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ABSTRACT 

Casing wear during drilling and workovers is a major concern in deep or extended reach wells. 

Wear by drill string results in thinner portion of casing wall which causes reduction of casing 

strength. Wall thinning could also be caused by bending of casing at steep trajectories. It is 

important not only to estimate the casing wear but also to reassess the strength of the residual 

casing due to combined effect non uniform thickness due to bending and wear. The API equations 

describing casing burst and collapse capacities do not address casing response with geometrical 

defects such as wear, wall thinning and combined loads. A common methodology is to estimate 

the reduction of strength from API burst and collapse equations with a linear reduction by 

remaining wall thickness or wear percentage equivalent to a “uniformly – worn” casing model to 

reassess casing strength for worn casing. However, this strength estimation is a very conservative 

method. Therefore, it is required to predict the safe working pressures for casing for the 

mentioned scenarios. This study presents new analytical models to calculate the degraded burst, 

collapse and bending strengths for a non- uniform casing with “crescent-shape” casing wear.  

These models can be used together to calculate the overall stress profile of a casing with wear, 

corrosion or cracks to get an estimate of the degradation of the strength. A parametric study of 

the casing wear percentage, wear radius, and non-uniformity has been performed.  The analytical 

models have been validated by a numerical simulator FEM which uses finite element technique. 
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NOMENCLATURE 

𝑂𝑂𝑂𝑂 = Outer diameter of casing, in 

𝑅𝑅0  = Outer radius of casing, in 

𝑡𝑡    = Nominal thickness of casing, in 

𝑡𝑡𝑎𝑎  = Minimum thickness of casing at point A, in 

𝑡𝑡𝑏𝑏  = Maximum thickness of casing at point B, in 

𝑡𝑡𝑎𝑎′  = Minimum thickness of casing at point A after wear, in 

𝑡𝑡𝑐𝑐   = Thickness of casing at any point C, in 

𝑟𝑟𝑠𝑠  = Wear circle radius, in 

𝛼𝛼0 = Half angle made by casing wear at the center of wear circle, degrees 

𝜃𝜃0  = Half angle made by casing wear at the center of casing, degrees 

𝑑𝑑  = Distance between centers of wear circle and outer casing, in 

𝑥𝑥𝑖𝑖  = Inner radius profile function of casing, in  

𝑦𝑦𝑖𝑖  = Inner radius profile function of casing wear w.r.t center of outer casing, in 

𝛽𝛽 = Half angle made by neutral axis at the center of outer radius circle, degrees   

𝛽𝛽′ = Half angle made by neutral axis at the center of inner circle, degrees 

𝑀𝑀  = Bending moment on the cross section of a casing, in-kips 

𝐼𝐼 = Areal moment of inertia, in4 

𝑦𝑦 = Distance measured from neutral axis, in 

ℎ  = Modified thickness of casing, in 

𝜎𝜎𝑎𝑎 = Average hoop stress of casing at minimum thickness, psi  

𝜎𝜎𝑏𝑏 = Average hoop stress of casing at maximum thickness, psi 

 𝜎𝜎𝑥𝑥𝑥𝑥 = Axial stress in X direction of a casing, psi 

𝜖𝜖 = Deflection of casing at any point on casing, in 
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𝜖𝜖0 = Maximum deflection of casing, in 

𝑅𝑅𝑚𝑚 = Radius of the mean circle, in 

𝑀𝑀𝑐𝑐 = Moment at point C, in-kips 

𝐸𝐸 = Young’s Modulus, psi 

𝜈𝜈  = Poisson’s ratio, dimensionless 
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1 INTRODUCTION 

1.1 Problem Statement 

 Casing wear during drilling and workovers is a major concern in deep or extended reach wells. 

The integrity of casing is very important specifically in wells with casing wear. Casing wear by drill 

string results in thinner portion of casing wall and a reduction on casing burst, collapse strengths. 

Wall thinning could also be caused because of bending of casing at steep trajectories. The 

important issue in oil and gas industry is to estimate the reduced casing burst and collapse 

strength due to combined effect of wear and bending. The API equations describing casing burst 

and collapse limits do not address casing response with geometrical defects such as wear, wall 

thinning and combined loads. A common methodology is to estimate the reduction of strength 

from API burst and collapse equations with a linear reduction by remaining wall thickness or wear 

percentage equivalent to a “uniformly – worn” casing model to reassess casing burst strength for 

worn casing. However, this strength estimation is a very conservative method. So, it is required 

to predict the safe working pressures for casing for the expected scenarios.  

1.2 Background and Literature Review 

 The literature in Table 1 has been reviewed before developing the analytical models. Various 

models for Burst, Collapse and bending have been developed in general for a long symmetric 

cylindrical shells long back. There are few other models proposed considering the degradation of 

strength due to casing wear of a uniform casing.  However, till date no reliable model has been 

developed to estimate the casing strength degradation for burst, collapse and bending strengths 

of a non-uniform casing with “crescent-shape” wear. Table 1 contains the list of published 

literature of the topic under study.  
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Table 1 - Summary of literature review. 

Research Paper Author Discipline 

Casing Wear Factors: How do They Improve Well 

Integrity Analyses?  

Kumar, A., & Samuel, 

R. (2015, March 17) 

Drilling 

Casing Integrity: Modeling Strength Degradation.  Li, C., & Samuel, R. 

(2016, March 1) 

Drilling  

Casing Burst Strength After Casing Wear.  Wu, J., & Zhang, M. 

(2005, January 1) 

Drilling 

A Theoretical and Experimental Approach to the 

Problem of Collapse of Deep-Well Casing 

Holmquist, J. L., & 

Nadai, A. (1939, 

January 1) 

Drilling 

Effect of Stress Concentration Factors due to 

Corrosion on Production Tubing Design 

Sun, K., Samuel, R., & 

Guo, B. (2004, 

January 1) 

Drilling 

Effect of Wear and Bending on Casing Collapse 

Strength.  

Kuriyama, Y., 

Tsukano, Y., Mimaki, 

T., & Yonezawa, T. 

(1992, January 1) 

Drilling 
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Table 1 (continued) 

Structural modeling of the casings in high 

temperature geothermal wells  

Kaldal, G.S., Jonsson, 

M.T., Palsson, H. and 

Karlsdottir, S.N., 

(2015) 

Drilling 

Theory of elastic stability Timoshenko SP, Gere 

JM (1991) 

Drilling 

A New Empirical Formula for 

Collapse Resistance of Commercial Casing 

Tamano, T., Mimaki, 

T., and Yanagimoto, S 

(1983) 

Drilling 

A Rational Expression for the Critical Collapsing 

Pressure of Pipe under External Pressure 

Clinedinst, W. O. 

(1939) 

Drilling 

Plasticity A. Nadai (1931) Drilling 

Tube collapse under combined external pressure, 

tension and bending 

Bai Y, Igland R, Moan 

T (1997) 

Drilling 

A New Formula for Elasto-Plastic Collapse Strength 

of Thick-Walled Casing 

Kuriyama, Y. (1994, 

January 1). 

Drilling 

 

1.3 Objectives 

The objectives of this research work are as follows: 

Combining Bending and Hoop Stresses to 
Determine Collapsing Pressure of Oil-Country 
Tubular Goods 

Main, W. C. (1939, 
January 1) 

Drilling 
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1. Develop an analytical solution for calculation of casing burst capacity under combined internal 

and external pressure with non -uniform thickness and “crescent-shape” wear symmetrical 

to the bending plane. 

2. Develop an analytical solution for calculation of casing bending moment capacity under 

combined internal pressure, with non -uniform thickness and “crescent-shape” wear. 

3. Develop an analytical solution for calculation of collapse capacity under combined internal 

pressure, with non -uniform thickness and “crescent-shape” wear. 

4. Re- asses limit burst, bending and collapse capacities for all the standard industry casing sizes 

using new proposed models. 

5. Perform sensitivity analysis of casing wear percentage in an attempt to understand the rate 

of strength degradation as a percentage of wear for burst, collapse and bending. 

6. Comparison of new proposed analytical solutions with other existing models. 

7. Validate the results from the analytical models using FEM software for burst and collapse 

loading conditions for all the standard casing sizes. 

1.4 Thesis Outline 

In this study, new analytical models have been proposed to calculate degradation of burst, 

collapse and bending strengths for a casing with varying thickness and “crescent-shape” casing 

wear.  

 Chapter 2 of this study includes the discussion about the factors affecting strength 

degradation of the casing, effect of wear and effect of bending. It also summarizes the historical 

formulations developed for basic burst, collapse and bending equations and the current models 

used in the industry. The limitations of the models and scope of improvement also has been 

discussed in this chapter.   
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 In chapter 3, an attempt at developing analytical models has been made to achieve best 

estimate solution to mimic the reality for strength degradation of casing. Models have been 

developed considering a long casing. A cross section of casing at a deviated section of a well has 

been evaluated in detail. Parameters have been defined to account for eccentricity due to 

bending and wear is considered in the shape of “crescent-shape”. Solutions are developed to 

calculate the degraded casing strength under burst, collapse and bending conditions. 

 Chapter 4 highlights the development of the numerical model. The output from this model is 

used to validate the developed analytical model. A two dimensional surface model similar to the 

geometrical model is created. FEA model characteristics, boundary conditions and loading 

conditions have been included. Simulations for burst and collapse have been conducted.   

 In chapter 5, calculations have been done to identify the internal, external and bending 

moment capacity on commercially used casing sizes using the proposed analytical models. The 

analytical models for burst, collapse and bending are validated with numerical model using FEM. 

Subsequently, comparison of the proposed models with the existing strength assessment models 

is presented.  Parametric analysis has been conducted to understand the effect of wear as 

percentage of casing wall thickness on casing strength. The results of the same have been 

presented. 
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2 CASING STRENGTH DEGRADATION  

In recent past, numerous casing failure incidents have been reported during shale well 

completions. Casing failure compromise the well bore integrity and prevents the access of 

downhole tools. Casing wear during drilling and workovers is a major concern in deep or extended 

reach wells. The accurate prediction of casing wear is very important for maintaining well integrity 

and to reduce the development costs associated with casing.  To avoid failures and ensure safe 

operation casing wear has to be detected, measured and the remaining strength of the casing has 

to be determined. There are many models being used in the industry to accurately estimate the 

downhole casing wear. Estimating the wear helps in reassessing the strength of the deployed 

casing. Casing wear by drill string results in wall thinning and degradation of casing strength. Wall 

thinning could also be caused by bending of casing at steep trajectories. Critical burst, collapse 

pressures are very crucial in setting depths for casing subjected to external pressure, planning 

stages for hydraulic fracking and other conditions which can cause casing integrity failure. If the 

casing is subjected to wear or corrosion or is under combination of loads such as bending, these 

additional loads have to be taken into consideration to establish the design limits.  

Wear resulted from drill string can be evenly distributed, uniformly reducing the wall 

thickness of the pipe, or concentrated in one area which produces a crescent-shaped wear 

pattern. This type of wear can happen in both directional wells and ‘straight’ holes as well. 

Crescent-shaped wear casing is neither a uniform thickness cylinder, nor a cracked cylinder. 

conceptually it can be thought of as somewhere in between. The tool joint of the drill string would 

create an impression on the casing similar to crescent-wear profile. However, if there is any 

wobble of the drill string, the wear profile would be slightly different. The assumption here is to 

consider that the drill string makes a perfect circle shaped wear profile on the casing which is 

called the ‘crescent-shaped’ wear. 
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The important problem in oil and gas industry is to estimate the reduced casing burst and 

collapse strength due to combined effect of wear and bending. A common methodology is to 

estimate the reduction of strength from API burst and collapse equations with a linear reduction 

by remaining wall thickness or wear percentage equivalent to a “uniformly – worn” casing model 

to reassess casing burst strength for worn casing [3]. This approach for estimating casing strength 

leads to conservative values resulting in over-design. 

The API equations describing casing burst and collapse limits do not address response with 

geometrical defects such as wear, wall thinning and combined loads. These models can be used 

together to calculate the overall stress profile with wear, corrosion or cracks to get an estimate 

of the degradation of the strength. 

The objective of this study is to derive analytical solutions for maximum burst, collapse and 

bending strengths of a casing with non-uniform thickness to evaluate the remaining casing 

strength. The influence of the defective geometry as a wear percentage of the casing thickness 

on failure pressure is also analyzed. The non -uniform section is the result of wall thinning of the 

casing due to bending and wear represented in the form of a crescent. The elastic buckling 

solution we have arrived is an extension of Timoshenko’s solutions for elastic-plastic collapse of a 

linear elastic, perfectly plastic cylindrical shell subjected to uniform external pressure. 

2.1 Burst 

 Burst loading is caused when the casing is subjected to higher internal pressure than external. 

