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Abstract

The study of the phases of Quantum Chromodynamics (QCD), at finite tempera-

ture (T) and baryon chemical potential (µB), is one of the biggest challenges in theo-

retical physics and represents a significant step towards understanding the collective

behavior of the strong force. The non-perturbative region of QCD, where atomic mat-

ter dissolves into a Quark-Gluon-Plasma state, can only be studied from first principles

by numerical lattice simulations. These studies have established that the transition is

a smooth crossover. It is expected that, as µB increases, the crossover sharpens into a

critical-end-point (CEP) where a first order phase transition begins. However, due to

the fermion sign problem, calculations on the lattice cannot be performed at real µB.

On the experimental side, efforts are being made at heavy-ion colliders (HICs) to probe

high regions of µB in search for the CEP. To support these efforts, alternative theoretical

frameworks are required to relate those experiments to the phases of QCD.

This dissertation is devoted to exploring the high µB-region of QCD. First, I will an-

alyze the lower order baryonic susceptibilities simulated on the lattice at imaginary-µB

to calculate the higher order ones at µB = 0. Those susceptibilities allow one to have

access to a finite µB, by Taylor expanding the QCD thermodynamical potential around

µB = 0, and to make a direct connection with the distribution of conserved charges mea-

sured in HICs. The second part of this thesis uses a model based on the gauge/string

duality to engineer holographic black holes that mimic the equation of state of QCD

obtained on the lattice at µB = 0 and predicts its behavior at finite µB. Our black hole

model provides a realistic prediction of the existence of a CEP in the phase diagram of

QCD, located at µCEP
B = 724 MeV and TCEP = 89 MeV. It reproduces the baryon suscep-

tibilities calculated on the lattice at µB = 0 and predicts them at arbitrary µB. Finally, the
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analysis made with the holographic model leads to predict the collision energy needed

to hit the CEP in HICs, which is within the range of the next generation of colliders.
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Chapter 1

Introduction to the Phases of QCD

1.1 Introduction

Over the last century, the interplay between experiments and theoretical models has

brought about a radically new understanding of the constituents of matter and their

interactions. The fundamental particles that make up all matter in the universe are

quarks and leptons, and their interactions are governed by the principle of local gauge

invariance. These ideas are summarized in the Standard Model of Particles, whose es-

sential components are the Electroweak Theory, which unifies Quantum Electrodynam-

ics (QED) with the weak nuclear force, and the theory of strong interactions, Quantum

Chromodynamics (QCD) [1].

QCD governs the quark sector of the Standard Model. Its interaction is defined by

the non-Abelian SU(3) gauge group with gluons as the mediators of the force. Conse-

quently, the fundamental degrees of freedom of QCD are the quarks and the gluons,

which posses three color charges. The strength of the strong force under ordinary cir-

cumstances is large. However, as with other non-abelian theories, QCD exhibits an
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Chapter 1. Introduction to the Phases of QCD

effective interaction strength that decreases at short distances, or high energies, lead-

ing to interesting phenomena such as asymptotic freedom and color superconductiv-

ity, and confinement and dynamical chiral symmetry breaking at low energies. These

features are expected to generate complex subatomic structures and phases commonly

sketched on the "QCD phase diagram". The aim of the QCD phase diagram is mapping

out the state of strongly interacting matter as a function of two relevant thermodynamic

variables: the temperature (T) and the baryonic chemical potential (µB).

The study of the QCD phase diagram is a topic of great interest and active investi-

gation both in experiment and in theory, and it covers a wide range of disciplines from

cosmology and astrophysics, to nuclear and particle physics. Due to the dependence of

the coupling constant on the energy scale, there are two prominent phases of strongly

interacting matter. Under ordinary conditions, quarks and gluons are confined into

color-neutral hadrons, such as protons and neutrons that make up the nuclei of the

atoms. At densities about a trillion times larger than ordinary nuclear matter, hadrons

give way to a deconfined phase of quarks and gluons known as the quark gluon plasma

(QGP).

In nature, the hot QGP filled the early universe just a few microseconds after the

Big Bang and gave rise to the primordial baryonic matter. At present, compact stars

are expected to contain cold and baryon rich quark matter, which makes them the nat-

ural candidate to contain deconfined quark matter. Nowadays, the extreme conditions

needed to create the QGP can be recreated in the laboratory in heavy ion colliders (HIC)

such as the Relativistic-Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory

(BNL), and Large Hadron Collider (LHC) at the European Organization for Nuclear

Research (CERN).

There are several theoretical tools to study strongly interacting matter. Theoretical

2



Chapter 1. Introduction to the Phases of QCD

frameworks are required to relate observables measured in HICs, or any astrophysi-

cal observation, to the properties of the QGP and to the QCD phase diagram. At high

energies, where the QCD coupling is small, perturbation theory describes the asymp-

totic behavior of the QGP with weakly interacting quarks and gluons as degrees of

freedom [2, 3]. In the non-perturbative region of QCD, at finite T and zero µB, the equi-

librium properties of strongly interacting matter can only be obtained by means of lat-

tice simulations. Those calculations have established that the transition from hadronic

matter to the QPG is a smooth crossover, taking place over a 20− 30 MeV range of

temperatures, centered around Tc ' 155 MeV. [4–9]. While lattice QCD is unable to

perform full calculations at finite real µB due to the fermion sign problem, a small finite

region of µB can be reached employing different techniques. One of them is to Taylor

expand the thermodynamical observables calculated on the lattice at zero µB [10–14].

Another possibility is to calculate those observables at imaginary-µB and perform an

analytical continuation to the real plane [15–19]. At present, the first three terms of the

Taylor expansion of the equation of state (EoS) from the lattice are known. They allow

one to extrapolate the QCD thermodynamic potential up to µB/T ≤ 2 [20, 21]. In this

region of the QCD phase diagram, the crossover extends with a negative curvature. It

is believed that, with increasing µB, this crossover sharpens and terminates in a criti-

cal end point (CEP) where a first order phase transition begins. The question of both

the existence and location of the CEP is fundamental to understand QCD matter, but

it is hard to determine theoretically due to the non-perturbative nature of QCD in the

vicinity of the phase transition.

The CEP is characterized by the divergence of the baryonic susceptibilities. The

susceptibilities of conserved charges are proportional to the corresponding Taylor ex-

pansion coefficients of the EoS calculated on the lattice. They also can be related to ex-

perimental measurement in HICs, and can be used to probe the effect of the CEP [22].
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Chapter 1. Introduction to the Phases of QCD

Among the experiments designed to explore higher density regions of the QCD phase

diagram in search for the CEP are the second Beam Energy Scan (BES-II) at RHIC

scheduled for 2019-2020, and the next fixed-target Compressed Baryonic Matter (CBM)

project at the Facility for Antiproton and Ion Research (FAIR), which is presently un-

der construction at the Society for Heavy Ion Research (GSI) in Germany as well as the

National Interscholastic Cycling Association (NICA) in Russia.

This dissertation is dedicated to the study of the QCD phase diagram using two

field-theoretical approaches focused on the moderate-to-high region of µB where the

CEP is expected to emerge. In the first approach [23], the low order baryon susceptibil-

ities calculated on the lattice at imaginary µB are analyzed for different T. The purpose

of the analysis was to perform a combined fit of these susceptibilities, to compute the

higher order ones at zero µB. The susceptibilities at µB = 0 allow one to have access

to a finite region of the QCD phase diagram, by performing a Taylor expansion of the

EoS around µB = 0 in powers of µB/T. In the second part of this work [24], an ap-

proach based on the gauge/string duality is used to construct holographic black holes

to mimic the EoS from the lattice at finite T and zero µB. Once the parameters of the

black holes are fixed at µB = 0, the model is able to compute the QCD EoS in the whole

QCD phase diagram making a prediction for the existence and location of the CEP.

This model could be used as the main theoretical tool to probe a signature of the CEP

in HICs.

1.1.1 Dissertation Outline

This dissertation is organized as follows: the rest of this chapter is dedicated to give an

introduction to the main aspects of QCD, including its global symmetries that give rise

to the phases emerging in the QCD phase diagram. The lattice formulation of QCD

is briefly introduced, and a connection between experiments in HICs and the QCD
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Chapter 1. Introduction to the Phases of QCD

phase diagram is mentioned. At the end of this chapter, a brief introduction to the

gauge/string duality is given.

In Chapter 2, the imaginary chemical potential formalism is introduced and the

simulations of the lower order baryonic susceptibilities calculated on the lattice are pre-

sented. Then, Chapter 3 summarizes the findings obtained by the combined fit of the

low order baryonic susceptibilities, and shows the calculated higher order baryon sus-

ceptibilities at µB = 0. In Chapter 4, the holographic Black Hole Model used to mimic

the EoS in the QCD phase diagram is described. The main results of the investiga-

tion done with the black hole model are shown in Chapter 5. Finally, in Chapter 6 the

findings of this dissertation are discussed.

1.2 Quantum Chromodynamics

QCD is the theory of strong interactions, with six different quarks as fundamental de-

grees of freedom. Table 1.1 summarizes several properties relating to each of the quark

flavors. The significant difference between the masses of light and heavy quarks leads

to a clear separation of scales: the u, d, and s quarks are the light flavor quarks, while

the heavy flavor quarks correspond to the c, b, and t.

The QCD Lagrangian is obtained from the Lagrangian of free spin- 1
2 quarks by ap-

plying the gauge principle with respect to the non-Abelian SU(3) color group. The

symmetry of this group produces three distinct values of color charge commonly de-

noted as red, green, and blue, together with their corresponding anti-colors. The field

quanta that carry the strong force are the gluons fields, which themself carry one of the

eight possible non-singlet color–anti-color charge combinations. The Lagrangian for Nf

5



Chapter 1. Introduction to the Phases of QCD

Quark Symbol Charge [e] Mass [MeV]

up u +2/3 2.2+0.5
−0.4

down d -1/3 4.7+0.5
−0.3

strange s +2/3 95+9
−3

charm c -1/3 1, 275+25
−35

bottom b +2/3 4, 180+40
−30

top t -1/3 173, 000+400
−400

TABLE 1.1: Symbol, mass and electric charge of the different flavors of
quark [25].

quark flavors reads explicitly

LQCD = ψ̄f (i /D−m f )ψf −
1
4

Ga
µνGµν

a (1.1)

with field strength tensor Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν , and covariant deriva-

tive Da
µν = ∂µδab + igAc

µTab
c , where m f is the current quark mass of the flavor f , g is

the gauge coupling, Tc the generators of the fundamental representation of the SU(3)

gauge group, and f abc its structure constants. Contrary to Abelian theories like QED,

the gauge-gluon fields couple to themselves, producing gluon–gluon vertices in addi-

tion to the quark–gluon ones. This feature makes QCD more challenging to deal with

theoretically.

1.2.1 Symmetries of QCD

QCD, as a relativistic theory, is invariant under Lorenz Transformations of spacetime:

rotations in space and boosts. However, the symmetry that defines its interaction is the

6
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gauge symmetry. The quark and gluon fields transform under the local gauge trans-

formations of the SU(3) color group

ψ(x)→ Ω(x)ψ(x), Aµ(x)→ Ω(x)
(

Aµ −
i
g

∂µ

)
Ω†(x) (1.2)

expanded by the generators of the group Ta as

Ω(x) = exp(−iθa(x)Ta) (1.3)

for any field θa(x) with a = {1, 2, ..., 8}. This transformation generates the three color

charges: blue, red and green.

The rest of the QCD symmetries are global. For instance, chiral symmetry is one

of the most important approximate symmetries of QCD. It is realized by ignoring the

quark masses; therefore, it is a good symmetry for the light quark sector. In this ap-

proximation, the QCD Lagrangian becomes invariant under the global U(Nf ) transfor-

mation of the left and right-handed Weyl spinors

ψL/R =
1
2
(
1± γ5)ψ, ψL/R → UL/RψL/R (1.4)

where UL/R is expanded by the generators Ta of the group U(Nf ), as in Eq. (1.3). This

transformation gives rise to the symmetry group U(Nf )L ×U(Nf )R or given in terms of

the vector/axial transformations,

ψ→ exp(−iθaTa)ψ ψ→ exp(−iγ5θaTa)ψ , (1.5)

the symmetry is represented by the group U(Nf )V × U(Nf )A × U(1)B × U(1)A. The

7
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U(1)B symmetry is associated with baryon number conservation, while the anoma-

lous axial U(1)A symmetry is broken at the quantum level. The remaining symmetry

U(Nf )V × U(Nf )A is spontaneously broken in the ground-state by effects of gluonic

interactions and reduced to SU(Nf )V giving rise to N2
f − 1 Goldstone Bosons.

Chiral symmetry is explicitly broken by the quark masses. In the vacuum, this

symmetry is realized only by the u and d quarks because their masses are much smaller

compared with the other quarks. The resulting Chiral symmetry U(2)L × U(2)R is

spontaneously broken to the SU(2) isospin symmetry. The signal of the breaking of

this symmetry is that the vacuum contains a chiral condensate 〈 ψ̄ψ 〉, e.g., the pion,

that in the chiral limit should be massless. In general, chiral symmetry will contribute

to the dynamical generation of the chiral condensate. This condensate is responsible for

the constituent mass of the quarks inside hadrons, that are about an order of magnitude

more significant than their current masses listed in Table 1.1.

QCD has another approximate symmetry when considering the limit of infinitely

heavy quarks. In this limit, which corresponds to the pure gauge sector of QCD, gluons

are invariant under transformations of the Z(N)c group. This symmetry is known as

centre symmetry and can distinguish between the confinement and deconfinement of

quarks. Gluons are neutral with respect to the centre symmetry charge while quarks

carry a unit of this charge. To explain how this symmetry is related to confinement, let

us write the operator that describes a static quark, the Polyakov Loop P(~x), defined as

a Wilson loop closed around the periodic Euclidean time direction x4

P(~x) =
1

Nc
P Trc exp

(∫ β

0
dx4A0(~x, x4)

)
(1.6)

where P denotes path ordering, and β = 1/T. The Polyakov loop measures the free

energy of the infinitely heavy quarks and is an order parameter for the spontaneous

8
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breaking of the center symmetry. Then, the deconfined phase is associated with the

breaking of the centre symmetry. A confined phase will have 〈 P 〉 = 0 and the theory

will be invariant under center transformations. On the other hand, in the deconfined

phase, 〈 P 〉 6= 0 and the center symmetry will be broken.

1.2.2 Asymptotic Freedom and Confinement

One of the striking properties of QCD is its behavior at short distances. In quantum

field theories, the physical quantities can be expanded through a perturbation series in

power of a small parameter such as the coupling constant. In QCD, the strength of the

coupling becomes small at shorter distances, or at large momentum transfer, leading to

the phenomenon of asymptotic freedom.

The dependence of the coupling αs on an energy scale Q can be determined by the

renormalized group equation

Q2 ∂αs(Q2)

∂Q2 = β
(
αs(Q2)

)
, (1.7)

where the scale Q should be larger than any other relevant parameter for this expansion

to be valid.

The solution of Eq. (1.7) in 1-loop approximation is

αs(Q2) =
1

β0 ln Q2

Λ2
QCD

, with β0 =
33− 2N f

12π
(1.8)

This equation introduces the scale ΛQCD that signals the breakdown of the perturbation

expansion. Eq. (1.8) demonstrates that for positive β0, namely for N f < 17, the coupling

αs runs to zero as the energy scale Q become much larger than the scale ΛQCD. This

means that quarks and gluons behave as almost free particles at these high energies.

9
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FIGURE 1.1: Summary of measurements of αs(Q) as a function of the
energy scale Q [26].

This effect is shown in Figure 1.1, which presents a summary of measurements of αs(Q)

taken by different experimental groups [26]. The solid lines in Figure 1.1 represent the

QCD predictions made at 3 and 4 loops matched to reproduce the heavy quark pole

masses Mc = 1.5 GeV and Mb = 4.7 GeV (ΛQCD ∼ 200 MeV).

The non-perturbative regime of QCD begins when asymptotic freedom breaks down

at energies close to the ΛQCD scale. The two mechanisms that govern the low energy

region of QCD are spontaneous chiral symmetry breaking and confinement. In the

last section, it was mentioned that the breaking of chiral symmetry produces a chiral

condensate that contributes to the dynamical mass of the quarks, while confinement

is a mechanism related to the breaking of the center symmetry in the pure gauge sec-

tor. However, the mechanism of confinement is not yet understood. It is supported by

10
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FIGURE 1.2: Confinement of Quarks inside a proton (upper left panel).
When energy is added to the proton it jumps into an excited state (upper
right panel). The tension in the string produces a pair of quarks (lower
left panel). The process results into a hyperon and a K+ meson (lower

right panel).

the center symmetry and by the fact that the degrees of freedom directly observed in

experiments are hadrons and not isolated quarks and gluons.

The confinement process is related to the fact that gluons themselves carry the color

charge and interact among each other. In QED, a charge is screened by a cloud of vir-

tual electron-positron pairs that align themselves to shield the bare charge. On the other

hand, an isolated quark will be surrounded by virtual quarks and gluons of the same

color. To avoid the infinite increase of the color charge, quarks always form combina-

tions in such a way that the total color becomes neutral. They form hadrons: mesons

made of quark–anti-quark pairs (carrying the same color and anti-color), or baryons

11
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made of three quarks (carrying three different colors). The potential energy between a

pair of quarks can be described as a function of the distance r as

V(r) = −4
3

αs

r
+ kr . (1.9)

When a pair of quarks is close together, the observed charge decreases until only the

bare charge is seen. The second term vanishes and quarks feel the ∼ 1/r repulsive

interaction. On the other hand, as one probes larger separations between quarks, the

potential energy grows linearly with the separation of charges kr until it is high enough

to create a new quark-antiquark pair. These again form two pairs of color neutral com-

binations such as the one illustrated in Figure 1.2.

