
HIGHER KEGBO

A Thesis
Presented to

the P&eulty of the College of Arts and Sciences

The University of Houetc®

■ < v j . .

In partial Pulfillment
of the Requireeents for the Degree

Master of Science in Mathenatics 

by
Hortensia Vargas

yune 1952

87951.



HIGHER MGREB. EQUATIONS

A Thesis

Presented to 
the faculty of the Department of Mathematics 

The University of Houston

In Partial fulfillment

of the Requirements for the Degree 
Master of Science 

by

Hortensia Vargas
lune 1952



HIGHJ>EG-F.EE E^UATICTS

This thesis Is a summary of the history and solutions 
of algehralo equations whose degree Is equal to or great
er than three, together with a proof by the author that 
all three solutions of the quartic say be obtained by 
considering two different linear functions of a certain 
expression in the roots of the quart1ce
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C' ? A '

Brief Tlletor/ of the .ToXutioa cf Squat ion#

Bah/ionlana.
xhe algebra of the Babjrionlane was empirleal as can 

be snosn in their astonlohing eolutions of cubic equations 
with numerical coefficients.^ The equations solved by 

Babylonians, expressed in modern notation, sere of the

± px^ -t q - 0

which, could be reduced to the fora 
y3+y2=r

IB. T. 3eU, Its DeTelooBent of I’ateematlce 
(second edition) Kew York* hcgraw-Hlll Book Company, 
Inc*, 1945^, p* 36*

by multiplying th® original equation

and letting

If the resulting r was positive, th® 
3 2that of x, was obtained froa tabulated values of n +n , 

provided that th® r was in the table* It is poeslble 
that the scribe proceeded from certain tabulated r’s to 
construct the equations, eo that they could be solvable*

value of y, and so

by JL
<?
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The Bab/lonian reduction of cubloa appears to be the first 
recorded instance of thia method which was again used in 
the sixteenth centurjr by the Italian algebraists and

2 latter on by Vieta* 
Greeks

Mong the Greeks the oldest type of cubic equation 
of the form xs= k was possibly due to Menaechmus (350 C.)»2 3

2 2, T* Bell, £$yeIppmOlt..oX,,(second 
edition) Hew Yorki kcGraw-Hill Book Company, Inc*, 1945),
P* 37*

He solved this cubic by finding the intersection of two 
conics* Hext, Archimedes tried to solve the problem by cutting 
the sphere by a plane so that the two segments shall have a 

given ratio which reduced to the proportion
c-x _ Jgj 
b 2 

x 
and to the equation

3 2 2X -f e b = CX *
According to Sutocius, Archimedes solved the problem by 
finding the intersection of two conics, namely the parabola

2 2
** —■ eewewiMw

e

3 D* 2* Smith, Historv of .Mathe.ma.tlM. (Vol* 2) Hew
Yorki Ginn and Company, 1925), p* 454*
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and the hyperbola
y(c - x) = bc»

Diophantus solved a single cuble equation
xa + x =4x +4 In connection with the problem of finding a 
right • angled triangle such that th® area added to the 
tVpotenuee gives a square while the perimeter is a cube. 
His method is not given, but possibly he saw that

x(x2 +1) = 4(x2-^ 1) forx»4.

4 W. W. R. Ball, ^hOJ^t.AsjsoaaOX^
r.a thematic a (New lorki The ^aci-illan Company, 194?), 
p. Ib9.

Arabs and Persians
Th® problem of Archimedes was taken up by the Arabs 

and Persians in the ninth century. The equations were 
solved by geomtrlc methods. Alkayaml was noted for 
hl® geometrical treatment of cubic equations by which 
he obtained a root as the abscissa of a point of In-

4 tersection of a conic and a circle. He considered 
equations of the following form in which a and c stand 
for positive Integers.

•» o D
a) x + b x — b @ whose root he said is the 

abscissa of a point of intersection of 
x^ = by and y“= x(c -x)
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b) x^+ax^— g3 whose root is the abscissa of a point 
of Intersection of

xy = c8 and y2=c(x + a)

5 0, E. Smith, IU.<tory_gf_...MathemaMc..s (Vol, 8^ 
Kew Yorks The Ginn and Company, 1925), p, 456,

c) x3±ax 4-b2x = b2c whose root is the abscissa of a 
point of Intersection of

8

^r2= (x±a) (c -x) and x (b ± y) =bc.

Chinese and Hindus

The Chinese algebraists did not p@y too much 
attention to the cubic equatlcn* Their Interest was in 
applied probleme which led to numerical equations. The 
numerical cubic first appeared in a work by Wang H’s iao- 
t’ung about 625 in relation to a problem with a right- 
angled triangle*^ He used an equation of the form 

x® -+- ax2 — b = o,
Other Chinese algebraists treated cublcs, but it was not 
until the thirteenth century when the European in
fluence was powerful, that any attempt was made by 
Chinese to classify third degree equations. Between 
1662 and 1722 nine types of cubics were given 5
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x3 ± bx = a • x3 ± ax2= c

6 D, E, Smith, History of 'lathematlet (Vol. 2| New 
Yorkt The Ginn and Company, 1925|Jpe 457,

x3 ± ax^ ±'bx =• a -x^ +• ax2 = e.
But In every case the solution was numerical and only a 
single positive root was given.

The Hindus were not Interested in cubic®, Shuskara 
(1150) gave the following example

X3 f 12x - 6x2 +■ 55 

in which the root 5 was found by trial,

Medieval Interest

European scholars of the Kiddie Ages attempted to 
solve cubic®, Bibonaooi, for example, attacked the prob
lem in his Flos of 1225, He said that a scholar of 
Palermo, proposed to him the problem of finding a cube 
which, witii two squares and ten roots, should be equal to 
20, The problem was solved by tills equation

X3 + 2x2 + lOx =20,

another attempt was made by an anonymous writer of the 
thirteenth century whose work has been described by 
Libri.6 He took two cubic®, one of the type axd = ox + k 
and another of the type ax3=ibx2-4-k« His method in the
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first case was
3 ax = ex

X3 ii»— IWI* —I- «£k "a a

r 5
X - + -4-\ + j£2a v (. 2a; a which Is the 

root of equatioa ax® = cx + k, hut act of the given equation* 

His method in the second equation was squall/ fallacious.
Pacloll in 1494 stated that the general solution of 

a cubic was impossible. Rudolff (German) in 1525 suggest* 
ed three numerical equations each with one integral root 
and each being easily solved by factoring. His method in 
modern symbols is as follows. 
Given x3^ 1Cx2-i-20x-i-48
Add 8 to both sides and divide by (x *2)

(x3+6) 10x24-20x+56
x® • 2x f 4-1 Ox . 56 * 

x-f 2 
Split the two members of the equation 

X2 • 2X=:1QX
4 .56 which are satisfied 

'x-f- 2
by x =12.



Similar solutions of epecl&l cages were found in several 
works of the sixteenth century, notably In a work by 
Nicolas Petri published at zuneterdaza In 1567*

Cubic equations were considered by Diophantus about 
SOO a. D», but the first European mthecatlclano to give 
a complete solution of them belonged to the Italian 
school of Bologna at the time of the Penalseance. They 
were .'clplo Jerro, Nicolas Montana, surnMed Tartaglla, 
and Cardan* The solution which usually bears the omo of 
Cardan, was really due to Tartaglla.^ Terro solved cubic 
equations of the form x^-t-ax = b possibly basing hie work 
on Arab eouroes. He did not reveal his rethcd tc- the 
scholarei but he told the secret to his pupil Antonio 
Varla Plor* feme time later Tortaglia and Flor proposed 
to ®eet In a mathesatical contest* fart&glla devoted 
most of his time In devising a method for solving cublcs 
in which the first degree term was missing* Tartaglia 
succeeded in the contest* Cardan asked Tartaglia to 
show him the discovery, but he refused# Co, Cardan In
formed Tartaglia that a wealthy nobleman was interested

7 H* s# Turnbull, IM(H«* Yorkt 
Interscience Publishers, Inc*, 1947j, p* 117*
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In it* Cardan arranged a meting at Milan between the 
aathematlolan and his would • be patron* On reaching 
Milan, Tartaglla found that it wae all a hoax, but he 
wag persuaded to give Cardan the information he desired, 
pledging him to seorec/* Tartaglla claimed that he 
divulged the entire theory! but Cardan published a treat
ment of the, oublo eoverlng Tartaglla1! contributions 
as well as other points In his Are Magna (1545)* mien 
Tartaglla protested, Ferrari, Cardan*s most capable 
pupil, claimed that Cardan had received his information 
from ferro* Cardan was the first to exhibit three real 
roots for any cubic* He advanced beyond the mere formal 
solution In recognizing the Irreducible case (all roots 
irrational) when the radicals appearing are cube roots 
of complex numbers* The first to recognize the reality 
of the roots in the irreducible ease was H, Bombelll in 
1572*8 9

8 2. T, Bell, nte.PQtippMaS. Pl-^aXhema^-Ce (second 
edition! Hew Yorki McGraw-Hill Book Company, Inc*, 1945), 
p, 118.

9 Ibid*, p* 116*

yibonacol was a true mathemticlan far ahead of his 
time*® Being unable to give an algebraic solution of the
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equation
x3 + 2x24- IOx - 20,

h® attempted to prove that a geometrical construction of 
a root by straightedge and compass alone was impossible) 
but he could not have succeeded with what was known at 
his time. S© he proceeded to find a numerical apprcxima 
tion to a root.

Although Cardan reduced hie particular equation to 
2forms lacking the' term in x , it was Vieta who began 

with the general fprxa of the cublc^® x^-t- px®-4-qx + r = 0,

Concerning equations of fourth degree, Abul-Faradsh 
referred in his Vlhrlet to a problem which Involved an 
equation of the type 

x4+ px^^q
which could be solved by the intersection of the hyper
bola y8+- axy + b -0 and the parabola x2 - y ^0$ but the 

work In which th® problem appeared wae lost and no one 
knows what he did for a solution*

Woepcke, a Vrench orientalist, has called atten
tion to an anonymous manuscript of an Arab or Persian 
algebraist in which is given the biquadratic equation

10 D. Smith, Historv.v..of Kathesallcs (Vol. 2)
lew York* The Ginn and Company, 1925), p* 467.
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(1C0-X3) (10»x)3= 8100.