This condition can occur during casing pressure integrity tests, hydraulic fracturing, production 

operations and well control operations. The industry standard used to calculate the maximum 

limit for burst pressure is based on Barlow equation. The hoop stress (or tangential stress) at the 

inner wall of the pipe is calculated by using this equation. The pressure which creates a stress 
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equivalent to yield stress of the casing is called the limit burst pressure. The pressure obtained 

using this equation is a conservative value, and an assumption is taken that D/t >> 1.  

 The von Mises theory has been extensively used for burst pressure prediction of tubulars. 

Normally, combined stress is compared with yield strength, but for transmitting pipes, it was 

indicated by various stress values. This was so, because many people considered yield strength 

too conservative for burst prediction and shifted the failure limit into the plastic region even to 

the tensile strength value. 

 However, when applying this theory to wells, the yield strength seems to be a more 

important property then tensile strength, because when it is passed, the structure deforms 

permanently and beyond acceptable limits. Therefore, as a failure criterion, the point of the 

initiation of the plastic behavior was chosen. The failure occurs, when the von Mises equivalent 

stress reaches the yield strength of the material throughout the remaining tube. 

 API (1994) [9] adopted the equation (1) to calculate internal yield pressure of a pipe. The 

factor 0.875 represents the minimum wall thickness factor. 

𝑃𝑃 = 0.875 ∗ �
2𝜎𝜎𝑌𝑌𝑡𝑡
𝐷𝐷

�, (1) 

where 

𝑃𝑃 = minimum internal yield pressure in psi. 

𝜎𝜎𝑌𝑌 = specified minimum yield strength in psi. 

𝑡𝑡 = nominal wall thickness in inches. 

𝐷𝐷 = nominal outside diameter in inches. 

 A common method to calculate burst strength with wear is to consider a uniform wear 

reduction inside the casing, thus using the remaining casing wall thickness to substitute into the 

API model. However, wall thinning effect due to bending of the casing has not been taken into 

account for burst calculations. 
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 Another widely used model in calculating casing internal pressure capacity is Nadai’s model, 

which gives the internal pressure capacity based on ultimate tensile strength instead of yield 

strength given as  

𝑃𝑃 =
2
√3

∗ 𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢 ∗ 𝑙𝑙𝑙𝑙(𝑘𝑘), (2) 

where 

𝑃𝑃 = minimum internal yield pressure in psi. 

𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢 = specified ultimate tensile strength in psi. 

𝑘𝑘 = geometrical stiffness coefficient, dimensionless. 

 A new model has been proposed by Li and Samuel [1] to estimate the strength degradation 

of the uniform thickness casing with “crescent-shape” wear. The limit burst pressure using this 

model is given as 

𝑃𝑃 =
0.875∆𝑡𝑡2𝜎𝜎𝑌𝑌[2(𝑟𝑟1 + 𝑟𝑟2) + (∆𝑡𝑡1 − ∆𝑡𝑡2)]

[𝑟𝑟𝑤𝑤(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0) + 𝑟𝑟𝑖𝑖(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼0)](2𝑟𝑟1 + ∆𝑡𝑡1) + 2𝑟𝑟𝑤𝑤(𝑟𝑟𝑜𝑜 − 𝑟𝑟𝑤𝑤 − ∆𝑡𝑡2)(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0) 
, (3) 

where 

𝑃𝑃 = Minimum internal yield pressure in psi. 

𝜎𝜎𝑌𝑌 = specified minimum yield strength in psi. 

𝑡𝑡 = nominal wall thickness in inches. 

𝐷𝐷 = nominal outside diameter in inches. 

∆𝑡𝑡1 = casing wall thickness at complete part in inches. 

∆𝑡𝑡2 = remaining casing wall thickness at wear part in inches. 

𝑟𝑟𝑤𝑤 = wear part radius in inches. 

𝜃𝜃0 = half angle of wear part circular arc in wear circle in degrees. 

𝛼𝛼0 = half angle of wear part in casing circle in degrees. 
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2.2 Collapse 

 Casings, tubulars are vulnerable to local buckling under external hydrostatic pressure. The 

loss of integrity can result in huge economic loss. Higher external pressure than internal pressure 

results in the collapse of the casing. This condition may occur during expansion of trapped fluid, 

cementing operations, etc. Pipes widely used in oil industry have diameter-to-thickness ratios in 

the range of 12.5 – 30. Under high external pressure, long pipes tend to fail due to instability at 

limit pressure. This limit pressure is directly related to the initial ovality and geometrical 

imperfections of the pipe. Other factors that would influence the collapse behavior are material 

properties, residual stress and strain hardening parameters. The buckling of thin pipes is 

determined by the elastic behavior of pipe material, and thicker pipes in the plastic range. The 

classic collapse equation has been derived by Timoshenko and Gere [8] for elastic buckling of a 

long cylindrical shell. 

 The collapse strength equations currently used in the industry provided in API Bull. 5C3 [9] 

are not developed with considerations such as casing wear, non-uniform thickness, and initial 

imperfections. Casing design requirements have been increasing especially for deep wells to resist 

collapse under external pressure while significant internal pressure and axial tension may exist at 

the same time [10]. The average collapse formulation is given in Bull. 5C3 is a relatively poor 

predictor of true collapse strength, and therefore need to develop a model which include the 

effect of wear, non-uniform thickness, corrosion, and other practical conditions, that could 

adequately capture of the physics of collapse failure. 

 Under external pressure, round pipe starts to ovalize, and flattens as soon it reaches 

maximum capacity.  A simple equation cannot represent this unstable phenomenon. However, 

many researchers have presented insights and developed an approximate solution to the collapse 

equation. The problem of collapse of cylindrical tubes under external pressure is similar to that of 
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lateral buckling of compressed bars. If the eccentricities are small, the flattening increases slowly 

and remains negligible to a pressure approaching critical value as calculated by perfectly circular 

tube. But if the eccentricity is not small, the flattening may be considerable at a comparatively 

small pressure, and the tube collapses at a pressure much lower than that calculated for a round 

tube [4]. The effect of ovality of the tube on collapse pressure has been dealt with the fact that 

the pressure acts on the outside of the tube, and not on the center line of the tube section.  

 The topic of the collapse of pipes is far from new, and many analytical and numerical 

approaches have been published.  In this study, analytical model has been developed for elastic 

collapse of a non-uniform worn casing. Elastic collapse is applicable to thin-walled pipe (D/t >>1) 

and is based on theoretical elastic instability failure criterion. This criterion does not depend on 

the yield strength of the material. However, it is dependent on initial imperfection such as ovality, 

eccentricity, Diameter to thickness ratio, and material properties such as stress-strain curve and 

residual stresses of the material. The collapse strength of the casing can be increased by following 

better manufacturing standards. Some of the existing models for elastic collapse of an ideal pipe 

which are related to this discussion are given below: 

 The collapse problem of a uniform thin cylindrical shell has been solved by Timoshenko, 1931 

using the elastic theory. His approach is widely used by other researchers to provide the solution 

for thick walled cylinder. Industry uses the collapse pressure formula derived from the theoretical 

elastic pressure formula developed by W.O. Clinedinst, 1939 given in equation (4) 

𝑃𝑃 =
2𝐸𝐸

1 − 𝜈𝜈2
x

1

�𝐷𝐷𝑡𝑡 � x ��𝐷𝐷𝑡𝑡 � − 1�
2 , (4) 

where 

𝐸𝐸 = Elastic modulus in psi. 

𝜈𝜈 = poisson’s ratio, dimensionless. 
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Collapse prediction is more difficult, because failure occurs under elastic, elastic-plastic 

or plastic deformation [10]. It is also very sensitive to geometric imperfections such as pipe ovality 

or corrosion defects. Failure prediction occurs in a similar way to the burst failure prediction 

presented above. Material behavior is modelled in elastic and plastic regions with work hardening. 

Stresses are also compared to the von Mises yield criterion. The main difference is that the 

created procedure stops if instability occurs or the equivalent von Mises stress exceeds, at any 

point of the pipe, the yield strength through the wall. For visualization purposes further stages of 

the collapse analysis is shown below in Figure 1. The empirical equations developed for collapse 

resistance are based on theoretical, numerical and statistical methods. These equations do not 

account for external casing support and non-uniform loads along the casing and so considered to 

be rather conservative. 

  The ratio of outer diameter to thickness (D/t) is considered as a parameter to determine 

whether collapse occurs in the elastic-, plastic- or intermediate range of the wall compressive 

stresses. For high values of the D/t ratio, elastic collapse is a governing factor. For lower values, 

the buckling occurs in the plastic range and for the lowest values the buckling is governed by the 

yield strength of the material (10400:2007(E) 2007). The critical elastic buckling pressure for long 

tubes under uniform radial pressure is (Timoshenko, 1961) where ν is Poisson's ratio, E is Young's 

Figure 1: Collapse failure of casing 
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modulus, t is the tube thickness and R is the tube radius. This equation does however not account 

for collapse as a result of plastic deformation in the material which occurs in thicker casings. For 

thicker casings a tangent modulus, Et is used in place of E, to find the critical buckling pressure 

beyond the proportional limit.  

 As per API Bull 5C3 [9], theoretical studies of the effect of ovality on collapse resistance 

consistently indicate that an ovality of 1 to 2 percent can effect a reduction in collapse reduction 

on the order of 25 percent. However, a much smaller effect is indicated in experimental/empirical 

investigations. Experimental test data concludes that ovality is one of many pipe parameters that 

influence collapse. However, it is not the single most dominant parameter. An API work group on 

collapse resistance concluded the effect of ovality o tubular collapse has been handled during the 

adjustment of average collapse predictions. But, experimental test data and numerical 

simulations are not in agreement with API average collapse equation.   

2.3 Bending  

 In highly deviated wells, casing is subjected to bending. Bending on the casing can decrease 

the casing performance. The reduction of limit burst and limit collapse due to bending has to be 

taken into consideration during the design process. Effects of Bending such as eccentricity, ovality 

and axial stresses have to be taken into account. Bending increases ovality and eccentricity which 

reduces the casing strength. Limit burst pressure is reduced due to thinning of casing wall and 

limit collapse pressure due to ovality. Axial stress also would reduce the collapse strength. 

2.4 Casing wear  

 The strength of a worn casing depends on two important factors. These are the wear 

distribution and eccentricity of the tube middle surface. Casing worn can happen in two ways, 

large amount of wear at a region or small wear over the entire casing. With equal minimum and 

original wall thickness, casing with wider distribution of wear would have a lower collapse 
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pressure. If the wear occurs equally on inner and outer casing, the effect of eccentricity on 

collapse would be negligible. A casing with uniform wall thickness would also have eccentricity. 

Casing wear occurs inevitably in the drilling process. It not only reduces the wall thickness of the 

pipe but also decreases the casing strength. These can cause drilling failure accidents, 

environment damage, and even premature abandonment of the well. As a result, the petroleum 

industry is estimated to spend tens of millions of dollars each year on extra casing thickness to 

allow for wear. It is shown from the literature and field predictions that the crescent-shape wear 

pattern is the most common wear type. 

2.5 Linear and Non Linear Buckling 

 The linear buckling analysis in FEA also called as Eigen buckling is directly related to the classic 

Euler type of calculation. A small displacement of a disturbed or imperfect shape is assumed in 

each element that induces a stress dependent stiffening effect. This adds to the linear static 

stiffness in the element. The stress dependent stiffness is now subtracting from the linear static 

stiffness term. This latter effect causes linear buckling. In an assembly of elements in an FEA model 

there will be a subtle interaction between the original linear stiffness matrix and the stress 

dependent stiffness matrix. This is analogous to the linear stiffness matrix and the mass matrix in 

a normal modes analysis. The same solution method is used — an eigenvalue extraction. 

Eigenvalue analysis predicts the theoretical buckling strength of a structure which is idealized as 

elastic. For a basic structural configuration, structural eigenvalues are computed from constraints 

and loading conditions. For a linear buckling analysis, this will find what scaling factors applied to 

the nominal static load will scale the stress stiffening terms to subtract sufficiently from the linear 

static terms to give unstable solutions. This scaling factor in FEM is called load multiplier.  

 If for any reason the results of a linear buckling solution suggest the calculation is not 

representing the real response, then a nonlinear buckling analysis is called for. This uses a 
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nonlinear geometric analysis to progressively evaluate the transition from stable to unstable and 

addresses many of the limitations we have seen in linear buckling analysis. Nonlinear buckling 

analysis provides greater accuracy than elastic formulation. Applied loading incrementally 

increases until a small change in load level causes a large change in displacement. This condition 

indicates that a structure has become unstable. Nonlinear buckling analysis is a static method 

which accounts for material and geometric nonlinearities and geometric imperfections. Either a 

small destabilizing load or an initial imperfection is necessary to initiate the solution of a desired 

buckling mode. 
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3 ANALYTICAL MODEL DEVELOPMENT 

3.1 Burst Capacity – Non -uniform casing wall thickness 

 Consider a long cylindrical casing of outer radius 𝑅𝑅𝑜𝑜  as shown in Figure 2. A cross section of 

the casing in the deviated hole at section X-X is represented as shown in Figure 2. Bending of the 

casing results in varying thickness in this cross-section. As observed, the minimum thickness 𝑡𝑡𝑎𝑎 is 

at point A and maximum thickness 𝑡𝑡𝑏𝑏 is expected to be at its diametrically opposite point B.  

