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ABSTRACT

In the stochastic deconvolution process, the assump

tion of a random reflectivity function can be replaced by the 

NMO curve and a CDP gather record. With this information, 

the seismic wavelet can be compressed. This compression 

method operates in a manner opposite to the NMO correction 

stretch. Shaping filters are iteratively computed either in 

the time domain or in the frequency domain which subsequently 

compress the seismic wavelet.

Based on the principle of the wavelet compression 

technique, the seismic wavelet can be extracted without mak

ing any assumption about the shape of the seismic wavelet. 

From an initial estimate of the seismic wavelet, the method 

computes iteratively new estimates of the seismic wavelet by 

minimizing the energy error between the predicted seismic 

trace at various offsets and the field traces at the same 

offsets. The NMO-curve provides the information to predict 

the far traces from the near traces. Stability problems 

limit the process to wideband source signatures.
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INTRODUCTION

One of the fundamental problems in exploration 

seismology is to obtain a seismic record which has both high 

resolution and high signal-to-noise ratio. If the seismic 

trace has a fair signal-to-noise ratio, then subsequent data 

processing can be applied to improve the resolution. This 

data processing technique is called deconvolution.

There are many forms of seismic deconvolution where 

each algorithm is based on assumptions about the seismic 

reflection model. Currently, one of the most popular seismic 

deconvolution algorithms has been described by Robinson and 

Treitel (1967). Their approach is based upon two theoretical 

assumptions. They are

(1) the seismic wavelet is time-invariant and is 
minimum-phase, and

(2) the primary events in the reflectivity function 
are randomly spaced in time and have random 
amplitudes.

However, there are many geologic environments where 

these assumptions are poor. Many geologic sequences have 

only a few stratigraphic features which are observed on seis

mic records as correlated events and thus the reflectivity 

function can be better described as a deterministic function, 

than as a random time series. Unfortunately, the exact ampli

tudes of this reflectivity function are not known so that the 
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deterministic model of the reflectivity functions is unde

fined .

An alternate method of describing the deterministic 

part of the reflectivity function is incorporated into a 

deconvolution process based upon two different theoretical 

assumptions. They are

(1) the seismic wavelet is time-invariant and does 

not have any phase restrictions, and

(2) the velocity function is known.

This study is concerned with the estimation of both 

the seismic wavelet and the reflectivity function using a 

known velocity function and seismic traces which have 

different source-receiver offsets.



STRUCTURE OF THE FIELD RECORD

In this study, the geologic model consists of hori

zontal layers and has multi-offset source-receiver locations 

that are symmetrically arranged about the reference point 

Dq (See Figure 1). This is common depth point (CDP) record

ing. Further, the energy source produces a finite pulse of 

arbitrary shape which travels to the reflectors and back to 

the receivers without any distortion. The effects of trans

mission, wavefront divergence and changes in response due to 

different angle of incidence will be neglected.

Figure 1. Common depth point technique of shooting. The 
subsurface points under D are seismically sampled several times by ?he different source
receiver pairs which are symmetrically placed 
around D .o

3
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According to Sengbush et al (1961), the zero-offset 

seismic trace is the convolution of the reflectivity function 

with the source wavelet, that is

sQ(t) = a(t)*rQ(t) (1)

where: * = the convolutional operator,

s (t) = the seismic trace at zero offset,o '
ro(t) = the reflectivity function at zero offset, 

and

a(t) = the seismic wavelet.

Nonzero-offset seismic traces are built up of the 

same sequence of primary events that went into the zero-offset 

trace. However, the reflectivity function will be compressed 

and delayed in time due to the normal move-out effect. An 

event which occurs at the two-way travel time of t on the 

zero-offset trace will occur at the time t on a trace which x
has a source-receiver separation of x. The straight raypath 

relationship for the NMO geometric factor is expressed as

t2 = t2 + x2/v2 (2)x,n o,n ' t ' '' ' o,n

where: x = known offset distance,

t n = arrival time of primary event n on trace at

zero offset,

tx n = arrival time of primary event n on trace at 

x offset, and
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Vt2 = average velocity of the propagating wavelet 
o, n 

for a reflection from the nth interface. 