It waa aolvei V taking the Xnteraeetlon of (10-x) y = 90 
and x2 +- 3^= 100. But there Is no evidence that the 
author wai concerned with the algebraic theory* 11

The problem of a biquadratic equation was laid prom
inently before Italian mathematicians by Zuanne de Tonlni 
da Col in 1540 when he proposed this problem# Divide ten 
into three parts each that they shall be In continued pro
portion and that the product of the first two shall be six 
He gave this problem to Cardan with the statement that it 
could not be solved, but Cardan denied the assertion, 
although he did not solve it# He gave it to Ferrari, who, 
though a mere youth, solved the problem#

Vieta (1590) was the first algebraist after Ferrari 
to make any noteworthy advance in the solution of the 

11 biquadratic# He began with an equation of the type 
x* -+- 2qx2 + bx= o wrote it as 
x4 2qx2- o • bx

He added q2+ SL qy to both sides, made the right 
3

side a perfect square, and from there on he followed 
Ferrari’s method#

11 D# 1# Smith, EAUML of Mathematice (Vol. 2| Hew
Torki The Ginn and Company, 1925), p* 467.
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Xext, Deecaxtee (1637) took up the queetlon of the 
biquadratic equation and succeeded in effecting a simple 
solution of problems of this type x^-t-px^-t-qx-t-r = 0e 

3uler (1770) solved the general quartio by a method 
differing from that of Ferrari* This unexpected success 
led him to believe that the general quintic equation was 
solvable by radicals*

Concerning the quintic equation, the German 3. 'f. 
Tschlrnhausen (1651*1708) applied a rational eubstltu- 
tlon to remove certain terse from a given equation gen* 
eralizing the removal of the second term from cables and 
quartics used by Cardan, Vieta and others* A century 
later, 3* S, Bring (Swedish - 1736 • 1798) reduced the 
general quintic to one of its trinomial forms 
x^+ix 4-b =0 by a Tschirnhausen transformations with co
efficients involving one cube root and three square roots, 
a result of capital Importance In the traecendental solu- 

12 tlon of the quintic*
Lagrange (1770*1771), instead cf trying to solve 

the general quintic by Ingenious tricks, examined tne

12 2. T* Bell, (second 
edition? Kew York* McGraw-lilll Book Company, Inc*, 1945), 
p* 232*



12

extant solutions of the equations of second, third and 
fourth degrees in an attempt to discover why the partic
ular devices used by hie predecessors had succeeded. He 
found that in each instance the solution was reducible 
to that of an equation of lower degree, whose roots were 
linear functions of the roots of the given equation, and 
of the roots of unity. He thought that it was a general 
methodi but on applying to the general quintic, Lagrange 
obtained a sextic which meant that the degree of the 
equation, instead of being reduced as before, was 
raised.

The first noteworthy attempt to prove that an equa
tion of fifth degree could not be solved by algebraic 
methods was due to Ruffini (1803*1805) although it had 
already been considered by Gauss.

The modern theory of equations is commonly said to 
date from Abel and Galois. The latter's posthumous 
memoir on the subject established the theory in a satis
factory manner. The Norwegian mathematician Abel, as a 
student in Christiana, thought for a while that he had

13 D. E. Smith, History of Mathematic.a (Vol. 2| New 
Yorki The Ginn and Company, 1925), p. 469.
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solved the quintie equatloni but he eorreeted himself in 
a pamphlet published In 1824*^ This was the famous paper 

in which Abel proved the Impossibility of solving an 
equation of fifth degree by radicals, a problem which had 
puzaled the mathematicians for mny years*

In 1884 Klein (1849»1925, German) reviewed all the 
labors of his predecessors and unified them with respect 
to the group of rotations of a regular Icosahedron about 
its axis of symmetry* In other words, Klein handled the 
subject of the quintic equation in a simple manner by in* 
troduclng the icosahedron equation as the normal form, 
and showed that the method could be generalised so as to 
embrace the whole theory of higher degree equations*18

14 D* J* Strulk, A-C^isO,li,.toiry.„20.tihes&tigl 
(Vol* 2$ Hew Yorki DoveF^^licatlon Inc*, 1948), p* 226*

15 De E* Smith, Hl el oj;y_Qf Mod er n Ba thema 11 c s (Hew
Yorki John *lley and Sons, 1906), p* 21*

Other contributions to thia subject were a transcen
dental solution of the quintic given by M* Hermite and 
Sylvester’s transformation of the fifth degree equation* 14 15 *



ctiaptt:?. -ii
Solution of the Cubic Equation

Cardan's Solution
In solrlng the cublo> Cardan first eliminated the 

term of second degree b/ substituting
in tlie general cubic

3 g Ax + px^a-qx +r = 0
which gives ayr-t-n =0*
Let 3s
obtaining

where

and

6 3 3 A8 -v as * ffiu - 0
27

(1)

rubetltuting the s for its value in (1) 
yr~i s~

-+- \ / h—i- । w .........

2 ~ V 4 27

Eliminating the denominator in the second fraction and
omitting double signs, since the/ give no mere values
than do eingle ones*
Then
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Cardan’s formula fails when all the roots are real and un
equal.

Vieta’s Solution
Given the general equation of third degree 

x^+ px2 + qx -h r = 0.

Vieta reduced it to
3y + 3hy =2c

by substituting

Bow, let
3 2bsz*/z and y. ...

obtaining
Z * 2ez3 = b3

a sextic which he solved as a quadratic.

Hudde’s Contribution
Hudde simplified Vieta’s work (1658) by taking ad

vantage of Descartes’ symbolism. He brought the theory of 
the cubic to its present status. He was also the first 
algebraist who unquestionably recognised that a letter 
stands for either a positive or negative number.16

16 D. IS. Smith, El story of Mathematics (Vol. 2; New 
York« The Ginn and Company, 1925), p. 466.
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In the equation
3x - qx + r

be let x = y
which results in

3 ,, 2 „ 2 3y + Sy z * Sy z -t-z, — qx + r.
If

(i> y3 + = r»
then 3zy2 + 3^y-qx»

from where y - q *
32;

Substituting in U)

jr -

Trigonometric Solution
In the sixteenth century Vieta suggested the 

treatment of the numerical cubic equation by trigo
nometry* Glrald (1629) was one of the first, how
ever to attack the problem*

r * jL27 3

3 
z =
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H« solved the equation
+ hy the help of the identity 

cos 30-- 4 eog^G-w 3 cos 6» This is the so - called
Irreducible case which Is of interest because it le the 
case in which all the roots are real*

Given the cubic px (1)
1st x-je. . Then (1) becomes 83+pn2z ^-n^q^C. (2)

n
Mow the

is identical
8 - COS

Whence a -
V

Substituting a in the expression
cos

r 3^, . l/o
results in cos W- • 4c f^3 \ “» g. /•2JZ.\ • (4)

4p / * 2 I 3 I
P '

These equations can always be solved If p is negativet

trigonometric identity
Cos5©’-| Cose--| Cos 3 (3)

to (2) if
©- pn2- • 1 n3q - - 1 Cos 3©*

4 4
f . ■ e
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3 2This lot condition reduces to -4p -27q - A > o» and so 
is satisfied in ths eases under consideration.17

17 W. V. Levitt, Elementary Theory of Equations (Me 
forks Prentice-»Hall. Inc, 1939j, p. 99.

If 0^1s the smallest angle satisfying equation (4), then 
the values 9- -el20o and O-+240® alee satisfy it, so the 
roots of the equation x5-*- px4- q = 0 are

1 cos 0- 1 cos(G' + 120®) X 006(^+240°)
n n n

correct to a number of decimal places depending on the 
tables used.
Solving the Irreducible Case by Cardan’s Method.

The equation having the three commensurable roots 
a, b, c is x®*(a +b t-c)x^ + (ab + ac +be)x»abo =0.
Reduce the roots of thia equation by jl(a-t-b-+c), we have 

3
y3-l(a8+ b2+o2-ab-ac~bc)y- jL.(2aS+ 2bS+ 2c3-3a2b

3 27
•3a2c*3ab2«3ao2»3b20-3bc2-b 12abe)= 0. 

x
This being of the form y + my^.n=.0.
Substituting In Cardan’s formula and reducing results in

X-k \/ -27n . 3(a • b)(a • c)(b • c) i/- 3 • 
“ 3 V 2 2 v
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Set the rlght-hana side eaual to u + v. “Since u is a 
blnotalal la&glnarjr, its cube root wlii be of the type

+ \F? and \f^i will be rational**1® Hence 
^(oc3 . 3/5)= l/8(2a3-t-2b3+ 2c3 • • 3a2c - Sab2

- Sac'- - 3bdc - 3bc*-hl2abo), (1)
xFp U<ka-/3) = 3/g(a - b} (a • cHb • c) xAi = r. (2)

Since o/muat be rational, \pp luust be of the first de* 
gree with reference to a, b, c, and the onljr factors of 
r of that degree are of the form

(&- bL. where p is some integer*
p However, p must be 2, for sub

stituting
V**P= - o) xf-S in (2) and reducing we

P 
2 P 2have <K = * ab • ac 4- be) + b - 2bc + c which will

not give a rational value to d unless p-2* 
Assume \/^/3 _ (b - 0) xZ-S •

, 2
Substitute in (2) and reduced. We find ©(=.-(& - b±_S.)

and by substitution in (!)<<=:< • b+JL ®-nd similarly for
2

other factors of r«

18 0* He Kendall, “Solving the Irreducible Case of 
Cardan*e Method,* American 21 &ShS12ilS2.» 
11285-87, 1878.



Hence u l/3(a • + k^S.

.^imllajrl^ 
v-l/xia. • • b.,.-..-S

z 2 2
|/^3)

and y =1/3(2a • b * c)
= l/^(2b •&*($)
=.l/g(2a • a • b)

and x =a, b, a»

If two root® asw equal, then r - 0 and -U/^ ~^a' " b'‘
and If two are isaginaxy (^t^lAs), then 
r becomea rational and -&4-r
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Solution of a Cubio by Symaotrlc Functions of the Roots.19

19 W. 8. Burnside and a. W. Panton. Theory of Equations 
(Vol. 1| seventh edition} Dublint Hodges, Figgis, and 
Company, Ltd., 1912), p. 113.

Assume equation of the cuble in the form 
'ax3 + 3 bx2 + Sex + d 0 .
Put this general equation under the form

3z -h 3Hz + G = 0 where
zsax + b H = ac • b2 G =a2d • Sabo +2b®.

Since the three values of the expression

X/3 
when
that

ot. 4- /) +" + (ol 4- CO pi + LU2^«J + (* + L-U^P + LO^,) p- J

6-takes the values 1, w» w2 are^,^, it is plain 
if the functions (•< + -*e- and (<* 

were expressed in terms of the coefficients of the cubic, 
we could by substituting their values in the formula
given above, arrive at an algebraical solution of the cubic 
equation. This cannot be done by solving directly a quad* 
ratio because the sum of the two functions above written 
is not a rational sysmetrlc function of d, Take the
cubes of the two functions In question which can be ex
pressed in terms of the coefficients.
For convenience L =



Then
(ei)3= Ai-Bto+C^v 

n ,3 <>
- A.-*-Bar -rC«f WhSJT@

A = U3 + (? 4- 6o</3^),

® o © 8
C S(o<y3 -b From wMah we abtaln
1>1-1(3 = 2 <a3 ... 3 + 12 e 2?Q ,

a3

where the ejnabal signifies that ana Is to take the sum 
of all terse, like the one following the symbol, that can 
be formed from the given variables by permutations of those 
variables•
Ag’ain
(®L) (^M) =- L M = ck + <*o<^* =<^ _ *

whence
(ot-f o>/3 •#■ )3 <na (o<. + )3 axe the roots of

the qundretlo equation
t - S6!2 _ 0 e 

3a a
Denoting the roots of this equation by tt and t,. 
.. „3then .3“......

