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BEIGITR DEGIEL FQUATICORD

This thesls is & summary of the history and soclutions
of algebrale equations whose degree lg equal to or greate-
er than three, together with a proof by the author that
all three solutions of the gquartic may be obtained by
consldering two different linear funetions of a certain

expression in the roots of the quartice.
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CUAYTER 1

Brief lilatory c¢f the Tolution ¢f Zguatione

Jabyloniang.

lhe algebra of the labylonlans was eupirical as can
be snvsn in thelr astonlenlng esolutions of cuble equations
witn nunerical coefficlenta.l The gquations solved by

Zabyloniang, expresssd ln modern notatlon, were of tle

type ﬂgﬂ-ng +9=20

which could be reduced to the form
g3+ 5= x

by multiplying the original equation by _1

qa

and letting
33% and r__g
3
P

If the resulting r was posltive, the value of y, und so
that of %, was obtalned from tabulated values of n3+-n2.
provided that the r was ln the table. 1t 18 possible
tihat the acribe proceeded from certain tabulsted r's to

construct the equations, so that they could be solvable.

1l Eo Ts 3@4‘.1 &4 A
(second edlitiony Tew Yarkz Mcgraaahill ﬂuok Company.
inc., lg45.¢. Pe 6.



The Babylonian reduction of ¢ubles appears to be the first
recorded inatance of this method which was again used in
| the sixteenth century by the Italian‘algebxailio and
latter on by Vietaﬁa
Greeks
Among the Greeks the oldest type of cublec equation
of the form x°= k was possibly due to Xenaechmus (350 D, C.).3
He solved this cubic by finding the intersecticn of twe
conics., Next, Archimedes txied to solve the problem by cutting
the sphere by a plane so that the two segments shall have a

given ratio which reduced to the proportion

and to the equation
2
z? *-eab =CX .
" According to Eutocius, Archimedes solved the problem by

finding the intersection of two conlics, namely the parabola

x% _ a2y
I

2 E. T. Bell, The Development of sthematics (second
edition} New Yorks kcGraw-Hill Book Company, Inc., 1945),

be 37,

3D, B4 Smith, Histo 21 i ann R (V@lo 23 New
Yorks Ginn and Company, 1925 ’ p; 454-




and the hyperbhola
yle~x) = be,
Diophantus solved a single cuble equation
%% + x =4x™+¢ 1n connectlion with the problem of finding a
right - angled triangle such that the areu added to the
hypotenuse glves & sguare while the perimeter ls a cube,
Hig method is not glven, but pussidbly ke saw that
x(x®+1) = 4(x2+1) for x =4,

Arabs and Yerslans
The problem of Archimedes was taken up by the Arabs

and Tersians in the anlnth century, The eguations were
golved by geometrlic methods, Alkayaml was noted for
hig geometrical treatment of c¢ubic equatione by whlich

he obtained & rocot as the abzcieea of & polnt of in-
terssction of & conic and a cixcle«4 e consldered
equations of the following form in which a and ¢ etand

for positive Integers.

a) x° + b°x - b2 whose root he sald is the

abscissa of a polnt of intersection of

b
x“—by and y =x{c-x)

¢ W, @, Ry Ball, 4 cthort Account of the Higgog§ of
Yathematlicg (New Yorks The sacrilian Company, 1937/,
Pe L5Y,




b) xsa-ax2== ¢® whose root iz the abscissa of a point
of lntersection of

2

Xy —=¢* and yg

=e{x+a)

o 2
¢) x3i:ax34—b x = b%c whose root is the abscissa of a
point of intersection of

g°=(x*a) (c-x) and x (» * y) =Ye.

Chinese and Hindus

The Chinese algebraists did not pesy tooc much
attention to the cuble equaticn, Their interest was in
applied problems which led to numerical equations, The
numeriecal cubic first appeared ln a work by Wang H's iso-
t'ung about 625 in relation to & problem with a right-
angled triangle¢5 He used an equation of the form

%% +8x2 - b = o,

Cther Chinese algebralsts treated cublcs, but it was not
until the thirteenth century when the ZEuropean ine
fluence was powerful, that any attempt was made by
Chinese to clagegify third degree equations, Between

1662 and 1722 nine types of cublcs were glven

5D, E. Smith, History of Fathematics (Veol, 8;

New Yorks The Ginn and Couspany, 1925/, p. 456,



v

x5 *ox =@ . x3 + ax®-¢

%0 + ax® +hx = ¢ -x? + axl =g,
Eut in evary case the solution was numerical and only a
gingle posltive root was given,

The Yindus wera not interested in cublee, B3BuRskara

(1150) gave the following exanple

x° + 1Zx = 6x2 « 35

in which the root 5 was found by trial,

Medleval Interest

Zuropean scholares of the ¥lddle Ages attempted to
golve cubles. Ylbonagel, for examnple, attacked the probe
lem in hie ¥los of 1226, He sald thut a scnolar of
Palermo, propoged to hLim the proublem of findling a cube
which, with two sguares &nd ten roots, should be equal to

<0, The problem was solved by thls equation

x° + 2x2 + 10x =20,
aspnother attenpt was made by an anonymous writer of the
thirteenth century whose work has bheen described by
Libri.ﬁ Fle took two eublcs, one of the type axd—ox +k

and another of the type ax3==bxg-+k~ His method in the

6 Do L, Smith, History of “athematice (Vol., 2; XNew
York: The Ginn and Compuny, 1920,)p. 457,



firet case was

ax¥ = ex +k

x¥ _ex_ k
-3 3

2
Bk e \/("gi‘) +&  wnien is the
2

root of equation ax® = ex +k, but not of the given equation.

Hies method in the second equation was equally fallaclous,

Pacloll in 1494 stated that the general solution of
@ cuble was imposaible, FRudolff (German) in 1525 suggest-
ed three numerical equations each with one integral root
and each belng easily solved by factoring., ¥is method in
modern aymbols i8 as follows.
Given x5= 1Cx®. 20x+48
Add 8 to both sides and divide by (x +2)

(x3+8) = 10x%+ 20x + 56

x2 - 2x + 4=10x_ 56 .
x+2

€plit the two members of the equation
x2 - 2x=10x
4 _56 which are satisfied
x4+ 2
by x =12,




Similar solutions of epecisl c&aes were found In ssveral
works of the zixteenth century, nctably in a work by
Nicolas Petrl publlished st Ameterdam in 1567,

Cubic equations were consldered by Dioghmntus ahout
300 »e Day but the firat Zuropean mathematicians to glve
a complete molution of them belonged to the Italian
school of Hologna at the time of the Fenalseance., They
were clplo Ferro, Nlcolas Fontana, surnamed Tartsglla,
and Cardan, The soclution which usually bears the nunme of
Cardan, was really dne to fartagii&.v Ferro eslved cuble
equations of the form x4 ax=" poseibly basirc his work
on Arab sources. Ve did pot reveal his method to the
seholarg; but he told the gecret to his pupil Antoanlo
Yaria Flor, Tome time later lortaplia and Fior proposed
to neet In a mathenmatlcnl contest. Tartaglia devoted
moat of hie tizme in devielng a method for solving cublice
in which the firet degree term was missing, Tartaglia
gucceeded in the gontest. Cardan asked Tartaclia to
ghow him the discovery, but he refused, U0, Curdan ine

formed Tartaglia that a wealthy noblermgn wee Interested

7 He We Turnbull, j ; ! (New York:
Interscience rubllishers, Inc., 19471, Pe 117,



in it. Cardan arranged s meeting at Milan between the
mathematlelan and his would - be patron. On reaching
‘Yilan, Tartaglia found that it was all a hoax, but he
wag persuaded to give Cardan the information he desired,
pledging him to secrecy. Tartaglia claimed that he
divulged the entire theoryj but Cardan published & treat-
ment of the cublc covering Tartaglia's contributions

a8 well as other points in his Ars Yagna (1545), When
Tartaglia protested, Ferrarl, Cardan's most capable
pupll, claimed that Cardan had received his information
from Ferroe. Carden was the first to exhibit three real
roots for any cubie, He advanced beyond the mere formal
gsolution in recognizing the irreduclible case (all roots
irrational) when the radicals appearing are cube roots
of complex numberss The firat to recognize the reality
of the roots in the ilrreducidle case wag R, Bombdbelll in
1572,8

Pivonacel wag a true mathematician far ahead of his

tlme.g Being unable %o give an algebralc solution of the

8 B, T+ Bell, The Develgpmen Yathematics (second
edition; New York: licGraw-Hill Book Company, Inc., 1945),
pe 118,

9 Ibide, pe 116,



equation
x2 + 2x%, 10x = 20,

he attempted to prove that a geometrical ¢onstruction of
a root by stralghtedge awnd compzss alone was Impossibles
but he could not have succeeded with what was knosn at
his time. S0 he proceeded to find a pumerical &pproximae
tion to & root,

Altheugh Cardan reduced his particular equation to

forme lacking the term in x2

y 1t was Vista who began
with the general form of the eublem x5+px3+&lx+r=@.

Concerning equations of fourth degree, Abul-Faradsh
referred in his Fihrist to a problem which involved an
enuation of the type

x‘-v— ims =4

which could be solved by the intersection of the hypere
bola g2+ axy+b =0 and the parabols x* = y ~0j but the
work in which the problem appeared was lost and no one
knows what he 4id for a solution,

Woepcke, & French orientalist, has called atten
tion to an anonymous manuscript of an Arab or Fersian

algebraist in which 48 given the biquadratic equation

10 D, %, Smith, History of Yathematica (Vol. 2
New Yorks The CGinn and Company, 1925}, p. 467,



10

(200-x") (10-x)3= 8100,

It was solved by taking the intersection of (10-x) y =90
and x3-+ y2= 100, But there is no evidence that the
author was concerned with the algebralie theory.ll

The problem of a biquadratie equation was laid prom=
inently before Italian mathematiclans by Zuanne de Tonini
da Coi in 1540 when he proposed this problem, Divide ten
into three parts such that they shall be in continued proe-
portion and that the product of the firet two shall be six,
He gave this problem to Cardan with the gtatement that it
could not be solved, but Cardan denied the mssertion,
although he d4i{d not solve it, He gave it to Ferrari, who,
though & mere youth, solved the problem,

Vieta {(1590) was the first algebrajist after Ferrari
to make &any noteworthy advance ln the solution of the
biquadratie.ll He began with an ecquation of the type

x‘-+ qu3-+ bx=¢ wrote it as

x‘ + quazo - bx

He added qa_+ %E +.yxa+.qy to both sides, made the right

side a perfect equara, and from there on he followed

Ferrari's method.

11 D, B, Smith, History of ¥athematics (Vol. 2; New
Yorks The Ginn and Company, 1925}, pe 467,
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Next, Descartes (1637) took up the question of the
biquadratic equation and succeeded in effecting s simple
solution of problems of thls type x‘-;-pxe-.-qx +r =0,

Zuler (1770) solved the general quartic by a maethod
differing from that of Ferrarl., Thls unexpected succese
led him to belleve that the general quintic equatlion was
golvable by radicals.

