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APPLICATIONS OF THE THEORY OF MATRICES

TO

ELECTRIC NETWORKS

The objective of thia thesis is the investigation of 

the application of the theory of matrices to analysis of 

electric networks. Various theorems from the theory of ma

trices which are applicable to matrix analysis of electric 

networks are stated and proved in Part I. Part II, Chapters 

III and IV, consists of problems of electric network theory 

whose solutions are facilitated by use of the theory of ma

trices. Using matrix methods, the mesh and node pair equa

tions are developed and solved In Chapter III. Applications 

of matrix methods to transmission networks and transmission 

lines are considered in Chapter IV.

It la the opinion of the author that the method of 

developement of equation (3.2.13), Theorems 4.1.1 and 4.2.1, 

and the proofs of Theorems 4.4.1 and 4,4.2 are original con

tributions. Equation (3.2.13) is one of the principal equa

tions used in node pair analysis of electric networks. The

orems 4.1.1 and 4.2.1 are concerned with the matrix associated 

with a transmission network. Some interesting properties of 

a particular matrix are stated in Theorems 4.4.1 and 4.4.2. 

This matrix is useful in the analysis of fully transposed 

transmission lines.
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PART I

SO^a THEOREMS ON MATRICES

CHAPTER I

BASIC THEORY OF MATRICES

1.1. Introduction. This thesis Is divided Into two 

parts. In Part I the theorems of matrix theory, which are 

to be applied to electrio networks In Part II, will be stated 

and proved.

The word matrix was first used by J. J. Sylvester to 

describe a rectangular array of numbers "out of which deter
minants can be formed."2- The concept of matrix was used ex- 

2pllcltly by Arthur Cayley In 1858. He defined the matrix In 

a similar manner to Sylvester but was insistent that "the
3

Idea of matrix precedes that of determinant." A matrix has 

been defined as a rectangular array of mn quantities, arranged
AIn m rows and n columns. According to C. C. KaoDuffee, a

5 
matrix la an element of a total metric algebra. We will use 

the following definition: A matrix Is a rectangular array of 

mn quantities arranged In m rows and n columns 

1 C. C. MacDuffee, "What is a Matrix?", Amerlcan Mathemat leal 
19^5, l, 360. 

a e. T. Bell, Developement sl£ Mathemat les (New York, 1945),
p. 205.
5 MacDuffee, MiillZ, P. 360.
4 John M. H. Olmsted, Solid Analytic geometry (New York, 
1947)
5 MacDuffee, American Mathematleal Monthly, p. 561.
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In order to clarify thia definition somewhat, we will

A -

with elements

all &12 ••• aln

a21 a22 ••• a2n
• (alj)

JSnl am2 • • • amn 
j in a field F.

define an 323111 EfilftllSn £E232. Then using 

these definitions, a field will be defined.

An equals relation a*b  is characterized by the follow-
4 .4 1
ing properties!

i. Either a • b or a X b. (The relation is determin

ative. )

11. a - a. (The relation la reflexive.)

111. If a - b, then b ■ a. (The relation is symmetric.) 

iv. If a  b and b - o, then a • o. (The relation la 

transitive.)

*

An abelian group is a mathematical system composed of 

elements, an equals relation, and one operation X subject to
2 

the following postulatesi

1. The system Is closed under the operation X, which

Is well defined.

11. The operation X la associative.

1 C. C. Mao Duff ee, Ixil£211i2112n 12. 1121ml AlOlES 
York. 190),  p. 7.* *
2 lillo P» 7.*
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ill. There exists an Identity element I such that 

aXl«IXa«a 

for every element a of the group.
Iv. Every element a has an inverse a”^ such that 

a-1 X a - a X a*" 1 - I.

v. The operation X is commutative.

A field F*  Is a mathematical system composed of elements, 

an equals relation, and two well defined operations, addition 
and multiplication defined by the postulates:^"

1. The elements constitute an abelian group relative 

to the operation of addition, the Identity element being de

noted by z, and the Inverse of a by - a.

11. The elements with z omitted constitute an abelian 

group relative to multiplication, the Identity element being 

denoted by I and the inverse of a by a .

ill. iZultlpllcation is distributive with respect to 

addition.

We will be Interested In two fields, the field of real 

numbers and the complex field. Unless otherwise specified, 

it will be understood that these are the fields under consid

eration.
21.2. Addition and multiplication of matrices. Two 

matrices A » (aij) an<3 B • ^bip are 0(lual and only if 

1 tiacDuffee, P  79.*
2 Sam Perlis, Theory of fcatrioes (lambridge, 1952), pp. 2 - 17. 
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aij" for »v<9ry i anJ
The addition of two matrices A and b Is defined to be 

a third matrix whose elements are equal to the sums of cor

responding elements of A an I B, i«e.,

(1.2.1) A ♦ B - (alj ♦ blj) . (Cij) - C.

Wa define the product of two matrices A • (aij) an^

B • (b.,,) to be the array
** n

(1.2.2) AB - (EaijijK) -(=!,)-

or row by column multiplication of the matrices. ?rom this 

definition, we see that the number of columns of A must equal 

the number of rows of B. The resulting matrix will have the 

same number of rows as A and the same number of columns as B. 

Multiplication of matrices is in general not commutative.

Multiplication of a matrix by a scalar number k la 

accomplished by multiplying each element of the matrix by k, 

kA • (ka^j).

Theorem 1.2.1.  Multiplication of matrices la associa

tive.

Proof. Let A « B ■ and C • (c^j) where

1 • 1, 2, •«., m j j * 1, 2, ..., nj k • 1, 2, a} 1 • 1,

2, ..., t. By definition
n

(1.2.3) AB - £Za1<3bJtc -
J* -*-

Then

(1.2.4) (AB)C • 2—.. i 1k ^kl*
k-1 1K k-1 J-l

Multiplication In a field Is associative and distributive
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with respect to addition so that
s n an

(1.2.5) ZZ( 2_^ai jbjk)°kl - T^<ai Jbjk>ckl

ILal1)(bjkokl)*  
k*l

Since any finite double eutn Is Independent of the order of

summation

(1.2.6) (AB)C -
n s
Z2 E_alj(bjkoki)

• fZ &1 i( £Lbjkckl) “ A(&2).
>1 J k-1

Theorem 1.2.2.  Multiplication of matrices Is distri

butive with addition.

Proof. Let A and B be m by n matrices and c be an n

by a matrix. Then 
n n

(1,2.7) (A ♦ B)C * E2(aij ♦ blj)°jk e * blJojk>

n n
• * (E-hij^jk^ * AC * B13e

Slmllarlly we see that

0(A ♦ B) - CA ♦ CB.

The matrix A ■ <aJl obtained from A ■ (al? by chang

ing rows to columns la called the transooaie of A. A matrix 

3*  • S is called symmetric, and a matrix Q such that 

la said to be skew or skew-symmetric.

Theorem 1.2.3.  The transpose of a product of two 

matrices is the product of their transposes In reverse order.
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By definition

B'A'(1.2.9)

ing out certain rows or columns of A, then we refer to B as 

to refer to a given matrix as being made up of its submatrices

A may be written A 2

may also be thought of as drawing lines parallel to the rows 

columns of A must be the same as the partitioning of the rows 

of B

type 

matrices thus formed by Aj_j.

If a partitioned matrix B is to be multiplied on the

whose non-zero elements occupy the principal diagonal, of the 

left by a partitioned matrix A, then the partitioning of the 

and columns of A, and between them, and representing the sub

a submatrix of the matrix A. At times it may be desirable 

lj;>
where each Ajj is a matrix.

..., Aj^ all have the same number of rows and for fixed j,

^IV A2j’ '^sj have same number of columns, then

A ■ (A. J Is a part it Ionins1: of A. The partitioning of a matrix

, n), is in one and only

n

m; J - 1, 2If A is an m by n matrix and (1 - 1, 2

one of the submatrices of A, then 

Proof. If A - (a^j) and B - then
" j^iai«5b^k ■ (°ik) ■ Oe

If for a fixed 1, Aj^, A12, A^-^,

n

If a matrix B is obtained from the matrix A by strik-

s; j- 1, 2

2lagQQa.l ar^. scalar ■•aatrlc.es. A square matrix d,
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la said to be of diagonal form. If D has n rows and columns 

and • k, (1 - 1, 2, ...» n), and k Is a constant, the 

matrix la said to be a scalar matrix.

From the definition of multiplication. It Is evident 

that the multiplication of a matrix A by a scalar matrix la 

equivalent to multiplying A by a scalar number.

A scalar matrix whose non-zero elements are the iden

tity of the field F are called identity matrices. The I Is 

commonly used to denote such a matrix, A matrix with elements 

all zero Is the zero or null matrix and Is designated by 0.

1-A. SlemeaVary osiratlon^ an The elemen

tary operations &re:

1 R. A. Frazer, w, J. Duncan, A. R. dollar, Elementary 
Matrices (New York, 1946), pp. 87-89.

1, Interchange of two rows or of two columns.

11. Addition to a row of a multiple of another row, or 

addition to a column of a multiple of another column.

111. Multiplication of a row or of a column by a non- 

vanlahlng constant.

Theorem 1.4.1 Each elementary operation on the rows 

(columns) of a matrix A can be accomplished by multiplying A 
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on the left(right) by the matrix J which la obtained by per

forming the given elementary operation upon the unit matrix I. 
The matrix J Is sometimes called an elementary matrix.1

1 C. C. MacDuffee, Theory of Matrices (New York, 1946), p. J2.

Proof. Let J be a matrix obtained by interchanging 

the 1-th and j-th rows(or columns) of I. Then the only non

zero element in the 1-th row of J is a 1 in the (i,j) position, 

and the only non-zero element in the j-th row of J is a 1 In 

the (j,l) position. Hence in the product JA, when the 1-th 

row of J la multiplied by the k-th column of A, the product 

will be the element of A in the (j,k) position, similarly, 

the product of the j-th row of J times the k-th column of A 

will be the element of A in the (l,k) position. Therefore 

the result will be the Interchanging of rows 1 and j. In the 

product AJ, when the k-th row of .A Is multiplied by the 1-th 

column of J, the result will be the element, In the (k, j) posi

tion of A. The product of the k-th row of A and the j-th col

umn of J will be the element in the (k,l) position of A. Con

sequently, the product AJ will simply Interchange the 1-th and 

j-th columns of A.

Ry examining the product AJ, where J Is obtained from 

I by adding a multiple of the i-th column of I to the j-th 

column of I, In a similar manner we see that the result la 

addition of the same multiple of the 1-th column of A to the 
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j-th column of A. Similarly for the product JA, where J la 

obtained from I by adding a multiple of the 1-th row of I to 

the j-th row of I, the result is addition of the same multi

ple of the 1-th row of A to the J-th row of A*

1 MacDuffee, Theory of Matrices, p. 6.

If J is the matrix obtained by multiplying the 1-th 

row(or column) of I by a non-vanishing constant, then it fol

lows from the definition of multiplication, the product JA 

results In the multiplying of the 1-th row of by the same 

non-vanishing constant. The product AJ results in the multi

plying of the 1-th column of A by the same non-vaniahing con

stant.

1.5. The determinant. If A is an n by n (sometimes said 

to be of order n and written n2) matrix, there Is associated 

with A a number d(A) which serves as an absolute value of A. 

This number d(A) Is characterized by

1. For every A, d(A) Is a non-constant rational Inte

gral function of the elements of A of lowest degree such that
11. d(AB) • d(A)d(B).1

In general

(1.5.1) d(A) - . .hnalhia2h2 e ,anhn»*

where the summation is over all permutations (hj, h2, ..., hn) 

of (1, 2, ..., n) and ®h1h2...hn 18 1 or according to the 

permutation being even or odJ.



10
2

The determinant of the (n-1) matrix derived from A • 

(a, ,) by deleting the 1-th row and the j-th oolumn of A and 
j if j

assigning to it the sign of (-1) is the oofactor of a^j, 

we will designate this determinant by Ajj.

A few well known theorems of determinant theory will 

be stated here without proof.

Theorem 1.5.1. The sum of the products of the elements 

of a row (or oolumn) of a matrix by their respective cofactors 

is equal to the determinant, while the sum of the products 

of the elemonts of a row (or column) by the cofactors of the 

elements of a different row (or oolumn) la zero. Notation- 

ally thia la equivalent to 
n n 

(1.5.2) ZZ^ra^a  y riA3i "Org^tA), 
where 6ra 18 an operator such that 8f&  0 If r a, <5ra - 1 

If r - s. 6__ is Kronecker's delta. A O """  ■ eiwiii  .... . .

* a
*

*** ** **
Theorem 1.5.2.  If B la obtained from A by multiply

ing any row or any column of A by k, then

(1.5.5) d(B) . kd(A).

Theorem 1.5.5. If B la obtained from A by the Inter

change of two rows or of two columns 

(1.5.4) d(B) • -d(A).

Theorem 1.5.4. If a is a square matrix each element 

of whose k-th row is a sum

^ksl * ^ks2 * ♦ ^ksm (s * 1, 2, .n)

then
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(1.5.5) d(A) • d(A1)  d(A2) ♦ ...  d(Am),* *

1 3am Perlis, p. 72

where la the array obtained by replacing the elementa of 

the k-th row by dklh, ..., dknh respectively. Similarly

for oolumna. 
'A

Theorem 1.5.5. If B is obtained from A by adding to 

any row(or column) a linear combination of the other rowa(or 

oolumna), then

(1.5.6) d(A) « d(8).

Theorem 1.5.5. The determinant of a partioned matrix 

of the fora

A -
A11
0

0

A22

0

0

•. • 0

... 0

0 0 0 • • • Ann
la equal to the product of the determinants of the matrices 

making up the diagonal,
d(A) • d(A11)d(A22)d(A33) ... ^(A^).1

A matrix A is said to be singular If d(A) • 0, other

wise it la non-singular. If A Is a rectangular matrix then 

we may add a sufficient number of rows of seros to A on the 

bottom or a sufficient number of columns of zeros to A on the 

right to make A a square matrix without changing the effective 

neas of A. The new matrix will be singular. 'Ke will define 
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a rectangular matrix to be a singular matrix.

