$
\begin{equation*}
F\left(\lambda_{g}\right)=k_{g} h_{g} \tag{2.7.6}
\end{equation*}
$$

Theorem 2.7.4. If the latent roots of an n by matrix A are all distinct, then

$$
A=K \wedge K^{-1}
$$

where K is matrix whose month column $18 k_{\text {a }}$ and $\lambda 18$ a dagonad matrix whose j -th diagonal element is $\lambda_{g}{ }^{1}$

Proof. Consider the linear transformation Y AX which Is to be satisfied by Y - λx, where λ is a scalar factor of proportionality. This then leads to

$$
\begin{equation*}
(\lambda I-A) x=f(\lambda) x=0 \tag{2.7.7}
\end{equation*}
$$

Hence the roots λ are the characteristic roots of A.
Te have seen that
(2.7.8) $\quad I\left(\lambda_{g}\right) F\left(\lambda_{8}\right)=F\left(\lambda_{0}\right) f\left(\lambda_{B}\right)=0$.

Then from the preceding theorem.

$$
\begin{equation*}
f\left(\lambda_{g}\right) k_{g} h_{g}=k_{g} h_{g} f\left(\lambda_{g}\right)=0 \tag{2.7.9}
\end{equation*}
$$

If λ_{s} is a simple root, $F\left(\lambda_{8}\right)$ is of rank one, and at least one of the elements of h_{s} is not zero. Then (2.7.9) requires that

[^11](2.7.10)
$$
f\left(\lambda_{B}\right) x_{B}=0 .
$$

Comparing (2.7.10) and (2.7.7), $X\left(\lambda_{8}\right)$ an be taken propertional to any nonzero column of $F\left(\lambda_{B}\right)$. Now when all of the characteristic roots of A are distinct, there is a column x_{s} corresponding to each root. The columns are known as model golumne. Then
(2.7.11) $A k_{1}-\lambda_{1} k_{1}, A k_{2}-\lambda_{2} k_{2}, \ldots, A k_{n}-\lambda_{n} k_{n}$.

This is equivalent to
(2.7.12)

$$
A K=K へ
$$

where K is a matrix whose j-th column is the goth modal colump, and \wedge is the diagonal matrix whose j-th diagonal element is λ_{y}. K is called the modal matrix of A.
suppose K is singular of rank r. Then at least one column, ely the goth, of K is expressible as a linear combsnation of r others. Then
(2.7.13) $\quad o_{1} k_{1}+c_{2}^{k_{2}}+\ldots+c_{r} k_{r}-k_{g}$ 。

Substituting this value for kg in the g-thequation of (2.7.11) leads to
(2.7.14) $\quad c_{1}{A k_{1}}+c_{2} A k_{2}+\ldots+c_{r} A k_{r}=c_{1} \lambda_{j}{ }_{1}+\ldots+c_{r} \lambda_{j} k_{r}$, and, since $A k_{1}=\lambda_{1} k_{1},(1=1,2, \ldots, n)$, (2.7.15) $o_{1} \lambda_{1} k_{1}+o_{2} \lambda_{2} k_{2}+\ldots+c_{r} \lambda_{r} k_{r}$.

$$
c_{1} \lambda_{y} k_{1}+\ldots+c_{r} \lambda_{y} k_{r}
$$

Genes $\lambda_{1}=\lambda_{j},(1-1,2, \ldots, r)$, which contradicts λ_{j} being distinct. Therefore, K is non-singular.

It then follows from (2.7.12) that $A=K \wedge x^{-1}$.

PART II

MATRICES AND ELECTRIC NETWORKS
 CHAPTER III
 NETHORK DIFFERENTIAL EQUATIONS

AND

EQUIVALENT NETWORKS

3.1. Definitions ani basic laws. In order to present idsas concissly, it is often advisable to use worde which have a particular meaning when applied to the topic under consideration. Network topology and network analysis make use of many such terms. Fe will not attempt to deifo a full "network" vocabulary", howaver, it is felt that certain terms shoula be explained.

A branch 1 s one or several passive olements such as inductance, L, resistance, R, and elastanco, D, connected in series between two terminals. Sometimes branch is usea aore generally to denote any system of eleaents, active or passive, conneated to the remainder of the natwork by way of two termingls. The word node is used to denote a terminal. A mesh is a closed contour arbitrarily drawn on a network diafram. Node pair means two nodes arbitrarily chosen from one network.

[^12]Two statoments which aro usually given as axiome in network naglysis are Kirchhoff's laws. Kirohhoff's eirst law states that at any point in a circuit there is as much current flowing away from the point as there is current flowing into 1t, or the alzobraic sum of the currents at any one point in a circuit is zaro. The secont law of Kirchhoff states that the sun of the products of the current by the resiatance taken around any closes path in 3 network of conductors is equal to the sum of the electronotive forces ${ }^{1}$ which one pasases in going arouns the closed circuit. The latter of these two law is uaually generalized by changing the word resistance to impedance. Instos! of using these two laws as axioms, we will postulate the existence of circuital currents and the following equation ant levelop Kirchhoff'g laws.
$(x .1 .1) I_{k}+V_{k}-V_{-k}=I_{k} \frac{d I}{d t}+\underline{E}_{k} I+\underline{D}_{k} \int_{0}^{I} d t,(k=1, \ldots, B),{ }^{2}$ where V_{k} is the force of constraint associatel with the source node for the curront I_{k}, V_{-k} is the force of constraint associated $31 t h$ the sink node for I_{k}, E_{k} is the external e. i.f. acting in tho k-th branch and B is the number of branches of the notiork, $\underline{L}_{x}, \underline{E}_{x}$, and $\underline{E}_{\mathrm{k}}$ are one by B astrices whose $k-t h$ elements ara the total inductance, resistance and elastance In the k-th oranch respeotively ant whose j-th elements are

[^13]the inductance, resistance and elastance due to coupling, symmetric or non-aymmetrio, between the $k-t h$ and the g-th branches of the network. I 18 a B by one matrix consisting of the ourrents in the B different branches.

To facilitate matrix analysis of networks we will make use of two relationships which have been developed from topological considerationa. ${ }^{1}$ The first of these states that the number of independent node pairs in a network, and the number of independent node equations obtainable by application of Kirohhoff's first law to a network, is $\mathrm{N}-\mathrm{S}$, where N is the number of nodes and S is the number of subnetworks in the network. The second relationghip is $0 \mathrm{~B}-\mathrm{N}+\mathrm{S}$, where is the number of independent meshes and B is the number of branches in the network. The latter relationghip apparently originated with Kirohhoff. ${ }^{2}$
3.2. Developement of the mest and node pair gaugtions. Consider a network consisting of B branches, N nodes and S separable parts. In the present discuision the values of e.m.f. and current will refer to instantaneous values. Instantaneous velues are used in order to be able to refer to positive and negative voltages and directed currents. Since we

1 Ingram and Cramlet, pp. 135-140. 2 G. Kirchhoff, 'Uber die nuflösung der Gleichungen, auf welche man bei der Untersuchung der Iinearen Vertheilung galvanisher ströme geführt wird.", Annalen der Physik und Chemie, von J. C. Fogendorff. 1847, IXXII, Series 2, p. 497.
will assums that all of the senerators in our network are of the sane frequency, this 3003 not aetract iron the generality of the results. A3a0ciated with each branch k of the network are a set of active or passive aleaenta, a liracted current I_{x} and agenerated $0.1 . f . E_{\mathrm{x}}$. Then a porticular branch contains no external generator then its $2 . \mathrm{F} . \mathrm{f}$. $\mathrm{E}=$. Accorilng to The venin's Theorem, a linsar generator can bs represented by ad.c. or a.c. source of constant anplitule, E_{0}, and no internal resistance in series with a resistance $R_{g}=E_{0} / I_{0}$, where I_{0} ia the short circuit current of the generator and Eo 1 E Its open circuit e.m.f. Using this theorem E_{k} will be the a.c. or a.c. source gssociated with the branch k and the ${ }^{p}$ will be included in the I_{k} component of the passive elements of the branch.

From tho network diayran we may select incependent meshes. Iith each such wosh there is associatel a circuital current. The direction in which these ourrents circulate nay be arbitrerily choien; however, it is customary to assume a clockwias airection of flow. The

Figure 1. A network Aiggram with $B=6, N$

- 4. The ineshes are invicated. branch k may be comron to one or more of the meshes. Since the value of the current in the branch k is I_{K}, I_{k} must be the alxgbraic sum of all the mesh current 3 flowing through branch k. Fxpressinz this statement in matrix form we have
(3.2.1) $\quad I=P I$,
where I is a E by one matrix consisting of B branch currents, $P 1 s$ a D by M matrix whose elements are C, 1 , or -1 , and I is a M by one matrix male up of the $: \quad$ mosh currents. The element of P in the (j, k)-th position is 0 if the branch j is not in meshk, lif I_{j} is airected in the sana direction as I_{k} and -1 if I_{j} is directed in the opposite direction to I_{k}.

The ingidence matrix, a , of a network diagraii, and for any directed quantities associated one-to-one with the branches of the digcram, is an N by B matrix in which the element in the $j-$ th row and $k-t h$ colum is 1 if the k-th directed quantity leaves the j-th note, -1 if the k-th quantity enters the i-th node and zero if the k-th quantity avoids the j-th node. ${ }^{1}$ Theoren 3.2.1. The i by matrix Q Q is one all of whose elenents are zero.

Proof. Ry definition of $Q, Q I$ is a N by one matrix each of whose elements is the alzebraic sum of the branch currents leaving the noie corresponiling to the position of the glonent in the colunn of $2 I$. Then $1 \pm$ follows from equation (2.2.1) that Qil 13 a in by matrix each of whose elements is the alsobraic sum of the circuital currerts leaving the node in question. Therefore, is is an incidence matrix for the aesh currents. Now the incidence of any mesh current at

1 Intran and cramlet, p. 138.
a node is zero if the mesh avoide the node. If the mesh does not avo1: the node, the current both enters and leaves the node, and the incilance is zero. Hence each element of $\mathrm{A} P$ is zoro.

Theorem 3.2.2. The existence of circuital currents inplies Kirchhoff's first law.

Proof. since Q. 0 , from equation (3.2.1), it follows that

$$
\begin{equation*}
Q I=0 \tag{3.2.2}
\end{equation*}
$$

But from the definition of \hat{y} an I, the sith element of the product Q is the algebraic sum of the currents leaving the J-th node of our network. Kirchhoff's first law then follows from equation (z.2.2).

The preceilng theorem is the converss of Theorem 4 of Ingram. ${ }^{1}$

Theorem 3.2.3. If v is the N by one matrix whose elements are the forces of constraint associated with the nodes of the network, then Q 'V 1 a a B by one matrix whose f-tr element is the algobraic sum of the forces of constraint on the current in the j-th branch of the network.

Proof. 凤 is an by B matrix whose j-th column consists of one 1 , one -1, and zeros. The 1 is in the $k-t h$ row of 2 , Which means that the k-th node of the network is the source

[^14]node of I_{j}. The -1 is in the $x-t h$ row of Q, showing that the $m-t h$ nole of the network is the sink node for I_{j}. Then the result of multiplying the j-th row of a^{\prime} by the matrix V would be an elosent consiating of the nat forcss of constraint on the j-th branch of the network.

