

A Thesis

Presented to
the Daculty of tie College of nrte and Sciomses The Univeraity of Houstom

In pertial Fulfillment of the Requirements for the Degree Hister of Selence in kithomatice

by
Hortensia Vargaa
June 1852

HIGHER DRGRER RQUATIONS
A. Thesis
Presented to
the Faculty of the Department of Mathematics The University of Houaton

In Partial Fulfillment
of the Requiremente for the Degree Haster of Science
by
Hortensia Vargas
June 1952

HIGHES DEOEDE RUTATIOK

This thesis is sumary of the history and solutions of alcebralc equatlons whose degree is equal to or greater than three, together wth a proof by the author that all three molutions of the quartle may be obtained by considering two different linear functions of a certaln expresaion in the roots of the quartic.

OUTLIME

I Brief History of the Solution of Equations Page
1
A Equations in sinclent Times 1
Babyloniana 1
Greeks 2
Arabs and Persians 3
Chine and Hindus 4
Medieval Interest 5
B Rquations in the XVI - XVII and XVIII centuries 7
Cardan 7
Tartaglia 7
Ferrari 8
Deccartes 11
路uler 11
C Bquations in 緼odern Times 12
Abel 12
Galois 12
Klein 23
Hermite 13
Sylvester 13
II Solution of the Cubic Equation 14
Cardan' Solution 14
Vieta's solution 15
Hudae * Contribution 15
The Irreducible Case 18
Solution by Symmetric Functiona of the Roots 21
III Solution of the Quartic Equation 24
Secrari's Solution (1540) 24
Descartes' Solution (1637) 25
Buler's Solution (1770) 26
Solution by Symmetric Functions of the Roota 27
Solution by Means of Twenty-Four Valued Function 29
Continued Page
IV Hlgher Degre Iquations 33
A Solvability of an equation of degree n and Galois Theory 33
B Numerical wethods of Approximation of the Roots of an squation 36
Talse Position 38
Rule of Mean Numbers 38
Golden Rule 38
Methods of Exhaustion 39
Vieta's Approximation 39
Newton ${ }^{\text {a }}$ thethod (1676) 39
Modification of Nevton's Method 40
Lagrange Method (1767) 41
Horner's Method (1819) 42
Hodification of Horner'g Method 46
Graeffe'method (2837) 48
C Location and Separation of the Roots 60
Descartea' Rule of Signs (1673) 61
Rolle's Theorem 61
Dudan'a Series (1807) 62
Sturm"s Functions (1829) 64
Fourier and Jagrange kethod (1831) 66
Cauchy's Theorem 69
Nearly Zquad Roots 69
D Mechanical and Graphical Methods of Solution 72
Cartesian Coordinates 72
Graphical Solution of an Equation of degreen 73
Mechanical Solution of Cuble 76 76
Mechanical Solution of an $n^{\text {th }}$ Degree Equation 78
V Ferrari's Degcartes' and Fuler 's Feducing Cubics Obtained from Single quadratio Function of the Roots 81
Brief lilatory of the solution of 3quatione
sabyloniant.
The alefora of the Dabylonian was emplcical as can be anowa in their at bondenine solutione of cuble equatione with numerical coeficielenta. t the equations solved by Batjlonane, expresegd in modern notation. were of the type

$$
x^{3}+p x^{2}+q=0
$$

mhleh could be reduced to the form

$$
y^{3}+y^{2}=x
$$

by multiplylag the oricinal equation by 1 .
and lettint

$$
y \equiv \frac{x}{p} \text { and } x \equiv \frac{-a}{p^{3}}
$$

If the resulting r was pasitive, the vilue of y, wnd so that of x, was obtalned from tabulated values of $n^{3}+n^{2}$. provided that the r ans in the table. It is poesible trat the acribe proceeded from certain tabuleted r's to conetruct the quatione, so that they could be solvable.

1 T. T. Bell. The Derelopment of igathematich (aecond edition; tem Yorki icgraw-hill Duok Company. Inc.. 1945i. p. 36.

The Babylonian reduction of cubios appears to be the first recorded inatance of this method which was again used in the sixteenth century by the Italian algebraista and latter on by Vieta, ${ }^{2}$