1.6. Ad .Iolot and Inverse. The transpose of the matrix

obtained from A *

1 Frazer,,Duncan, and Collar, p. 25.
2 Perlis, p. 104.

by replacing each element by Its
A cofactor la the adlolnt of A, written A or adj. A. It Is 

evident from equation (1,5.2) that

Theorem 1.6.1. If A is an n by n matrix
A A

(1.6.1) A A - AA  Id(A).*
A

F*or  obvious reasons the matrix defined by A /d(A) is
-1 called the inverse of A written A .

Theorem 1.6.2. The Inverse of a product of two matri

ces is the product of their inverses in reverse order,
Proof.^ Consider the product of the two n by n matri

ces A and B. Let AB • C. Multiplying this equation on the 
left by a"1 2 and then we have I • B* 1a”1C. Then multiply

ing on the right by C* 1 - b"’1a"’1.

Theorem 1.6.3.  Let S be a non-alngular, symmetric 

matrix. If K la any skew matrix such that (3 ♦ K)(s - K) is 
-1 2non-slngular and P • (5 ♦ K) (S - K), then

P’SP • 3.
Proof. Let T - S**^,  then

P • [3(1 ♦ T)J'* 13(I - T) * (I ♦ T)"1(I - T).

P*  . (S’ - K’)(S’ ♦ K’)"1 - (S ♦ K)(S - K)”1

- 3(1 ♦ T)(I - T)'’1s“1.
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Then
-1 -i -1

P*3P  • S(I + T)(I - T) 3 3(1 ♦ T) (I - T)

1 Maxima Bocher, Introduction to Higher Algebra, (New York,
1931), p. 75. ‘

. 5(1 ♦ T)[(I + T)(I - T)} *1 *(I - T)

• 3(1 ♦ T)Ql • T)(I ♦ T)]* ‘1(I - T).

Using Theorem 1.5.2,
P’SP - 3(1 ♦ T) (I ♦ T)* 1(I - T)*' 1(I - T) • S.

Theorem 1.6.4.  The inverse, A-^,  of a symmetric matrix, 

A, is symmetric.

*

Proof. Consider the cofactor of ajj. It is obtained 

from A by deleting the i-th row and J-th column, taking the 

determinant of the resulting matrix and affixing the sign 
!♦ j(-1) to the determinant. Since the i-th row of A la iden

tical with the i-th column, the cofactor of la the same 

ae the cofactor of aj^. Hence aa la symoietric and the theorem 

follows from the definition of A-1 .

If A** 1 - A*,  then A la an orthogonal matrix.

If p is any positive integer and A any matrix we under

stand by Ap the product AAA...A to p factors. If A is a non- 

aingular matrix, we define its negative and zero powers by the 

formulae
(1.6.2) A"  • (A” ) , A  . I.p 1 p 0 1

From thia definition we have

Theorem 1,6.5.  The laws of exponents
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- AP^, (AP)^ • 

hold for all matrices when the exponents p and q are positive 

Integers, and for all non-slngular matrices when p and q are
1 

any integers.

1.7. Rank of fl matrix. A matrix Is said to be of rank 

r If It contains at least one r-rowed determinant which la not 

zero, while all Its determinants of order higher than r are 
2

zero. If A is square matrix of order n, then n - r la called 
the nullity of A.^ If A is a tn by n matrix there are two dlf- 

4 ferent nullities, a row-nullity and a column nullity.

Theorem 1.7.1. Let A be an m by n matrix partitioned 

Into by n} submatrices and let B be an n by p matrix par

titioned Into n{ by pj submatrloes such that AB * C, then If 

C haa the same row partitioning as A and the same column par

titioning as B,
t

where t le the number of columns in A and the number of rows 

in B after they have been partitioned.

Proof, since the row partitioning of C is the same as 

that of A, Cflj will have the same number of rows as A^. Sim

ilarly, has the same number of columns as 

(oUv)» where (u,v) is the index of the element In c. Since

1 Booher, p. 75.
2 Macouffee, The Theory of Matrices, p. 10,
3 Ibid., p. 10.
4 a. 0. Aitken, Determinants and Matrices (New York, 1946), 
p. 60.

Bkj. Let 0^j
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AB - 0, 
n

(1.7«2) ouv ■ aur^rve
r*l

Now the (u,Y)~th aleaent of ths product on the right of

(1.7.1) la
n*

(1.7.5) d uv * 2Z. ®ur^rv * 
r«l

However,

nl ♦ ♦ ... ♦

n/t-nj!
J a 

ren,"*!
urbrv * £••

C m
* J ^ur^rv

r» (H nJ ♦!
1

• n.

Hence, combining the summations in (1.7.3)» 
n

(1,7.*)  duv • Z2 aurbrv*
r-1

Then from (1.7.2) and (1.7.A), it follows that

°uv * ^uv» 
and the theorem la true.

Corollary 1.7.1. If A Is any matrix with n columns 

and B la any matrix with n rows, any t-rowed determinant D 

of matrix AB la equal to a sum of terms each a product of a 
t-rowed determinant of A by a t-rowed determinant of B.^

Proof. The corollary follows from the application of 

property (11) of a determinant and Theorem 1.5.A to equation

(1.7.1).

Corollary 1.7.2. The rank of the product of two matrl-
2

ces cannot exceed the rank of either factor.

1 L. E. Dickson, Modern Algebraic Theories (Chicago, 1926), 
p. A9.
2 P. 51.
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Proof, If all t-rowed determinants of A(or of B) are 

zero, the same la true of all t-rowed detexnnlnanta of AB.

Theorem 1.7.2. If A le any matrix with m rows and n 

columns and B Is any non-singular n-rowed square matrix, then 

A and A3 have the same rank. If C Is any non-singular m-rowed 
square matrix, then A and aa have the same rank.^

Proof. If r Is the rank of A and p la the rank of P« 

AB, then according to the Corollary 1.7.2, p i r. Applying 

the same Idea to A • PB • r - p; consequently, rep. The 

same reasoning shows that A and CA have the same rank.

1 Dickson, p. 51.



CHAPTER II

ALJEBRAIC ROfUiS, EQUALS RELATIONSHIPS

AND

THE CHARACTERISTIC MATRIX

2,1. Equivalence of two matrlpes. Two matrices are 

said to ba equivalent If one can be derived from the other 
i 

by any finite number of elementary operations. The rela

tion of equivalence is an equals relation.  "12

1 sBcher, p, 55.
2 MacDuffee, The Theory of ^atrlcea, p. 41.

Theorem 2.1,1.  Every matrix A of rank r Is equiva

lent to a matrix C whose elements are all zero with the ex

ception of r ones occupying the first r places in the prin

cipal diagonal.

Proof. If the matrix Is a null matrix the theorem 

le obviously true. If A la not null, then at moat two ele

mentary operations of the type (1) will be required to bring 

a non-zero element to the (1,1) position of A. Then by an 

operation of the type (111), we can reduce thia element to 

unity. Next we reduce all other elements of the first row 

and first column to zero by operations of the type (11). If 

elements lying below the first row are not all zero, we bring 

a non-zero element to the second place In the principal dla- 
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gonal. Thle can be done without altering the first row or 

first oolumn. We can now reduce the element In the (2,2) 

position to unity and all other elements in the second row 

and column to zero. If not all the elements below the second 

row are zero, we bring a non-zero element to the third place 

in the principal diagonal. In this way, after a finite num

ber of elementary operations on A, we have a diagonal matrix 

G with units occupying the first t places In the principal 

diagonal and all other elements of 0 are zeros. By Corollary 

1.7.2, t £ r.

According to Theorem 1.4.1, we may perform any of the 

elementary operations on A by multiplying A on the left by a 

matrix U If the operation is on the rows of A, and on the 

right by a matrix v If the operation is on the columns of A. 

U and V are obtained by performing the given operation on I, 

Suppose n operations are required on the rows of A and m op

erations on the columns of A In order to obtain C. Then

(2.1.1) Unjn-1---U2U1AV1V2...V„ - C.

By Theorems 1.5.2, 1.5.3, and 1.5.5 we know that each Uj, and 

Vj, (1 - 1, 2, ..., n; J * 1, 2, ..., m), Is non-singular. 

Then, since n and m are finite,

(2.1.2) 3 - UnUn-i-.-UjUi. D - V1V2.. 

are non-singular, since

(2.1.3) BAD - C,

from Theorem 1.7.2, C has rank r. Hence t ■ r.
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Theorem 2.1.2.  Two matrices A and B are equivalent If 

and only If they have the same rank.

Proof. If A Is equivalent to B, then from Theorem 

1.7.2, A and B have the same rank.

Buppose A and B have the same rank r. Both A and B can 

be reduced to the diagonal form described In Theorem 2.1.1. 

Hence there exists a Pj, P2» and ^2’ ea0$1 having the same 

form as B and D In equation (2.1.2), such that 

(2.1.A) ?1AP2 " ^1^2*

And since P-^, P2» and are non-slngular

(2.1.5) A -

Since the Inverse of an elementary matrix Is an elementary 

matrix, a la equivalent to B.

2.2. Linear forms anl linear transformations. A lin

ear homogeneous function, such as 5y - 6z la called a linear 
1

form. The set of m equations

yi . anx1 ♦ a12x2 ♦ a15x5 * ... * alnxn 

(2.2.1) 

ym ■ ainlxl * affl2x2 * am3x3 ♦ ••• ♦ 
expressing the m variables y^, F}# •••» Fm t-®r®8 of

the n variables x^, x2, x^, ..., xn can bo written in the ma

trix form as 

1 Dickson, p. 39
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or more precisely

(2,2.2) yi

•

all

a21

a12

a22

e • e 

e e e

aln

a2n

X1 
x2

I® aml am2 e e e amn _xn

Y - AX.
If m • n, then (2.2.1) is said to be a linear transformation.1

1 Dickson, p. 41

The set of linear equations (2.2.1) may also be written 

in the compact notations 
n

(2.2.5) Ji - Z^&ijXj (1 - 1. 2, .... m).

Suppose the n variables xj are expressible linearly In 

terms of new variables zi, Z2» •••» ®n« Then 
n

(2.2.4) xj . ZZbJk3k (J - 1» 2, ..., n).
k*l

Substituting (2.2,4) Into (2,2.5), *e  have 
n ji_

(2.2.5) yi - ZZ L_ aijbjfcZfc (1 • 1, 2, ..., m).
J.l k-1

Since a finite sum is Independent of the order of aumaation 
n n

(2.2.6) JI • ZZ EZallbJkSk (1 • 1, 2, ..., m).
k-1 j-1 

But 
n

(2.2.7) AR - ZZaijbjk.
j-1

Hence we have

Theorem 2.2.1. A linear transformation with the matrix

B replaces a system of linear forms with the matrix A by a 

system of linear forms with the matrix AB.
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Consl'ler a set of m equations in n unknown suoh aa 

(2.2.1) suoh that • y2 - ■ ym * 0, Suoh a set of equa

tiona are linear homogeneous equations in the n unknown x^, 

x2» x3» •••» xn•
Theorem 2.2.2. A necessary and sufficient condition 

that m linear homogeneous equations in n unknowns have solu

tions not all aero la that the matrix of the coefficients of 

the unknowns have rank r <n.

Proof, suppose r*n.  Then m - n. By rearrangement of 

the equations or by elementary operations, if necessary, we 

can obtain an n by n aubraatrix of the coefficient matrix 

A, such that Aj la non-aingular and consists of the first n 

rows of A. Since solutions of the m equations must also be 

solutions of the first n, the solutions must satisfy

(2.2.9) AjX - 0.

But since A| is non-singular

(2.2.9) - X • 0.

Hence the assumption that r * n has led to the identically 

aero solution of the m equations. Hence r^n is a necessary 

condition that X 0.

If r < n, then wo can arrange the equations and the un

knowns so that the r by r aubmatrix of A consisting of the 

first r elements of the first r rows of A is non-aingular. 

Now we partition A so that
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(2.2.10)

>

Multiplying A on the leftn -

by the elenentary matrix

01(2.2.11) IJ -

I

we have

JA
0

contained a non.it

the (r ♦ 1element could be moved to

Theorem 1.7.2position of JA, making JA of rank r ♦ 1 By

Hence

Therefore 
1

1
Then r<n sufficient to insure solutions to a set of mis

A11X1 * a12X2

zero element, this

r by r and Ap2 m - r by

A11 A12

where A-^ Is an r

A11 A12

a null matrix. For if

by r matrix, Aj.2 la r by n - r, A2x is m

x22 * A21A11A12

•*  1
~A21A11

-1
A22 ’ A21A11A12 18

A21 A22

this cannot ba true

. 0
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homogeneous equations in n unknowns.

Corollary 2.2.2, If the coefficient matrix of tn homo

geneous equations in n unknowns is of rank r<n, then n - r 

unknowns can be arbitrarily assigned. These n - r unknowns 

are parameters in terms of which the other r unknowns can be 

linearly and uniquely expressed.

Corollary 2,2,21. A system of m homogeneous equations 

in n unknowns, where m<n, always has solutions not all eero.

A system of equations (2.2,1) such that the y^ are not 

all zero is a system of non-homogeneous equations. The matrix 

associated with such a set of equations is called the 

augmented matrix of the set.

A set of m equations in n unknowns Is said to be con-

alstent If there exists values of the unknowns which satisfy 

all the equations. Otherwise the equations are inconsistent.

Theorem 2.2.3,  Any m nou-homogeneous equations in n 

unknowns with coefficient matrix A of rank r are consistent 

and solvable in terms of n - r parameters if and only It the 

rank of the augmented matrix 1® equal to the rank of A.