3.1.1 Assumptions and Limitations 

 The assumption in developing this model is that the wear occurs at the thinnest section of the 

non - uniform casing caused due to bending. The outer radius of casing is constant and thickness 

variation is caused by the varying the inner profile. Wear is introduced by superimposing wear 

circle on non-uniform circle. The burst, collapse and bending capacities have been evaluated 

individually without using combined loading. 

Figure 2: Bent cross-section of an extended horizontal well showing non-uniform wall thickness  
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 For a casing with non -uniform thickness as shown in Figure 3 and subjected to internal 

pressure, the hoop stress on thinner wall will increase comparing to casing with uniform wall 

thickness. Since the casing wall thickness at a cross-section is not constant, the inner radius 𝑥𝑥𝑖𝑖  of 

the casing is a function of 𝜃𝜃 and can be traced by using equation (5). Here, 𝜃𝜃 is the angle 

considered in anti-clock wise direction i.e. from point B to point A. The inner radius is given in 

equation (5) as 

 xi = f(θ) = aθ + b. (5) 

Constants a and b can be obtained by using the boundary conditions in equation (6) 

 xi = �Ro − tb   at   θ = 0 
Ro − ta   at   θ = π. (6) 

The inner wall of the casing can be traced by equation (7) 

Figure 3: Cross-section of a casing with non-uniform wall thickness with internal pressure 
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 xi = (tb − ta)x
θ
π

+ (Ro − tb). (7) 

 

 The differential between internal and external pressures, P is applied on the inner surface of 

the casing. Due to symmetry along the horizontal axis, only the top half section of the casing is 

considered. The hoop stresses at point A and point B are 𝜎𝜎𝑎𝑎 and 𝜎𝜎𝑏𝑏 respectively as shown in Figure 

4. Since commercial casings have D/t>10, thin cylinder assumption can be used. Force balance 

equation in Y direction can be written as 

 
σata + σbtb = � Pxi 𝑠𝑠𝑠𝑠𝑠𝑠 θ dθ.

π

0
 (8) 

 By substituting equation (7) in equation (8) and integrating from 0 to 𝜋𝜋, simplified force 

equation is expressed as 

 σata + σbtb = P(2Ro − ta − tb). (9) 

 At an angle 𝜃𝜃, a small differential arc 𝑑𝑑𝑑𝑑 subtends an angle 𝑑𝑑𝑑𝑑 at the center of the casing. The 

Moment balance equation w.r.t Z axis at center can be written as 

Figure 4: Free body diagram of casing under burst 
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σbtb �Ro −

tb
2
� = σata �Ro −

ta
2
� + � Pxi2 𝑠𝑠𝑠𝑠𝑠𝑠 θ 𝑐𝑐𝑐𝑐𝑐𝑐 θ dθ

π

0
. (10) 

 By simplifying equation (10) using 𝑥𝑥𝑖𝑖  and integrating it over the considered half section, the 

obtained equation is  

 
σata �Ro −

ta
2
� − σbtb �Ro −

tb
2
� =

P(tb − ta)2

4
+

P(tb − ta)(Ro − tb)
2

. (11) 

 By solving force balance equation (9) and moment balance equation (11), values for 𝜎𝜎𝑎𝑎/𝑃𝑃 and 

𝜎𝜎𝑏𝑏/𝑃𝑃 are obtained as 

 σa
P

=
2Ro − ta − tb

2ta
 𝑎𝑎𝑎𝑎𝑎𝑎 (12) 

 σb
P

=
2Ro − ta − tb

2tb
 . (13) 

3.2 Burst Capacity – Non -uniform casing with wear 

 By following the procedure mentioned in Section 3.1, the hoop stress at points A and B can 

be derived for casing with wear on the inner wall.  The wear is represented by superposition of a 

circle of radius 𝑟𝑟𝑠𝑠 with the center at a distance d from the casing center. The thickness of casing 

at point A, 𝑡𝑡𝑎𝑎′  is the least casing thickness resulting in the consideration of worst case condition. 

𝛼𝛼 is defined as the angle made by the radius of the wear circle at any point within the wear circle 

with the horizontal axis and  𝛼𝛼𝑜𝑜 is defined as the angle made by the radius of the wear circle at 

the point of intersection of casing inner radius and the beginning of wear. 
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The curve defining the wear region of the casing from the center of the casing is represented by 

𝑦𝑦𝑖𝑖. From Figure 5 𝑦𝑦𝑖𝑖  can be defined as 

 yi x  𝑠𝑠𝑠𝑠𝑠𝑠 θ = rs x 𝑠𝑠𝑠𝑠𝑠𝑠 α  𝑎𝑎𝑎𝑎𝑎𝑎 (14) 

 yi =
rs  x 𝑠𝑠𝑠𝑠𝑠𝑠 α
𝑠𝑠𝑠𝑠𝑠𝑠 θ

 . (15) 

To calculate θo, regression has been done to match 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖  values at the point where casing 

wear curve meets the inner circle. 

The distance between the center of the casing and the center of the wear circle, 𝑑𝑑 is defined as  

 d = yi x  𝑐𝑐𝑐𝑐𝑐𝑐 θo − rs x  𝑐𝑐𝑐𝑐𝑐𝑐 αo  𝑎𝑎𝑎𝑎𝑎𝑎 (16) 

Figure 5: Casing model with non-uniform cross-section and wear under burst 
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d =

rs x 𝑠𝑠𝑠𝑠𝑠𝑠(αo − θo)
𝑠𝑠𝑠𝑠𝑠𝑠 θo

 . (17) 

Due to additional wear at point A, the thickness of the casing is further reduced to 𝑡𝑡𝑎𝑎′  which is the 

difference of the outer radius of the casing 𝑅𝑅𝑜𝑜 and the sum of wear circle radius 𝑟𝑟𝑠𝑠 and distance 

𝑑𝑑. 𝑡𝑡𝑎𝑎′  is represented as 

 ta′ = Ro − (d +  rs). (18) 

By substituting equation (17) in equation (18), the equation for 𝑡𝑡𝑎𝑎′  in known terms is obtained as 

 
ta′ = Ro − rs −

rsx 𝑠𝑠𝑠𝑠𝑠𝑠(αo − θo)
𝑠𝑠𝑠𝑠𝑠𝑠 θo

 . (19) 

 For simplification only the top half circular cross section of the casing has been considered 

due to symmetry. Force components are integrated over two regions of the casing, one without 

wear and other with wear. The force component without wear 𝑃𝑃𝑥𝑥𝑖𝑖 sin𝜃𝜃 𝑑𝑑𝑑𝑑 is integrating from 

limits 0 to 𝜋𝜋 − 𝜃𝜃𝑜𝑜 and the force component in the region with wear 𝑃𝑃𝑟𝑟𝑠𝑠 sin𝜃𝜃 𝑑𝑑𝑑𝑑 is integrated from 

limits 0 to 𝛼𝛼𝑜𝑜. The complete force equation is represented in equation (20) as 

 
σata′ + σbtb = � Pxi 𝑠𝑠𝑠𝑠𝑠𝑠 θ dθ + � Prs 𝑠𝑠𝑠𝑠𝑠𝑠 θdθ

αo

0

π−θo

0
. (20) 

Equations for 𝑡𝑡𝑎𝑎′  and 𝑥𝑥𝑖𝑖  i.e., equations (7) and (19) are substituted in the above force equation 

(20) and integrated between the limits. Simplified equation is represented as 

 σata′ + σbtb = P[rs (1 − 𝑐𝑐𝑐𝑐𝑐𝑐 αo) + (Ro − tb) (1 + 𝑐𝑐𝑐𝑐𝑐𝑐 θo) + tabC/π], (21) 

where  𝑡𝑡𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑏𝑏 − 𝑡𝑡𝑎𝑎  

Similarly, the moment equation obtained for the top half circular cross-section of the casing is 

given in equation (22) as 

 
σata′ �Ro −

ta′

2
� = σbtb �Ro −

tb
2
� + � Pxi2 𝑠𝑠𝑠𝑠𝑠𝑠 θ 𝑐𝑐𝑐𝑐𝑐𝑐 θ dθ

π−θo

0

+ � Prs 𝑠𝑠𝑠𝑠𝑠𝑠 θ  x yi 𝑐𝑐𝑐𝑐𝑐𝑐 θ dθ
αo

0
. 

(22) 
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By integrating equation (22) between the limits, the simplified moment equation is given as 

 
σata′ �Ro −

ta′

2
� = σbtb �Ro −

tb
2
�

+ P �
tab2 λ1
8π2

+
(Ro − tb)2(1 − cos2θo)

4
−

tab(Ro − tb)λ2
4π

+ rs �
rs(cos2αo − 1)

2
− d(cosαo − 1)�� , 

(23) 

where 𝜆𝜆1 and 𝜆𝜆2 are: 

 λ1 = [1 − 2(π − θo)2]cos2θo − 2(π − θo)sin2θo − 1 𝑎𝑎𝑎𝑎𝑎𝑎 (24) 

 λ2 = 2(π − θo)cos2θo + sin2θo. (25) 

By solving the force and moment equations i.e. equations (21) and (23), values for 𝜎𝜎𝑎𝑎/𝑃𝑃 and 𝜎𝜎𝑏𝑏/𝑃𝑃 

are obtained. 

 σa
P

=
ψ1 + ψ2 + ψ3

ta′ �2Ro −
ta′
2 − tb

2 �
 , (26) 

where 

 
ψ1 = P �

tab2 λ1
8π2

−
tab(Ro − tb)λ2

4π
+

tab �Ro −
tb
2 � λ3

π
�, (27) 

 λ3 = (π − θo)cosθo + sinθo, (28) 

 
ψ2 = P �(Ro − tb) �Ro −

tb
2
� (1 + 𝑐𝑐𝑐𝑐𝑐𝑐 θo) +

(Ro − tb)2(1 − cos2θo)
4

+ rs (1 − 𝑐𝑐𝑐𝑐𝑐𝑐 αo) �Ro −
tb
2
�� , 𝑎𝑎𝑎𝑎𝑎𝑎 

(29) 

 
ψ3 = P �rs �

rs(cos2αo − 1)
2

− d(cosαo − 1)��. (30) 
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Upon substituting the value of 𝜎𝜎𝑎𝑎/𝑃𝑃 in equation (21), the value for 𝜎𝜎𝑏𝑏/𝑃𝑃 is given by the equation 

(31) as 

 
σb
P

=
[rs (1 − 𝑐𝑐𝑐𝑐𝑐𝑐 αo) + (Ro − tb) (1 + 𝑐𝑐𝑐𝑐𝑐𝑐 θo) + tabλ3/π] − σata′

P
tb

 . (31) 

3.3 Bending Moment Capacity – Non -uniform casing with wear 

 Bending of the casing causes outer fibers to expand and inner fibers to compress. This results 

in additional compressive and tensile stresses in inner and outer regions respectively. Due to the 

non-uniform thickness and casing wear, the neutral axis is not at the center of the casing. The 

Figure 6: Casing cross-section with non-uniform wall thickness and wear under bending 
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neutral axis is assumed to be at an angle 𝛽𝛽 from the center of the casing. The inner radius curve 

makes an angle 𝛽𝛽′ with the neutral axis at the center. 

The axial stress (𝜎𝜎𝑥𝑥𝑥𝑥) at neutral axis would be 0 psi. With the absence of axials loads, the forces 

on the cross section should be balanced.  