Greeks

Among the Greeke the oldest type of cuble equation of the form $x^{3}=k$ was poselbly due to Menaechmus (350 I. C.). ${ }^{3}$ He solved this cubic by finding the intersection of two conics. Next, Archimedes tried to solve the problem by cutting the sphere by a plane so that the two segments shall have a given ratio which reduced to the proportion

$$
\frac{c-x}{b}=\frac{c^{2}}{x^{2}}
$$

and to the equation

$$
x^{3}+c^{2} b=c x^{2}
$$

According to Eutocius, Archimedes solved the problem by finding the intersection of two conics, namely the parabola

$$
x^{2}=\frac{a^{2} y}{c}
$$

[^0]and the ngperbola
$$
y(c-x)=b c
$$

Dlophantua solved a single cuble equation $x^{3}+x=4 x^{2}+4$ In connection with the problem of finding a rient angled triangle auch that the area added to the mypotenuse gives a aquare mhile the perimetex is a cube. Ris method is not eiven, but poselbly he eaw that

$$
x\left(x^{2}+1\right)=4\left(x^{2}+1\right) \quad \text { so } x=4
$$

Arabs and Persians
The problem of Archlmedes wag taken up by the Arabs and Pergians In the alath contury. The equatione were aolved by geometric methode. Alkayam was noted ror hif geometrical treatment of cubic equations by which he obtalned a root as the abscisad of polnt of intergection of a conic and a circle. 4 He considered equations of tho rollowing form in which and o sand for pooltive integerg.
a) $x^{3}+b^{2} x=b^{2}$ whoae root he said is the abscisea of point of intersection of $x^{2}=$ by and $y^{2}=x(c-x)$

4 W. F. Ball, a Ehort sccount of the History of Yathenaticg (Mew Lorki Line machilian Company, 18.27). p. 159.
b) $x^{3}+a x^{2}=c^{3}$ whose root is the abscissa of a point of intersection of

$$
x y=c^{2} \text { and } y^{2}=c(x+a)
$$

c) $x^{3} \pm a x^{2}+b^{2} x=b^{2} c$ whose root is the abscises of a point of intersection of

$$
y^{2}=(x \pm a)(c-x) \text { and } x(b \pm y)=b c \text {. }
$$

Chinese and Hindus
The Chinese aleebraists did not pay too much attention to the cubsc quatico. Their interest was in applied probleme which led to numerical equations. The numerical cubic firat appeared in a work by Fang H 's iaot'ung about 625 in relation to problem with a rightancled triangle. ${ }^{5}$ He used an equation of the form

$$
x^{3}+a x^{2}-b=0
$$

Cther Chinese alebralets treated cubien, but it wes not until the thirteenth century when the Zuropean influence was powerful, that any attempt was made by Chinese to claselfy third degree equations. Between 1662 and 1722 nine types of cubics were clven

5 D . R. Smlth, History of liathematics (Vol. g New Yorks the Ginn and Company, 1825), p. 456.

$$
\begin{array}{ll}
x^{3} \pm b x=c & x^{3} \pm a x^{2}=c \\
x^{3} \pm a x^{2} \pm b x=0 & -x^{3}+a x^{2}=c
\end{array}
$$

But in evary case the solution mas numerical and only a single poaltive root was given.

The $\mathrm{Hind} u \mathrm{~g}$ were not interested in cublce. Bnäskara (1150) Eate the following exangle

$$
x^{3}+12 x=6 x^{2}+35
$$

In which the root 5 was found by trial.

Sedlaval Interest
Buropean cholars of the Middle Ages attempted to solve cublea. Flbonaced, for exargle, atacked the probLem In his jlon of 1225. Fald that acnolar of Falermo, proposed to kisa the probled of finding a cube Which, with too squares and ten roots, ghould be equal to 20. The problen was solved by thls equation

$$
x^{3}+2 x^{2}+10 x=20
$$

Another atteropt was made by an anonymous writer of the thirteenth century whoge work has been described by Libri. ${ }^{6}$ He took two cubics, one of the type ax ${ }^{3}=c x+k$ and another of the type $x^{3}=b x^{2}+k$. His method in the

6 D. E. Smlth, Hetory of "athenatles (Vol. 2 New York: The Ginn and company, 1925,)p. 457.
first case mas

$$
\begin{aligned}
& a x^{3}=c x+y \\
& x^{3}=\frac{c x}{a}+\frac{x}{2} \\
& x=\frac{c}{2 a}+\sqrt{\left(\frac{c}{2 a}\right)^{2}+\frac{x}{a} \quad \text { which is the }}
\end{aligned}
$$

root of equation $a x^{2}=a x+k$; but not of the given equation. His method in the econd equation was equally fallacioue.

Pacloli In 1494 stated that the general solution of a cublo wac imposalble. Fudolff (German) in 1525 suggeted three numericel equations each ith one integral root and each belng eamily solved by factoring. Mis method in modern gmbols is as follows.
Given $x^{3}=10 x^{2}+20 x+48$
Add 8 to both idea and divide by $(x+2)$

$$
\begin{aligned}
& \left(x^{3}+8\right)=10 x^{2}+20 x+56 \\
& x^{2}-2 x+4=10 x+\frac{56}{x+2}
\end{aligned}
$$

Eplit the two members of the equation

$$
x^{2} \cdot 2 x=10 x
$$

$$
4=\frac{56}{x+2} \quad \text { which are athisited }
$$

$$
\text { by } x=12
$$

Similar oolutions of ogecikl cagez wafe fond in everal woris of the efxteenth oentury, notably in a work by Nicolas petri publlsted ot Aneterdan in 1567.