2a3

The original formula expressed In terms of the coefficients 
of the cubic gives the three roots•

• G + \ G2*4H3 )•



lurx/ht ar V tg)
I a 3

i if2 ks/7~.* ^/~7~\z. = *J1 A. 1 I ctr \/ + (V v •
Y & 3



CBAi'TSa III
Solutloa of the quartic Actuation

20Ferrari *b Eoluticn#
Let the equation of the quartle be of the form

(1) * bxs 4- ex8* dx-t- e • 0.
(2) Transposing terms* we have x* * bx3 » * ex? • dx • e* 

Cempleting the square in the left member results in
(x2 +■ k bx)2= (ib2 - e}x2 • dx • e*

Adding (x?-p fbxjy+iy8 to each member leads to
(3) (5^ * ibx +• ijr)2 = (ib8 * c*jr)x? +(iby * d)x +iy2 - e» 

The second member of (3) is a perfeet square of a linear 
function of xt If and only if, its diseriminant is aero,

(ib, - d)3 - *Hb2 - • + x)(i/3 - e)-0,

which may be written in the fora
(4) y3 • cy8 + (bd • 4e)y • b2e + ice - d2- 0,

Choose any jpoot y of the resolvent cubic (i), then the 
right member of (3) is the square of a linear function, 
eay mx + n.

20 L* 2. Dickson, First. Course Aa Theory of Equa
tions (Xew York! John Wiley and Cone, Inc#, 1922), 
P# 60#
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x2 + ibx -t- ix = «x 4- n ©jt

x2-t-i'ox -t- ijr = - ibx - He
The roote ©T these qu&dratle equations are the four 
roots of (3) and hence of the equation (l<e

Deaeartes1 Solution2^

The general quartic of the fom
ax4 +- bx^ 4- ex2 4- dx 4- e = 0

can be reduced 'to
4 2(X) k + qa 4- ra -t- a •» 0

The left seaber of (1) can be expressed as the product
of two quadratic factors

( a8* Ska *1 * ( a2-.- + ,® ) =
4 a 2 p

a +- (• 4k a +• 2k (s,
where q = i-v-& - 4k2,

r = 2k
a =

If k-^0, the first two give
21= q 4- 4k2 • jt-

2k,
22a = q 4- 4k 4- £»•

2k

Thus 
(5)

, 21 1. B. Dickson, EAx^t CbmIM 13 IMWL 21 ^3xalA£M
(Hew lorkt John #iley and Jons, Inc*, 1922), p, b2.
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Substituting the values of /-and ca In (2^) (2m) = 4s, 
results in

(2) 64k6+- 32qk<+4(q2 - 4s) k^ - r2 = 0,

which can be solved as a cubic. Any root 0 
gives a pair of quadratic factors of equation (1) 

b2 * 2kz + lq -t- - r .

The four roots of these two quadratic functions are the 
four roots of equation (1).

22 Euler’s Solution
Assume the quartic in the form

(1) ax4 + 4bx3 -+- 6cx2 + 4dx -p e = o.
(2) Let 8 =ax +■ b.

By eliminating x between (1) and (2) we obtain the
equation

(3) i44- 6IIa2 + 631 + a2I +- SH2 = 0.

Euler assumed a root of the form
B =x[¥ 4- x/X" -*\pE~*

Squaring twice and reducing by means of the relation a- 
bove, we obtain

B4*2(p+-q-»-r)82*8i( vf? \fq v/rj-t-U-pq+ r)*4-4(qr-+-pr 4-pq)- 0

22 J. D. Hutchinson, ”An Analysis of Several of the 
Methods of Solution of the General Quartic Equation from 
the point of view of Resolvent functions, Including an 
Illustration of Lagrange’s Theorem,* (unpublished Master’s 
thesis, The University of Illinois, Urbana, 1930), p. 11.



Comparing this equation with" (3) we obtain
p + q-hr - • 3U,

qr 4- pr 4- pq = 3H2 - A .
.Is- \f^ \f^ = * Q • V y
Proa (4) we see that p, q, s are the roots of the 

equation
g3+ (sii2 - jA)e-- G2

4 4-0
where G2 = 4H3 • -t- a3J.

The three values of S' from (5), together with ©qua 
tlons (2; and (4) and the relation

3 =>jV 4 \fr

determine the four roots of the given equation.

solution of the Quartlo by symetrlo .Functions of the 
r . 23hoots*

Let ax^ 4* 4bx3 * 6ex2 4-4dx•#-e ~C be tne quartic
The solution of a quartic equation can be reduced 

to tluat of a cubic by forming a function of the four 
roots of the quartic *1, which admits only three
values under the twenty*four permutations of„< , p ,< t5

23 H» 3* Burnside, A, W. Panton, The Theory of 
8nuati.on.e (seventh edition! Vol* 2| Bublini Hodges, 
i'iggls, and Company, Ltd*, 1912), p* 139*



•Na proceed to form the equatlpn whose roots are the 
three values of

t 5
ti = tg = (^L±.sLj<Li^.

4 and sinee

(/3 +^'" "" +■ 2> «• 2u • 2v
XU»(31?= 521 2u - 2v - 48H

2where H j= ac • o »
"b — ( + cZ <S ) ,
V = • ( dl fl *• ^5 ) >
V-»(/a<5 4-ot^ ).

lie find the following values of tj, tg, t3

tj = ,T,..h.Jt-.X --S. t *2 = ^..-.1.^2
12 8 12

a
t3 - ^T..->..5^ • g_ •

2 a
So

^1 *■ ^2 + ^3 — ■'wS— »
2 a

^1^2 + ^1^3 + ^2^3 = 55^. • Xw. (h*Y) „ 25^. * *
4 96 4 2

a a 4a
... - _ — —.t^tg^a - 6 • Whe^e Iae • 4bd + 3« ,

4a6 @sa2d - 3abe-t2b3,
3= aoe+ 2bed - ad2 • eb2 - o3
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Then the equation whose roots are t. • t- is X * 3
(&2t)54-3H(a8t)8-h (3H2»q2i:i(a8t)-G8L - 0. 

4 4
We substitute G for its value

4(a2ti-H)3 - a2I(a2t-tH) -fr 0

which can be transformed into the standard reducing cubic 
by the substitution (a8t-*-H)= • a8#

To determine ,4, । we have the following equatione
* t" -V — 5 •» \f~tr 

\fu )
v 6> ' * Vt8 ,

°< + (3 + 4-5 ■= -V

From which we find

4- • \J^2 + v^3» <y t * vT'vx * 1/^2 * t/^

We also find that \fH. \T^a -^3 -_ V means of which
3 2a

one radical can be expressed in terms of the other two.

A. Solution of the Quartic Equation by Means of a Twenty* 
four Valued Function of the Roots

We ass was the quartic equation in the form
(1) x + ax  + bx*4- cx+ d = 0.4 3

We call its roots ott Z9 • an<31 ®®n8j-a®r til® twenty*
four valued function

v- Vi (x* z?+iA* where I2- • 1
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"Viider the Bu"b£rci.p E4 of t, take® the value®,*24

24 J, De Hutchinson, *An Analysis of Several of the 
Methods of Solution of the General Quartic Squation from 
the point of View of I-eeolvent functions, Ineluding an 
Illustration of Lagraoge’s Theorem,* (Unpublished Master’s 
thesis, The University of Illinois, Urbana, 1930), p, 15,

^1 ~ "/3 + --ixT
V- (3t^~ t- ^<5

Thee® four functions are the root® of the equation

(2) + v32) t2+Vi2v32 = 0*
The coefficient® of equation (2) may he determined in
teres of the coefficients of (1)
Then v^2 + v/= 4iy(,

where

However

Tl8 VSh - X/g 3aa - Bb - 2(yg . y^2

C@-^W=L-‘5>
'33•

(jrg • yg) can be expressed in terms of y^ for

^1* ^2* ^3 are jr00^8 a certain eubio equation of the 
form 3* + c^y + 63=0 .
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We know that

(3) #2 . 3a _ - .... ........- ...... ___________________
(n - sa'-xii. - y5; 2

/i - nUg+ys)

Let

y ~,-e2f + ®3 = y- yt y + ©2 + xi .
I’hen y * yi

My) ha® roots yg and y», therefore
•^1 = ^2 ^3 and ^2 ^3 = ^S1 + ®2*

Then expression (3) becomes

y2 - y^p
b

"l" C2

where

®2 ~ 5a0 * i2d * *
The quartic (2/ beccaes 2

(4) z4 - «iy1e 1- l/er ®2 •  t- atiSllJ •s 5 86
L s#i8-t «2 J

If in equation (4) we set Z^= €>- «• have a quadratic, 

whose roots we may call and Og, We have then the 
equations

V, = O',
Vs =

(5) o(-f--t-O — — Gl,



By using the othex twenty valuee fox v one can obtain 
another independent relation of of,^3,^, and S ♦ This 
sixth equation, together with equations (5), form a
system of equations which can be solved for the roots
of the quartic, and



CHAPTER-IV
Higher Degree Squallone

The theory of eubatltutlone and groups of eubstltu- 
tlone grew out of the investigation by Lagrange, Ruffini 
and Abel concerning the question of solvability by 
radicals of the general algebraic equation of degree n.

Galois"Theory, which is applicable to any algebraic 
equation, whether its coefficients are constants or de
pend upon one or acre variables, establishes the modern 
theory of equations in a satisfactory mannerTo 
Galois, the solvability of any equation of n^1 degree by 
radicals depends on the discovery that to each equation 
there corresponds a group of substitutions, which leaves 
the function unchanged, known as the group of the equa
tion or Galois group* According to Galois* theory, 
given an equation we shall associate a group of substitu
tions on its roots* Then the algebraic equation is 
solvable by radicals if, and only If, the group is solv
able*

23 G. Ae Miller, H* P* Blichfeldt, and L. E# Dickson, 
TM2IX sni Appllpajljy?! 5Z23U2A (Hew Yorki John 
Wiley and Sons, Inc*, 1916j, p* 279*
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Before describing the group of the equation we de
fine the domain of rationality R* If we denote the con
stants or variables of a given problem by R1, KU, . . 
Ru together with all quantities derived from them by a 
finite number of additions, substructions, multiplica
tions and divisions (except by sero)*. the resulting sys
tem of quantities is called the domain of rationality.

The set of all substitutions (on the roots
Xj,, x2i . • xQ of the equation) satisfying proper
ties a and b, listed below, form a unique group G of 
order B. This is called the group of the equation.

a Every rational function (xj, x2, • • •, xn) of 
the roots which remains unaltered by all substitutions 
of G lies in the domain of rationality B.

b Every rational function (x^, xg, i • ., xn) if 
the roots which equals a quantity in R remains unalter
ed by all the substitutions of G.