Therefore, given a zero offset reflectivity function and a 

velocity function, the reflectivity function for a specified 

x, and t can be determined with the time transformation o 
described in (2).

Figure 2c is an example of a synthetic 12-fold CDP 

field record derived from the geologic model represented by 

the interval velocity distribution and the seismic wavelet 

which are also shown in Figure 2. All twelve traces contain 

basically the same amount of information, that is, the primary 

events and the seismic wavelet. The difference between the 

traces is the density of information per unit time. In 

Figure 2c, any two traces are represented by the convolution 

of the time-invariant seismic wavelet with the corresponding 

reflectivity functions. For discrete data, these two traces 

can be represented as: 
£

so,i = ajro,i-j (3)
j=0 
£ 

sx,i ~ ajrx,i-j 
j = °

where: sQ^i = sQ(iAt) = sQ (t). 5{t^iAt) , 

a = The seismic wavelet. 

rQ = the reflectivity function at zero offset, and

rx = the reflectivity function at offset x.



6

For ease of description, one of the traces has been selected 

at zero offset, however this is not a necessary requirement.

*********
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|----- .16 SEC------- 1

2a

Figure 2. Synthetic CDP field gather. (a) source wavelet 
(b) interval velocity distribution of geologic 
model, and (c) synthetic seismogram generated by 
the convolution of the source wavelet with 12 
reflectivity functions which were based on 
Figure 2b.
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The reflectivity function r is a compressed and 

delayed expression of r . Energy which occurs on rQ at 

time t will occur with the same amplitude on rx at the 

time t . The time t and t are related mathematically as x o x
t = t where the function g is described as: o xg

gi ={vj . (iAt) 2/[x2+V?. (iAt) 2]} (5)

The function g like the velocity functions is time dependent.

For very shallow reflectors (5) is not valid. This 

is because the two-way path to shallow events for the pro

pagating seismic wavelet is almost the same as the direct 

path, and the character of the reflection is lost. To avoid 

this problem, a time-window on sQ and its corresponding com

pressed time window on sx were selected. Also, both windows 

were shifted to zero time. So in this study (3) and (4) will 

refer to time-shifted windows.

The solution of (3) and (4) for the seismic wavelet 

and the reflectivity function is not simple, mainly because 

the function g is time variant. If g were constant, the 

time relationship between ro and rx would be linear and the 

seismic wavelet could be estimated easily within a constant 

phase and scalar factor. This method is a simple application 

of the time scaling property of the Fourier Transform.

The function g is usually not a multiple of the

sample rate therefore the relationship tQ = tx yields
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times other than the discrete 

point interpolation scheme is 

r into r .o x

sampled times and thus a two- 

used in this study to convert

)|C**3|c****Nt



WAVELET COMPRESSION TECHNIQUE

Frequency Domain

The normal moveout correction which is widely applied 

in CDP data processing consists of stretching the trace with 

x-offset in order to represent a zero-offset trace. In con

trast, the opposite method will be done for pulse compression. 

That is, the trace with zero-offset will be compressed to 

simulate a trace with x-offset.

The inverse application of NMO and its relationship 

to pulse compression is shown by the block diagram in Figure ■> 

3. The input parameters are the velocity function, the off

set and both seismic traces. The output of the second step 

is an estimate of the seismic trace at x-offset. This esti

mated trace is viewed as having the same reflectivity 

function as the field trace at this offset but the seismic 

wavelet is compressed by g which is given in (5). Moreover, 

as g is a function of to, this compression will be different 

at each lag of the window. So, the application of the 

function g on so has the same effect as an application of a 

time-varying filter which compresses the seismic wavelet. 

The time-varying compressed wavelet has undesirable high 

frequency components which are not present in the field trace 

at offset x (See Figure 4). In order that these erroneous 

frequency components were not propagated in the recursive 

10
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algorithm, a zero-phase bandpass filter was applied to the 

estimated trace, (w), as shown in step 4 of Figure 3.

Now, by dividing in the frequency domain the data- 

processed compressed trace by the field trace, a digital 

filter which compresses the wavelet is estimated, and this 

filter is applied to the zero-offset field trace. This is 

shown by steps 5 and 6 in Figure 3.