Proof. Let A be the coefficient matrix of m non-homo-

geneoua equations in n unknowns. Suppose A and [A^lJ are each 

of rank r. Partition A in the same manner as in the proof of 

Theorem 2.2.2. Then we have 

(2.2.14)
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where and is

matrix and Y2 la m - r by

J of equation (2,2.11)on the left by the matrix

(2.2.15) *1A11 a12
0 _X2j

Then (2.2.15) oan be written

(2.2.16)

From which we

(2.2.17)

of (2.2.14) assigned,

then (2.2.17) must satisfy all of the other equa-consistent

tlona also

J

22

(2.2,14)

(2.2.19) Y2

the coefficient matrix, the equations are consistent

rank r, A

(2.2,13)

Since A i'a of 
A21A^r 

From equation

an r by 1 matrix, X2 la an n - r by one

one. Multiplying equation (2.2.14)

Henoe, If

Suppose the equations are consistent. Equation (2.2.17)

satisfies the first r of the equations. If the equations are

-1
a22 ’ a21a11a12

AllXl * A12X2 " Xle 
have the solution 

X, . - A^A12X2

The elements of Xg are arbitrarily

which uniquely determines the r elements of X^. 

the rank of the augmented matrix Is the same as the rank of

A21A11A12"
- a21a11y1 -0

n fy1

Y2 ** A21A11Y1

Now the rank of J la the same as [av y],

[a,^ . p11 a12

A22 * A21A11A12

A21A11A12 * °*  Consider Yg

^2 ’ a21a11Y1 
qlnce the coefficient matrix Is of rank r, Agg " 

and, since the augmented matrix Is of rank r, Yg
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Therefore,
(2.2.20) X2 - AalAiJx1

Then ualng (2«2.17)

Y2 - ^21-11^

Agi^ +

-lv

* a22x2

- 0

Hence, [a yJ has rank r.

2.3, Bilinear and quadratic forme. A polynomial in the

m 4 n variableo , ..., , ... yn is called a bilinear

form If each of its tertr.d is of the first 
. 1 and also of ths first -’ejree in the y’e.

(2.3.1) A(x,y) - 'L^_ xy .
1.1 >1^J 1 J

1 Dickson, p. 51

In matrix notation

degree in the x’s

In compact notation

or more precisely

(2.3,2) A (x, y) * |~x^ 5.1 5.2 ••• 5n yx

51 5s * * * 5n y2
• ••••••e»ee*eeee* • e

_% 1 %2 * * ’ 5n
.4

(2.3.3) A(x,y) . XAY,

in which X le an one by m matrix and Y la an n by one matrix.

If m ■ n and , then (2.3.1) la a symmetric bilinear



1 
fora. If the sets of variables are Identical such that X  * *

2
Y, then the bilinear fora becomes a quadratic form.

2.4. congruence of matrices. Any two n-rowed matrices 

A and B are congruent If there exists a non-singular n-row ad 

square matrix P such that A • PRP.*

Theorem 2.4.1.  Every real square symmetric matrix A 

of order n and of rank r is ocngruent to a diagonal matrix 

whose diagonal elements are either 1, -1, or 0. The number 

of Is plus the number of -l’s equals r.

Proof. If r • 0, the tueorem is true. We assume r>0.

If aix - 0, then some X 0, We consider first the

elements of the first row and first column. If / 0 and

2axj + ajj / 0, we add tne j-th row of A to the first row and 

the J-th column of A to the first column. The result Is a ma

trix B congruent to A with bjX X 0. If X 0, but 2aXj ♦

a • 0, we multiply the flrat row and column of A by -1. Then 
e> J

if the j-th row is added to the first row and the j-th column 

la ad led to the first column, we obtain a matrix 0 congruent to 

A with bxx X 0.

If every element of the flrat row and first column Is 

zero then there Is some X 0. By interchanging the first 

row and 1-th row and the first column and 1-th column, we ar-

1 Dickson, p. 64,
2 Frazer, Duncan, and dollar, p, 28.
3 Dickson, p, 65.
4 Saunders MacLane, Notes on Higher Algebra (Ann Arbor 1939), 
P. 153.
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We then

k-th row

rive at a matrix C congruent to A with aome o 

proceed aa before to obtain a matrix B with b^^ / 0.

If we add times the f irst row to the

of B and similarly for the columns, we redude all elements 

oxoept of*  the first row and first column to 0.

Consider b^. If b«o * 0, we operate on 8 in a manner 22 22
analogous to the operations described on A to obtain a matrix 

whose second principal diagonal element is not zero. These 

operations leave b^ unchanged. Then we have a matrix whose 

first two diagonal elements are not zero, but all other ele

ments in the first and second rows and columns are zero. Con

tinuing this process until a diagonal form is obtained, we have 

a matrix E of rank r. Hence its first r diagonal elements are 

not zero, but the remaining diagonal elements are zero.

Next we multiply E on the right and on the left by a 

diagonal matrix D whose first r diagonal elements are determin
ed as follows: If e^ is positive, then • Ve^. If 

i
la negative, then * V-e^. The remaining n - r diagonal 

elemnta of D are one.

The resulting matrix Is the desired diagonal form.

Corollary 2.4.1. Every square complex symmetric matrix

A of order n and of rank r is congruent to a diagonal matrix 

whose first r diagonal el@nents are one and the remaining ele

ments are zero.

If p la the number of ones in the diagonal form of The
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orem 2.4.1 and r la its rank, then the number 2p • r • a Is 

called the signature of A. An n by n aymmetrio matrix A la 

oailed positive definite If r ■ s - n, negative definite if 
r * -a • n. It is seml-deflnlte if r • a or r • -s.^

1 kacDuffee, The Theory of Matrices, p. 57.
2 Bdcher, p. 901
3 Dickson, p. 65.

If we have several seta of variables (x^, Xg,

(yi, y2, ...) andfsj, zg, ...) and agree that whenever one 

of these sets is subjected to a transformation every other 

set shall be subjected to the same transformation, then we
2

say that we have sets of oogredlont variables. Such a trans

formation la a cogredlent transformation.

Theorem 2.4.2.  Two symmetric bilinear forms are equiv

alent under non-singular cogredlent tranaformatlons if and only 

if their matrices are congruent.^

Proof, Consider the cogredlent transformation
n

(2.4.1) x . EbtjXj 

n 
y - j-i J J

with non-singular matrix B • (bjj).

(1 * 1, 2, ...t

(1 • 1, 2, ...,

n),

n).

we may write the summetric bilinear fora 
n

(2.4.2) A(x,y) • El aijXiZj
1, j*l

as

(2.4.3) A(x,y) • Le-y., o • IZa xt (j • 1, ...,n).
J-l J J J 1-1 1
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The matrix of the linear forma oj, eg*  .cn la the trans

pose A’ of A. Since A Is symmetric, A*  • A. Applying Theorem
B2.2.1, the transformation (2.4.1) withAmatrlx replaces oj, cgj 

..., cn by a set of linear funetlona whose coefficient matrix 

la A*B.  Hence this transformation replaces the bilinear fora 

A(x,y) with a bilinear form with the matrix (A‘B)'. By The- 

rem 1.2.3, (A’B)' • B'A.

Let

(2.4.A) b’a - D.

Then we have the bilinear form
n

(2.4.5) D(x,y) . 27 ^ijxiyj
1, J*  1 

which may be written
n n

(2.4.6) D(x,y) - 27x11^, li - £Zdljyi (1 - 1» •••» n).
1-1 j-1 J

By Theorem 2.2.1, the linear transformation (2,4.1) with ma

trix B replaces li with a linear form with matrix DB. Hence 

the oogredlent transformation defined by equations (2.4,1) 

replaces a symmetric bilinear form with matrix A with a symmet

ric bilinear form with matrix Aq ■ B’AB.

By Theorem 1.7.2, Aq and A have the same rank., hence 

are equivalent. From the definitions it follows that if the 

two matrices Aq and A are congruent, they are equivalent.

From the definition of a quadratic form it follows that 

Theorem 2.4.3. two quadratic forms are equivalent un

der a non-slngular transformation If and only if their matrices 
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are congruent.

Corollary 2.4.3, two eymmetrlo bilinear forma with 

matrices A and are equivalent under oogredlent transfor

mation If and only If the quadratic froms with matrices A 

and are equivalent.
p

2.5. M-affine congruence. Consider the quadratic 

form
n'

(2.5.1) F ■ EL ai «j,x <
l,j.l / 

whose matrix Is A - (aij). If the x’s are subjected to the 

transformation

xi • xi (1 • 1, 2, ..., m),
n

xi - ELbijX j (1 - m * 1, ..., n)

with matrix

(2.5.2) T - 1 ...................0 0 ............. ... 0
• •
• •
0................ 1 0 .............. ... 0

bai+1,1 ... bm*l,m b[a*l,mi-l
•

... bm+l,n

• •
bnl ... bntn

e
bn,m*l ••• bnn

Then

(2.5.3) T’AT • A

la the matrix of the transformed quadratic form.

Two matrices A and B are said to be m-affine congruent 

if and only if there exists a non-alngular matrix T of the

1 Dickson, p. 65.
2 R. s. Burlngton, "On the Equivalence of quadrics In m-afflne 
n-space and Its relation to the equivalence of 2m-pole net
works”, iranaMlleni at His AMrlcsQ soslsty, 1935, 
XXXVIII, pp. 163-176.
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form (2.5*2)  auoh that A • T*BT.

If we have a system of polynomials In the set of vari

ables (x^, Xgt ..«) and a set of transformations of these var

iables, then any function of the coefficients la called an In

variant (or absolute invariant) with regard to these transfor

mations If It Is unchanged when the polynomials are subjected 
1 

to the transformation of the set.

A rational function of the coefficients of a form or 

system of forms which, when these forms are subjected to any 

non-alngular linear transformation, la merely multiplied by 

the j-th power of the determinant of the transformation Is
2 

called a relative Invariant of weight J of the form or system.

If Ariee#re la A with the ri, ..., rB rows and columns 

deleted, the r^’s being all distinct and such that r^ • m for 

all 1, then

(2.5•) Ar_••«p • Tp.•••p Ap3•••p Tp_•.•p ♦rl ra rl rs rl rs rl re
Thus A-,...« Is an Invariant matrix of A under T rl rs
that Ap_...r can be formed either by transforming 1 s
deleting the rows and columns, or by deleting the 

In the sense

and then

rows and

columns of A and T and then transforming.

Let the ranks of Ar^...pa be denoted by ^.^...p^.

Theorem 2.5.1.  The •»  y^'l er8 ar° lnte5er** **
Invariants of A, A^, ..., Ar^...p8, respectively and hence of

1 BSoher, p. 89
2 Ibid., p. 96. 
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matrix A.

Prcrof. This follows from Theorems 2.1.2 and 2.4.J, 

equation (2.5.4) and the definition of m-affine congruence.

By taking determinants of equation (2.5.4), it follows 

that
— 1 2

(2.5.5) d(Arle..ru) - (d(T ri. ..ra)) d(Ari,e.ra).

Then

Theorem 2.5.2.  The d(A), d(Ai) d(Ar^,ierg) are 

relative invariants of A under T.

We denote by
ai...et 

Ari.. ,rt
the submatrix of A obtained from A by striking out the rows 

numbered rj, rj, ..., r^ and all the columns numbered s p s j, 

..., st*  It follows from the definitions that, for r^ - m, 

ai • m, (1 • 1, 2, ..., t).

Theorem 2.5.3.

(2.5.6) ri...rt  Tri...rt ri.. .r^ si... stA * A

is an invariant matrix, and d(Arie#er“) is a relative invar

iant of A under T.

Since d(Triweirt) - d(T81weeat) - d(T), for r1 « m,

a 1 • m, (1 • 1, 2, ♦.., t),

Theorem 2.5.4.  If Hi and Hg are any two of the above 

relative Invariants, then

(2.5.7) Il,2-Rl/R2

Is an absolute invariant of A under T.
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2.6. a real  

order n la said to be an ^-matrix 

for eaoh J ■ 1, 2, ...» n.

square matrix B • (bij) °f 

if and only If ZZblj*  2bJJ»

1 R. 3. Burlngton, nR-Matrloes and Equivalent Networks", 
.isuraal a£ MaliiSMltlsji ^xal2J» 1937, xvi, pp. 85- 
102.

If (x) - (X]^, x2, xn) la an one by n matrix, then

so is (x)B, where B 1b an n by n matrix. Let ^1 an opera

tor such that

71t>ij - 1 *

Tibjj • bjj.

Letting xx •*  71 and (x) •(y), the statement (^)B ■ 0 will be used 

to mean that eaoh element of thia one by n matrix la greater 

than or equal 0.

Theorem 2.6.1. A necessary and sufficient condition 

that a real matrix B be an R-matrlx la (y)B ■ 0,

Proof. Prom the definition, we see that If B is an R- 

matrlx then (^)B • 0.

Eaoh element of (^)B la less than or equal to eaoh ele

ment of (bji - b2i - ... - bni, ..., -b^- b2k - ... ♦ bkJc

- t>k*l,k  - ••• - bnk. ...» - bln - *bnn). Then if (r)9 
0

(2.6.1) 0 -

1-1

or
n

bjj *

1-1
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Adding b 1. to both aides
*1,) n

Sbjji ZZbij,
1.1

which is the definition of an R-matrlx.

Consider the set of all possible distinct one by n

matrices (xq) • (xql> xq2, Xqn), in which the xql are 

one or minus one, i • 1, 2, ..n. There are 2° such ma

trices, (xj), (xa)» ...»

Let Xq ■ (Xq)A, (q - 1, 2, ..., 2n), be the set of

functions generated from the real matrix A and the matrices 
(k)(xq). Denote by (x q ) * (xql, xq>k.lf 1, xqfk>1, ...» 

n**  1
Xqn)> •••» n)• i.e.» xqk . 1. 31nce there are 2
such matrices, q • 1, 2, ,2tl*’1, Then let • (x^)a, 

(k . 1, 2, .... n).
(k) nThe k-th element of each X' is ZZx^.a,,, and

n q 1.1 ql
» (k • 1, 2, •. •, n! q • 1, 2,

..., 2n"1).