Now we can write quation (3.1.1) as
(3.2.3)

$$
I+a^{\prime} V=\frac{L d I}{d t}+R I+2 \int_{0}^{t} I t,
$$

where E and I are B by one matrices whose eleaents are the branch e.m.f.'s and branch currents respectively, and L, R, and I are square matrices whose k-th rows are L_{k}, R_{k}, and I_{k} from (3.1.1). cince $P^{\prime} \chi^{\prime}=(2 P)^{\prime}$ is a matrix of zeros, if we multiply (3.2 .3) on the left by P^{\prime} the resulting equation is (3.2.4)

$$
x^{\prime} E=x^{\prime} \frac{\operatorname{LaI}}{d t}+P^{\prime} B I+P^{\prime} \int_{0}^{t} I t,
$$

which is free of the forces of constraint. Equation (3.2.4) expresses mathematically

Theorem 3.2.4.(Kirchhof's second law) The algebraic sum of the counter e.m.f.'s around a closef circuit in a networls of conductors is equal to the algebraic sum of the 1mpressed electromotive forces which one passes in going around the closed circuit.

Proof. From the definition of P, the product of the g-th row of p ' and $E w 111$ be the sum of the generated e.m.f.'s In the j-th megh. 111 that remains to be shown is that the right side of (3.2.4) is the sum of the counter e.m.f.'s around
the various meshes.
Substituting the expression for I froin equation (3.2.1) into (3.2.4), we have (3.2.5)

$$
F^{\prime} E=p^{\prime} E \frac{d I}{d t}+p^{\prime} P I I+P^{\prime} \underline{P} \int_{0}^{t} I d t .
$$

Consiler the three quadratic forms

$$
\begin{align*}
& F=I^{\prime} R I / 2 \\
& T=I^{\prime} I / 2 \tag{3.2.6}\\
& V=2^{\prime} D / 2, \text { wilth } \frac{d_{x}}{d t}=I,
\end{align*}
$$

which repasant half the total instantaneous power loss, the total instantaneous macnetic energy, and total instantaneous electrostatic energy in the network. We have geen in the proof of Theorem 2.4.2 that a transformation such as (3.2.1) will replace p in the above quadratic forms by $P^{\prime} E P$, L by $P^{\prime} L^{P}$, and D by $P^{\prime} \underline{P}$. Hence the matrices $P^{\prime} R P=R, P^{\prime} I P=1$, and $P^{\prime} 2 P$ D must have the same relationship to the mesh currents as the matrices 3 , I, and 2 have to the branch ourrents. Then R, L, and Dwill be M by matrices whose (J.k)-th elemonts are the total resistance, infuctance, and elastance respectively of mesh \mathcal{I} if $\mathrm{J}=\mathrm{k}$, and the resistance, inductance, and elastance due to coupling between mesh J and k if $\mathrm{j} k \mathrm{k}$. Therefore, the j-th row of the matrix on the right alde of equation (3.2.4) or (3.2.5) is the sum of the counter e.m.f.'s in mesh 1.

The equation (3.2.5) is the same equation that Kirchhoff
expressed in 1347 without the use of matrices.
In the gecond method of metric analysis of the eleotrical network to be presented, the role of the e.m.f and current will be interchanged. According to Norton'a Theorem a linear generator can be represented by a source of constant direct or alternating current I_{0} and no internal conductance in parallel with a confuctance $\mathrm{I}_{\mathrm{g}}=I_{0} / E_{0} \cdot{ }^{2}$ Repreasenting all of the generators in this manner, we will assume the generated ourrent, the capacitance, conductance and the reciprocal inductance of the branch to be known with the e.m.f. of the node pairs associated with the network to be determined. ${ }^{3}$

A3 stated in section 3.1, there are $N-S$ Independent node pairs. The e.m.f.'s associated with the remaining node pairs can be written as combinations of suas and differences of the e.t.f.'s associated with the N - Sindependent node paira. The resulting matrix equation 1 s
(3.2.7) $\quad E^{*}=U E^{*}$.
where E^{*} and E^{*} are matrioss whose elements are the B node pair e.m.f.'s and the N - S independent node pair o.m.f.'s respectively, and $U 1$ is a by N - 3 matrix whose elements are O, 1 , or -1 . The element in the $j-$ th row and $k-t h$ column of

1 G. Kirchhoff, p. 500.
2 P. Le Corbeilier, Matrix Analysis of Electric Networks (New York, 1950), p. 63.
3 This method of analysis exemplifles, in part, the principle of duality. For a complete expianation of thls principle see Grnst A. Guillemin, Vol. II. pp. 246-252.

U 130 if the k-th element of E^{*} is not a nember of the independent e.n.f.'s whose conbination is the j-th eleaent of $E *$, 1 if the $k-t h$ elenent of E^{*} has a plus sisn affixed to it in the combination whish is equal to g_{m}, and -1 if the sign of衣 13 minus in the combination. The circuital petrix, W, of a network and for any directed quantities sssociated one to one with the branches of the network diagran is a matrix such that the element in the j-th row and $k-t h$ oolum is 1 if the $k-t h$ quantity 18 directed In the same direction as the $j-t h$ circuit, -1 if the $k-t h$ quantity is directed in a direction oposite to the direction of the j -th circuit, and zero if the k-th quantity is not in the j-th oircuit.

Theorem 3.2.5. The by N - S matrix WU is a matrix :all of whose elements are zeros.

Proof. . \because e will adopt the convention that an o.t.f. is a quantity which is directed from poaitive to negative. From the definition of W it follows that Wom * is an by one matrix erch of whoge elements is the sum of the e.m.f.'s around a closed circuit. Then from equation (3.2.7), it follows that VUF is an by one matrix each of whose elements is the gum of the independent e.m.f.'s around a clased oircuit. Then wis a circuital matrix for the independent node pair e.m.f.'s. By Theorem 3.2.4, or Kirchhof's second law, the alaebraic sum of the note pair o.t.f.'s around each oir-
ouit is zero. Hence,
(3.2.8) YUE* $=0$.
V and U are determined by the manner in which the network is oonnectod, while E^{3} is determined by the circuit elements. Then by altoring the circuit elaments we may asaign arbitrary values to E^{*} without altering F_{f} and U . Hence, WU - 0 . Consider the node pair equation

$$
\begin{equation*}
\tilde{C}_{k} \frac{d E^{*}}{\lambda t}+a_{k} E^{*}+I_{k} \int_{E^{*}}^{t} d t=I_{X}+G_{K}, \tag{3.2.9}
\end{equation*}
$$

where \mathcal{E}_{k}, \mathcal{E}_{k}, and Γ_{k} are one by B matrices whose $k-t h$ elements are the total capacitance, conductance, and reciprocal inductance in the k-th node pair and whose j-th elements are the capacitance, conductance, and reciprocel inductance respectively due to coupling, symmetrio or non-symmetric, between the $k-t h$ and j-th node pairs. E^{*} is a B by one matrix whose $k-t h$ element is the k-th node pair e.m.f.: I_{K}^{*} is the current generated by the generator in the $k-t h$ note pair and f_{k} is the inoident current due to the $k-t h$ node pair.

Theorem 3.2.6. If I is a columnar matrix whose elements are the mesh currents of the given network with each node pair replaced by a single tranch, then f' $^{\prime}$ is a B by one matrix whose k-th element is the incident current associated with the k-th branch.

Proof. The element of W in the joth row and $k-t h$ column is 0 if $\mathbf{E}_{\mathrm{K}}^{*}$ is not in the j-th mesh, 1 if E_{K} is polarized so that the j-th mesh current-flows from positive Eve to neg-
alive E_{k}^{*}, and -1 if the j-th mesh current flows from neetative㗪 to positive $\mathrm{E}_{\mathrm{k}} \cdot$ Comparing this with the definition of P , we see that P. $w '$. It then follows from equation (3.2.1) that
(3.2.10)
$d=\pi I$,
where d is a e by one matrix whose B elements are the incident currents associated with the B different node pairs of the network.

Then from equation (3.2.10) and (3.2.9), we have (3.2.11) $\frac{\operatorname{can}^{*}}{d t}+\frac{G E^{*}}{}+\int_{0}^{t} E^{t} d t-I^{H}+W^{\prime} I$, where 2, ב. and [are the capacitance, conductance, and recipecoal inductance matrices whose k-th rows are $\mathcal{X}_{k}, \mathcal{I}_{k}$, ard \mathbb{E}_{k} and I* is a B by one matrix consisting of the B generated currents. multiplying (3.2.11) on the left by u,
(3.2.12) $\quad U^{\prime}-\frac{E^{2}}{d t}+U^{\prime} \mathrm{IE}^{*}+U^{\prime} \Gamma \int_{0}^{*} d t=U^{\prime} I^{*}$,
for U'W' = (KU)' - O. In general (3.2.12) has more unknowns than equations, but making use of (3.2.7),

$$
\begin{equation*}
U^{\prime} 2 \frac{1 I^{*}}{d t}+U^{\prime} 2 U E^{*}+U^{\prime}\left[U \int_{0}^{t} E^{*} d t=U^{\prime} I^{*} .\right. \tag{3.2.13}
\end{equation*}
$$

Now consider the quadratic forms in terms of the node pair e.m.f.'s analogous to equation (3.2.5)
(3.2.14)
which represent half the total instantaneous power loss, the total instantaneous electrostatic energy, and the total in-

$$
\begin{aligned}
& \text { F = } \mathrm{E}^{*} \mathrm{IE}^{*} / 2 \text {, } \\
& \begin{array}{l}
V=\varphi^{*} \underline{\partial} \varphi^{*} / 2, \text { with } \frac{d \varphi^{*}}{d t}=\Psi^{*} \\
T=E^{*}\left[E^{*},\right.
\end{array}
\end{aligned}
$$

stantaneous magnetic energy in the network. Again referring to the proof of Theorem 2.4.2, we see that the transformation (3.2.7) replaces $\underset{\sim}{2}$ by $U^{\prime} \mathcal{E} U, 2$ by $U^{\prime} 2 U$, and $\left[\right.$ by $U^{\prime}[U$. Then $C=U^{\prime} \mathbb{C}, 7-U^{\prime} \mathcal{Z} U$, and Γ. $U^{\prime} \Gamma U$, where C, \mathcal{F} and Γ are the matrices of the above quadratic forms for the e.m.f.'s associated with the independent noie pairs. Hence we have (3.2.15)

$$
\frac{O d E^{*}}{d t}+G E^{*}+\Gamma \int_{Z}^{t} E^{*} d t \cdot U^{\prime} I .
$$

By applying Kirchhoff's first law to the network we have (3.2.16)

Where the j-th element of I^{*} is the sum of the generated currents incident on the nodes of the $j-t h$ independent node pair. Hence (3.2.17)

$$
U^{\prime} I^{*}=I^{*} .
$$

Le Dorbeiller arrives at the relationahip (3.2.17) through the consideration of some rather strange manipulations of the node pairs. ${ }^{1}$
3.3. Solution of the network ifferential equations and the natural modes of the networic. Equation (3.2.5) and (3.2.13) are differential-integral equations whose solutions give us the equations of the currents and e.t.f.'s respectively in a given network. The general solution of such a set of equations is the sua of the partioular or gteady state and the complementary or transient solutions. Since each of these

1 Le corbe111er, pp. 68-73.
equations are of the same type, the same method will yield a solution of either of them. Consequently, we will solve only one of the matrix equations, equation (3.2.5).

In the steady state solution of the equation the frequency, w, of the impressad voltage is known and equation (3.2.5) becomes
(3.3.1) $\quad Z^{\prime} E=P^{\prime} 2 P I$, where $Z=L \lambda+E+D \lambda^{-1}$ and $\lambda=g \operatorname{lof}^{2}$

$$
(j-\sqrt{-1})
$$

Bince, ingeneral, there are independent mesh currents, p'zP is non-singular and possesses an inverse. ${ }^{1}$ Then the gteady state solution of (3.2.5) 1 s

$$
\begin{equation*}
\left(P^{\prime} Z^{p}\right)^{-1} p^{\prime} E \cdot I \tag{3.3.2}
\end{equation*}
$$

or if the branch currents are dosired

$$
\begin{equation*}
P\left(P^{\prime} \not Z^{P}\right)^{-1} P^{\prime} E=I \tag{3.3.3}
\end{equation*}
$$

Heretofore we have assumed that all of the generators were of the same frequency. However, the e.m.f.'s generated nay be of geveral different frequencies. Applying the superposition Theores ${ }^{2}$, there exists a solution of the form (3.3.2) or (3.3.3) for each separate frequency present in the generated e.t.f.'s.