As shown in the Figure 6, the right of the neutral axis is under compression. As axial stress 

increases linearly with distance from the neutral axis 𝑦𝑦, it is represented as 

 
σxx = �

0                 at Neutral axis
My

I
       at any other location. (32) 

The Sum of the forces on the bending plane over an area should be zero and is represented in 

equations (33) and (34) as  

 �σxx dA = 0, (33) 

 �
My

I
dA = 0 , and (34) 

 � yt dy (left of NA) + � yt dy (right of NA) = 0. (35) 

 The Sum of axial force on right of neutral axis should be equal to the force on the 

left of neutral axis which is formulated in equation (36) as 
 

 
 � (Rocosθ − Z) Rosinθ d(Rocosθ − Z) −

β

0
� (xicosθ − Z) xisinθ d(xicosθ − Z)
β′

0

=  � (Rocosθ + Z) Rosinθ  d(Rocosθ + Z)
π

β

−� (xicosθ + Z) xisinθ  d(xicosθ + Z)
π−θo

β′

− � (d + Z + rscosθ) rssinθ  d(d + Z + rscosθ)
π

π−αo
 

(36) 

  (37) 

where 𝑍𝑍 = 𝑅𝑅𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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 Right of Neutral Axis + Left of Neutral Axis = 0 (38) 

But substituting equations (36) and (37) in equation (38), the following equations are obtained as 

 
ψ1 =

−Zβ′

3
�a2β′2 + 3abβ′ + 3b2�, (39) 

 
ψ2 =

Ro
2Z
2

(2β − sin2β − π), (40) 

 
ψ3 =

Zsin2β′

2
(aβ′ + b)2, (41) 

 ψ4 =
Zsin2θo

4
(a(π − θo) + b)2, (42) 

 
ψ5 =

Z(π − θo)
6

[a2(π − θo)2 + 3ab(π − θo) + 3b2], (43) 

 ψ6 = −a(b2 − 2a2) − acosθo[a2((π − θo)2 − 2) + 2ab(π − θo) + b2], (44) 

 
ψ7 =

−(a(π − θo) + b)sinθo
6

[a2(12 − (π − θo)2) − 2ab(π − θo)

+ (a(π − θo) + b)2cos2θo − b2], 

(45) 

 
ψ8 =

rs2

12
[6α(d + Z) − 3rssinα + rssin3α − 3(d + Z)sin2α] , 𝑎𝑎𝑎𝑎𝑎𝑎 (46) 

 Rocosβ = xicosβ′. (47) 

Sum of equations (39) to (46) is equal to zero as shown below in equation (48) as 

 ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6 + ψ7 + ψ8 = 0. (48) 

The two equations (47) and (48) are solved using regression to obtain the values of 𝛽𝛽 and 𝛽𝛽′. By 

obtaining the values of 𝛽𝛽 and 𝛽𝛽′, Moment can be calculated using the below procedure.  

Moment equation on either sides of the neutral axis is as shown below: 

 M = �σx dA ∗ y = k� y2 dy ∗ t 𝑎𝑎𝑎𝑎𝑎𝑎 (49) 
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� y2 t dy = � (Rocosθ − Z)2 Rosinθ  d(Rocosθ − Z)

β

0

−� (xicosθ − Z)2 xisinθ  d(xicosθ − Z)
β′

0

+ � (Rocosθ + Z)2 Rosinθ  d(Rocosθ + Z)
π

β

− � (xicosθ + Z)2 xisinθ  d(xicosθ + Z)
π−θo

β′

− � (d + Z + rscosθ)2  rssinθ  d(d + Z + rscosθ)
π

π−αo
. 

(50) 

By simplifying the above equation (50) and integrating it between the limits, we get the following 

terms: 

 
ψ1 =

−Ro
4π

4
−

Ro
4π
2

+
4Ro

4

3
cosβsin3β, (51) 

 ψ2 =
1

160
{30a3b

+ 10acos2θo[a2(2(θo − π)2 − 3) + 4ab(π − θo)

+ 2b2](a(π − θo) + b)

+ 30a2sinθocosθo[a2(2(θo − π)2 − 1) + 4ab(π − θo) + 2b2]

+ 4[a4(π − θo)5 + 5a3b(θo − π)4 + 10a2b2(π − θo)3

+ 5ab3(2(θo − π)2 + 1) + 5b4(π − θo)] − 40ab3

+ 5sin4θo(a(π − θo) + b)4}, 

(52) 

 
ψ3 = Z2 �

(π − θo)
6

[a2(π − θo)2 + 3ab(π − θo) + 3b2]

+
sin2θo

4
(a(π − θo) + b)2�, 

(53) 
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 ψ4 = 2Z �
1
6
�sinβ′(aβ′ + b)�−a�a�β′2 − 12� + 2bβ′� + cos2β′(aβ′ + b)2 − b2�

− 6acosβ′�a�β′2 − 2� + 2abβ′ + b2�� + a(b2 − 2a2)�, 

(54) 

 ψ5 =
Z
6
�−3sinβ′(aβ′ + b)�a2 − �β′2 − 8� + 2abβ′ + b2�

− 12acosβ′�a2�β′2 − 2� + 2abβ′ + b2�

+ 3sinθo(a(π − θo) + b)[a2((π − θo)2 − 8) + 2ab(π − θo)

+ 2b2] − 12acosθo[a2((π − θo)2 − 2) + 2ab(π − θo) + b2]

+ sin3β′(aβ′ + b)3 − sin3θo(a(π − θo) + b)3� , 

(55) 

 
ψ6 =

rs2

96
[12α(4(d + Z)2 + rs2) + 8(d + Z)(8rssin3α − 3sin2α(d + Z))

− 3rs2sin4α] , 

(56) 

 M = k (ψ1+ψ2+ψ3+ψ4+ψ5+ψ6) ,𝑎𝑎𝑎𝑎𝑎𝑎 (57) 

 I = ψ1+ψ2+ψ3+ψ4+ψ5+ψ6. (58) 

Maximum tensile stress 𝜎𝜎𝑡𝑡  and maximum compressive stress 𝜎𝜎𝑐𝑐  can be obtained from the above 

equations: 

 σt =
M
I

(Ro + cosβ) 𝑎𝑎𝑎𝑎𝑎𝑎 (59) 

 σc =
M
I

(Ro − cosβ). (60) 

 To obtain the bending moment of a uniform cylinder without wear, substitute the geometrical 

values for casing, with no wear and uniform wall thickness, into the new model. In this case the 

wall thickness is uniform i.e. ta = tb = t. since there is no wear in the casing. The neutral axis 

coincides with the Y-axis which makes the angles β and β’ equal to 90 degrees. We obtain values 

for ψ1 to ψ6. We get ψ1 = −Ro
4π

4�  , ψ2 = Ri
4π

4�  and ψ3 = ψ4 = ψ5 = ψ6 = 0. Hence the areal 

moment of intertia is obtained by the equation 𝐼𝐼 = π�Ro
4 − Ri

4�
4
�  which is the general equation 
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for cylindrical cross-section with outer and inner radii as Ro and Ri respectively. By using this areal 

moment of inertia, the bending moment capacity of a uniform cylinder without wear can be 

obtained. 

3.4 External pressure Capacity – Non -uniform casing with wear 

 Elastic buckling of a non-uniform cylinder is analyzed in the similar way as the elastic buckling 

pressure of a uniform cylindrical shell subjected to uniform hydrostatic pressure. 

 The differential equation for the radial deflection 𝜀𝜀 of a thin curved bar with circular axis [8] 

is defined as 

 d2ε
dθ2

+  ε = −
MR2

EI
. (61) 

Flexural rigidity for the circular bar 𝐸𝐸𝐸𝐸 = 𝐸𝐸ℎ3
12�  

 A free body diagram for finding the circumferential bending moments of the cylindrical shell 

is shown in the Figure 8. Moment from the figure can be written as 

 M = Mo + P x AO���� x AB���� −
P
2

 x AC����2 𝑎𝑎𝑎𝑎𝑎𝑎 (62) 

 M = Mo −
P
2

 x (CO����2 − AO����2). (63) 

 Assume the deflection at point A as 𝜀𝜀𝑜𝑜 and deflection at point C as 𝜀𝜀. After geometric 

simplifications, we get the equation for moment as shown in equation (63). 
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Figure 7: Casing cross-section with non-uniform wall thickness and wear under collapse 

 

Figure 8: Free body diagram of the section of the casing within the wear circle region 
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 𝑅𝑅𝑚𝑚 is mean radius of the casing. The geometrical values for AO���� and CO���� and M are given by 

equations (64), (65) and (66) as 

 AO���� = Rm − εo,  (64) 

 CO���� = Rm − ε 𝑎𝑎𝑎𝑎𝑎𝑎 (65) 

 M = Mo − PRm(εo − ε). (66) 

 Substituting the above equation (66) for the bending moment into the differential equation 

for radial casing deformation equation (61), it yields the following equilibrium equation for the 

uniform casing:  

 d2ε
dθ2

+  ε = −
12Rm

2

Eh3
�Mo − PRm(εo − ε)� 𝑎𝑎𝑎𝑎𝑎𝑎 (67) 

 d2ε
dθ2

+  �1 +
12PRm

3

Eh3
� ε = −

12Rm
2

Eh3
(Mo − PRmεo). (68) 

Values of 𝑅𝑅𝑚𝑚 and ℎ vary at different regions of the casing as given below: 

 

h = �

tb + tc
2

 ,    for 0 < θ <  π − θo
ta′ + tc

2
 ,        for 0 < θ <  αo

 𝑎𝑎𝑎𝑎𝑎𝑎  (69) 

 

Rm =

⎩
⎨

⎧Ro − �
tb + tc

4
�  ,    for 0 < θ <  π − θo

Ro − �
ta′ + tc

4
�  ,        for 0 < θ <  αo

, (70) 

where, 𝑡𝑡𝑐𝑐  is the thickness of the casing at point C, differentiates the region with wear from the 

region without wear represented as 

 tc = Ro − yo 𝑎𝑎𝑎𝑎𝑎𝑎 (71) 

 yo =
rssinαo
sinθo

. (72) 

The differential equation for radial deformation must now be defined in two regions; one with 

wear and other without wear region. A general solution of the above second order differential 

equation (68) for the non-uniform casing is: 
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ε =

⎩
⎪
⎨

⎪
⎧A1 𝑠𝑠𝑠𝑠𝑠𝑠 λ1θ + A2 𝑐𝑐𝑐𝑐𝑐𝑐 λ1θ +

ξ1
λ12

 ,    for 0 < θ <  π − θo

B1 𝑠𝑠𝑠𝑠𝑠𝑠 λ2θ + B2 𝑐𝑐𝑐𝑐𝑐𝑐 λ2θ +
ξ2
λ22

 ,        for 0 < θ <  αo ,
 (73) 

where 𝜆𝜆 and 𝜉𝜉 are: 

 
λ2 = 1 +

12PRm
3

Eh3
 𝑎𝑎𝑎𝑎𝑎𝑎 (74) 

 
ξ = −

12Rm
2

Eh3
(Mo − PRmεo). (75) 

𝐴𝐴1, 𝐴𝐴2, 𝐵𝐵1 and 𝐵𝐵2 are constants that depend on the boundary conditions. 

The boundary conditions which are needed to evaluate the above integration constants are: 

 dε
dθ

= 0 , at θ = 0,π  (76) 

 

Slope is continuous at the intersection of two regions given by 

 dε
dθθ=θo

=
dε
dθθ=π−θo

. (77) 

By substituting the boundary conditions, we get the below values 

 A1 = 0;  B1 = B2 tan(λ2π). (78) 

By simplifying the equations using the above obtained values and by substituting the boundary 

conditions we get the least possible values for 𝜆𝜆1 and 𝜆𝜆2 as 

𝜆𝜆1 = 𝜆𝜆2 = 2. 

By substituting the values in the equation for 𝜆𝜆 i.e. equation (74), we get 

 

P =
E �𝑅𝑅0 −

𝑟𝑟𝑠𝑠
2 �1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼0 −

𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼0(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐0)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0

��
3

4 �𝑅𝑅02 + 𝑟𝑟𝑠𝑠
4 �1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼0 −

𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼0(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐0)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0

��
3. (79) 
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4 NUMERICAL SIMULATION MODEL 

4.1 Model Geometry 

A numerical simulation model is built to simulate loading conditions of the following: 

• Average hoop stress estimation to calculate the limit burst pressure of non-uniform casing 

with wear. 

• Elastic collapse buckling pressure estimation of non-uniform casing with wear. 

• Nonlinear collapse pressure estimation of non-uniform casing with wear. 

 The finite element method (FEM) is used to construct a two dimensional model of the casing. 

Eigenvalue buckling analysis is used to predict the theoretical collapse strength and the collapse 

mode shapes of the casing. The eigenvalue analysis is a linear solution method in which nonlinear 

Figure 9: Finite Element Model Development 
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properties, e.g., interaction of contacting surfaces, are not taken into account. Nonlinear buckling 

analysis is then used to account for nonlinearities properties such as material properties, 

geometrical displacements. The limit load of the casing is obtained and stabilization is used to 

track the post buckling shape of the casing. The finite-element program FEM is used to construct 

the two dimensional model similar to the geometrical model.   

4.2 Material Properties and Geometrical dimensions 

Industry standard casing sizes from 5” to 13 3/8” have been considered for Finite Element 

Analysis. The minimum thickness (ta) has been considered as 70% of the nominal thickness to 

introduce eccentricity. Similarly, the maximum thickness (tb) has been considered as 130% of the 

nominal thickness. The casing wear circle radius has been selected from the sizes of standard tool 

joints of drill string. 

Table 2: Geometrical information for standard casing sizes 

D Ri t rs ta tb D/t 
Inches - 

5     2.14 0.36 1.80 0.25 0.47 13.81 
7     2.96 0.54 2.40 0.38 0.70 12.96 

9 5/8 4.27 0.54 2.40 0.38 0.70 17.82 
9 5/8 4.27 0.55 3.90 0.38 0.71 17.66 

13 3/8 6.17 0.51 4.56 0.36 0.67 26.02 
 

The material properties used in the FE analysis are listed in below: 

Property Steel Units 

Young’s modulus (E)  205 GPa 

Poisson’s ratio () 0.3  

Density () 7850 Kg/m3 



34 
 

4.3  Boundary Condition 

4.3.1 Constraints and Symmetry 

As the geometry is symmetric along the horizontal axis x-x, a half of the model can be 

constructed and used to reduce the number of nodes and calculation time approximately 5 fold. 