Concerning the quintic equation, the Cerman Z, ¥,
Techirnhausen (1651.1703) applied a rational substitu-
tion to remove gertalin terme from a glven equation gene
eralizing the removal of the second term from cublcs and
quartica used by Cardan, Vieta and othners. A century
later, Z, 2, Bring (Swedish -~ 1736 - 1708) reduced the
general quintlic to one of its trinomial forame
xsq-ax-+b =0 by & Tschlrnhausen transformations with co-
efficlente involving one cube root and three eguare roots,
& result of capital importance in the trascendental solue
tion of the quintic.Lg

Lagrange (17701771}, instead of trying to solve

the general quintic by ingenlous tricks, examlned tne

12 3., T, Bell, Ihe Developme ratics (second
edition; Kew York: HeGraw-iill Book C@mpany, inc., 1945),
Pe 2324




12

extant solutlons of the equations of second, third and
fourth degrees in an attempt to discover why the partica
ﬁlar devices used by his predecessors had succeeded, He
found that in each instance the solution wae reducible
to that of an equation of lower degree, whose roots were
linear funetions of the roote of the given equation, and
of the roots of unity. Ee thought that it was a general
method; but on applying to the general quintie, Lagrange
ocbtained a sextic which meant that the degree of the
equation, lnstead of beling reduced as before, was
ralsed,

The first noteworthy attempt to prove that an equae
tion of fifth degree could not be solved by algebrale
methods was due to Ruffini (1803-1805) although it had
already been considered by Gauas.l3

The modern theory of equations is commonly sald to
date from Abel and Galois. The latter's posthumous
memoir on the subject established the theory in a satis-

factory manner, The Norwegian mathematician Abel, as a

student in Christlana, thought for & while that he had

13 D. B, Smith, (Vol. 25 New

York: The Ginn and Compuny, 1925“. p.“469.




solved the quintiec eguationi but he corrected himself in
a pamphlet published in 1824.14 This was the famous paper
in which Abel proved the impossibility of solving an
equation of fifth degree by radieals, a problem which had
puzzled the mathematiclians for many years,

In 18684 Xlein (1849.1925, German) reviewed all the
labors of his predecessors and unified them with respect
$0 the group of rotations of a regular icevaahedron about
its axis of symmetry, In other words, Klein handled the
subject of the quintlie equation in a simple manner by ine
troducing the loosahedron equation as the normal fornm,
and showed that the method could be generalized 8o as to
embrace the whole theory of higher degree equations.ls

Othay contributions to thie subject were a transcen-

dental soclution of the quintie given by M., Hermite and

Sylvester's transformatlion of the fifth degree equation,

14 D, Js Strulk, 4 Conels stor Hathergtics
(Vol, 2; New Yorks Dover rublication i1nc., 19%8), Pe 226,

15 Dy By Emlth, o Modern Yathematics (New
Yorks Jokn Wiley and Sons, 1906), pe £1.



Solution of the Cuble Equation

Cardan's Jolution
In solving the cuble, Cardan first eliminated the
tera of second degree by substituting

X=y§ - £ 1in the general oubdbic
k]

%+ px®4qx +£=0
which glves y3+ ny +n =0,
3z (1)

obtaining 8

7
3 2 3
whera g - =
EeV %
3 [.2 .3
&nd B = -n
\// BxVE+8

Substituting the 2 for its valuwe in (1)

. 3 2 3
z‘t\/@ *+ 27 3:{,/
: -0 8. 28,
RSV A ST

Eliminating the denominator ln the second fraction and
omitting double signs, since they give no more values

than do single ones,

N N ANEE T
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Cardan's formula falls when all the roots are real and une-

equala.

Vieta's Solution
Given the general equation of third degree
x4 px% 4+ qx + r=0,
Vieta reduced it to
y3+ 3by =2¢

by substituting

x:y-% .

Now, let

3 2
b-z+y¥2z and y. b =~ 2
z

obtalining
6
Z + 20252. b:s

a sextlc which he solved as a quadratic,

Hudde's Contribution

Hudde eimplified Vieta's work (1658) by taking ade
vantage of Descartes' symbolism. He brought the theory of
the cubic t0 ite present status., He wag also the first
alpebraist who unquestionably recognized that a letter

gtands for elither a positive or negative numbar.16

16 b, £, Smith, Higtory of Mathematics (Vol., 2; New
York: The Cinn and Company, 1925), p. 466,
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In the equation
3
X = gxX +Y
he let X = ¥+2Z

which results in

ya_r Sy%‘z+ Byzz-f-za:.— GX + X,
If
(1; .‘}'31'23'—' Xy
then :Szyz+ 32?.Y=Qx;
from where y-Q._»
2Z
Subetltuting in (1)
27 3
3
z - £ 2
g * /g,_, a3 - A
§ - 27
3
Jy =L - e
7 * /xf:. -9
4 27 =B

x:aA 1—3\/3 .

Trigonometric Solution

In the sixteenth century Vieta suggested the
treatment of the numerliecal cuble equation by trigo-
nometry. Girald (1629) was one of the first, how-

g¢ver to attack the problem,
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He solved the eguation
x°=13x +12 by the help of the identity
cos 30-= 4 60856~ 3 cos 6 This ia the so - called
irreducidle caze which Is of interest because it ie the
caze in which all the roots are real,
Civen tha eudle X4 px + q=0 (1)
let x-gz » Then (1) becomss za-a- pnzx +n3q =Ce (2)
Eaﬁ the trigonometriec identity
Cos®0 -~ 3 Cos &3 Cos3 §=0 (3)
is ldentical to (2) if :
% -Cos & pn® _ -% nﬁq=-% Cos 36

Wrence n=\/ - .
ép

Substituting n in the expression

o8 30 - - 4n3q,

3
p

These equation® cen always be solved i1f p ls negative,
=27 \V/.

and .g(ﬁ%) 2| 1
P ’

. 1
resulte in cos 30~ - 4g (-2 Yf{’*- 3 (-21)/2. ()
| =)=" g




i8

3 2

This last condition reduces to ~4p“-274“=A > 0, and so0
is satisfied in the cases under consideration.l”?

" If O 1s the smallest angle satisfying equation (¢), then
the values & + 120° and 6-+240° also satisfy it, so the
roots of the ecuation x5+ PXx+q=0 &re

1 cos 6 1 cos(@+120°) 1 cos(©+240°),
n n n

correct to a nuumber of decimal places depending on the
tables used.
Solving the Irreducible Case by Cardan's Kethod,

The equation having the three gommensurable roots
a, b, ¢ ie xo«(a +b +¢)x° + (b + 8¢ +be)xeabe =0,

Keduce the roots of this equation by %{n +b +6¢), we have

3 .2

y3=1(a® 4 17, cPeabmscebo)y~ %_(aa% 2b°+ 2¢°-3ap
3 7

2 2 .2

~3800=3ab2=300%=31%0~3bc2+ 12abe ) = O,

This being of the form ya... my +n =0,

Substituting in Carden's formula and reducing results in

3
y_1i \/-m,.m “bia-c)b-c -5,
-3 2 2

17 W, V. Lovitt, Elementary Theory of Fqvations (New
Yorks Prentice~Hall, Inc., 1939}, p. 99,
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Set the xig{at-mnﬂ side equal 0 u+v. “lince u iz a
binomial lmeginary, its cube roct wiil be of the Lyge
L+ VP and VKE; will be rationwl."!8 Hence
A - 3p) = 1/g(2a%+ 20°1 2¢% - 3a%p - ze2e - 3w
- 3ac® - 30% - Zve® 4 12abe), (1)

VB (2430 = 3/5(8 = bifa = ci(d=e) Vez =,  (2)
8ince o/ must be raticnal, \/g must be of the first de
gree with reference to &, b, ¢, and the only factors of

r of that degree are of the form

(g = D! \/::g where p is some integer.
P However, p must be 2, for sube

atituting
\/:F; (b = =) \/T; in (2) and reducing we
P

have f: p/ztu"a - &k = g0 + he)ﬂf - 2be 4 c"” which will
P2
not glve & ratlional value tc ol unless p=2,

Agsuse V-T/s'=(p~%) V=%

Subatitute in (2) and reduced., We find ol=*{a = btg)

and by substitution in (L)«=8 « h+¢ &and similarly for
2

other factors of r.

18 0, H, Kendall, "Colving the Irreducible Case of

Cardan'e ¥ethod,” American Journal of Mathematies,
13285-87, 1878,



llence u = ‘1'/5(;& -bts . bo-¢ \/,;5:,
2 “

-1,
3o -ae 5.0 Vo3

=1/ (6 - ath . 8 -1 V=3l
3 . v TR
Timilarly ~—
7:1/3(51 - h_"j}_ - ,‘Q.M; 2 *3)

o
A

=1/5(b - %& —a=g =3)
&s

=l,le-pm= 2= YAIR
“ @

and ¥ =l/3(2& - = CJ
-.-l/ﬁ(?-b - do- )
.:}./3(::‘3:3 - @ B}
and X =8, b, C.
If two roots arée equnl, thea r =0 and -8 ={a - b)a
and if two are lmaginary {4 * SVez), than

r becomes ratvional and g 2o {a—f-3‘r)3u
2
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Solution of & Cubliec by Cymmetric Functions of the Roots,t?
Assume equation of the cudble in the form

axd+ 3 bx2 4+ 3ex+d =0 .

Put this general equation under the form

z ¢ 3Hz+G =0 where

%4 « 3abe +2b°,

zZ=8X +D H=as - b2 G=a
Since the three values of the expression

1/3[ot+/5+3,,+(oi+ w fA +w27~) D+ (ot + w2ﬂ+4u;«j 92]

whgn €& takes the values 1, w, w are Ly Ay ;, it 18 plain
that if the functions (K +wg} ﬁ«fﬂﬁ and (*+w2ﬂ+w} ) 2
were expressed iln terms of the coefficlents of tre cubic,
we could by substituting thelir valusesz in the formula

given above, arrive at an algebralical solution of the cudble
equation, This ¢annot be done by solving directly a quad~
ratic because the sum of the two functlions above written
is not a raticnal symmetric funection of , ﬂ’?" Take the
cubes of the two functions in question which can be exe
pressed in terms of the ecefficlents.

For coavenience L= (trwpewy)

¥ = ($+w‘/s*wf)

19 W, 8, Burnslde and 4, ¥, Panton, Iheory of Hquations
(Voles 13 seventh edition; Dublin: BHodges, riggls, and
Company, Ltd., 1912}, p. 113,
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Then
(e = A+ BwQdd

(©%:)°. A+ B2 +Cuy where

&:‘oﬁz"'(?-l-fa-{' 6£3%),

B=3(2p + g5 + «4%),

c s(dﬁ& +ﬂ7ﬂa w?f); From which we obtain

13+ u° = QZd\a - SZagaﬁ + 12 A0 - 298

a%

where the symbol > slgniflea that ons is to tiake the sum
of all terms, like the one following the symbol, that ean
be formed from the given variables by permutaticns of those
variables,.