An integral rational function f(x) of degree n of 
a variable x whose coefficients belong to the domain R 
is said to be reducible in R If it can be expressed as 
a product of Integral rational functions of x, each of 
degree less than n, with coefficients In R| irreducible 
If no such factorisation is possible#



35

For better understanding let
(1) f(x) E + Cgx®*2 - . ♦.4-(-l)BCn = 0

whose coefficients belong to the domain R. We assume 
that the roots Xi, x^, • • ., Xq are all distinct. It 
la possible to construct a rational function V| of the 
roots with coefficients in R such that takes nl dis
tinct values under the nl substitutions on x, . . ., xa. 
Such a function la

C2) v^ = m^Xj-f . .^n ^n
where mj, m2f . . ma are properly chosen in R. Then
the nl values of the function v^ are the roots of an 
equation

F(v) = (v-VjJCvvg) . » •(v-vnt)-=. 0, 
whose coefficients are Integral rational functions of 
the m*B in (2) and the c's in (1), with integral co
efficients • Hence the v*e belong to R*

If F(v) ie reducible in R, we let F0(v) be that 
irreducible factor for which Fo(vi)=0» if F(v) is ir
reducible in R, let 1'0(y) be F(v) itself. Then Fo(v) = 0 
is an irreducible equation called the Galois resolvent 
of equation (1).

Hext, we let the roots of this resolvent be vjl, 
Ta, Vi,, . . Vg
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The suhetltutleas whleh' they are derived from v, are
1* h» b» e e •» 1

which form a group G which is the group of the given 
equation (1) with reepeot to the domain B*
The group of a given equation for a given domain is 
unique* In particular the group of an equation is In* 
dependent of the special nl * valued function vj, chosen*2® 

The group of the general equation of degree n whose co
efficients and roots are independent v&rlablea le the 
symmetric group Ga‘e The group of the equation Is solv
able if it has a composition series in which the in
dices are all prime numbers*

Numerical Methods of Approximation of the Roots of 
an Equation*

finding roots of nusberse the solution of equations 
and even the approximation methods go as far back as the 
early Egyptian and Babilonlan civilisation* Babylonians 
tried to find the solution of equations by the method of 
False Position (Regula Falsi) which le the oldest one.2?

26 h* Dickson, Xauslusllm M IM IMpxz al MgsMsls 
Equatione (first edition! fie« lorki John wlley and Sons, 
Inc., 1903), p* 65*

27 J* B* Scarborough, tesilfiSl ^atMaUol 
(Baltimorei The John Hopkins Press, 1930), p* 174.
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To eolve the equatloa ,= It, the unknown number x 
was aseumed to be eeven* The sum of the number and its
seventh part was eight and the number solution of the 
equation is the same multiple of seven that nineteen is 
of the guessed number eight*

Chuquet used the rule of mean numbers which is 
illustrated in the following example

9 13

X* t X = St*"11"
81

Let x = 5 and substitute in the equation* It is too
small* Let x = 6* It is too big* <e write these two 
numbers in rational form to obtain the first mean* 
first mean .5 + 6 - 11 By substitution we see It is 
too small* 
Hew bounds 11 and & •

Second mean 11.......*: 8_  XZ* It is too small*

Hew bounds Ig-ndf •

Third mean 17__ - ^|* It Is too small.
Hew bounds 23 and J *

28 V* Sanford, a Shcal ElUsix 21 
Yorks Houghton Mifflin Company, 1930), p* 160*
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Fourth mean 23 + 6 - g9. It la large* 
4+1 5

New bounds £!3 and 29.
4 5

Fifth mean 23--L29 - £2, which la the exact root.29 
4+5 9

30 F. Cajorl, A 2U.st5ry 21 Yorx$ The 
KacMlllan Company, 1919), p. 103.

The Hegula Aurea (Golden hu.le) of Cardan published 
In hla Ar® i'agna (1545) was built on the basis of two 
false positions and a particular mode of interpolation. 
He used it for equations of third and fourth degree, but 
it le applicable to equations of ever/ degree. 30 To 
solve an equation by this metood of double false poeltion 
we let the equation be

a) f(x)=v.
*?e assume for the moment two values, say a and b. Then 
we determine the errors by substituting a and b in (1) 
and we write f(a) = A and f(b) = B.
Next we compute the error for a and b,

.Sa=V • A and V - B.
Then an approximation to the value of x is x bTfl • aTx. 
But it is accurate whenever f(x) —V is a linear function 

of x.

29 h, A. Nordgaard, A MHoxXoA 21 ^ebralg. 
NetkQdj. 21 hp^xoxhKtipn .the ©£ g.ymejJ.g.^l Hi£h£r degree. 
Liquations un to the year 1819 (Hew York* Columbia university 
1922), p. ®♦
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Eewton^ method 18 applicable to anjr equation 
f(x)t:0, whethejr f(x) la a polynomial or not as long as 
f(x) Is differentiable#
First determine two numbers a and b (a<b) such that 
there is one and only one root of f(x) =0 between them, 
We find a closer approximation a-t-h to the root by 
neglecting the powers h8, h3 • • • of the small number 
h in Taylor*8 formula.

f(a + h) = f(a)* f Ualh ,_fJ1 (a)h? ; f*,,(a)h3 ... and-r— g-j
hence by taking f(a)

h=- ‘

We repeat the process with ai= a +h in place of the former 
a.

si Numerical example. *
f(x) = Xs • 2x - 5 =0.

For a-2 h = • (3) •
FTa) 10 

a^ = a t h 
a^ = 2 4- .1 •

For a^- 2.1 h - - *» .0054

a2, ax* hx
a2- 2.1 • .0054

For a2 = 2.0946 h2 = * f 12- .00004852
^(2.0946)

31 L. D. Dickson, Flrfit la ItoXX. 21 ^.U.a.U.bSa 
(Wew York* John Wiley and Sons, 1922), p. 91.
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a3-a2^h2
a3=. 2,0946 • ,00004852

a3= 2,09455148 in which seven deciaal places are 
correct,

A Modification of lewton*8 Method,52

lewton1a formula for approximating the roots of an 
equation f(x) = 0, namely,

Xp 1 x * f (Xp) (fi 0, 1, 2, , , ,)
Fl^y

aay be modified in the following manner. The equation 
of the parabola through the point [xp,f(Xp)J having the 
same first and second derivatives at x a» y f(x) is 
y=r f(xp) -t (x » Xp) f*(Xp) +i(x • Xp)3 f^tXp) , 

Let Xp+j be a solution of the equation which results if 
we put y» Then xp^ j  >,11^.1. ........ ..............................

f'(xp)+t(x,1.l- *p)f" (xp)

If we take in this formula

xp+-l * xp=-=-^fU— we obtain 
f’(Xp)

(2) ----------------—
^*Cx^) • f(xp) f**(Xp)

(P^O, 1, 2 ...) 

52 H, S. Wall, »A Modification of Mewton’s Method,* 
Th, Ssstim. Konihlx. 85i90-e<, Tebruary, 1948  
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whloii is tias desired modification of Keeton's formula. 
The convergence of the sequence |xp] is more rapid in the 
case of formula (2) than in the case of formula(l).

Newton's ffiethod h«s a serious defect? it is inopera* 
live if two roots are close together, for then the series 
would not converge, and might after a while actually di* 
verge. In 1767 lAgrange announced a new method. It con
sists of three parte.

1 K method of finding the Integral part of the root.
2 k rule for separating roots.
3 Technique of approximation by the use of continued frac

tions.
Suppose that the equation f(x) 0 has a real posi

tive root between p and (p + 1). Thenx-p^.1. y >-1.
y and 

Cubstltuting the value of x in f(x)=0 gives tne equation 
l'(y)=0. Bince yo^l we find Ito integral value by the 
prescribed method, Ouppoee it lies between integere q 

and (q + l). Then y»q+A end 80 ®n*

Numerical example
x3 • 2x - 3=0

One root lies between 2 and 3.
Let x»2^1 | then the equation becomes y3 - ICy2 - 6y - 1^0 

y
find where y lies lO-^yxcll. Then y-lO^X w®

z



42

an equation in z
61z3 - 92a2 - 20z • 1 =0.

We find whexe z lies 1 < 2.
Then z-l+X gives the aquation 54u3+- 25u2 - 89u « 61 = 0, 

u
We find where u lies, 1 u -c 2, A continuation of this 
process gives the series 2, 10, 1, 1, 2, 1, 3, 1, 1, 12. 
Hence

io ■+1

Evaluating we have
x _1641'5_ 2,09455149.00 

7837
In Horner’s method the first step in finding the 

numerical value of a real root of a rational integral 
algebraic equation Is to isolate the root. The root is 
obtained digit by digit, in the euoceeeive order of deci
mal placeai that means, first the coefficient of the 
highest power of ten and then the other coefficients, till 
any desired number of places of accuracy. His method is 
based on the next two theorems.

33 M. A. Wordgaard, A glsiailBl ^XSX 2t Algebralg. 
Methods Si Approximating the Roo U pl lumexigSl Higher be- 
gree Equations w M She X&M ISIS. (Hew TorkFOolumbla 
University# 1922), p. 50.
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1 If the first mexsher ef an equation ©f the form f(x) = 0 
he divided hy (x * a)t then the quotient he again divid
ed bjr (x • a), and eo on, the sueeeeelve remalndera will 
he, in reverse order, the eoeffieiente of an equation 
whose roots are less by a than these of the given equa
tion.34

34 3e Downey, Hlrher. Algebra (Hew Yorkt American 
nook Co., 1901), p. 331.