The same model can be used for burst and collapse cases. Symmetry can be demonstrated using 

the Figure 10. 

 

Figure 10: Model with axial symmetry 

4.3.2 Applicable Load 

Finite Element Model analysis is based on approximations. Model geometry is created to 

approximate the real shape and constraints approximate how the structure is supported similarly; 

loads approximate what happens in the real world. Simulations have been performed by applying 

the following loads on the model: 

- Internal pressure on the inner surface (Figure 11) 

- External pressure on the outer surface (Figure 12) 
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Figure 11: FEA model with internal pressure loading of 1000 psi 

 

 

 The above loads are applied in the numerical model as hydrostatic pressure loads and it is 

possible to apply them simultaneously. Theoretically, the difference of inner and external 

pressure is considered the resultant load.  

Figure 12: FEA model showing external pressure loading of 2900 psi 
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4.3.3 Mesh and Element size 

 The model has to be subdivided into a finite number of smaller pieces called elements as 

shown in Figure 13. These elements are defined by points at their edges called nodes. The Finite 

element mesh is composed of nodes and elements to approximate the shape of the real model. 

Coarser mesh leads to results which are not accurate but require less computational time. A fine 

mesh gives results that are closer to the exact solution, but the analysis is more time consuming. 

However, reducing the element size further does not always guarantee improvement in accuracy 

of the results. So, an optimized mesh would sufficiently solve the criteria to get good results 

without consuming more computational time. 

 

Figure 13: FEA model showing meshing 

The element size in each simulation is considered between 0.01 in to 0.06 in depending on 

the casing size and convergence of solution. Mesh refinement have been implemented to increase 

local mesh size at regions with significant wear and low thickness. As the stress values in the worn 

part are relatively important, a judgement call is made to increase the number of elements. 
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4.4  Eccentricity and Casing wear 

 As one of the objective of this study is to analyze the effect of eccentricity and wear on casing 

strength, various models have been created with varying wear and eccentricities. Figure 14 shows 

a 9 5/8” casing with 20% wear percentages and eccentricity.   

4.5 Linear and Non Linear Buckling 

 The linear buckling analysis in FEA also called as Eigen buckling is directly related to the classic 

Euler type of calculation. A small displacement of a disturbed or imperfect shape is assumed in 

each element that induces a stress dependent stiffening effect. This adds to the linear static 

stiffness in the element. The stress dependent stiffness is now subtracting from the linear static 

stiffness term. This latter effect causes linear buckling. In an assembly of elements in an FEA model 

there will be a subtle interaction between the original linear stiffness matrix and the stress 

Figure 14: FEM model sketch showing varying casing wall thickness and wear 
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dependent stiffness matrix. This is analogous to the linear stiffness matrix and the mass matrix in 

a normal modes analysis. The same solution method is used — an eigenvalue extraction. 

Eigenvalue analysis predicts the theoretical buckling strength of a structure which is idealized as 

elastic. For a basic structural configuration, structural eigenvalues are computed from constraints 

and loading conditions. For a linear buckling analysis, this will find what scaling factors applied to 

the nominal static load will scale the stress stiffening terms to subtract sufficiently from the linear 

static terms to give unstable solutions. This scaling factor in FEM is called load multiplier.  

 If for any reason the results of a linear buckling solution suggest the calculation is not 

representing the real response, then a nonlinear buckling analysis is called for. This uses a 

nonlinear geometric analysis to progressively evaluate the transition from stable to unstable and 

addresses many of the limitations we have seen in linear buckling analysis. Nonlinear buckling 

analysis provides greater accuracy than elastic formulation. Applied loading incrementally 

increases until a small change in load level causes a large change in displacement. This condition 

indicates that a structure has become unstable. Nonlinear buckling analysis is a static method 

which accounts for material and geometric nonlinearities and geometric imperfections. Either a 

small destabilizing load or an initial imperfection is necessary to initiate the solution of a desired 

buckling mode. 
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Figure 15: Elastic collapse - Loading condition for 9 5/8" casing with wear as 10% of wall thickness 

 

 

Figure 16: Deformation under Eigen buckling for 9 5/8" casing with wear as 10% of wall thickness 
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5 RESULTS AND DISCUSSION 

5.1 Burst 

In this section, the hoop stress results obtained using new proposed burst analytical model 

have been compared with Finite Element Analysis burst simulation results. Comparison of the 

analytical model results with other existing models has also been presented.  

Figure 17: Hoop stress estimation for 9 5/8" casing with internal pressure of 1000 psi 

5.1.1 Model Validation - Wear influence on burst pressure 

As mentioned in section 2.1, API regulates the internal critical pressure in API Bulletin 5C3 

[9]. The internal capacity of pipe given by Barlow’s formula has a factor of 0.875 to accommodate 

for minimum wall thickness. Table 3 presents the comparison of the results with FEA model for 

5” OD casing with wear circle radius of 1.80”. To introduce the eccentricity in casing, minimum 

thickness (𝑡𝑡𝑎𝑎) of 0.25” and maximum thickness (𝑡𝑡𝑏𝑏) of 0.47” are used for calculations. The 

comparison has been done by varying the casing wear as a percentage of casing wall thickness 

from 0% to 50%.  The first three columns of Table 3 contain characteristic values, such as outside 

diameter, nominal wall thickness and wear circle radius. The fourth column indicates the 

corresponding wear as a percentage of casing wall thickness varying from 10% to 50%. The fifth 
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column has (𝜎𝜎𝑎𝑎/𝑃𝑃) values computed using the new proposed model (Equation 26) for non-

uniform wall thickness and wear. An internal pressure of 1000 psi has been used as a loading 

condition in FEA model to simulate the average hoop stress at the thinnest cross section of the 

casing. Subsequently, to obtain the average hoop stress using the analytical model, pressure of 

1000 psi is used and these values are shown in sixth column. The respective values from FEA 

simulation are shown in seventh column for comparison. The eight column shows the variation of 

the hoop stress obtained using new proposed model and the FEA model given by 

% Variation =
𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜎𝜎𝑎𝑎
∗ 100. (80) 

Table 3: Comparison of hoop stress using analytical and numerical model - 5" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear 
𝝈𝝈𝒂𝒂/P 

Proposed 
model 

𝝈𝝈𝒂𝒂 𝝈𝝈𝑭𝑭𝑭𝑭𝑭𝑭 Variation 

Inches Inches Inches % - psi psi % 

5     0.362 1.80 

10% 10.26 10262.18 10183.31 1% 
20% 12.69 12692.30 12572.13 1% 
30% 15.79 15792.89 16311.08 3% 
40% 21.26 21262.27 19762.16 7% 
50% 32.16 32155.01 32661.80 2% 

 

The average hoop stress values for new proposed model and FEA simulation for 5” casing 

with wear radius of 1.8” is presented in Table 3 are plotted in Figure 18. 
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Figure 18: Plot showing comparison of hoop stress using analytical and numerical model - 5" OD casing 

From Figure 18, results show a good correlation between both methods, with the 

deviations between 1% and 7%. From this chart it is clear that both models show that with 

increase in wear percentage, the average hoop stress increases. It is easy to notice very good 

conformity between curves formed by the new proposed model and FEM results.  

Table 4 below presents the comparison of the results with FEA model for 7” OD casing 

with wear circle radius of 2.4”. To introduce the eccentricity in casing, minimum thickness (𝑡𝑡𝑎𝑎) of 

0.38” and maximum thickness (𝑡𝑡𝑏𝑏) of 0.70” are used for calculations. The comparison has been 

done by varying the casing wear as a percentage of casing wall thickness from 0% to 50%.   
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Table 4:Comparison of hoop stress using analytical and numerical model - 7" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear 
σa/P 

Proposed 
model 

σa 𝝈𝝈𝑭𝑭𝑭𝑭𝑭𝑭 Variation 

Inches Inches Inches % - psi Psi % 

7     0.540 2.40 

10% 9.57 9566.42 9705.31 1% 
20% 11.88 11879.15 11592.10 2% 
30% 14.69 14694.44 14545.87 1% 
40% 19.79 19794.70 20446.10 3% 
50% 30.11 30107.08 29010.09 4% 

 

The average hoop stress values for new proposed model and FEA simulation for 7” casing 

with wear radius of 2.4” is presented in Table 4 are plotted in Figure 19. 

 

 

Figure 19: Plot showing comparison of hoop stress using analytical and numerical model - 7" OD casing 

From Figure 19, results show a good correlation between both methods, with the 

deviations between 1% and 4%. From this chart it is clear that both models show that with 
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increase in wear percentage, the average hoop stress increases. It is easy to notice very good 

conformity between curves formed by the new proposed model and FEM results.  

Table 5 presents the comparison of the results with FEA model for 9 5/8” OD casing with 

wear circle radius of 2.4”. To introduce the eccentricity in casing, minimum thickness (ta) of 0.54” 

and maximum thickness (tb) of 0.70” are used for calculations. The comparison has been done by 

varying the casing wear as a percentage of casing wall thickness from 0% to 50%.   

Table 5: Comparison of hoop stress using analytical and numerical model - 9 5/8" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear 
σa/P 

Proposed 
model 

σa 𝝈𝝈𝑭𝑭𝑭𝑭𝑭𝑭 Variation 

Inches Inches Inches % - psi psi % 

9 5/8 0.540 2.40 

10% 13.71 13705.72 13476.01 2% 
20% 17.09 17087.57 16110.88 6% 
30% 20.92 20918.15 21505.72 3% 
40% 28.12 28123.53 29205.79 4% 
50% 42.57 42572.79 41285.23 3% 

 

The average hoop stress values for new proposed model and FEA simulation for 9 5/8” 

casing with wear radius of 2.4” is presented in Table 5 are plotted in Figure 20. 
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Figure 20: Plot showing comparison of hoop stress using analytical and numerical model - 9 5/8" OD casing 

From Figure 20, results show a good correlation between both methods, with the 

deviations between 1% and 6%. From this chart it is clear that both models show that with 

increase in wear percentage, the average hoop stress increases. It is easy to notice very good 

conformity between curves formed by the new proposed model and FEM results.  

 

Table 6 presents the comparison of the results with FEA model for 9 5/8” OD casing with 

wear circle radius of 3.90”. To introduce the eccentricity in casing, minimum thickness (ta) of 

0.38” and maximum thickness (tb) of 0.71” are used for calculations. The comparison has been 

done by varying the casing wear as a percentage of casing wall thickness from 0% to 50%.   
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Table 6: Comparison of hoop stress using analytical and numerical model - 9 5/8" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear 
σa/P 

Proposed 
model 

σa 𝝈𝝈𝑭𝑭𝑭𝑭𝑭𝑭 Variation 

Inches Inches Inches % - psi psi % 

9 5/8 0.545 3.90 

10% 13.44 13439.02 13728.18 2% 
20% 16.24 16237.71 15991.35 2% 
30% 20.48 20480.58 20352.16 1% 
40% 27.58 27582.75 27977.11 1% 
50% 41.64 41639.82 39899.57 4% 

 

The average hoop stress values for new proposed model and FEA simulation for 9 5/8” 

casing with wear radius of 3.90” is presented in Table 6 are plotted in Figure 21. 

 

 

From Figure 21, results show a good correlation between both methods, with the 

deviations between 1% and 4%. From this chart it is clear that both models show that with 

Figure 21: Plot showing comparison of hoop stress using analytical and numerical model - 9 5/8" OD casing 
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increase in wear percentage, the average hoop stress increases. It is easy to notice very good 

conformity between curves formed by the new proposed model and FEM results.  

Table 7 presents the comparison of the results with FEA model for 13 3/8” OD casing with 

wear circle radius of 4.56”. To introduce the eccentricity in casing, minimum thickness (ta) of 0.36” 

and maximum thickness (tb) of 0.67” are used for calculations. The comparison has been done by 

varying the casing wear as a percentage of casing wall thickness from 0% to 50%.   