Theorem 3.3.1. If \underline{Z}_{g} and ${\underset{y y}{g}}$ are the branch impedance and e.m.f. matrises corresponding to the steady state angular

[^15]frequency ω_{g}, the steady state solution of (3.2.5) is (3.3.4) $\quad I=\sum_{3=1}^{h} P\left(P^{\prime} Z_{g} P\right)^{-1} P^{\prime} E_{g}$, or $I=\sum_{s=1}^{h}\left(P^{\prime} Z_{s} P\right)^{-1} P^{\prime} E_{s}$, in which h is the number of different frequencies being genorated.

Le Corbeiller presents a detailed discussion of the various way of using mixtures of the mesh and node pair methoffs of analysis of the network. ${ }^{1}$
An interesting application of equation (3.3.1) arises
when the matrices of this equation are partitioned in the proper manner. Let $P^{\prime} E=E, P^{\prime} Z P=Z$. Now partition the matrices in a conformable manner (3.3.5)

$$
\left[\begin{array}{l}
\mathrm{E}_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & z_{12} \\
Z_{21} & z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] .
$$

Then writing this as two matrix equations (3.3.6)

$$
\begin{aligned}
& E_{1}=Z_{11} I_{1}+Z_{12} I_{2}, \\
& E_{2}=Z_{21} I_{1}+Z_{22} I_{2} .
\end{aligned}
$$

If Z_{22} is non-singular

$$
\begin{align*}
2_{22^{-1}}^{-I} & =z_{22^{-1}}^{21} I_{1}+I_{2} \tag{3.3.7}\\
I_{2} & =z_{22^{-1}}-2_{22^{-1}}^{21} I_{1}
\end{align*}
$$

Substituting this value for I_{2} in tho first equation of (3.3.6)

$$
E_{1}-T_{11} I_{1}+Z_{12}\left(7_{22^{-1}}^{-1}-Z_{\left.22^{-1} Z_{21} I_{1}\right)}\right.
$$

or
(3.3.2)

$$
F_{1}-2_{12^{2}}^{-1} 2^{5}-\left(2_{11}-2_{12}^{2} 22^{-1} 2_{21}\right) 11
$$

1 La Corbeiller, Chap. IV.

From (3.3.8) we can determine the 1mpodances and generated e.t.f.' 3 necessary to design a new network whose currant distribution is the aame as I_{1}. Other useful relationships can ba derived in a similar manner by partitioning of (3.3.1) or its fual in the node pair anslysis.l

If the frequency of one of the impreseed e.in.f.'s coincides with the frequency of a transient golution of the network, then from Theorem 2.2.2, we know the impedance matrix is singular for that frequency and equation (3.3.3) givea no solution for that particular frequency. Instead of equation (3.2.5) we will consider the equivalent set of equations (3.3.9) $E=\left(L p^{2}+R p+E\right)_{Q}$.

$$
a_{a} / d t=I
$$

Whore $p=d / d t$, and I are h by one matrices whose elements are the charges and ourrents circulating in the meshes of the network. If the network 1 s passive, the meshes can be chosen go that the coupling from mesh j to mesh k will be the sane as the coupling from mesh k to mesh i, and the operational matrix

$$
(3.3 .10) \quad f(p)=\left(L p^{2}+R p+D\right)
$$

will be symmetric. Let ω_{g} be the fraquency for which the mesh impedance matrix Z is aingular. Then assuming $E_{g}=e_{g} \exp \left(g u_{g} t\right)$, where θ_{g} is a columar matrix consisting of the anplitudes of

1 wyil E.and Jeorgia B. Peed, Mathematical wethods in plectrical Engineering (New York, 1951). p. 81.
the e.m.f.' B beine generated in the various moshes, we may substitute $\$ \omega_{g}$ in (3.3.10) for p.
(3.3.11)

$$
f\left(j \omega_{g}\right)=\left(L j \omega_{g}+R+D / j \omega_{g}\right) g \omega_{g}-j \omega_{g} Z_{g}
$$

The resulting solution of the first equation of (3.3.9) is ${ }^{1}$ (3.3.12) $\left.\quad \lambda_{g}=\frac{\left.\exp g \omega_{g} t\right)\left[F^{(1)}\right.}{\mathrm{f}^{(1)}\left(j \omega_{g} t\right)}\left(j \omega_{g} t\right)+\operatorname{tF}\left(j \omega_{g} t\right)\right] \theta_{g}$,
where $F^{(n)}\left(j \omega_{B} t\right)=\left[d^{n} r(j \omega) / d j \omega^{n}\right]_{j \omega}=j \omega_{g}$, and $F(j \omega)$ is the asjoint of $f(j \omega)$. Then $d z_{g} /$ dt will be the g-th term of the second equation of (3.3.4). This completes the steady state solution of (3.2.5).

The transient solution is a solution of the system of equations

$$
\begin{align*}
{\left[I p^{2}+R p+[]_{2}\right.} & =0 \tag{3.3.13}\\
d_{2} / d t & =I
\end{align*}
$$

It is customary to assume a constituent of the solution of the form Q - (exp λ_{t}), where $\exp \lambda_{t}$ is a acalar multiplier and K is a column of constants to be datermined. Then λ is substituted in (3.3.13) for p. If solutions of (3.3.13) exist, from Theorem 2.a.2 it follows that
(3.3.14) $\quad a(f(\lambda))=d\left(L \lambda^{2}+R \lambda+D\right)=0$.

The roots of this equation are known by various names such as natural anzular freguanciog, natural angular velocitios, natural modes, etc. Equation (3.3.14) is of degree $n \leqslant 2 M_{\text {. }}$

1 Frazer, Duncan, and Collar, p. 183.

The n roots are denoted by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. From equation (2.7.10), we see that the constituent solution corresponding to the unrepeated root λ_{r} is
(3.3.15) $\quad Q_{r}-K_{r}\left(\exp \lambda_{r} t\right)$.

The column K_{r} may be chosen proportional to any non-vaniahing colum of $F\left(\lambda_{r}\right)$. However, if λ_{s} is a member of s multiple roots of (?.2.14), the constituent solution associated with λ_{s} can be written
(3.3.15) $\quad \lambda_{3}=K_{B}(t)\left(\exp \lambda_{B} t\right)$.

The s columns relevant to the complete set of roots equal to λ_{s} may be chosen proportional to any a linearly independent column of the family of matrices ${ }^{1}$

$$
\begin{aligned}
& \text { (3.3.17) } \quad U_{0}\left(t, \lambda_{g}\right)=F\left(\lambda_{g}\right) \text {, } \\
& U_{1}\left(t, \lambda_{s}\right)=F^{(1)}\left(\lambda_{g}\right)+\operatorname{tr}\left(\lambda_{B}\right), \\
& \mathcal{U}_{2}\left(t, \lambda_{g}\right)=F^{(2)}\left(\lambda_{B}\right)+2 t F^{(1)}\left(\lambda_{g}\right)+t^{2} F^{\left(\lambda_{B}\right)} \text {, } \\
& U_{s-1}\left(t, \lambda_{B}\right)=F^{(s-1)}\left(\lambda_{B}\right)+(s-1) t F^{(s-2)}\left(\lambda_{B}\right)+\ldots \\
& +t^{(s-1)} F\left(\lambda_{B}\right) .
\end{aligned}
$$

Then the elements $\mathrm{K}_{1 \mathrm{~s}}(\mathrm{t})$ of the columnar matrices K_{s} will be polynomials in t of degrees s - 1 at most.

The most general transient solution of (3.3.5) is a linear combination of the constituent solutions (3.3.18) i $=c_{1} K_{1}(t)\left(\exp \lambda_{1} t\right)+c_{2} K_{2}(t)\left(\exp \lambda_{2} t\right)+\ldots$

$$
+c_{n} K_{n}(t)\left(\exp \lambda_{n} t\right),
$$

1 Frazer, Duncan, and Collar, p. 288.

In which the c_{j} 's are arbitrary constants, real or complex. This solution may be written more conoisely as (3.3.19) $\quad 2=\mathrm{K}(\mathrm{t}) \mathrm{h}(\mathrm{t}) \mathrm{c}$ 。

In this equation $K(t)$ is an by n matrix whose j-th column $18 \mathrm{Kg}_{\mathrm{g}}$
while c represente the colum of arbitrary constants. Taking the derivative of (3.3.19) with respect to time and adding it to the right side of the second equation of (3.3.4), we have the general solution of (3.2.5).

Other methods of obtaining the steady state and transient solutions of equation (3.2.5) sre given in the litersture. ${ }^{1}$

Plpes proposes a method for determination of natural modes which is particularly applicable to networks involving only inductance and elastance. ${ }^{2}$ In this case equation (3.3.23) becomes
(3.3.20)

$$
\left(L p^{2}+D\right)^{2}=0
$$

1 Frazer, Duncan, and Collar, Chap. V and VI. 2 L. A. Plpes, "hatrix Theory of Oscillatory Networks", Journsl of A0pise3 Phyaics, 1939, $x, 851$.
or assuming a solution of the form exp jut
(2.3.21)
$\left(-L u^{2}+D\right) a-0$.

Then if both L ar? D are non-aingular, jetermination of the largest and smalleat natural mone of the given network oan be found by determining the dominent laterit root of $L^{-1} D$ and $D^{-1} L$ resnoctively. These dominant latent roots can be reailly 1 determiner by iterative proceases. If λ_{1} is the dominant root of $L^{-1} D_{0} w_{1}^{2}=\lambda_{1}$, and if λ_{2} is the dominant root of $D^{-1} L_{\text {. }}$. $w_{2}^{2}=1 / \lambda_{2}$, where ω_{1} is the largest natural wode of the given notvork and W_{2} is the smallest natural mode of the siven network.