Again

(@L)(€PK) = LM =0l +,,3+,03 Ay A ,93%1

* a

whence

(bt wpi +w‘7 )§ and (A+ w“/a+ wg }3 are the roots of
the quadratic equaticn

2, 3% ¢ - 2% _ o,
33 as
Denoting the roots of this equation by %4 @nd t,
then _,gfﬁ__ < -G+ a%ma).
0a
The original formula expressed Iln terms of the coefficlents

of the cuble glves the three roota,




)

[}



ChatsTER 11X

Golution of the wuariic dguaticn

Ferrarits Lo mticmao

Let the equation of the quarti¢ be of the form
(1) X+ xP 4+ ox®+ dx L0 =0,
(2) Transposing terms, we have x* + P = - ex® - dx -~ o,
Completing the ggquare in the left member results in
(x2 + & ox)%= (40% - ¢)x® - ax = @,
Addmg (x2 + dox)y +%y2 to each member leads to
(3) (22 +dbx + 4yP = ({12 « cry)® «(dby = d)x+ds® - o
The second member of (3) is & parfect square of & linear
funetion of x, if and only if, its discriminant is‘zero.
(hoy = 412 = a(d1® = a+3)(Es° - 0) =0,
which may be written in the form
(¢) ys .oy + (bd = d8)y = b + doe - a°= 0,
Choeee &ny root y of the resolvent cuble (¢), then the
right memver of (3) is the equare of & llinear functlon,

88y mX + Re

20 L« Z. Dickson, Fixat Coures¢ in Iheory of Igun=
tions (New Yorks Johm Wiley and Cons, Incs, 1523),
Pe B0,
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Thus .
{s) , x*+4b% + 4y - mx + n or

x2+30x + &y = - mx - n.
The roets of these quadratic¢ equations are the four

roote of (3) and hence of the eguation (1.

L
Descartes' Solution t

The general quartlec of the form
ax‘+ bx® + cx2+dx+e=0‘
‘can be reduced to

(1) 24 qs’s 18 6 = O

The left member of (1) can be expressed as the product
of two guadratic factors
(2% 2k2+ 4 (2°+ 2k +m )=
2‘1— (LQ*-m - dka ; 324- 2% (@~ Jz+im,

where = Lam - 4ka,
r - 2k (m—ua),
8 - -@mc

If Xx+#0, the firet two glve

2(=q + 4% » 2_
2k,

2n = q + ékz_}. P
zk

21 Le Eo Dickeon, First ng,&gg in Ihe of Zquationa
(New Yorxt John ﬁ?uw'aﬂd Sond, lnCey d¥<e), pe b
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Cuvstituting the values of IZand @ in (Ef)(Zm} = 48,
resulta in
6ax® + 32qx* 4+ 4(c® - 48) X2 - £23_ o,
which can be solved &8s & cubles. Any root kz;go
gives u palr of quadratlic factors of equation (1)
22 & k2 + 3q 4-21:2-_;{_;.
The fcur roots of thece two guadratle functions are the

four roota of eguation (1).

Euler'a 301&%10n22
Asgsume the quartic in the form
ax? + abx3 4 6cx® + 4dx + e = o,
Let 2 _—ax+b.
By eliminating x between (1) and (2 we cbtain the
equation
z4+.eﬂzz.+ 6Gs + a1 +-3E@ = O

Buler assumed a root of the form
Squaring twice and reduclng by means of the relation a-

bove, we obtain 2
s"»z(p+q+r)a2~$z{ VP VG VUE)+(p+a+r) =d{ar+pr+pql= 0.

22 J, D. Hutchinson, “An analysis of Saveral of the
“athods of Dolution of the Ueneral Quartie Equation from
the point of view of KResolvent Functions, Including an
Iilustration of Lagrange's Theorem," {unpublished lMaster's
thesis, The University of Illinols, Urbana, 1930), p. 1l.
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Compariag this equation with (3) we obtain

pHq+r = - 3,

qr+ pr+ pq = 3% - ,_filf_,

4
\/’-—r \/‘:_ - = & L
4

from (é) we see that p, q, r mre tne roots of the

equation

3+ 382+ (31% = %110 = o=
I

&
H
=)

“here G‘?‘ = 4?13 - az:ili + asif.
The three values of € from (5), together with equae
tivng (2! and (4 and the ralation

2 =P ¢ +Vr

detercine the four ruots of trhe pglven equution,

Zolution of the Luartic by symmetrle Functlons of the
Roota.za
Let axd + 4uxS « 6cx® +ddx +@ =0 be tie quartice
The solutlion of a quurtic egyuatlion can be reduced
to that of a cuble by forming & function of the four
roots of the quartic oL,/!,a, sd which admite only thres

values under the tweatyefour permutations of., g o Je

23 dy Ze Burnside, A. ¥4 Panton, Ihe Theory of
Bouations (seventh editionj Vol, 23 Dublins Hodges,
¥lggie, and Company, Ltd., J.m.aﬁ P 139,



Ve proceed to form the equation whose roots &re the

three values of

t = (X“ﬂ"’ﬂ;'é)z
4

by - (peg —a-83%

- & v i

“‘22(.{(+°l4_/3‘5)2

2
ts g(**ﬂ _?—é:w
6 and since

(/3"'6"4'5}25 dez* 2 - 2u =~ 2y

S (deplBz 3= & - 20 2u - gv - 48H
o2

where He #¢ - bz.
= (pg +eLdl,y
Uzelostp+40 ),
V:*(/Jé +ol g e

Ve find the following values of t;, &g, t3

tlzgz:-!!ov-b“_g_’ t252!!.!-7‘
- 12 a 1d
B
ty 2% =D ~u-H_ .
- 2
a8

tietprta= < 3H.

aR

£t +t1t5+t2t5=§§ - %EZ(u-T)z._: Qﬁ_z -3
a & 4;3

I=ae - 4bd + 3¢2,

G=ad - 3abe+ 2b°,
2

Jd=acge + 2bed - ada - @D =

tltzta = Q_g__ o Where
43.5




t:
e

Then the equation whose rootes &re tl, tas ta is
(224)3 ¢ 2u(a®e)24 (3725210 (4R4)-28 _ o0,
Ve substitute C for its valfw ‘
4(a2t-..H)3 - agx(aztﬁ}!} + ast 0

which can be transforaed into the standard reducing cudbie

by the substitution (aat-l—fi): - az.
To detercine o 4 prg d we have the followlag equations

~°<+/5+3/~§=4\/—t">
- 24\/2:;)

A -4 t

°<*'ﬂ" —J:#\/E;)

A +p +p +0 = -8 |
gA a

From which we find
ok—".g"\/’*'—l+\/}:'a + V't f:‘.s.ﬂ/—t;flfﬁ—a'- t3s

/a:“%..,ﬁl“m 1-\/?3! é‘:“g"\/—é;“\/?a“\/?;

Ve also find that [T} \/ta Ut3_G__ by means of which
3
2a

one radical ocan be expreesed in termes of the other two.

A Solution of the Guartic Nquation by Heans of a Twentye
feur Valued Function of the Roots

¥e masuxwe tbhe quartic equatlon in the form

(1) X‘-\- ﬁxa+bx2+ cx+ 4 = Q.
Ve call its roots ., g g and J and consider the twentye

four valued funetion
v-V1= (><-»/5+1§-ch) where 1%_ . 1




(2)

1

"Under the eubgroup Eg of Gg,‘-', vy takes tilLe valuea."m
ViZ o=+ dy —id Viz 4 -d+idh- i
V.Z: ﬂfo(—l://'f'l:d' Vy;d"—ff“/t:ﬁ-(:«t

These four functicne are the rootm of trhe equation
!4'{#1'\'732) Zg-t- 712732= O.

The coefficlents of equation (2) mey be determined in

terns of the coefficients of (1)

Than Vla-)- 733= Qi’;o

% P 2 2
v V3 __-_"X/g[;.’:& -ﬂb~?,(y2.y3)‘_]

where Y, = (£ ,ﬁ)(? -d)
71 = C[’)‘g)(c’( -—55)
= - ( 'J) .
However 73 (3’ d) ¢

(y5 = y3) can be expressed in terms of y) for
Y1s T ¥z 8re roots of a certain ocuble eguation of the

form § +eqytes =0 ,

L4

24 J, D, Hutchinron, ®An analysis of Cevsral of the
Yethods of Tolution of the General Yuartie Bquation from
the polnt of View of Fegolvent runctions, Includlag an
Illustration of Lagramge's Theorem,® (Unpublished Naster's
theeis, The University of Illinois, Urbsna, 1930}, p. 15,



%e know that

(3) ¥~ v3- 243 = —=.432J

k2 Y

vy = szilyy - ¥si T 2
yi = ¥ilyg+y3) +yays

let

k] ,, a
fly) =g +e@y+es=y° =y, 5 +e2+y1 .
Then y -

¥y’ has roots yo and yrx, tharefore
vy =3 +Jg and yo Jy = .Yﬁx + 8ge

Trhen expresalon (3) becomas

Vg = ¥3-.=.432] = ¥
Mﬁ T e,
where

63 = ¥, ¥y = 3ac - 124 . B 4
The quartie (2) becomee 2 2
4 - - o .
() - unst, 1/9[33 8b 4}2
3,71 + Gg

If in equatien (4 we set = =@ we have & quadratis,
whose roots we may call @1 and Bze @4 have then the

equations
V) = &,

‘/3 = 91
o<+,s+3/+c5’=— Ay

A}

(8)




ta
3

By using tne ether twenty valuse for v one can obtaln
anotner independent relation of o« 4,41 and & . Tals
sixth equation, togeiher with equations (%), form a

eystem of equations which ocan be solved for the roots

of the quartic,ek,/g, 2, and d




CHAPTER "IV
Higher Degree Zquationa

The theory of substitutions and groups of substitu-
tione grew out of the investligation by Lasgrange, Ruffini
and Abel concerning the question of solvability by
radicals ¢of the general algebraic equation of degree n.

Galols"Theory, which is applicable to any algebralc
equation, whether ltes coefficients are conatants or de-
pend upon one or more variables, eatablishes the modern
theory of equations in a sstisfactory manner.2® To
Calois, the molvability of any equation of nlh degree by
radicals depends on the diecovery that to each equation
there corresponds a group of substitutions, whiech leaves
the function unchanged, known a8 the group of the equa-
tion or Caloie group., sccording to Galols' theory,
given an equation we shall mesociate & group of substitue-
tions on ita roots, Then the algebralc equution is
gsolvable by radlcals If, and only if, the group is solve
able.

25 G A, Miller, H, ¥, Blichfeldt, and L. E, Dickson,

Theory and Apolications of Finlte Croupe (Few York: John
#iley and Tons, Inc., 1916, p. 279,
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Before deseribing the group of the equation we de-
fine the dom@in of rationality R, If we denote the cone
| stante or variables of & given problem by R}, R11, , , ,,

RY together with all quantities derived from them by a
finite number of additions, subttractions, multiplica-
tions and divisions (excepﬁ by zero), the resulting syse
tem of quantlities is called the domain of ratlonality.

The eet of all substitutions (on the roots
X}s Xop o » sy Xp Of the equatlon) satiefying proper-
ties a and b, listed below, form & unique group G of
order X, This ls called the group of the equation,

Every rational function (x;, X3, « « «, X,) of
the roots which remains unaltered by all subetitutions
of G lies in the domaln of rationality R.