Table 7: Comparison of hoop stress using analytical and numerical model - 13 3/8" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear 
σa/P 

Proposed 
model 

σa 𝝈𝝈𝑭𝑭𝑭𝑭𝑭𝑭 Variation 

Inches Inches Inches % - psi psi % 

13 3/8 0.514 4.56 

10% 20.51 20510.01 19368.75 6% 
20% 25.25 25252.45 24233.56 4% 
30% 31.13 31129.03 30763.55 1% 
40% 41.68 41679.47 41126.18 1% 
50% 62.94 62944.51 59573.74 5% 

 

The average hoop stress values for new proposed model and FEA simulation for 13 3/8” 

casing with wear radius of 4.56” is presented in Table 7 are plotted in Figure 22. Results show a 

good correlation between both methods, with the deviations between 1% and 6%. From this chart 

it is clear that both models show that with increase in wear percentage, the average hoop stress 

increases. It is easy to notice very good conformity between curves formed by the new proposed 

model and FEM results.  
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5.1.2 Comparison with other models 

Table 8 presents the comparison of the results with existing models for 5” OD casing with 

wear circle radius of 1.80”. To introduce the eccentricity in casing, minimum thickness (ta) of 0.25” 

and maximum thickness (tb) of 0.47” are used for calculations. The comparison has been done by 

varying the casing wear as a percentage of casing wall thickness from 0% to 50%.  The first three 

columns of Table 8 contain characteristic values, such as outside diameter, nominal wall thickness 

and wear circle radius. The fourth column indicates the corresponding wear as a percentage of 

casing wall thickness varying from 10% to 50%. The fifth column has values computed by using 

the API equation (Equation 1). As these values consider the safety factor for minimum wall, for 

comparison purposes it was omitted. The sixth and seventh columns present the burst limit 

pressure values obtained using Nadai’s (Equation 2) and Crescent – shape wear models (Equation 

3) respectively. The eighth column shows the values obtained using new proposed model, 

Figure 22: Plot showing comparison of hoop stress using analytical and numerical model - 13 3/8" OD casing 
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assuming constant casing wall thickness (ta = tb). The ninth column shows the internal burst 

pressure capacity values obtained using the new proposed model with non-uniform wall thickness 

and wear (Equation 26). 

Table 8: Comparison of models for internal pressure capacity - 5" OD casing 

Casing 
Diameter 

Thicknes
s 

Wear 
circle 
radius 

Wear P API P Nadai P (Li and 
Samuel)  

P 
(constant 

t) 

P 
(Varying 

t) 
Inches Inches Inches % psi psi psi psi psi 

5     0.362 1.80 

10% 14335.61 17735.94 16557.84 16605.20 10718.97 
20% 12742.80 15638.52 14539.73 14577.11 8666.67 
30% 11149.80 13574.92 12569.29 12592.43 6965.16 
40% 9557.19 11544.81 10645.74 10668.99 5173.48 
50% 7964.40 9546.42 8766.94 8791.91 3420.93 

 

 

Figure 23: Plot showing comparison of models for internal pressure capacity - 5" OD casing 
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The average hoop stress values at the critical wear section for new proposed model and 

existing models for 5” casing with wear radius of 1.8” is presented in Table 8 are plotted in 

Figure 23. 

From Figure 23, the new proposed model with constant thickness provides a higher inner 

pressure capacity than the API model, the pressure capacity increases with decrease in diameter. 

The Nadai’s model gives a higher pressure capacity compared to other models as it is based on 

ultimate tensile strength instead of yield strength.  From this chart it is clear that all the models 

show that with increase in wear percentage, the limit burst pressure decreases. It is easy to notice 

very good conformity between curves formed by the new proposed model with constant 

thickness and crescent shape model.  Also, the new proposed model with varying thickness has 

the lowest value because the lowest thickness includes the eccentricity as well.  

Table 9 presents the comparison of the results with existing models for 7” OD casing with 

wear circle radius of 2.40”. To introduce the eccentricity in casing, minimum thickness (ta) of 0.38” 

and maximum thickness (tb) of 0.70” are used for calculations. The comparison has been done by 

varying the casing wear as a percentage of casing wall thickness from 0% to 50%.   

Table 9: Comparison of models for internal pressure capacity - 7" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear P API P Nadai P (Li and 
Samuel) 

P 
 
(constant) 

P 
(Varying 

t) 
Inches Inches Inches % Psi psi Psi psi psi 

7     0.540 2.40 

10% 15277.31 18992.45 17827.32 17841.50 11498.55 
20% 13580.25 16736.96 15640.75 15648.56 9259.92 
30% 11882.92 14520.45 13509.50 13525.12 7485.82 
40% 10185.93 12342.40 11432.47 11441.59 5557.04 
50% 8488.71 10200.79 9407.16 9415.15 3653.63 
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The average hoop stress values at the critical wear section for new proposed model and 

existing models for 7” casing with wear radius of 2.4” is presented in Table 9 are plotted in Figure 

24. 

From Figure 24, the new proposed model with constant thickness provides a higher inner 

pressure capacity than the API model, the pressure capacity increases with decrease in diameter. 

The Nadai’s model gives a higher pressure capacity compared to other models.  From this chart it 

is clear that both models show that with increase in wear percentage, the limit burst pressure 

decreases. It is easy to notice very good conformity between curves formed by the new proposed 

model with constant thickness and crescent shape model.  

 

 

Figure 24: Plot showing comparison of models for internal pressure capacity - 7" OD casing 
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Table 10 presents the comparison of the results with existing models for 9 5/8” OD casing 

with wear circle radius of 2.40”. To introduce the eccentricity in casing, minimum thickness (ta) 

of 0.38” and maximum thickness (tb) of 0.70” are used for calculations. The comparison has been 

done by varying the casing wear as a percentage of casing wall thickness from 0% to 50%.   

Table 10: Comparison of models for internal pressure capacity - 9 5/8" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear P API P Nadai 
P (Li 
and 

Samuel) 

P (constant 
t) 

P 
(Varying 

t) 
Inches Inches Inches % psi psi psi psi psi 

9 5/8 0.540 2.40 

10% 11213.71 13657.99 12528.3 12400.92 8025.85 
20% 9967.98 12065.35 11033.6 10921.06 6437.43 
30% 8722.21 10493.29 9566.03 9463.52 5258.59 
40% 7476.42 8940.416 8124.99 8028.64 3911.32 
50% 6230.78 7406.488 6710.02 6643.56 2583.81 

 

 

Figure 25: Plot showing comparison of models for internal pressure capacity - 9 5/8" OD casing 
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The average hoop stress values at the critical wear section for new proposed model and 

existing models for 9 5/8” casing with wear radius of 2.4” is presented in Table 10 are plotted in 

Figure 25. 

From Figure 25, the new proposed model with constant thickness provides a higher inner 

pressure capacity than the API model, the pressure capacity increases with decrease in diameter. 

The Nadai’s model gives a higher pressure capacity compared to other models.  From this chart it 

is clear that both models show that with increase in wear percentage, the limit burst pressure 

decreases. It is easy to notice very good conformity between curves formed by the new proposed 

model with constant thickness and crescent shape model.  

Table 11: Comparison of models for internal pressure capacity – 9 5/8" OD casing 

 

Table 11 presents the comparison of the results with existing models for 9 5/8” OD casing 

with wear circle radius of 3.90”. To introduce the eccentricity in casing, minimum thickness (ta) 

of 0.38” and maximum thickness (tb) of 0.70” are used for calculations. The comparison has been 

done by varying the casing wear as a percentage of casing wall thickness from 0% to 50%.  

 

The average hoop stress values at the critical wear section for new proposed model and 

existing models for 9 5/8” casing with wear radius of 3.90” is presented in Table 11 are plotted in 

Figure 26. 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear P API P Nadai P (Li and 
Samuel) 

P 
(constant 

t) 

P 
(Varying 

t) 
Inches Inches Inches % psi psi psi psi psi 

9 5/8 0.545 3.90 

10% 11211.58 13654.33 12525.71 12547.25 8185.12 
20% 9965.89 12062.70 11031.11 11037.44 6774.36 
30% 8720.06 10490.59 9563.52 9572.57 5370.94 
40% 7474.33 8937.83 8122.60 8122.41 3988.00 
50% 6228.55 7403.75 6707.51 6712.95 2641.70 
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From Figure 26, the new proposed model with constant thickness provides a higher inner 

pressure capacity than the API model, the pressure capacity increases with decrease in diameter. 

The Nadai’s model gives a higher pressure capacity compared to other models.  From this chart it 

is clear that both models show that with increase in wear percentage, the limit burst pressure 

decreases. It is easy to notice very good conformity between curves formed by the new proposed 

model with constant thickness and crescent shape model.  

 

Figure 26: Plot showing comparison of models for internal pressure capacity - 9 5/8" OD casing 

 

Table 12 presents the comparison of the results with existing models for 13 3/8” OD 

casing with wear circle radius of 4.56”. To introduce the eccentricity in casing, minimum thickness 

(ta) of 0.36” and maximum thickness (tb) of 0.67” are used for calculations. The comparison has 

been done by varying the casing wear as a percentage of casing wall thickness from 0% to 50%.   
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Table 12: Comparison of models for internal pressure capacity – 13 3/8" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear P API P Nadai 
P (Li 
and 

Samuel) 

P 
(constant 

t) 

P 
(Varying 

t) 
Inches Inches Inches % psi psi psi psi psi 

13 3/8 0.514 4.56 

10% 7609.19 9105.02 8192.22 8183.44 5363.23 
20% 6763.75 8060.55 7237.59 7237.62 4356.01 
30% 5918.22 7024.48 6294.38 6286.92 3533.68 
40% 5072.82 5996.95 5362.65 5359.72 2639.19 
50% 4227.23 4977.45 4441.87 4437.26 1747.57 

 

The average hoop stress values at the critical wear section for new proposed model and 

existing models for 13 3/8” casing with wear radius of 4.56” is presented in Table 12 are plotted 

in Figure 27. 

 

Figure 27: Plot showing comparison of models for internal pressure capacity - 13 3/8" OD casing 
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From Figure 27, the new proposed model with constant thickness provides a higher inner 

pressure capacity than the API model, the pressure capacity increases with decrease in diameter. 

The Nadai’s model gives a higher pressure capacity compared to other models.  From this chart it 

is clear that both models show that with increase in wear percentage, the limit burst pressure 

decreases. It is easy to notice very good conformity between curves formed by the new proposed 

model with constant thickness and crescent shape model.  

5.1.3 Non-uniformity influence on burst pressure 

In this section, limit burst pressure calculations have been done by varying the thickness of 

the casing in the bent cross section. Casing wear has not been considered in these calculations. 

The maximum thickness has been varied from 100% to 130% in the increments of 5%. Similarly, 

the minimum thickness has been varied from 70% to 100% in the increments of 5%.  

Table 13, Table 14, Table 15 and Table 16 presents the calculations of limit burst pressure 

with varying thickness for 5”, 7”, 9 5/8” and 13 3/8” OD casings respectively. The first two columns 

of tables contain characteristic values, such as outside diameter and nominal wall thickness. The 

third column indicates the corresponding thickness variation as a percentage of casing wall 

thickness varying from 5% to 30%. The fifth and sixth columns have (σa/𝑃𝑃) and (σb/𝑃𝑃) values 

computed using the new proposed model (Equation 12) for non-uniform wall thickness without 

wear. The eight column shows the calculated limit burst pressure capacity at the corresponding 

varied thickness using new proposed model. 
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Table 13: Burst pressure capacity with varying thickness - 5" OD casing 

Casing 
Diameter Thickness Thickness 

reduction ta tb σa/P σb/P P 

Inches Inches % psi psi psi psi psi 

5     0.362 

30% 0.25 0.47 8.44 4.54 13037.42 
25% 0.27 0.45 7.87 4.72 13968.66 
20% 0.29 0.43 7.38 4.92 14899.91 
15% 0.31 0.42 6.95 5.14 15831.15 
10% 0.33 0.40 6.56 5.37 16762.39 
5% 0.34 0.38 6.22 5.62 17693.64 
0% 0.36 0.36 5.91 5.91 18624.88 

 

Table 14: Burst pressure capacity with varying thickness - 7" OD casing 

Casing 
Diameter Thickness Thickness 

reduction ta tb σa/P σb/P P 

Inches Inches % psi psi psi psi psi 

7     0.540 

30% 0.38 0.70 7.83 4.22 14047.30 
25% 0.41 0.68 7.31 4.39 15050.68 
20% 0.43 0.65 6.85 4.57 16054.05 
15% 0.46 0.62 6.45 4.77 17057.43 
10% 0.49 0.59 6.09 4.98 18060.81 
5% 0.51 0.57 5.77 5.22 19064.19 
0% 0.54 0.54 5.48 5.48 20067.57 

 

Table 15: Burst pressure capacity with varying thickness - 9 5/8" OD casing 

Casing 
Diameter Thickness Thickness 

reduction ta tb σa/P σb/P P 

Inches Inches % psi psi psi psi psi 

9 5/8 0.545 

30% 0.38 0.71 11.19 6.02 9833.63 
25% 0.41 0.68 10.44 6.26 10536.03 
20% 0.44 0.65 9.79 6.53 11238.43 
15% 0.46 0.63 9.21 6.81 11940.83 
10% 0.49 0.60 8.70 7.12 12643.23 
5% 0.52 0.57 8.24 7.46 13345.64 
0% 0.55 0.55 7.83 7.83 14048.04 
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Table 16: Burst pressure capacity with varying thickness - 13 3/8" OD casing 

Casing 
Diameter Thickness Thickness 

reduction ta tb σa/P σb/P P 

Inches Inches % psi psi psi psi psi 

13 3/8 0.514 

30% 0.36 0.67 17.16 9.24 6410.95 
25% 0.39 0.64 16.01 9.61 6868.88 
20% 0.41 0.62 15.01 10.01 7326.80 
15% 0.44 0.59 14.13 10.44 7784.73 
10% 0.46 0.57 13.35 10.92 8242.65 
5% 0.49 0.54 12.64 11.44 8700.58 
0% 0.51 0.51 12.01 12.01 9158.50 

 

Figure 28: Plot showing burst pressure capacity with varying thickness for standard casing sizes 

 

Figure 28 shows the variation of inner pressure capacity of casing with change in thickness 

percentage variation. As expected, as the percentage increase of thickness increases, burst 

pressure capacity decreases. As the casing size increases, the burst pressure capacity even further 

decreases. 
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5.1.4 Case Studies 

Four case studies are presented to emphasize the difference between the new analytical model 

and existing API model while attempting to estimate the strength degradation factors based on 

wear percentage and wear radius. Four worn casings with different geometrical configurations 

were designed to compare casing burst and elastic collapse pressure predictions using the newly 

proposed models. The geometrical information is listed in Table 2. The casing in Case 2, 3 and 4 

had a similar thickness but different nominal radius. The casing in Case 3 and 4 had the same 

geometrical configuration but a different wear part radius to research the influence of the wear 

part circle radius.  