Cubic equations were considered by Dloptantus about 300 m. D. but the 14 at Ruropean mathenaticiano to elve a complete alution of them belonged to the italian echool of Bolorna at the time of the fonalesance. They were eclpto Ferro, Nicolaa Fontana, urnamed rartaclia, and Cardan. The solution which usully beara the name of Cardan, was realy duo to partachis. 7 perra coived ciablc equations of the form $x^{3}+a x=b$ poetcibly busire his work on Arab courcea. Ne did not reveal his metrod to tice scholare: but he told the secret to his pugll Antoado Faria fior. come time later rartacila and pior proposed to meet in a mathematical contest. Tartaglia devoted most of his tine in devielne method for solving cubles In which the firgt degree term was niseine. cortagila eucceeded In the contest. Cardan acked Taxtactia to ahow him the alacovery, but he refued. Eo, Cardan inm formed Tartuclia that wealthy noblemen wes Interested

[^1]In 1t. Cardan arranged meeting at $\begin{gathered}\text { milan between the }\end{gathered}$ mathematiolan and hia would be patron. On remching MIlan, Tartaglia found that it wag all hoax, but he was pereuaded to give Cardan the information he deaired, pledeing him to secrecy. Tartaglia claimed that he divulged the entire theoryi but Cardan publiahed a treatment of the cubic covering Tartagila's contributiona as well as other pointa in his Ars Magna (1545). When Tartaglia protested, Ferrari, Cardan' most capable pupil, clalmed that Cardan had recelved hia laformation from Ferco. Carden was the firat to exhlbit three real roots for any cuble. He advanced begond the mereformal golution in recognizing the Irreducible case (all roots Irrational) when the radicals apparing are oube roote of complex number: The firgt to recognize the reallty of the roote in the Irreducible case wan R. Bombelii in 1572.8

PIbonacci mae a true mathematician far ahead of hia time. ${ }^{9}$ Being unable to give an algebralc solution of the

[^2]ecuation
$$
x^{3}+2 x^{2}+10 x=20
$$
he attempted to prove that geometrical construction of a root by stralehtedee and compase alone was Impossiole; but ho could not have succeeded with what was known at his time. So he proceeded to ind a numerleal approximation to root.

Although Cardan reduced hie particular equation to forma lacking the term in x^{2}, it was Vleta who began Wth the general form of the cubic ${ }^{10} x^{3}+p x^{2}+q x+r=0$.

Conceraing equations of fourth degree, Abul-Faradeh referced in his Finciet to a problem which involved an equation of the type

$$
x^{4}+p x^{3}=q
$$

which could be alved by the interaection of the hyperbola $g^{2}+a x y+b=0$ and the parabola $x^{2}-y=0$ but the vork in which the problem appeared wat leat and no one knowa what he did for a solution.

Woepoke, French orientallat, has called attention to an anonymous manuscript of an Arab or Persian algebraist in which ia given the blquadratic equation

[^3]$$
\left(100-x^{2}\right) \cdot(10-x)^{2}=8100
$$

It was solved by taking the intersection of ($\mathbf{1 0} \mathbf{- x}$) $y=90$ and $x^{2}+y^{2}=100$. But there is no evidence that the author was concerned with the algebraic theory. ${ }^{11}$

The problem of a blquadratic equation was laid promInentiy before Italian mathematicians by Zuanne de Tonini da Col in 1540 when he propoed this problem. Divide ten Into three parts such that they shall be in continued proportion and that the product of the first two shall be six. He gave this problem to Cardan with the statement that it could not be solved, but Cardan denied the assertion, although he did not solve it. He eave it to Ferrarl, who, though a mere gouth, solved the problem.

Vieta (1590) was the ifrat aigebraist after Ferrari to make any noteworthy advance in the solution of the biquadratic. ${ }^{11}$ He began with an equation of the type

$$
\begin{aligned}
& x^{4}+2 a x^{2}+b x=c \quad \text { Wrote } 1 t a s \\
& x^{4}+2 q x^{2}=c-b x
\end{aligned}
$$

He added $q^{2}+\frac{y^{2}}{2}+y x^{2}+q y$ to both gides, made the right
side a perfect qquare, and from there on he followed Ferrari's method.

11 D. T. Smith, History of Yathematics (Vol. 2; New York: The Ginn and Company, 1925), D. 467.

Yext, Descartes (1637) took up the question of the biquadratic equation and succeeded in effecting a mple solution of problems of thle type $x^{4}+p x^{2}+q x+r=0$.