Since all possible signa will be assigned to aik in (2.6.2), 

equality will hold once for each k. Then if 

(2.6.3) x a,. ■ 0
1.1 ql lk 

for all q and k, (JOA • 0. Therefore, it follow a from The

orem (2.6.1) that

Theorem 2.6.2. A necessary and sufficient condition

that A • T’BT, T non-singular, be an R-matrix is
n n-1

xqiaik " (^■•^» 2, ..., nj q « 1, 2, •••, 2 )
. 1 “ o

Let > be an n apace consisting of the totality of real

(2.6.2)
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points (t ip .t np ...» t tnr^, that is, the space

of the matrix T of Theorem 2.6.2. In general, from the nature 

of the product T*BT,  each member of Xqls a quadric In 2n var

iables Imbedded In "T1.

Let »
a”"1).

- ■ ( ) *. -1 1 » *The various aurfaoea y * 0, q * 1, •••, 2 » k fix*
ed, divide 7 Into regions and where TT*̂  contains 

all points of "7 such that 0, q ■ 1, 2, ..., 2n , and

(k) contains all other points of 7 not in

Let T7 denote that portion of V composed of all points 
common to -tT^\ -i^^X •••» 'T^n\ ar*d  no other points. Delete 

from 17" all points for which T is singular. Denote this region 

by W. Then

Theorem 2.6.3.  A necessary and sufficient condition 

that the matrix. A  T’BT be an R-matrlx, where B La real and 

T la real and non-alngular, la that the elements of T belong 

to the region w In T-.

*

If we restrict the space '4 to be an n by n-m space, 

then Theorem 2.6.3 holds for m-afflne congruence as well as 

congruence.

From Theorem 2.4.1, we know that any real square sym

metric positive semi-definite matrix B of order n and rank r 

la congruent to a diagonal matrix whose diagonal consists of 

r ones In the first r places and n - r zeros in the remaining 

22—xqiaik*  (k - 1, 2, ..., n? q -



places. Let J be such a diagonal matrix. Evidently J la an

R-matrlx. Consider the matrix A congruent to J, A • 

where

1 0 0 ... 0

0 1 0 ... 0

0 ... 0 0 1

In other words, Tg la a unit matrix which haa been altered ao 

that the element In the (r,r) position la t. Then A Is a dia

gonal matrix whose diagonal consists of ones In the first r - 1 
2positions, t In the r-th position and the remainder of the 

positions occupied by zeros. Obviously A Is an R-matrlx for 

all real values of t. If J • then A ■ TgTjBT^Tg*

Hence there la a region W containing an infinite number of 

points for which A Is an R-matrlx.

Theorem 2.6.4.  If B Is a real square symmetric matrix, 

there exists an infinite number of points In 'Z for which A ■ 

T’BT la an R-matrlx, B need not be an R-matrlx.

If 'Sy Is the region of tor which * T’BjT, and w2 

is the region of 7 for which A2 • T’BgT, where Aj and Ag are 

R-matrlcea, then If ^2.2 Intersection of and Wg, we 

have

Theorem 2.6.5.  If and Bg are real square symmetric
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positive aeml-definlte matrices, there exists a region w12 ln 

^for which Aj • T’BiT, A2 • T’Bg7 are ^o^h R-matrlces, The 

region contains infinitely many points.

In a similar manner Theorem 2.6.4 can be extended to 

any finite number of matrices.

2.7. fiQl ILa S^SESSlSElfilla 2g34&lls>n« The 

matrix A - Al - f(A) is called the aiiamMilgUa. M1HX of A; 

it may be obtained by subtracting A from each element in the 
principal diagonal of A.^ The determinant d(A - Al) is the 

snamlarlfllls. laimlaaul of A and is a polynomial of degree 

n.
(2.7.1) d(f(X)) - an^ ♦ ♦ ... ♦ ajX ♦ a0, an • (-l)n

The equation d(f(A)) - 0 Is called the eaUAllan  

of A. The roots of the characteristic equation of A are the 

sQiarssJiSElilJLsi raali*  lalsol £2ala or slsan-xalMea of a.

Theorem 2.7.1. (Hamilton-Cayley) Any square matrix sat

isfies its characteristic equation.

Proof, Let (2.7.1) be the characteristic determinant 

of A. since the elements of A - Al are linear functions of X , 

and the elements of its adjoint C are (n - l)-rowed determin

ants, they are polynomials in X of degree less than or equal 

to n - 1. If the element In the 1-th row and j-th column of 
n-l k

Cis ZZ ci jkX , then 

1 Dickson, p. 65
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Tl**  1 j-

C • ) • ^cljk^ 2, •••» n)»

Theorem 1.6.1, we have

(A - Al)c • d(f (X))I.

Equating like coefficients in equation (2.7.4)» we get

ACq • agl, 

AC i * Cq ■ at I, 

ag2 ” C1 * a2I»

(2.7.2)

From

(2.7.3)

Therefore,

(2.7.4)

ACn-l - -n-2 • an-l1*
• 0n.]_ * agl.

2 Multiplying these equations on the left by I, A, A , 
..., An"^, An respectively and adding, the result is

0 * agl ♦ a-^A ♦ agA2 ♦ ... ♦ a-n^iA0*1 ♦ anAn • d(f(A)).

Suppose the elements of a matrix A are functions of a 

variable, aay t. Then if t receives an increment At, the ele

ments of A receive a corresponding increment. The matrix of 

increments assigned to the elements of A may be denoted by &iu 

Then
dA • * Lira 4^.^
dt ^t->0 at

Theorem 2.7.2.  If Aa is a simple root of the character

istic equation of the n by n matrix f(A), then f(Z^) la of

1 Frazer, Duncan, and collar, p. 43
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1 

rank n - 1.

Proof. Let d(f(X)) • r)(A). D(Xe) • 0; therefore, by 

definition fCXg) has rank leas than n. If Xg la a simple root 
of D(A), then D^^Ag) A 0, where la the first deriv

ative of D(A) with respect to A evaluated at A • Since 
D^\a) la » linear homogeneous function of the first minors 

of f(A), it then follows that fCAg) has at least one n - 1 by 

n - 1 minor whose determinant Is not zero. Hence f(Xe) Is of 

rank n - 1.

Theorem 2.7.3.  If FGX) 1b the adjoint of f(A), and 

f(Ae) la of rank n - 1, then 7(Xa) Is of rank one and 

y(Ag) ■ kehg, 

where the elements of the n by one matrix ka and one by n 
. 2matrix he are appropriate to the root Aa.

Proof. f(Aa) la of rank n « Ij therefore, F(Xa) can

not be a null matrix, From Theorem 1.6.1, f(X3)F(Aa) ■ DCXg)! 

Since f(Ag) is of rank n - 1, this leads to f(Xa)F(Aa) • 0. 

The p-th column of this product can be written as

(2.7.5) f(Aa)

Applying Corollary 2.2.2 and equation (2.2.13’) to equation

(2.7.5) , we can arrive at an expression of every other row

Flp
* 05>p

Fnp

1 Frazer, Duncan, and Collar, p. 61
2 Ibid., p. 61.
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of ^(Xg) as a multiple of some given row of FfAg). Henoe F(Ae) 

must be of rank 1.

Now if we let hs be any row of F(Aa), we have shown 

that we oan express any other row of F(>g) aa a multiple of 

he. Henoe 

(2e7e6) F(Ag) ■ kghge

Theorem 2.7.4.  If the latent roots of an n by n matrix 

A are all distinct, then
-1 A•KAK ,

where K la a matrix whose a-th column is ke and /\ is a dia

gonal matrix whose J-th diagonal element is

Proof. Consider the linear transformation Y ■ AX which 

is to be satisfied by X ■ Ax, where Alaa scalar factor of 

proportionality. This then leads to

(2.7.7) (Al - A)X . f(A)X - 0.

Henoe the roots X are the characteristic roots of A.

^e have seen that

(2.7.8) f(A6)F(Xa) - F(Xg)f(Xa) • 0.

Then from the preoedlng theorem,

(2.7.9) f(Aa)k8he - kBhaf(^) - 0.

If Ae Is a simple root, F(Xa) is of rank one, and at least 

one of the elements of hs is not zero. Then (2,7.9) requires 

that

1 Frazer, Duncan, and collar, p. 66
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(2.7.10) - 0.

Comparing (2.7.10) and (2.7.7), X(Xa) can bo taken propor

tional to any non-xero column of F(X®). Now when all of the 

oharaoterlatlo roote of A are distinct, there Is a column ka 

corresponding to each root. The columns are known ae modal

Then

(2.7.11) Ak]^ • A^kj, Akg ■ A^kg  •••» Akn * *

Thle la equivalent to

(2.7.12) AK . K/X,

where K is a matrix whose j-th column is the J-th modal col

umn, and A la the diagonal matrix whose J-th diagonal element 

la Aj« K is called the modal matrix of A.

Suppose K la singular of rank r. Then at least one 

column, say the j-th, of K is expressible aa a linear combi

nation of r others. Then

(2.7.13) 0]ki ♦ C2k2 ♦ ...  Cykr • kj.*

Substituting thia value for kj in the J-th equation of (2.7.11) 

leads to

(2.7.14) CjAki ♦ 2AiE2 ♦ ••• ♦ cPAkr ■ cjAyi ♦ ♦ crXjkr,G

and, since Ak^ ( 1 « 1, 2, n),

(2.7.15) i^iki ♦ OgAgkg ♦ ♦ CpXpkp •G

CiXjkL ♦ ... t CpXjkr.

Hence Xi • Xj, (1 ■ 1, 2, ..., r), which contradicts Xj being 

distinct. Therefore, K is non-slngular.
It then follows from (2.7.12) that A • kAk’\



PART II

MATRICES AND ELECTRIC NETWORKS

CHAPTER III

NETWORK DIFFERENTIAL EQUATIONS

AND

EQUIVALENT NETWORKS

3.1. Definitions an.i basic laws. In order to present 

ideas concisely, it is often advisable to use words which 

have a particular meaning when applied to the topic under 

consideration. Network topology and network analysis make 

use of many such terms, we will not attempt to define a full 
"network" vocabulary^, however. It is felt that certain terms 

should ba explained.

A branch Is one or several passive elements such as 

inductance, L, resistance, R, and elastance, D, connected in 

series between two terminals. Sometimes branch is used more 

generally to denote any system of elements, active or passive, 

connected to the remainder of the network by way of two ter

minals. The word node la used to denote a terminal. A mesh 

is a closed contour arbitrarily drawn on a network diagram. 

Node pair means two nodes arbitrarily chosen from one network.

1 For a more complete set of definitions see "standards on 
Circuits: Definition of Terms in Network Topology, 1950". 
Proceedings of the Institute of Radio Engineers, ^XXIX, 27- 
29; also, Ernst A CuillamlnT Com^unicatron""Networks(New 
York, 1955), Vol. I, Chapt. Iv;



Two s which are usually given as axioms in 

network analysis are Kirchhoff’s laws. Kirchhoff’s first law 

states that at any point in a circuit there is as much current 

flowing away from the point as there is current flowing into 

it, or the algebraic sum. of the currents at any one point in 

a circuit is zero. The second law of Kirchhoff states that 

the sum of the products of the current by the resistance tak

en around any closei path in a network of conductors is equal 
to the sum of the electromotive forces^ which one passes in 

going aroun’ the closed circuit. The latter of these two laws 

Is usually generalized by changing the word resistance to im

pedance. Instead of using these two laws as axioms, we will 

postulate the existence of circuital currents and the follow

ing equation and develop Kirchhoff’s laws.
rt 2

(?.1.1) Kk + Vk - V_k » Xkdl -I*  RkI * I dt, (k - 1, .8), 
~ dt V

where V, is the force of constraint associated with the source k
node for the currant I,., V 1r is the force of constraint asso- 

elated with the sink node for I. , E. is the external e.r.f.*—K —"K
acting in tho k-th branch and B is the number of branches of 

the network. L^, R, , and are one by B matrices whose k-th 

elements are the total Inductance, resistance and elastance 

in the k-th branch respectively anl whose J-th elements are

1 Electromotive force will be abbreviated hereafter by e.m.f.
2 H. Ingram and d. t'. Cramlet, "Toundatlons of Electrical 
Network Theory", Journal of Mathematics and rhysics, u, I. ?., 
1944, XXIII, p. 141.
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the induotanoe, reel stance and elastance due to coupling, sym

metric or non-symmetric, between the k-th and the J-th branches 

of the network. I is a B by one matrix consisting of the cur

rents in the B different branches.

To facilitate matrix analysis of networks we will make 

use of two relationships which have been developed from topo- 
1

logical considerations. The first of these states that the 

number of Independent node pairs in a network, and the number 

of Independent node equations obtainable by application of 

Kirchhoff’s first'law to a network, is N - S, where N is the 

number of nodes and s is the number of subnetworks in the net

work. The second relationship is M ■ B - N * s, where M is 

the number of independent meshes and B is the number of branch

es in the network. The latter relationship apparently orig
inated with Kirchhoff.1 2

1 Ingram and Cramlet, pp. 135-140.
2 G. Kirchhoff, 'liber die Auflosung der Gleichungen, auf 
welche man bei der Unterauchung der llnearen Verthellung 
galvanisher Stroma gefuhrt wlrd.H. Annalen der Phvslk und 
Chemle. von J. c. Poggendorff, 184?, LXXII, Series 2, p. 497.

3.2. jzexelMMaiil st tiis agjau aid jaali sauaUsus. 
Consider a network consisting of B branches, N nodes and s 

separable parts. In the present discussion the values of e.- 

m.f. and current will refer to instantaneous values. Instan

taneous values are used in order to be able to refer to posi

tive and negative voltages and directed currents. Since we
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will assume that all of the generators in our network, are of 

the same frequency, this iocs not detract from the generality 

of the results. Associated with each branch k of the network 

are a set of active or passive elements. a directed current I,—k
and a generated c.n.f. S, ,—k 7,’hen a particular branch contains

no external generator then its e.m.f. K • 0. According to The -•k
venin’s Theorem, a linear generator can be represented by a d.c

or a.c. source of constant aiiiplltude, E , and no Internal re

sistance in series with a resistance R « where isg o' o ’ o
the short circuit current of the generator and eq is its open 

circuit e.m.f. Using this theorem will be the d.c. or a.c. 

source associated with the branch k and the R will be includ- 
g

ed in the component of the passive elements of the branch.