Every rational function (x3, Xg, § « o X,) if
the roots which equals & quantity in R remains unaltere
ed by all the substitutions of G,

An integral rational function f(x) of degree n of
a variable x whose coefficients belong to the domain R
is said to be reducible in R if it can be expressed as
a product of integral ratlonal funcetions of x, each of
degree less than n, with coefficlents in Rj irreducivle

if no such factorization ie possible,
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For better understanding let

(1) £(x) = " = clxa‘1-+ ngn'a - ...+(«1)n0n==0

(2)

whose goefficlants belong to the domain R. We sssume
that the roots X1, X3y « o ¢ Xy &re all distinct., It
is possible to construct a rational function vy of the
roote with coefficients in R such that v; takes nl dis-
tinct valucs under the ni substitutions on x, « . ., Xp.

Such & function i=

) vl = mlxl‘)'mzxa‘l‘b . ofmn Xn

where mj, Mgy « « oy M, are properly chosen in R. Then
the n! values of the function v; are the roots of an
equation

Flv) = (vevy)(vevg) o o olvevy2)= 0,
whose coefficients are integral rational functions of
the m's in (2) and the ¢'s in (1), with integral co-
efficients. Hence the v's belong to R,

1f F(v) is reducible in R, we let F,(v) be that
irreducible factor for which Fo(vy)=0, if F(v) is ir-
reducible in R, let ¥,(v) be F(v) itself. Then F, (v)=0
is an irreducible equation ocalled the Galols resolvent
of equation (1)

Next, we let the roots of this resoclvent be v,,

Vas Vps o o o V/g
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The substituticns by which they are derived from v, are
le 85 By o ¢ o9 1

which form m group G which is the group of the given
equation (1) with respect te the domain R,
The group of a given equation for & given domain is
unique, In particular the group of an equation is in-
dependent of the special o} - valued funetion vl chosen.?®
The group of the general equation ¢f degree n whose co-
efficients and roots are independent varlables is the
symnetric group Gn!, The group of the eguation is solve
able 1f It haes & composition series in which the ine-
dices are all prime numbers.

Fumerlcal Nethods of Approximation of the Kootes of

an Squation.

Findlng roots of nusbere, the solution of eguations
and even the approximation methods go &s far back as the
early Zgyptian and Pablilonlan civillzation, Babylonianas
tried to find the solutlion of equations by the method of
False Foeltion {kegula Falsi) which ie the cldest one.27

26 L. Dickson, Introduction to ithe Theory of ;gebrg;g
Poustiors (first editiony Lew Yorks Joun wiley and Sons,

Iﬂcnp lgwﬁ}’ P £54

27 Je« Be Searborough, Eggggiggx_gm ematical Analyels
(Baltimores The John Hopkins irreass, 193 Pe L74.
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To solve the equation x,,é = 19, the unknown number x
was assumed to be seven. The sum of the number and its
seventh part was eight and the number solution of the
eguation is the same multiple of seven that nineteen is
of the gusssed number oight.zs
Chuguet used the rule of mean numbers which is
illustrated in the following example
x* . x - s
81
Let x = 5 and substitute in the equation, 1t e too
emalle let x = 6, It is too big.s ¥We write these two
numbers in rational form to obtain the first mean,
FPirst mean f—:}%— = .L% By substitution we see it i»
too small.

Few bounds )} ®&#nd § .
2 1

Cecond mean J.é__:___%___ 1%. It is too small,
-+

¥ew bounds and 8 .
e g

Third mean 1%___:_%_ ~ ,_%. It is too small,

New bounde _2_% and g. .

28 V. Sanford, A Chort History %&&gmemaﬂgg (Eow
York: Houghton x1r81in company, 1930) 9 pe 160,



(1)

3¢

Fourth mean 23+ 6 _ 3“. it is large.
& +1

New bounds ¢3 and 22,
4 ]

Fifth mean % - '5% which {8 the exaat root.<’
+ B

The Regula Aurea {Golden hule) of Cardan published
in his Ars Yagna (1545) wes built on the basis of two
false posltions and a particular mode of interpolation,

He usaed it for equutions of tinlrd and fourth degree, but

‘it la applicsble to eguations of every degreo.so To

solve an eguation by tunis method of double fulse posltion
we let the eguatlon be

fix)=v.
“g assume for the moment two values, say & and b. Then
we determine the errore by substituting a and b in (1)
and we write f(a)-4 and f(b)=3B.
¥ext we compute the error for a and b,

Ba=V « A and BEy=V = B,
Then an agproximstion to the value of x ia x bﬁ - au
But 4t is accurate whenever f(x, =V is a llneé;al;nct?on

of X.

29 L, A. Nordgaard, A Historlesl “urvey of Alrebralc
f;.v"_ﬂ.s_@.ae :0dg of Approxization the Loots of Numerical Higher Legree
Louations up to ihe Yesr 1619 \Hew York: Columbia Lnlversity
1822), pPe G4

30 F. Cajori, A llistory of Fathenatics (New Yorxs The
Yacdlllan Company, 1919)s Pe 103



39

¥ewton's mathod is applicable to any equation
f(x) =0, whether f(x) 1s a polynomial or not as long as
£(x) is differentisble.
First determine two numbers & and b (&< 1) such that
there is one and only one root of £{x) =0 betwean them,
We find a closer approxination a+h to the root by
neglecting the powers hz, nd e » « Of the small number
h in Taglor's formuls.
f(&-&h)’-‘f(ﬂ)-‘-f‘(ﬂ)h 't (g 2 t’”{a;hs e o o and
'{ Jh =0 ’ ¢
hence by taking f{a) +~f'\&/n=
h_- L;%i .
= £'a)
Ve repeat the process with aj= & +h in place of the former
B
31
Humerical example,

£{x)=x% = 2x - 5 =0,

For a=2 o= f'ga)—_%a ’
a;-a+h
B1 =2+l o
For a3= 2,1 h -~ :r 2 )=~ « 0054
227 %M 2 oose
For ag - 2,0046 hy - - £(2,0946) . ~ 00004852
% (2,0946)

31 L. D, Dickson, First Course in Theory of Eguations
(New Yorks John Wiley and Sons, 1922), p. 91.
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Ry = ﬁg* ha
8 2.0046 « 00004852
az= 2,09455148 in which seven decimal places ars

¢correct.

A Modification of Newton's Method,o<
Newton's formula for approximating the roots of an
equation f(x)=0, namely,
(1) Xp ., 1= %y = £(xp) (=0, 1,2, ...
£ X,
may be modified in the following manner. The equation
of the parabola through the point [xp,f(xp)] having the

same first and second derivatives at = x, as g f(x) is

y=tlep) o (x - x) £90x)) w bz - x,0% 210(x)
Let Xp 41 be a solution of the equation which results if

we put y= 0. Then Xp+l o :...11!”)
f'(xp)+§(xg+1” Ip)f“ (xp)

if we take im thie formula

Xy, 1 = Xp=o= i‘giz we obtain

f’(xp)
{2) Xparl= :...ﬁ.l‘.p)
t’(xp) - f(xp) I’*(xp)

zi!‘xp) ‘p:o, 1, 2 .to)

]
S, Wall, "A Modification of Newton's Method,
The M%ﬁgﬁégg;cu ¥onthly, 55:90-94, February, 1948,
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¢l

which is the deegired modlificution of tewton's formula.
The convergence of the seguence {xp} is more rapld in the
case of formula (2) than in the case of formula(l),

Newton's method hns a eerious defecty it Le lnoperse
tive If two roots are closze topetiner, for then the series
would not converge, and zight after a while actually die
varge. In 1767 lagrange announced a new method. It cone
siste of three partes,

A method of findipp the integral part of the root.

2 & rule for separating roots,.

3 Technique of gpproximation by the usge of continuved frace

ticns,.

Suppose that the equation f(x) O has & real posie
tive root between p and (p+1l)'s Then x_p, 1 y =1
Cubstituting the valuve of x in f(x)=0 givesytggdequatlcn
3{y)=0. Tince y>1 we find ite integral value by the
creseribed method, Suppose it lles between integpers ¢
gnd {q+1)s Then y.-_r.1+_§ and 2o one.

xzy‘k&
q -+ 4

Pt o & o

¥umerical exanmple

x3~2x~5=0

Cne root lies between 2 and J.
let x=2,1 ¢ then the equation becones §° = 10y% « 6y = 1=0,
J
Ve find where y lles 10<y<lile Then y=-10_ ) and we get
2
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an equation in 2

6123 - 922 - 20z - 1 =0,
 We find where z lies 1 <z<2,
Then 2-1,31 s&ives the squation 56+ 25u% - B9u - 61=0,
We find wha:a u lies, 1 <u < 2+ A continvation of this
process glves the series 2, 10, 1, 1, 2, 1, 3, 1, 1, 12,

Hence 2
X +
iO-i—i
}'1:—;.-’—-—--.
R

2"‘ any
Evaluating we have 23

X _16415_ 2.,09455149,

837 ~

In Horner's method the first step in finding the
nunericsl value of & real root of a rational integral
algedbraie equation ls to lsolate the root. The root is
cbtained digit by digit, in the successive order of deci-
mal placesj that means, first the coefflicient of the
highest power of ten and then the other goefficients, till
any desired number of places of accuracy. His method is

based on the next two theorems,

35 M, A, Nordgaard, A Historical Rurxgi of Algsbralc
Methods of Approximating the Roots of Numer cg% Higher De=
gree Equations up to ihe Year 1310 (New Yorkt Columbia
Unjiveraity, 1922), p. 60.
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1 If the firat member of an eguation of the form f(x)= 0
be divided by (x » &), then the quotient be again divide
ed by (x - &), and 8o on, the successive remaindere will
be, in reverse order, the coeffleolents of an equation
whosae roots are less by & than those of the glven equae
tion.¢

2 ¥hen the root of an equation le small, with reepect to
all the ccefficiente, it is spproximately equel to the
‘absolute term divided by the coefficient of the first
powar of %,

Fumeriecal Example

f(x)z x5 2% « 62«1 0

£(o). .

£(1)_ .

£(2).