Euler (1770) solved the general quartic by a method differing from that of Ferrari. This unexpected success led hin to belleve that the eeneral quintic equation was solvable by radicala.

Concerning the quintic equation, the cerman \mathbb{Z}. F. Tschirnhausen (1651-1703) applied a rational aubstitution to remove certaln terme from a eiven quation ceneralizing the removal of the econd term from cubles and quartica used by Cardan, Vieta and otners. A century later, 3. S. Bring (swedish - 1736 - 1798) reduced the eeneral quintle to one of ite trinomial forms $x^{5}+a x+b=0$ by a Tschlrnhauzen transformations ith coefflcients involving one cube root and three equare roots, a result of capital lmportance in the trascendental solution of the quiatic. ${ }^{12}$

Lacrange ($1770-1771$), instead of trying to colve the eeneral quintic by ingenious tricks, examined the

[^4]extant solutions of the equations of second, third and fourth degrees in an attempt to discover why the particular devices used by his predecessors had succeeded. He found that in each instance the solution was reducible to that of an equation of lower degree, whose roots were Linear functione of the roota of the glven equation, and of the roots of unity. He thought that it was general method; but on applying to the general quintic, Lagrange obtained a aextic which meant that the degree of the equation, ingtead of belng reduced as before, was raised.
rhe firat noteworthy attempt to prove that an equation of iffth degree could not be solved by algebralo methode was due to Ruffinf (1803-1805) al though it had already been consldered by Gauss. 13

The modern theory of equations ia commonly sald to date from Abel and Galois. The latter's posthumous memoif on the subject established the theory in a satiefactory manner. The Norwegian mathematician Abel, as a atudent in Christiana, thought for while that he had

[^5]aolved the quintic equation but he corrected himself in a parphlet published in $1824 .^{14}$ Thla wae the famous paper In which Abel proved the imporaibility of solving an equation of ifth degree by radicals, a problem which had puzzled the mathematicians for many years.

In 1884 Klein (1849-1925, Geman) reviewed all the labors of his predecessors and unified them with respect to the group of rotations of regular leosahedron about Its axis of symmetry. In other words. Klein handed the subject of the quintio equation in simple manner by introducing the loosahedron equation the normal form, and showed that the mothod could be generalized so as to embrace the whole theory of higher degree equations. 15

Other contributiona to thia subject ere aranacendental solution of the quintlo given by M. Hermite and Sylvester' transformation of the ifth degree equation.

14 D. J. Struik, A Concise History of Hathemetieg (Vo1. 2; Yev Yorky Dover Fublication Ine. 1948). p. 226.

15 D. T. Smith, History of 爱odern sathematice (New York John Wileg and Sone, 1906), p. 21.

C1103TMTII
 Solution of the Cable Equation

Cardin's Solution
In moving the cubic, Cardin first eliminated the term of second degree by rubettuting

$$
\begin{aligned}
& x=y-\frac{0}{3} \quad \text { in the central cubic } \\
& x^{3}+p x^{2}+q x+x=0
\end{aligned}
$$

which gives $y^{3}+$ my $+n=0$.
Le t

$$
\begin{equation*}
y=-\frac{3}{3 z} \tag{1}
\end{equation*}
$$

obtaining

$$
2^{6}+n s^{3}-\frac{3}{27}=0
$$

Where
and

$$
z^{3}=-\frac{n}{2} \pm \sqrt{\frac{n^{2}}{4}+\frac{n^{3}}{27}}
$$

$$
z=\sqrt[3]{-\frac{n}{2} \pm \sqrt{n^{2}+\frac{m^{3}}{27}}}
$$

Eutatituting the e for it value in (2)

$$
y=\sqrt[3]{-\frac{n}{2} \pm \sqrt{\frac{n^{2}}{4}+\frac{m^{3}}{27}}} \frac{m}{\sqrt[3]{-\frac{n}{2} \pm \sqrt{\frac{n^{2}}{4}+\frac{m^{3}}{27}}}}
$$

ELiminating the denominator in the second fraction and omitting double fens since they give no mere values than do single ones.

Then

$$
y=\sqrt[3]{-\frac{n}{2}+\sqrt{n^{2}+\frac{n}{27}}}+\sqrt[3]{-\frac{n}{2}-\sqrt{\frac{n^{2}}{4}+\frac{m^{3}}{27}}}
$$

Cardan's formula falls when all the roots are real and unequal.