Figure 1. A network 

diagram with B ■ 6, N 

■4. The meshes are 

indicated, 
f the meshes, since

the value of the current in the branch k is 1.^ must be 

the algebraic sum of all the mesh currents flowing through 

From the network diagram we 

may select wi independent meshes, 

.71th each such mesh there is asso

ciated a circuital current. The 

direction in which these currents cir

culate may be arbitrarily chosen; 

however, it is customary to assume 

a clockwise direction of flow. The 

branch k mav be common to one or more 

branch k. Expressing this statement in matrix form we have
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(3.2.1) I -
whsre I is a B by one matrix consisting of B branch currents, 

P la a B by M matrix whose elements are C, 1, or -1, and I Is 

a M by one matrix male up of the V mesh currents. The element

of P In the (j,k)-th position is 0 if the branch j is not in

mesh k, 1 if I, is directed in the same direction as and-j x.
-1. if i-8 directed In the opposite direction to Ik.

The incidence matrix, of a network diagram, and for

any directed quantities associated one-to-one with the branch

es of the diagram, is an N by B matrix in which the element in 

the l-th row and k-th column is 1 If the k-th directed quanti

ty leaves the J-th node, -1 if the k-th quantity enters the 
J-th node and zero if the k-th quantity avoids the J-th node.^

Theorem 3.2.1.  The ,\T by jZ matrix Q? Is one all of 

whose elements are zero.

Proof. Ry definition of Q, Q_I Is a N by one matrix 

each of whose elements Is the algebraic sum of the branch cur

rents leaving the noie corresponding to the position of the 

element in the column of QI. Then it follows from equation

(7.2,1) that QPI Is a N by one matrix each of whose elements 

Is the algebraic sum of the circuital currents leaving the 

node in question. Therefore, ;.P 13 an Incidence matrix for 

the mesh currents. Now the Incidence of any mash.current at

1 Ingram and Cramlet, p. 138.
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a node la zero if the mesh avoids the node. If the mdah does 

not avoid the node, the current both enters and leaves the 

node, and the incidence Is zero. Hence each element of QP Is 

zero.

Theorem 3.2.2.  The existence of circuital currents 

implies Kirchhoff’s first law.

Proof. Since QP * 0, from equation (3.2.1), it follows 

that

(3.2.2) QI', o.

But from the definition of Q and J, the >th element of the 

product Qj la the algebraic sum of the currents leaving the 

J-th node of our network. Kirchhoff’s first law then follows 

from equation (3.2.2).

The preceding theorem Is the converse of Theorem 4 of
T 1 Ingram.

Theorem 3.2.3.  If V is the N by one matrix whose ele

ments are the forces of constraint associated with the nodes 

of the network, then Q’V Is a B by one matrix whose j-th ele

ment Is the algebraic sum of the forces of constraint on the 

current in the j-th branch of the network.

Proof. Q Is an A; by B matrix whose J-th column consists 

of one 1, one -1, and zeros. The 1 is in the k-th row of Q, 

which means that the k-th node of the network is the source

1 Ingram and qramlet, p. 137
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node of in 't,h9 row of Q, showing that the

m-th mode of the network Is the sink node for 3.^. Then the 

result of multiplying the J-th row of Q*  by the matrix V would 

be an element consisting of the net forces of constraint on 

the j-th branch of the network.

Now we can write equation (3.1.1) as

(3.2.3) 2 + 3.V  - Idl  RI ♦ Sjiat,* *
dt »

where K and J are 3 by one matrices whose elements are the 

branch e.m.f.’s and branch currents respectively, and L, 

and D are square matrices whose k-th rows are and

from (3.1.1). gince P’).*  * (QP)*  is a matrix of zeros, If 

we multiply (3.2.3) on the left by P*  the resulting equation 

is

(3.2.4) P'v „ P'Ldl  P’M  P'j<jldt,* *
dt <

which is free of the forces of constraint. Equation (3.2,4) 

expresses mathematically

Theorem 3.2.4. (Kirchhoff’a second law) The algebraic 

sum of the counter e.m.f.’s around a closed circuit in a net

work of conductors is equal to th® algebraic sum of the. im

pressed electromotive forces which one passes in going around 

the closed circuit.

Proof. From the definition of P, the product of the 

j-th row of P’ and E will be the sum of the generated e.m.f.’s 

In the j-th mesh. Ml that remains to ba shown Is that the 

right side of (3.2.4) is the sum of the counter e.m.f.’s around 
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the various meshes.

Substituting the expression for I from equation (3.2.1) 

Into (3.2.4), we have
(5.2.5)  P’22I ♦ P’i)pfldt.*

dt V
Consider the three quadratic forms 

F - l’ni/2,

(5.2.6) T - I’U/2

V - i’l)2/2, with • I, 
dt 

which reprehalf the total instantaneous power loss, the 

total Instantaneous magnetic energy, and total Instantaneous 

electrostatic energy in the network. We have seen in the 

proof of Theorem 2,4.2 that a transformation such as (5.2.1) 

will replace 2 in the above quadratic forms by P’£P, I*  by 

P’LP, and £ by P’JCP. Hence the matrices P’^P ■ R, P’j-P ■ L, 

and P’JDP a D must have the same relationship to the mesh cur

rents as the matrices 2> a^d 2 have to the branch currents. 

Then R, L, and h will be M by M matrices whose (J,k)-th ele

ments are the total resistance, inductance, and elastance re

spectively of mesh j If j ■ k, and the resistance, Inductance, 

and elastance due to coupling between mesh J and k If J X k. 

Therefore, the ^-th row of the matrix on the right side of 

equation (5.2.4) or (3.2.5) is the sum of the counter e.m.f.’a 

in mesh j.

The equation (3.2.5) is the same equation that Kirchhoff 
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expressed In 1347 without the use of matrices.

In the second method of metric analysis of the elec

trical network to be presented, the role of the e.m.f and 

current will be interchanged. According to Norton’s Theorem 

a linear generator can be represented by a source of constant 

direct or alternating current Io and no Internal conductance 
/ 2In parallel with a conductance 1 ■ I /E_. Representing all 8 o o

of the generators in this manner, we will assume the generated 

current, the capacitance, conductance and the reciprocal in

ductance of the branch to be known with the e.m.f, of the node 
5 pairs associated with the network to be determined.

As stated in Section 3.1, there are N « S independent 

node pairs. The e.m.f,’a associated with the remaining node 

pairs can be written as combinations of sums and differences 

of the e.m.f,’s associated with the N - 3 independent node 

pairs. The resulting matrix equation is

(3.2.7) - UE»*

where and E» are matrices whose elements are the B node 

pair e.m.f.’s and the N - S independent node pair e.m.f.’a 

respectively, and UisaBbyN-5 matrix whose elements are 

0, 1, or -1. The element in the J-th row and k-th column of

1 3. Kirchhoff, p. 500.
2 P. Le Corbelller, Matrix Analysis of Electric Networks 
(New York, 1950), p. 63.
3 This method of analysis exemplifies, In part, the principle 
of duality. For a complete explanation of this principle see 
Ernst A. Oulllemin, Vol. II, pp. 246-252.
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U Is 0 if the k-th element of E*  13 not a member of the Inde.

pendent e.m.f.’a whose combination Is the j-th element of £*,  

1 If the k-th element of E# has a plus sign affixed to it In 

the combination which is equal to and -1 if the sign of

Eg is minus in the combination

The circuital matrix, W, of a network and for any di

rected quantities associated one to one with the branches of 

the network diagram is a matrix such that the element in tn© 

j-th row and k-th column is 1 if the k-th quantity is directed 

in the same direction as the j-th circuit, -1 if the k-th quan

tity is directed In. a direction opposite to the direction of 

the j-th circuit, and zero if the k-th quantity is not in the 

j-th circuit.

Theorem 3.2.5.  The M by N - s matrix WU is a matrix 

-all of whose elements are zeros.

Proof. v:e will adopt the convention that an e.m.f.- is 

a quantity which is directed from positive to negative.

From the definition of it follows that is an M 

by one matrix each of whose elements 13 the sum of the e.m.f.’s 

around a closed circuit. Then from equation (3.2.7), it fol

lows that WUE*  la an M by one matrix each of whose elements 

la the sum of the independent e.m.f.'a around a closed cir

cuit. Then n.;U la a circuital matrix for the independent node 

pair e.m.f.’a. 3y Theorem 3.2.4, or Kirchhoff’s second law, 

the algebraic sum of the node pair e.m.f.’s around each cir-
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oult la zero. Henoe,

(3.2.8) WUE  - 0.*

W and U are determined by the manner In which the network Is 

connected, while is determined by the circuit elements. 

Then by altering the circuit elements we may assign arbitrary 

values to E*  without altering W and U. Hence, V/U • 0.

Consider the node pair equation
(3.2.9) ♦ nk ii»dt - it ♦ ■

dt "e
where g.k, and are one by B matrices whose k-th elements 

are the total capacitance, conductance, and reciprocal induct

ance in the k-th node pair and whose J-th elements are the 

capacitance, conductance, and reciprocal inductance respective

ly due to coupling, symmetric or non-symmetric, between the 

k-th and J-th node pairs, p la a B by one matrix whose k-th 

element is the k-th node pair e.m.f., is the current gener

ated by the generator in the k-th node pair and la the in

cident current due to the k-th node pair.

Theorem 3.2.6.  If I is a columnar matrix whose elements 

are the mesh currents of the given network with each node pair 

replaced by a single branch, then W1I is a B by one matrix 

whose k-th element is the Incident current associated with 

the k-th branch.

Proof. The element of W in the J-th row and k-th col

umn is 0 If is not in the J-th mesh, 1 If is polarized 

so that the J-th mesh current•flows from positive to neg-
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atlve and -1 If the j-th meah current flows from negative 

to positive gg. Comparing thia with the definition of P, 

we see that ?•'".  It then follows from equation (3.2.1) 

that

*

(3.2.10) dl. ^'1,

where is a B by one matrix whose g elements are the incident 

currents associated with the B different node pairs of the net

work.

Then from equation (3.2.10) and (3.2.9)» ^9 have 
/-t

(3.2.11) ^dJ2  ♦ ♦ p/^dt - ♦ w’l,*
dt <

where 2» and C. ar® the capacitance, conductance, and recip

rocal inductance matrices whose k-th rows are 2.^, 2.^, and 0^ 

and I« 1b a 3 by one matrix consisting of the B generated cur

rents. Multiplying (3.2.11) on the l^ft by U’,
(3.2.12) ♦ U25  ♦ U’r/^dt - UI»,  

dt
** *

for U’W*  * (WJ)’ • 0. In general (3.2.12) has more unknowns 

than aquations, but making use of (3.2.7)> 
xt

(3.2.13)  U’-JUS  ♦ U’C-UMdt - U’l.* * *
dt >

Now consider the quadratic forms in terms of the node 

pair e.m.f.’s analogous to equation (3.2.6) 

T - £*'J£V2,

(3.2.14) y . ^ ’2£V2, with »*
dt 

t ■ v*  nv».

which represent half the total Instantaneous power loss, the 

total Instantaneous electrostatic energy, and the total in-
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stantaneoua magnetic energy In the network. Again referring 

to the proof of Theorem 2.4.2, we see that the transformation 

(5.2.7) replaces 2. bY Ux ui 2 by and C by U'C,U. Then 

C • U’^U, 3 • h’’2U, and P  U’£U, where C, 3, and P are the 

matrices of the above quadratic forms for the e.m.f.’s asso

ciated with the indeoendent node pairs. Hence we have

*

*

(5.2.15) ad£  ♦ g-e-   rTeMt • u’i.* * *
dt <

By applying Kirchhoff's first law ^to the network we have

(5.2.16) Cdg  ♦ GE» ♦ r./E«dt - I,* *
Ht -4>

where the J-th element of I*  la the sum of the generated cur

rents Incident on the nodes of the j-th independent node pair. 

Hence

(5.2.1?) U’I*  « I*.

Le Corbelller arrives at the relationship (5.2.17) through the 

consideration of some rather strange manipulations of the node 
. 1 pairs.

5.5. ^£1311122 fil thS at;,.12.5.8 

and the natural modes of the network. Equation (5.2.5) and 

(5.2.15) are differential-integral equations whose solutions 

give us the equations of the currents and e.m.f.'a respective

ly in a given network. The general solution of such a set of 

equations Is the sum of the particular or steady state and 

the complementary or transient solutions. Since each of these 

1 Le Oorbeiller, pp. 68-75
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equations are of the same type, the same method will yield a 

solution of either of them. Consequently, we will solve only 

one of the matrix equations, equation (3.2.5)•

In the steady state solution of the equation the fre

quency, of the impressed voltage is known and equation

(3.2.5) becomes

(3.3.1) - P'^PI, where 7, . U.S  and X- J<4*

(J
Since, in general, there are M independent mesh currents, P'ZP 

1
is non-singular and possesses an Inverse. Then the steady 

state solution of (3.2.5) is
(3.3.2) (P’ZPJ’^’S - I,

or if the branch currents are desired
(3.3.3) P(P,^P)’‘1P,£ • I.

Heretofore we have assumed that .all of the generators 

were of the same frequency. However, the e.m.f.’s generated 

may beMof several different frequencies. Applying the Super- 
2position Theorem , there exists a solution of the form (3.3.2) 

or (3.3.3) for each separate frequency present in the gener

ated e.m.f.*3.