What makes solving the theory of QCD so difficult when asymptotic freedom breaks

down is precisely the change of dynamics from quarks and gluons to hadrons. The

confined region of QCD, given by hadronic degrees of freedom, has been successfully

described by the Hadron Resonance Model (HRG). The HRG is an effective model that

assumes that a gas of interacting hadrons in thermal equilibrium can be approximated

by a non-interacting gas of hadrons and their heavier resonances. The main input to the

model is a list of hadrons usually provided by experimentally measured states (listed

in the PDG), or calculated within the quark model framework. The pressure from this

model is defined as the sum of the individual pressures of all baryons and mesons on

the list. The explicit expression of the pressure at finite T and µB is

pHRG = ∑
i

δi
diT
(2π)3

∫
d3~p ln

[
1 + δi exp(−β(

√
~p 2 + m2

i − BiµB))
]

(1.10)

where Bi is the conserved baryon number of particle i in the list, di is the individual de-

generacy, mi its mass, and δi = (−1)Bi+1. The HRG has shown a remarkable agreement

with experimental observables such as particle yields/particle ratios, and is the main

12
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theoretical tool to calculate the thermodynamics of confined hadrons near Tc.

1.2.3 Statistical Mechanics

Statistical mechanics plays an essential role in the description of the bulk properties

of the QGP. These powerful techniques are used in the approaches that explore the

QCD phase diagram such as the HRG model, lattice QCD and the holographic models.

This section is dedicated to review some essential aspects of statistical mechanics and

thermodynamics with a chemical potential µB.

A thermodynamical system is characterized by the extensive quantities entropy S,

volume V, and number of particles N, and their conjugate intensive variables temper-

ature T, pressure p, and chemical potential µB. The grand canonical ensemble is chosen

considering that in quantum field theory the number of particles is not fixed. The par-

tition function is obtained from the density operator ρ as follows

Z = Tr ρ , (1.11)

where Tr(..) = ∑n 〈 n|(..)|n 〉 and ρ = exp [−β(H − µB N)].

The internal energy U, free energy F, and all other thermodynamic equilibrium

quantities are obtained from the partition function as

F = −T ln Z p =
∂(T ln Z)

∂V
U = TS− pV + µB N (1.12)

S =
∂(T ln Z)

∂T
N =

∂(T ln Z)
∂µB

F = U − ST − µB N . (1.13)

13
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For a system with a fixed volume like the QGP, in the thermodynamic limit one usually

defines the corresponding densities

f =
F
V

ε =
U
V

s =
S
V

n =
N
V

(1.14)

form where the trace anomaly I, the speed of sound c2
s , and other thermodynamic

relations can be given as

p = − f I = ε− 3p c2
s =

dp
dε

ε + p = sT (1.15)

The specific heat at constant chemical potential, and the specific heat at constant vol-

ume, are defined as the second derivatives of the free energy

Cµ = T
(

∂s
∂T

)
µ

= −T
(

∂2 f
∂T2

)
µ

(1.16)

CV = T
(

∂s
∂T

)
V
= −T

[
∂2 f
∂T2 −

(
∂2 f

∂T∂µB

)2 (
∂2 f
∂µ2

B

)−1
]

µ

. (1.17)

The baryon number susceptibility, χn = χB
n
(T, µB) is obtained by taking the n-th deriva-

tive of the pressure with respect to the baryonic chemical potential

χn =
∂n

∂(µB/T)n

( p
T4

)
. (1.18)

1.2.4 Lattice QCD

The lattice formulation of QCD is the only approach that solves the strong interaction

numerically from first principles in the non-perturbative regime. These calculations are

performed by simulating the interaction of quarks and gluons on a discretized space-

time lattice. The discrete lattice serves as an ultraviolet regulator that makes the field

14
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FIGURE 1.3: The link variables Uµ(n) and U−µ(n).

formulation finite. The degrees of freedom are classical field variables living on the

lattice. The basic tool for quantizing these fields is the Euclidian path integral. To

construct the lattice approach, one starts from the continuum theory in Eq. (1.1), and

applies the Matsubara formalism by performing a Wick rotation in the time variable

(x4 = −ix0). Then, one can write the Euclidian action, SE, as a sum of the pure gauge,

SE
glu, which depends only on the bosonic degrees of freedom, and the fermionic part,

SE
fer, as

SE = SE
glu + SE

fer = −
∫ β

0
dx4

∫
V

d3x
(
LE

glu + LE
fer

)
. (1.19)

Using this definition, the partition function at finite temperature is given by

Z =
∫

∏
µ

DAµ ∏
f
Dψ fDψ̄ f exp

(
−SE

glu − SE
fer

)
. (1.20)

The first step in the lattice procedure is the replacement of the continuous space-

time by a discrete lattice with separation a, such that in the limit a→ 0, the Euclidean

continuum action is obtained. The fermionic degrees of freedom, ψ(n), are placed on

the lattice points labeled by the four-dimensional vector n = {nτ, nx, ny, nz}, where the

time component nτ = 1, 2, ..., Nτ and the spatial part ni = 1, 2, ..., Ns. The size of the

4-dimensional lattice is Nτ × N3
s . The temperature is defined in terms of the lattice

separation as T = 1/(aNτ). The simplest way to implement the discretization of the

partial derivative of the fermion fields is by finite differences. However, this approach

15
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introduces unphysical modes when recovering the continuum limit a→ 0 that have to

be removed by procedures such as the Staggered fermions or Wilson fermions. The

gauge fields are introduced as link variables Uµ(n) where the index defines the direc-

tion of the link as shown in Figure 1.3. The link Uµ(n) connects the sites n and n + µ,

and preserves the invariance under the SU(3) gauge transformation.

The integral over the fermionic field in the discretized version of Eq. (1.20) can be

done analytically

∫
∏

f
Dψ fDψ̄ f exp

(
−SE

fer

)
= det [M] (1.21)

producing the fermionic determinant det [M]. Then, the partition function on the lattice

is given by

Z =
∫

∏
µ

DAµ det [M] exp
(
−SE

glu

)
(1.22)

The expression in Eq. (1.22) resembles the Boltzmann factor in statistical mechanics

weighted by det [M]. If the det [M] is positively defined, the partition function on the

lattice can be solved numerically by the use of Monte Carlo techniques. As powerful

as lattice QCD is, Eq. (1.22) is pointing out two of the main limitations of this approach.

The first one originates when introducing a real µB, which introduces a phase factor

into the det [M] and prevents the use of Monte Carlo sampling. This is known as the

"Fermi Sign Problem". The phase factor can be evaded if considering an imaginary µB,

which leaves det [M] > 0. Consequently, there are two approaches to study QCD on

the lattice: one is to perform calculations at zero µB, and the other one is to do it at imag-

inary µB. The other limitation of the lattice approach is based on its formulation in the

Euclidian imaginary time. This allows us to calculate directly equilibrium quantities,
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FIGURE 1.4: The comparison of the HISQ/tree (HotQCD [27]) and stout
(WB [28]) results for the trace anomaly, the pressure, and the entropy

density. Figure from [27].

while making the extraction of dynamical quantities difficult.

At this moment, lattice simulations have reached a remarkable precision and accu-

racy. Many observables have been calculated in the context of the QCD phase diagram

(see [21] for a recent review). One of the most important achievements has been the

calculation of the EoS at finite T and zero µB for physical quark masses and Nf = 2 + 1

quark flavors. It was obtained by two independent collaborations using different dis-

cretization methods [27, 28]. The comparison of the trace anomaly, pressure and en-

tropy is shown in Figure 1.4. These observations show a rapid crossover transition at

Tc ∼ 155 MeV. The trace anomaly remains finite after Tc, which confirms that the QGP

is strongly coupled right after the transition. In the next section the crucial importance

of the EoS for a better understanding of the matter created in HICs will be emphasized.
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1.3 Heavy-Ion Collisions and the QCD Phase Diagram

1.3.1 Phases of QCD

The phases of QCD reflect the conditions where the global symmetries of QCD, re-

viewed early in this chapter, are broken or restored. In the hadronic phase, chiral

symmetry is broken while the center symmetry is restored. The opposite happens in

the QGP phase, where chiral symmetry is restored and quarks and gluons are decon-

fined. This phase was predicted by asymptotic freedom, and it is expected that one of

these symmetries changes below the energy scale ΛQCD ∼ 200 MeV. The heavy flavor

quark masses are much larger than ΛQCD and are not taken into account in the phases

sketched in the QCD phase diagram.

The crossover transition from the hadronic phase to the QGP is calculated on the

lattice at zero µB and it happens at Tc ' 155± 10 MeV [4–9]. Both transitions, the chi-

ral and deconfined, happen within the range of this crossover. On the other end of

the QCD phase diagram, at low T and increasing baryonic density, the hadronic phase

produces a degenerate Fermi system of quarks and gluons. What happens at this point

is a topic of intense debate. A first-order phase transition from hadrons to the QGP is

inferred from taking into account the effects of nonzero quark masses in chiral mod-

els [22]. If the density is very large, an attractive quark–quark channel, embedded in

the weak-asymptotic region of QCD, makes the system unstable against the forma-

tion of Cooper pairs forming a state similar to the Bardeen–Cooper–Schrieffer (BCS)

superconductivity. However, if the density is large but not large enough, the system

develops chromomagnetic instabilities [29]. What happens in this region of QCD is

important for the physics of compact stars but unfortunately it is the most uncertain

region of the QCD phase diagram.

Most of the QCD phase diagram is still unexplored. The high T region is known
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from resummed thermal perturbation theory for temperatures above 2− 3Tc [30]. The

lattice EoS state at zero µB can be extrapolated at the moment to a region limited by

µB/T < 2. The detection of this transition at higher densities, and the exploration of

the existence of a CEP and a first order phase transition is one of the most important

problems of high energy nuclear physics. Fortunately, the density region where the

CEP could be found will be tested experimentally in the next decade in relativistic-

heavy-ion-collisions. To answer these fundamental problems in QCD, the interplay

between experimental results and theoretical models that describe strongly interacting

matter at finite µB will be critical.

1.3.2 Relativistic-Heavy-Ion Colliders

The extreme conditions of T and µB needed to melt the nucleons of heavy atoms and

create the QGP have been constantly reproduced in HICs such those taking place at

RHIC at BNL, and LHC at CERN. By systematically varying the center-of-mass energy

per nucleon (
√

s) of the colliding ion beams, those experiments can explore different

regions of the QCD phase diagram. Depending on the location of the CEP, its effects

may be probed using heavy ion collisions [22].

A simple sketch of the QCD phase diagram with a CEP and a first order phase tran-

sition line is shown in Figure 1.5. The dotted red line in the diagram signals the ratio

µB/T = 2, below which lattice calculations are available. The diagram indicates the

positions where different experiments generate the QGP and the trajectories on which

they cool down until they freeze-out. For instance, LHC with a large center of mass

energy
√

sNN = 2.76− 5.02 TeV creates a QGP with very high T and small µB, recreat-

ing the conditions of the early Universe. The first phase of the Beam Energy Scan (BES)

at RHIC created a medium with intermediate T and µB exploring the center of mass

energy
√

sNN = 7.7− 200 GeV. Future runs of the BES with increased luminosity are
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FIGURE 1.5: Sketch of the QCD phase diagram with a CEP indicating
the trajectories, until they freeze-out, where different experiments gen-
erate the QGP. The red dotted line, which was added to the original pic-
ture, represents the ratio µB/T = 2. Copyright: University of Bielefeld,

Physics Department.

scheduled for 2019-2020, and fixed target experiments at RHIC are planned to reach

even larger µB, searching for signatures of the existence of a CEP [31]. The future FAIR

experiment at the GSI, currently under construction, will reach even higher µB produc-

ing collision energies of
√

sNN = 4.9 GeV [32], while NICA at Dubna will reach energies

of
√

sNN = 4.5 GeV.

1.3.3 Stages of a Relativistic-Heavy-Ion-Collision

The evolution of a heavy ion collision is characterized by several stages, which can be

described by different theoretical approaches. Figure 1.6 shows the standard schematic

picture of a heavy ion collision. The initial state defines the condition under which
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FIGURE 1.6: Stages of a relativistic-heavy-ion-collision. Figure from Stef-
fen Bass, Quark Matter 2001

the collision takes place, and is driven by the geometry of the overlapping region be-

tween the colliding ions. This stage is usually modeled in the context of the Glauber

model, or more recently on an event-by-event basis where fluctuations in the initial

state are taken into account. Next, the Lorentz contracted heavy ions collide and pro-

duce a fireball in a highly excited pre-equilibrium state, which is dominated by the

initial conditions. Shortly after the collision begins, the energy density reaches values

that are more than ten times the normal nuclear matter one and temperatures above Tc.

This stage is dominated by the Glasma phase, described by a combination of initial nu-

clear wave functions and classical gluon dynamics. The system deconfines forming the

QGP and eventually reaching thermodynamic equilibrium. At this point the system

expands and cools. It turns out that the bulk evolution during the expansion of the sys-

tem can be successfully modeled by relativistic hydrodynamics. The system expands

until hadronization occurs. Then hadrons reach a chemical freeze-out where all inelas-

tic interactions cease. At his point, the chemical composition of the system is fixed. Due

to event-by-event fluctuations of the initial conditions in heavy-ion collisions, fluctua-

tions of conserved charges occur on an event-by-event basis so a distribution is formed.
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FIGURE 1.7: Net-proton multiplicity distributions in Au+Au collisions
at various

√
sNN for 0%–5%, 30%–40%, and 70%–80% collision centrali-

ties at midrapidity [33].

The moments of those distributions are fixed at this point. Soon after chemical freeze-

out, the system reaches the kinetic freeze-out, where all elastic interactions cease and

the spectra of the particles that eventually reach the detector are fixed.

1.3.4 Baryon Number Susceptibilities

The baryon number susceptibility, χn , defined in Eq. (1.18)

χn =
∂n

∂(µB/T)n

(
P
T4

)

is among the most relevant quantities used to explore the QCD phase diagram. It pro-

vides information about the effective degrees of freedom of a system, and is essential

to the characterization of phase transitions. The baryon susceptibilities allow one to

Taylor expand the pressure calculated at µB = 0 to finite chemical potential as a power
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of µB/T

P(T, µB)− P(T, µB = 0)
T4 =

∞

∑
n=1

χ2n(µB = 0)
(2n!)

(µB

T

)2n
.

This expansion is the main tool to access finite µB from first principle lattice calculations.

Susceptibilities are also important because they are related directly to the moments

of the distribution measured in HICs. For instance, the net-proton multiplicity distri-

butions in Au+Au measured on an event-by-event basis in STAR at midrapidity for

various collision energies and centralities are shown in Figure 1.7. The distribution of

net protons is a good approximation for the baryonic susceptibilities.To compare such

distributions with theoretical predictions it is convenient to form volume-independent

susceptibility ratios [34]

mean : M = χ1 M/σ2 = χ1 /χ2

variance : σ2 = χ2 Sσ = χ3 /χ2

skewness : S = χ3 /χ3/2
2

κσ2 = χ4 /χ2

kurtosis : κ = χ4 /χ2
2

Sσ3/M = χ3 /χ1 .

(1.23)

In a heavy-ion collision, the moments of the distributions are fixed at the chemical

freeze-out. Comparing them to theoretical predictions such as lattice calculations or

the holographic black hole model, allows one to extract T and µB at freeze-out [35–37].

Based on the theory of second order phase transitions, close to the CEP the suscep-

tibilities and other thermodynamic variables scale with different powers of the correla-

tion length ξ, which diverges at the CEP. For instance, at the mean field level χ2 ∼ VTξ2

where V is the volume and, for a homogeneous system in equilibrium, it was shown
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in [38] that the high order susceptibilities diverge with higher powers of ξ

χ2 ∼ VTξ2 χ3 ∼ VT3/2ξ9/2 χ4 ∼ VT2ξ7 . (1.24)

In heavy-ion collisions, the divergence of ξ is limited by the system size and by

finite time effects. The comparison of ratios of susceptibilities with the moments of

distributions in HICs may provide unique signatures for the detection of CEP in the

QCD phase diagram. In [39], it was argued that the characteristic behavior of the ratio

κσ2 has a non-monotonic dependence as it approaches the CEP. At the moment, there

is a great interest in such comparison with the advent of the second run of the BES

at RHIC, which will analyze fluctuations of conserved charges such as baryon number,

electric charge, and strangeness, and their higher order cumulants with great precision.

1.4 AdS/CFT (Gauge/String) Duality

The AdS/CFT correspondence states a conjectured equivalence between certain con-

formal field theories (CFT) and certain gravitational theories in asymptotically Anti-

de Sitter (AdS) spacetime. The duality was originated in string theory by studying

D-branes and black holes [40–43], and has become a standard tool widely applied to

study the non-perturbative behavior of different strongly correlated systems beyond

CFT, including: QCD [44, 45], condensed matter systems [46–48], and quantum en-

tanglement [49, 50]. In this context, a more appropriate name for this conjecture is a

gauge/string duality or a holographic theory.

The AdS/CFT duality was originally stated as a specific equivalence between the

N = 4 SU(Nc) supersymmetric gauge theory and a type IIB string theory on AdS5 × S5

spacetime [40]. The gauge theory includes a gauge field, six real scalars fields, and

four Weyl fermions in the adjoint representation, while the gravitational metric with
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AdS5 × S5 curvature is given by

ds2 = ds2
AdS5

+ R2dΩ2
5

=
r2

R2 ηµνdxµdxν +
R2

r2

(
dr2 + r2Ω2

5
)

, (1.25)

where ηµν is the Minkowski metric in four spacetime dimensions, xµ is a Lorentz vec-

tor, R is the constant AdS radius, dΩ5 is the differential area of the five-dimensional

sphere S5, and r is the holographic coordinate. The metic in Eq. (1.25) contains the

Poincare transformations of a global AdS spacetime. Following the discussion in [44],

it is convenient to rewrite the metric using the radial coordinate z = R2/r

ds2 =
R2

z2

(
ηµνdxµdxν + dz2 + z2dΩ2

5
)

. (1.26)

In this equation, one can identify a four-dimensional Minkowski spacetime parametrized

by each AdS5 slice of constant z. According to the duality, a conformal gauge theory

lives on the boundary of the AdS5 when r → ∞ or equivalent by z→ 0. In that sense,

the gauge theory is a holographic projection of the five-dimensional gravitational the-

ory.