*********
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Figure 3. Block diagram illustrating pulse compression in 
the frequency domain.
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frequency

frequency

Figure 4. Diagramatic view of amplitude spectra for source 
wavelet, field traces s , s and estimated field , o xtrace s . x
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The inverse Fourier Transform of the resulting trace 

yields the trace at zero offset with the true wavelet re

placed by the estimated compressed wavelet (output of step 7).

This process is repeated many times to hopefully im

prove the resolution of the seismic trace.

The estimated wavelet has a broad frequency spectrum 

but because Sx(w) does not have appreciable energy at high 

frequencies there is a possibility of generating high fre

quency noise by the division performed in step 5. This is 

why the bandpass filter is applied in step 4. Another reason 

for applying the bandpass filter is that compressing the 

wavelet is similar to resampling a time series and the 

original time series cannot have frequencies above the new 

Nyquist frequency. For pulse compression, this upper fre

quency component can be approximated by

At -(At j -At2)
(fj^x = ---------------- ■N x At N

where: Ati = NMO correction for the first sample in the 

time window of s which is used to predict s , o x'
Ata = NMO correction for the second sample, 

At =.sample rate of sQ time series,

fN = Nyquist frequency of so = I5 At, and

(fN^x = uPPer frequency components in sq allowable 

if s^ is predicted from so.

For the cases presented in this study a 1Hzi-180Hz

bandpass was applied because the upper allowable frequency 
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component was approximately 187 Hz as computed from the 

equation for (fN)sx.

On the other hand, the filter removes important fre

quencies of the time varying wavelet. Without these high 

frequencies the wavelet will not converge to a spike but only 

to some bandlimited approximation. Too high a cut-off fre

quency will generate noise which increases with the number of 

iterations in the predicted trace. This effect will be seen 

in the following examples.

Example 1: An isolated Spike case.

Figure 5 shows an example where the reflectivity 

function consists of an isolated spike (trace at left) at a 

time of .96 sec. The velocity was set at 7200 ft/sec and the 

offset at 3700 ft. Trace zero corresponds to zero offset and 

in this trace it is possible to see the shape of the original 

wavelet. Traces 1,2,3,....,10 correspond to iterations 

1,2,3,....10 of the process. The window length was .25 sec 

and a lHz-180Hz bandpass filter was applied.

The hyperbolic rate of compression that is evident in 

Figure 5 is related to the normal moveout, from which the 

method is derived. In this example the compression gives 

significant results without introducing too much noise. This 

is an ideal pulse compression.

**4C***9)C*4C
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0 1 23456789 10

Figure 5. Application of the wavelet compression 
method in a model consisting of a re
flectivity function which is a simple 
spike. The filter was calculated in 
the frequency domain.

Example 2: Synthetic Seismogram.

A more realistic example is shown in Figure 6. The 

first trace (left) corresponds to the reflectivity function 

which is repeated at the right for scaling purposes. The 

offset was 3700 ft and the velocity function was applied with 

an average error of -1.%. A 1Hz-180Hz bandpass filter was 

applied at each iteration. Trace zero is the zero offset 

trace of Figure 2c and corresponds to a 0.5 sec window taken 

from 1.25 sec to 1.75 sec. Traces 1,2,3,....,7 are the out

put of iteration 1,2,..7.

In Figure 6a as well as in Figure 5, the effect of 

time-varying compression is quite evident. The last .1 sec 

of the window gate represents the original tail of the seis

mic wavelet and its distortion is due to the high frequency 

component left in the system and this noise increases with 

the number of iterations. This high frequency distortion is 

present through the window gate of the synthetic trace, but
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it is partially masked by the convolutional overlap. The 

compression does increase the resolution of the synthetic 

trace, as is evident at 1.38 sec and at 1.60 sec.

In step 3 of Figure 3 any discrepancy in the esti

mation of the reflectivity function is related to the esti

mated wavelet. This was designed so that small errors in the 

velocity function affect the performance of the compression 

itself, without generating undesirable and unpredictable time 

shifts in the original data. In fact. Figure 6a shows that 

the events do not shift as the number of iterations increase, 

even though an intentional error in the velocity function was 

present.