Vieta's Solution
Given the general equation of third degree

$$
x^{3}+p x^{2}+q x+r=0
$$

Vieta reduced it to

$$
y^{3}+3 b y=2 c
$$

by substituting

$$
x=y-\frac{p}{3}
$$

Now, let

$$
b=z^{3}+y z \text { and } y=\frac{b-z^{2}}{z}
$$

obtalning

$$
z^{6}+2 c z^{3}=b^{3}
$$

a sextic which he solved as a quadratic.

Hudde' a Contribution
Hudde eimplified Vieta'a work (1658) by taking advantage of Descartes' symbolism. He brought the theory of the cubic to ite present atatue. He was also the first algebraist who unquestionably recognized that a letter etands for elther positive or negative number. 16

16 D. E. Sinth, History of Mathematics (Vol. 2; New York: The Ginn and Company, 1925). p. 466.

In the equation

$$
\begin{aligned}
& x^{3}=q x+r \\
& x=y+z
\end{aligned}
$$

he let
which reauits in

$$
y^{3}+3 y^{2} z+3 y z^{2}+z^{3}=c x+r
$$

If
(1)

$$
y^{3}+z^{3}=r
$$

then $3 z y^{2}+3 z^{2} y=9 x ;$
from where $\quad y=\frac{9}{32}$.
Subatituting in (1)

$$
y^{3}=x-z^{3}=\frac{1}{27} \frac{q^{3}}{3}
$$

$$
z^{3}=\frac{x}{2} \pm \sqrt{\frac{r^{2}}{4}-\frac{a^{3}}{27}}=A
$$

$$
y^{3}=\frac{x}{2} \mp \sqrt{\frac{x^{2}}{4}-\frac{a^{3}}{27}}=B
$$

$$
x=\sqrt[3]{A}+\sqrt[3]{B}
$$

Trlgonometric Solution
In the sixteenth century Vieta euggezted the treatment of the numerical cuble equation by trigonometry. Girald (2629) was one of the first, howover to attack the problem.
tie solved the equation

$$
x^{3}=13 x+12 \text { by the help of the identity }
$$

$\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \cdot \operatorname{Tr} 13$ 12 the so - called Irreducible cast which is of interest because 18 ie the case in which all the roots are real.

Given the conic $x^{3}+p x+q=0$
let $x=\frac{z}{n}$. Then (1) become $z^{3}+p^{2} z+n^{3} q=0$.
How the trigonometric identity

$$
\begin{equation*}
\cos ^{3} \theta=\frac{3}{4} \cos \theta=\frac{1}{4} \cos 3 \theta=0 \tag{3}
\end{equation*}
$$

is identical to (2) if

$$
z=\cos \theta \quad p n^{2}=-\frac{3}{4} \quad n^{3} q=-\frac{1}{4} \cos 3 \theta
$$

Whence

$$
n=\sqrt{\frac{m_{0}}{4 g}}
$$

Substituting n in the expression

$$
\cos 3 \theta=-4 n^{3} q
$$

resultaln

$$
\begin{equation*}
\cos 3 \theta=-4 q\left(-\frac{3}{4 p}\right)^{3 / 2}=\frac{q}{2}\left(-\frac{27^{1 / 2}}{p^{3}}\right)^{2} \tag{4}
\end{equation*}
$$

These equations can always be solved if p is negative, and

$$
\left|\frac{2}{2}\left(\frac{-27}{3}\right)^{1 / 2}\right|<1
$$

This last condition reduces to $-4 p^{3}-27 q^{2}=\Delta>0$, and mo is atisfied in the casea under consideration. ${ }^{17}$

If θ is the smallest angle astisfying equation (4), then the values $\theta+120^{\circ}$ and $\theta+240^{\circ}$ also eatisfy it, so the roots of the quation $x^{3}+p x+q=0$ are

$$
\frac{1}{n} \cos \theta \quad \frac{1}{n} \cos \left(\theta+120^{\circ}\right) \quad \frac{1}{n} \cos \left(\theta+240^{\circ}\right) .
$$

correct to a number of decimal places depending on the tables used.

Solving the Irreducible Case by Cardan' Kethod.
The equation having the three commensurable roots a, b, c is $x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-a b c=0$. Feduce the roots of this equation by $\frac{1}{3}(a+b+c)$, we have

$$
\begin{gathered}
y^{3}-\frac{1}{3}\left(a^{2}+b^{2}+c^{2}-a b-2 c-b c\right) y-\frac{1}{27}\left(2 a^{3}+2 b^{3}+2 c^{3}-3 a^{2} b\right. \\
\left.-3 a^{2} c-3 a b^{2}-3 a c^{2}-3 b^{2} c-3 b c^{2}+12 a b c\right)=0
\end{gathered}
$$

This being of the form $y^{3}+m y+n=0$.
Substituting in carden's formula and reducing resulta in

$$
y=\frac{1}{3} \quad \sqrt{-\frac{37 a}{2}+\frac{3}{2}(a-b)(a-c)(b-c) \sqrt{-3}}
$$