The simplest AdS5 Schwarzschild solution with metric obtained from Eq. (1.26) is

an extremum of the action

S =
1

2κ2
5

∫
d5x

√
−g
[
R+

20
R2

]
, (1.27)

where κ5 is the gravitational coupling, R is the Ricci scalar, and g the determinant of

the metric, producing a dual CFT with speed of sound square c2
s = 1/3 as required by

conformal symmetry.

The duality can be interpreted as a geometrization of the renormalization group

25



Chapter 1. Introduction to the Phases of QCD

FIGURE 1.8: A geometric picture of AdS5 (figure from [44].)

flow of a quantum field theory (QFT), where the radial coordinate z plays the role of

the energy scale. This is illustrated in Figure 1.8. The region near the slice z = 0, where

the asymptotic boundary in the gravitational theory is, corresponds to weak curva-

ture or IR physics, while in the QFT this limit identifies physics at short distances or

UV physics. Thus, a strongly interacting QFT will have a dual holographic gravita-

tional description with a weak curvature. On the other hand, a strongly-coupled gauge

theory at finite temperature has a dual gravitational theory in AdS spacetime with a

d-dimensional black hole metric

ds2
n = − f (r)dt2 +

dr2

f (r)
+ r2dΩ2

n (1.28)

where

f (r) = 1− r0

r

d−3
, and Ωn =

2π
(n+1)

2

Γ
( n+1

2

) , (1.29)

26



Chapter 1. Introduction to the Phases of QCD

FIGURE 1.9: A schematic illustration of the duality between the asymp-
totic horizon of a holographic black hole and the QGP.

and r0 is the radius at the horizon.

The black hole geometry appears in the dual description as a thermal system with a

notion of temperature due to the Hawking radiation. Moreover, the black hole entropy

is proportional to the area of the black hole horizon. In a five-dimensional black hole,

the area of the horizon is a volume in a thermal system in four spacetime dimensions.

Figure 1.9 shows a schematic illustration of a holographic black hole. It shows the near

horizon represented by the read sphere, and the asymptotically far horizon where the

strongly-coupled gauge theory lives.

Holographic black holes provide a mechanism to map strongly correlated thermo-

dynamical systems into gravitational theories. Using the duality toolbox, it is possible

to study equilibrium and out-of-equilibrium properties of the system. One of the most

remarkable results obtained from holographic models, with at most two derivatives in
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the gravity action, is the derivation of the ratio between the shear viscosity and the en-

tropy density of a strongly coupled quantum fluid. It turns out to be η/s = 1/4π [51–

53]. Such a small value for η/s is compatible with the QGP produced in HICs such

as RHIC and LHC [54–61]. The fact that η/s, in the strongly coupled regime of the

QGP, is in agreement with holographic results increase their application to the study of

real time phenomena in the strongly coupled QGP, which are otherwise inaccessible to

direct calculations.

Chapter 4 of this dissertation studies a holographic model that includes charged

black holes. The aim was to map the strongly interacting region of the QCD phase

diagram to its dual weak gravitational theory and extract its thermodynamic variables.

Contrary to most of the holographic studies, focused on studying properties of theCFT,

the model used in Chapter 4 is engineered to mimic the behavior of the QGP at finite

T and zero µB, which is highly non-conformal especially in the crossover region. Once

the model parameters are fixed at µB = 0, the model is able to calculate the behavior of

the system at finite µB and made a prediction for the existence and location of the QCD

CEP (shown in Chapter 5).
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Chapter 2

Lattice QCD at Imaginary Chemical

Potential

This chapter is devoted to giving a brief introduction to the lattice formulation of QCD.

First, the naive representation of the fermionic fields is derived from the continuum

theory. The non-physical modes that arise as a product of the discretization are dis-

cussed before introducing the Wilson formulation of QCD [62], the Symanzik improve-

ment action [63–65], and the fermion staggered action [66]. Then, the introduction of

finite temperature and imaginary chemical potential on the lattice is reviewed. The

definitions for the susceptibilities at finite electric, baryonic, and strangeness chemi-

cal potentials are given, and the expressions to calculate them at imaginary chemical

potential are shown.

2.1 Path Integrals and the Correlator Function

The lattice formalism is constructed from the path integral representation. The ba-

sic building blocks are the partition function and the correlator function, which are
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reviewed in this section. Starting from the QCD action in Minkowski space, the contin-

uum theory is defined in the Euclidian formalism by performing a Wick rotation from

real-time to imaginary-time, denoted by x4 = −ix0. In this convention, the Minkowski

metric is replaced by the Euclidian metric δii with no distinction between covariant and

contravariant vectors. The QCD Lagrangian with Euclidian metric is written for con-

venience as a sum of the matter fields, where fermions are interacting with gluons, and

the pure gauge part, depending only on the gluonic degrees of freedom as

SQCD = Sfer[A, ψ, ψ̄] + Sglu[A] . (2.1)

The fermionic action is written in compact vector notation as

Sfer[A, ψ, ψ̄] =
∫

d4xψ̄f (i /D−m f )ψf . (2.2)

Explicitly, Eq. (2.2) reads

Sfer[A, ψ, ψ̄] =
Nf

∑
f=1

∑
α,β

∑
c,d

∫
d4xψ̄

f

α c

(
(γµ)αβ

{
δcd∂µ + ig(Aµ)cd

}
+ m

f
δαβδcd

)
ψ

f

β d (2.3)

where the sum is on the number of flavors Nf , {α, β} = {1, 2, 3, 4} are the Euclidian

indexes, and {c, d} = {r, b, g} the color indexes. The γ-matrices obey the Euclidian

anti-commutation relations {γµ, γν} = 2δµν.

The gluon action is written as a trace of the contracted force tensor Fµν

Sglu[A] =
1
4

∫
d4x Tr

[
FµνFµν

]
. (2.4)
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The gluon fields expand on the SU(3) color space in terms of the generators Ti

Aµ =
8

∑
i=1

Ai
µTi (2.5)

similarly, the gluon field force tensor is defined as

Fµν =
8

∑
i=1
F i

µν with F i
µν = ∂µ Ai

ν − ∂ν Ai
µ − fijk Aj

ν Ak
µ , (2.6)

where fijk is the SU(3) group constant.

One of the most significant observables in QCD in connection to the lattice for-

mulation is the energy spectrum and the matrix elements of operators. They can be

determined from the Euclidian correlation function defined for two operators, Ô2 and

Ô1, as

〈 Ô2(t)Ô1(0) 〉T =
1

ZT
Tr
[
e−(T −t)ĤÔ2e−tĤÔ1

]
= ∑

m,n
e−(T −t)Em〈m|Ô2|n〉e−t En〈n|Ô1|m〉 . (2.7)

The parameters {t, T } are real numbers denoting Euclidean times. On the first line

of Eq. (2.7), the T -correlator is written in terms of quantum field operators, and in the

second line as a sum over eigenstates of the Hamiltonian operator Ĥ. Here, the term

ZT = Tr[e−T Ĥ] is a normalization factor. In the limit T → ∞, only the lowest energy

state projected by the transporter term e−T Ĥ will survive

lim
T →∞
〈 Ô2(t)Ô1(0) 〉T = ∑

n
〈0|Ô1|n〉〈n|Ô2|0〉e−t En (2.8)

where the lowest energy E0 corresponds to the vacuum term denoted by the state 〈0|.

The energy level, En, is the difference between the n-energy eigenvalue and the vacuum
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energy.

The expression in Eq. (2.7) is a convenient mathematical tool to extract energy levels

and matrix elements which can be calculated on the lattice by expressing the correlator

function in the path integral formalism

〈 Ô2(t)Ô1(0) 〉T =
1

ZT

∫
D[A]D[ψ]D[ψ̄]e−SQCDO2[A, ψ, ψ̄]O1[A, ψ, ψ̄] (2.9)

where the measures for gluon and quark fields are defined as

D[A] = ∏
x

dA(x) D[ψ] = ∏
x

dψ(x) D[ψ̄] = ∏
x

dψ̄(x) (2.10)

The expression in Eq. (2.9) connects QCD with the techniques used in statistical me-

chanics by interpreting the weight e−SQCD as a Boltzmann factor, and the normalization

term ZT as the grand canonical partition function defined as

ZT =
∫
D[A]D[ψ]D[ψ̄]e−SQCD (2.11)

The grand partition function is the most important object to be computed on the lattice,

from which all thermodynamical quantities, including the susceptibilities of conserved

charges analyzed in this dissertation, are determined.

2.2 QCD on the Lattice

As discussed in the introduction, the lattice procedure consists of discretizing the space-

time path integral representation of QCD into a four-dimensional grid with spacing

a. The points are labeled by a vector n = {nτ, nx, ny, nz}, with the time component

nτ = {1, 2, ..., Nτ} and the spatial part ni = {1, 2, ..., Ns}. The number of points in the
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lattice is Nλ = Nτ × N3
s , and the volume V = Nλ ∗ a4. Periodic boundary conditions

are imposed to minimize the effects of the boundaries by connecting the first index

in each direction with the last one. The integrals over the four Euclidian space are

replaced by the sum over all the lattice points

∫
dx4 →∑

Nλ

a4 . (2.12)

The quark fields ψ(n) and ψ̄(n) are placed at each of the lattice points n = {1, 2, ..., Nλ}.

In this discrete scheme, the Lagrangian and any other observable have to be con-

structed in such a way that does not violate gauge invariance. To begin with, let us

describe the most straightforward representation of free fermions on the lattice and

motivate the introduction of link variables as transporters of the color field.

2.2.1 The Naive Discretization

Let us consider the Lagrangian for a system of free fermions on the lattice. The simplest

way to implement the discretization of the partial derivatives of the fermion fields is by

finite differences. Using different schemes will lead to different discretization errors,

which scale as a power of the lattice separation a. For instance, using forward and

central differences will lead to errors proportional to O(a) and O(a2) respectively, and

to O(a4) with the 4-points central difference

f ′(x) =
f (x + a)− f (x)

a
+O(a)

f ′(x) =
f (x + a)− f (x− a)

2a
+O(a2)

f ′(x) =
− f (x + 2a) + 8 f (x + a)− 8 f (x− a) + f (x− 2a)

12a
+O(a4) . (2.13)
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However, it is vital that the discretized theory converges to QCD in the continuum as

ones takes the limit of a→ 0.

In the so-called Naive representation, the partial derivative of the fermionic field is

replaced by a central difference

∂µψ→ 1
2a

(ψ(n + µ̂)− ψ(n− µ̂)) , (2.14)

where the symbol µ̂ = {1̂, 2̂, 3̂, 4̂} changes the lattice point n by one unit of the lattice

spacing a in the direction {1, 2, 3, 4}.

The discrete Lagrangian for the naive free fermions becomes

S0
fer[ψ, ψ̄] = a4 ∑

n
ψ̄(n)

(
∑̂
µ

γµ
ψ(n + µ̂)− ψ(n− µ̂)

2a
+ mψ(n)

)
. (2.15)

Performing a gauge transformation Ω(n), the fermionic fields transform as

ψ(n)→ Ω(n)ψ(n) ψ̄(n)→ ψ̄(n)Ω†(n) . (2.16)

The mass term in Eq. (2.15) is invariant under the gauge transformation Ω(n), but not

the terms in the discretized derivative

ψ̄(n)ψ(n +~µ)→ ψ̄(n)Ω†(n)Ω(n + µ̄)ψ(n +~µ)

ψ̄(n)ψ(n−~µ)→ ψ̄(n)Ω†(n)Ω(n− µ̄)ψ(n−~µ) . (2.17)

Now, the fermionic fields are coupled to gauge fields to make the theory gauge in-

variant under the corresponding gauge group. Here is the difference between the

continuum and discrete theory. The lattice separation in Eq. (2.15) has introduced a

non-local interaction in the theory reflected in the gauge transformation in Eq. (2.17).
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This non-physical artifact must disappear when taking the continuum limit of a → 0.

However, to make the theory gauge invariance on the lattice, an object similar to the

gauge transporter has to be defined to move the gauge fields. The gauge transporter

from coordinate x to coordinate y is defined as

G(x, y) = P exp
(

ig
∫

C(x,y)
A · ds

)
(2.18)

where P is the time ordering operator, A the gauge field, and the integral is over the

contour C(x, y) from point x to point y. The gauge transporter transforms as

G(x, y)→ Ω(x)G(x, y)Ω†(y) (2.19)

In the case where the two coordinates (x, y), have the separation as the lattice y =

x + a, the gauge transporter is defined on the lattice as a link variable Uµ. Using lattice

notation, the gauge link is given by

G(n, n + µ̂)→ Uµ(n) = exp
(
igaAµ

)
(2.20)

For notation convenience, a link with a negative index is defined as

U−µ(n) ≡ Uµ(n− µ̂) = exp
(
−igaAµ

)
; (2.21)

the direction of both links is shown in the left panel of Figure 2.1. The link variables

under a gauge transformation become

Uµ(n)→ Ω(n)Uµ(n)Ω†(n + µ̂) U−µ(n)→ Ω(n)U−µ(n)Ω†(n− µ̂) . (2.22)
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FIGURE 2.1: The gauge links Uµ(n) and U−µ(n) (left panel). The four
link variables which build up the gauge invariant plaquette Uµν(n)

(right panel)

Thus, the gauge fields are represented by link variables that carry the color charge

among the lattice points where the fermion fields are placed.

The naive representation of the fermion action in Eq. (2.15) is now written with the

gauge links as a gauge invariant action

Sfer[U, ψ, ψ̄] = a4 ∑
n

ψ̄(n)

(
∑
µ

γµ
Uµ(n)ψ(n + µ̂)−U−µ(n)ψ(n− µ̂)

2a

+ mψ(n)
)

(2.23)

The link variables are considered as the fundamental variables on the lattice, over

which the path integrals are integrated, and the gauge action is constructed.

From the transformation properties of the link variables in Eq. (2.22), it is straight-

forward to construct gauge invariant objects. For instance, the lattice version of the

gauge transporter is formed by a product of link variables P[U], which under gauge
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transformations becomes

P[U] = Uµ0(n)Uµ1(n + µ̂0)....UµN (n + µ̂N−1) = ∏
n,µ

Uµ(n)

→ Ω(µ0)P[U]Ω†(µN) . (2.24)

Thus, a gauge-invariant object can be constructed by coupling P[U] to a fermion field

at the end points ψ̄(µ0)P[U]ψ̄(µN). An alternative way is to ch0ose a closed path and

take the trace over the product of link variables. This combination of links is called a

Wilson loop and is denoted by

L[U] = Tr

[
∏
n,µ

Uµ(n)

]

→ Tr

[
Ω(µ0)∏

n,µ
Uµ(n)Ω†(µN)

]
= L[U] . (2.25)

The shortest closed loop of link variables is called a plaquette Uµν(n) defined as

Uµν(n) = Uµ(n)Uν(n + µ̂)U−µ(n + µ̂ + ν̂)U−ν(n + ν̂)

= Uµ(n)Uν(n + µ̂)U†
µ(n + ν̂)U†

ν (n) . (2.26)

It is a loop over four connected links, as shown in the right panel of Figure 2.1. The

relation U−µ(n) = U†
µ(n − µ̂) was used to simplify the expression for the plaquette.

The plaquettes will be the bases for the construction of the Wilson gauge action that is

reviewed in the next section.
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2.2.2 Gauge Action

The first formulation of the gauge action was presented by Wilson in 1975 [62]. The

Wilson gauge action is constructed as a sum over all plaquettes on the lattice

SW [U] =
2
g2 ∑

n
∑
µ<ν

<Tr
[
1−Uµν(n)

]
, (2.27)

where < represent the real part of the trace and g the gauge coupling. By expanding

the link variables in terms of the gauge fields Aµ up to an order O(a2) and using the

Baker-Campbell-Hausdorff formula eAeB = eA+B+ 1
2 [A,B]+..., one can show that (see [67])

Uµν(n) = eia2g Fµν(n)+O(a3)

= 1 + ia2g Fµν(n)−
1
2
(
a2g Fµν(n)

)2
+ ... (2.28)

and in the limit a→ 0 the Wilson action becomes the continuum action

lim
a→0

SW [U] = lim
a→0

2
g2 ∑

n
∑
µ<ν

Tr
[

1
2

a4g2FµνFµν

]
=

1
4

∫
dx4 Tr

[
FµνFµν

]
. (2.29)

The Wilson gauge action provides a discretization with an error proportional to the

lattice spacing O(a2). However, the discretization of the gauge action is not unique. In

Eq. (2.13), it was shown that the error using the finite difference method is reduced by

adding sample points. In a similar way, the Wilson action can be improved by adding

Wilson loops consisting of two plaquettes

Rµν(n) = Uµ(n)Uµ(n + µ̂)Uν(n + 2µ̂)U−µ(n + 2µ̂ + ν̂)U−µ(n + µ̂ + ν̂)U−ν(n + ν̂)

= Uµ(n)Uµ(n + µ̂)Uν(n + 2µ̂)U†
µ(n + µ̂ + ν̂)U†

µ(n + ν̂)U†
ν (n) . (2.30)
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The improved Symanzik gauge action, including the Wilson loops Rµν(n), is written as

SSym[U] =
2
g2 ∑

n
∑
µ<ν

[
5
3

(
1− 1

3
<(Uµν)

)
− 1

12

(
1− 1

3
<(Rµν)

)]
. (2.31)

The inclusion of improved Rµν(n) in the Symanzik gauge action decreases the dis-

cretization error, and improves the convergence to the continuum limit. This action

was introduced in [63], and is used in the lattice calculations analyzed in Chapter 3 of

this dissertation.

The link variables Uµ in the gauge action are introduced as members of the SU(N)

group. As discussed in [67], for the integration over a compact lie group, the Haar

measure is used, defined as

dU = c
√

det [g(w)]∏
k

dw(k) , (2.32)

where c is a normalization constant, U(w) is an element of the lie group, and g(w) is

the metric tensor.