With 1Hz-180Hz bandpass

Figure 6 a.

0 1 2 3 4 5 6 7

Figure 6b illustrates the same example without ap

plication of the bandpass filter. The propagation of high 

frequency noise in the system is clearly shown.

Frequency domain application of the wavelet 
compression method.
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Fibure 6b. Frequency domain application of the wavelet
compression method.

Time Domain

Pulse compression can be done in the time domain 

by using an alternate method for finding the inverse 

operator H in step 5 of Figure 3. Even though this 

method failed, the ideas described here were the origin 

of the wavelet extraction method described in the next 

part of this study.

In Figure 3, after step 2, the first estimate of 

the trace at x-offset is given. Now instead of going to 

the frequency domain, a least square shaping filter is 

designed so that when it is convolved with the field 

trace at offset x it yields the estimated trace. That 

is

sx(t)*h(t) = sx(t) (6)
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where: h(t) = the shaping filter.

The filter design and implementation follows the general 

theory of shaping filters described by Treitel and Robinson 

(1966) .

Convolving this filter, h(t), with the trace at zero 

offset will generate the next compressed version of the trace, 

and by repeating this process an increase in resolution is 

attempted.

Example 1: An Isolated Spike case.

When the reflectivity function is an isolated spike, 

the results are shown in Figure 7. The effect of compression 

is evident, but the error in the velocity function time-shifts 

the reflection and this time-shift increases with the number 

of iterations.

Figure 7. Time domain application of the wavelet compress
ion method.

*********
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Figure 8. Time domain application of the wavelet compression 
method. Note the shifts that are introduced on 
the individual events.

Example 2: Synthetic Seismogram.

Figure 8 shows the results that are obtained when 

the shaping filter is applied to the same set of information 

that generated Figure 6. A 1Hz-180Hz bandpass filter was 

also applied at each step. It is evident that the compress

ion is good. The noise introduced by the filter is generally 

the same in the lower part of the window but is higher in the 

beginning of the window where there is more compression. An 

undesirable feature shown in Figure 7 is the time shifts that 

the filter introduces on each event. The small (-1)% error 

due to the velocity function increases the time shift at each 

iteration. As a mean of compensation for this time error, a 

non-causal least-square shaping filter could have been de

signed. This however would then require a search algorithm 
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to determine the time shifts. This process was not tried be

cause the wavelet extraction technique which is described in 

the next section bypassed this possible problem.

A least-square solution was attempted for one direc

tion (from zero offset to x offset) but it was not applied 

for the reverse direction. When using the shaping filter 

approach for both directions, it is possible to recover not 

only the wavelet but also the reflectivity function. This 

idea is discussed in the next step of this study.
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WAVELET EXTRACTION TECHNIQUE

In terms of matrix algebra, (3) or (4) can be 

written as

n

S = A*R

where the letter on the side of the matrices indicate the 

matrix size.

Equation (7) represents a reflectivity function that

is zero before r. and zero after r . This truncantion as-1 n
sumption is made in subsequent data also.

The relationship between r and r which is devel- ox
oped using (5) can be expressed in matrix notation as:

k = k

“11...... . .a.. ln

•

r9/i

n (8)

^x,k akl......

n

. . a, kn
r0,n

R = a*R x o 
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where the a-matrix is called the Normal Move-Out Transfor

mation matrix (NMOT). This matrix is computed from the 

velocity function and the offset distance as

where: 

(9)

g. . = h. - i + 113 3

= i - hj + 1 only if

^1 = 0

and

hj = (j + b - l)/g(j b/gb + 1 (See Figure 9)

********

For two windows in two different seismic traces, 

where the zero offset is selected as one of the input 

traces for convenience, the matrix notation of convolution 

yields for so(t) and sx(t)
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and

(11)

sx A.Rx

In (10) and (11) S and S are windows o x and R can be x
replaced using (8) to yield:

Sv = A-a*R X o

Equation (10) and (12) have n-unknown reflection

coefficients and L-unknown wavelet weights. This set of 

nonlinear equations was solved by the method outlined in 

the block diagram of Figure 10.