£(3)- + + So there i= a roct between 2 and 3, Ve
diminish the roots of the equation by 2

i 1l -8 wl 2
2 6 . (4] l__‘
i 3 0 -l
2 10 ,
) § 5 i0
2
1 7
The first traneformed equation is
34 J. Downey, Hicher Algebra (New York: American

Book Cosy 1901), Pe 331e
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fﬁxﬁ:xf’-f 7 xlg-'- 10x,y » 1=0 which has & root

between O and 1, Ve obilaln, from 10x3 =1, the approximate
value x; =ele
This value of xX; makes the flret two terms positive and
£3(s1) > 0 Lence the constant term in the gecond trane=
formed equation would be positive which ehowe that the
value of x; I8 too large. The constant term in each
transformed equation wust retaln the same sign eas the
‘conastant tera in the original ejuation,
For x3 =409 o f3{x3) < O ¥ow we diminish the roots
of £3(x))=0 by +09 which gives us the eecond transformed
equation

Xp 4 TeR7x,% 4 11,2803x, - 4042870 = C,
From the two last terms we get ®p =.CC3, ¥We diminish
the roote of fa(x,) =0 by +(C3 which glves the third
transformed equation

X3+ Te279x3%, 11432794725 = 408652643 = Os
From the two last terms we find

0007 < x5 < 20008

dhence 3 2 ‘
»000003570 < (X3~  Te279%y" ) < +0C0CCEE64, W lgnore

the first two terms provided the constant term is reée

duced by an amount betwesen these limits,




L D)

008652643 « oCOLLOB5T0 = ,008649073
«(OBBE2643 = 4CCO00EE64 = 008647079 -

From
11.52?94713 008647979 =0 we obtaln

X3 - 40007634 +

From
11.327947%, « 4008649073 O we obtain

X3 - 0007835 + o

Therefore correct to six degimal places we have
X3 = « 0007634

This can be shortened ln this way

. 0007624
11,337947 To0CeE8T

flnce the quotient is .OCCT7 we use only two decimals in
the divisor, except by inspecticn, to see how much
should be carried in making the first multiplication,
Place a dot above the filgure 2 ln the divisor and use
11.32 a8 & divisor., Delure multiplylang by 6, tue second
significant figure in the quotient, place & dot over the
figure 3 and use ll.5s 7or the root of the original
equation we have x=2,0937634+ where the six firet
decimal places wre correct, There 1s doubt as to whether
the last flgure should be 4 or S, I1f more decimals are
required, it is not necessary to form & new transformed

equation, Wé need to revise the constant term In




1)

(2)

fs(x3)=;0 waking use of our present better valus of X,.
"This contracted method may be used after taree or four

dscimals have baen found,"®d

Horner's Method Shortened,>®

¥hen the real root of an equation above the second
degree is wanted accurately, Iorner’s method is the old
standby. But it 1s very laborious and the work in-
creases with each diglit., The followlng shows how to get
an answer to two, and often three, more decimal places
for a given number of transformations, After the original
equation is tranaformed to a new equation one of whose
roote lie between O and 1 1t is of the type ending in

. .« bx°+ex+ k=0,
Cince x <1, the square, cube and higher terms are small
80 that a rough value for ths root e¢an be obtained

ex+k -0 where x_ = k.

This is sometimes useful, but alng& it is a linear approxi-
mation it may be a poor fit to 2 curve with a distinct

curvaturé,s 4 curvilinear approxization would be obviously

38 We Vo Lovitt, ﬂ;emengar§ Theory of Zguations (New
York: Prentice Hall, Inc., 16839), p« 135,

36 H, D. Hatch, "Horner's Method Thortened,” S¢hool,
Sclence and Vathemsat y 3611007-8, December, 1336,
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better and can be gotten as -follows:
Conslder the result of dividing |

ex by {e - bx).
ihe quotient cx-rbxg+.h§§§.+ ese 18 & geries which ls
convergent for values ofex batween 1 and -1, For such
values the cube mnd higher powers are small and ¢2x  ls

3 c"bx

a good approximation for bx™ 4+ ¢x.

Tet us substitute then for the last two x terms of (1)

¢ » bx
Then 2
¢z +ke » kbx=0
x(e® « kb) = = ko

x _ke » There is less to cale
kb = ¢
culate with thls than if we continus

Lokb = ¢® and finally

x ke

L:R' g o
X ¢ k This is only an approximation because the
cube and higher terms have been omltted, but it becomes

increasingly sccurate as the omitted terms bacose small.

Note: In the thirteenth eentury & Chinese employed &
method of approximation, virtually the samze as Horner's

method." The Chinese method did not pass lato the living
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stream because nelther ln tre Orient nor im Turope did
it start a forward movement.“37

In 1804 Paole Ruffinl invented a similar method in
Italy which was soon forgotten and in 1819 the same pro-

cedure was reinvented by Horner,

Graeffe's iethod

Cf the many methods which have been proposed for
solving algebrale equations the most practical one,
where complex rocts are concerned, is the one known root
aquaring method usually referred to as Craeffe's method
even though tre motronomer J, ¥, Zncke was an early exe
ponent of thiﬁ‘ﬁroce&a and did all he c¢could to make it
well knewn.sa It was suggested independently by Dande-
1in in 1826, Lobacheveky in 1834 and Craeffe lin 1E37.
But Dandelin's work was not widely circulated and the
process went under trhe reme of Carl Creseffe who publishe

@
ed it us a prisze paper? Thie methcd has the advantage

37 %, T. Bell, The Development of Fatheratics (sec-
ond editiony Yew York: ¥eGraweHill Book Company, Inc.,

33 Ds He lehmer, “The Craeffe Frocess as Applied to
Power Cerles,™ Vathematlcal Tables and Aids to Computation,
13377-83, 1943«45,

39 Co A, Hutchinson, "Cn Graeffe's “ethod for the Nu-
merical Solution of Algebrale equations,” The American
Kathematical Monthly, 42:149-861, Harch, 1935,
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of finding all the roots at -once and not requiring any
preliminary determination of thelr approximate position,
"Its principle, for én equation with only real roots, is
to form & new equation whome roots are escme lMigh power
of the roots ¢f the given egquatlon. Tuppose we say the
128%% power, £o tuat I1f the roote of the given equatlon
8re X), X;, Xzseeey X, then, the roota of the new equa-
tion are xllggg xglza, X %28,..., xnlaa. These numbers
- wre widely eseparated; thus if X, were twlce xp, then
xllza would be more than 10°% times 12128. The advane
tage of an eguation whose roots are very widely sepa-
rated is that it can be solved at once nuamerically,
Let the equation be

n=1 Ne2
4+ A2 +o¢o+an:9

L2

(1) =% 81X
with real coefficients. Ve write all terms of even de-
gree on one gide of the equation and all terzs of odd
degree on the other side. Iquarling both sides we have

ne-}1 n-3 -
f_aax 1_.-01 .

(xPy agxP2, agxn’ﬁ_¢.«)2= (a;x
{2) Then ynf.hlya';+ hzyn"ﬁ_..‘ +Pp.1¥ +0n =0

where a

bo- &y - 2&133+2a4
b;,’c_aaz - Zajey +2aj8g » 2ag

.
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»
]

« . s 4 k
by 2%k - Zlageyi(ope1) v 28(ayez ) (8 1 2) + euet(=l)
2ask

]
]

tanal .

The followlng rule will give the coefflicients of equae
tion (2).

The goefflclent of any power of y is formed by squaring
the coafficlent of the corresponding power of x in the
original equation and addlng twice the product of every
palr of coefficlents which are equally distant on elther
slde, these products belng taken with sligns altearnately
positive and negative, missling powers of x being aupplied
with zero coeffioclents.

We lat the roots of the origlnal equation be a, b,
Gyeee Then, the /ncke roots of (2) are az, bz, cg....
The process may ba repeated m timas glving an equation
whose Zncke roots are the 2% jowers of the Zncke roots
of the original equation. The equation whose Znoxe
roots ars &y ¥y ¢Myee i3

(x-\-am)(x—fbm)(x—t—c&) ere=0 or

xn*-[ﬂm] xp”lf[gﬁb?] xn“a+[kmbmam] % L ,.=0
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where

[amjz a® + 0 ®,,,

[&mhé}: SPLE + @ 4 0ot BPcPe0e 2tc,
We continue tae process uatil the doubled products bring
ne change® in the digits we alsh tc rataine Under tke
assunption that &ll tne ruits are real and unequal
|a]=|b|=|08|>0se 4f m is sufficlently lurge the ratio of
al to [gﬁﬂis spproximately ome., uikewlse the ratis er
7™ ta[gwbmj is approximately one. Then the ecustion
beeowes xP+ alixiel Byfgned L. (a™P,,,.) =0,
The numbdbrical value of a can be determined from the second
coefficiant;y |b| from the third coefficient &nd szo on,
Thae sign of the actual roots ¢an be checked by Descarte's
rule of a@lgna,

Fumarical exumple.

%% o 2% - Bx1+6-=0,
1 1 -2 -5 6
1 4 28 36
10 24
2 1 14 e 36
1 196 2401 1256
w3l L0058
4 1 98 o 1393 1296 o
1 G004 1.940C 1.62C
.3 786% «o.amg 6
& 1 EallH LeE18Y, 1.8 .
1 4,6497 2,84318 2.52212
«Ce3377 -0, 02312
16 1 4.3127 2.82012 2.82212
1 1.66015 7.952%¢ 7,9644%
«0,006+2 =0,C00,, 24
32 1 1.85319 7,982 7,964

Determination of absolute value of the roots using



(1)

L4
)

Loger ithne

w32 _ 1,033 a%Sp32 - g, 9palt
10g & = LBeL679 108 12 = 24500 0el5.0679 =
.6326
log |al= ,4771 log Iv)= 3010
& = 3,000 bz 24000

wI2pI2e32 _ 7,96¢%4

1og 652 2449011 - 24,9005 = 0008

log lel= +C0CO
e - 100{:}("

The erxiginal equabisn wust have two posltive roota and
vne negative, go the roots are 3, «i, l.

Thole nethod cas be used ln the vass of complex roots,
%a take the case of a cuble equation with ene real root
end & palr of conjugate complex rootae

re~i% gnare r = 0 then the

If the Zncke reote are a,
%" power eguatlion is
(x+8%)(x%+ 2rPoos mOx+r°2)=0 or
x% 4 (8% 2108 m9)x2 + (r2® 4 208 %c0s mo)x + aTr%® -0,
if \a\>r, and m is large encugh, &% is large compared te
2% sos me and a can be computed by taking the ath root
of the coefficlent of %2, and r, from the constsnt term
aBr2%, In this case the approxizase euustion is

x5, wx% 1 208, gos mpx 68rda =0,
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It |lal <x, then r?0 ig large coumpared to 2a™r" cos m@
aad r can be computed by taking tue 2% root of tne
goeffloleat of 2, and a from the constant term,
[rhe approxinacd ¢guativn in this caze is

234 200 cos mex® 4178 cuipln =g,
“uppose the couplex roots are w S iv, tauen w can be come
puted from the relaticn -aj=2u - &
and u can be coupuced from the reletion re_ u-+v2,
In thle particalar cass one coclumn of the ecefficlentes
showd winus elgn after the fliagt row during the process
which means that there is a palr of couplex rootes pree
gant.

In the case of 3 juartic ejuation two palrs of
colplax routs may occure Ve let the Znecke roots of the
eruatlion ba f@ti¢ and se*i® yiere r and s > Ce
Tie egquatlon of the w' powers of the roots is
x4, 2(r™ cos m O+ o™ cos a@)xS+ (220, ¢rBe™ gus m O
cos ml +828)x% + 2r%0 (12 gos 6 8™ cos nd)x+ r2m #22 -0,
The approximate sguations ares
If r> =8 then
x4 2rfcon mex® r¥x2 + 2r%BeMeos mox + r2Me%Mm= 0, and r
can be deterained from the coefflclent of x® and then s

from the consztant ters,
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In elther case we have  twdo ¢olusns behaving lrregue
larly witb respect to slgns; these tso coluuns are sepa-
rated by one regular column. 7The complex roots of the
original equation can be represented by

Wiy aad  uytivg
u; and up can bte determined from the equations
2u1 + 28Uy = - a
2rfuy + 2r8uy = - a3 .
Then v, and v, can be determined from these relations
:.'12__: “12-!' vlg and rga-z n23+ vaa .
The ejuation which hus three galrs of cumplex roots,

suy  uy T ivy

is
6 .2 [“1 +ug +u31 xﬁ-\—[rlz—t- rgg-l— r52+ dujuy + 4ulU3+4u2u3] x4
-2 [aul(r221- raa )1-8u2(r121- r32)+2u3(::13+ rdz)\“BuluguS] xz’
A [r 22,‘,2 21'33
- rz 3."3 ul+r12r3 ua-’-rl 1‘2 u3]x+r12322r32 0 .