2.2.3 Fermion Action

The naive discretization of the fermions on the lattice was obtained in Eq. (2.23), which

is rewritten here in a quadratic form

Sfer[U, ψ, ψ̄] =a4 ∑
n,m

∑
α,β

∑
a,b

ψ̄(n)α,aD(n|m)ψ(m)β,b , (2.33)

with the Dirac operator

D(n|m) = ∑
µ

(γµ)
Uµ(n)abδn+µ̄,m −U−µ(n)abδn−µ̄,m

2a
+ m δαβδabδnm . (2.34)
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The fermion propagator on the lattice is the inverse of this Dirac operator. In momen-

tum space for massless fermions, the propagator is

D(p)−1 ∼ 1

∑µ sin2(pµa)
, (2.35)

while in the limit when a→ 0 it reproduces the continuum limit

lim
a→0

D(p)−1 ∼ 1
p2 (2.36)

with one pole at p = (0, 0, 0, 0) corresponding to one fermion. On the lattice, on the

other hand, there is a pole every time all components of the momentum p contain

zeros and/or a value of π
a . In total, there are sixteen fermions on the lattice, fifteen of

which are unphysical poles called "doublers".

There are different strategies to deal with the "doublers". Possibly, the simplest way

to get rid of the unwanted modes was suggested by Wilson and consists of adding an

extra term to the Dirac operator.

D(p) = m +
1
a ∑

µ

γµ sin(pµa) +
1
a
[
a− cos(pµa)

]
(2.37)

the last term, called the Wilson term, cancels the "doublers". The Wilson action then

reads

SW
fer[U, ψ, ψ̄] =∑

f
a4 ∑

n,m
ψ̄ f (n)D f

W(n|m)ψ f (m) (2.38)
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where

D f
W(n|m) =

(
m f +

4
a

)
δαβδabδnm−

1
2a ∑

µ

[
(1− γµ)αβUµ(n)abδn+µ̂,m

+(1 + γµ)αβU−µ(n)abδn−µ̂,m

]
(2.39)

is the Dirac operator with the inclusion of the Wilson term.

The Wilson fermion action discretization error is expected to be O(a). In a similar

way that in the gauge action, the error term could be improved, in this case toO(a2), by

using the Symanzik method. The idea is to write an effective action with the symme-

tries of QCD but expressed as expansion in powers of a. The coefficients of the terms

are chosen in order to cancel higher powers of the error, similarly to the finite difference

method. The first correction term to the Wilson action is [64, 65]

SSym
fer [U, ψ, ψ̄] =SW

fer[U, ψ, ψ̄] + csw a5 ∑
n

∑
µ<ν

ψ̄(n)
1
2

σµνF̂µν(n)ψ(n) , (2.40)

where σ =
[γµ,γν]

2i , csw is the Sheikholeslami-Wohlert coefficient defined in [68], and F̂µν

is a discrete version of the force tensor Fµν. The Symanzik method as well as a possible

way to discretize the force tensor is described in [67].

In the calculations analyzed in Chapter 3 of this dissertation, the staggered fermions

method was used to deal with the "doubler" modes [66]. The idea of staggered fermions

is to construct a diagonal action in spinor space by performing the staggered transfor-

mation in the fermion fields

ψ(n)→ γn1
1 γn2

2 γn3
3 γn4

4 ψ(n) ψ̄(n)→ ψ̄(n)γn4
4 γn3

3 γn2
2 γn1

1 . (2.41)
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In that way, the sixteen fermions that are in the naive fermion action are reduced to

four groups containing an exact copy of each other

SS
fer[U, ψ, ψ̄] = a4 ∑

n
ψ̄(n)

(
∑̂
µ

ηµ
Uµ(n)ψ̄(n + µ̂)−U−µ(n)ψ(n− µ̂)

2a

+ mχ(n)

)
(2.42)

the γ-matrices, which mix the spinor indexes, are now diagonal and real η-matrices

defined in terms of the lattice vector n = {n1, n2, n3, n4} as

η1(n) = 1 η2(n) = (−1)n1 η3(n) = (−1)n1+n2 η4(n) = (−1)n1+n2+n3 . (2.43)

Three of those copies can be dropped leaving only one denoted by χ, a Grassmann-

valued field containing the physical fermion and three "doublers". The staggered fermion

action becomes

SS
fer[U, χ, χ̄] = a4 ∑

n
χ̄(n)

(
∑̂
µ

ηµ
Uµ(n)χ(n + µ̂)−U−µ(n)χ(n− µ̂)

2a

+ mχ(n)

)
. (2.44)

To remove the effects of the extra fermions, a rooting strategy is performed. This consist

of taking the fourth root of the fermion determinant, which is the result of integrating

the fermion fields. The reduction of the spinor space made the computations much less

expensive.
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2.2.4 Finite Temperature and Chemical Potential

At the beginning of this chapter in Section 2.1, the normalization factor in the path

integral formalism (Eq. (2.9)) was recognized as the partition function with the same

structure than in statistical mechanics, but with the QCD action as a Boltzmann factor.

The partition function in a quantum mechanical canonical ensemble at finite T is

Z(T) = Tr
[
e−βĤ

]
(2.45)

where β here denotes the inverse temperature β = 1/T, and Ĥ the Hamiltonian op-

erator. Following the Matsubara formalism, a Fourier transform is performed in the

imaginary time direction, leading to discrete energy levels in term of Matsubara fre-

quencies ωn with periodicity in the interval
(
−π

a , π
a

]
. For bosons ωn = 2nπT and the

time direction is periodic, while for fermions ωn = (2n + 1)πT and the time direction

is anti-periodic.

On the lattice, the partition function depends on the link variables and the fermion

fields

Z =
∫
D[U]D[ψ]D[ψ̄]e−SQCD[U,ψ,ψ̄] (2.46)

with the QCD Euclidian action

SQCD[U, ψ, ψ̄] =
∫ β

0
dx4

∫
d3xLQCD[U, ψ, ψ̄] (2.47)

In Eq. (2.46), at zero temperature the finite integral in the time direction was considered

only as a discretization effect. To introduce finite temperature, as done in the Matsubara

formalism, the integration in the imaginary time is imposed to be periodic for the gluon

fields and anti-periodic for the fermions. The limits of the integration in the imaginary
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time are from zero up to the extension of the temporal lattice β = aNτ, by following the

analogy

β =
1
T

= aNτ . (2.48)

In this equation, a finite β corresponds to a system with finite T. In the lim β→ ∞,

T → 0. On the other hand, in the continuum limit on the lattice a ∼ β → 0 will

lead to T → ∞. To keep T constant, aNτ and aNs have to be constant while taking the

continuum limit. This can be done by keeping the ratio aNτ
aNs

constant as one approaches

the continuum limit.

The inclusion of a baryonic chemical potential µB, or a quark chemical potential

µq = µB/3, is more complicated. In the continuum theory, one has to consider the par-

tition function in the grand canonical ensemble

Z(T, µB) = Tr
[
e−β(Ĥ−µB N̂)

]
; (2.49)

this can be done by coupling µB with the temporal component of the conserved current

ψ̄(x)γµψ(x). However, adding the term µBψ̄(n)γ4ψ(n) to the Dirac operator on the

lattice leads to an energy density ε that diverges in the continuum limit,

lim
a→0

[ε(µB)− ε(0)] ∼
(µB

a

)2
(2.50)

and therefore is not a physical solution. The problem was understood in [69]. The

main observation there was that in the continuum Euclidian formalism the chemical

potential couples to a conserved charge, and it acts like the imaginary part of the four

component of a vector potential. Then, µB was introduced as imaginary abelian vector
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field on the lattice in a similar way as the link variables

U4̂ = eiA4 → eaµB

U†
4̂ = e−iA4 → e−aµB . (2.51)

The exponential e±aµB was introduced as a multiplying factor on the fourth compo-

nent of the link variables, so that the Dirac Operator for Wilson Fermions in Eq. (2.39)

becomes

D f
W(n|m) =

(
m f +

4
a

)
δαβδabδnm

− 1
2a

3

∑
µ=1

[
(1− γµ)αβUµ(n)abδn+µ̂,m + (1 + γµ)αβU−µ(n)abδn−µ̂,m

]
− 1

2a

[
(1− γ4)αβeaµBU4(n)abδn+4̂,m + (1 + γ4)αβe−aµBU−4(n)abδn−4̂,m

]
(2.52)

at finite µB. In this way, the correct energy density is recovered in the continuum limit,

and at finite temperature, a closed loop in the time direction will recover the fugacity

term: (eaµB)Nτ = eµB/T.

2.2.5 Fermion Determinant

One of the properties of fermions is that they obey Fermi statistics. The anti-commuting

relations for fermions are captured by Grassmann numbers. The fermion action in the

partition function Eq. (2.46) is quadratic in the fermion fields, and can be integrated

analytically, leading to the fermion determinant

Z =
∫
D[U]e−Sglu[U]

(∫
D[ψ]D[ψ̄]e−ψ̄Mψ

)
=
∫
D[U]e−Sglu[U] det [M] . (2.53)
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After integration, the partition function depends on the measure D[U], and the inte-

grand ρM ∼ e−Sglu[U] det [M], which at µ = 0 is positive defined and can be interpreted

as probability weight in numerical Monte Carlo simulation. However, introducing a

chemical potential the fermion determinant becomes a complex function depending

on µ in the following way

[det(µ)]∗ = det(−µ∗) (2.54)

resulting in a weight ρM that is complex for real µ and cannot be used in traditional

simulation algorithms. This numerical limitation of the lattice formalism is referred

to as the "sign problem". However, the introduction of µ allows one to calculate the

expressions for µ-dependent observables, such as susceptibilities of conserved charges

that can later be calculated on the lattice at µ = 0. On the other hand, by introduc-

ing an imaginary-µ (µ→ iµI) the fermion determinant stays real, as well as the weight

ρM. Treating µ as a complex parameter allows one to calculate observables that can

be analytical continuations to the real µ-plane. Since the partition function has a mat-

ter anti-matter symmetry, Z(µ) = Z(−µ), the continuations can be done by mapping

µ2
I
→ −µ2.

2.3 Imaginary Chemical Potential

QCD at imaginary quark chemical potential µ = iµi has an intricate phase structure,

whose main characteristics are mentioned in this section. The interplay between the

chemical potential and the centre symmetry of the pure gauge sector plays an impor-

tant role in the structure of this phase diagram. Another aspect to consider is the chi-

ral/deconfinement transition, which is very sensitive to the mass of the quarks. The
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Columbia plot, displayed in the right panel of Figure 2.2, shows the order of the tran-

sition at µB = 0 as a function of the light flavor quark masses. The horizontal axis

indicates the mass of the light quarks u and d, while the heavy quark s is shown on

the vertical axis. For physical quark masses the transition is a crossover. On the other

hand, in the two extremes of the plot: in the vicinity of the chiral limit where the quark

masses are zero, and in the limit of infinite quark masses, corresponding to the pure

gauge sector, the transition is first order. The dependence of the transition on the quark

masses, and also as function of µB, is an important aspect to consider and emphasizes

the importance of performing calculations with physical quark masses.

The center symmetry of the SU(3) gauge sector on the lattice

U4 → zkU4 where zk = e
2πik

3 for: k = {0, 1, 3} (2.55)

is broken explicitly with the inclusion of quarks. By including an imaginary quark

chemical potential µi multiplying the temporal links, the transformation in Eq. (2.55) is

modified to

ei µi
T zk =ei( µi

T + 2πk
3 )

=e
i
(

µI
B+2πk

3T

)
where: µB = iµI

B . (2.56)

In this equation, a centre symmetry can be undone by a shift in µi. This leads to a non-

trivial periodicity µi → µi + i2πT/3 known as the Roberge-Weiss symmetry (RW) [70].

The RW is independently of the charge conjugation symmetry µi → −µi, and translates

to the imaginary baryonic chemical potential as µI
B → µI

B + i2πT.

The left panel of Figure 2.2 shows the RW periodicity in the imaginary-µ plane. The

approximate order parameter of the center symmetry is the Polyakov loop P, which is
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FIGURE 2.2: Left panel: QCD phase diagram in the Imaginary µ plane.
The solid lines represent the Roberge-Weiss (RW) first-order phase tran-
sitions that terminate on the tricritical points represented by the black
dots. The dashed lines signal the chiral/deconfinement transition whose
nature depends on the quark masses (figure from [71]). Right panel:
the Columbia plot shows the order of the transition as a function of the

quark masses at µi = 0 (figure form [72])

invariant under a center transformation. In the deconfined phase, 〈P 〉 6= 0, and as µi

increases, its expectation value cycles through one of the three different possibilities.

The direction of symmetry breaking changes as P rotates, and consequently a 1st-order

transition occurs. The direction of P is shown with arrows in this figure. The 1st-order

transition is illustrated with solid lines. The dotted lines represent the crossover line

where the confined phase with 〈P 〉 = 0 begins. Those two lines meet at the tricritical

point, represented by the black dots.

In terms of the baryonic chemical potential, the RW transition occurs at µI
B = iπT.

The region iπT ≤ µ2
B ≤ 0 that can be explored on the lattice to find the µ-dependence of

the observables. For instance, recent simulations at imaginary-µ have been dedicated

to determine the transition line in the T − µ2
B phase diagram and, using analyticity ar-

guments, continue the transition to the real T − µB plane [73–75]. In [76], the QCD
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EoS has been explored and extrapolated from imaginary-µB, and in [77] the low order

susceptibilities at imaginary-µ were used to calculate generalized quark number sus-

ceptibilities. In this dissertation, the lower order baryon susceptibilities at imaginary-

µB were analyzed to determine the higher order susceptibilities that are discussed in

Chapter 3 and were published in [23].

2.4 Susceptibilities of Conserved Charges

The susceptibilities of conserved charges are important thermodynamic quantities that

can be calculated on the lattice and are related to the moments of the distribution of con-

served charges measured in HICs, as it was shown in Section 1.3.4. The phenomeno-

logical conserved charges that are interesting in the context of HICs are baryon number

(B), electric charge (Q) and strangeness (S), which are fixed during the entire collision.

In QCD there is a conserved charge for each quark flavor (µu, µd, µs). The relations

between the chemical potentials of quarks and those of the conserved charges are

µu =
1
3

µB +
2
3

µQ

µd =
1
3

µB −
1
3

µQ

µs =
1
3

µB −
1
3

µQ − µS . (2.57)

The susceptibilities are the derivatives of the free energy with respect to the chemi-

cal potentials. Since the free energy is proportional to the pressure, the susceptibilities

can be defined as

χB,Q,S
i,j,k

=
∂i+j+k( p̂)

(∂µ̂B)i(∂µ̂Q)
j(∂µ̂S)

k
(2.58)
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with the dimensionless variables

p̂ =
p

T4 µ̂i =
µi

T
. (2.59)

An additional chemical potential relevant in the study of HIC is the light isospin, de-

fined as

µI = µu − µd . (2.60)

Here, some useful relations of susceptibilities that are calculated on the lattice, and can

be related to observables in HICs are shown. Simplifications of these expressions occur

by assuming µB = 0 and degenerate u and d quarks [78, 79]. The susceptibilities of the

conserved charges are expressed in terms of the quark derivatives. The second order

combinations in B, Q, S are given by

χB
2
=

1
9
[
2χu

2
+ χs

2
+ 4χus

11
+ 2χud

11

]
χI

2
=

1
2
[
χu

2
− χud

11

]
χQ

2
=

1
9
[
5χu

2
+ χs

2
− 2χus

11
− 4χud

11

]
χBS

11
=− 1

3
[
χs

2
+ 2χus

11

]
χBQ

11
=

1
9
[
χu

2
− χs

2
− χus

11
+ χud

11

]
χQS

11
=

1
3
[
χs

2
− χus

11

]
, (2.61)

while the fourth order diagonal baryon and electric susceptibilities, related to the kur-

tosis in Eq.(1.23), are

χB
4
=

1
81
[
2χu

4
+ χs

4
+ 6χud

22
+ 12χus

22
+ 8χus

13
+ 8χus

31
+ 8χud

31
+ 24χuds

211
+ 12χuds

112

]
χQ

4
=

1
81
[
17χu

4
+ χs

4
+ 24χud

22
+ 30χus

22
− 4χus

13
− 28χus

31
− 40χud

31
+ 24χuds

211
− 24χuds

112

]
. (2.62)

Up to forth order combination of susceptibilities are needed to perform the calculations

in Chapter 3. The next section shows the expression for the partial derivatives of the
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susceptibilities in terms of the fermionic determinant that is calculated on the lattice.

2.4.1 Susceptibilities on the Lattice

The expressions needed to compute susceptibilities on the lattice at µB = 0 are deriva-

tives in terms of the fermion determinant. The QCD partition function, after integrating

the fermionic degrees of freedom, is given by

Z =
∫
D[U]e−Sglu[U](det Mu)

1/4(det Md)
1/4(det Ms)

1/4(det Mc)
1/4 (2.63)

where Sg is the gauge action and Mi is the fermionic determinant of the quark of flavor

i. The derivative of the fermion matrix M is expressed as

dM
dµ

ψ(x) =
1
2

η4(x)
[
U4(x)ψ(x + 4̂) + U+

4 (x− 0̂)ψ(x− 4̂)
]

,

d2M
dµ2 ψ(x) =

1
2

η0(x)
[
U4(x)ψ(x + 4̂)−U+

4 (x− 0̂)ψ(x− 4̂)
]

;

any higher odd and even derivative are equal to dM/dµ and d2M/dµ2, respectively.