25

REFLECTIVITY
AT

X OFFSET

WINDOW WITH 
N SAMPLES

REFLECTIVITY 
M

ZERO OFFSET

Figure 9. Block diagram for converting r to r and 
interpolating r^ to sample times.
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A = wavelet
S ■= known vector
S : = known vector

= estimated reflectivity functions
A = estimated wavelet

Figure 10. Block diagram illustrating the wavelet extrac
tion solution of equations (10) and (12).
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In step 2 and 4 the familiar least square shaping 

filter algorithm is applied. However, the meaning of the 

shaping filter is slightly changed for each step. For step 

2, an estimate of Ro is computed and for step 4 an estimate 

of the desired wavelet A is computed.

Hopefully, the wavelet estimate. A, convolved with 

the reflectivity estimate, Rq, reproduces the seismic trace 

at zero offset. With this estimation of the wavelet the 

next iteration can be started. When the original wavelet is 

recovered the error criteria as defined in step 5 of 

Figure 10 is zero. Also, the successive iterations will 

give the same output. In other words, the system stabilizes 

when the exact wavelet is obtained.

The following simple models illustrate the wavelet 

extraction technique described in Figure 10.

Two Point Minimum Delay Wavelet.

Input data: SQ = (.2,.94,-.7,.12,0.,0.,0.) 

Sx = (.74,-.162,-.018,0.,0.) 

A = (l.,0.,0.) 

n = 7 

k = 5 

L = 3

Computed NMOT matrix 1.0 0.6 .is 0. 0. 0. 0.
.0 .4 .'85 .7 .2 0. 0.

from a given velocity .0 .0 .0 .3 .8 .6 .1
.0 .0 .0 .0 .0 .4 .9
.0 .0 .0 .0 .0 .0 .0

Desired output: A = (l.,-.3)

Ro = (.2,1.,-.4)
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Figure 11 shows various iterations of the system. A 

comparison of the output for iteration 18 with the desired 

output demonstrates that the solutions for the seismic 

wavelet and for the reflectivity function are excellent.

********
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(.2,1.0,-.4,0.,0.,0.,0.) (l.,0.,0.)

iteration

j = 1

j = 10

j = 18

(.19,1.,-.39,0.,0.,0.,0.) (l.,-.3,0.)

Figure

(.19,1.,-.39,-.0,0.,0.,0.302,.0)

Ro

(.21,l.,-.74,.13,0.,0.,0.Xl.,-.02,-.08)

11. Wavelet and reflectivity extraction 
minimum-delay wavelet.

A Error

9.0245

3.7930

0.0000

for a
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Two Point Maximum Delay Wavelet.

Input data: SQ = (0.04,.4,.92,-.4f0.,0.,0.) 

Sx = (.148,.752,.06,0.,0.) 

A = (l.,0.,0.) 

n = 7 

k = 5 

L = 3 

NMOT = same as in preceding example.

Desired output: A = (.2,1.)

Ro = (.2,1.,-.4) 

Figure 12 shows various iterations of the system.

After 37 iterations an excellent solution was obtained. If 

the first estimate had been better, the final solution would 

have been accomplished with less iterations, as was the case 

in the Minimum Delay example.

********
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(.2,l.,-.4,0.,0.,0.,0.) (l.,0.,0.)

(.0,.43,l.,-.43,0.,0.,0.)(l.;.41>.0)

j = 20 2.4516

(.18,l.,-.23,.03,-.0,0.,0.)(.20,l.,-.13)

j = 38 0.0001

(.19,l.,-.39,0.,0.,0.,0.) (.2,l.,-.0)

Figure 12. Wavelet and reflectivity extraction for a 
maximum-delay wavelet.
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Three Point Mixed-Delay Wavelet

Figure 13 shows that 17 iterations yields the desired

Input data: so

Sx
X

n

k

L

=

(.02,.3,.98.-.29,.06,.01,0.,0.)

(.074,.753,.207,.043,.003,0.)

(l.,0.,

8

6

4

0.,0.)