The scalar quantity $z_{m n}=d(z) / d\left(z_{m}^{n}\right)$ is the generalized network impeance. If m. n, it is tho driving point impedance of the given networix in meshm. If m\&n, it is the transfor Lupedarce from mesh m to mesh n. If the networi consists of passive slements the metrix z is symetric, and $d\left(z_{m}^{n}\right)-d\left(z_{n}^{m}\right)$. Therefors, $Z_{m n}-Z_{n m}$ -

Theore? 3.3 .2 (?eciprocity Theoren). In any network composet of passive elenents, if an e.m.f. E is applied in any mesh and I is the current in any nesh as a result of the applied o.m.f., then if the positions of the o.m.f. and current are

1 Frazer, Duncan, collar, pp. 133-145: al so H. I. Flomenhoft,

reversed the transfer impedance remains unchanged.
Theorem 3.3.3(3eneralized Reciprocity Theorem). If a set E_{1} of e.m.f.'s all acting on the B branches of a passive notwork produce a current distribution I_{1}, and a second set of em.f.'s \sum_{2} produce a second current distribution I_{2}, then (3.2.22) $\quad E_{1}^{\prime} I_{2}=I_{1}^{\prime} E_{2}$ 。

Proof. From audion (3.3.3)
(3.3.23)

$$
P\left(P^{\prime} \underline{Z} P\right)^{-1} P^{\prime} \underline{E}_{1}=I_{1}
$$

and
(3.3.24)

$$
P\left(2^{\prime} I^{P}\right)^{-1} P^{\prime} E_{2} \cdot I_{2}
$$

Since our network is passive 2 is symmetric. If $Z 18$ a symmetric matrix then 30 is $P^{\prime} Z^{2}$ and ($\left.P^{\prime} P^{\prime} P\right)^{-1}$. Hence, takins the transpose of both sides of (3.3.23)

$$
\begin{equation*}
I_{1}^{\prime}=E_{1}^{\prime} P\left(P^{\prime} \underline{Z} P\right)^{-I_{P}^{\prime}} \tag{3.3.25}
\end{equation*}
$$

Multiplying (z.z.24) on the left by E_{1}^{\prime}

$$
\begin{equation*}
E_{1}^{\prime} I_{2}-E_{1}^{\prime} P(P Z P)^{-1} P_{2}^{\prime} \tag{3.3.26}
\end{equation*}
$$

Using (3.3.25)

$$
E_{1}^{\prime} I_{2}-I_{1}^{\prime} E_{2}
$$

4. Energy relationships and equivalent networks. Writing equations (3.2.6) in terms of the mesh parameters we have (3.4.1) $F=\frac{I R I}{2}=1 / 2 \sum_{j, k=1}^{M} R j k_{j}^{1} i_{k}$,

I Is a columnar matrix whose j-th element is the j-th mesh arrant of tho network.

$$
\begin{equation*}
T=I^{\prime} L I / 2=1 / 2 \sum_{j, k=1}^{N} L_{j k^{1} j^{1} k^{*}} \tag{3.4.2}
\end{equation*}
$$

If a is a columnar matrix whose j-th element is the oharge present in the j-th mesh of the network,
(3.4.2) $\quad V=Q^{\prime} D_{2} / 2 \cdot 1 / 2 \sum_{j, K \in 1}^{i} 0_{j k} q_{j} q_{k}$.

The matrices F , L and D gre used here in the same sanse as in equation (3.3.9).

In the above quadratic forms subject the currents to a cozredient transformation with matrix A. According to Theorem 2.4.2, the ratrices for the new quadratio forms are

$$
R=A^{\prime} R A
$$

(3.4.5)

$$
\begin{aligned}
& \mathcal{L}=A^{\prime} L A \\
& \mathscr{E}=A^{\prime} D A .
\end{aligned}
$$

From equation (2.3.10) we know that the natural modes of the new network are given by (3.4.5)

$$
d\left(\mathscr{L} \lambda^{2}+R \lambda+D\right)=0
$$

Eut

$$
\mathscr{L} \lambda^{2}+R \lambda+\mathfrak{F} \cdot A^{\prime}\left[L^{2}+R+D\right] A .
$$

Since A is non-singular and the determinant of a product of matrices is equal to the prosuct of the determinanta, (3.4.6) 1s the same as
(3.4.7)

$$
d\left(L \lambda^{2}+R \lambda+D\right)=0
$$

Hence
Theoren 3.4.1. The natural modes of a network are unchanged by a cogreaient transforation. or, statel difierentiy

Theorem 3.4.1'. The natural modes of a netiork are absolute invariants under congruence relationship.

According to a theorem due to Hermite, Theorem 2.5.3, if Q is any non-singular symetric matrix whatever of order a and 3 is a skaw matrix of order n such that $(Q+5)(Q-g)$ is non-sinsular the watrix

$$
R=(Q+5)^{-1}(2-5)
$$

is such that

$$
R^{\prime} Q R=Q
$$

It follows then that
Thяo rem 3.4.2. If $A=(L+3)^{-1}(L-S), S$ any sixew matrix winatevar as lon as ($L+5$) ($L-S$) is non-aingular, then the inductance, total and aue to a soupling, are absolute invariartis under the cogredient transformation whose matrix is A.

Upon substituting P and D for I the above theorem also holds for the resiztince and elastance natrices.

The trasiormations (3.4.5) may leal to nezative circuit elements. Juch negative oircuit elanents require the introduotion of lieal transformers ${ }^{1}$ into tha network. Networka requiring several ideal transforiners are of little practical use; consequently, trarsformation which result in negative circuit elementa are to be avoided. If $口$, Land D of (3.4.5) are p-matrices no negative circuit olements are present. Then 1 Guilleain, vol. II, p. 151.
from Theorem $2.6 .3,2.6 .4$ and 2.6 .5 with the obvious extension to three circuit paraneters we have ${ }^{l}$

Theorem 3.4.3. If $R(L$ or $D)$ is the matrix associated With a network which involves only one type of oircuit parameter and A is non-sinzular, then a necossary and sufficient condition that $\mathrm{R}(\mathrm{L}$ or D$)$ be realizable without one or more $1-$ feal transformers is that A belong to the region π.

Theoren 3.4.4. If the matrix of the network involves two (thres) types of circuit parameters and A is non-singular, then a sufficiant confition that two(thres) types of cirouit paraneters be reslizable under a cogradient transformation with matrix A without the use of one or more ideal transformers is that the elements of A belong to $W_{12}{ }^{\left(W_{123}\right)}$.

If a given network has m terminal pairs which may be used as input or output terminals, it is sonetives desirable to keep the zenerelized network impedances associated with these terminals invariant unser the transformation (3.4.5). From the definition of the generalized network impodance and Theorem 2.5.4,

Theorem 3.4.5. The generalized nstworik impedances absociated with the m-terminal pairs of the network are absoluta invariant g under a cogredient transformation whose

[^16]matrix is m-aftine.
The conclusions of the last theoren have been reached by Parodil and Howitt ${ }^{2}$ by different methoda than those employer ebove.

1 Maurice parodi, "Réseaux ílectrique et Théorle des Transformations", Journal of physics Eadium (8), VII, 1946, pp. 9495.

2 Nathan Howitt, "Group Theory and the slectrical Networks", Physical poview, XXXII, 1931, pp. 1583-1595.

TRANSMISSION NET OORKS
AND

TRANSEISSION LINES

4.1. The matrix essociated With a trangmisgion network. In the analysis which follows we shall be concerned with passive networks having two sets of terminals, equal in numbar, those at the sending end, the input terminalg, and those at the receiving end, the putput terminals. Suppose each of these gets consists of n termingl pairs. Let $P^{\prime} E=$ E and $\left(P^{\prime} Z P\right)^{-1}=Z^{-1}$. Y, then equation (3.3.2) reduces to

$$
\begin{aligned}
&(4.1 .1) \quad 1_{1}=y_{11} \theta_{1}+y_{12} \theta_{2}+\ldots+y_{1}, 2 n^{\theta} 2 n \\
& i_{2}=y_{21} \theta_{1}+y_{22} e_{2}+\ldots+y_{2,2 n^{\theta}} n
\end{aligned}
$$

$$
1_{2 n} \cdot y_{2 n, 1^{\theta_{1}}}+y_{2 n, 2^{\theta_{2}}}+\ldots+y_{2 n, 2 n^{\theta_{2 n}}}
$$

$$
i_{k}=y_{k 1} e_{1}+y_{k 2^{e}}+\ldots+y_{k, 2 n^{\ominus}}+\ldots,(k-2 n, \ldots,
$$

Our attention w111 be focuged on the first $2 n$ of these equations. The coeffioient matrix of these first $2 n$ equations is assumed to be non-singular. Then these equations may be solved for the e.n.f.'s in terms of the eirst $2 n$ currents. (4.1.2) $e_{1} a_{11_{1}}+a_{12} 1_{2}+\ldots+a_{1}, 2 n^{1} 2 n$

$$
e_{2}=a_{21}^{1} 1+a_{22} 1_{2}+\ldots+a_{2,2 n^{1}} n_{n}
$$

$$
\theta_{2 n}=a_{2 n, 1_{1}}+a_{2 n, 2^{1}}+\ldots+a_{2 n, 2 n_{2 n}^{1}}
$$

or
(4.1.3)
$\left[\begin{array}{l}A_{1} \\ E_{2}\end{array}\right]=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]$.
Where F_{1} and I_{I} are n by one matrices whose n elements are the n input e.m.f.'s sand currents of the transmission network, E_{2} and I_{2} ere columnar matrices whose n elements are the output e.m.I.'s and currents of the network, and $A_{j} j$ are n by n matrice whose elements are constants of the circuit. we will adopt the convention of taking I_{2}, the output currents as negative. ${ }^{1}$ The resulting matrix equations are

$$
(4.1 .4)
$$

$$
\begin{aligned}
& E_{1}=A_{11} I_{1}-A_{12} I_{2} \\
& E_{2}=A_{21} I_{1}-A_{22} I_{2}
\end{aligned}
$$

Theorem 4.1.1. A21. A12.
Proof. The notwork is passive, hence 2 can be chosen symmetric. It follows then that A will also be symmetric, for the inverse of a symmetric matrix is symmetric. Now

$$
A_{12}=\left[\begin{array}{llll}
a_{1, n+1} & a_{1, n+2} & \cdots & a_{1}, 2 n \\
\vdots & \vdots & & \vdots \\
a_{n, n+1} & a_{n, n+2} & \cdots & a_{n, 2 n}
\end{array}\right]
$$

and

1 Leon Brillouin, Wave Propagation in Periodic structures (New York, 1946), p. 201; thaynard G. Arsove, "The Algebraic Theory of Linear Transmission Networks", Journal of the Franklin Ingtitute, 1953, COLV, p. 308.

$$
A_{21}=\left[\begin{array}{llll}
a_{n+1,1} & a_{n+1,2} & \cdots & a_{n+1, \bar{n}} \\
\vdots & \vdots & & \vdots \\
a_{2 n, 1} & a_{2 n, 2} & & a_{2 n, n}
\end{array}\right]
$$

From the symmetry of A we see that the j-th row of A_{12} is the sane as the j-th column of A_{21}. The theorem is then evident - from the definition of Ais.

Generally in the study of transmission networks it is desirable to have the output(input) e.m.f.'s and currents expressed in terms of the input(output) e.m.f.'s and currents. This ag n be done by using (4.1.4) if A_{22} and A_{12} are non-singuar. (4.1.5)

$$
\left[\begin{array}{l}
E_{2} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
B_{11}, & B_{12} \\
B_{21} & B_{22}
\end{array}\right]\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right]-B\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right],
$$

where

$$
\begin{aligned}
& B_{11}=A_{22} A_{12}^{-1}, \\
& B_{12}=A_{21}-A_{22} A_{12}^{-1} A_{11}, \\
& B_{21}=-A_{12}^{-1}, \\
& B_{22}=A_{12}^{-1} A_{11} .
\end{aligned}
$$

Theorem 4.1.2. The determinant of the transformation matrix 5 is one. ${ }^{1}$

Proof. Factor B so that
(4.1.6)
$\theta \cdot\left[\begin{array}{l}J_{n} \\ E_{21} B_{11}\end{array}\right.$
$\left.\begin{array}{l}0 \\ J_{n}\end{array}\right]\left[\begin{array}{l}B_{11} \\ 0\end{array}\right.$

$$
\left.\begin{array}{c}
B_{12} \\
-B_{21} B_{11}^{-1} B_{12}+B_{22}
\end{array}\right],
$$

1 This theorem is proven in a slightly different manner by H. V. Lowry, "The Application of the Characteristic Equation of a Matrix to the Evaluation of the Range of Frequencies for Which Currents are Passed Through Networks ${ }^{2} 1$ th Four or fore Terminals without Attenuation", Philosophical Magazine, 1945. XXXVI, p. 258.
where J_{n} is the identity matrix of order n. Then
(4.1.7)
$d(B)=1\left[\begin{array}{l}J_{n} \\ E_{2 I^{-1}} 1\end{array}\right.$
$\left.\begin{array}{l}0 \\ J_{n}\end{array}\right]\left[\begin{array}{l}B \\ 0\end{array}\right.$
$\left.\begin{array}{l}B_{12} \\ -B_{21} B_{11}^{-1} B_{12}+E_{22}\end{array}\right]$.