The derivatives of the fermionic determinant det M are expressed as traces of the fermion

matrix Mj. The terms needed to calculate up to the forth-order susceptibility are given
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by the following expressions

d
dµj

log(det Mj)
1/4 =

1
4

tr
[

M−1
j M′j

]
d2

(dµj)2 log(det Mj)
1/4 =

1
4

tr
[
(M′′j M−1

j −M′j M
−1
j M′j M

−1
j

]
d3

(dµj)3 log(det Mj)
1/4 =

1
4

tr
[

M′j M
−1
j − 3M′′j M−1

j M′j M
−1
j + 2M′j M

−1
j M′j M

−1
j M′j M

−1
j

]
d4

(dµj)4 log(det Mj)
1/4 =

1
4

tr
[
(M′′j M−1

j − 4M′j M
−1
j M′j M

−1
j − 3M′′j M−1

j M′′j M−1
j

+12M′′j M−1
j M′j M

−1
j M′j M

−1
j − 6M′j M

−1
j M′j M

−1
j M′j M

−1
j M′j M

−1
j

]
(2.64)

by using the notation

〈Ai〉 = ∂i log Z . 〈Bi〉 = ∂2
i log Z .

〈Ci〉 = ∂3
i log Z . 〈Di〉 = ∂4

i log Z . (2.65)

the derivative of the expectation value of any lattice observable X is obtained as

∂j 〈X〉 =
〈

XAj
〉
− 〈X〉

〈
Aj
〉
+
〈
∂jX

〉
. (2.66)

the higher order formulas are obtained by using Eq. 2.66, recursively, and setting µ = 0

at the end of the calculation. The analytical calculations to obtain up to the fourth order

expressions on the susceptibilities requires extensive analytical work. For example,
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expressions for high order diagonal derivatives

∂2
i log Z =

〈
A2

i
〉
− 〈Ai〉2 + 〈Bi〉

∂4
i log Z =

〈
A4

i

〉
− 3

〈
A2

i
〉2

+ 3
(〈

B2
i
〉
− 〈Bi〉2

)
+ 6

(〈
A2

i Bi
〉
−
〈

A2
i
〉
〈Bi〉

)
+ 4 〈AiCi〉+ 〈Di〉 , (2.67)

and for non-diagonal derivatives

∂2
u∂2

d log Z =
〈

A4
u

〉
− 3

〈
A2

u
〉2

+
〈

B2
u
〉
− 〈Bu〉2 + 2

(〈
A2

i Bi
〉
−
〈

A2
i
〉
〈Bi〉

)
∂u∂3

s log Z =
〈

Au A3
s
〉
− 3

〈
A2

s
〉
〈Au As〉+ 3 (〈Au AsBs〉 − 〈Au As〉 〈Bs〉) + 〈AuCs〉

∂2
u∂2

s log Z =
〈

A2
u A2

s
〉
− 2 〈Au As〉2 −

〈
A2

u
〉 〈

A2
s
〉
+ 〈BuBs〉 − 〈Bu〉 〈Bs〉+

〈
A2

uBs
〉

−
〈

A2
u
〉
〈Bs〉+

〈
A2

s Bu
〉
−
〈

A2
s
〉
〈Bu〉

∂u∂d∂2
s log Z =

〈
A2

u A2
s
〉
− 2 〈Au As〉2 −

〈
A2

u
〉 〈

A2
s
〉
+
〈

A2
uBs
〉
−
〈

A2
u
〉
〈Bs〉 . (2.68)

Everyone of those expectation values can be calculated on the lattice at µ = 0, and from

them construct the corresponding combination of susceptibilities.
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Higher Order Susceptibilities from

the Lattice

The direct calculation of susceptibilities at µB = 0 is affected by a signal-to-noise ratio

with an exponent that grows with the order of the susceptibility, and consequently the

uncertainty on the higher order ones, such as χ6 , is at the moment large [20]. An alter-

native strategy to improve the calculation of higher order susceptibilities is to calculate

the lower order ones at imaginary-µB with great precision [23, 80]. Then, one can take

the results of the simulations to the real plane (iµI
B)

2 → µ2
B and extract the higher order

susceptibilities at µB = 0, using the method described below.

The topic of this chapter is precisely to analyze the lower order susceptibilities (χ1 ,

χ2 , χ3 , and χ4) computed at imaginary-µB and perform their combined fit to extract

higher order ones at µB = 0 (χ6 and χ8).

3.1 Lattice Setup

The action used to calculate the lower order susceptibilities is a tree-level Symanzik im-

proved gauge action, with four times stout smearing and smearing parameter ρ = 0.125 [81].
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It simulates 2 + 1 + 1 dynamical quarks [23, 80]

Z =
∫
D[U]e−Sglu[U](det Mu)

1/4(det Md)
1/4(det Ms)

1/4(det Mc)
1/4 (3.1)

The analysis was done on a lattice with NS = 48 and Nτ = 12. The light flavors, u and

d quarks, are considered degenerate, and are tuned in a way to reproduce the physical

pion and kaon masses. The charm mass is introduced by the continuum extrapolated

quark mass ratio mc
ms

= 11.85 of [82]. The light and strange quark masses are obtained

by tuning the following ratios to their physical values:

Rphys
S =

2m2
K −m2

π

f 2
π

= 27.65 Rphys
L =

mπ

fπ
= 1.069 , (3.2)

where isospin-averaged pion (π) and kaon (K) masses were used [83]. The scale was

determined by setting fπ = 130.41 MeV [84]. The ratio µB/T is denoted in this chapter

for simplicity with a hat as µ̂B.

3.1.1 Lattice Data

The lower order susceptibilities (χ1 , χ2 , χ3 , and χ4) are obtained using the expressions

shown in Section 2.4 at imaginary-µB. In terms of quark chemical potentials, the ensem-

bles were generated with µu = µd = µs = µB/3 in the temperature range T = {135, 140,

. . . , 220} MeV. At each temperature, eight values of imaginary µB are obtained at the

points µ̂B
(j) = i jπ

8 for j = {0, 1, 2, 3, 4, 5, 6, 7}. From all the generated configurations,

N = 48 Jackknife estimators are obtained for each lattice point. The Jackknife esti-

mators (xi) are used to calculate the mean (x̄) and the variance (σ2)

x̄ =
1
N

N

∑
i=1

xi σ2 =
N − 1

N ∑(xi − x̄)2 (3.3)
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FIGURE 3.1: Lower order susceptibilities in the imaginary-µB plane as
functions of µ̂B = µB/T for different temperatures, T.

Upper panel: χ1(iµ̂B). Lower panel: χ2(iµ̂B).

on each lattice point. The lattice points simulated in the imaginary-µ̂B plane are shown

in Figure 3.1, and Figure 3.2.

56



Chapter 3. Higher Order Susceptibilities from the Lattice
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FIGURE 3.2: Lower order susceptibilities in the imaginary-µB plane as
functions of µ̂B = µB/T for different temperatures, T.

Upper panel: χ3(iµ̂B). Lower panel: χ4(iµ̂B).

3.2 Combined Fit Part 1

The main goal of this section is to calculate χB
2
(T), χB

4
(T), χB

6
(T), and χB

8
(T) at µB = 0 by

performing a combined fit of the susceptibilities χB
1
(T), χB

2
(T), χB

3
(T) and χB

4
(T) from
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simulations at imaginary-µB. Note that only χB
2
(T) and χB

4
(T) can be determined from

simulations at µB = 0, since χB
1
(T) and χB

3
(T) are odd functions of µB and they vanish

because of matter antimatter symmetry.

All the lattice points are shown in Figure 3.1, and Figure 3.2. The fit was performed

at a fixed temperature T. In this way, the results for different temperatures are obtained

completely independently. Thus, the error bars in the results will be independent. On

the other hand, the errors between the quantities χB
2
(T), χB

4
(T), χB

6
(T), and χ8 T) will be

highly correlated since these are extracted through the same set of ensembles at a given

temperature.

In this section, the ansatz for the pressure (χB
0
) is a Taylor expansion in terms of µ̂B

2

up to µ̂B
10

χB
0
(µ̂B) = c0 + c2µ̂B

2 + c4µ̂B
4 + c6µ̂B

6 + c8µ̂B
8 + c10µ̂B

10, (3.4)

from which expressions depending only on µ2
B for the susceptibilities can be obtained

as follows:

χB
1
(µ̂B

2)

µ̂B
= 2c2 + 4c4µ̂B

2 + 6c6µ̂B
4 + 8c8ε1µ̂B

6 + 10c10µ̂B
8 (3.5)

χB
2
(µ̂B

2) = 2c2 + 12c4µ̂B
2 + 30c6µ̂B

4 + 56c8µ̂B
6 + 90c10µ̂B

8 (3.6)

χB
3
(µ̂B

2)

µ̂B
= 24c4 + 120c6µ̂B

2 + 336c8µ̂B
4 + 720c10µ̂B

6 (3.7)

χB
4
(µ̂B

2) = 24c4 + 360c6µ̂B
2 + 1680c8µ̂B

4 + 5040c10µ̂B
6 . (3.8)
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FIGURE 3.3: Lower order susceptibilities calculated on the lattice at
imaginary-µB as a function of µ̂B

2 = µ2
B/T2 for different temperatures,

T. Upper panel: χB
1
(µ̂B

2)/(µ̂B). Lower panel: χB
2
(µ̂B

2).

The baryonic susceptibilities at µB = 0 are related to the Taylor coefficients in Eq. (3.4)

by the following relations

χB
2
= 2!c2 χB

4
= 4!c4 χB

6
= 6!c6 χB

8
= 8!c8 . (3.9)
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FIGURE 3.4: Lower order susceptibilities calculated on the lattice at
imaginary-µB as a function of µ̂B

2 = µ2
B/T2 for different temperatures,

T. Upper panel: χB
3
(µ̂B

2)/µ̂B. Lower panel: χB
4
(µ̂B

2).

The lattice points in the µ2
B plane for the expressions in Eqs. (3.5-3.8) are shown in

Figure 3.3 and Figure 3.4. There are 34 lattice point in total for each Jackknife estimator,

and 48 estimators for each temperature T. The combined fit is done by performing
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FIGURE 3.5: Results for χB
4
, χB

6
and χB

8
as functions of the temperature T

using the ansatz in Eq. (3.4).

a linear least square (LLS) fitting of each Jackknife estimator and then computing the

mean and standard deviation in order to obtain a point with its respective error bar.

Some of the lattice points in Figure 3.3 and Figure 3.4 show big error bars. To reduce

the negative effect of those points, a combination of up to three points on each of the

quantities in Eqs. (3.5-3.8) were omitted in order to find the combined fit with smaller

error bars on χ6 and χ8 .. The results of the best fit are shown in Figure 3.5. χ4 has been

calculated by direct method on the lattice at µB = 0, and it is known to have a smooth

dependence as a function of T. Our result shows that the combined fit done with the

ansatz in Eq. (3.4) is not stable.

The HRG model predicts that for temperatures, T, smaller that the transition tem-

perature, Tc, the functional form of the baryon density ρB ∼ sinh(µ̂B), which translate

61



Chapter 3. Higher Order Susceptibilities from the Lattice

FIGURE 3.6: Results for χB
4
, χB

6
and χB

8
as functions of the temperature T

using the ansatz in Eq. (3.10).

at the imaginary-µB plane as ρB ∼ sin(µI
B). The fact that the baryon density ρB is pro-

portional to χB
1

motivates to add a cos(µ̂B) to Eq. (3.4) to produce a χB
1
∼ sinh(µ̂B). The

second ansatz for the pressure that is consider is given by

χB
0
(µ̂B) = c0 + c2µ̂B

2 + c4µ̂B
4 + c6µ̂B

6 + c8µ̂B
8 + c10µ̂B

10 + cc cos(µ̂B) . (3.10)

The results of the combined fit using Eq. (3.10) are shown in Figure 3.6. One more

time, the fitting of χ4 is shown to be not smooth. Later, different approaches to try

to get a better quality for the results were used such as Fourier series, T-dependent

2D fitting with polynomial, cubic splines, and thin-plate splines. However, the results

were similar to the ones already shown in Figure 3.5, and Figure 3.6.
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3.3 Expected Results for χB
8

The results obtained in Section 3.2 can be improved if one has an intuition of the ex-

pectations for the higher order susceptibilities that help to constrain the parameters in

the calculation. The aim is to create a toy model able to calculate up to χ8 from known

features of the susceptibilities that are available.

The first and second baryon susceptibilities are related at µB ' 0 by the ratio

χB
1
(T, µ̂B)

µ̂B

∣∣∣∣
µ̂B'0
' χB

2
(T, 0) ; (3.11)

therefore, at very small chemical potential χB
1
(T, µB) ' χB

2
(T, 0)µ̂B. The ratio χB

1
(T, µ̂B)/µ̂B

can be calculated for an imaginary value of µB while χB
2
(T, 0) has been calculated by

direct method. The left panel in Figure 3.7 shows lattice points for χB
2
(T, 0) (purple

points), and also shows the calculation of χB
1
(T, µ̂B)/µ̂B for µ̂B = i5π/8 (yellow points).

The qualitative behavior is similar for both set of points, but the latter are shifted to

higher values. The figure also shows, with a yellow curve, the interpolation obtained

for χB
2
(T, 0) using the simple fit function form

χB
2
(T, 0) ' A + BT + C atan(D(T − E)) (3.12)

this function reproduces the gross features of the curve in the T = {120 : 300} MeV

interval.

On the other hand, the dependence of the transition temperature Tc at µB = 0 is

known to decrease for small values of µ̂B, tracing a parabola in the phase diagram with

positive curvature κ [73–75, 85]

Tc = T
[
1− κµ̂B

2 +O
(

µ̂B
4
)]

(3.13)
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Taking this into account, the approximation in Eq. (3.11) can be improved (at least close

to the transition temperature where high order susceptibilities have more structure) by

rescaling the T-dependence in Eq. (3.13) by Tc giving the following relation

χB
1

(toy)(T, µ̂B) = µ̂BχB
2

(
T(1 + κµ̂B

2)
)

= µ̂B

[
A + B T(1 + κµ̂B

2) + C atan(D(T(1 + κµ̂B
2)− E))

]
(3.14)

with both dependence on T and µ̂B. This toy model was able to reproduce the behavior

of the lattices points calculated at µ̂B = i5π/8 as is shown in Figure 3.7 with a purple

curve. The curve is essentially similar to the one parametrized by Eq. (3.12), but its

inflection point has been shifted to higher temperatures, as a consequence of a positive

curvature of the parameter κ.

The approximation given by the toy model in Eq. (3.14) gives access to the µB de-

pendence at any temperature. Although the toy model only incorporates the feature of

a smooth χB
2

and the shifting of Tc with the chemical potential, it correctly reproduces

the oscillatory pattern of the higher order susceptibilities.

On the right panel in Figure 3.7, the ratio χB
8
/χB

4
is shown to motivate a prior strat-

egy to stabilize the combined fitting that was done in Section 3.2. This ratio is equal to

one in the HRG model, while at high temperatures higher order fluctuations quickly

approach the Stefan-Boltzmann limit as it was seen in HTL perturbation theory [86, 87]

as well as on the lattice [80, 88]. The Stefan-Boltzmann limit is zero for χB
2n

if n ≥ 3.

There is no reason to expect the toy model to work at high temperatures and it actually

converges to zero slower than the HTL prediction. However, deviations from the HRG

model predictions are expected, which would correspond to a signal from a nearby

CEP. The pattern of χB
8
/χB

4
in the toy model is slightly asymmetric. The dark and light

bands in the figure correspond to one and two σ regions of the prior distribution. This
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FIGURE 3.7: Left panel: shows lattice calculations for χB
2

at µ̂B = 0 (pur-
ple points), and the ratio χB

1
/µ̂B calculated at µ̂B = i5π/8 (yellow points).

The yellow curve represents the parametrization in Eq. (3.12) for χB
2

at
µ̂B = 0 (purple points). The purple curve is obtained from the toy model
in Eq. (3.14), which has an excellent agreement with the shifted lattice
points (yellow points). Right panel: the toy model results for the ratio
χB

8
/χB

4
is shown as a blue curve (the HRG prediction is represented by

a black line). The dark and light bands corresponds to one and two σ
regions of the prior distribution.

fact motivates to define a prior relation between χB
8

and χB
4

giving by

χB
8
= χB

4
(−1.25 + 2.75ξ) (3.15)

where ξ is a stochastic variable with normal distribution.

3.4 Combined Fit Part 2

Our data did not allow for an independent determination of c8 and c10 in Section 3.2.

Nevertheless, in order to have some control over these, guided by the toy model de-

scribed in Section 3.3, one can impose some assumption on the higher order terms. In
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particular, the relation in Eq. (3.16) is imposed in the following way

χB
8

χB
4

=
8!c8

4!c4
= ε1 (3.16)

where ε1 is a stochastic variable. For simplicity, a similar relation is also imposed for

χB
10

χB
10

χB
4

=
10!c10

4!c4
= ε2 . (3.17)

Note that, without this term, the statistical errors on χB
8

are smaller, but the fit would

be less controlled. As the highest order in the expansion, the resulting χB
8

probably

contains contamination from higher order terms.

The ansatz in Eq. (3.4) is rewriting with as

χB
0
(µ̂B) = c0 + c2µ̂B

2 + c4µ̂B
4 + c6µ̂B

6 +
4!
8!

c4ε1µ̂B
8 +

4!
10!

c4ε2µ̂B
10, (3.18)

where ε1 and ε2 are drawn randomly from a normal distribution with mean -1.25 and

variance 2.75. The coefficients c8 and c10 become stochastic variables. The used distri-

bution for ε1,2 implements a prior for χB
8 and χB

10.