%e find ry, rg, rz by Crueffe's method and if we proceed
a3 in the case of two complex roots we must determine
u;, ug, uyz from the equatlions

2ul+ 2u3+2u3 = = B




(1)
(2)

(3)

e
{ 5:]

I 2
2(1'224- 1'32)“1-\-133(1'12-5— rsz)ua +2U‘1g+ )115 +8ulu2u3-_ - &g

-3
. 21’221732311* arlzrzzuai-zrlzrz nz, == as Py

Elimination of Uy, Uy leads to a cuble in u; which we can
solve.

Por four pairs ¢f complex roots the problem becomes
more corplicateds A system of sisultaneocus equations has

to be solved for uy, ug, u3, uge This can be solved

8e fcllows.*o

£f(2z2) = CoZ n-rclz ﬂ'%‘- cestn=2=0

where z=X +4iye W& @xpund by Taylor's saries

f(x+1y)=t’(x)+fl(x)1y-f11_{§ﬁ - flllix_%zﬁ+fxvigsl'z4+...=o
! : 4!

which can ba written

£{x) - flz%ﬁ+rwi%;ﬁ _0

1 131, a2 .V, . &
£ (x) - ¢ (azx -4 (5%1 — O We substituie
ad — t7 5!

y2=, 353 - xg in (2) and we solve for x the resulting

equation by Graaffe's wmetnode Ong of the real ruvots obe
talned will be ug, If the equatlon .nas more than one real
root, we conpute the corresponding values of y for each

real x by means of (3) and we substitute each pair in (1),

40 B, A Hausmann, "Graeffe's ¥ethod, and Complex

Roots,® The Arerican Vathematical Menthly, 43:225-29,
April, 1936,
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The palr which satlefles (1) gives the values, namely ug
and Vae For more than three perire ¢f cowplex roots we reée
peat the process.

2 . xR to ged Uy and vy

Let yo_ ry
To find uwy and ug the best procedure Is to use symmetric
functions of tha roots employipg the second and the next to
the last terms of the original ecustion which are linear
expressions in u; and uge.s. and egubstituting in them the
values for uz, tigses which have been found already.

Nunerical example
'}

Ans

28 - 1228, 722% « 26225 601z - €505 6500 .
Using CGraeffe's methcd we find that all the roots are com=
plex with the scuare of the absolute values

:1%= 13 ro®_ 10 ra2- 5,
Ve uece equaticns (1) and (2)
flx)= x6-12x% + 72x4-262x5 ¢ 601x2-350x + 650 =0
£7 (%) - 6x8-60x% +228xPaiuixd +12C2%=860
£73 (x) - 20x4-%40x° +-£64x221572x + 1202

£111(x) = 150x =720 + 1720x~1572
£V (x) - 36027-1440x +1720
£V (x)=720x-1440
£V (x) =720,
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- 2
From r ks 5

I S

yg—_—_ § = xzq We substitute thig value in eguation. (2)
together with ths values of fx(x), XIII(J&), etCees which
glves the eguation
#(x) = 32x%=192x%, ¢10x0-328x%-85x + 1€0 = ¢,
If we solve it by Graeffe's method we find thut the only
root which satisfies (1) is ones ience uz=1. we flind

'u; and up from these relations

2uy + 2uy + dug = 12
argfruy . arg®r fug ear Brofug = 650
which gives u3=2 Ug =3 e
From rlz._. u12+ 712

rp-u R +v 2
r3i_ u32+ 752 we get

v1=3 Vo = Ya==% »

Then the roots of flz )=0 are
2 & 31
331
1525,

If the squation has multiple roots, they cun he
detected and eliminated by finding the highest common
factor of £(x) and fX(x), But if this test and
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elimination have not been made hefore applying Craeffe's
method the procedure is as follows,
ALot the Encke roete of a cublc equation lLe

@y = &, b jal£0v .
‘hen the equation of the m™ powers of the roots is
55+ (Zam-,.bm}xz.‘. (agnfi- 22 p™ X ¢ agmbmz 0.
If |a] > |b]| the spproximate equation is
x4+ <ax?  aflx ¢ @%0yE _ 0
and if la|<|1|
29+ b%x2 4 20" 0 x + 850 _ 0,
if m is so large that tue doubled products of the coeffie
cients are negligible one of the ¢olumns exhibits the
pecularity that its coefficlent is not squared by another
rovte-squaring transformation, but becomes one half of the
square of its former value,

2a°"= $(2a%)2 ana 2a%0p2 - J(2aM1)2 ,
Thie change in the magnitudes of the coeffleients of one
colucn with no irregularity in sign, shows the presence
of & pair of roots equal in magnitude, but the signs can
either be egual or opposite,
Kow, éuypew f{x)= 0, a cubic, has the Encke roots a, &,
-a, then, the m*?® power of the equation is

x5+ 3672 :éagmx + as®_o ,
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In this case two adjrcent columns will lncrease ultimate-
ly at one third of normsl rate, eince 3a2m_=1/3(3am)3.
If four rocts are equal the corresponding equation
will be
x4, 4aPx%, 6a%x2 4% 2% o,
Then three adjacent columns increuse ultimately at one
fourth, one sixth, one fourth of normsl rate respectively,
Hotice that the fractions wppearing here are the recipro-
calg of the binomial coefficlents, This behavior extends
to multiplicities of any order,
Ihis behavior can be summarized in a set of rulees of
identification,4l
Firet detect and eliminate equal roots.

1 All eigns plus after the given equation and ull columns
increase &t normal rate, all roots real and of unequal
absolute values,

2 A slngle c¢olumn irregular in sign, one palr of complex
roots.

3 If two adjacent columns are irregular iIn slgn, one pair
of complex roots with modulus equal to that of the real

roote.

41 C, A, Hutehinson, "On Gractto'a Hethod for the
¥umerical Colutlion of Algebrale Zquations,® The American
¥athemptical ¥ s 62114961, Karch, 1935.
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One column increases eventually at one~half of normal
rate, two equal roots in magnitude, but unequal sign.
Two adjacent columns increase eventually at one-third

of normal rate, triplet.

Two non-adjacent columns increase at ons-half of normal
rate, two doubleits, not a quadruplet.

Three adjacent columns increase at one«fourth, one-sixth

and one-fourth of normal rate respectively, quadruplet.

One c¢olumn increases at one-half of normal rate, and none

adjacent column is irregular in sign, doublet and a palr
of complex roots,
Two non-adjacent columns irregular in signs two pairs of
complex roots with unequal modull,
Three adjacent columns irregular in sign, two pairs of
complex roots with equal moduli,
Cne column irregular in sign and one column adjacent on
each side, regular in sign, but irregular in magnitude,
doublet and a palr of complex roots with the same modull
ag the doublet.
Location and Separation of the
Roots

The real roots of an equation, f{x) =0, are said to

be isolated If one or more intervals have been found such

that each real root is contained in one of these intervals
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and no other roots of f(x) =0 are known to lie in those
intervals,

' We may isolate the real roots of f{x)=0 by means of the
graph of y=f(x). But to obtain & reliable graph it is
necessary to employ the critical points, whose abscissas
occur among the roots of £1(x) =0. Since the latter equa-
tion is of degree (n-1) when f(x)=0 is of degree n, this
method ie usually impracticable when n exceeds three.

Rolle's theorem states that between two consecutive
real roots of f{x)=0 there exists an odd number of real
roots of fI(x)=:0, provided a root of multiplicity m is
counted as m roots. A method based on this theorem is
open to the same objection as the method described above,

Descartes'! rule of v¢igns says that the number of

positive real roots of a rational integral algebraic equa-
tion £(x)=0, with real coefficients, is either equal to
the number of variations of gign in ite coefficlents or
less than that number by @& positive even integer. The
number of negative roots of the same equation is either
equal to the number of variations of sign of f(x)=0, or
less than that number by a positive even integer. This
rule of signs gives, in many cases, information regarding

the total number of real roots.
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Budan's theorem (1807) is another theorem concerning
isolation of roots of an equatiéon, In this case we let
f(x)= 0 be an integral algebraic equation of degree n,
with real coefficients, and a and b two real numbers
(a <b) neither a root of £(x)=0, be substituted in the
geries formed by f(x) and its successive derived functions
£(x), £3(x), £11(x), 400, £7(x); then the excess of the
number of variations of sign in the series when x=a, over
the number of variations of sign when x=1b, either equals
the number of real roots of f(x)=0, between & and b or
exceeds the number of roots by & positive even integer,

A root of multiplicity m ia here counted as m roots,
This method has one advantage over that of Sturm, in
that Budan's functions are easily obtalned,
Fumerical Sxample.
Locate the roots of
2%+ x4 - 4x® - x4+ 3x+1=0
£(x): x5 xb - 4x® - 3x% 3 +1 =0
£ (x)- sxt+ 4x® - 12x% - 6x 43
£11(x) —20x° + 12x° - 24x = 6
£113(x) = 60x2+ 24x - 24
£1111(2)= 120x + 24

£%(x) =120 .
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We form the following tuble

x ¢ g1 211 g8 g8 g5

ey
- - + - + - + 5
-1 - - + ¥ - + 3
0 + + - - + T 2
i - - + + T T+ 1
2 + o+ + + + + 0

From the table we see that there may be two roots in the
interval (=2,«1) and must be one root in each of the lne
tervals («1, O}3 (C, 1)3 (1,2},

The first coxplete solution of the problem of isolate
ing the real roots of an equatlon with real coefficients
was furnished by “turm in 1829.%2 1nls work was as follows
Let fo(x)y £1(x)pseey fx(x) be an ordered set of polyno-
miale in the fleld of real numbers Cubstituting x=a,

(a jo @ real number) en ordered set of real nusbers falaj,
£1(alseeey fp{a) ig obtaineds 4ll zeros present in this
et are supressed, except f(a) and £(b)s The number of

varlations in sign in passing from term to term is counted

42 L. Welsner, lniroduction to the ITheory of fcuatlon
(second editiony Yew Yorks The .uacslillan Cozpany, 1lvd7),

Pe 80,
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and dencted by Va. The bvasic idea of Sturm's method is

- to conastruct, for every polynomial with real coefficients,
a sequence of polynomial? of which it may be asserted that
for any & and b (a <b), the exact number of real roots of
f{x)=0, between & and b, is exactly equal to the nunber of
variations of sign in the series when x=a, diminished by
the number of varlations of sign in the series when x -b,

The polynomials which Sturn proved to have the desired
property were constructed in the following manner,

Let f(x), the given polynomial, be identical egual to
folx) and £1(x)=1,(x). Cn dividing fo(x) by £,(x) a re-
mainder is obtalned whose negative was fg(x)e. In the same
manner £3(x) 18 the pegative of the remainder obtained
when f3(x) ie divided by tztx). etce
The polynomials f,(x), f,(x), fa(x)aa. are called Sturn's
functions for the given polynomial f(x)., The calculs-
tions terminate naturally when a remalnder le obtained
which 18 & noa-zero constant whose negative ls the last
Sturm function. Turing the passage of x from & to b, the
only cases in whieh there can be any changes in the nume
ber of variations of sign of the meries of Sturn's

functions are the followling:s
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1l ¥hen x pagses turough a value siich causes one of the
functlions f,(x), £,{x)ess to vanlsh
2 %hen x pasases through a root of f{(x)~ 0O,

In the case of equal roots f,(x) and g3(x) have a con~
mon factorj hence f,(x), the last of “turm's functlons,
is not a nonegzero constant, but the grestest common divie
sor of fo(x) and £;(x).