Theorem 3.3.1. If and are the branch Impedance 

and e.m.f. matrices corresponding to the steady state angular 

1 The Impedance matrix may be singular if the frequency of 
one of the impressed e.m.f.’s coincides with a natural fre
quency of the network. This case la handled subsequently.
2 Vllliam Littell Everitt, (New
York, 1937), p. 53.
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frequency <aJq,

(3.3.4) I

In which h is

the steady state solution of (3.2.5) is 
h -1 h

- ZZPtP'ZgP) P’Ls, or I - ZZ(P*̂ gP) P'E , 
3*1  3» 1

1 La Corbeiller, Chap. IV

the number of different frequencies being gen

erated.

Le Corbeiller presents a detailed discussion of the 

various ways of using mixtures of the mesh and node pair meth
ods of analysis of the network.^

An interesting application of equation (J.3.1) arises 

when the matrices of this equation are partitioned in the 

proper manner. Let P'E • P’^P • 7.. Now partition the 

matrices in a conformable manner

(3.3.5)

Then writing this as two matrix equations

(3.3.6) - Zll1! * ZlS1?*

E2 - Z211! * z22I2e

If 2-22 non-singular

(3.3.7) Z22e • * t2»
I y-1. ^1-. ri2 * z22e2 " C22'-'2V1*

Substituting this value for I2 in the first equation of (3.3.6)

E1 * ^ll1! * z12^z22e2 “
or

-1 , -1-I - Z12Z22E2 - Uli - -12Z22Z21)I1»
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From (3.5.8) wo can determine the Impedances and gen

erated e.m.f.’a necessary to design a new network whose cur

rant distribution is the same as 1^. Other useful relation

ships can be derived in a similar manner by partitioning of 

(3.3.1) or its dual in the node pair analysis.

If the frequency of one of the Impressed e.m.f.’s 

coincides with the frequency of a transient solution of the 

network, then from Theorem 2.2.2, we know the impedance matrix 

is singular for that frequency and equation (3.3.3) gives no 

solution for that particular frequency. Instead of equation

(3.2.5) we will consider the equivalent set of equations
(3.3.9) E ■ (Lp^  Rp  d)q, 

dQ/dt - I,

* *

where p ■ d /dt, Q and I are K by one matrices whose elements 

are the charges and currents circulating in the meshes of the 

network. If the network is passive, the meshes can be chosen 

so that the coupling from mesh j to mesh k will be the same 

as the coupling from mesh k to mesh J, and the operational 

matrix
(3.3.10) f(p) » (Lp2  Rp ♦ D)*

will be symmetric. Let (Z) be the frequency for which the mesh 
5

impedance matrix Z is singular. Then assuming Eg • egQxp'- (j^t)

where a is a columnar matrix consisting of the amplitudes of

1 Lyril B.and Georgia B. Peed, Mathematical methods in Elec- 
trio al E«lneerlnZ tKe« York, 1951); p:"8i:'"
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the e.m.f.’s being generated in the various meshes, we may 

substitute ^60,. in (3.3.10) for p.

(3.3.11) f(j6>g) - (Ljy ♦ R ♦ D/jCO)J^g -'J^Zg.

The resulting solution of the first equation of (3.3.9)

(3.3.12)

^(n) where F

adjoint of

" (exP 1) J* tF< ^gt 9g»

1 Frazer, Duncan, and Collar, p. 183

fCir^y)
U^t) . ^dnF( 3k>)/dj«P]ju) e j(A^, and F(j^) is 

ftj^). Then /dt will be the g-th term of

the

the

second equation of (3.3.^). This completes the steady state 

solution of (3.2.5).

The transient solution Is a solution of the system of 

equations
(3.3.13) ftp  ♦ Rp ♦ . 02

dQ/dt - I.

It is customary to assume a constituent of the solution of 

the form Q - z^expAt), where exp Xt is a scalar multiplier 

and K is a column of constants to be determined. Then A la 

substituted in (3.3.13) for p. If solutions of (3.3.13) ex

ist, from Theorem 2,2.2 it follows that

(3.3.14) d(f(A)) - d(LA  ♦ RX  D) - 0.2 *

The roots of this equation are known by various names such 

as bsIuesi anauXsc nMj-iral sjhhIse. xai££lilaa» 

natural modes, etc. Equation (3.3.14) is of degree n • 2^.
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The n roots are denote’ by X^, X^, .From equation 

(2.7.10), we see that the constituent solution corresponding 

to the unrepeated root Xr Is

(3.3.15) Qr - Kr(exp Xrt).

The column Kr may be chosen proportional to any non-vanishing 

column of F(Xr). However, if Xg is a member of s multiple 

roots of (3.7.1^), the constituent solution associated with 

X can be written s
(3.3.15) .;3 - Kg(t)(exp XQt).

The a columns relevant to the complete set of roots equal to

Xa may be chosen proportional to any s linearly Independent
1 columns of the family of matrices

(3.3.17) U0(t,\) - F(Xa),
Ul(t,Aa) . F(1)(>a) * ti^Xg),

U2(t,X8) . F(2)(X&) * 2tF(1)(A8) ♦ t2F(\),

Us-l(t»AB) - ?’(8''1)(X8) * (s-l)tF(9’2)(XQ) * ...

4- t(3’1)F(\).

Then the elements kla(t) of the columnar matrices KQ will be 

polynomials in t of degree a - 1 at most.

The most general transient solution of (3.3.5) 13 a 

linear combination of the constituent solutions

(3.3.18) » c1K1(t)(exp X1t) + c

* cnKn(t^9xp ^n1')’

gK-ot t) (exp Xgt) * ...

1 Frazer, Duncan, and Collar, p. 288
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In which the Cj'b are arbitrary constanta, real or complex.

This solution may be written more concisely as

(3.3.19) - K(t)M(t)c.

In this equation K (t) is an M by n matrix whose j-th column

is Kj(

Si (t) *

exp 0 0 ..... 0

0 exp Agt 0 ......... 0

0 0 exp Xjt ... 0 ,

0 0 0 ............ exp Xnt

while c represents the column of arbitrary constants. Taking

the derivative of (3.3.19) with reepect to time and adding it

to the right side of the second equation of (3.3.^)» we have

1 Frazer, Duncan, and Collar, Chap. V and VI.
2 L. A. Pipes, "Matrix Theory of Oscillatory Networks", 
jlaUEBSl Sixalas. 1939, X, 851.

the general solution of (3.2.5).

Other methods of obtaining the steady state and tran*  

alent solutions of equation (3.2.5) are given in the litera
ture . "*■

Pipes proposes a method for determination of natural

modes which is particularly applicable to networks Involving
2

only inductance and elastance. In this case equation (3.3.13)

becomes

(3.3.20) (Lp  + D)Q . 0,12
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3.21)

Then If both L. ar.•I D

foun^ by ^et ermlnlna;

the given

given net

work

generalized

of the given, network in mesh m

If the network consists of

passive elements the matrix Z is

mesh as a result of the appliedmesh and I is the current in any

^nm*
3.2(r?eciprocity

resnectively. These

d(Z)/d(z^) is the

is the driving point impedance 

If m / n. It is the transfer

Irnpedarce from mesh m to mesh n

The scalar quantity Zffin 

network impedance. If m * n,

posed of passive elements, if an

Theorem), In any network com-

natural mode of the given network can be
-1 -1 the dominant latent root of L D and D L

Therefore, Z  mn
Theorem

are non-singular, determination of the

symmetric, and d(zn) ■ d(zm) 
m n

dominant latent roots can be readily

determined by iterative processes. If Aj is the dominant 
 i p — 1root of L D, W ■ A , and If A is the dominant root of D 
’ll 2

where is the largest natural mode of

network and is the smallest natural mode of the

the e.m.f. and currents are

or assuming a solution of the fonn exp jut 
p

(-Lar ♦ D)Q - 0.

e.m.f. E is applied in any

e.m.f., then if the positions of 

largest and smallest

1 Frazer, Duncan, Collar, pp. 133-14-5; also H. I. Flomenhoft, 
"A method for letermlnlng iiode Shapes and Frequencies Above the 
Fundamental by .atrlx Iteration , Journal of Applied Mechanics, 
1950, X.VII, pp. 2^9-25^
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reversed the transfer impedance remains unchanged.

Theorem 3.3.3(generalized.  Reciprocity Theorem). If a 

set Sj, of e.m.f.’s all acting on the B branches of a passive 

network produce a current distribution and a second set 

of e.m.f.’s Rg produce a second current distribution then

(3.5.22) 2'1 - X’i .
*• a. X d

Proof. From equation (3.3.3)
-1

(3.3.23) P(P’^P) P'E^, • I1 

and
(3.3.24) P(P’ZP)”1P,E - I .

~2 ~2
Since our network is passive Z is symmetric. If Z is a sym
metric matrix then so is P’ZP and (P'aP)"^. Hence, taking 

the transpose of both sides of (3.3.23)
(3.3.25) 1^ - ^(P’ZP)-1?’.

Multiplying (3.3.24) on the left by E*
-1(3.3.26) E’l - E’P(PZP) P’E .

~1~2 ~1. ~2
Using (3.3.25)

(3.3.27) E'l - I’E .-l-2 ~1~2
4. Energy relationships and equivalent networks. Writ- ■■■ww—wwweewiwewweewwwefcXwee «»*■■■*■.  -wnJIUeweeweweeeiwwweweee wweweWweiewwewewWi

ing equations (3.2.6) in terms of the mesh parameters we have 
M

(3.4.1) F - I’P.I - 1/2 ZZ H.. i.i. ,
2 j,k-l j K

I is a columnar matrix whose j-th element is the j-th mesh 

current of the network.
M

(3.4.2) T - I’Ll/2 • 1/2 12
j,k-l J k
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If Q la a columnar matrix whose J~th element la the charge pre

sent In the j-th mesh of the network,

(3.4.3) V - Q’DQ/2 - 1/2 ZZ
j,k«l J K

The matrices R, L an4 D are used here In the same sense as In 

equation (3.3.9).

In the above quadratic forms subject the currents to a 

co^redlert transformation with matrix A. According to Theorem 

2.4.2, t?:e catrices for the new quadratic forma are

A'RA

(3.4.5) ot- A’U

J3 - A’DA.

From equation (3.3.10) we know that the natural modes of the 

new network are given by
(3.4.6) d(-f/\  +/J) « 02

But
ZA" . a'[l 2 ♦ r ♦ d)a.

Since A is non-singular and the determinant of a product of 

matrices la equal to the product of the determinants, (3.4.6) 

is the same as
(3.4.7) d(LX  ♦ rA  D) - 0.2 *

Hence
Theorem 3.4.1.  The natural modes of a network are un

changed by a cogredlent transformation.

or, state'.! differently

Theorem 3.4.1*.  The natural modes of a network are 

absolute invariants under congruence relationship.
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According to a thooram duo to Hermita, Theorem 1.6.3, 

if Q is any non-singular symmetric matrix whatever of order n 

and 3 is a skew matrix of order n such that (Q ♦ s) (Q - 3) 

is non-singular the matrix
R - (Q * S)“1(Q - S)

1 Suillemin, Vol. II, p. 151 

is such that

R’QR « Q.

It follows then that
Theorem 3.4.2.  If A • (L ♦ S)’ (L -S), 8 any skew ma

trix whatever as lonp as (L ♦ s) (L -3) is non-singular, then 

the Inductance, total and due to a coupling, are absolute in

variants under the cogredlent transfer nation whose matrix is 

A.

1

Upon substituting R and D for L the above theorem also 

holds for the resistance and elastance matrices.

The transformations (3.4.3) may lead to negative cir

cuit elements. Such negative circuit elements require the in
troduction of ideal transformers’^ into the network. Networks 

requiring several ideal transformers are of little practical 

use; consequently, transformation which result in negative 

circuit elements are to be avoided. If R, L and D of (3.4.5) 

are R-matrlces no negative circuit elements are present. Then 
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from Theorem 2.6.3# 2.6.4 and 2,6.5 with, the obvious extension 
to three ciroult parameters we have^

Theorem 3.4.3.  If R(L or D) is the matrix associated 

with a network which involves only one type of circuit para

meter and A Is non-singular, then a necessary and sufficient 

condition that R(Lor d) be realizable without one or more 1- 

deal transformers is that A belong to the region

Theorem 3.4.4,  If the matrix of the network Involves 

two (three) types of circuit parameters and A is non-singular.

then a sufficient condition that two(three) types of circuit 

parameters be realizable under a cogredlent transformation

with matrix A without the use of one or more Ideal transformers

la that the elements of A belong t0 W12(W123
If a given network has m terminal pairs which may be 

used as Input or output terminals# it la sometimes desirable 

to keep the generalized network Impedances associated with 

these terminals invariant under the transformation (3.4,5).

Rrom the definition of the generalized network impedance and 

Theorem 2.5.4,

Theorem 3.4.5.  The generalized network impedances 

associated with the m-terminal pairs of the network are ab

solute invariants under a cogredient transformation whose 

1 Richard Stevens Burlngton, ’’R-matrlces and Equivalent Net
works", p. 101,
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matrix Is m-affine.

The conclusions of the last theorem have been reached
1 Dby Parodl and Howitt^ by different methods than those em

ployed above.

1 Maurice Parodl, "Reseaux Klectrlque et Theorle das Trans- 
formationa". Journal of Physics Radium (8), VII, 1946, pp, 94- 
96.
2 Nathan Howitt, ’’Jroup Theory, and the Rl-ectrloal Networks”, 
Physical Review, XXXVII, 1931, pp. 1583-1595.



CHAPTER IV

TRANSMISSION NETWORKS

AND

TRANSMISSION LINES

4.1, xhs aakU aags21.sli.sa 2LUU s iKanaslaalsQ nsi- 
xvork. In the analysis which follows we shall be concerned 

with passive networks having two sets of terminals, equal In 

number, those at the sending end, the Input terminals, and 

those at the receiving end, the output terminals. Suppose 

each of these sets consists of n terminal pairs. Let P’S ■ 
-1 -1E and (P’^P) e Z <• Y, then equation (3.3.2) reduces to

(4.1.1) li - ynei i- yipea  •••  yi,2n®2n* *

12n " y2n,lel * y2n,2®2 * ••• * y2n,2ne2n

" yklel * yk2e2 * * yk,2ne2n» (k - 2n, ..., M)
Our attention will be focused on the first 2n of these equa

tions. The coefficient matrix of these first 2n equations 

is assumed to be non-singular. Then these equations may be

solved for the e.m.f.’s In terms of the first 2n currents.