For the ansatz in Eq. (3.18), the following derivatives are obtained

χB
1
(µ̂B) = 2c2µ̂B + 4c4µ̂B

3 + 6c6µ̂B
5 +

4!
7!

c4ε1µ̂B
7 +

4!
9!

c4ε2µ̂B
9 (3.19)

χB
2
(µ̂B) = 2c2 + 12c4µ̂B

2 + 30c6µ̂B
4 +

4!
6!

c4ε1µ̂B
6 +

4!
8!

c4ε2µ̂B
8 (3.20)

χB
3
(µ̂B) = 24c4µ̂B + 120c6µ̂B

3 +
4!
5!

c4ε1µ̂B
5 +

4!
7!

c4ε2µ̂B
7 (3.21)

χB
4
(µ̂B) = 24c4 + 360c6µ̂B

2 + c4ε1µ̂B
4 +

4!
6!

c4ε2µ̂B
6 . (3.22)

Using Eqs. (3.19-3.22), a correlated fit is performed for the four measured observables,
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FIGURE 3.8: Results for χB
2
, χB

4
, χB

6
and an estimate for χB

8
as functions of

the temperature T obtained from the single-temperature analysis. The
red curves are calculation made with the HRG model.

obtaining the values of c2, c4 and c6 for each temperature, and the corresponding χB
2
, χB

4

and χB
6
. The fit is repeated for 1000 random draws for ε1 and ε2. Through these weights

we get a posterior distribution from the prior one. The final estimate for χB
8

represents

this posterior distribution. The results for χB
10

are not shown since this term becomes

mostly noise.

Finally, the results of the analysis ffor χB
2
(T), χB

4
(T) and χB

6
(T) are shown in Figure 3.8

together with an estimate of χB
8
, related to χB

4
by Eq. (3.16). The results are very smooth,

with small error bars for χB
2
, χB

4
, while χB

6
and the estimate for χB

8
show the trend ex-

pected from universality arguments [39].

67



Chapter 4

Holographic Model

This chapter describes the holographic black hole model used in this dissertation to

study the strongly interacting region of the QCD phase diagram. The construction is

a bottom-up dilatonic dual model based on the coupling between the bulk metric field

gµν, a real scalar dilaton field φ, and a Maxwell vector field Aµ defining an Einstein-

Maxwell-dilaton (EMD) model. The EMD model was originally introduced in [89],

and has only as free parameters: the gravitational constant κ2
5, an energy scale Λ, and

two functions of the dilaton field. One of these functions is the dilaton-scalar potential

V(φ) and the other one is the Maxwell-dilaton coupling f (φ). In Section 4.1, the EMD

model is defined and the equations of motion are written. Then, the numerical sett-

up is described in Section 4.2, and the engineering of the black holes to mimic QCD is

described in Section 4.3.

4.1 EMD Black Hole Model

This section describes the EMD holographic model used in this dissertation. In the

EMD model, the effects due to a nonzero baryon chemical potential µB one taken into

account by the zero component of a Maxwell field Aµ. The EMD model action is given
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by [89]

S =
1

2κ2
5

∫
d5x

√
−g
[
R− 1

2
(∂µφ)2 −V(φ)− 1

4
f (φ)F2

µν

]
, (4.1)

where κ2
5 ≡ 8πG5 is Newton’s constant in five spacetime dimensions, R is the Ricci

scalar, φ is a dilaton field which couples to the metric gµν trough the potential V(φ),

the Maxwell field is introduced in the field tensor Fµν = ∂µ Aν − ∂ν Aµ, and f (φ) is the

Maxwell-dilaton coupling. The action in Eq. (4.1) is complemented by some boundary

terms which affect the evaluation of the free energy, but not the equations of motion or

the calculation of the entropy or temperature.

The EMD model becomes completely specified by fixing only two parameters and

two functions. The dilaton potential V(φ) is a free function responsible of breaking

the conformal symmetry of the theory in the infrared regime, emulating the effects of

a dynamically generated ΛQCD scale, and it will determine the behavior of the ther-

modynamics at µB = 0. The Maxwell-dilaton coupling f (φ) is a free function that will

define the response of the system to a finite µB. The other two free parameters are the

gravitational constant κ2
5 and a characteristic energy scale, Λ. The energy scale Λ is

used to convert physical observables, calculated on the gravity side in terms of inverse

powers of the AdS radius L, to physical units expressed in powers of MeV.

A general metric for charged black hole backgrounds, spatially isotropic and trans-

lationally invariant, is described by the ansatz

ds2 = e2A(r) [−h(r)dt2 + d~x2]+ e2B(r)dr2

h(r)
(4.2)
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where the field depends only on r as

φ = φ(r) and Aµdxµ = Φ(r)dt (4.3)

with the radial location of the black hole horizon given by the largest root of h(rH) = 0.

4.1.1 Equations of Motion

The equations of motion are obtained by extremizing the action in Eq. (4.1) with respect

to the fields in the EDM model defined in Eq. (4.2) and Eq. (4.3). They are given by [89]

φ′′(r) +
[

h′(r)
h(r)

+ 4A′(r)− B′(r)
]

φ′(r)

− e2B(r)

h(r)

[
∂V(φ)

∂φ
− e−2[A(r)+B(r)]Φ′(r)2

2
∂ f (φ)

∂φ

]
= 0 (4.4)

Φ′′(r) +
[

2A′(r)− B′(r) +
d [ln ( f (φ))]

dφ
φ′(r)

]
Φ′(r) = 0 (4.5)

A′′(r)− A′(r)B′(r) +
φ′(r)2

6
= 0 (4.6)

h′′(r) + [4A′(r)− B′(r)]h′(r)− e−2A(r) f (φ)Φ′(r)2 = 0 . (4.7)

By combining the independent components of Einstein’s equations, a constraint on the

fields is obtained

h(r)[24A′(r)2 − φ′(r)2] + 6A′(r)h′(r) + 2e2B(r)V(φ) + e−2A(r) f (φ)Φ′(r)2 = 0 (4.8)
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There are two conserved charges in the radial direction associated with the EMD equa-

tions of motions: the Gauss charge QG, and the Noether charge QN [89]

QG(r) = f (φ)e2A(r)−B(r)Φ′(r),

QN(r) = e2A(r)−B(r)
[
e2A(r)h′(r)− f (φ)Φ(r)Φ′(r)

]
. (4.9)

Using these conserved charges, the equation of motion in Eq. (4.5) for the gauge field

Φ(r) can be rewritten as dQG
dr = 0, while the equation of motion in Eq. (4.7) for the black-

ening function h(r) is obtained from dQN
dr = 0. The constraints in Eq. (4.8) and the con-

served charges are used when numerically extracting thermodynamical quantities in

Section 4.2.

On the other hand, the background function B(r) can be fixed to any value since it

does not show any dynamics in the equations of motion. In order to simplify numerical

calculations, B(r) is chosen to be zero everywhere.

4.2 Numerical Calculation of Thermodynamic Quantities

In order to numerically solve the EMD equations of motion and calculate physical ob-

servables, it is convenient to use two different sets of coordinates: the standard holo-

graphic coordinates denoted with a tilde, and the numerical holographic coordinates

without tilde. In the standard coordinates, the blackening function goes to unity at

the boundary, and the thermodynamical quantities are calculate using standard holo-

graphic formulas. On the other hand, to numerically solve the EMD equations of mo-

tion, it is convenient to rescale some of the Taylor coefficients obtained by expanding

the EMD fields near the black hole horizon in order to initiate the numerical integration

of the equations of motion from close to the horizon up to the asymptotically far AdS5
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spacetime.

4.2.1 Standard Holographic Coordinates

The EDM fields in Eqs. (4.2,4.3) using the gauge B̃(r̃) = 0, in the standard coordinates

are given by

ds̃2 = e2Ã(r̃) [−h̃(r̃)dt̃2 + d~̃x2]+ dr̃2

h̃(r̃)

φ̃ = φ̃(r̃), Ã = Ãµdx̃µ = Φ̃(r̃)dt̃ (4.10)

Physical quantities in the gauge theory are obtained from the far-from-the-horizon,

near-boundary behavior of the bulk fields. The ultraviolet behavior of these fields are

obtained by considering r̃ → ∞, where:

φ̃(r̃ → ∞)→ 0 h̃(r̃ → ∞)→ 1 V(0) = −12 f (0) = const (4.11)

and the background metric goes back to the AdS5 geometry. Then the EMD equations

of motion are solved in terms of Ã(r̃) and Φ̃(r̃). After this is done, a backreaction

of these fields into the dynamics of φ̃(r̃) is considered by plugging these results back

into the EMD equations of motion and solving them for φ̃(r̃) with the dilaton potential

truncated at quadratic order. This backreacted process may be repeated to obtain the
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following ultraviolet expansion of the EMD fields

Ã(r̃) = r̃ +O
(
e−2νr̃) ,

h̃(r̃) = 1 +O
(

e−4r̃
)

,

φ̃(r̃) = e−νr̃ +O
(
e−2νr̃) ,

Φ̃(r̃) = Φ̃far
0 + Φ̃far

2 e−2r̃ +O
(

e−(2+ν)r̃
)

, (4.12)

where ν ≡ d− ∆, d = 4 is the number of spacetime dimensions of the dual gauge

theory,

∆ = (d +
√

d2 + 4m2)/2 (4.13)

is the scaling dimension of the gauge theory operator dual to the dilaton field and m is

the mass of the dilaton obtained by Taylor expanding the dilaton potential close to the

boundary.

The temperature of the gauge theory is obtained by the Hawking’s temperature of

the black hole,

T =

√
−g′t̃t̃g

r̃r̃ ′

4π

∣∣∣∣
r̃=r̃H

Λ =
eÃ(r̃H)

4π
|h̃′(r̃H)|Λ, (4.14)

where the energy scale Λ is used to express T in physical units. The energy scale in-

troduced here gives a self-consistent setup to convert holographic units to physical

ones. This is different from to the strategy employed in [89], where different units

where introduced to convert each thermodynamical quantity artificially augmenting

the number of free parameters of the holographic model.
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The entropy density in the gauge theory is associated with the area of the bulk black

hole horizon by the Bekenstein-Hawking formula [90, 91],

s =
AH

4G5V
Λ3 =

2π

κ2
5

e3Ã(r̃H)Λ3 (4.15)

and the baryon chemical potential in the gauge theory is extracted from the boundary

value of the gauge field

µB = lim
r̃→∞

Φ̃(r̃)Λ = Φ̃far
0 Λ, (4.16)

while the baryon charge density is obtained from the boundary value of the radial

momentum conjugate to the Maxwell field,

ρB = lim
r̃→∞

∂L
∂
(
∂r̃Φ̃

)Λ3 =
QG(r̃ → ∞)

2κ2
5

Λ3 = − Φ̃far
2

κ2
5

Λ3. (4.17)

4.2.2 Numerical Holographic Coordinates

A different set of coordinates is defined in this section to numerically solve the EMD

equations of motion and extract the thermodynamic variables. In order to initiate the

integration of the equations of motion, the first step is to consider a Taylor expansion

of the EMD fields near horizon

X(r) =
∞

∑
n=0

Xn(r− rH)
n, where X = {A, h, φ, Φ} (4.18)

In this expansion, it is possible to rescale the holographic coordinate to fix rH = 0;

h0 = 0 follows from the fact that the blackening function has a simple zero at the black

hole horizon; h1 = 1 and A0 = 0 are fixed by rescaling the time coordinate and the

spacetime coordinates parallel to the boundary respectively, by a common factor. Φ0 is
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set to zero, otherwise an ill defined Maxwell field is obtained.

The nonzero near horizon Taylor coefficients h0, h1, A0 and Φ0 are determined in

terms of only two initial conditions (φ0, Φ1) by solving the EMD equations of motion

order by order considering the expansion in Eq. (4.19). The numerical integration is

then started from rstart → 0 up to a value rmax where the black hole backgrounds have

already reached the far-horizon corresponding to the AdS5 spacetime. By analyzing

Eq. (4.6) in the gauge B(r) = 0

A′′(r) = −φ′(r)2

6
≤ 0 (4.19)

one can see that A(r) is a concave function of the holographic coordinate. However, for

asymptotically AdS5 geometries, the background function A(r) must increase for large

values of r, which implies a positive derivative at the horizon, A1 > 0. By plugging

the near horizon expansions into the constraint (4.8) and evaluating it at the black hole

horizon one obtains

A1 = −1
6
[
2V(φ0) + f (φ0)Φ2

1
]

(4.20)

here, V(φ) is negative defined, and f (φ) is positive-defined implying that A1 > 0 only

for [89]

Φ1 <

√
−2V(φ0)

f (φ0)
≡ Φmax

1 (φ0). (4.21)
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In the numerical coordinates, the ultraviolet behavior of these fields is

A(r) = α(r) +O
(

e−2να(r)
)

,

h(r) = hfar
0 +O

(
e−4α(r)

)
,

φ(r) = φAe−να(r) +O
(

e−2να(r)
)

,

Φ(r) = Φfar
0 + Φfar

2 e−2α(r) +O
(

e−(2+ν)α(r)
)

, (4.22)

where

α(r) = (Afar
−1)r + Afar

0 . (4.23)

Evaluating the constraint (4.8) at the boundary gives

Afar
−1 =

1√
hfar

0

(4.24)

and by equating the radially conserved Gauss charge in Eq. (4.9) evaluated at the hori-

zon and at the boundary

Φfar
2 = −

√
hfar

0

2 f (0)
f (φ0)Φ1 . (4.25)

The thermodynamic quantities calculated in this dissertation are obtained from the

coefficients hfar
0 , Φfar

0 , Φfar
2 , and φA from the fields evaluated at rmax. They can be deter-

mined by relating the standard and the numerical coordinates

φ̃(r̃) = φ(r) ds̃2 = ds2 Φ̃(r̃)dt̃ = Φ(r)dt (4.26)
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and by comparing the ultraviolet asymptotics given in Eq. (4.12) and Eq. (4.22) [89],

r̃ =
r√
hfar

0

+ Afar
0 − ln(φ1/ν

A ) Ã(r̃) = A(r)− ln(φ1/ν
A ) (4.27)

~̃x = φ1/ν
A ~x t̃ = φ1/ν

A

√
hfar

0 t h̃(r̃) =
h(r)
hfar

0
(4.28)

Φ̃(r̃)=
Φ(r)

φ1/ν
A

√
hfar

0

Φ̃far
0 =

Φfar
0

φ1/ν
A

√
hfar

0

Φ̃far
2 =

Φfar
2

φ3/ν
A

√
hfar

0

. (4.29)

The thermodynamical quantities are obtained from the numerical coordinates by

T =
1

4πφ1/ν
A

√
hfar

0

Λ (4.30)

µB =
Φfar

0

φ1/ν
A

√
hfar

0

Λ (4.31)

s =
2π

κ2
5 φ3/ν

A

Λ3 (4.32)

ρB =
−Φfar

2

κ2
5 φ3/ν

A

√
hfar

0

Λ3 . (4.33)

These expressions relates directly the numerical solutions of the equations of motion

Eqs. (4.4-4.7) to a thermodynamical point in a gauge theory. In the next section, the free

parameters of the model are fixed in such a way to match lattice QCD calculations at

µB = 0.
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4.3 Engineering EMD Black Hole Model

The free scaling parameters of the EMD model and the free functions are engineered by

matching the black hole solutions with lattice QCD results with 2 + 1 flavors and phys-

ical quark masses calculated at µB = 0 in the process called "black hole engineering"

in [24]. In particular, the scalar potential V(φ) is constructed to reproduce the entropy

density s(t), which is directly calculated from the black hole model in Eqs. (4.30,4.32).

On the other hand, the gauge field in the bulk is associated with a conserved charge at

the boundary; to ensure that the charge is baryonic, the Maxwell-dilaton coupling f (φ)

is constructed to reproduce the second baryon susceptibility χ2 . A simple expression

for the second susceptibility at zero chemical potential was obtained in [89] in terms of

holographic parameters

χ
2
(µB = 0) =

1
16π2

s
T3

1
f (0)

∫ ∞
rH

dr e−2A(r) f−1(φ(r))
, (4.34)

this expression is evaluated using the black hole backgrounds defined at µB = 0, ob-

tained by setting the initial condition Φ1 to zero.

The first quantities to be engineered are the potential V(φ), the gravitational con-

stant κ2
5 and the energy scale Λ. If the potential V does not depends on φ, in particular

if V0 = 20/L2 where L is the AdS radius like in Eq. (1.27), the dual theory turns out

to have conformal symmetry with speed of sound c2
s = 1

3 as expected from a CFT. The

first attempt to obtain V(φ) was done in [92]. There, it was considered that if V(φ) has

a simple exponential form:

V(φ) = V0eγφ with: V0 =
20
L2 and γ =

1
6

(4.35)
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it will produce a

c2
s =

1
3
− γ2

2
. (4.36)

Thus, the theory will be non-conformal, and c2
s will change only by a constant with

respect to the CFT in Eq. (1.27). The next step in the attempt to translate the profile of

V(φ) into an arbitrary EoS was to assume γ as a slowly varying function of φ. In this

approximation, it was shown that

c2
s ≈

1
3
− 1

2
V ′(φH)2

V(φH)2 (4.37)

where φH is the value of φ at the horizon. This approximation gives a particular de-

pendence of V(φ) on the thermodynamical variables. However, it does not work well

for small values of φH, where V(φ) is close to a maximum. By studying the asymptotic

behavior of the model when φH → 0, it was found that a simple stable solution was

given by the analytic function

V(φ)cosh = −12
L2 cosh γφ . (4.38)

This equation has been shown to be stable for a wide range of φH. The parameter γ is

restricted by c2
s in Eq. (4.36) to be γ ≤

√
2/3. Starting from the simple function obtained

in Eq. (4.38), the authors of [93] added correcting terms proportional to φ2. The same

functional form is used here

V(φ) = −12 cosh(γ φ) + b2 φ2 + b4φ4 + b6φ6 . (4.39)
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This equation must satisfy the Breitenlohner-Freedman bound [94–96]

m2L2 ≥ −4 (4.40)

where the dilaton mass term is obtained from

m2 = V ′′(φ)|φ→0 (4.41)

and the scaling dimension ∆, defined in Eq. (4.13), must satisfy the constraint 2 < ∆ < 4.

In this dissertation, the parameters in Eq. (4.39) were fixed by ocular inspection to

follow the entropy density on the lattice like is shown in the left panel of Figure 4.1.

They are given by

γ = 0.63 b2 = 0.65 b4 = 0.05 b6 = 0.003 (4.42)

The gravitational constant and energy scale are given respectively by

κ2
5 = 8πG5 = 8π(0.46) Λ = 1058.83 MeV ; (4.43)

they were originally fixed in [97], and this choice turns out to work well with the po-

tential in Eq. (4.39).