2 When the root of an equation le email, with reepeot to
all the eoeffieiente, it Is approximately equal to the
absolute term divided by the coefficient of the firet
power of x*
Numerical Example
f(x)= x3 Xs • 6x * 1 0
f(0)= _
f(1)= _
f(2)= w
f(3)= -+• • So there is a root between 2 and 3. We 
diminish the roots of the equation by 2

1 1 -6 *1 2
2 6 0

13 0-1
2 10

1 s Io
___________2

1 1
The first transformed equation le
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< B
t'i = -t- 7 * lOxj^ • 1 =: 0 which has a root

betweea 0 and 1* iffe obtain, from 10x^ = Xt the approximate 
value = •!•
This value of x^ makes the first two terms positive end 
f^lel) >0 hence the constant term in the recond trans* 
formed equation would be positive which shows that the 
value of Xj^ is too large* The constant term in each 
transformed equation must retain the same sign as the 
constant term in the original equation*
for xj,=e09 , 0* Sow we dlmlnleh the roots
of f|(x^)=0 by *09 which gives us the second transformed 
equation

x2\ 7,27x22-h 11.2S43x2 » ,042571-C.

frm the two last terms we get *2=eCC3* fe diminish 
the roots of fa(x2) *0 by *CC3 which gives the third 
transformed equation

X33h- 7*279x32+ Ue327M7X3 - *008652643 - 0,

From the two last terms we find
*0007 x3 *ClO8 *

'Whence » a t
•000003570 c (x> 7.279XJ )< *000004664* <e Ignore
the first two terms provided the constant term is re* 
duced by an amount between these limits*
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,008652643 • ,000003570 =,008649073 
,008652643 - ,000004664 - ,008647979 • 
From 
11.527947X3 •,008647979 =0 we obtain 

x3 - ,0007634 1- 
1’rom 
11.327947X3 • ,008649073 0 we obtain 

x3 - , 0007635 + ,
Therefore eorreet to six deelmal placee we have 

xs=,0007634
This can be ehorteiaed in this way

11,327947 r.0Ci6477
Fince the quotient is ,0007 we use only two decimale in 
the divisor, except by inspection, to see how much 
should be carried in making the first multiplication. 
Place a dot above the figure 2 in the divisor and use 
11.32 as a divisor, hufore multiplying by 6, the second 
significant figure in the quotient, place a dot over the 
figure 3 and use 11,5, For the root of the original 
equation we have x = 2,0937634+- where the six first 
decimal places are correct. There is doubt as to whether 
the last figure should be 4 or 5, If more decimals are 
required, it is not necessary to form a new transformed 
equation, We need to revise the eonstant term in 
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fj(xj)=O ticking use of our' preseat better value of x^« 
“This contracted eethod aa.^ be used after tzu-ee or four 
decimals have been found.

Horner’s Method Shortened.36

36 H. D. Hatch, “Horner’s Method Shortened,” School. 
Science and MatMaaUCA. 36*1007-8, December, 1936.

When the real root of an equation above the second 
degree Is wanted accurately, Horner’s method is the old 
standby. But it is very laborious and the work in
creases with each digit. The following shows how to get 
an answer to two, and often three, more decimal places 
for a given number of transformations. After the original 
equation is transformed to a new equation one of whose 
roots lie between 0 and 1 it 1® of the type ending in

(1) • • • bx2-r ex + kcO.

Since x «c_ 1, the square, cube and higher terms are small 
so that a rough value for th® root can be obtained

(2) cx-rkrO where x _ - X*
c

This is sometimes useful, but since it is a linear approxl 
nation it my be a poor fit to a curve with a distinct 
curvature. A curvilinear approximation would be obviously

55 W. V. Lovitt, ilLem.entary Theory. (Hew 
York* Prentice Hall, Inc., 1839), p. 135.
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better and ean be gotten ae fallbwsi
Consider the result of dividing

ex bjr (e • bx)e
The quotient ex-hbx2-h 1&2.••• is a serie® which 1® 

c
convergent far values of x between 1 and -1, i'or such 
values the cube and higher powers are small and c2x is 

« c - bx
a good approximation for bx + «•
Let us substitute then for the last two x terms of il)
sSl- + k=0.
e • bx
Then 9

c^x+kc • kbx = O
x(c2 • kb) = • ko

X-kc  • There is less to cal*
kb • ca

culate with this than if we continue
X=^UsLji eM finally
x kc

(3) 1-k- £ •x c k This is only an approximation because the 
cube and higher terms have been omitted, but it becomes 
increasingly accurate aa the omitted terms become small*

Note* In the thirteenth century a Chinese employed a 
method of approximation, virtually the same as Horner’s 
method*” The Chinese setliod did not pass into the living 
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stream because neither in the Orient nor in Europe did 
37 it start a forward movement.'*

In 1804 Paolo Ruffini Invented a similar method in 
Italy which was soon forgotten and in 1819 the same pro
cedure was reinvented by Horner*

Graeffe’s Method
Cf the many methods which have been proposed for 

solving algebraic equations the most practical one, 
where complex roots are concerned, is the one known root 
squaring method usually referred to as Graeffe’s method 
even though the astronomer Je !'• 3ncke was an early ex
ponent of this proceee and did all he could to make it 
well known*®® It was suggested independently by Dande- 
lin in 1826, Lobachevsky in 1834 and Craeffe in 1837. 
But Bandelin’s work was not widely circulated and the 
process went under the name of Carl Craeffe who publish- 

39 ed it as a prise paper. This method has the advantage

37 3* T. Bell, XM Si g^hesatJLp^ (sec
ond edition! Hew Yorkt McGraw-Hill Book Company, Inc., 
1945), p. 116

33 D. H. Lehmer, "The Craeffe Process ae Applied to 
Power Series,” Mathematical Tables and Aide to Computation. 
l|377-83, 1943-45.

39 C. A* Hutchinson, *Cn Graeffe’s Method for the Nu
merical Solution of Algebraic equations,“ The American 
Mathematical Monthly, 428149-61, March, 1935.



49

of finding all ths roots at-once and not requiring any 
preliminary determination of their approximate position. 
Its principle, for an equation with only real roots, is 
to form a new equation whose roots are seme high power 
of the roots of the given equation, fuppoee we say the 
128^ power, so that if the roots of the given equation 
are xi, x3,..., xo then, the roots of the new ©qua- 

i s.9i 12a 12a 128tion are x^* , x 3 *•••» • These numbers
are widely separated? thus if were twice xg, then 

would be more than 10^® times xg^^^e The advan

tage of an equation whoee roots are very widely sepa
rated is that it can be solved at once numerically. 
Let the equation be

(1) X +- Bj^X -p B2 -b • • • + Bq - 0
with real coefficients. Ve write all terms of even de
gree on one side of the equation and all terms of odd 
degree on the other side. Squaring both sides we have 
(-Yn (n ^n-l _ vn*3 I®X A- -j- “■gX 4" * * * • ZZ | *2^** | • * * i •
If x2= • y»

(2) Then y% ^xXa*\ ••• +bn =0

where g
bl- ai ~2
bg^ ag * Sa^a^-t-Sa^ 

2
^3 — aS * 2a2a4 +2alaS *
e
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♦ 
e

• 2(&k*X}(ak+i)-r2(aj£*2/(ak4-2) + »**+('»l)1£ 

2a2k
* 
e
> 2

•= aa *
The following rule will give the coeffloienta of equa

tion (2)«
The ooefflclent of any power of y Is formed by squaring 
the eoefflolent of the corresponding power of x in the 
original equation and adding twice the product of every 
pair of ooeffielenta which are equally distant on either 
side, those produote being taken with eigne alternately 
positive and negative, missing powers of x being supplied 
with zero ooeffiolente*

We let the root® of the original equation be a, b, 
o,*.* Then, the Hnoke roots of (2) are a2, b2, c2,*,* 
The process nay be repeated m times giving an equation 
whose incite roots are the 2®^ powers of the 2ncke roots 

of the original equation* The equation whose ^noke 
roots are aai c®*** is

(x 4-am) (x-t b®)(x-t-oa) **. = 0 or
Xnv [»“] x”"8*-x”-5 ... =o
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where
[a”]= a“ 4- !>“+

a®b® + a®o®i- etc.
We cantlnue the iprocese until th® doubled products bring 
no change in the digits we wish to retain* Vnder the 
aeaumption that all the ruc-ta are real and unequal

if m i» eufflcientlj large the ratio of 
a® to ^a®]i« apprcxlmateljr one* julkesiee the ratio cr 

to[a®baJ is approximately one* Then the equation
bee ome e x°+ Ac.*1*1 +- a®b®xn*B- ••• +■( ambB# • •) = 0 •
The numerical value of a can be determined from the second
coefficient; |bj from the third coefficient and so on*
The sign of the actual roots can be checked by Descarte
rule of signs*
Numerical example* „ «

Xs w 2^ .- 5x -t- 6 = 0,
1 1 .2 •5 6

1 4 25 36
10 24

2 1 14 49 35
1 1S6 2401 1296

-93 -1000
4 1 98 - 1393 - 1296 M

1 9,604? 1.940® 1.63C6
•2,786* -0,254® A8 1 6.818* 1,635® 1 C ■ ‘,6

1 4,649^ 2.843** 2.522*2
•C,3377 -0,023^

16 1 4,3127 2,82012 2,82212
1 l,659|t 7,9522® 7,964s*

•0,006*? -o.cco„.
32 1 1,8531S 7,952s4 7.96424

Detenainaticn of absolute value of the roots using
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log a22= 10e*67S log b32 = 24eSCC3»15e2679-=
9,6326

log )al= •4771 log lb)- *3010
a = 3»U00 b = 2w0vC

<321)32^3 _ 7,95424

log OS8- 24*9011 • 24*9003 - *0005
log le)= *0000

0 = leOOCe
Tho original equalisn &uat hairo two positive roots and 
ofid negativet so tho roots are o» »a, 1,

llxls oethod om bo used la the ease of eoaiplex roots • 
Wo take the case of a cubic equation with, one real root 
and a pair of conjugate complex roots*

•16-Xf the Moke roots are a, re * where r > 0 then the
Mth pOsleX equation is
(x-r»F)(x8+ 2r®coa ffiSx-n2a)-0 er

(1) x3h- (wmi- a^cos a9)x2 + (r2^-i-2affiAos me)x + a^r^-C.
Xf |a|>rt and m Is .large enau£;ht a® ie large compared to 

cos ae- and a can be computed to/ taking the root 
of the coefficient of x®, and rt frofa the constant term 
gBtjP&a, xn this case the approximate equation la

x3-^ A? -h 28®r®^ cos a ^a®/2® =0*
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If (a| then is Xsurge eaxapared la 2a*ar-1 cos 
and x can be coapated by taking uie 2®^ root of the 
coefficient of xe and a frem the constant term* 
f..e approxhnatt equation in this case Is 

x3-h2rm ccs aex2 + a»ax2^ =oe
"’uypooe the couplax roots are u • iv, then u can be com
puted frost the relation 2u • a
and u can be computed frota the relation r^= u24-v2«
In this particular case one coluan of the coefficients 
shows ulnus sign after the first row daring the process 
which aeana that there is a pair of complex roots pre* 
sent.

In the case of a quartic equation t®o pairs of 
complex routs may occur. ?re let the Encke roots of the 
eruatlon M re*1^ and se*^9' where r and s > 0.