Prom an extension of Theorem 1.5.6.
(4.1.8)

$$
d\left[\begin{array}{ll}
J_{n} & 0 \\
v_{21}-11 & J_{n}
\end{array}\right]=1
$$

and

$$
-d\left(B_{11}\right) a\left(B_{22}-B_{21} B_{11}^{-1} B_{12}\right)
$$

making use of the definitions of the element of B

$$
\begin{aligned}
-B_{21} B_{11}^{-1} A_{12}+B_{22} & =A_{1}^{-1} 2_{12}^{A_{2}} 2^{-1}\left(A_{21}-A_{22} A_{1}^{-1} 2^{A} 11\right)+A_{12}^{-1} A_{11} \\
& =A_{22^{A} 21}^{-1} \\
& =\left(B_{11}^{-1}\right)^{\prime} .
\end{aligned}
$$

But $d\left(B_{11}^{-1}\right)^{\prime}=d\left(B_{11}^{-1}\right)$. Therefore, from equations (4.1.8) and (4.1.9), we have

$$
d(B)=d\left(B_{11}\right) d\left(B_{11}^{-1}\right)=1
$$

The input e.m.f.'s and currents may be expressed as in near combinations of the output e.m.f.'g and currents by again referring to equation (4.1.4) if A_{11} and A_{21} are nonsingular.
(4.1.10)

$$
\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{c}_{11} & c_{12} \\
c_{21} & 0_{22}
\end{array}\right]\left[\begin{array}{l}
E_{2} \\
I_{2}
\end{array}\right]
$$

with

$$
o_{11}-B_{22}^{\prime}, c_{12}=-B_{12}, c_{21}=-B_{21}^{\prime}, c_{22}-B_{11} \cdot
$$

Since
$\left(4.1 .5^{\prime}\right)$
$(4.1 .11)$

Theorem 4.1.3. The transformation matrix of n transmission networks each having the same number of terminals connected in cascade is the product of the n transformation matrices of the individual transmission networks. The ordering of the matrices from right to left in the product is the same as the ordering of the networks starting from the input terminals and proceeding to the output terminals.

Proof. Consider two transmission networks whose matrices are A_{1} and A_{2}. Suppose these two networks are connetted in series. Since
(4.1.12)
it follows that
(4.1.13)

$$
\left[\begin{array}{l}
E_{3} \\
I_{3}
\end{array}\right] \cdot A_{2} A_{1}\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right] .
$$

Proceeding by induction, assume (4.1.14)

$$
\left[\begin{array}{l}
E_{n} \\
I_{n}
\end{array}\right]=A_{n-1} \cdots A_{2} A_{1}\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right]
$$

and
(4.1.15)

Then

$$
\left[\begin{array}{l}
E_{n+1} \\
I_{n+1}
\end{array}\right]=A_{n}\left[\begin{array}{l}
E_{n} \\
I_{n}
\end{array}\right] .
$$

(4.1.16)

$$
\left[\begin{array}{l}
E_{n+1} \\
I_{n+1}
\end{array}\right]=A_{n} A_{n-1} \cdots A_{2} A_{1}\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right] .
$$

corollary 4.1.3. The transformation matrix for n equal transmission networks with matrix B connected in cascade is B^{n}.
4.2. Reversible transmission networks. A reversed
tranaission network is one in which the sense of the currents is changed and the input and output are interchanged. \#e call a transmission network reverabie if it is identical with its reverse. ${ }^{1}$

Theorem 4.2.1. Necessary and sufficient conditions that a network with transformation matrix e be reversible is $B_{11}-B_{22}^{\prime}$ and $F_{21}=B_{21}^{\prime}$.

Proof. Consider the transmission network
(4.2.1)

$$
\left[\begin{array}{l}
E_{2} \\
I_{2}
\end{array}\right]=B\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right]
$$

If the input and output are interchanged (4.2.2).

$$
B^{-1}\left[\begin{array}{l}
E_{2} \\
I_{2}
\end{array}\right]=c\left[\begin{array}{l}
E_{2} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right]
$$

Changing the sense of the currents gives us (4.2.3)

$$
\left[\begin{array}{l}
E_{1} \\
I_{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
c_{11} & c_{12} \\
-c_{21} & c_{22}
\end{array}\right]\left[\begin{array}{l}
E_{2} \\
I_{2}
\end{array}\right] .
$$

From equation (4.1.10)

1 Brillouin, p. 205.
(4.2.4) $\left[\begin{array}{cc}\sigma_{11} & -o_{12} \\ -C_{21} & C_{22}\end{array}\right]=\left[\begin{array}{ll}B_{22} & B_{12} \\ B 21 & B_{11}\end{array}\right]$.

By definition the network is reversible if and only if
(4.2.5) $\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]=\left[\begin{array}{ll}B_{22} & B_{12} \\ B_{21} & E_{11}\end{array}\right]$.

It follows from equation (4.2.5) that B_{11} - Bia and B_{21} - Bi. are necessary conditions for the network to be reversible.

To show that the conditions are sufficient sill that remains is to show B_{12} - Biz Deferring to the defining relations for the $A_{1}, B_{21}=-A_{12}^{-1}$. since $B_{21}=E_{21}$, from Theorem 4.1.1, $A_{21}=A_{12}$. As a consequence of B_{11}. B_{22}^{\prime}.

$$
A_{22^{A}}{ }_{12}^{-1}=A_{11} A_{21}^{-1}
$$

and

$$
A_{12}^{-1} A_{11}=A_{21}^{-1} A_{22}
$$

Then

$$
A_{22} A_{1}^{-1} 2_{11}-A_{11} A_{21}^{-1} A_{11}-A_{11}^{A_{1}} 2^{-1} 11=A_{11} A_{21}^{-1} A_{22}
$$

But

$$
B_{12}=A_{21}-A_{22} A_{12}^{-1} A_{11}=A_{12}-A_{11}^{A_{21}^{-1} A_{22}}=B_{12}
$$

The four-terminal network is a transmission network having only two pairs of terminals, one input and one output pair.

Corollary 4.2.1. A necessary and sufficient condition that a four terminal network with matrix B be reversible is ${ }^{l}$

1 Brillouin, p. 206.

$$
(4.2 .5)
$$

$$
B=\left[\begin{array}{ll}
\sqrt{1}+b_{12} b_{21} & b_{12} \\
b_{21} & \sqrt{1+b_{12} b_{21}}
\end{array}\right]
$$

Eroof. alnoe the elements of our network aatrix are no lonzer watrices but merely elements of the complex fiela, Theorem 4.2 .1 shows that $b_{11}-b_{22}$ is necossary and sufficient that the network be reversible. Since $d(B)=1, b_{11}=b_{22}$ leads to

$$
\begin{equation*}
b_{11}=b_{22}=\sqrt{1+b_{12} b_{21}} \tag{4.2.7}
\end{equation*}
$$

4.3. The 10pelanceg associsted with a network and the propazation constant. A transmission network will be sald to be terminatel in a load impedance $Z(I)$ provided the output e.m.f.'s and currents satisfy $⿷_{2}=Z(I) I_{2}$, where $Z(L)$ is an n by n matrix. ${ }^{1}$

If termination of a given tranmisaion network in a load lapedance $Z(L)$ lmplies that the Lmput e.m.f.'s and ourrents satiafy $E_{1}=Z(I) I_{1}$, where $Z(I)$ is an n by n matrix, then $Z(I)$ is callea an input impedance of the transmission network.

If a passive transaission network has input impedance Z_{0} when terminated in a load 1 ppedance Z_{0}, then Z_{0} is an Lterative impetance of the network.

Theorem 4.3.1. A necessary and sufficient condition

1 Arsove, Part II, p. 427.
2 Ibil., p. 427.
3 Ibig. p. 427.
that z_{0} be an iterative impelance of a network with transformation matrix a is that Z_{0} be a solution of ${ }^{1}$ (4.3.1)

$$
Z_{0} B_{21} Z_{0}+Z_{0} B_{22}-B_{11} Z_{0}-B_{12}=0 .
$$

Proof. If Z_{0} is an iterative impelance, gince $E_{2}=$ $Z_{0} I_{2}$ and $E_{1}=Z_{0} I_{1}$, quation (4.1.5) becomes (4.3.2)

$$
\left[\begin{array}{r}
I_{2} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]\left[\begin{array}{r}
I_{0} I_{1} \\
I_{1}
\end{array}\right]
$$

or
(4.3.3)

$$
\begin{aligned}
Z_{0} I_{2} & =\left(B_{11} Z_{0}+B_{12}\right) I_{1} \\
I_{2} & =\left(B_{21} Z_{0}+B_{22}\right) I_{1}
\end{aligned}
$$

Then

$$
\left(Z_{0} B_{21} Z_{0}+Z_{0} B_{22}-E_{11} Z_{0}-B_{12}\right) I_{1}=0
$$

for arbitrary I_{1}. Then by Corollary 2.2.2

$$
Z_{0} B_{21} Z_{0}+Z_{0} P_{22}-B_{11} Z_{0}-B_{12}=0
$$

suppose 7_{0} is a solution of (4.3.1). It then follows that $B_{11}-Z_{0} B_{21}$ is non-singular. For if $B_{11}-Z_{0} B_{21}$ is singular there is a non-zero row matrix X such that $X\left(B_{11}-Z_{0} B_{21}\right)$ $=0$, and since $\left(B_{11}-Z_{0} B_{21}\right)\left(-Z_{0}\right)=\left(B_{12}-Z_{0} B_{22}\right)$, this would inply $X\left(B_{12}-Z_{0} B_{22}\right)=0$. This leads to $X\left(J_{n},-Z_{0}\right) B=0$. from which the non-singularity of E forces $X=0$, which is a contraliction. .

Terininating the network in a load impedance Z_{0} yields $E_{2}-Z_{0} I_{2}$. Then we have

1 Argove, Part II, p 427.
(4.3.4) $\left[\begin{array}{r}Z_{0} I_{2} \\ I_{2}\end{array}\right]=\left[\begin{array}{ll}B_{11} & I_{12} \\ B_{21} & B_{22}\end{array}\right]\left[\begin{array}{l}E_{1} \\ I_{1}\end{array}\right]$.

From which it follows that
(4.3.5) $\quad\left(B_{11}-Z_{0} B_{21}\right) E_{1}+\left(B_{12}-Z_{0} B_{22}\right) I_{1}=0$.

But from (4.3.1), $\mathrm{E}_{12}-Z_{0} B_{22}=-\left(B_{11}-Z_{0} B_{21}\right) Z_{0}$. Hence (4.3.5) can be written

$$
(4.3 .5) \quad\left(B_{11}-Z_{0} B_{21}\right)\left(E_{1}-Z_{0} I_{1}\right)=0
$$

From which the non-sineularity of $B_{11}-Z_{0} B_{21}$ leads to (4.3.7)

$$
E_{1}=Z_{0} I_{1}
$$

Theorem 4.3.2. A necessary and sufficient condition that z_{o} be an iterative impedance of a reversible passive transmission network is that z_{o} satisfy ${ }^{1}$
(4.3.8a)

$$
\left(Z_{0} B_{21}\right)^{2}-B_{11}^{2}-J_{n}
$$

and

$$
\begin{equation*}
\left(Z_{0} E_{21}\right) B_{11}=E_{11}\left(Z_{0}{ }^{B} 21\right) \tag{4.3.8b}
\end{equation*}
$$

Proof. Upon multiplying (4.3.1) on the right by B21, we have

$$
\begin{aligned}
& (4.3 .9) \quad\left(Z_{0}^{B} 21\right)^{2}+Z_{0} B_{22^{B}}{ }_{21}-B_{11} Z_{0}{ }_{21}-B_{12} B_{21}=0 . \\
& \text { Since } B C=J_{2 n}, \\
& \begin{array}{ll}
(4.3 .10) & B_{21} C_{11}+B_{22} B_{21}=0, \\
& B_{11} C_{11}+B_{12} C_{21}=J_{n} .
\end{array}
\end{aligned}
$$

However, for a reversible network, $C_{11}-B_{11}$ and $A_{21}=-B_{21}$. Then from (4.3.10)

1 Arsove, Part II, D. 428.
(4.3.11)

B12821- ${ }_{11}^{2}$ - Un.
Substituting from (4.3.11) into (4.3.9),
$(4.3 .12)\left(Z_{0 B 21}\right)^{2}+\left(Z_{0 B 21}\right) B_{11}-B_{11}\left(Z_{0}{ }_{21}\right)-\left(B_{11}^{2}-J_{n}\right)=0$. since B21 is non-singular (4.3.12) is equivalent to (4.3.1).