The parameters that have been set in Eqs. (4.39,4.43) fix the thermodynamics of the

gauge theory at µB = 0. They are not affected by the introduction of the Maxwell-

dilaton coupling f (φ). This coupling will produce a response of the thermodynamics

to a change in chemical potential. The function f (φ) is constructed to mimic χ2 . The

intuition behind the functional form is based on the similar behavior between χ2 and
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s
T3 in Eq. (4.34) and also on the lattice. They both start from zero, increase rapidly dur-

ing the crossover, and tend to a finite value for T � Tc. However, χ2 stays close to its

high-temperature value down to a lower temperature than s
T3 before plunging rapidly

to small values (see Figure 4.1). The integration in Eq. (4.34) makes the difference be-

tween χ2 and s
T3 .

The argument, given in [89], is that the integral in Eq. (4.34) becomes small at the

horizon where φ→ 0 due to the factor e−2A in the integral. Since φ is expected to go

from φ = 0 to positive values, f (φ) needs first to increase as a function of φ, then to

decrease rapidly. In that way, χ2 will start increasing at higher temperatures than s/T3.

With that feature in mind, f (φ) ∼ sech(φ) in [89].

In this work, the Maxwell-dilaton coupling is constructed with a similar structure,

but adding more parameters to give freedom to adjust to the lattice calculations. The

Maxwell-dilaton coupling function form is

f (φ) =
sech

(
c1φ + c2φ2)
1 + c3

+
c3

1 + c3
sech(c4φ), (4.44)

where the parameters are given by

c1 = −0.27 c2 = 0.4 c3 = 1.7 c4 = 100 (4.45)

and f (0)→ 1 as is expected.

Figure 4.1 shows the excellent agreement of our model when compared with lattice

calculations for both s/T3 and χ2 . On the left panel, the black hole s/T3 is shown as

a function of T. The lattice points were taken from [28]. The right panel of this fig-

ure shows χ2 for three different parameters of the the black hole model in comparison

to lattice calculations taken from [98]. The best fitting, showed with a black line, was

obtained with the parameters in Eq. (4.45). All the results in Chapter 5, including the
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FIGURE 4.1: Left panel: lattice QCD calculations (BW [28]) compared
with holographic results for the normalized entropy density as a func-
tion of the temperature. Right panel: lattice QCD calculations (WB [98])
compared with three different holographic results, for the second baryon
susceptibility χ2 . The solid black curve represents the best choice of pa-
rameters used in this work. The dotted red and dot-dashed blue curves

are generated by varying either c1 or c2 in Eq. (4.44)

prediction for the CEP, use the best fitting, which crosses over the lattice points. How-

ever, in order to quantify the dependence of the location of the CEP on the parameters

of the model, two additional fitting were done trying to enclose the error bars on the

lattice points. Those curves were obtained by changing one of the parameters of f (φ)

while keeping the rest unchanged. The dashed red curve below the lattice points was

obtained by setting c1 = −0.189, while for the dot-dashed blue curve above the lattice

points, the parameter that changed was c2 = 0.36. The results of combining the three

fits will permit to estimate a range in the QCD phase diagram for the location of the

CEP (see Section 5.4.1).

4.3.1 Locating the QCD Critical End Point

This section discusses how the black hole solutions map into the QCD phase diagram,

and the strategy followed to localize the CEP and the line of first-order phase transition

found in our Black Hole model, as explained in [99]. The two initial variables that

82



Chapter 4. Holographic Model

FIGURE 4.2: Mapping of the initial values of the black holes (φ0, Φ1) to
the QCD phase diagram (T, µB). Left panel: T-dependence of φ0 when
Φ1 = 0 (µB = 0). Right panel: lines of constant φ0 evolving in the µB

direction as Φ1 increases.

defines of a black hole are the value of the field at the near-horizon, φ0, and the value

of the electric field, Φ1, in the holographic direction r. Setting Φ1=0, corresponds to

values over the T axis, where µB =0, as shown on the left panel of Figure 4.2. The

mapping is highly non-linear, thus, to populate the QCD phase diagram with black

hole solutions, the variable φ0 is chosen to produce equally spaced intervals of T. Then,

Φ1 is increased from zero to the maximum bound described in Eq. (4.21). The right

panel in Figure 4.2 shows the lines of constant φ0 evolving in the µB direction as Φ1

increases. One can distinguish between three kinds of lines: the dotted lines that do

not cross each other; the dashed lines in the middle of the plane that cross some of the

dotted lines; and the solid lines on the top of the plane that cross some of the dotted

and dashed lines.

The crossing of the lines creates a region of the phase diagram with multi-solutions

that begins at the point with Tc =89 MeV and µc
B =724 MeV, and extends to lower T

and higher µB. The stable solution in this region is required to minimize the free energy
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FIGURE 4.3: Thermodynamic quantities obtained from the Black Hole
model as function of T for µB = 700 MeV, µB = 750 MeV, and µB =
800 MeV. Left panel: entropy density. Right panel: baryon number
density. The thick red lines indicate thermodynamically unstable points.

(or maximize the entropy), and also to be locally stable under small fluctuations. Ther-

modynamic stability requires the entropy (S), and the baryon number (N) to be positive

definite. Figure 4.3 shows S and N as functions of T for three different values of µB: one

below µc
B (µB =700) and two above µc

B (µB =750 and µB =800). This figure also shows,

with a thick red line, the values of S and N that are thermodynamically unstable. The

unstable regions belong to the dashed lines in the phase diagram in Figure 4.2, which

is the plane that is bent in the middle between the dotted and the solid lines. Moreover,

it was found that the entropy S is higher in the dotted lines than in the dashed lines at

fixed µB. Therefore, the system will maximize the entropy by moving from the lower

plane (dotted lines on the right panel in Figure 4.2) to the higher plane (solid lines on

the right panel in Figure 4.2), and when the overlapping between those two regions

begin, a discontinuity in the entropy and baryon density is developed, and therefore, a

first order phase transition happens. This transition extends along the line defined by

the boundary of those two regions (dotted and solid lines). The point where the over-

lapping of the planes begins (Tc =89 MeV, µc
B =724 MeV) was identify as the location
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of the CEP in our holographic model.
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Black Hole Results

This chapter shows the main results obtained using the Black Hole model described

in Chapter 4. The model parameters were adjusted to match two crucial observables

calculated on the lattice and are shown in Eqs. (4.39,4.43,4.44). The only exception was

when estimating the uncertainty in the location of the CEP. In this case, the best fit was

combined with other two different sets of parameters, adjusted to enclose the lattice

data corresponding to the second baryon susceptibility χ2 , as explained in Section 4.3.

Most of the results presented in this chapter were summarized in [24], and pub-

lished in proceeding journals [99–103]. Remarkably, the best set of parameters in the

Black Hole model produces black hole solutions that match the entropy density s/T3

and the second baryon susceptibility χ2 from lattice calculations with great precision

at µB = 0, as shown in the upper panels of Figure 5.1. Once those parameters are

fixed, the output of the Black Hole model is mapped onto the QCD phase diagram

producing an entropy s(T, µB)/T3 and a baryon density ρB(T, µB)/T3 as functions of T

and µB, which are shown in the lower panels, of Figure 5.1. Here we consider black

hole solutions that map the QCD phase diagram in the range T = {50− 400} MeV

and µB = {0− 750} MeV. The calculations that are presented in this chapter are de-

rived from those two thermodynamical quantities, and therefore are predictions of our
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FIGURE 5.1: Upper panel: lattice QCD calculations (BW [28]) compared
with holographic results for the normalized entropy density s/T3 and
the second baryon density χ2 as functions of the temperature T, at zero
baryonic chemical potential µB. Lower panel: normalized entropy den-
sity s/T3, and normalized baryon density ρB(T, µB)/T3, obtained from

the Black Hole model, as functions fo T and µB

model.

5.1 Thermodynamical Quantities at µB =0

The thermodynamical quantities at µB =0 are obtained by setting the black-hole initial

condition Φ1 to zero, while changing φ0. The entropy was computed directly by using
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FIGURE 5.2: Normalized thermodynamical quantities calculated in the
Black Hole model as functions of the temperature T, at zero baryonic
chemical potential µB, in comparison with lattice QCD results. The black
points were obtained from [28], and the red points from [104]. Upper
left panel: pressure (p/T4). Upper central panel: energy density (ε/T4).
Upper right panel: entropy (s/T3). Lower right panel: speed of sound

squared (c2
s ). Lower right panel: trace anomaly (I/T4).

the Bekenstein-Hawking relation in Eq. (4.32). The pressure is obtained by integrat-

ing the entropy, while the rest of the thermodynamical quantities are calculated from

the pressure. Figure 5.2 shows the normalized pressure, (p/T4), followed by the en-

ergy density (ε/T4), the entropy (s/T3), the speed of sound squared (c2
s ), and the trace

anomaly (I/T4). One can see that the holographic result agrees quantitatively very well

with the lattice data taked from [28, 104].

One can note, from the behavior of s, that the degrees of freedom smoothly change

from hadrons to a QGP state at Tc ∼ 155 MeV. Moreover, c2
s and I/T4, which are sensi-

tive thermodynamical quantities obtained by second derivatives of the pressure, give
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an overall good description of the lattice points. I/T4 in particular measures the de-

viation of the system from a conformal one, and is an indicator of the strength of the

interaction. The Black Hole model, having a small shear viscosity per entropy density

η/s, is expected to be a good approximation for computations of transport properties

when the system is highly interacting, which happens during and after the crossover.

5.2 Baryon Susceptibilities

Among the most interesting thermodynamical observables to calculate, from the bary-

onic pressure, are the susceptibilities because:

• They provide essential information about the effective degrees of freedom of a

system.

• The susceptibilities calculated at µB = 0 can be used to Taylor expand the pressure

at finite µB.

• They are directly related to the moments of the distribution measured on an

event-by-event basis in particle colliders.

• They are very sensitive to the CEP since they scale with different powers of the

diverging correlation length ξ.

This section presents the baryon susceptibilities calculated in the Black Hole model,

and shows their behavior close to the CEP. The susceptibilities obtained in the Black

Hole model at µB = 0 are used to Taylor expand the pressure in powers of µB/T to find

the threshold at which the expansion breaks down. The ratio of susceptibilities are

compared with the moments of the net-proton distribution measured at RHIC and the

chemical freeze-out parameters for several collision energies are extracted and com-

pared with previous analyses.
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5.2.1 Higher Order Susceptibilities

The first-order susceptibility is proportional to the baryon density computed directly

from the Black Hole model χ1 = ρB/T3. Higher order susceptibilities can be obtained

by taking derivatives of ρB/T3 with respect to µB/T.

χn+1(T, µB) =
∂n(ρB/T3)

∂(µB/T)n . (5.1)

In the vicinity of the CEP, the higher order baryon number susceptibilities diverge with

different powers of the correlation length ξ, as written in Eq. (1.24).

The black hole susceptibilities χ2 and χ4 are shown in the left panel of Figure 5.3

as functions of T for different values of µB. One can see that χ2 begins to develop a

peak as µB increases, which eventually evolves into a divergence at the CEP. The latter

is located at TCEP = 89 MeV and µCEP
B = 724 MeV in our Black Hole model. Since χ4 is

more sensitive to the CEP, the peak is shown even for smaller values of µB. It also

displays the negative peak when approaching the CEP from low T, as expected from

universality arguments [39]. This panel also shows the available lattice results for χ2,

χ4 [80]. The right panels show χ6 and χ8 calculated in the Black Hole model at µB = 0

in comparison with the lattice data from [23]. The error-band on χ6 and χ8 indicates

the uncertainty due to the numerical calculation. Notice that those predictions were

obtained one year before the lattice results were available. Even though the lattice

calculation for χ8 is only an estimate, both results exhibit the features expected from

universality arguments [105].

5.2.2 Reconstruction of the EoS

Using the higher order susceptibilities calculated at µB = 0, one can reconstruct the

system’s pressure P and baryon density ρB as a Taylor series in powers of µB/T as
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FIGURE 5.3: Baryon number susceptibilities (χn ) as functions of T for
different values of µB, computed using the EMD Black Hole model in
comparison with lattice results at µB = 0. Left panel: χ2 and χ4 for val-
ues of µB in the range of [0 − 600] MeV. The lattice results at zero µB

were taken from WB: [80]. Left panel: χ6 and χ8 are shown at zero µB.
The error-band on those susceptibilities denotes the uncertainty in the
numerical calculation. The Lattice results at zero µB were taken from

WB: [23].

follows

P(T, µB)− P(T, µB = 0)
T4 =

∞

∑
n=1

1
(2n!)

χ2n(T)
(µB

T

)2n
, (5.2)

ρB(T, µB)

T3 =
∞

∑
n=1

1
(2n− 1)!

χ2n(T)
(µB

T

)2n−1
. (5.3)

A Taylor expansion of observables computed at µB = 0 is a common analysis done

with lattice calculations to access a finite region of µB. The expansion is considered
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FIGURE 5.4: The µB-dependent contributions to p (left panel) and ρB

(right panel) as functions of T for different values of µB/T. The solid
curves correspond to the full calculation in the Black Hole model. The
bands denote the Taylor series reconstruction using the susceptibilities
in Figure 5.3. The lattice points correspond to the reconstructed Taylor

series up to O(µ6
B ) for p and O(µ5

B ) for ρB computed in [20].

stable for a certain ratio of µB/T if adding another term to the Taylor expansion does

not show a variation in the observable. Figure 5.4 shows the Taylor expansion of the

pressure and baryon susceptibility up to χ6 done on the lattice in [20]. In this analysis,

it was determined that the pressure and the baryon density could be expanded up to

a ratio of µ/T ≤ 2 before the expansion breaks down. The same analysis is shown in

Figure 5.4, with the susceptibilities calculated in the Black Hole model from Figure 5.3.

The pressure difference in Eq. (5.2), and the baryon density in Eq. (5.3) calculated in

the holographic model with no truncations are shown as black curves. The Taylor

expansion up to order O(µ6
B ) is shown as a red band enclosed with dashed lines, while

the Taylor expansion up to order O(µ8
B ) is shown as a blue band enclosed with dot-

dashed lines. The analysis with the Black Hole model susceptibilities confirms the

applicability of the O(µ6
B ) truncation done in [20] for µB/T ≤ 2, and it also predicts

that the inclusion of χ8(T) into the expansion extends the domain of applicability of

the Taylor series to at least µB/T ∼ 2.5.

In Figure 5.5, an analogous Taylor series reconstruction for χ2 and χ4 is obtained
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FIGURE 5.5: The µB-dependent contribution to χ2 (left panel) and χ4
(right panel) as functions of T for different values of µB/T. The solid
curves correspond to the full calculation in the Black Hole model. The
bands denote the Taylor series reconstruction using the susceptibilities

in Figure 5.3.

up to O(µ6
B ) red curves, and O(µ8

B ) blue curves. Since the higher order susceptibili-

ties are more sensitives to the CEP, any information that could be extracted from their

reconstruction could be relevant to investigate critical behavior.

The reconstructed χ2 is shown for µB/T = {1, 2, 2.5} in comparison with the full

holographic result. There is a good agreement up to µB/T ∼ 2 using terms up to

O(µ6
B ). On the other hand, for µB/T ∼ 2.5, χ2 shows a bump at O(µ4

B ), product of the

limited number of terms in the Taylor series. The bump is reduced with the inclusion

of the terms up to O(µ6
B ). One has to be carful with this kind of behavior, which is

not an indication of criticality but of the truncation of the Taylor expansion. This fact

highlights the need of higher order susceptibilities to study critical phenomena. In

the case of the reconstruction of χ4 , one can see that the Taylor expansion does not

reproduce the right behavior even for µB/T = 1 when using terms up to O(µ4
B ).
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FIGURE 5.6: Susceptibility ratios, χ1 /χ2 (upper left panel), χ3 /χ1 (lower
left panel), χ3 /χ2 (upper right panel), and χ4 /χ2 (lower right panel) ob-
tained from EMD black hole model as function of T for different values
of µB. Black solid(dashed) µB = 0 (µB = 50), cyan solid(dashed) µB = 100
(µB = 150), red solid(dashed) µB = 200 (µB = 250), magenta solid(dashed)

µB =300 (µB =350), and blue solid µB =400.

5.3 Chemical Freeze-out

In HICs, the particle yields, and consequently, the distribution of particles are fixed

at the chemical freeze-out (see Section 1.3.4). Therefore, the freeze-out parameters T

and µB for a particular collision energy
√

s can be extracted from comparing the par-

ticle yields in HICs with theoretical models. There are two common approaches to

obtain the freeze-out variables. One is based on the Statistical Hadronization mod-

els (SHM) where the particle yields are compared with the corresponding ones in the
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FIGURE 5.7: This figure shows the bands in the (T, µ)-plane expanded by
the ratios in Eq. (5.4) computed in the Black Hole model that match the
experimental values for the net-proton distribution at collision energies
of
√

s = 27 GeV (left panel) and
√

s = 39 GeV (right panel) obtained
by STAR [33]. It also shows with a red cross the extracted freeze-out
parameter computed by finding the closest line between the trajectory

of the two bands

HRG model [106–108]. The other one focused on the distribution of particles mea-

sured on an event-by-event basis in HICs. The moment of such distributions are di-

rectly related to the susceptibilities of the conserved charges [109, 110] as was specified

in Eq. (1.23). For instance, by measuring the distribution of net-protons one can ob-

tain a reasonable approximation for the distribution of net-baryons, and measuring

the distribution of charged particles will provide the fluctuation of the electric charge.