(4.1.2) e1 . a11i1 ♦ a12l2 ♦ ♦ alj2nl2n

e2 " a211 * * * * * * * 9l * a2212 * ••• * a2,2n12n
• eeeeeT6»»6ee6eee*»eee»*»eeoeeeeeee

92n e a2n,l1l * a2n,212 + ••• * a2n,2n12ne

12 * y21el * y22®2 * ••• * y2,2ne2n
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or

(4.1,3) - pH pij 
I i 

E2 A21 A22 I2j»

where El and Ij are n by one matrices whose n elements are the 

n Input e.m.f.’s and currents of the transmission network, E2 

and I2 are columnar matrices whose n elements are the output 

e.m.f.’s and currents of the network, and are n by n ma

trices whose elements are constants of the circuit. V?e will

adopt the convention of taking I2» the output currents as neg- 
1atlve. The resulting matrix equations are

(4.1.4) El - Aulx - Ai2l2

e2 e a21I1 • A22i2*

1 Leon Brillouin, Tave Propagation in Periodic structures(New 
York, 1946), p. 201; Maynard a. Arsove, "The Algebraic Theory 
of Linear Transmission Networks", Journal of the Franklin In
stitute, 1953, CCLV, p. 308.

Theorem 4.1.1. A2i • A|2.

Proof. The network la passive, hence Z can be chosen 

symmetric. It follows then that A will also be symmetric, for 

the inverse of a symmetric matrix is symmetric. Now

A12 - al,n+l
•
•
^.n+l

al,n+2
•
e
•
an,n+2 • e •

al,2n•
♦

an,2n
and
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A21 %♦!, 1 an*l,2

1 This theorem Is proven in
H. V. Lowry, "The Application of the Characteristic Equation 
of a Matrix to the Evaluation of the Range of Frequencies for 
Which Currents are Passed Through Networks With Four or More
Terminals without Attenuation", Philosophical Magazine. 1945# 
XXXVI, p. 258.

the symmetry of A weFrom

same

* from

desirable to have the output(input) e.m.f.’s and currents ex

pressed in terms of

using (4.1,4) if A22 and ^12 are non",sJ-n“This can be done by

gular

(4.1.5)

where

determinant of the transformation

(4.1.6) B12p

a slightly different manner by

a2n,l a2n,n

the input(output) e.m.f.’s and currents

Proof. Factor B so

Theorem 4.1.2. The 
matrix 3 is one.* H. 1

B21B11B12 * b22 »

a2n,2
see that the J-th row of Ai2 13 th0 

as the j-th column of A2i. The theorem is then evident 

the definition of A^.

C-enerally In the study of transmission networks It la

-1
" A22A12» B12 " a21 ' A22A12A11»

-1 -1
" - A12» b22 " A12Alleb21

t hat
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where Jn is the identity matrix of order n. Then

B22je 
yrom an extension of Theorem 1.5.6,

(4.1.8) d Jn 0 - 1,
-1

J^21b11
and

(4.1.9) d nll b12
-10 R21b11b12

d<- S11B21B11B12 * B11B22)

511 ” 322» °12 " “ 312» G21 " ” B21» C22 " 8lle

22j

" d(Bll)d<B22 “
Making use of the definitions of the elements of B

-1 -1 ~1, -1 . -1
- B21R11R12 * B-?2 " A12A12A22'a21 • A22A12A11' * A12A11

' -1
- a22a21

But - d(Bn). Therefore, from equations (4.1.8) and 

(4.1.9), we have

d(B) * d(B^]^)d(Bj].) ■ 1.

Ths input e.m.f.’s and currents may be expressed as 

linear combinations of the output e.m.f.’s and currents by

again referring to equation (4.1.4) if and A2x are non-

slngular.

(4.1.10) 91 w n n'11 g12

1 (U 
iy_

h ^21 °22_ T_2
with
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Since

(4.1.5’)

(4.1.11)

»

Theorem 4.1.3. The transformation matrix of n trans

mission networks each having the same number of terminals 

connected in cascade is the product of the n transformation 

matrices of the Individual transmission networks. The order

ing of the matrices from right to left in the product is the 

same as the ordering of the networks starting from the input 

terminals and proceeding to the output terminals.

Proof. Consider two transmission networks whose ma

trices are and Suppose these two networks are con

nected in series, since

(4.1.12)

(4.1.13)

it follows that

Proceeding by Induction, assume

(4.1.14)

and

(4.1.15)

Then
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(4.1.16) Vn-l“•n-tl
In*l

1 Brillouin, p. 205.

a2a1 e1

-11 *
Corollary 4.1.3, The transformation matrix for n equal 

transmission networks with matrix B connected in cascade is Bn

4.2. Eexanilble IraaaalaalSin nStiLam*  A r.aY§r.g,aJ 

transmission network is one in which the sense of the currents 

is changed and the input and output are interchanged, we call 

a transmission network reversible if it la identical with its 
1 reverse.

Theorem 4.2.1.  Necessary and sufficient conditions 

that a network with transformation matrix B be reversible Is

B11 " b22 and P21 * b21
Proof. Consider the transmission network

Changing the sense of the currents gives us

(4.2.1)

If the input and

1 l-t
 £511 

o ro 
ro

 , 
c:
 ___

* B

it put

S1 

h __  
are interchanged

(4.2.2> B-1 "e 2 ■ C ta
 I

tv
 | * El

I 2_ ♦

From equation (4.1.10)

(4.2.3) E1 • G11 " G12 e2"

-1! * °21 C22 k •
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(4.2.4)

(4.2.5) 9U b12

are necessary conditions for the network to be reversible

To show that the conditions are sufficient all that

and

Then

The four-terminal network is a. transmission network

only two pairs of terminals one input and one outputhaving
pair

Corollary 4.2.1

that a

^22 Bi2 

iB^i Bi!

b22 Bia

b21 Eii

1 Brillouin, p. 206

By definition the network is reversible if and only if

-1 -1
A12A11 " A21A22'

- a11a21a22 " b12

A necessary and sufficient condition 
four terminal network with matrix B be reversible is3- 1

^11 “ J12

-1
B12 " A21 ’ A22A12A11 " A12

* °21 C22

remains is to show Bja " Bia*

relations for the B21 •

Theorem 4.1.1, A2i ■ Aja*  As
-1

a22a12 " A11A21»

Referring to the defining

- Aja*  Since B2j - BaJ» from

a consequence of Bjj * B2a»
-1

2'21 b22
It follows from equation (4,2.5) that Bjj * Bg2 B21 ■ B2j

-1 -1 -1 -1
a22A12a11 " A11A21A11 " A11A12A11 " A11A21A22
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(4.2.6) B » Vl ♦ b12b21 b12

b21 Vl"*  b12b23j.

Proof. Since the elements of our network matrix are

no longer matrices but merely elements of the complex field, 

Theorem 4.2,1 shows 

that the network be 

leads to

(4.2.7) bu

4.3. laB?.3.aw9a aaasalatal elth a aoU Has 
propagation constant. A transmission network will be said to 

be terminated in a load impedance Z(L) provided the output 

e.a.f.’s and currents satisfy Eg • Z(L)Ig, where z(L) is an 
1n by n matrix.

If termination of a given transmission network in a 

load Impedance Z(L) Implies that the It,put e.m.f.’e and cur

rents satisfy Ej * where z(I) is an n by n matrix,

then Z(T) la called an input impedance of the transmission 
2 

network.

Vl * b12b21si Id

that d-q • b22 Is necessary and sufflc. 

reversible. Since d(B) ■ 1, b^j ■ bgg

If a passive transmission network has Input impedance

Zo when terminated in a load impedance z0, then ZQ la an 
3

iterative impedance of the network.

Theorem 4.3.1. A necessary and sufficient condition

Arsove , Part II 
p. 427. 
p. 427. 
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that Zo be an Iterative lmpe3ance of a network with trans
formation matrix H is that Zo be a solution of"1"

1 Arsove, Part II, p 427

(4.3.1) ZoB2iZ0 * ZOB22 - BnZ0 - B12 - 0.

Proof. If Zo is an iterative impelanoe, ainoe E2

Z0I2 and Ej « Zo1!*  ®Quation (4.1.5) become a

(4.3.2) KlTl- |Bn BiTI |zni71B11 B12

B21 B22

zoI2 " <Bllz0 * b12^I1

I2 - (B21Zo * B^)^

(4.3.5)

Then

CZoB21Zo * ZOB22 - B11Z0 - Big^l e 0

for arbitrary Then by Corollary 2.2.2

7.oB21Z0 ♦ ZOB22 - BnZ0 - B12 - 0.

■Suppose Zo is a solution of (4,3,1). It then follows 

that - Z0B2jia non-slngular. For if B-q - Zo921 ia al,n“ 

F,ular there is a non-zero row matrix X such that X(Bjj - ^qB21 

=> 0, and slnse (B3.3. - 2c>B21)(- ZQ ) . (b12 - zob22), this would 

imply X(B1O - ZnBo^) » 0. This leads to X(Jn > - Z_)B - 0, 

from which the non-singularity of E forces X ■ 0, which is a 

contradiction.

Terminating the network in a load impedance ZQ yields 

S2 " ^o^2e Then we have
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(4.5.4) Z0I2 - Bn B12I 

__ I2_ 221 s22

B11G11 * B12°21 " Jne

1 Arsove, Part II, o, 423

From which it follows that

El
Ilj.

(4.3.5) On - ZoBgPEi  (B12 - - 0.*

But from (4.5.1), e12 - ZOB22 . -(Bu - ?-oB21)zo. Hance

(4.5.5) can be written

(4.5.6) (B11 - ZqB21)(E1 - Z0I1) - 0.

From which the non-singularity of - zoB21 ^0ar5s t,°

(4.3.7) E! - 7.0Iv

Theorem 4.5.2,  A necessary and sufficient condition

that ZQ be an iterative impedance of a reversible passive 
transmission network la that ZQ satisfy^ 

p p
(4.3.8a) (zoB21) . Bn - Jn

and

(4.5.8b) (Vai^n - b11<zo321^
Proof. Upon multiplying (4.5.1) on the right by Bgi*  

we have
2(4.3.9) (Z0S21) » ZoB22B21 - BUZO321 - 312B21 . 0.

Since BC -

(4.5.10) B21C11 * B22321 " 0

However, for a reversible network, B21G11 " R11 and G21
Then from (4.5,10)
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(4.3.11) 82^21 - B.21 11»B
2 

B12B21 • 311 - ^n*
Substituting from (4.3.11) into (4.3.9)» 

2 2
(4.3.12) (ZoB21) '  (20321)311 - B11(ZOB21) - (Bn - Jn) - 0*

Since B21 Is non-slngular (4.3.12) is equivalent to (4.3.1).

Then

(ZoB21 - Bii)(ZoB21 * Bn) - - Jn,

or

(Bll - 2oB21)(2oB21 * Bn) - Jn«
In the proof of the preceding theorem we saw that (Bn -

was non-slngular if Zo was a solution of (4.3.D» consequently

ZoBai * Bn - (Bn - Zob21) •

Then
(4.3.13) 3n - l/2([Bn - 2oB21]  [Bn - ZoB^’1).*

Therefore, multiplying (4.3.13) on the left by (Bn - Z032i), 
2(Bll - Z0B21)311 - 1/2([Bii - ZoB2i] * <Jn),

and, multiplying (4.3.13) on the right by (Bn - Z0B2i)»
Bll(Bn “ 2oB21) - V2((Bn * 2O321J2 * ^n)»

Henoe Bn Is commutative with Bn - ZoB2l and with ZoR2i.

Equation (4.3.12) then reduces to 
2 2

(4.3.14) (ZoB21) " Bn - Jn*

Equation (4.3.14) and the commutativity of Bn wlth

ZOB21 imply equation (4.3.12), and the theorem is proven. 

If m identical passive transmission networks are con

nected In cascade and the resulting network admits an Input
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Impedance Z(m) for all sufficiently large integers m and if 

lira z(m) exists, lim z(m) la the characteristic impedance of 

the passive transmission network.

Theorem 4.3.3.  If a transmission network, B, admits 

a characteristic impedance Zo, then Zo is also an iterative 

Impedance of the network.

Proof. If B is connected in cascade with m other net

works identical with B, then B has output impedance Z(m) and 

input Impedance Z(m*l).  In the limit as m-^o, Z(m) • Z(m*l),  

therefore, e2 « ZOI2 and Ej - ZqI^.

1 Araove, Part II, p. 432.
2 Brillouin, p. 211.

Suppose now that we cascade an infinite number of trans 

mission networks. The propagation of a single wave along such 

a set of transmission networks is characterized by a complex 

propagation constant f such that as the wave passes from net

work m - 1 to network m

(4.3.15) ©m - ^9m-l (J - 1-  ............n>12

where the superscript on the e.m.f.’s and currents and the 

subscript on the propagation constant refers to the terminal 

pair with which the particular propagation constant Is asso- 
2 

elated.

Theorem 4,3,4.  The propagation constants for a-pas

sive transmission network are the characteristic roots of the 
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network matrix.

Proof. From equation (4.1,5) and (4,3.15), we have

(4.3.16)

where the elements

fEn-ll - Bpn-1 

£in-l ^n-l *

of the matrix on the left of the equation

are the members of equations (4.3.15) on the night. In order 

that (4.3.16) have a solution d(tj2n - B) • 0.