Then

$$
\left(Z_{0} B_{21}-B_{11}\right)\left(Z_{0} B_{21}+B_{11}\right)=-J_{n}
$$

or

$$
\left(B_{11}-Z_{0} B_{21}\right)\left(Z_{0} 3_{21}+B_{11}\right)=J_{n}
$$

In the proof of the preceding theorem we saw that ($B_{11}-Z_{0} B_{2}$) was non-singular if z_{0} was a solution of (4.3.1), consequently

$$
Z_{0} B_{21}+B_{11}=\left(E_{11}-Z_{0} B_{21}\right)^{-1}
$$

Then

$$
(4.3 .13) \quad 311-1 / 2\left(\left[B_{11}-2_{0}^{8} 21\right]+\left[B_{11}-z_{0} B_{21}\right]^{-1}\right) .
$$

$$
\text { Therefore, multiplying (4.3.13) on the left by (} B_{11}-Z_{0}{ }^{5} 21 \text {), }
$$

$$
\left(B_{11}-Z_{O^{B}} 21\right) B_{11}-1 / 2\left(\left[B_{11}-Z_{0} B_{21}\right]^{2}+J_{n}\right)
$$

and, multiplying (4.3.13) on the right by ($\mathrm{E}_{11}-\mathrm{Z}_{0} \mathrm{~B}_{21}$).

$$
B_{11}\left(B_{11}-z_{0} B_{21}\right)-1 / 2\left(\left[B_{11}-z_{0} 3_{21}\right]^{2}+i_{n}\right) .
$$

Hence B11 is commutative with P11-ZoB21 and with Zorn Z_{2} Equation (4.3.12) then reduces to

$$
\begin{equation*}
\left(2, B_{21}\right)^{2} \cdot B_{11}^{2}-J_{n} \tag{4.3.14}
\end{equation*}
$$

Equation (4.3.14) and the commutativity of B_{11} with Zazen limply equation (4.3.12), and the theorem is proven. If m identical passive transmission networks are connoted in cascade and the resulting network admits an input
impedance $Z(m)$ for all sufficiently large integers m and if $\lim _{m \rightarrow \infty} Z(m)$ exists, $\lim _{\rightarrow \infty} Z(m)$ is the charecteristic 1 ppedance of the passive transmission network. ${ }^{1}$

Theorem 4.3.3. If a transmission network, B, admits a charsoteristic impedance Z_{C}, then Z_{C} is also an iterative Impedance of the network.

Proof. If B ia connected in cascade with other networks identical with B, then B has output impedance $Z(m)$ and input impedance $Z(m+1)$. In the limit as $m \rightarrow \infty, Z(m)=Z(m+1)$. therefore $E_{2}=Z_{0} I_{2}$ and $E_{1}-Z_{c} I_{1}$.

Suppose now that we oascade an infinite number of transmission networks. The propagation of a single wave along such a set of tranmiasion networks is characterized by a complex propagation constant such that as the wave passes from network $m-1$ to network m (4.3.15)

$$
\begin{aligned}
& e_{m}^{j}=\xi j_{m-1}^{j} \\
& i_{m}^{j}=\xi_{m-1}^{j}{ }_{m}^{j}
\end{aligned}
$$

$$
(1=1,2, \ldots n)
$$

where the supersoript on the e.t.f.'s and currents and the subscript on the propagation aonatant refers to the terminal pair with which the particular propagation constant is associated.

Theorem 4.3.4. The propasation conetants for a pagsive transmission network are the characteristic roots of the

[^17]network matrix.
Proof. From equation (4.1.5) and (4.3.15), we have (4.3.16)
\[

\left[$$
\begin{array}{l}
\xi E_{n-1} \\
\xi I_{n-1}
\end{array}
$$\right]=B\left[$$
\begin{array}{l}
E_{n-1} \\
I_{n-1}
\end{array}
$$\right],
\]

Where the elements of the matrix on the left of the equation are the members of equations (4.3.15) on the right. In order that (4.3.15) have a solution $d\left(\mathcal{F}_{2} J_{2 n}-B\right)=0$.

Theorem 4.3.5. A necessary and sufficient condition that a wave pass through a four terminal network without attenuation $1 \mathrm{~s}\left|b_{11}+b_{22}\right| \leq 2$ and $b_{11}+b_{22}$ be real.

Proof. From Theorem 4.3.4. it follows that

$$
\left(b_{11}-s\right)\left(b_{22}-\xi\right)-b_{12} b_{21}=0
$$

And since $d(B)=1$,
(4.3.17) $\xi^{2}-\left(b_{11}+b_{22}\right) s-1-0$.

Hence

$$
\begin{align*}
& \xi=\frac{b_{11}+b_{22} \pm \sqrt{\left(b_{21}+b_{22}\right)^{2}-4}}{2} \tag{4.3.18}\\
& \xi=1 / 2\left(b_{11}+b_{22}\right) \pm 1 \sqrt{1-1 / 4\left(b_{11}+b_{22}\right)^{2}} \cdot\left(j^{2}-1\right)
\end{align*}
$$

The propagation function for a network may be written (4.3.19) $\quad s=\exp (\alpha+j \beta)=(\exp \alpha)(\cos \beta+\sin \beta)$. with α being the attenuation constant and β the change in phase per network. A necessary and sufficient condition that a. Wave pass through the network without attenuation is $\alpha=0$. Then

[^18](4.3.20)
$$
\xi=\cos \beta+j \sin \beta .
$$
combining equations (4.3.18) and (4.3.20)
$$
\cos \beta=1 / 2\left(b_{11}+b_{22}\right)
$$

Hence if $\alpha=0,\left|b_{11}+b_{22}\right| \leq 2$ and $b_{11}+b_{22}$ is real.
Suppose $\left|b_{11}+b_{22}\right| \leq 2$ and $b_{11}+b_{22}$ is real, then
from equation (4.3.18) and (4.3.19)
(4.3.21)

$$
\begin{aligned}
& 1 / 2\left(b_{11}+b_{22}\right) \cdot(\exp \alpha) \cos \beta \\
& \sqrt{1-\left(\frac{\left.b_{11}+b_{22}\right)^{2}}{2}\right.} \cdot(\exp \alpha) \sin \beta
\end{aligned}
$$

Squaring each of the equations in (4.3.21) and adding

$$
1=(\exp 2 \alpha)\left(\cos ^{2} \beta+\sin ^{2} \beta\right) .
$$

Therefore,

$$
\exp 2 \alpha=1
$$

which is satisfied only when $\alpha=0$.
Theorem 4.3.5. If n four terminal networks are connectod in cascade the network matrix associated with the resulting network is
$B^{n}=\frac{1}{Z_{01}+Z_{02}}\left[\begin{array}{ll}Z_{01}(\exp a n)+Z_{02}(\exp -a n), & 2 Z_{01} Z_{02}(\sinh a n) \\ 2(\sinh a n), & Z_{02}(\exp a n)+Z_{01}(\theta x \rho-a n)\end{array}\right]$,
Where $Z_{O 1}$ is the iterative impedance from left to right and Z_{02} is the iterative impedance from right to left, exp a is the propagation function from left to right and exp -a is the propagation function from right to left. ${ }^{1}$

Proof. The adjoint of the characteristic matrix 3 is

1 L. A. Pipes, "The Transient Behavior of Four Terminal Networks", Philosophical Magazine, 1942, XXXIII, p. 190.
(4.3.22)

$$
F(s)=\left[\begin{array}{ll}
\xi-b_{22}, & b_{12} \\
b_{21} & \xi-b_{11}
\end{array}\right]
$$

Let $\xi_{1}=(\exp a), \hat{S}_{2}=(\exp -a)$. Now take k_{1} of Theorem 2.7.4 to be $\left[\begin{array}{cc}(\exp a) & -b_{22} \\ b_{21} & \end{array}\right]$ and $k_{2}=\left[\begin{array}{cc}(\exp -a)-b_{22} \\ b_{21}\end{array}\right]$ then
Leet
(4.3.23)

Then

$$
s_{1}=\frac{(\exp a)-b_{22}}{b_{21}} s_{2}=\frac{(\exp -a)-b_{22}}{b_{21}}
$$

$$
K=b_{21}\left[\begin{array}{ll}
s_{1} & s_{2} \\
1 & 1
\end{array}\right] \text { and } K^{-1} \cdot \frac{1}{b_{21}\left(s_{1}-B_{2}\right)}\left[\begin{array}{cc}
1 & -s_{2} \\
-1 & s_{1}
\end{array}\right]
$$

From Corollary 4.1.3 the matrix of the network formed by cascading n equal four-terminal networks ia B^{n}. Theorem 2.7.4 gives us

$$
B^{n}=K\left[\begin{array}{cc}
(\exp n a) & 0 \\
0 & (\exp -n a)
\end{array}\right]^{K^{-1}}
$$

or

$$
(4.3 .24) B^{n} \cdot \frac{1}{\left(s_{1}-s_{2}\right)}\left[\begin{array}{l}
s_{1}(\exp n a)-s_{2}(\exp -n a), 2 s_{1} s_{2}(\sinh n a) \\
2(\sinh n a), s_{1}(\operatorname{sxp}-n a)-s_{2}(\exp n a)
\end{array}\right] .
$$

From equations (4.3.23) and (4.3.18), we can conclude that

$$
\begin{align*}
& s_{1}=\frac{b_{11}-b_{22}+\sqrt{\left(b_{11}+b_{22}\right)^{2}-4}}{{ }_{2} b_{21}} \tag{4.3.25}\\
& s_{2}=\frac{b_{11}-b_{22}-\sqrt{\left(b_{11}+b_{22}\right)^{2}-4}}{2 b_{21}}
\end{align*}
$$

Referring back to Theorem ${ }^{2}$? 3.1, equation (4.3.1) for a fourterminal network becomes

$$
b_{21} z_{0}^{2}+\left(b_{22}-b_{11}\right) z_{0}-b_{12}=0
$$

or
(4.3.26)

$$
z_{0}=\frac{b_{11}-b_{22} \pm \sqrt{\left(b_{11}+b_{22}\right)^{2}-4}}{2 b_{21}}
$$

An equation similar to (4.3.1) for the reversed four-terminal shows that the roots of (4.3.26) are Z_{01} and $-Z_{02}$. Comparing the solutions of (4.3.26) with (4.3.25), we see that

$$
s_{1}-z_{01}, s_{2}--z_{02}
$$

The desired result follows upon substituting these values in (4.3.24).