The advantage of Cturm's method 1s that it gives al-
ways the exact number of real and distingt roots of
f{x)=0, betwsen, a and b,

Funerical Hxample

3 2

¢ +4x%4 4x - 3=C,

locate the roots of x° - 4x
We f£ind first £*(x) of f{x)=0 and divide 2ix) -~ £.(x)_ .
2 (x) tx)

Then we proceed to find the rest of Sturn's funce

tione according the rule already mentioned. To avoid

fractions, we may multiply fo(x) by & positive constant

before dividing by fl(x), and multiply any fJ(x) by a

positive constant before dividing by fj,;(x). Aalso,

we can resove any constant pogitive factor from fJ(x)

before uaing it a8 a divisor,

folx)=xt - 6x° £ 4x2 4+ 4x - 30

£,(x) = ¢(x® = 23, 2241

f;{.'(x):ll(:m2 - 5% +2)




66

f;r,(x) a‘(ul{}x -\'3)
fQ(X} = » 288 ,

%e give & table of eligns for the indicated values of % of

Cturm's functlons

x falx]  f1(x] fa(x)  fa(x)  f4(x)

v

-3 a3 - t + - 3
-2 " - ¥ + - 3
51 + - t + - 3
0 - - + + - 2
1 + + - - - i
2 &+ + - - - 1
3 + T+ - - - 1
‘ N + . - - 1
s + + + - - 1

Accordingly, we have one real root between (-1, 0), another
real root between (O, 1) and two imaglnary roota.

fometimeas Fourler's theorem is useful ln separating
roota of an equation, Fourier's theorem etztes that if
f{x) =0, is a rational integral algebrale equation, which

has one and only one real root between a and b (a < b},
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and if fl(x3=:ﬁ Lag no real root between a and b, and also

rII(x)=:G has no real root between a and by then lewton's

pethod of agproxixzaticon will certalnly be successful if

it be begun and continued from that bound for which f(x)

and £11{x) nave the same sign. Cases must eccur in

practice where the roots of an equation caanot be sepae-

rated by any of the well « known easier methods and where

Cturm's functions involve too much work, In such cases

a combination of Fourler's theorem and Lagrange's method

of approximation 1s very useful,

Xumerical axamplc.‘a
217 - 35215, 11x3% . 1000x20+ 250025 - 151x% 1 <0,

At first application of Fourler's theorem shows that there

are

Two positive rootss one between (1, 2) and one between

(5, 6)e

Three negative rootst one between (0, -1), one batween

(«l, =2) and one between (-6, «7).

A doubtful interval (C, 1) in which four changes of sign

are lost and which consequently include four more possible

positive roots,

43 L. BEo Yanlove, "An HExample ¢f the Usefulness of
Fourler's Theorem in Separating the hoots of an Eguation,"

Irhe American Fathe—atical onthly, 1%t 8-9, January, 1912,
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How, to dispose of the doubtful interval we let b S

u
and we obtain an equation in uy 1

w7 - 1610 %oculm- 1000w, 7+ 113)° - 350) %+ 1= 0.
Call 1t Fa(uy )

Fourier's functlions of Fa(ul) give for u, =1 two changes
of sign and for u;=2 no changes of sign, Then F,(u;)=0
may have two roots between 1l and 2, but has no other posi-
tive roots greater than unity. ZXow the doubtful roots are
reduced to two. To dispose the remaining palr we set

u1=1+%a_£ and we got an equaticn in uy which we call

Fg(ug). This equation can have no positive roots greater
than unity. The four originally doubtful roots are all
imaginary.
Remarks.,
The auxlliary equations were concerned only with positive
values of the variable greater than unity.
Negative roots of the or;ginal equation are more conven-
iently located by substituting -y for x and seeking for
the positive roota of the resulting equation,
Fallure of the method is due to equal roots.

Concerning complex roots Sturm's Theorem gave a

method for determining the number of them, but not their




€9

valuess This was revealed by & general theorss of a
great French mathematiclan Augustia Louls Cauchy
(1789-1857) giving the number of roote, real or complex,
which lie within a given cantéux,¢ﬁ
17 the roots of an equation f{(x)= 0 are under coneldera-
tion the theorem states that if W is the nunber of roots
in the complex plane within a closed ¢lreult 4, not

paselng through any of the roots, then

HZE&’«T f &?{M the integral beling
if fix) O taken around A,

W¥hen two real roots of an integral rational equae
tion are nearly equal, 1t is often difficult to separate
thems This difficulty 1s frequenily due to the faot
that we cannot readlly approximate the roots by Newton's
methode The echeme described below for iseolating such
roots le usually sﬁtisf&ctary.45
Illustration.

44 R, Co Arcnibald, "Cutline of the History of

Hathematies," The American Mathematieal Loathly, 56t 1-103,
Januarys 1949,

45 Z. Co Kﬁunady, *aauaerning Eearly Zqual hoots,"

zggl erlean i s 488 42«43, January,
1941,
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We consider the quartie (Lovitt p. 138)
(1) f{x)=x%+8x® - 70x% - 144x+936=0.

We yeadily find that

£(3) =171

£(4) = 8

£(58) = 91,
By Descartes' rule of signs the equation f£{x)=0 has two
or no real positive roots. Hence we conclude that if the
equation has any positive roots they amre near x=¢4,
We shift the axes horigontally by setting x=(y+4),
We obtain

(2) tly) =g+ 2455+ 122y% = 64y« 8 =0,

We discard the two first terms and solve the quadratic
equation obtaining

yt=-208 X, = 4206

y1i- 219 x, = 4,319,

1f £(y) has any positive roots, they lie inside the in-
terval (yl ,¥g) ®ince the first two terme are positive
for every y>0. Hence, f{(y) cannot be zero except possibly
for values of y, between (’1' yg) that make the quadratic
negative. We can get better results by translating the

axes by letting y< 3+a where y; < e<yg .
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Usually one would take a =(y;+ y.) a&pproxinately.
If we take a=% we get

a(z)=1z* 252 3 curzsn® g5z 1o,
w 258
Trom thia wa obtala by dlescarding the first two ternms
z i =-u037§4 or xl= C.QQBGﬁ
2 2= - 03579 xae 4.24381,

Hence if G z ) =0 has any real roots near gero, they lie
outeide the iaterval (zz’z g)e Thus if £{z.;= 0 has any
‘poeltive roots, they lie inside the interval (xy, x)
and outslde tue lnterval (x&, :&4) where

xl < Ry < Xy < XKge

Yo decide the question we flind the sign of G(p) where p
13 any value between %4 and Z,, For example we find
G(eel05) < 0 or £{4.,245) < 0, Thias proves the existence
of two positive real roots of f£{zx)=0, A3 & matter of
fact, it 1s evident that G{ 2 )=0 has a root betwsen
zero and z p becauss G(0) >0 and G(Z,) <0, aince

zz( 2 +28) < O for negautive values of 2 pear goro and
the quadratic venishes at Zg, 0Ginee z) and zp are
very small, it follows that Xg and x; are close approxie

mation to the $wo roots Iin question.




These roola are

Ry = 4e24254

Ry = 4e24622
Nad we itoken some value for e, & little different from
«25, wo might have found that the roots of G(z ) =0
reated lnslde the interval (23,2,)s Howsver the values
cbtalned for Xz and xg would have bgen elose ayproximie
tions to the roots R, and Ry of £{x)=0, and the point
- x 2(&5‘*) would very likely have separated R) and Rge

Incidentally, tble valus of x showld be & very close

approximation to the abscissa of the minisus point in
this nalghborhood,

Graphlcal and Meehanical dethode of
Eolution
ne ¢f the princlip@l) uses of the reectangular Carte=
sian co¢rilnate eyiten s the grapghlcal representation
of an equation y=f{x) where the function ig a polynoe
mial with real coefficlentss To ¢onstruet this graph,
we ageign to % & serles of values und gompute the QOre

responding y's. It iz ususlly comvenient to SP8TE D

agslgning integral values of x, %o plot the resulting™
pointe and then to spproxlmate for fractional values of

% whore the gensral shaps of the curve does not acen
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already to be clearly indicated. Considerable infor-
mation about the roots of an equation £{x)= 0 can be obe
tained by inspecting the graph of y-f(x). These roots
are the x's of the points where y- 0, that i{e, the ine
tersections of the curve with the x « axis, f(x) ls the
slope of the tangent of y=f(x)¢ In studying the shape
of the curve, it is convenient to think of it g8 traced
with x varying from « co (numerically large negative nume
bers) t0 + eo (numerically large positive numbers),
The curve rises or falls aecording as f£1(x) is positive
or negative, If £3(x)= 0, the tangent is parallel to
the x - axls,

It is useful %o plot the curve y £3(x) either on
the same axes aB y= f{x) or with the same y - axis and
different x » axis, Cimilarly for the higher deriva-
tives. These derived curves are very useful in bring-
ing out properties of the function because they are
interrelated.