The equation of the powers of the roote is 
x4-f-2(rm oos a ^+-8® cos (r^-bSr^a® cos m <j>
cos m0- + 8aa)x2-p2rm8sl(r,& cos mG-s® cos m^)x+r2ffl s^^O, 

The approximate equations are:
If r>e then
x4+- Sr^coa a^xV r^^x2 + Sr2®^®©©^ nex +- r2m»2sa = 0, and r 

2can be determined fros the coefficient of x and then s 
from the constant ter®.
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In either case «e have-two columns behaving irregu* 
larly with respect to signs? these t»o coluinns are sepa
rated by one regular coliton. The complex roots of the 
original equation can be represented by

Ui*lv and ti^-lYg
Uj, and ug can be determined from the equations 

2uj. +- 2u2 = • a 
2i,22ul "f 2jp12u2 = * a3 •

Then Vjl and vg can be determined from these relations 
2 2 2 . 2 2 2r, - Ui v, and ro == u„ 4-•JL *• * <5 2

The equation which has three pairs of complex roots, 
suy uj 1" 1V4

J J 4=1, 2, 3 
is 
x6 - 2 [u1 + U2 <-u33 x8-b[r12-br22-b dujUg + 4u1U3*4u2ujx4
-S^tr^-b y/Mugtr^-br^Mujjtr^ xa2)+8u1u2u33 x3 
- Crl2jr22'*'rl%8-1- r33r32-f- 4(u1u2^3S+ ulu3r22-b u2«3rl2] x2 
-2 r/r32ux + + r^r^u3 J x + r/r/r32- 0 #

v.'e find r^, r2, r3 by Graef fa’s method and if we proceed 
as in the case of two complex roots we must determine 
u^# u2, u3 from the equations 
Su^-h 2ug + 2u3 = - a.



2(r2^* * 2(r^4-x*32 3)ug ■t-8(rje®4. rg )u^-t-Su-^u^ug-•

(2) fI(x) • fUIlri£. +fVlxhL. = 0* We substitute
3 ’ 3 e

(3) y = r3 • x in (2) and we solve for x the resulting 
equation by Graeff®*0 method. One of the real roots ob» 
talned will be u^. If the equation has more than one real 
root# we compute the corresponding values of y fur each 
real x by means of (3) and we substitute each pair in (1).

40 B# A* Hausmann, *Graeffe’e Method, and Complex 
Roots,* lbs. Amg£l£aa 431225-29, 
April, 1636*

2r22r38ux*2r12r52ug1-2rl2r2% = • H •

Elimination of Ug, u3 lead8 to a eublc in which we can
eolve.

For four pairs of complex roots the problem becomes
more complicatede A system of simultaneous equations has
to be solved for ui# us, U|« This can be solved 

40 as follows*
f ( 2 ) — C @ z C z Cn~ 0

where zexflj« ‘Ve expand by Taylor’s series
f (x *ly) = f (x) a-f1 (x)ly-fUjxh£ - flUJLdlyi + fTV(x)y4*...- 0 

2 ’ 3: 4:
which can be written

(1) f(x) - fXS(x|yj f(x jv  =04
2 • 4 e
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The pair which satisfies (1) -gives the values, namely u3 
and v^« Per more than three pairs of complex roots w@ re
peat the process.
Let y2- * x2 to get and v^*
To find u| and ug Uie beet procedure is to use symmetric 
functione of the roots employing the second and the next to 
the last terms of the original equation which are linear 
expressions In and ug... and eubstltutlng in them the 
values for u^, u^*** which have been found already.
Nti'ierlcal example
a6 • 12S6 + 72s4 • 262zS -t- 6Cls - ebOs-r 650 = 0 .

being Graeffe’s method we find that all the roots are com
plex with th® square of the absolute values

13 r22= 10 r32= 5.
We use equations (1) and (2)
f (x) = x6*1£x5 +72x*-262x3+ COlx^-SSOx -t65G = 0 
f?(x)= 6x5-60x4 ±288x3-,iLUx^ -rl2C2x-850 

fH (x)^ 3Qx<-M0x5 -h854x2-1572x + 12C2 
f211 (x) - 120x2’-720x2 + 172CX-1572 
fIV(x)^ 36Qx2-144Cx-rl720

fV (xM20x-1440
fVI(x)^720e
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From 5 
y8. r 8 - Xs 

jr*s 5 * x ♦ We substitute this value in equation. (2) 
together with the values of f^Cx), etc««» which

gives the equation
E(x)= 32x5«192x4i- 416x3-328x2-88x-i-1€0 =C,

If we solve it by Graeffe‘8 method we find thut tlie only 
root which satisfies (1) is one. Hence u3-l. We find 

arul ug from these relations
Sujl v Su^ -t- 2u3 - 12

2r22r38iii + Sr^r^ug+2rjL8r22u3 = 850 

which gives uj,= 2 Ug-S .
2 P 2From ^1 = U1 -t Tx

— 2 .. 2 . « 2 r2 = u2 +v2 
<• o P rs = u3 + v^* we get

▼1=3 Vg =1 t3 = 2 •
Then the roots of f ( z ) = 0 axe

2 •" 31
3 i i
1 * 21 e
If the equation has multiple roots* they cun be 

detected and eliminated by finding the highest common 
factor of f(x) and f^(x). But if this test and 
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elimination have not been made before applying Craeffe’s 
method the procedure is as follows.
Let the Eneke roots of a cubic equation La

a, - a, b |a| b ♦
Ihen the equation of the powers of the roots is 
a3* (Sa^b® )x2 (a2%. SaV )x -t- = 0 .

If |al >• |b| the approximate equation is 
x5+ -=-amx2 + a2iCx -t- — 0
and if |a | -< ) b|
x31- b^x2 -t- 2a£iVx -p a^V1 0.

If m is so large that tne doubled products of the coeffi
cients are negligible one of the columns exhibits the 
pecularity that its coefficient is not squared by another 
rovt-equaring transformation, but becomes one half of the 
square of its former value.

2a2m- i(2am)2 and 2a2l^b2|a = i(2ambnl)2 ♦

This change in the magnitudes of the coefficients of one 
column with no irregularity in sign, shows the presence 
of a pair of roots equal in magnitude, but the signs can 
either be equal or opposite.
Sow, suppose tbs.)— 0, a cubic, has tlie Encke roots a, a, 
•a, then, the power of the equation is 
x3-t- 3asx2-v- 3a2Hx a3m= 0 .
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In this ease twa adjacent c'olumne will increase ultimate
ly at one third of normal rate, since 3a2® =l/j(3am)2«

If four roots are equal the corresponding equation 
will be

x*+- 4afflx®-t 4a^®x -t a^a= 0.

Then three adjacent columns Increase ultimately at one 
fourth, one sixth, one fourth of normal rate respectively, 
Hotlce that the fractions appearing here are the recipro
cals of the binomial coefficients* This behavior extends 
to multiplicities of any order*

This behavior can be sumarlsed in a set of rules of 
Identification*4^
First detect and eliminate equal roots*

1 All signs plus after the given equation and all columns 
Increase at normal rate, all roots real and of unequal 
absolute values*

2 A single column irregular in sign, one pair of complex 
roots,

3 If two adjacent columns are Irregular in sign, one pair 
of complex roots with modulus equal to that of the real 
root*

41 C* A* Hutchinson, "On Graeff0*6 Method for the 
Numerical Solution of Algebraic Squations,* The American 
Mathematical Monthly, 42*149-61, March, 1935.
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4 One column increases eventually at one*half of normal 
rate, two equal roots in magnitude, but unequal sign.

5 Two adjacent columns increase eventually at one-third 
of normal rate, triplet.

6 Two non-adjacent columns increase at one-half of normal 
rate, two doublets, not a quadruplet.

7 Three adjacent columns increase at one-fourth, one-sixth 
and one-fourth of normal rate respectively, quadruplet.

8 One column Increases at one-half of normal rate, and non- 
adjacent column is irregular in sign, doublet and a pair 
of complex roots.

9 Two non-adjacent columns Irregular in slgm two pairs of 
complex roots with unequal moduli.

10 Three adjacent columns Irregular in sign, two pairs of 
complex roots with equal moduli.

11 One column irregular in sign and one column adjacent on 
each side, regular in sign, but irregular in magnitude, 
doublet and a pair of complex roots with the same moduli 
as the doublet.

Location and Separation of the 
Roots

The real roots of an equation, Kx) =0, are said to 
be isolated if one or more intervals have been found such 
that each real root is contained in one of these Intervals 
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and no other roots of f(x) =0 are known to lie in those 
intervals*
We may isolate the real roots of f(x)=-0 by means of the 
graph of y=-f(x)* But to obtain a reliable graph it is 
necessary to employ the critical points, whose abscissas 
occur among the roots of fI(x) =0. Since the latter equa
tion is of degree (n-1) when f(x)-0 is of degree n, this 
method is usually impracticable when n exceeds three.

Rolle*s theorem states that between two consecutive 
real roots of f(x)= 0 there exists an odd number of real 
roots of fI(x)=0, provided a root of multiplicity m is 

counted as m roots. A method based on this theorem is 
open to the same objection as the method described above.

Descartes* rule of rigns says that the number of 
positive real roots of a rational Integral algebraic equa
tion f(x)=0, with real coefficients, is either equal to 
the number of variations of sign in its coefficients or 
less than that number by a positive even Integer. The 
number of negative roots of the same equation is either 
equal to the number of variations of sign of f(*x)=0, or 
less than that number by a positive even Integer. This 
rule of signs gives, in many cases, information regarding 
the total number of real roots.



62

Sudan1b theorem (1807) is another theorem concerning 
isolation of roots of an equation. In this case we let 
f(x)x0 be an Integral algebraic equation of degree n, 
with real coefficients, and a and b two real numbers 
(a^b) neither a root of f(x) = 0, be substituted in the 
series formed by f(x) and Its successive derived functions 
f(x), fI(x), fII(x),..., fa(x)j then the excess of the 

number of variations of sign In the series when x = a, over 
the number of variations of sign when x=b, either equals 
the number of real roots of f(x)=0, between a and b or 
exceeds the number of roots by a positive even integer. 
A root of multiplicity m is here counted as m roots. 
This method has one advantage over that of Sturm, in 
that Sudan’s functions are easily obtained, 
numerical Sxample. 
Locate the roots of

x5+- x4 - 4x3 - 3x2-«-3x4-1'0 
f(x)= x5t x4 • 4x3 • 3x2^- 3x4-1 =0 
fZ(x)= 5x4i- 4x3 • 12x2 - 6x+3 
fn(x)=20x$^12x2 - 24x - 6 
fin(x)^6Qx2+ 24x - 24 
fIIII(x)= 120x4-24 
f5(x)-120 .
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We fora the following table

X f M f11

to fs f5 V

—2 ** 1- «w -t e» t 5
-1 * ■v t ea t 3

0 -t t * *» •b 1- 2
1 * w + T T 1
2 -*• r 0

the table we see that there ®ay be two roots In the 
Interval (•2e*l) aM suet be one root in each of the In
tervals (-lt 0)| (ce 1)| (lt2)e

The first eoaplete solution of the problem of Isolat
ing the real roots of an equation with real coefficients 
was furnished b/ -turm In 1829«*2 Els worJs was as follows 
Let fo(x), fi(x)|e«*f fx(x) be an ordered set of polyno
mials In the field of real numbers Substituting x = a, 
(a jg> a real number} an ordered Set of real numbers fa(a}t 
^(a'fee.f fr(a) Is obtained* All seres present In this 
set are supressedf except f(a) and f(b)» The number of 
variations in sign in passing from term to term is counted

42 L* Weisner, SS2XX SzpSllSM
(second editloni Sew YorJct The HacAlllan Company, 1947), 
P* 80*
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and denoted ty Va. The basic idea of Sturm’s method is 
to construct, for every polynomial with real coefficients, 
a sequence of polynomials of which it may be asserted that 
for any a and b (a-^b), the exact number of real roots of 
f(x)=:0, between a and b, is exactly equal to the number of 
variations of sign In the series whenx = a, diminished by 
the number of variations of sign in the series when x=b.