Corollary 4.3.6. If n reversible four-terminal networks are connected in cascade, the network matrix associated with the resulting network $1 \mathrm{~s}^{1}$

$$
B^{n}-\left[\begin{array}{cc}
(\cosh n a) & z 01(\sinh n a) \\
\frac{(\sinh n a)}{201} & (\cosh n a)
\end{array}\right]
$$

Proof. The corollary follows from the fact that for a reversible network 2.01 - 2.02.
4.4. Transmission lines. which of the work of the proceding section can be extended to transmission lines by consideling the transmission lines to consist of n transmission networks connected in cascade, letting n approach ∞ and the effect of the individual network matrices upon the individual e.m.f.'s and currents become infinitesimal, tending to zero

1 Pipes, p. 190.
as n approaches oo. Since this would be mostly repetition of work already done, we 111 proceed instead with the problem of applying the theory of matrices to other problens concerning transmisgion lines.?

Consider n long, parallel, widely separated, oylindrical conductors over an equipotential ground. The differential equations governing the distribution of potentials and currents of the system are ${ }^{3}$

$$
\begin{aligned}
(4.4 .1) & -\frac{\partial V}{\partial x}=D I+\frac{L \partial I}{\partial t} \\
& -\frac{\partial I}{\partial x}=3 V+\frac{\partial V}{\partial t}
\end{aligned}
$$

Where V and I are n by one matrices whose elements are the potentials and currents of the conductors. L, R, G, and C are n by n matrices whose elements are defined by
$z_{r r} \cdot \operatorname{self}$ inductance of conductor r,
$Z_{r s}$ - mutual inductance between conductor r and s,
$r_{r r}-\operatorname{series~resistance~of~conzuctor~} r$,
$r_{r s} 0,(r \neq s)$,
Srr = leakgge conductance to ground of conductor r, $g_{r s}=$ leakaze conductance betwien conductor r and s, $c_{r r}=$ self caproitance coefficient between conductor r and grouni.

[^19]$c_{r s}$ mutual capacitance coefficient between conductors r and s.
pipes gives formulas for the determination of the numetrical values of these line parameters. ${ }^{1}$

Now let $Z=R+\operatorname{Lp}$ and $Y=G+C p$, where $p=\partial / \partial t$.
Then using D for $\frac{\partial}{\partial x},(4.4 .1)$ becomes

- DY = RI
- DI = IV.

Since Z and Y are not functions of x,
(4.4.2)

$$
\begin{aligned}
& D^{2} V=-Z D I=Z Y V \\
& D^{2} I=Y Z I .
\end{aligned}
$$

Let

$$
V=(\exp j \omega t)\left[\begin{array}{c}
E_{1} a_{1} \\
\vdots \\
E_{n} a_{n}
\end{array}\right] \begin{aligned}
& \text { where } a_{r}=\left(\exp j \theta_{r}\right), \theta_{r} \text { is } \\
& \text { the phase shift for the } r \text {-th } \\
& \\
& \text { of } x .
\end{aligned}
$$

and

$$
E=\left[\begin{array}{c}
E_{1} a_{1} \\
\vdots \\
E_{n} a_{n}
\end{array}\right]
$$

Then
(4.4.3) $D^{2}=Z(j \omega) Y(j \omega) E$, where $Z(j \omega)-z(p)_{p}=j \omega_{0}$

Also

$$
D^{2} I=Y(j \omega) Z(j \omega) I,
$$

1 Pipes, Trangectiong of A.I.E.E., p. 346.

With $I=\left[\begin{array}{c}I_{1} b 1 \\ \vdots \\ \vdots \\ I_{n} b_{n}\end{array}\right]$ where $b r$ is of the same form as ar
Te will assume a solution of the form
(4.4.4)

$$
E=A \cosh \alpha x+B \sinh \alpha x,
$$

I. Fcosh $\alpha x+H \sinh \alpha_{x}$,

A, B, F, and H being matrices of constants which are to be fetermined. Wo now hava (4.4.5)

$$
\begin{aligned}
D^{2} E & =\alpha^{2} A \cosh \alpha x+o^{2} B \sinh \alpha x \\
& =\alpha^{2} \equiv .
\end{aligned}
$$

Equating the right side of (4.4.3) to the right side of (4.4.5) (4.4.6) $\quad Z\left(j(1) Y(J u) E=\alpha^{2} E\right.$.

Letting $\alpha^{2}=\lambda$, the solutions for (4.4.6) are the character1 stic roots of $Z(g \omega) Y(j \omega)$. After these roots have been determined (4.4.7)

$$
w_{r}= \pm \sqrt{\lambda_{r}} \quad(r, 1,2, \ldots, n)
$$

Since $Z(j \omega)$ and $Y(j \omega)$ are symmetrical and the characteristio roots of the transpose of a matrix are the same as the characteristic roots of the matrix, the roots of (4.4.6) are the same as the roots of the comparable equation for I.

Trom equation (2.7.8) and the staterent which follows it, we know that for each characteristic root of $Z(j \omega) Y(j \omega)$ there 1 g a solution of (4.4.4) which may be written.

$$
\begin{align*}
& g_{r}=k_{r} a_{r} \cosh \alpha_{r} x+k_{r} b_{r} \sinh \alpha_{r} x \\
& I_{r}=k_{r} f_{r} \cosh \alpha_{r} x+k_{r} h_{r} \sinh \alpha_{r} x,(r=1
\end{align*}
$$

Where a_{r}, b_{r}, f_{r}, and h_{r} are arbitrary constants and k_{r} is any non-zero column of the adjoint of the characteristic ma$\operatorname{trix} f \circ Z(j \omega) Y(j \omega)$. The feneral solution of (4.4.3) is then given by the sum of tese particular solutions, i.e.,

where K is the modal matrix of $2(j \omega) Y(j \omega)$ and the matrices A, B. F, and H are columar matrices consisting of the 2 n arbitrary constants of the solution of the differential equations. Fe have assumed the roots of (4.4.6) to be simple in the above solution. If this is not true the atrix K is determined in the same maner as it was determined for multiple roots in the solution of the mesh difierential equations in Chapter 3, section 3.

If the transwission lines are fully transposed the
solution of the equations (4.4.1) is more easily obtained. In this case $I_{r s}=1, G_{r s}=5$, and $c_{r s}=0,(r \neq s ; s, r=1$, 2, ..., n), $z_{r g}=z_{0}, E_{r s}=g_{0}, c_{r s}=c_{0}$, and $r_{r s}=r_{0},(r=$ $3 ; r, s=1,2, \ldots, n)$.

Consider the matrix $A=\left(a_{r g}\right), a_{r g}=(\exp 12 \pi / n)^{-(r-1)(s-1)}$. The various rows of A are the sequence operators of Fortescue. ${ }^{1}$ Theorem 4.4.1. If $A=\left(a_{r g}\right)$, then $A^{-1}=1 / n$ (conjugate A).

Proof. Let $B=1 / n(\operatorname{con} j u g a t e A)$, then

$$
v_{r g}=(1 / n) \exp (2 \pi g / n)(r-1)(s-1)
$$

If $A B=C$,

$$
\begin{aligned}
c_{r g} & =1 / n \sum_{k=1}^{n} \exp [(-2 \pi j / n)(r-1)(k-1)] \exp [(2 \pi j / n)(k-1)(s-1] \\
& =1 / n \sum_{k=1}^{n} \exp [(-2 \pi j / n)(k-1)(r-s)]
\end{aligned}
$$

(4.4.9)

We see that for $\mathrm{ras}, \mathrm{c}_{\mathrm{rs}}=1$. For r / s,

$$
\begin{aligned}
(4.4 .10) c_{r g}=1 / n[1 & +\exp \{(-2 \pi j / n)(r-s)\}+\exp \{(-4 \pi j / n)(r-s)\} \\
& +\ldots+\exp \{(-2 \pi j / n)(n-1)(r-s)\}]
\end{aligned}
$$

Using the formula
(4.4.11) $\quad s=\frac{r y-3}{r-1}$
for the sum of a geometric series, (4.4.12)

$$
c_{r s}=\frac{\exp [(-2 \pi 1)(r-s)]}{\exp [(-2 \pi 1 / n)(r-s)]-1}
$$

But $\exp (-2 k \pi j)=1$ for $k=1,2, \ldots$ and the numerator of (4.4.12) 18 zero for all values of r and s. since res $1 s$ always less than n, the denominator of (4.4.12) is never zero.

[^20]Therefore, $c_{r s}$ - 0 when $r \neq$. Consequently, $C=J_{n}$, and $B=A^{-1}$.

Theorem 4.4.2. If O is a matrix such that $c_{r s}=c_{0}$ for $r=B$, and $c_{r g}=c$ for $r \notin a$, then $A^{-1} C A$ - D is a matrix such that $d_{83}=c_{0}-c$ for $g-2,3, \ldots, n, d_{11}=c_{0}+(n-1) c$, and $d_{r g}-0$ for $\neq A$.

Proof. From the definition if $A^{-1} C=F$,

$$
\begin{aligned}
I_{r g}=1 / n\left\{c_{0} \exp \left[(2 \pi j / n)(s-1)^{2}\right]\right. & +c \sum_{k=1}^{s-1} \exp [(2 \pi j / n)(s-1)(k-1)] \\
& \left.+c \sum_{k=3+1}^{n} \exp [(2 \pi g / n)(s-1)(k-1)]\right\}
\end{aligned}
$$

Then if EA $=D_{2}$

$$
\begin{aligned}
& d_{\mathrm{rs}}=1 / n \sum_{m=1}^{n}\left[c_{0} \exp \left[(2 \pi g / n)(s-1)^{2}\right]+c\left\{\sum_{k=1}^{s-1} \exp [(2 \pi g / n)(s-1)(k-1)]\right.\right. \\
&\left.\left.+\sum_{k=s+1}^{n} \exp [(2 \pi j / n)(s-1)(k-1)]\right\} \exp (-2 \pi j / n)(m-1)(s-1)\right]
\end{aligned}
$$

(4.4.13)

$$
\begin{aligned}
d_{r g} & =1 / n \sum_{m=1}^{n} c_{0} \exp \left[(2 \pi j / n)\left\{(s-1)^{2}-(m-1)(s-1)\right\}\right] \\
& +1 / n \sum_{m=1}^{n} \sum_{k=1}^{n} c \exp [(2 \pi j / n)\{(s-1)(k-1)-(\pi-1)(s-1)\}] \\
& -c / n \sum_{n=1}^{n} \exp \left[(2 \pi j / n)\left\{(s-1)^{2}-(m-1)(s-1)\right\}\right]
\end{aligned}
$$

Now the first and third expressions on the right of (4.4.13) are of the sane type as (4.4.9). Consequently, for $\boldsymbol{A}, \mathrm{m}$, they are both zero. For 3.1 . the first expression on the right of (4.4.13) becomes c, and the third expression becomes -c. When s. 1 , the second expression on the right of (4.4.13) is nc. Then $x_{11}=c_{0}+(n-1) c$.