Theorem 4.3.5.  A necessary and sufficient condition

that a wave pass through a four terminal network without at-

* b22
Proof. From Theorem 4,3.4, it follows that

tenuation is * 2 and b-Q ♦ bgg real

(bn - I) (b22 - t ) - bi2b21 ■ Oe

And since d(B) ■ 1,
(4.3.17) - (bu  b22)^ -1.0.*

Hence

* b22)2 -4

l/2(b11 ♦ b22) * j/1 - l/4(bn ♦ b22)2. (J2—1)

The propagation function for a network may be written 

(4.3.19) / ■ exp(^ ♦ J/s) . (exp </)(coa ♦ Jsin ^3 ),

with o( being the attenuation constant and ^3 the change In 
1 phase per network, A necessary and sufficient condition that 

a wave pass through the network without attenuation is ck • 0,

Then

1 Brillouin, p. 212
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(4.3.20) f ■ oo a (1 * j8in/3 .

1 L. A. Pipes, "The Transient Behavior of Four Terminal Net
works", Philosophical Magaalne. 1942, xxxill, p. 190.

Combining equations (4.3.18) and (4.3.20)

cos * 1/2(bq^ ♦ ^22^*

Hence if c< • 0, | + ^221 " 2 and bll * b22 is r0al*

Suppose jbix ♦ ^22) • 2 and 832 Is real, then 

from equation (4.3.18) and (4.3.19)

(4.3.21)

Squaring each

♦ b22) ■ (exp</)cos^t

Y1 ' (*U .y-52^)2 " (exp c<)ain^3 •

of the equations in (4.3.21) and adding
2 21 ■ (exp 2X)(cob + sin /3 ).

Therefore,

exp 2X • 1,

which is satisfied only when ■ 0.

Theorem 4.3.6. If n four terminal networks are connect

ed in cascade the network matrix associated with the resulting

network is
Bn

z01 * x02
Z01(exp an)

2(ainh an).

where Zqj is the iterative

♦ Zo2^exP •an)# 2ZQ]ZQ^sinh an)

Z02(exp an) ♦ ZQ^texp -an) 

impedance from left to right and

Z02 13 iterative Impedance from right to left# exp a is 

the propagation function from left to right and exp -a is the 
propagation function from right to left,^

Proof. The adjoint of the characteristic matrix B Is
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(4.3.22)

Let f; * (exp a),I (exp A -a). Now take kj of Theorem 2.7.4

(exp -a) - X>22 then

(exp -a) - bgp

(4.3.23) a,-

Then

K - b21 [al 
b

(exp a) - b22» a2 " ^exP ~a^ ~b22* 
b21 b21

Trom Corollary 4,1,3 the matrix of the network formed

by cascading n equal four-terminal networks la B • Theorem 

2.7.4 givea us

or

Bn » K (exp na)

0 (exp -na)

(4.3.24) Bn - 1 S|(exp na) - a2(exp -na), 2s1S2(sinh na) 
(sq - ap)

2(slnh na), sj(exp -na) - S2(exp na)

From equations (4,3.23) and (4.3.18), we can conclude that
(4.3.25) bj - bn - b„ »V(bH , ba2)2 - 4

”b21
82 " bll ” b22 * V(bll * b22>2 ” 4e

Referring back to Theorem £J3.1> equation (4.3.1) for a four- 

terminal network becomes 
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baiZo * <b22 " bll)2o - b12 • 0,

1 Pipes, p. 190

or
(4.3.26) Zo - bll - b22 ±V(bll ♦ b22>2 - 4.

2b21
An equation similar to (4.3.1) for the reversed four-terminal 

shows that the roots of (4.3,26) are Zqi and -Zq2*  Comparing 

the solutions of (4.3.26) with (4.3.25)» we see that

si • Z01» S2 - “^02»
The desired result follows upon substituting these values in 

(4.3,24).

Corollary 4.3.6. If n reversible four-terminal networks 

are connected 

the resulting

Proof.

reversible network Zoi " Z02.

4.4. Transmission lines, i’uch of the work of the pre

ceding section can be extended to transmission lines by con

sidering the transmission lines to consist of n transmission 

networks connected in cascade, letting n approach c*>  and the 

effect of the individual network matrices upon the Individual 

e.m.f.’s and currents become infinitesimal, tending to zero

Zoitslnh na)(cosh na)

(cosh na)

The ooro

in cascade, the network matrix associated with 
network la1

n
B

LalniLjaSuL
zoi

llary follows from the fact that for a
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as n approaches since this would be mostly repetition

of work already done, we will proceed instead with the problem 

of applying the theory of matrices to other problems concem-
2 ing transmission lines.

Consider n long, parallel, widely separated, cylindri

cal conductors over an equipotential ground. The differential 

equations governing the distribution of potentials and currents 
3 of the system are

(4.4.1) - bV - RI  L^I*
d x c) t

- c>I - 3V ♦ (Me 
dx M

where V and I are n by one matrices whose elements are the 

potentials and currents of the conductors. L, R, d, and C 

are n by n matrices whose elements are defined by

lrr •• self inductance of conductor r,

lrg • mutual inductance between conductor r and s,

rrr - series resistance of conductor r,

rrg - 0, (r X s),

grr » leakage conductance to ground of conductor r,

grg - leakage conductance between conductor r and s, 

crr ■ self capacitance coefficient between conductor r 

and grounl.

1 Pipes, p. 200; Brillouin, Chapt. X.
2 This section is based on two papers by L. A. Pipes, '‘Tran
sient analysis of Completely Transposed ^ultioonduotor Trans
mission Linas", at 
ca} Engineers. 1945» LX, pp. 346-551? and "Matrix Theory of 
Multiconductor Transmission Lines”, Philosophical laOSlSS 
and jQUEQSl. at science. XXIV, 1937, PP. 97-115.
3 Guillemin, Vol. II, p. 33.
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org • mutual capacitance coefficient between conductors

r and s.

Pipes gives formulas for the determination of the nu
merical values of these line parameters.^

Now let 2, - R ♦ Lp and Y * g ♦ Cp, where p • B /gt.

Then using D for (4,4,1) becomes 
d X

- DV - ZI 

- DI - YV.

Since Z and Y are not functions of x, 
2(4.4.2) D V - - ZDI - ZYV

DI- YZI,

Let

where ar « (exp J0r), 6r is 

the phase shift for the r-th 

potential and Er is a function 

of x.

and

Then 
p

(4.4.3) DE- Z( jw)Y( jw)E, where Z(ju) , Z(p)-  y  J*
Also

D
D I - Y( jU))Z( j^)I,

S * I

Enan

1 Pipes, Transactions pf fi.I.E.S.. p. 346.
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where bp la of the same form as apUblwith

and Ip is a function of x

Inbn

solution of the formwi 11we assume a

(4.4.4) Aooah ®<x t Bslnh

Foosho<x f Hsinh'XxI

being matrices of constants which are to beA, B. F, and H

determined. We now have 
2 2 2(4.4.5) D E • cX Acosh + ». Bslnh Xx

2 * C5< S.

Equating the right side of (4.4.5) to the right side of (4.4.5)
(4.4.6) Z( jw)Y( Jc/')e • c/ZE. 

2
Letting • A, the solutions for (4.4,6) are the character

istic roots of Z( Jw)Y( jm) . After these roots have been deter

mined

(4.4.7) r - ±VA? (r . 1, 2, ..., n).M

Since Z(j^) and Y(j<^) are symmetrical and the characteristic 

roots of the transpose of a matrix are the same as the char

acteristic roots of the matrix, the roots of (4.4.6) are the 

same as the roots of the comparable equation for I.

From equation (2.7.8) and the statement which follows

It, we know that for each characteristic root of Z(j<J)X(j«) 

there is a solution of (4,4.4) which may be written

Er • krarcosh eye ♦ krbrslnh cky,

Ir - krfrco8h wye ♦ kphpSlnh cyx, (r ■ 1, ..., n)
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where ap, bp, fr, and hj, are arbitrary constants and is 

any non-zero column of the adjoint of the characteristic ma

trix fo Z( Ji*>)Y(  jw). The general solution of (4.4.3) is then

given

■g - K

by the sum of h-ese 

cosh ^x 0

0 cosh cx'2x

0

K

0

sinh

(4.4.5

I « K

)

cosh 1X

L 0

0

particular solutions, i.e.,

... 0

... o

A *

... co shot x n_
0

sinh <>-2x .,

0

0
H,

6

... 0 ~|

sinh tx' x n_
F ♦

0 cosh x ... 0

0 0 ... coshxn_ |
K slnhix^x 0 ...

0 sinh ... 0c
... sinhK x n

where K la the modal matrix of Z(jw)Y(Jw) and the matrices A,

y, and H are columnar matrices consisting of the 2n- arbi

trary constants of the solution of the differential equations. 

■Ve have assumed the roots of (4.4.6) to be simple in the above 

solution. If this la not true the matrix K is determined In 

the same manner a.a it was determined for multiple roots In the 

solution of the mesh differential equations In Chapter 3# Sec

tion 3.

If the transmission lines are fully transposed the 
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solution of the equations (4.4.1) la more easily obtained.

In this case l_a - 1, gr<- » g, and c • c, (r / s; s,r - 1, 

2, ...> n), lra ■ l0, 6rg ■ g0* crs • c0, and rra ■ r0, (r • 

s; r,s *1,  2, ...» n).
, , , ___ / ,-(r-l) (s-1)Consider the matrix A • (arg), arg • (exp j2"n/n)

The various rows of k are the sequence operators of Fortescue.
Theorem 4.4.1. If A - (ara), then A-1 • l/n(conjugate 

A).

Proof. Lot B » l/n(conjugate A), then 

brs - (1/n) exp(2TTj/n) (r-l)(s-l).

If AB • C, 

cr3 - 1/n

(4.4.9) n < -i
• 1/n XZ exp£(-2ii'j/n)(k-l) (r-a)j. 

k™ 1
we see that for r-s, cra -1. For r / s,
(4.4.10) crs - 1/n [1  exp/f-2/rj/n) (r-a)} ♦ exp ^(-4irj/n)(r-a)}*

+ ,♦ exp f(-27Tj/n)(n-l)(r-s)}J.

Using the formula

(4.4.11) S - rl^2, 
r - 1 

for the sum of a geometric series.

(4.4.12) cra "

But exp (-2k7Tj) - 1 for k - 1, 2, ... and the numerator of

(4.4.12) is zero for all values of r and s. Since r - s Is 

always less than n, the denominator of (4.4.12) is never ^ero.

1 Pipes, Transactions of A.I.E.E.. p. 347.
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Therefore, ors » 0 when r X a. Consequently, G • Jn, and 

B * A e

* 1/nXZ expHsirj/n)/(s-1) (k-1) - (m-1 
m-1 k-1

n p- ( o ~)-
- c/n ]T exp2(27Zj/n) [_( s-1) - (m-l)(a-l)j . 

m«l
Now the first and third expressions on the right of (4,4.13) 

are of the same type as (4.4.9). Consequently, for a X m, 

they are both zero. For s-1, the flrat expression on the 

right of (4.4.13) becomes c , and the third expression becomes 

-c. When s-1, the second expression on the right of (4.4,13) 

is nc. Then 1^ - co ♦ (n-l)c.

If s X 1, again using (4.4.11), the second expression

Theorem 4.4.2. If G is a matrix such that crs • o0 
, -1for r ■ a, and ora « o for r X a, then A GA ■ D is a matrix 

suoh that d83 • o0 - o for a • 2, 3, ...» n, ■ oo ♦ (n-l)o.

and dra • 0 for r X a.

2
k.l

f t-rs

roof. From the definition if A 
s-1

n
♦ c 7~ exp 

k-s+l
Q 2iTj/n) ( b-1) (k~l^.

Then if FA • D,
n _M pn (^a™ 1 ■->

dra ■ 1/n £2 jooexp ](2irj/n) (a-1) J*  o iZZ expl( aTTj/n) ( s-1) (k-l)J 
m-lu (k*l  L

* y~ exp[(2lfj/n)( s-1) (k-ljjj exp (-aifj/n) (m-1) (a-l! 
k-s+1 J

(4.4.13) , n r , T 2
dra - l/nZZooexp (2irj/n)/(s-1) - (m-l)(s-l)H

m-1 L
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exp [(-2irj/n) (m-1 j

But for a "> 1 the numerator of the fraction in brackets la 

for s jiexpression is zero

rlla^onal form

(4.4.14)

Define

• (Vyg)Vs

*3 0 o i
0 0

0

0 0

0 0

'S

rg

same form as Le

Then

(4.4.15) Sx8 La^ls

La

on the right is 
n

•^s

zero, but the

(r . 1, 2

on the
-1 

I ♦

0 0 0

-1
A !
-1

A 1

1. Hence. D is of the desired

-1
A 7
-1

A I
-1

A RA

-1
A LA • l0 ♦ (n-l)l 0

jexp ((2irj) ( 8-1)5 - 1 
[exp (( 2-ttVyx ) ( s-1) j - 

where the Cg and Gs take the

-1
- A GAA

denominator is not zero. Therefore, the above

Multiplying
-1
6 X
-1.Tl
dx

Ro 0

(4.4.1)
-1

- A RAA

left by A
-1 -1

A LAA di 
at

-1 -1
A CAA 

at

0 Ro

io - 1

l0 - 1

1
V
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Since Rs, La, Gs, and cB are all diagonal matrices (2.6,11) 

reduces to 2n equations

(4.4.16a) - - R011b + (i0 * (n-l)l)31la,

i pipes, al p. tab

d X Ot

- ^JZrs  °o^rs  ^o ” ^^2Xrs» 3» •••♦ n),* *
9x dt

and

(4.4.16b) -'Mia " (S0 * (n-l)g)vls * (oo * (n-l)c)Mls» 
dx ^t

- Blrs • Uo - 8)vrs  <°o  o)Mrs»* *
dX "Ot

(r » 2, 3, ..., n).

These differential equations can then be solved by La 
Place transformations.^ The values of the actual forward

waves in terms of the constant e.m.f. at x • 0, is given by
V*  - 1/2ABA’1V0,

with B a diagonal matrix derived from (4.4.16a) by La Place 

transformations and Integration. Similarly
♦ , -1 oI « 1/2AHA V ,

where H Is a diagonal matrix derived from (4.4.16b) by La

Place transformations and Integration.
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