The polynomials which Sturn proved to have the desired 
property were constructed in the following manner*

Let f(x), the given polynomial, be Identical equal to 
fc(x) and f2(x)= f^(x)• On dividing f0(x) by fj.(x) a re
mainder is obtained whose negative was fglx). In the same 
manner fjtx) is the negative of the remainder obtained 
when f^lx) is divided by f2(x), etc*
The polynomials f0(x), fgtx)*** are called Sturm’s
functions for the given polynomial f(x). The calcula
tions terminate naturally when a remainder is obtained 
which is a non-sero constant whose negative is the last 
Sturm function* Ouring the passage of x from a to b, the 
only cases In which there can be any changes in the num
ber of variations of sign of the series of Sturm’s 
functions are the followings
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1 When x passes through a value ®LIch causes one of the
functions f0(x)f to vanish

2 When x passes through a root of f(x)^0«
In the case of equal roots f0(x) and fi(xj have a com 

mon factor। hence fjpCx), the last of Sturm’s functions, 
Is not a non»aero constant, but the greatest common dlvi 
sor of f0(x) and f^txle

The advantage of Sturm’s method is that it gives al 
ways the exact number of real and distinct roots of 
f(x) = 0, between, a and b» 
Numerical Example
Locate the roots of x4 • 4x3 + 4x2-v 4x * 3=-0, 
We find first fX(x) of f(x) = 0 and divide f(x)- f0(x) •

^(x) fx(x)

Then we proceed to find the rest of Sturm’e func
tions according the rule already mentioned. To avoid 
fractions, we may multiply f0(x) by a positive constant 
before dividing by and multiply any fj(x) by a
positive constant before dividing by fj+^tx). Also, 
we can remove any constant positive factor from fj(x) 
before using it as a divisor#
f0(x)^x4 • 4x^ + 4x^+4x - 3 = 0 
fx(x)- 4(x3 • Sx2+ 2x4-1 
fgtxj-ilx^* 5X4-2)
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fstx) s»4(*10x*3) 
f4(x) 5 * 23S .

give a table of elgna for the indicated values of x of
Ctarm’s funotieas

X f&(x/ fl(x) fgtx) falx) f^lx) V

-3 * OS «e 3
•2 w i- ee 3
•1 + -w + 4- ee 3

0 <mr ee r t e» 2

1 •t* + as w • 1
2 w 4» w 1
3 “V 1- as e» w 1
4

/
+ + «• we w» 1

5 -b +• t- ee «• 1

Accordingly, we have one real root between (••1, o), another
real root between (0, 1) and two imaginary JFOO t»s •

Sometimes Fourier’» theorem le useful in eeparating 
roots of an equatlone Fourier’s theorem states that if 
f (x) =0, is a rational Integral algebralo equation, which 
has one and only one real root between a and b (a *tb), 
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and if f^(x)-=:O has no real root between a and b, and also 
fII(x)=:C has no real root between a and bj then Kewton’s 
method of approximation will certainly be successful if 
it be begun and continued fro® that bound for which f(x) 
and fII(x) have the same sign# Cases must occur in 
practice where the roots of an equation cannot be sepa
rated by any of the well • known easier methods and where 
Cturm’s functions involve too much work« In such cases 
a combination of Courier’s theorem and Lagrange’s method 
of approximation is very useful*
Numerical example*4®

x17 - SSx15*!!^14 - LOOOx10^ 25C0x8 • 151x3^l-0*

At first application of Courier’s theorem shows that there 
are

1 Tso positive rootsi one between (1, 2) and one between 
(5, 6)*

2 Three negative rootsi one between (0, -l), one between 
(•1, -2) and one between (-6, *7)*

3 A doubtful Interval (0, 1) in which four changes of sign 
are lost and which consequently incite four more possible 
positive roots*

43 L* R* Eanlove, *An Example of the Usefulness of 
Fourier’s Theorea in Separating the Roots of an Equation,’* 
XM Ame.r..l.rca..n llatMaXlOl 181 8-9, January, 1912*
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How, to dispose of the doubtful interval we let x_ 1
"" U1 and we obtain an equation in

u/7 • IBlUj^-t-SBOC^12- lOOOUi7* Uttj5 - 350^*1=0.

Call it l*A(ux)e
Pourier*® functions of Ja(ux) give for ux = l two changes 
of sign and for ux=2 no changes of sign* Then P^(ux) = O 
may have two roots between 1 and 2, but has no other posi
tive roots greater than unity* How the doubtful roots are 
reduced to two* To dispose ths remaining pair we set 
uX = l-rJL. and we get an equation in u2 which we call 

»2
PgCug). This equation can have no positive roots greater 
than unity* The four originally doubtful roots are all 
imaginary*
Remarks•

1 The auxiliary equations were concerned only with positive 
values of the variable greater than unity.

2 negative roots of the original equation are more conven
iently located by substituting -y for x and seeking for 
the positive roots of the resulting equation*

3 failure of the method is due to equal roots*
Concerning complex roots Sturm's Theorem gave a 

method for determining the number of them, but not their 



£9

values* This im revealed a general theore® of a 
great $*reaeh mtheaatlelaB Auguetla Louie Cauchy 
(1789-185?) giving the number of roots, real or complex, 
which lie within a given contour,4^

If the roots of an equation f(x)= 0 are under conBldera- 
tlon the theorem etatee that If SF 19 the number of roots 
in the complex plane within a closed qlrcult A, not 
paBeing through any of the roots, then

. I r
2FT

f|(x) dx the integral being 
f(xj > taken around A,

When two real roots of an integral rational equa
tion are nearly equal, It is often difficult to separate 
them. This difficulty Is frequently due to the fact 
that we cannot readily approximate the roots by Kewton*s 
method* The eeheme described below for Isolating such 
roots is usually satisfactory*4® 

Illustration*

40 R* C* Archibald, * Outline of the History of 
Mathematics,* MSX1SM 55’ 1-103,

45 I* C* Kennedy, *Conaernlns; Nearly Squal Roots,”
The AsiejrlCM lathes&tlpal RonthlX. 48t 42-43, January,
1941*

January, 1949* 45 * *
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We eonsIder the quartle (Loyltt p# 138)
(1) f(x)= x4-r 8x3 • 70X8 » 144x^-936= 0.

We readily find that
f(3) = 171
f(4) = 8
f(5) = 91.

Bjr Deseartee* rule of signs the equation f(x) ~0 has two 
or no real positive roots. Hence we conclude that if the 
equation has any positive roots they are near x~4.
We shift the axes horizontally hy setting x=(yt-4).
We obtain

(2) f(y)-y1^ 24y3-H22y2 - 64/4-8 =0.

We discard the two first terms and solve the quadratic 
equation obtaining

y1=*20« 4.206
yll, ,319 =4.319.

‘4
If f(y) has any positive rootst they lie inside the in

terval since the first two terms are positive
for every y>0. Hence, f(y) cannot be zero except possibly 
for values of y, between (y^, yg) that make the quadratic 
negative. We can get better results by translating the 
axes by letting y^ « + a where y^-^ a-<y8 .
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Usuallj one would take a = ) approximately.
If we take a-i we get

G( x )= = 4 t®5= 5 ^.1133= 2 + JL— =0. 
8 16 256

From this we obtain by discarding the first two terse 
a j. =-.00734 or xx» 4.24266
z 2 = -.00379 xs= 4.24261.

Henoe if G( x ) - 0 has any real roots near eero, they lie 
outeide the Interval l2!,2^)* Thue if f(x}= 0 has any 
positive roots, they lie inside the interval (xj, x2) 

where
x2.

To decide the question we find the sign of G(p) where p 
la any value between and zg» For example we find 
G(-.005) *2. 0 or f( 4.245) < 0. This proves the existence 
of two positive real roots of f(x) = 0* As a matter of 
fact, it is evident that G( 2 ) = 0 has a root between 
aero and z because G(0) ^0 and G( zs) since 

z3( z +-25)-^ 0 for negative values of z near aero and 

the quadratic vanishes at 2g. Since and z2 are 
very small, it follows that x3 and x4 are close approxi
mation to the two roots in question.

and outside the Interval (x-, x



T&as@ roou are
= 4*24254

Eg = 4*24622 •
Had »e taken some value for a* a little different from 
•25, w might h&ve found that the root® of G( z ) gO 
rested Inside the interval (»x»z2)« However the value® 
obtained for and would have been eloae a^proxlsu* 
tlons to the roots and of fix)= O, and the point 
x -(xx^tx^) would verjr lltely have separated % and r2»

Incldentalljr# this value of x should be & very close 
approximation to the ubsoissa of the minimum point in 
this neighborhood*

Graphical and Mechanical Methode of
Solution

One of the principal uae® of the rectangular Carte
sian coordinate 1® the graphical representation 
of an equation y= fix) where the function Is a polyno
mial with real ooeffielent®* To construct this graph, 
we assign toxa serie® of value® and compute the cor
responding yfs* It is usually convenient to start by 
assigning Integral values of x, to plot the resulting^" 
point® and then to approximate for fractional value® of 
x whore the general shape of the curve doe® not eeem 
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already to be elearly indicated. Considerable infor
mation about the roots of an equation f(x)= 0 can be ob
tained by inspecting the graph of yj=rf(x)e These roots 
are the x*s of the points where y-0, that is, the in- 
terseotlona of the curve with the x - axis, f^tx) Is the 
slope of the tangent of y=rf(x)« In studying the shape 
of the curve, It is convenient to think of it gs traced 
with x varying from • oo (numerically large negative num
bers) to o-o (numerically large positive numbers). 
The curve rises or falls according as f^(x) is positive 
or negative. If f^(x)- 0, the tangent is parallel to 
the x - axis.

It is useful to plot the curve y ^(x) either on 
the same axes as y- f(x) or with the same y - axis and 
different x • axis. Similarly for the higher deriva
tives. These derived curves are very useful In bring
ing out properties of the function because they are 
interrelated.

Graphical Method for an n^ Degree Equation.46 

We take any numerical equation of the form

46 W. H. Bixby, •Graphical Solution of Numerical 
Equations." Sa laSi2M$l£al MfiOlUXi 291344-46, 
October, 1922.

AjjjX1^ Cnxn*^_ ———-Tqx rVn = 0
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where An is any positive number either whole ur fraction
al. On & blank sheet of paper, we start at any assumed 
point << » and using any convenient scale, we lay off in 
a downward direction a distance An, from cZ to a, 
through a, we draw a perpendicular, and lay off upon it, 
with the same scale as before, the value Bnj ( to the 
right if Bn is positive, to the left if Bo is negative) 
through the end of Bfl we draw a perpendicular to Bfl upon 
which we lay off the value of Cn, upward if positive, 
downward if negative| and so on. Sor each new line the 
positive direction turne through an angle counter - clock 
wise. e#e designate w the end of the last line* Then we 
have a rectangular contour, that is a broken line all of 
whose angles are right angles, of n + 1 sides connecting 
ol and w.