5.1.4.1 Case 1 

This case compares the values of casing burst strength of a 5” casing obtained using newly 

proposed model versus the API model. As the analysis is done for the casing with varying 

thickness, the maximum thickness is considered to be 0.70” and minimum thickness to be 0.38”. 

The comparison has been done varying the casing wear as a percentage of casing wall thickness 

from 0% to 50%. The comparison in Table clearly shows that the API model underestimates the 

burst strength compared to the proposed model. Casing with less wear has the maximum 

variation of burst rating and gradually decreases with increasing wear. 

Table 17: Case 1 - 5" OD Casing comparison 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear P API P (New 
Model) Variation 

Inches Inches Inches % psi psi % 

5     0.362 1.80 

10% 9556.80 10718.97 12% 
20% 7964.00 8666.67 9% 
30% 6371.20 6965.16 9% 
40% 4778.40 5173.48 8% 
50% 3185.60 3420.93 7% 
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5.1.4.2 Case 2 

This case is similar to the previous study which compares the values of casing burst strength of a 

7 “casing obtained using newly proposed model versus the API model. The maximum thickness is 

considered to be 0.70” and minimum thickness to be 0.38”. The comparison has been done 

varying the casing wear as a percentage of casing wall thickness from 0% to 50%. The maximum 

variation of the burst pressure obtained using the new model is 13 % of the API burst pressure. 

Table 18: Case 2 - 7" OD Casing comparison 

Casing 
Diameter Thickness Wear circle 

radius Wear P API P (New 
Model) Variation 

Inches Inches Inches % psi psi % 

7     0.540 2.40 

10% 10182.86 11498.55 13% 
20% 8485.71 9259.92 9% 
30% 6788.57 7485.82 10% 
40% 5091.43 5557.04 9% 
50% 3394.29 3653.63 8% 
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Figure 29: Case 1 - 5" OD Casing comparison 
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Figure 30: Case 2 - 7" OD Casing comparison 

5.1.4.3 Case 3 

This case compares the values of casing burst strength of a 9 5/8 “casing obtained using newly 

proposed model versus the API model. As the analysis is done for the casing with varying 

thickness, the maximum thickness is considered to be 0.70” and minimum thickness to be 0.38”. 

The comparison has been done varying the casing wear as a percentage of casing wall thickness 

from 0% to 50%. 

Table 19: Case 3 - 9 5/8" OD Casing comparison 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear P API P (New 
Model) Variation 

Inches Inches Inches % psi psi % 

9 5/8 0.540 2.40 

10% 7405.71 8025.85 8% 
20% 6171.43 6437.43 4% 
30% 4937.14 5258.59 7% 
40% 3702.86 3911.32 6% 
50% 2468.57 2583.81 5% 
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Figure 31:Case 3 - 9 5/8" OD Casing comparison 

 

5.1.4.4 Case 4 

This case is similar to the previous study which compares the values of casing burst strength of a 

9 5/8 “casing obtained using newly proposed model versus the API model. The minimum thickness 

is taken 75% of the nominal thickness which is 0.38” and maximum thickness to be 0.70”.  For this 

case study the wear radius has been changed to 3.9”.  

 

Table 20: Case 4 - 9 5/8" OD Casing comparison 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear P API P (New 
Model) Variation 

Inches Inches Inches % psi psi % 

9 5/8 0.540 3.90 

10% 7474.29 8025.85 7% 
20% 6228.57 6437.43 3% 
30% 4982.86 5258.59 6% 
40% 3737.14 3911.32 5% 
50% 2491.43 2583.81 4% 
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Figure 32: Case 4 - 9 5/8" OD Casing comparison 

5.1.4.5 Case 5 

This case is similar to the previous study which compares the values of casing burst strength of a 

13 3/8 “casing obtained using newly proposed model versus the API model. As the analysis is done 

for the casing with varying thickness, the maximum thickness is considered to be 0.36” and 

minimum thickness to be 0.67”. As the casing size increases, the variation of the pressure with 

API decreases gradually. 

Table 21: Case 5 - 13 3/8" OD Casing comparison 

Casing 
Diameter Thickness Wear circle 

radius Wear P API P (New 
Model) Variation 

Inches Inches Inches % psi psi % 

13 3/8 0.540 4.56 

10% 5072.75 5363.23 6% 
20% 4227.29 4356.01 3% 
30% 3381.83 3533.68 4% 
40% 2536.37 2639.19 4% 
50% 1690.92 1747.57 3% 
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Figure 33: Case 5 - 13 3/8" OD Casing comparison 

 

5.2 Bending 

In this section, limit bending moment calculations have been done using the new proposed 

model for casing with varying thickness and wear. As mentioned in Section 2.4, with casing wear 

and non-uniform thickness, the neutral axis would shift away from the central axis. Firstly, the 

new position of the neutral axis has been calculated from the angles β and β’. The second moment 

of inertia (I) is calculated using β and β’. Bending moment capacities (M) are determined by using 

the corresponding I values. Bending moment capacities of all the commercial casing sizes have 

been calculated as shown by varying the wear percentages. 

The comparison has been done by varying the casing wear as a percentage of casing wall 

thickness from 0% to 50%.  The first three columns of Table 22 contain characteristic values, such 

as outside diameter, nominal wall thickness and wear circle radius. The fourth column indicates 

the corresponding wear as a percentage of casing wall thickness varying from 10% to 50%. The 
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fifth and sixth columns have β, β’ values computed using the new proposed model (Equation 59) 

for non-uniform wall thickness and wear.  Based on the calculated new neutral axis position, 

second moment of inertia (I) values have been calculated and shown in seventh column. The 

eighth and ninth columns have the values of bending moment capacity and variation of the 

bending moment from 0 % to 50% wear obtained using new proposed model. 

Table 22: Bending moment capacity with wear - 5" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear β β' I M Maximum 
Variation 

Inches Inches Inches % degrees degrees in^4 in-kips % 

5     0.362 1.80 

0% 72.0 68.5 58.36 2284.99 

17.60% 

10% 70.6 66.8 56.97 2212.83 
20% 69.2 65.1 55.46 2136.32 
30% 67.7 63.2 53.82 2055.69 
40% 66.1 61.3 52.05 1971.17 
50% 64.6 59.2 50.15 1882.94 

 

Table 23: Bending moment capacity with wear - 5" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear β β' I M Maximum 
Variation 

Inches Inches Inches % degrees degrees in^4 in-kips % 

7     0.540 2.40 

0% 73.2 69.8 221.43 6428.27 

17.64% 

10% 71.8 68.0 215.68 6222.90 
20% 70.3 66.2 209.48 6006.31 
30% 68.8 64.3 202.84 5779.06 
40% 67.3 62.3 195.77 5541.67 
50% 65.7 60.3 188.25 5294.59 
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Table 24:Bending moment capacity with wear - 9 5/8" OD casing 

Casing 
Diamete

r 

Thicknes
s 

Wear 
circle 
radius 

Wea
r β β' I M 

Maximu
m 

Variation 

Inches Inches Inche
s % degree

s 
degree

s in^4 in-kips % 

9 5/8 0.540 2.40 

0% 82.6 81.6 880.77 19608.48 

1.41% 

10% 82.5 81.5 878.92 19557.22 
20% 82.3 81.3 876.98 19504.09 
30% 82.2 81.1 874.97 19449.04 
40% 82.0 81.0 872.87 19391.99 
50% 81.9 80.8 870.69 19332.90 

 

Table 25: Bending moment capacity with wear - 9 5/8" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear β β' I M Maximum 
Variation 

Inches Inches Inches % degrees degrees in^4 in-kips % 

9 5/8 0.540 3.90 

0% 86.3 85.9 898.52 20268.93 

19.40% 

10% 77.5 75.8 825.38 18053.71 
20% 76.1 74.2 809.43 17622.35 
30% 74.8 72.7 793.36 17196.58 
40% 73.5 71.2 776.94 16769.40 
50% 72.2 69.7 760.04 16337.10 

 

Table 26: Bending moment capacity with wear - 13 3/8" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear β β' I M 
Maximu

m 
Variation 

Inches Inches Inches % degrees degrees in^4 in-kips % 

13 3/8 0.514 4.56 

0% 82.3 81.6 3198.42 51571.85 

1.53% 

10% 82.1 81.4 3190.61 51421.90 
20% 81.9 81.2 3182.56 51268.04 
30% 81.7 81.0 3174.28 51110.21 
40% 81.5 80.8 3165.75 50948.31 
50% 81.3 80.6 3156.98 50782.28 
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The bending moment capacities of all the commercial casing sizes with variation of casing 

wear percentages have been plotted as shown in Figure 34. 

By observing Figure 34 and Table 22 to Table 26, it can be said that the variation of Bending 

moment capacity is not very high in higher OD casings. However, in lower OD casings such as 5” 

and 7”, the variation is about 15 % - 20 % which is considerable to account for calculations. Overall, 

due to wear there is not much variation in bending moment. 

Figure 34: Plot showing bending moment capacity with wear for standard casing sizes 
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5.3 Collapse 

In this section, the elastic collapse pressure values obtained using new proposed collapse 

analytical model have been compared with Finite Element Analysis Collapse Eigen buckling 

simulation results using FEM model.  

5.3.1 Model Validation - Wear influence on collapse pressure 

Table 27 presents the comparison of the results with FEA model for 5” OD casing with wear 

circle radius of 1.80”. To introduce the eccentricity in casing, minimum thickness (𝑡𝑡a) of 0.25” and 

maximum thickness (𝑡𝑡b) of 0.47” are used for calculations. The comparison has been done by 

varying the casing wear as a percentage of casing wall thickness from 0% to 50%.  The first three 

columns of Table 27 contain characteristic values, such as outside diameter, nominal wall 

thickness and wear circle radius. The fourth column indicates the corresponding wear as a 

percentage of casing wall thickness varying from 10% to 50%. The fifth and sixth has h and mean 

radius at a section. Seventh column has elastic collapse pressure values computed using the new 

proposed model (Equation 79) for non-uniform wall thickness and wear. The respective values 

from FEA simulation are shown in seventh column for comparison. The eight column shows the 

variation of the elastic collapse pressure obtained using new proposed model and the FEA model. 

Table 27: Comparison of elastic collapse capacity using analytical and numerical model - 5" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear h Rm P P FEM Variation 

Inches Inches Inches % Inches Inches psi psi % 

5     0.362 1.80 

0% 0.34 2.33 21692.38 21088 3% 
10% 0.32 2.34 17652.85 18200 3% 
20% 0.30 2.35 14439.43 16019 10% 
30% 0.28 2.36 12214.26 13970 13% 
40% 0.26 2.37 9615.17 12233 21% 
50% 0.24 2.38 7269.70 9623 24% 
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The elastic collapse pressure values for new proposed model and FEA simulation for 5” 

casing with wear radius of 1.8” is presented in Table 27 are plotted in Figure 35. 

 

 

Figure 35: Plot showing comparison of elastic collapse capacity using analytical and numerical model - 5" OD casing 

From Figure 35, results show the correlation between analytical and numerical methods, 

with the deviations between 3% and 24%. From this chart it is clear that both models show that 

with increase in wear percentage, the elastic collapse pressure decreases. The variation is 

increasing with the increase of wear percentage increases. 