17 W. V. Lovitt, Elementary Theory of Squations (Hew York: Prentice-nall. Inc. 1939). P. 89.

Set the right-hana side equal to $u+7$. "Vince u ia a binomial imaginary, its cube root will be of the life $\alpha+\sqrt{-\beta}$ and $\sqrt{\beta / 3}$ will be rational." 18 Hence $\alpha\left(\alpha^{2}-3 \beta\right)=1 / 2^{\left(2 a^{3}+2 b^{3}+2 c^{3}-3 a^{2} b-3 a a_{c}-3 a b^{2}\right.}$ $-3 a c^{2}-3 b^{2} c-3 b c^{2}+12 a b c i$.

$$
\begin{equation*}
\sqrt{-\beta}\left(3 d^{2}-\beta\right)=3 / e^{(a-b i(a-c)(b-c) \sqrt{-3}}=r \tag{1}
\end{equation*}
$$

Since α must be rational, $\sqrt{-\beta}$ must be of the first degree with reference to $2, b, c$, and the only factors of r of that degree are of the form

where p is some integer. However, p must be $\tilde{2}$, for sub-
stituting

$$
\sqrt{-\beta}=\left(\frac{b-0) \sqrt{-3}}{p}\right. \text { in (2) and reducing we }
$$

 not give a rational value to α unless $p=2$.
Assume $\quad \sqrt{-\beta}=\frac{(b-c) \sqrt{-3}}{2}$.
Substitute in (2) and reduced. We find $\alpha= \pm\left(a-\frac{b+c}{2}\right)$
and by substitution in (1) $a=a-\frac{b+c}{2}$ and similarly for other factors of r .

180 . H. Kendall, "Solving the Irreducible Case of Cardan'a Method," American Journal of Mathematics, 11285-87, 1878.

He noe

$$
\begin{aligned}
u & =1 / 3\left(a-\frac{b+c}{2}+\frac{b-c}{2} \sqrt{-3}\right) \\
& =1 / 3\left(b-\frac{a+c}{2}+\frac{a-c}{2} \sqrt{-3}\right) \\
& =1 / 3\left(c-\frac{a+b}{2}+\frac{a-b}{2} \sqrt{-3}\right)
\end{aligned}
$$

Mindarly

$$
\begin{aligned}
v & =1 / 3\left(a-\frac{b+c}{2}-\frac{b-a}{2} \quad \sqrt{-3}\right) \\
& =1 / 3\left(b-\frac{a+c}{2}-\frac{a-c}{2} \sqrt{-3}\right) \\
& =1 / 3\left(c-\frac{a+b}{4}-\frac{a-b}{2} \sqrt{-3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
y & =1 / 3(2 a-b-c) \\
& =1 / 3(2 b-a-c) \\
& =1 / 3(2 c-a-b)
\end{aligned}
$$

and $x=a, b, c$.
If two roots are equal, than $x=0$ and $-10 / 2=(a-b)^{3}$
and if two are luateinaxy $(\gamma \pm \sigma \sqrt{-3})$, than
r becomes rational and $-\frac{a}{2}+x(a-y-3 \sigma)^{3}$.

Solution of a Cubic by symmetric Functions of the foots. 19 Assume equation of the cuble in the form
$a x^{3}+3 b x^{2}+3 a x+d=0$.
Put this general equation under the form
$z^{3}+3 \mathrm{~Hz}+\mathrm{G}=0$ where

$$
z \equiv a x+b \quad H \equiv a c-b^{2} \quad G \equiv a^{2} d-3 a b c+2 b^{3} .
$$

Since the three values of the expression

$$
1 / 3\left[\alpha+\beta+\gamma+\left(\alpha+\omega \beta+\omega^{2} \gamma\right) \theta+\left(\alpha+\omega^{2} \beta+\omega \gamma\right) \theta^{2}\right]
$$

when θ takes the values $1, w, w^{2}$ are α, β, γ it is plain that if the functione $\left(\alpha+\omega \beta+\omega^{2} \rho\right) \theta$ and $\left(\alpha+\omega^{2} \beta+c u \gamma\right) \theta^{2}$ were expressed in terms of the coefficients of the cubic, we could by substituting their values in the formula given above, arrive at an alebralcal solution of the cuble equation. This cannot be done by solving directly a quadratic because the sum of the two functions above written is not a rational symmetric function of α, β, γ. Take the cubes of the two functions in question which can be expressed in terms of the coefficients.
For convenlence

$$
\begin{aligned}
& \mathbf{I} \equiv\left(\alpha+\omega \beta+\omega^{2} \gamma\right) \\
& \mathbf{M} \equiv\left(\alpha+\omega^{2} \beta+\omega g\right) .
\end{aligned}
$$

19 w. S. Burnside and A. TManton, Theory of Equations (Vol. is seventh edition; Dublin: Hodges, Digels, and Company, Ltd., 1912), p. 113.