Computed NMOT 1.0 .6 .15 0. 0. 0. 0. 0.
. 0 .4 .85 .7 .2 0. 0. 0.

from a given velocity .0 .0 .0 .3 .8 .6 0. 0.
.0 .0 .0 .0 .0 .4 .1 0.
.0 .0 .0 .0 .0 .0 .9 .5
.0 .0 .0 .0 .0 .0 .0 .5

Desired Output: A = ( .1,1. , .1)

R 
O

= ( .2,1. ,-.4,.l)

output.

********
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Ro

iteration 1"*A Error

3.7190

(O.,.3,l.,-.29,.O6,.O,O.,O.) (1.,.45,.05,.01)

(.2,l.,-41,.ll,-.0,0.,0.,0.)(.09,l.,.l,-.0)

4,.l,0.,0.,0.,0.) (.1,1.,.!)

0.0000

Figure 13. Wavelet and reflectivity extraction for a mixed- 
delay wavelet.
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These three examples illustrate how the system is 

independent of the shape of the reflectivity function and 

the shape of the wavelet. In fact, no assumptions were made 

about the shape of the seismic functions and no restrictions 

were imposed during the mathematical development of the 

method.

Deterministic Reflectivity Function.

A better feeling about the performance of the method 

is given by the example illustrated in Figure 14. The re

flectivity function (14b) consists of 6 isolated spikes with 

different amplitudes which were distributed in a window of 

.38 sec. The true wavelet consists of a 32-point minimum

phase wavelet whose amplitude and phase spectra are shown in 

Figure 15. At zero-offset the convolution of this wavelet 

with the reflectivity function yields the synthetic seismic 

trace whose shifted window is shown on Figure 14b. With the 

velocity function shown in Figure 14a and assuming an offset 

distance of 2000 ft., the corresponding compressed version 

of the reflectivity function was computed and convolved with 

the true wavelet to yield the synthetic seismic trace sx.

The offset, the velocity function and both synthetic 

traces were loaded into the system described in Figure 10.

The conditions to stop the iterations were either an 

error less than 0.01 or 100 iterations whichever happened 

first.

The initial estimate of the wavelet was a spike
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followed by 39 zeros and the result after 100 iterations

was the estimated wavelet shown in Figure 14c.

********
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tim
e w

in
do

w
 ga

te

TRUE WAVELET

- b -

ESTIMATED WAVELET

Figure 14. Application of the wavelet extraction method to 
a synthetic deterministic function. (a) The 
average velocity function, (b) The original re
flectivity function at zero offset, the corres
ponding seismic trace, and trace at 2000 ft. 
(c) True wavelet and estimated wavelet after 
100 iterations.
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- Phase -

Figure 15, Amplitude and Phase spectra of the true wavelet 
used in the deterministic reflectivity model.
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Figure 16 shows different steps of the process. The 

initial wavelet (j=0) yields the first estimate of the re

flectivity function (j=l) which is the seismic trace itself. 

The estimated reflectivity function of the last iteration is 

a reasonable approximation of the actual one.

********
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Figure 16. Outputs at various iterations of the wavelet 
extraction method.
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; xAiidom Reflectivity Function

Figure 17 is another example of the method, where 

the zero offset reflectivity function is random. The true 

seismic wavelet and the velocity function are the same as in 

the preceding example. A time window of .38 sec and an off

set distance of 3500 ft. were used. The two resulting syn

thetic seismic traces have their shifted windows shown in 

Figure 17b. The estimated seismic wavelet after 100 itera

tions is shown on Figure 17c.

Figure 18 shows various steps of the process. After 

100 iterations the estimated reflectivity function was re

covered. However, the changes in the wavelet estimates is 

due to instability and this will be discussed later.

********
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tim
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do
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TRUE WAVELET ESTIMATED WAVELET

Figure 17. Application of the wavelet extraction method to 
a random function. (a) The average velocity 
function. (b) The original reflectivity func
tion, the seismic trace at zero offset and at 
3500 ft. (c) True and estimated wavelet after 
100 iterations.
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Figure 18. Outputs at various iterations of the wavelet 
extraction process. Note the similarity of 
the estimated reflectivity function at j=100 
with the actual reflectivity function.
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Mixed Phase Air-Gun Wavelet

Figure 19b shows a model with a mixed-phase air-gun 

wavelet. Its amplitude and phase spectra are shown in Fig

ure 20. The time window was taken from .440 sec to .854 sec 

with the velocity function as shown in Figure 19a. The off

set distance was 5000 ft. The estimated wavelet after 17 

iterations is shown on Figure 19c.