Table 28 presents the comparison of the results with FEA model for 7” OD casing with 

wear circle radius of 1.80”. To introduce the eccentricity in casing, minimum thickness (𝑡𝑡a) of 0.38” 

and maximum thickness (𝑡𝑡b) of 0.70” are used for calculations. 
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Table 28: Comparison of elastic collapse capacity using analytical and numerical model - 7" OD casing 

Casing 
Diameter Thickness 

Wear 
circle 
radius 

Wear h Rm P P FEM Variation 

Inches Inches Inches % Inches Inches psi psi % 

7     0.540 2.40 

0% 0.50 3.25 26486.59 26000 2% 
10% 0.47 3.26 21982.59 23588 7% 
20% 0.44 3.28 18054.17 20354 11% 
30% 0.42 3.29 14553.59 16335 11% 
40% 0.38 3.31 11394.83 13500 16% 
50% 0.36 3.32 9223.10 11295 18% 

The elastic collapse pressure values for new proposed model and FEA simulation for 7” 

casing with wear radius of 2.4” as presented in Table 28 are plotted in Figure 36. 

 

 

Figure 36: Plot showing comparison of elastic collapse capacity using analytical and numerical model - 7" OD casing 

From Figure 36, results show the correlation between analytical and numerical methods, 

with the deviations between 2% and 18%. Similar to the previous casing analysis, the variation is 

increasing with the increase of wear percentage increases. 
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Table 29 presents the comparison of the results with FEA model for 9 5/8” OD casing with 

wear circle radius of 2.40”. To introduce the eccentricity in casing, minimum thickness (𝑡𝑡a) of 0.38” 

and maximum thickness (𝑡𝑡b) of 0.70” are used for calculations. 

Table 29: Comparison of elastic collapse capacity using analytical and numerical model - 9 5/8" OD casing 

Casing 
Diamete

r 

Thicknes
s 

Wear 
circle 
radius 

Wear h Rm P P FEM Variatio
n 

Inches Inches Inches % Inches Inches psi psi % 

9 5/8 0.540 2.40 

0% 0.52 4.55 10826.18 10259 6% 
10% 0.49 4.57 9065.13 9504 5% 
20% 0.46 4.58 7285.58 8230 11% 
30% 0.44 4.59 6195.83 7122 13% 
40% 0.41 4.61 5010.00 6299 20% 
50% 0.38 4.62 4060.79 5145 21% 

 

The elastic collapse pressure values for new proposed model and FEA simulation for 9 5/8” 

casing with wear radius of 2.4” is presented in Table 29 are plotted in Figure 37. 

 

 

Figure 37: Plot showing comparison of elastic collapse capacity using analytical, numerical model - 9 5/8" OD casing 
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From Figure 37, results show the correlation between analytical and numerical methods, 

with the deviations between 6% and 21%. The variation is increasing with the increase of wear 

percentage increases. 

Table 30 presents the comparison of the results with FEA model for 13 3/8” OD casing 

with wear circle radius of 4.56”. To introduce the eccentricity in casing, minimum thickness (𝑡𝑡a) 

of 0.36” and maximum thickness (𝑡𝑡b) of 0.67” are used for calculations. 

 

Table 30: Comparison of elastic collapse capacity using analytical and numerical model - 13 3/8" OD casing 

Casing 
Diamete

r 

Thicknes
s 

Wear 
circle 
radius 

Wear h Rm P P FEM Variatio
n 

Inches Inches Inches % Inches Inches psi psi % 

13 3/8 0.514 4.56 

0% 0.49 6.44 3186.45 3152 1% 
10% 0.46 6.46 2662.91 2900 8% 
20% 0.44 6.47 2224.99 2539 12% 
30% 0.41 6.48 1823.38 2180 16% 
40% 0.38 6.50 1422.25 1691 16% 
50% 0.35 6.51 1166.76 1412 17% 

 

The elastic collapse pressure values for new proposed model and FEA simulation for 13 3/8” 

casing with wear radius of 4.56” is presented in Table 30 are plotted in Figure 38. 
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Figure 38: Plot showing comparison of elastic collapse capacity using analytical, numerical model - 13 3/8" OD casing 

From Figure 38, results show the correlation between analytical and numerical methods, 

with the deviations between 1% and 17%. From this chart it is clear that both models show that 

with increase in wear percentage, the elastic collapse pressure decreases. The variation is 

increasing with the increase of wear percentage increases. 

 

5.4 Guidelines to use the analytical models 

To use the analytical models, firstly few things have to be identified. Based on the profile of the 

casing, the eccentricity or non-uniformity of the casing and maximum wear depth of the casing 

has to be identified. The other geometrically relevant parameters such as ta , tb, rs, θo and αo 

have to be evaluated. For burst, upon substituting the above mentioned values in equation (26), 

the maximum stress concentration factor for burst is obtained. Similarly, upon using these values 

in equations (59) and (79) the maximum bending capacity and collapse capacity of a non-uniform 

cylinder with wear can be calculated. 
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6 CONCLUSIONS 

Analytical models have been developed for burst capacity, bending moment capacity and limit 

elastic buckling pressure for casing with wear in the bent cross section. The results from the 

analytical models have been validated with numerical simulations and subsequently compared 

against other existing models in the industry.  

The following conclusions were reached from this study: 

 
1. Proposed analytical and FEM simulated model comparison show a good correlation with 

a maximum deviation of 7%. It is easy to notice very good conformity between curves 

formed by the new proposed model and FEM results.  

2. The new proposed model with constant thickness provides a higher inner pressure 

capacity than the API model which is based on the uniform wear model. The Nadai’s 

model gives a higher pressure capacity compared to other models as it is based on 

ultimate tensile strength instead of yield strength. Very good conformity is formed 

between the new proposed model with constant thickness and crescent shape model.  

3. Sensitivity analysis of casing wear percentage is performed in an attempt to understand 

the rate of strength degradation as a percentage of wear and wear circle radius for burst, 

collapse and bending. There is not much difference in results with wear circle. 

4. Limit burst pressure calculations have been done by varying the thickness of the casing in 

the bent cross section.  

5. It can be said that the variation of Bending moment capacity is not very high in higher OD 

casings. However, in lower OD casings such as 5” and 7”, the variation is about 15 % - 20 

% which is considerable to account for calculations. Overall, due to wear there is not much 

variation in bending moment. 
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6. Results show the correlation between collapse analytical and numerical model, with the 

deviations between 3% and 24%. The variation is increasing with the increase of wear 

percentage increases. 

7. Re- assessment of limit burst, bending and collapse capacities for all the standard industry 

casing sizes using new proposed models. 
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7 LIMITATIONS AND FUTURE SCOPE 

1. The developed analytical models can be used to create a model to calculate the failure 

point under combined loading of a non-uniform casing with wear. 

2. A casing wear profile from the field data which exactly represents the drilling wear can be 

used to perform calculations. 

3. The degradation of casing strength under combined axial and bending loading conditions 

should be calculated. 

4. Casing collapse model should be modified to include cases where yielding starts before 

elastic buckling. 

5. Hoop stress calculation of a thick walled pipe with including the effects of local bending. 

6. A software program can be developed to create limit burst, collapse and bending 

capacities of a pipe with varying wall thickness profile, wear, sour conditions and 

combined loading as well. 

 

 

 

  



77 
 

REFERENCES 

1. Li, C., & Samuel, R. (2016, March 1). “Casing Integrity: Modeling Strength Degradation. Society 

of Petroleum Engineers.” doi:10.2118/178791-MS 

2. Sun, K., Samuel, R., & Guo, B. (2004, January 1). “Effect of Stress Concentration Factors due 

to Corrosion on Production Tubing Design.” Society of Petroleum Engineers. 

doi:10.2118/90094-MS 

3. Kumar, A., & Samuel, R. (2015, March 17). “Casing Wear Factors: How do They Improve Well 

Integrity Analyses?” Society of Petroleum Engineers. doi:10.2118/173053-MS 

4. Wu, J., & Zhang, M. (2005, January 1). “Casing Burst Strength After Casing Wear. Society of 

Petroleum Engineers.” doi:10.2118/94304-MS 

5. Kuriyama, Y., Tsukano, Y., Mimaki, T., & Yonezawa, T. (1992, January 1). “Effect of Wear and 

Bending on Casing Collapse Strength.” Society of Petroleum Engineers. doi:10.2118/24597-

MS 

6. Kaldal, G.S., Jonsson, M.T., Palsson, H. and Karlsdottir, S.N., 2015. “Structural modeling of the 

casings in high temperature geothermal wells.” Geothermics, 55, pp.126-137. 

7. Klever, F. J., & Tamano, T. (2006, September 1). “A New OCTG Strength Equation for Collapse 

Under Combined Loads.” Society of Petroleum Engineers. doi:10.2118/90904-PA 

8. Hauch S, Bai Y. “Use of finite element methods for the determination of local buckling 

strength.” In: Proceedings of the 1998 International Conference on Offshore Mechanics and 

Arctic Engineering, Lisbon, Portugal, 5–9 July 1998. 

9. Timoshenko SP, Gere JM. Theory of elastic stability. New York: McGraw-Hill, 1961. 

10. API, 1994, “Bulletin on Formulas and Calculations for Casing, Tubing, Drill Pipe and Line Pipe 

Properties,” API Bulletin 5C3, 6th ed., API, Washington, DC. 



78 
 

11. Tamano, T., Mimaki, T., and Yanagimoto, S., 1983, “A New Empirical Formula for Collapse 

Resistance of Commercial Casing,” Proceedings of the Second International Offshore 

Mechanics and Arctic Engineering Symposium, ETCE, p. 489. 

12. Clinedinst, W. O. (1939, January 1). “Rational Expression for the Critical Collapsing Pressure of 

Pipe under External Pressure.” American Petroleum Institute. 

13. A. Nadai, Plasticity. McGraw-Hill, New York, NY (1931) 

14. Bai Y, Igland R, Moan T. “Tube collapse under combined external pressure, tension and 

bending.” Mar. Struct. 1997;10(5):389–410. 

15. Kuriyama, Y. (1994, January 1). “A New Formula for Elasto-Plastic Collapse Strength of Thick-

Walled Casing.” Society of Petroleum Engineers. http:/doi:10.2118/28327-MS 

16. Holmquist, J. L., & Nadai, A. (1939, January 1). “A Theoretical and Experimental Approach to 

the Problem of Collapse of Deep-Well Casing.” American Petroleum Institute. 

17. Main, W. C. (1939, January 1). “Combining Bending and Hoop Stresses to Determine 

Collapsing Pressure of Oil-Country Tubular Goods.” American Petroleum Institute. 

 

 

 

 

 

 

 

 

 

 



79 
 

Appendix A 

 

 

 

Node 
Number

Maximum 
Principal Stress 
(psi)

Nodes on 
thinnest cross-
section

Corresponding 
Max. Principal 
Stress

Node 
Number

Maximum 
Principal Stress 
(psi)

Nodes on 
thinnest cross-
section

Corresponding 
Max. Principal 
Stress

1 7463.1 2056 7086.6 1 4659.8 2063 2916.9
2 7395.8 44415 7470.5 2 4651 45832 3828.8
3 9282.4 38387 7854.4 3 6473 38783 4740.6
4 10256 95596 8221.3 4 7506.8 116913 5645.5
5 10923 26012 8588.2 5 8260.8 35602 6550.5
6 11489 89975 8951.2 6 8927 116671 7450.2
7 11984 23326 9314.3 7 9539.2 35483 8349.9
8 12443 85282 9696.9 8 10115 113794 9248
9 12875 21076 10079 9 10673 34086 10146

10 13288 82364 10450 10 11223 110901 11050
11 13689 19667 10820 11 11774 32693 11955
12 14082 82365 11194 12 12325 108057 12856
13 14465 22356 11567 13 12871 31317 13756
14 14839 87966 11959 14 13418 102469 14651
15 15204 25055 12350 15 13969 28591 15546
16 15563 93568 12758 16 14522 99614 16448
17 15914 35282 13166 17 15084 27199 17350
18 16258 114763 13582 18 15651 99509 18263
19 16595 35306 13998 19 16214 27150 19176
20 16928 114812 14436 20 16780 99510 20106
21 17253 35313 14874 21 17346 41444 21036
22 17569 114827 15331 22 17914 39867 8019
23 17872 35342 15787 23 18485 24445 22909
24 18161 114885 16261 24 19060 91109 23838
25 18438 35359 16735 25 19632 23118 24768
26 18703 114918 17224 26 20195 90399 25713
27 18955 35361 17713 27 20754 22790 26658
28 19195 114922 18219 28 21308 90400 27609
29 19420 35377 18725 29 21856 38893 28560
30 19631 114957 19256 30 22398 41817 29618
31 19828 36532 19786 31 22934 55 30676
32 20010 40388 20347 32 23468
33 20176 42 20908 33 23992 Max. P Stress 16110.88
34 20327 34 24500
35 20462 Max. P Stress 13476.01 35 24991
36 20580 36 25468
37 20680 37 25931
38 20762 38 26378
39 20827 39 26807
40 20872 40 27216

 9 5/8 " Casing with 10% wear 9 5/8" Casing with 20% wear

119556 5811.2 119556 13215
119557 8428.2 119557 13348
119558 5827.5 119558 13235
119559 8259.3 119559 13370
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