If $s / 1$, again using (4.4.11), the second expression
on the right is

$$
c / n \sum_{\operatorname{mon}}^{n}\left[\frac{\exp \{(2 \pi j)(s-1)\}-1}{\exp \{(2 \pi j / n)(s-1)\}-1}\right] \exp [(-2 \pi j / n)(m-1)] .
$$

Put for $s>1$, the numerator of the fraction in brackets 18 zero, but the denominator 1 is not zero. Therefore, the above expression is zero for $s \neq 1$. Hence, D is of the desired Ciaxonal form.

$$
\begin{aligned}
& \text { Multiplying }(4.4 .1) \text { on the left by } A \\
&-\frac{\partial A^{-1} V}{\partial X}=A^{-1} R A A^{-1} I+A^{-1} L A A^{-1} \frac{\partial I}{\partial t} \\
&-\frac{\partial A^{-1} I}{\partial X}=A^{-1} G A A A_{-1} V+A^{-1} C A A^{-1} \frac{\partial V}{\partial t}
\end{aligned}
$$

Define

$$
\begin{aligned}
& V_{g}=A^{-1} V=\left(V_{r g}\right), \\
& I_{g}=A^{-1} I=\left(i_{r B}\right), \quad(r=1,2, \ldots, n) \\
& R_{g}=A^{-1} R A=\left[\begin{array}{lllll}
R_{0} & 0 & 0 & \cdots & 0 \\
0 & R_{0} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] . . .
\end{aligned}
$$

$$
\begin{aligned}
& I_{s}=A^{-1} O A \text {. } \\
& 33-A^{-1} G A \text {, }
\end{aligned}
$$

Where the Us_{s} and Gs take the same form as L_{g}.
Then

$$
\text { (4.4.15) }-\frac{\partial V}{\partial x} s+R_{s} I_{a}+L_{g} \frac{\partial I_{s}}{\partial t}
$$

$$
-\frac{\partial I_{s}}{\partial x}=G_{g} V_{s}+\sigma_{s} \frac{\partial V}{\partial t} s
$$

Since R_{s}, L_{g}, G_{g}, and σ_{g} are all diagonal matrices (2.6.11) refuses to zn equations

$$
\begin{aligned}
(4.4 .16 s) & \left.-\frac{\partial y}{\partial x} 1 s=R_{0} I_{1 s}+\left(I_{0}+(n-1) I\right) \frac{\partial 1}{\partial t} I s\right) \\
& -\frac{\partial v}{\partial x} r s=P_{0} I_{r s}+\left(I_{0}-1\right) \frac{\partial 1}{\partial t} r s=(r=2,3, \ldots n),
\end{aligned}
$$

and

$$
\begin{gathered}
(4.4 .16 b)-\frac{\partial 1}{\partial x} 1 s=\left(s_{0}+(n-1) g\right) v_{1 s}+\left(c_{0}+(n-1) c\right) \frac{\partial v}{\partial t} 1 s, \\
-\frac{\partial 1}{\partial x} r s=\left(g_{0}-g\right) v_{r s}+\left(c_{0}-c\right) \frac{\partial v_{r s}}{\partial t}, \\
(r=2,3, \ldots, n) .
\end{gathered}
$$

These differential equations am then be solved by La place transformations. ${ }^{1}$ The values of the actual forward waves in terms of the constant estop. at $x=0$, is given by

$$
v^{+}=1 / 2 A B A^{-1} v^{0}
$$

With 9 a diagonal matrix derived from (4.4.16a) by La place transformations and integration. Similarly

$$
I^{+}=I / 2 A H A^{-1} V^{0}
$$

Where H is a diagonal matrix derived from (4.4.16b) by La Place transformations and int agration.

[^21]Atiken, A. M. Determinants and Matrices. New York: Intersoience ublishers. Inc. 1045.

Albert, A. Adrian, Nodern Himher Algebra. Chicago: University of chicaso Press, 1947.

Arsove, Naynard G., "The Algebraic Theory of Linear Transmission Networks," Parts.I and II, Journel of the Erankdin Institute, 1953, CCLV, 301-318 and 427-444.

Bôcher, Maxime, Introduction to Higher Aleebra. New York: The Macmillan co., 1931.

Bode, Hendrik T., Network Analysig and Feedback Amplifier Degign. New York: D. Van Nostrand Company, Inc., 1945.

Brillouin, Leon, "Les Filtres électrique et la theorie des matrices," Revue général de L'Eloctricité, 1936, XXXIX, 3. , Wave Propazation in Periodic Structures. New York: nograw-Hill Book Co., Inc., 1946.

Burington, R. S., "Matrices in. Electrio circuit Theory," Journal of Mathematics and physics, 3.I.I., 1935, XIV, 336.
_ "On the equivalence of quadrics in m-affine n-space and $1 t s$ relation to the equivalence of 2 m -pole networks, " Iranssctions of American Mathematical Society, 1935. XXXVIII, 163.175.
"p-matrioss and Equivalent Networks," Journal of Gathemgtics and Physigs, Y.I.I., 1937, XVI, 85-102.

Dickson, Leonard E., Modern dlegraic Theories. Chicsgo: Beng. H. Sanborn and Co, 1926.

Everitt, william Littell, Communication Engineering. New York: herraw-ill1 5ook Co.. Inc., 1937.

Flomenhoft, H. I., "A kiethod for Determining fode Shapes and Frequencies above the Fundmental by watrix Iteration," Journal of $4 p p 11$ ed Lechaniss, 1950, XVII, 249-256.

Frazer, R. A., Duncan, w. Jo, Collar, A. Ro, Elenentery jatriceg. New York: The Hacaillan Co., 1946.

Guillemin, Ernst A., Communication Networkg, Vol. I and II. New York: John wiley and Sons, Inc., 1935.

Howitt, Nathan, firoup Theory and the Electrical Network," Ehyalcgi Beview, 1931, YXXVII, 1583-1595.

Ingram, W. H., Cramlet, C. M., "Foundations of Electrical Network Theory, " Journial of M.I.T., 1944, XXIII, 134-155.

Klrchhoff, G., "Über ale Auflösung der Gleichungen, auf welohe man bei der Untersuohung der linearen Vertheilung galvanigcher ströme geführt wird," Amazien $\frac{\text { der }}{}$ Phvaik und chemie, von J. C. Yoggendorff, 1847, LYXII, $\frac{497-508 .}{}$

Le Corbelller, P., Matrix Anslysis of Electric Networks. New York: Harvard University Press, John Wiley and sons, Inc., 1950.

Lowry, V. H., "The application of the characteristio equation of a matrix to the evaluation of the range of frequencles for which currents are passed through networks with pour or more terminals without attenuation," Philosophical Masazine. 1945, XXXVI, 255-264.

Macdurfee, C. C., Introduction to Abgtract Algebra. New York: John Tiley and Sons, Inc., 1940.
":uatrices with elements in a principal ideal ring," $\frac{\text { Bulletin }}{\text { XXXIX, } 56 \frac{\text { the }}{4-534 .}}$ American Mathematioal society, 1933.
 1343, "hat $360-363$. WacLane, Sauniers, Notes on Higher Alsebra. Ann Arbor: Edwards Brothers, Inc., 1939.

Olmated, Cohn ix. H., Solid Analytic asomatry. New York: D. Appleton-Century Co., Inc.. 1947.

Ostrowski, A., "Bounds for the Grestest latent Root of a Positive Matrix," Journal of the London Mathematical society, 1952, YXVII, 253-255.
Parodi, Maurice, "价eseaux Électriques et Théorie des Transformations," Journsl Phyolcs, Dadium (8), 1946, VII, 94-96.

Perlis, Sam, Theory of Matrices. Cambridge: Addison-wesley Press, Ino. 1952.

P1pes, L. A., "Linear Transformation in 3-phase cirouits," Transactions of the American Institute of Electrical Eng1neerg, 1941, LX, 351-353.
ـ ", Matrices in Ensineering, " Transactions of the Aperioan Ingtitute of Electrical Ensinesrg, 1937, LVI, 1177-1190.
_ " "Matrix Theory of Wulticonductor Transmission ines," Philogophicsl wasazine and Journal of science, 1937, XXIV, 97-115.
——" "Trangient analysis of Completely Transposed wulticonductor Transmiseion Linss," Transectiong of the American Institute of Electrical Enzineers. 1941, LX. 346-351.
\qquad "Latrix Theory of Oscillatory Networks," Journel of An011ed jhysics, 1939. $\mathrm{X}, 849-860$.
——" "The rranslent Eehaviour of Four Terminal Networks," Ph119sophical tazazine, 1942, XXYIII, 174-214.

Reed. tyril R. and Georgia B., Kathematicgl Sethois in Electrical Engingering. New York: Harper and Brothers, 1951.

Standards Comittee, 1950-1951, "Standards on Circuits: Definition 0: Terma in Network Topology, 1950," Proceed1nati of the Ingtitute of Radio Engineers, 1951, XXXIX, 27-29.

Stroll, Robert E., incar Aloobre ant atrix Theory. New York: No \ddagger raw-H111 300k Co., Inc., 1952.

Wate, Thonas L., The Alsebrg of Yectors and fatrices. Cambridge: Adison-'esley Press, Inc., 1951.

Nodierburn, J. H. so, Lectures on 43triceg. New York: American whematical society, 1934.

[^0]: 1 C. . MacDuffee, "What is a katrix?", Amerioan Mathematical fonthly, 1943, L, 360. 2 E.T. Bell, Developement of Mathematicg (New Yorix, 1945), p. 205.

 3 MacDuffee, American Mathematical Monthly, p. 360 .
 4 John H. Himsted, Solid Analytic Geometry 1947)

 5 MacDuffee, American Mathematical Monthly, p. 361.

[^1]: 1 MacDuffee, Abstract Algebra, p. 79.
 2 Sam Perlis, Theory of Matrices (Jambridge, 1952), pp. $2-17$.

[^2]: 1 R. A. Frazer, \bar{i}. J. Duncan, A. R. sollar, Elementary Matrices (New York, 1946), pp. 87-89.

[^3]: 1 MacDuffee, Theory of Matrioes. p. 6.

[^4]: 1 Sam Porils, p. 72.

[^5]: 1 Frazer, Duncan, and collar, p. 25.
 2 Porlis, p. 104.

[^6]: 1 Bôoher, p. 75.
 2 Maoduffee, The mheory of Matrlegs, D. 10.
 3. IbIS., P. 10.

 4 A. C. Aitzen, Doterminante and Hatrioes (New York, 1946). p. 60.

[^7]: 1 Dickeon, p. 64.
 2 Frazer, Duncan, and ollar, p. 28.
 3 Dackson, p. 55.
 4 Saunders HacLane, Notes on Higher Algebra (Ann Arbor 1939), p. 153.

[^8]: 1 HacDuffer, The Theory of Matrices, p. 57.
 2 Bôcher, p. 90.
 3 Dickson, P. 65.

[^9]: 1 Bôoher, p. 89.
 2 Ib1A.. p. 96.

[^10]: 1 Frazer, Duncan, and Collar, p. 61.
 2 Ibla., p. 61.

[^11]: 1 Frazer, Duncan, and Collar, p. 66.

[^12]: 1 For a more complate get of definitions see "stantards on Circuits: Cefinition of Terms in Networi Topology, 1950". Procesdings of the Institute of padio Enyingers, XXXIX, 27-
 York, 1935), Vol. I, Chapt. IV.

[^13]: 1 Blectronotive force will be abbreviated heroafter by e.m.f. 2 . H. Incram ant . M. Eranlet, "Foundationg of Ilectrical Network Theory", Lournal of fathenatics and physics, m. I. I., 1944, VYIII, p. 141.

[^14]: 1 Ingram and oramlet, p. 137.

[^15]: 1 The impeinnce matrix may be aingular if the frequency of one of the impressed e.m.f.'s coincilag with a natural frequency of the notwork. This case is handled subsequently. 2 N1111am Iittell Everitt, Communication Ensineering, (Now York, 1937), p. 53.

[^16]: 1 Richard Stevens Burington, "R-matrioes ard Equivalent Natworks". p. 101.

[^17]: 1 Arsove, Part II, p. 432.
 2 Erillouin, p. 211.

[^18]: 1 Brillouin, p. 212 .

[^19]: 1 pipes, p. 200; Brillouin, Chapt. X.
 2 This section is based on two papers by L. A. pipes, "Tranolent analysis of Complately Transposed ifulticonductor Transmission If ines", Transactiong of Americsn Institute of Electrical Engineers, 1945, LX, pp. 346-351; an " Tulticonductor mransmission Lines", Philosophical Mazezine and sournal of science, XXIV, 1937, pp. 97-115. 3 Guillemin, Vol. II, p. 33.

[^20]: 1 Pipes, Transactions of A•I.E.E., P. 347.

[^21]: 1 Pipes, Transactions of A.I.E.E., p. 348.