Sow starting again at , draw at random, any straight 
line cutvlng Bn In some point,



75

13, throagH b w a perpendicul&x to c>zb cutting 
ca in eoait point a® &nd ®o on* we have a new 
rectangular contour of n sides. If thv n^ side passes 
through the point w, then ab talon with its sign changed, 

<< a
Is a root of the given equation, fhexe will oe as many 
such cantours of n sides as there are real roots to a 
given equation,

Suppose only one root is found by the above method, 
given as one new rectangular contour, otbb1of n 
sides; call its first side its second and bo 
on; this new rectangular contour, <.bb^,,*w = ^n_jL» 

sn-l«*<e e^c* ^ep^eBeats the equation of degree (n-1) 
obtained by dividing out by the root, ’>*e treat ti^e 
new contour of n sides like the preceedlng, obtaining 
a new rectangular contour of (n-l‘! sides whose first 
vertex Is at som point C upon the line bbA; then b<2y

<5b 
taken with its sign changed, will be another root 
of the given equation, etc, Phis method is espcoially 
applicable to cases where the desired roots be be
tween "• i- and t 5; if th© roots of th® given equation 
lie beyond these limits, the given equation may be 
transformed into another whose roots will be between



Ths figure 1» fos a -3*
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between the above llmlte. In the case of & quadratic, 
xepreBented by the Inner contour, the roots, if real, 
etay be found by Kean® of a circle ono<w as dlurxetar, 
as indicated in the figure*

47Mechanical Solution ©f the Cubic Equation*

te take the general cubic equation
(1) u3+- Au24- Bu +C = 0 and by letting u-t - A we

reduce (1) to 3
U) lAt-av+b^O*

By the following rational transformation y_. bx we get
(3) x3 • m(x+-l)= 0 where m  * *

bs

Mow we eolve (3) graphically by replacing (3) by the set
(4) y=xs

y^talx*!) whose simultaneous values of x also be
long; to (3)* -o we have for all eublca, u fixed curve 
and u variable line* But tills -variable line hue the 

distinct virtue of always passing; tltroug-h thts point 
(-1, C). Thia is the feature thrt promts the .mechanical 
arrangement elich.’rt* -t cardboard atrip la attaches to the

47 Be C* Yates, "a Mechanical Solution of the Cubic 
Kq ua 11 on, * Kathwtieg. Teachey. 32 8 21 § *



A leohaaieaX Solution «f a CtaMe
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plane on wMeh the ourre jr=: 3^ 1» di-awn, so that Its 
straight edge rotates about (•1,0)* Its position, of 
course is determined by the slope st - *a®.. measured

"" bS
directly upon the yertleal soale« The root x Is then 
determined by the perpendicular dropped from the Inter
section onto the horizontal axis*
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Jtechanlcal Solution of aa Equation of 
ntlx Degree*8

The meohanlea nona iota of a Main har thirty-two 
inches long, to which are hinged three arms each about 
eight Inches long, the distance between the hinges being 
equal* A lighter connecting bar is attached to the free 
ends of the arms In such a manner that these arms al
ways turn through the same angle* On the main bar, and 
also each of the arse, are beveled cleats along which 
grooved slides moves freely* Each of these elides on 
the main bar carries an eye headed ecrew placed so that 
when the instrument is closed and these slides are at 
their sero points, the eyes are In line with the pins 
of the hinges* Each slide on the arms carries a small 
drum that Is held firm by means of a milled nut# To 
each of the drums is attached a small, flexible, in
elastic eord, which passes through the eye carried by 
the adjacent slide on the main bar, and is fastened to 
the next slide below on the main bar, the lower end of 
the last cord being made fast to the main bar# The

48 A* L# Candy, *A Mechanism for the Solution of 
an Equation of n” Degree, "The teerloan Eathematlcal 
Monthly. a7iie5-ea, May, 1920.
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first slide is held in place by rae&ne of a small iron pin 
inserted in holes in the main bar* A graduated circular 
scale is placed under the first arm, fron which the roots 
of the equation are read. The scale for reading the 
positions of the slides ar® marked off on the left side 
of the main bar# The instrument may be used in a vertical 
position, so that the lengthening of any string by unwind
ing will cause some of the slides to move downwards by 
their own weight, or lying on a table and operated with 
both hands*

Let us solve the equation
(1) 10x 4- 24x24-9x « 7= 0.5

The process is as follows, first, close the instrument, 
wind up the drums until each elide comes to the zero 
point of its scale, and all the cords are taut. The arms 
will now move freely through an angle of 90°, with all 
the cords continuously taut. Now move the first elide 
ten units (the coefficient of x3) down^ird, by moving 
the iron pin which always holds this slide in a fixed 
positioni unwind, twenty-four units (the coefficient of x2) 
from the cord wound around the first drum| likewise, un
wind nine units (coefficient of Xj from the second drum; 
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since the constant texm is "negativet wind up the last 
drum until the last cord is shortened by seven units, 
How turn the arms through some angle until all the cord® 
become taut, with the slides on the arms eo adjusted 
that the cords attached to them shall be at right angles

. to the arms. The reading on the scale under the first 
ara now shows one root of the equation to be .366, The 
exact root Is (\f3 • 1) ,

The author has called the attention to the follow* 
ing limits of the mechanism

1 The mechanism will find only a root of the equation that 
lies between 0 and 1,

2 The equation to be solved must have the constant term 
negative, and all the coefficients positive,

3 An equation of first degree can be solved by using only 
the upper or lower arm. An equation of second degree 
can be solved by using two arms, either the upper two 
or the lower two* ?or a cubic equation three arms are 
needed, and so on.



CHAPTER V

Ferrari •at Descartes* and 3uier*e* Reducing Cublca 
Obtained from a Tingle Quadratic Function of the 

Roots

In chapter III, the solutions of the general quartic 
equation as discovered by Ferrari, Descartes and Euler 
were presented. In each case the solution depended on 
the solution of a certain reducing cubic* Also in 
chapter III It was shown that by using certain quadratic 
function ©f the roots of the quartic a solution by means 
of symmetric functions could be obtained. This latter 
method also gave rise to a reducing cubic that depended 
on the choice ©f the quadratic function of the roots, 
With a proper choice of this function the reducing cublcs 
found by Ferrari, Descartes and Euler were obtained. In 
this part of the paper I wish to prove that all three of 
the functions chosen In chapter III, to produce the 
several reducing cublcs, are linear functlcus of t , 

(whore t X3X4> an<i aa^ ajre arbitrary quanti
ties in the domain of rationality) and that, by a proper 
choice of and all three solutions of the quartic 
can be obtained*
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We Mtusie the general quartle la the form
(1) ax* t- 6ex® -t- Mx + e - 0

and let Xx* Xg* x^ and x4 be its roots#
We conelder the given funotlon q =^t f/3 where 
t=xxX2 + X3X<» Vnder the twentjr*four substitutions of

4
g24 takee onl/ three values#

^X= o(tl ■+- where t| =3E1X2'’-X3X4

^2 = «<tg t <2=xlx3tx2x4
^3= ^3 * Z3 *3 -xlx4 +X2X3 •

4 — X1X2X3X4

We let ^xi ^2 ^3 roots of the resolvent
cubio equation

r3 - s ^y8-*- z. - Wis = 0 •

We CMpute 52^x» Qi'ea and *tiQ2^3 which are elementary 
sysmetrle functions of the roots of the quartic* The 
roots of this cubic are expressed In terms of the coeffl 
olente of equation (1) *

S**x=^( r#)* 3
(2) S. ‘^a. A2 6i <3 - 4 Ct] 2=i/sE(i]+3y?

q8r« + si * <Rf4^**/3Gi6s -4^3"*'

where
fl= - lixS’l ^3" • M»X3cl*2x3 4
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Ferrari♦s Case
His reaolTent cubic is of the form

(3) 4a3^3 - (ae • 4M 3c2)a8'+aee-f-2bcdl • ad2 - eb2 - cS=: 0 •

Trom (2) and (3) we have the following system of equations
(4) oL([2-t-3/3-0
(3) al2f(a tfg - 4 (u]+ (T2)+3(f = -(®e • 4bd -v3o2)a

(5) - 4

• [&c®v2 bed - ad2 • eb2 • e3I •

Solving (4j and (5) for ok and the roots are,
/3 = « /a - Sl-^A

and y3 = -o /a _ aS" •ex g-

Hext, we check the two pairs of roots in equation (6),
This yields the following expression
2a ifafaee +2bod • ad2 - eb2 • c3J= [acevSbcd • ad2 • eb2*o3 

frem which
(7) 2a\fa~l» ^ut the left • hand side of (7) is

equal to 4<<«
So 4o<2 1

c<-t • Substituting this value in (4) we get
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Descartee * Gage#
The valuee Just found for <A aud y^are the saae for 

L'escartes* case because Me resclveat cubic is of the
sajse fem »» that of Ferrari#
Eulers Case*

Hie reeulveat is
(8) aS+ 538^4- (3H2 • Gg r 0

where
G = (a2d - Sabe 12bs)
H = (as • b2)
X - (a® * 4bd -vSe2) •

Jroa (2) and (8) we can write
(9) ^(f2 + §/3^ « 3H
(10) {1 fs *4 (fj] + 2rf/5((r2)v3^ 3H2 • sSl

(a) <*.s [Ci2 R ^-fs8 -< (1 -4

"*/3S- • ^*G2 ]#

obtain two pairs of roots bj solving equations (9)
and (10)
Jirst pair of roots /? -» SM-b b8.

4 i 2
Second pair of roots 2 b2 •

= • S~. yS 1"



35

The first pair satisfies Identically equation (11). 
To complete the work we know that SL %,iJ and
Q1^2^3 can ®xPje®®s®<3 1» terms of the coefficients 
of equation (1) and that the ^,’s are the roots of a cubic of 
the type

Cy-f-0-0 which can he solved. Once we 
know the Q.*s, we can express the t’e in terms of %’s, 
jL't and /5 *s, and write a quadratic equation of the form 

Rz *^8z +T = 0 whose roots are z and
Z2iSX3X4e

To find (x^xg), (x3x4), (x^-hXg) and (x3+x4)
We write the following equations*

(12) x1x2(x3+X4)-bx^Cxx^-xg) » <53=- Ma
or z1(x3^x<) +- z2(xx + x2) = -M 

a

(13) (x1 + x2) t-(x3tx() = (Jjf = - IS. •
Solving (12) and (13) for (x^+Xg) and (x^+x^) and 

knowing (x^Xg) and( XgX^) we can write two more quadratic 
equations whose roots are x^ and Xg, for one of them, 
and x3 and X4 for the other one.
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