Figure 21 shows the output at various iterations. 

The recovered reflectivity function reproduces all the de

tails of the actual reflectivity function.

********
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TRUE WAVELET ESTIMATED WAVELET

Figure 19. Application of the wavelet extraction method to 
a mixed-phase air-gun wavelet. (a) The average 
velocity function. (b) The actual reflectivity 
function, the seismic trace at zero offset and 
at 5000 ft. (c) The true wavelet and the esti
mated wavelet after 17 iterations.
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Amplitude

Phase

Figure 20. Amplitude and Phase spectra of the mixed-phase 
air-gun wavelet.
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Figure 21. Output at various steps of the wavelet extraction 
method. The process stops in 17 iterations when 
the error criterion was satisfied.
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PARAMETERS

The parameters which govern the rate of convergence 

of the system are:

- the length of the initial estimated wavelet,

- the weights of the initial estimated wavelet,

- the length of the time window gate,

- the offset distance, and

- the errors in the velocity function.

Length of the Initial Estimated Wavelet

The estimation of the seismic wavelet for each iter

ation is performed by step 4 in Figure 10 which is the output 

of a shaping filter. In general, the longer the filter, the 

faster the convergence of the system. The minimum length of 

the initial estimated wavelet must be at least the same 

length of the true wavelet, otherwise the system will not be 

able to converge. Normally, a reasonable length will have 

to be defined from the seismic section by the geophysicist.

Weights of the Initial Estimated Wavelet

On the examples studied, it is easy to see that if 

an initial wavelet is estimated with a shape similar to the 

output after n iterations, then n iterations of the process 

will be saved.. A good initial estimate would be a simple 

spike which contains all frequencies. Attempting to approxi

mate the desired output may generate problems in cases where 

the initial estimate does not contain all frequencies com

ponent which are in the seismic traces. On some estimated 

wavelets the polarity was inverted, but the performance of 
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th; extraction system did not change.

It is always possible to depict a reasonable shape 

for the initial estimate from the seismic section. In 

marine work, the deep water bottom reflections may give a 

good approximation.

Length of the time window gate.

One important feature that is not discussed in this 

study is the end effects which always appear when working 

with time windows. A suitable truncation must be performed 

to avoid these problems and the window length must be 

choosen as a function of the truncation operator. Also, the 

window must contain several good reflectors that are com

pressed in order to improve the performance of the shaping 

filters.

Offset Distance.

Normally, the larger the offset distance, the smaller 

the NMOT matrix will be thus increasing the rate of conver

gence of the system. However, the offset distance can not 

assume values which generate NMOT matrices which are smaller 

than the seismic wavelet (k<L in equation 12). When the 

NMOT matrix approximates the identity matrix, which occurs 

at small offsets, no compression is performed and the method 

is not applicable. In the next section the stability of the 

system for different offsets will be discussed.

Errors in the velocity function.

The higher the average velocity error, the slower
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will be the wavelet convergence. Eventually, no conver

gence at all will be obtained. The errors will generate a 

distorted output. It is preferable to have a positive error 

in the velocity function rather than a negative error. This 

is related to the fact that the lags of the crosscorrelation 

functions are computed only for positive values in order to 

avoid a maximum coherence search.

Figure 22 shows an example of a velocity function 

containing positive errors. Figure 22a is the true and the 

overestimated velocity functions which are applied in the 

process. Figure 22b shows the reflectivity function, the 

seismic trace at zero offset s and the seismic trace at o 
4000 ft. offset. Figure 22c shows the true and the esti

mated wavelet after 50 interations. It is necessary to 

point out that the process was not stable. The stability of 

the system is discussed in the sequence of this study.

********
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Figure 22. Application of the wavelet extraction method with 
a velocity function containing positive errors.
(a) The true and overestimated velocity functions.
(b) The actual reflectivity function, the seismic 
trace at zero and at 4000 ft. (c) The true and 
estimated wavelet after 50 iterations.
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STABILITY

Stability, which is related to zero points in the 

power spectrum of the estimated wavelet is the major problem 

encountered in this study. Solutions of this problem had 

been attempted without success.