Then

$(\theta 1)^{3}=A+B \omega+0 w^{2}$
$\left.\left(\theta^{2}\right)^{2}\right)^{3}=A+B \stackrel{2}{w}+C w_{0}$ were
$A=\left(\alpha^{3}+\beta^{3}+j^{3}+6 \alpha \beta \gamma\right)$ 。
$B=3\left(\alpha^{2} \beta+\beta \gamma+\alpha j^{2}\right)$.
c $3\left(\alpha \beta^{2}+\beta \gamma^{2}+\alpha^{2} \gamma\right)$. From which we obtain
$L^{3}+M^{3}=2 \sum \alpha^{3}-3 \sum \alpha^{2} \beta+22 \alpha \beta \gamma-\frac{279}{a^{3}}$.
whera che armbol \sum signifiea tiat ona is to tika the sun of all terms. 11xe the one followlag the aymbod, that can be formed from the given variables by permutations of those variables.

Acain
$(\theta L)\left(\theta^{2} \mathrm{M}\right)=I M=\alpha^{2}+\beta^{2}+\gamma^{2}-\beta \gamma-\alpha j-\alpha \beta=\frac{2 I}{2}$
Whence

$$
\left(\alpha+\omega \beta+\omega^{2} \gamma\right)^{*} \text { and }\left(\alpha+\omega^{2} \beta+\omega \gamma\right)^{3} \text { axe the roota of }
$$ the quadratio equation

$$
t^{2}+\frac{3^{3} c}{3^{3}}-\frac{3^{6} H^{2}}{a^{6}}=0
$$

Dencting the roote of this equation by tand t_{2} then $\frac{3^{3}}{2 a^{3}}\left(-c \pm \sqrt{a^{2}+4 H^{3}}\right)$.

The orlginal formula expreased in ter of the coeficiente of the cuble gives the three roota.

$$
\begin{aligned}
& \alpha=-\frac{b}{3}+\frac{1}{3}\left(\sqrt[3]{t_{1}}+\sqrt[3]{t_{2}}\right) \\
& \beta=-\frac{b}{2}+\frac{1}{3}\left(w^{3} \sqrt[3]{t_{1}}+w^{2} \sqrt[3]{t_{2}}\right) \\
& \gamma=-\frac{b}{2}+\frac{1}{3}\left(w^{2} \sqrt[3]{t_{1}}+w \sqrt[3]{t_{2}}\right) .
\end{aligned}
$$

CDALTAR III

Solution of the quartic zquaticn

Ferrari's Eolution. 20
Let the equation of the quartic be of the form

$$
\begin{equation*}
x^{4}+b x^{3}+c x^{2}+d x+0=0 \tag{1}
\end{equation*}
$$

(2) Transposing termg, we have $x^{4}+b x^{3}=-c x^{2}-d x-$. Completing the equare in tha left member resulta in

$$
\left(x^{2}+\frac{1}{2} b x\right)^{2}=\left(\frac{1}{4} b^{2}-c\right) x^{2}-a x-0
$$

Adding $\left(x^{2}+\frac{1}{2} b x\right) y+\frac{1}{4} y^{2}$ to each mexbex leada to
(3) $\left(x^{2}+\frac{1}{b} b x+\frac{1}{8} y\right)^{2}=\left(\frac{1}{2} b^{2}-c+y\right) x^{2}+\left(\frac{1}{6} b y-a\right) x+\frac{1}{2} y^{2}-$. The econd member of (3) in perfect quare of a Linear Iunction of x, If and only if, ite iseriminant is zero,

$$
\left(\frac{6 b y-a)^{2}-4\left(4 b^{2}-a+y\right)\left(t y^{2}-0\right)=0}{}\right.
$$

Which may be witten in the form

$$
\begin{equation*}
y^{3}-c y^{2}+(b d-4 a) y-b^{2}+400-d^{2}=0 \tag{4}
\end{equation*}
$$

Chowe any root y of the resolvent cubic (f), then the right meaber of (3) io tho equare of a inear function, oaymx+n.

20 I. 2 . Dickson, tirst Courge in Theory of Equationg (New York: John illey and Cons. Inc., 192Z),
(5) Thus

$$
\begin{aligned}
& x^{2}+\frac{1}{2} b x+\frac{1}{b y}=m x+n o r \\
& x^{2}+\frac{1}{b} b x+\frac{1}{b y}=-m x-n .
\end{aligned}
$$

The roote of these quadratic equations are the four roote of (3) and hence of the equation (1).