Graphical Method for an ath Degree Equntlen.¢6

We take any numerical equation of the form

Anxn+ ann"l_'_ cnxn‘%_ N nx rnn =0

46 ¥, H, Blxby, "Graphical Eolution of Bumerical

Equations.® The American Eathematicel Konthly, 29:344-46,
October, 1922,
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where A, ls any positive nuuber either whole vr Jractlione
s8l. ©n & blenk sheet of paper, we start at any assuned
.polnt.x s and using sny convenient scale, we lay off in
8 downward direction a distance A,, from o/ to &,

through a, we draw @« perpendicular, and loy off upon 1t,
with the same sgale as before, the value By; ( to the
right if By is positive, to the left if B, 1o negative)
through the end of 3, we draw & perneniicular to By upon
which we ley off the value of Cp, upward if positive,
downward if negatlvey and 80 on., For each new line the
poaitive direction turne through an angle counter - clocke
wise, We designate w the end of the last line, Then we
bave a rectangular contour, that is @ broken line all ¢of
whose angles are right angles, of n+ ) sldes connecting
A and we

Yow starting ngnlin at o« , draw at randon any stéraight

line cutzlng Bn ln some polnt,




857 b, throngh b we drew 3 perpendicular to o/b cuttlng
Cn in some peint ae vd, and 20 on. ow we kave u naw
rectangulayr eovntovr ¢f n gidess 1f the n*s giae pasgas
tirouch the point w, then a) taken with its eign changed,
is & root of the given quéiicn. ihere will e @s many
such cantours Of n sldes as theye wre real roocts to a
given equaticn,

Cuppose only ons root ig found by tae above method,
glven ag one new rectangulsy Cﬁﬂtﬁurgtibblboocw, of n
sides; call its first solde Ap.z, ite geccnd DBy.; and so
ony this new regtanguler contour, ﬁhbla».w==un‘1,
Bpeiseee €tce represents the ecuaticn of degree (a-1)
cbtained by dividing out by the roet.s ve trest tue
new gontour of n sides like the preceedlang, obtaulaing
o new rectangular contour of (nel) eides whose first

)
§ then 3%,

teken with ite slgn chunged, wiil be anoitusr root

vertex ig at sozme peint € upen the line B

of the given equatiovn, etce <Lhis mebhud is ezgvoliaily
spplicable to cases where the desgired rooits be be-
tveen & § and ¥ 53 if the roots of the given eguation
lle beyond these limite, the glven equation may be

traneformed into another whose roots will be between




The Figure is for a = 3.




(1)

(2)

(3)

(¢)
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between the sbove limite., In the caze of & ~uwdratle,
represented by the lnner contour, the roots, If real,
gay be found by meane of & clircle onyw as dluncter,

ag landicated In the figure,

Yechanical Solution of the Cuble Buuationes'

%e take the general cubie ecuation

u3+Au2+ Bu+C=0 and by letting u—-v - A we
reduse (1) to 3

Y4 8 + b= O,
By the following rational traansformation v_ kx we get

x° e m(x+1)=0 wherem - « 83 ,

bﬂ

Yow we golve {3) graphleally by replacing (3) by the set

y=:x§

y-n{x+1) vhose ainultansous valuss of x also bew
long to {3)e o we have for all eudbles, o fixed curve
wnd a varioble line. Tut thls xgkichle line nas tue
dlatinct virtue of aImeé gua&inghtnraugh tlie point
(=1, C'e Thnis Is the feuture tusb prompls iue snechanical

srrangenent ehiovn. a4 cardboard atrip ls atisenhes tu the

47 B, Co Yatee, "4 Nechaniecal Tolutlun of the Cuble
Tnuation,® Yathemstice Teacher, 32:216.




A Neahanical Solutlon of & Cuble
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plane on which the curve y::xﬁ is drawn, so that its
straight edge rotates about (=1,0), Its position, of
course is determined by the slope m:ﬁi meagured

2
b
directly upon the vertical scale, The root x is then

determined by the perpendicular dropped from the inter-

section onto the horizontal axie,
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JMechaniecal Solution of an Equation of

nth Dasree‘s

The mechanism ¢onslists of a maln bar thirty-two
inches long, to which sre hinged three arms esch about
eight inches long, the distance between the hinges belng
equals A lighter connecting bar ls attached to the free
ends of the arms in such a manner that these arms ale
ways turn through the game angles On the main bar, and
also each of the arms, are beveled cleats along which
grooved slides moves freely. 3ach of these glides on
the maln bar carrlies an eye headed socrew placed so that
when the instrument ls closed and these slides are at
their gero polnts, the eyes are in line with the pins
of the hinges. ZDach slide on the arms carries a emall
drum that is held firm by means ¢f & milled nut. To
each of the drums 1 attached a small, flexible, in-
elustic cord, which pasges through the eye carried by
the adjacent slide on the malin bar, and ls faastened to
the next sllde below on the maln bar, the lower end of

the last cord belng made fust to the main bar, The

48 A, L. Candy, "A Xechaniem for the Solution of

an Equation of n'd Degree, "The American Vathematical
Yonthly, 27119599, May, 1920,
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ftirst slide is held in place by means of a small iron pin
inaerted in holes in the maln bYar. 4 graduated c¢ircular
scale is placed under the first arm, from which the roots
of the eguation are read. The Bcale for readlng the
positions of the slides are marked off on the left side
of the main bar., 7The lnstrument may be uged in a vertical
position, 20 that the lengthening of any string by unwinde
ing will cause some of the slides (o move downwards by
their own welght, or lying on a table and operated with
both handse
Let us solve the equation

10x° + 24x% 4 9% « 7= 0,
The process is as follows. First, close the instrument,
wind up the drums until each slide comes to the gzero
point of its ecale, and all the cords are taut. The arme
will now move freely through an angle of 0%, with all
the cords continuously taut. Now move the firet slide
ten units (the coefficient of 33) dowan..rd, by moving
the iron pin which always holds this slide in a fixed
position; unwind tweanty-four units {(the coefficlent of xa)
from the cord wound around the first drumg likewise, un-

wind nine units {coefficlient of x, from the second drumg
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elnce the constant term 1s negative, wind up the last
drum until the last cord is shortened by seven units,
Fow turn the arms through some angle until all the cords
become taut, with ithe glides on the erms 80 adjusted
that the cords attached t0 them shall be at right angles
to the arma, The reading on the ecale unler the first

arm now shows one root of the equation to be .388. The

exact root 48 (\/3 =~ 1) .
2

The author has called the attention to the followe
ing limits of the mechanism

1 The mechaniam will find only & root of the equation that
lies between 0 and 1.

2 The equatica to be solved must have the constant term
negative, and all the goefficients positive.

3 An equation of first degree can be solved by using only
the upper or lower arm, A&An equation of second degree
can be solved by using two arms, e€ither the upper two
or the lower two, For a cubie equation three arms are

needed, and B0 OGN




CHAPTER ¥

Ferrari‘'s Descartes' and Zuler's' Heducing Cubics
Cbtained from & Tingle Quadratic Funotion of the
Roots

In chapter 1II, the solutions of the general quartic
equation as discovered by Ferrari, Deacartes and Euler
were presented, In each casa the solution depended on
the solution of a ceriain reducing cubic. Algo in
- chapter I11 §¢ wags shown that by uslng certaln quadratic
function of the roots of the quartlie & solution by means
of symmetrie functlone could be obtained. This latter
method alzo gave rise to & reducing cublec that depended
on the choice of the quadratic function of the roots,
With a proper cholce of this runﬂtian_the reducing cubles
found by Ferrari, Descartes and Buler were obtained. 1In
this part of the paper 1 wieh %0 prove that all three of
the funetions chosen in chapter I11, to produce the
saveral reducing eubles, are linear funecticus of ¢ s
(where ¢+ =x;xs XzX%y, and and are arbitrary quanti-
ties in the domaln of rationality) and that, by a proper
cholce of and all three solutions of the quartic

can be obtainaed.




(1)

(2)
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Ve amsume the genaeral qusrtle In the form
axt+ 4bxP+ €ox® 1 ddx+e -0
and let xj, Xp X3 and x4 be its roote,
¥e conalder the glven function Q =At + /3 where
t =x1x2 + XzXge Under the twenty«four eubstitutions of
ng, Q takes only three values.

Q= oty + B where by =x1x3 + x3%4
R =tz + f ty - x1x3  Xpxy
QS: oLt!a-t-/‘i ts :xlx4+32x3 .

Ve let 43, Qg and (3 be the roots of the resolvent
cuble equation
5P =S e = Q8gy - Qg =
Ve compute S_ K1y S Q343 and §3Qg43 which are alementary
symmetrie¢ functlons of the roots of the quartic. The
roots of thie cubie¢ are expressed in terms of the coeffie
clents of equation (1) .
S Gy=L0 )+ 3 3
SH5=22 [ ¢ 5 -4 Q4] wp[@} ap
“‘1‘*‘3‘*3—0‘[ @. T4 +G‘ ¥ m%/s[ﬁ 40|+

A F L]
where _
(=" .4;%:231 @ - 5%:2213‘333

(2: g_ﬁ_: Z 3132 W - .&: xlxgx3x4




Perrari's Case
Hia resolvent cuble is of the form
(3) 4a%0% - (se - 4bva 3c2)abrace +2bed ~ 8d? - 0b® - o%- 0
From (2) and (3} we have the following system of eauations
(4) A (2+3 B=0
(8) d‘?[ﬁ (g = ¢ ﬁ]-r 20%( GE}+3(§ = «{ae » 4bd +302}a
(8) 5[ ~2 2,4 2 4 L2 )+3_
2@ o+ - 4G <ALA G - ¢ @Rt R A

-[aee-ra bed - adz - ﬁ'ba - c3] .
Solving (4) and (5) for « and (3 the roots are,

ﬂ:ﬁ\/a d\-:ug__élf_‘:
and ﬂ:-q\/& Dlzaf'

Next, we check the two palrs of roots in ecuation (6).
Thia yields the fellowlng expraession
2a 8 a[ace +200d - 2d% - 612 . aﬂz [ac.e +2bed - ad® - Obzoosj
from which
(n RaVa=lse But the left - hand side of (7) is
equal to 4d,

o 4otz 1
A=%F « Substituting this value in (4) we get

- - 0.’1’ - g_.”
ﬁ %‘" F 2a )
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Descarten ' Cace.

The values just found for L and ﬁue the sawe for
Leacarien' cafe¢ because hls resolveat ocuble ie of the
suse form ae that of Ferrari.

Euler's Case,
Hie resulvent is
(8) 9% sadfy (s « g21i0~ g% - ¢
where ’ ¢

¢ ={a%d - Sabe +2b°)

H=(as = &°)

1={ae ~ ¢bvd+3e?) ,

From (2) and (8) we can write
(9) Al2+3h3= = 34

(10) o(g['ﬁ, (3 =4 ﬁ]+g.¢,ﬂ(ﬁa}+5(§g= e . 5%1

(1) B[ 3% BT R4 [ e ] up[2]
w3 - [~ ]

#e obtain two palrs of roots by solving oquations (9)

and (10)

Flrat pair of roots (,(_.,gf, /; ce 228 ¢ 2.
T4 H

fecond palr of roots 2 ba °

- ™ 8 - = 8
L= AT ET




The first palr satisfles identically ejuation (11),
To ceomplete the work we know thng £ 43 gfgl% and
Q13,95 can be expresced in terms of the goefficients
of equation (1) and that the G's nare the rovois of a cuble of
the type
Ayafﬁya_,- Cy+D =0 which ¢an be solved, Once we
know the Q's, we con express the t's in terms of y's,
J'8 and 3 's, snd write a quadratio ecuation of the form
Rz ?'M@z +T =0 whose roots are 2 1= %1% and
Z g =%sXge
To f£ind (x3%5), (‘xaxa), (x) +x,) and (xa-c-x‘)

Ve write the following ecuations.

(12) %, %a(x3 +%4) +x374(x) +22) = qF-- 4
or Zilxa +xe) + Za(xy+xz) = - .ﬁ%

Solving (12) and (13) for {x;+xy) and (x,+x,) and
knowing (x%;) and x;xq) we can write two more quadratie
equations whose roots are x; and xp, for one of thenm,

and x4 and x4 for the other ona.
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