Thus, by comparing for example the ratio of mean over the variance M/σ2 with the

corresponding ratio of baryonic susceptibilities χ1 /χ2 calculated in the HRG model,

for both conserved charges, one has two equations to calculate the freeze-out param-

eters.This approach was used in [36] to obtain the freeze-out variables for collision

energies
√

s = {7.7, 19.6, 27, 39, 64.2, 200} GeV at STAR.
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FIGURE 5.8
Collision energy dependence of susceptibilities ratio. χ1 /χ2 (left panel) and χ3 /χ2

(central panel) along the chemical freeze-out line computed using Black Hole model
(red triangles) in comparison with the net-proton distribution from the STAR

experiment [33] (red triangles) for
√

s = {27, 39, 62.4, 200} MeV. χ2 /χ4 (right panel) is
also shown along the minimum of c2

s calculated in the Black Hole model. The ratio is
normalized with its value at

√
s = 200 MeV

5.3.1 Freeze-out parameters from the Black Hole model.

The susceptibility ratios as functions of T are shown in Figure 5.6 for different values

of µB in the range µB = {0− 400} MeV. Since in the Black Hole model there is only one

conserved charged, the baryonic charge, in order to extract freeze-out variables one

needs to compare at least two of those ratios. The most appropriate choice, considering

the statistical uncertainties in the measurements, is to use: χ1 /χ2 and χ3 /χ2 , which are

later compered with the corresponding relations for the moments of distribution of

net-protons from STAR.

The comparison is shown in Figure 5.7 where the bands in the (T, µ)-plane are ex-

panded by the ratios from Eq. (1.23)

M
σ2 =

χ1

χ2

Sσ =
χ3

χ2

(5.4)

computed in the Black Hole model that match the experimental values for the net-

proton distribution at collision energies of
√

s = 27 GeV (left panel) and
√

s = 39 GeV
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FIGURE 5.9: Comparison of the phase diagram obtained by lattice anal-
ysis and the one obtained by the Black Hole model. Left panel: the phase
diagram from [74] based on the µB-dependent Tc from the chiral conden-
sate, analytically continued from imaginary chemical potential. The blue
band indicates the width of the transition. On top of the diagram are the
Dyson-Schwinger result of [111] for the transition temperature, and the
freeze-out variables from [36, 107, 112–116]. Right panel: the phase di-
agram obtained from the Black Hole model. The crossover transition is
signaled by the inflection point of χ2 (dashed curve) and the minimum
in speed of sound squared c2

s (dotted curve). The red points indicate the
freeze-out variables obtained in the Black Hole model.

(right panel) obtained by STAR [33]. The freeze-out variables for collision energy of
√

s = 19.6 GeV and lower are not consider in this analysis since at those energies the

µB at freeze-out is large and the effect of strangeness and electric charge, which are not

included in the Black Hole model, become important. Figure 5.7 shows that the areas

spanned by the ratios do not overlap. To obtain the freeze-out variables, the closest line

between the trajectory of the two bands is obtained, to span an area that becomes the

freeze-out point shown in red with its error bar.

The extracted freeze-out points are compared with the measured susceptibilities

as functions of the collision energy
√

s in Figure 5.8. The left panel shows χ1 /χ2 and

the central panel χ3 /χ2 . The black circles are the measured ratios and the extracted

points are shown as red triangles. By construction they both agrees within error bars.
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Those two ratios were the only ones used to extract the freeze-out parameter. On the

right panel, a prediction for the ratio χ4 /χ2 along the minimum of the speed of sound

squared c2
s is shown. This ratio follows the trend of the experimental data at low

√
s,

however, for this particular trajectory the ratio has a monotonic behavior. It is expected,

based on universality arguments, that a freeze-out trajectory sufficiently close to the

CEP will show a non-monotonic behavior in the ratio χ4 /χ2 [39]. This did not happened

for the the trajectory along c2
s . What was found with the Black Hole model is that a non-

monotonic behavior can be observed along a curved freeze-out trajectory when it is not

close to the CEP. Therefore, it is not possible to prove or disprove the statement at the

moment, with the results that were computed for this work.

The freeze-out parameters obtained with the Black Hole model are placed along the

crossover transition line. Figure 5.9 shows a comparison of the phase diagram obtained

by lattice analysis, in the left panel, and the phase diagram obtained by the Black Hole

model, in the right panel. The phase diagram obtained by lattice calculations in [74] is

based on the µB-dependent Tc from the chiral condensate, analytically continued from

imaginary chemical potential. The blue band indicates the width of the transition. On

top of the diagram are the Dyson-Schwinger result, of [111] for the transition tempera-

ture, and the freeze-out variables from [36, 107, 112–116]. On the other hand, to signal

the crossover transition in the Black Hole model, it is necessary to identify observables

sensitive to a change in the relevant degrees of freedom of the system from hadrons

to quarks and gluons. In the holographic phase diagram, the crossover is marked by

the inflection point of χ2 and the minimum in the speed of sound squared c2
s , which

are shown with a dotted curve and a dashed curve respectively. The red points in the

diagram indicate the freeze-out variables obtained in the Black Hole model.
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FIGURE 5.10: This figure shows the behavior of the baryon susceptibility
χ2 in the QCD phase diagram obtained with the Black Hole model. The
susceptibility increases approaching the CEP located at TCEP = 89 MeV
and µCEP

B = 724 MeV, developing a peak that diverges at the CEP. On
top of the plot, there is a plane that shows the contour lines of χ2 , and
the transition line signaled by the inflection point of χ2 (dashed curve)
and the minimum of c2

s (dotted curve). Those two lines meet at the criti-
cal point where χ2 diverges and c2

s becomes zero. The Freeze-out points
extracted in the Black Hole model are shown on the plane with red cir-

cles.

5.4 QCD Critical end Point

The CEP and the line of first order phase transition was located by analyzing the be-

havior of the entropy and the baryon density obtained in the the Black Hole model, as

was explained in Section 4.3.1. The holographic phase diagram up to the CEP is shown

in Figure 5.10. The figure displays the behavior of the baryon susceptibility χ2 obtained
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FIGURE 5.11: QCD Phase diagram obtained from the Black Hole model.
The crossover is signaled by two observables: the inflection point of χ2
(dashed curve) and the minimum in c2

s (dotted curve). The CEP is shown
with a red dot. An estimate for the first order phase transition is shown

as a blue curve.

with the Black Hole model. One can see that the susceptibility increases approaching

the CEP, located at TCEP = 89 MeV and µCEP
B = 724 MeV, thus developing a peak that

diverges at the CEP. On top of the plot, there is a plane that shows the contour lines

of χ2 together with the transition line signalized by the inflection point of χ2 (dashed

curve) and the minimum of c2
s (doted curve). Those two lines meet at the CEP where

χ2 diverges and c2
s becomes zero.

The holographic QCD phase diagram, extended to µB = 1000 MeV, is shown in

Figure 5.11. This figure shows once again the crossover illustrated by the inflection

point of χ2 (dashed curve) and the minimum in c2
s (dotted curve). The CEP is shown

with a red dot, and the first order phase transition line with a blue curve.
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5.4.1 Exclusion plot

This sections shows a phase diagram in Figure 5.12 that includes the CEP obtained

with the Black Hole model. In this case, the error bars on the location of the CEP

are the product of a more detailed investigation that takes into account the effect of

uncertainties in the lattice points used to fix the model parameters, as was explained

in Section 4.3. As a result, the holographic CEP obtained in this dissertation is located

at TCEP = 89± 11 MeV and µCEP
B = 724± 36 MeV. The critical point is located along

the line µB/T ∼ 8.1 in the phase diagram, which is beyond the reach of current lattice

QCD calculations where µB/T . 2 [20, 21].

Figure 5.12 also shows the region of the QCD phase diagram that has been excluded

by current analyses. The current lattice QCD constraints [20] exclude the dark blue

region, while the green region is unlikely due to the negative curvature of the QCD

transition line [74]. A finite-size scaling analysis [117] has exclude the light blue region.

This plot illustrates that the position of the holographic CEP is in a region of the QCD

phase diagram that is still open for exploration.

5.4.2 Collision Energy at the Critical end Point

This section combine most of the previous analysis using the Black Hole model to give

an estimate of the collision energy needed to hit the CEP in HICs. Figure 5.13 shows

the collision energy dependence of the freeze-out chemical potential µB(
√

s) in the left

panel, and temperature T(
√

s) in the right panel.

The left panel of Figure 5.13 displays in purple squares the freeze-out points ex-

tracted using the susceptibilities calculated within the HRG model [36]. The red trian-

gles are the freeze-out points obtained with the Black Hole model. The solid black curve
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FIGURE 5.12: This figure shows the regions in the QCD phase diagram
where the presence of a CEP has been excluded by: (dark blue) current
lattice QCD constraints [20], (light blue) finite-size scaling analysis [117],
and (green) the negative curvature of the QCD transition line, which
made this region unlikely [74]. It also shows (red point) the location of
our CEP. The error bars are obtained by combining the three different

model parameters studied in this work.

was obtained from the parametrization using the statistical hadronization model calcu-

lations obtained in [107] (SHM1), and the dashed grey curve from [108] (SHM2). One

can see that the freeze-out points from the HRG model and the Black Hole model are

compatible with the results from the statistical hadronization models. Those parametriza-

tion are extrapolated to lower energies to find the red band that represent the µB range

of the CEP. Note that SHM1 is almost identical to SHM2.

In the right panel of Figure 5.13, the T(
√

s) is shown for the parametrization of

SHM1 and SHM2. It also shows the minimum of the speed of sound squared c2
s along
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FIGURE 5.13: Collision energy dependence of µB (left panel) and T (right
panel) at the chemical freeze-out as a function of the energy of the collid-
ing beam

√
s. The solid black curve was obtained from the parametriza-

tion using the statistical hadronization model calculations obtained in
[107] (SHM1), and the dashed grey curve from [108] (SHM2). The blue
curves show the trajectory in the phase diagram that follows the mini-
mum of c2

s using the parametrization in SHM1 (solid curve) and SHM2
(solid-dashed curve). The purple square points were obtained by com-
paring the net-proton and net-electric charge fluctuations using the HRG
model in [36]. The red triangles represent the chemical freeze-out points
extracted with the EMD black hole model by comparing the suscepti-
bility ratios χ1/χ2 and χ3/χ2 with the corresponding net-proton exper-
imental data from STAR [33]. The bands are used to find the value of√

s corresponding to the CEP, including the combined effect from un-
certainties coming from both parametrizations (T(

√
s), and µB(

√
s)) and

the error bars in the location of the CEP by the holographic model.

the µB(
√

s) parametrization obtained in the left panel. As mentioned before, the freeze-

out points are expected to be close to the transition temperature and c2
s gives an es-

timate of the region of the crossover. The freeze-out points for both the HRG model

and Black Hole model lie in between the parametrization of SHM1, SHM2, and the c2
s .

Then, the three parametrizations are extrapolated to lower energies to meet the green

area that represents the T range within the uncertainties of the holographic CEP.

By combining both uncertainties, the red region from the µB(
√

s) dependence and

the green region from the T(
√

s) dependence, it was found that the collision energy

needed to hit the CEP is in the range
√

s = {2.5− 4.1} GeV. These collision energies
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are below the current plans for the second run of the BES in collider mode, but they are

within the reach of the HADES experiment [118], the planned Fixed Target (FXT) pro-

gram also at RHIC [31], and the future Compressed Baryonic Matter (CBM) experiment

at FAIR [32].
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Concluding Remarks

The investigation presented in this dissertation has been focused on the study of the

QCD phase diagram at finite T and µB. The precise mapping of those phases is one

of the biggest challenges in theoretical physics. At high temperature or densities, the

running of the coupling constant of QCD will produce the deconfinement of hadrons

into a QGP state. The change of degrees of freedom from hadrons to quarks and gluons

is a non-perturbative phenomenon that can only be addressed from first principles by

means of lattice simulations.

Thanks to lattice calculations, the QCD EoS is known with great precision at zero

µB. It predicts that the transition from hadrons to deconfined quarks and gluons is

a smooth crossover taking place in the temperature range T ' 145 − 165 MeV [4–

9]. It is believed that this crossover sharpens at finite µB into a CEP, where a line of

first order phase transitions begins. The position of the CEP that terminates this line

is of considerable interest, especially with the forthcoming second Beam Energy Scan

at RHIC, scheduled for 2019-2020, the next fixed-target CMB project at FAIR, which

is presently under construction at GSI in Germany, and the NICA facility operating in

Russia. Those machines are dedicated to explore on unprecedented high density region
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of the QCD phase diagram, where the CEP could be located. However, it is hard to de-

termine theoretically if QCD displays critical phenomena at large µB because the QCD

coupling constant is strong, and moreover, lattice simulations cannot be performed at

finite density due to the sign problem. As a result, the QCD phase diagram is mostly

unexplored at finite chemical potential.

In the effort to constraint the location of the CEP using lattice calculations, this dis-

sertation devotes special attention to the baryonic susceptibilities. These observables

are of great interest because they can be used to Taylor expand the pressure calculated

on the lattice at µB = 0 to a finite density region of the QCD phase diagram in powers

of µB/T [10–14]. They also allow one to make a direct connection with the moment of

distribution of the baryonic charge measured in HICs. Thus, a comparison between

theoretical and experimental results allows to extract the chemical freeze-out parame-

ters as functions of the collision energy [21, 34, 35, 119, 120]. In the search for the CEP,

the susceptibilities are sensitive to the location of the CEP since they are proportional to

powers of the correlation length, which diverges at the CEP, and may provide a signa-

ture for its experimental detection [38]. The first part of this dissertation was dedicated

to compute higher order baryon susceptibilities from the lower order ones calculated

at imaginary-µB.

Moreover, in the absence of lattice calculations at finite µB, effective approaches

must be used to guide the experimental search for the CEP in HICs. The alterna-

tive approach used in the second part of this dissertation is based on the holographic

correspondence developed in string theory [40]. The holographic model intrinsically

contains an important feature of the strongly coupled QGP, which is the small value ob-

tained for the ratio between the shear viscosity and the entropy density. The gauge/gravity

correspondence with at most two derivatives in the gravitational action predicts a value
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of η/s = 1/4π [51–53], which is remarkably close to estimates obtained from compar-

isons between hydrodynamic simulations of the QGP and heavy-ion data [121]. Then,

using the holographic gauge/gravity duality, the baryonic susceptibilities in the dense

and strongly coupled QGP were mapped onto a numerically tractable gravitational

problem involving the charge fluctuations of holographic black holes.

6.1 High Order Susceptibilities from Lattice QCD

Chapter 3 of this dissertation was devoted to analyzing the lower order baryonic sus-

ceptibilities simulated at imaginary-µB to calculate the higher order ones at zero µB.

The lower-order baryonic susceptibilities were calculated at imaginary-µB in the tem-

perature range 135 MeV ≤ T ≤ 220 MeV, for a system of 2 + 1 + 1 dynamical quarks

with physical masses and lattice size 483 × 12. A combined fit of the first four baryonic

susceptibilities (χ1 , χ2 , χ3 , χ4) was done in order to obtain χ6 and a good estimate for

χ8 [23].

In a previous calculation [20], χ6 in the continuum limit was obtained using a di-

rect evaluation at µB = 0. Direct methods are affected by a signal-to-noise ratio with

an exponent that grows with the order of the susceptibility and consequently the un-

certainty on χ6 was large. On the other hand, the analysis that was done here with the

data simulated at imaginary-µB at small lattice spacing provide not only a stable χ6 but

also an estimate for χ8 .

The Taylor expansion of the EoS with the baryonic susceptibilities up to O(µ6
B) was

shown in [20] to provide a good approximation for a ratio µB/T ≤ 2. This ratio is not

enough to have access to the regions that will be explored during the second run of the

BES, where µB/T ∼ 3. In this case, higher order susceptibilities are needed. Once χ8 is
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refined by a further analysis with more precise lattice calculations, the ratio µB/T ∼ 3

may be reach.

6.2 Holographic Model

The calculation with the holographic model described in Chapter 4 is not limited by

the µB, and can be used to span the whole QCD phase diagram. In principle, the model

is limited to the strongly coupled regime of the corresponding gauge theory. However,

the scalar dilaton potential V(φ) and the Maxwell-dilaton coupling f (φ) were not ob-

tained directly from the holographic correspondence, but were constructed to mimic

the EoS from the lattice at µB = 0. Thus, the holographic EoS at finite µB is a predic-

tion of the holographic model, and the quantitative agreement found in Figure 5.2 and

Figure 5.4 with the available lattice calculations for µB/T ≤ 2 is a highly nontrivial test

of the phenomenological applicability of the Black Hole model to describe QCD data

far from the region of the phase diagram where the free parameters of the model were

fixed. The model also predicted χ6 and χ8 , for which the behavior of the lattice results

was reproduced as shown in Figure 5.3.

Notice that the general form of the EMD action used in this dissertation was first

presented in [89], where now outdated lattice results for the entropy and baryon sus-

ceptibility [122] were used in the determination of the functions V(φ) and f (φ). In [93]

a new version of the Black Hole model was constructed which, contrary to the one

originally devised in [89], does not introduce any additional free parameters in the

holographic model besides the ones already featured in the EMD action, making it a

self-consistent gravitational setup. Furthermore, more recent lattice QCD results for

the entropy and baryon susceptibility [98, 104] were used to fix the model parameters.

The new version of the Black Hole model [24] studied in this dissertation provides
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a much more precise description of thermodynamical quantities in comparison with

lattice results at µB = 0.

The main result of the analysis with the Black Hole model is the prediction of

the existence of a CEP on the QCD phase diagram located at TCEP = 89 MeV and

µCEP
B = 724 MeV. Moreover, by analyzing the ratio of susceptibilities computed at finite

µB, freeze-out parameters for the net-proton distribution from the STAR experiment [33]

were obtained. Then through a consistent analysis of the behavior of the freeze-out ob-

tained by the holographic model, and parametrizations obtained in the context of SHM

( see Figure 5.13), the collision energy needed to hit the CEP in HICs was estimated in

the range
√

s = {2.5− 4.1} GeV. These collision energies are below the threshold of

the BES at RHIC operating in collider mode (where the minimum is
√

s = 7.7 GeV) but

they are within the reach of the HADES experiment [118], the planned Fixed Target

(FXT) program also at RHIC [31], and the future Compressed Baryonic Matter (CBM)

experiment at FAIR [32].
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