The example of the minimum-phase wavelet shown in 

Figure 14 was intentionally used to demonstrate some char

acteristics of an unstable model. It is expected for the 

energy error to decrease uniformly to zero, and this was not 

the case. In order to better visualize the problem, the 

same example was run using different offsets. Figure 23 

shows the variation of the energy error with number of 

iterations for various offset distances.

This stability problem is the same as that de

scribed in the wavelet compression technique. In particular 

step 2 in Figure 10 computes an estimated wavelet which is 

bounded in the frequency domain or contains values in the 

amplitude spectrum which are close to zero. As unstable 

deconvolution is a zero division in the frequency domain, 

the time domain equivalent is a nonpositive definite auto

correlation matrix. An attempt to stabilize the system was 

made by adding white noise to the autocorrelation matrix. 

This did stabilize the system but did not allow the system 

to converge to a minimum error criteria.

********
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Figures 24 and 25 illustrate a system that could not 

overcome a wavelet estimate that had a near zero frequency 

point. When a 0.001% increment was added to the zero lag 

autocorrelation, the system stabilizes with the wavelet 

shown of the 13th iteration. However, this is not close to 

the true wavelet.

Figure 26 is the power spectrum of the true wavelet. 

The amplitudes of frequencies higher than 60 Hz are insig

nificant, but different from zero as shown on the detailed 

scale. Figure 27 is the power spectrum of the estimated 

wavelet one iteration before the unstability. Even with a 

detailed scale, amplitudes of frequencies higher than 60 Hz 
— 6 are zero, or at least less than 10

This analysis suggests future, work is necessary for 

those situations where the spectrum of the source wavelet 

decays rapidly such as would be the case in Vibroseis data.

The same example was tested with the initial estimate 

of the wavelet with a spike in the first sample. The system 

behaves in the same way, as expected, and the result one 

step before the instability is shown in Figure 28. With 

addition of white noise it stabilizes in this different 

shape.

********
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Figure 24. Application of the wavelet extraction method to 
an unstable model. (a) The average velocity 
function. (b) The actual reflectivity function, 
the trace at zero offset and at 2000 ft. (c) 
The true wavelet and the estimated wavelet after 
100 iterations.
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Figure 25. Outputs at various steps of'the wavelet extrac
tion method. After 12 iterations the system 
becomes unstable.
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Phase -

Figure 26* Amplitude and Phase spectra of the true wavelet 
used in the unstable model.
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Figure 27. Amplitude and Phase spectra of the estimated 
wavelet one step before the unstability

HZ
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Figure 28. Output at various steps of the wavelet extraction 
method. The spike on the initial estimate is at 
time zero.



59

CONCLUSIONS

Wavelet Compression Technique

Relative to the general problem of deconvolution 

and seismic interpretation, the wavelet compression techni

que does not give the answer for all the problems of seismic 

prospecting. It is definitely a particular tool that could 

be applied in areas where reflections are good and where an 

increase in resolution is desired. Specific examples for 

application are: the enhancement of detail in searching -for 

stratigraphic features and increased definition of the limits 

of a producing horizon.

Wavelet Extraction Technique

It is a deconvolution method which makes use of the 

velocity function and offset distance, and does not require 

any assumption about the shape of the seismic wavelet or 

restriction on the reflectivity function. When the velocity 

function is know, the system attempts to recover the exact 

reflectivity function and the exact seismic wavelet.

For particular situations the system becomes unstable 

and a vigilant routine must be incorporated into the algo

rithm in order to avoid this problem. The deconvolution 

process can be stabilized by different ways and the simplest 

one is the addition of white noise in the power spectrum of 

the estimated wavelet.

As the method does not require any mathematical or 

geological assumptions, it is indicated for use in areas 

where the velocity functipn is well known in order to obtain
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the exact shape of the best seismic wavelet.

The seismic noise is always present on the field 

record and can be compensated by using the system for more 

than two traces. It is not difficult to expand the algo

rithm for more traces and get a noise reduction.
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