Descartes' solution ${ }^{2 l}$
The general quartic of the form

$$
a x^{4}+b x^{3}+c x^{2}+d x+e=0
$$

can be reduoed to
(1)

$$
x^{4}+q z^{2}+x z+s=0
$$

The left member of (1) can be expressed as the product of two quadratic factors

$$
\begin{array}{r}
\left(z^{2}+2 k z+l ; z^{2}+2 k z+m\right)= \\
z^{4}+\left(l+m-4 k^{2} ; z^{2}+2 x(m-l) z+m\right.
\end{array}
$$

where

$$
\begin{aligned}
& a=l+m-4 k^{2}, \\
& r=2 k(m-l), \\
& a=l n .
\end{aligned}
$$

If $k \neq 0$, the first two give

$$
\begin{aligned}
& 2 l=q+4 k^{2}-\frac{p}{2 k} \\
& 2 m=q+4 k^{2}+\frac{r}{2 k}
\end{aligned}
$$

21 2. E. Dickon, Harst Course in Theory of Zauations (New York: John Hiley and zons, ince. 19:2), p. b己.

Cusstituting the value of l and $a \ln (2 l)(2 m)=4 \mathrm{~s}$,
resulta in
(2)

$$
64 k^{6}+32 q k^{4}+4\left(q^{2}-4 a\right) k^{2}-x^{2}=0
$$

which can be solved 28 a cuble. Any root $k^{2} \neq 0$
Eives a pair of quadratic factors of equation (1)

$$
z^{2} \pm 2 k z+\frac{1}{2} q+c k^{2} \mp \frac{p}{4 x}
$$

The four roota of theee two quadratic functions are the four roota of equation (1).

Suler's Solution ${ }^{22}$
Assume the quartic in the form
(1)

$$
a x^{4}+4 b x^{3}+6 c x^{2}+4 d x+0=0
$$

(2) Let ${ }^{z}=a x+b$.

By eliminating x between (1) and (2) we obtain the
equation

$$
\begin{equation*}
z^{4}+6 \mathrm{I}^{2}+64 z+a^{2} I+3 z^{2}=0 \tag{3}
\end{equation*}
$$

Suler assumed a root of the form

$$
2=\sqrt{p}+\sqrt{q}+\sqrt{x}
$$

Equaring twice and reducing by means of the relation above, we obtain

$$
z^{4}-2(p+q+r) z^{2}-8 z(\sqrt{p} \sqrt{q} \sqrt{x})+(p+q+r)^{2}-4(q x+p r+p q)=0
$$

22 J. D. Hutchinson, "An inalysis of Several of the Lethods of Solution of the General quartic Equation from the point of view of Fesolvent Functions, Including an Illustration of Lagrange's Theorem," (unpublished Haster's thesis, The University of Illinois, Urbana, 1930), p. 11.

Comparing this equation with (3) obtain

$$
p+q+r=-3 H
$$

$$
\begin{align*}
& q x+p r+p q=3 H^{2}-\frac{2^{2} z}{4} \tag{4}\\
& \sqrt{p} \sqrt{q} \sqrt{x^{2}}=\frac{2}{2}
\end{align*}
$$

From (A) we stat p, q, r are the roots of the equation
(5)

$$
\theta^{3}+3 \theta^{2}+\left(31^{2}-\frac{a^{2}}{4}\right) \theta-\frac{\theta^{2}}{4} \equiv 0
$$

mare $G^{2}=4 I^{3}-a^{2} I+a^{3} J$.
The three values of O from (5) together with equalsins (a) and (4) and the relation

$$
z=\sqrt{9}+\sqrt{9}+\sqrt{5}
$$

daterinine the four roots of the given equation.

Solution of the quartic by symmetric Functions of the Mots. 23

Let $a x^{4}+4 b x^{3}+6 c x^{2}+4 d x+=0$ be tad quart le.
The solution of quartic equation can be reduced to that of a cubic by forming function of the four roots of the quartic $\alpha, \beta, \gamma, \delta$ which admits only thees Value a under the twenty-four permutations of $\alpha \cdot \beta \cdot \gamma \cdot \delta$.

23 7. \%. Burnside, t. T. Wanton, The Theory of Eruptions (seventh edition; Vol. 2; Dublin: Hodges. Begets, and Company, Ltd. 1912). p. 139.

We proceed to form the equation whose roots are the three values of

$$
\begin{aligned}
t & \equiv \frac{(\alpha-\beta+\gamma-\delta)^{2}}{4} \\
t_{1} & \equiv\left(\beta+\frac{-\alpha-\delta)^{2}}{4} \quad t_{2} \equiv(\gamma+\alpha-\beta-\delta)^{2}\right. \\
t_{3} & \equiv \frac{(\alpha+\beta-\gamma-\delta)^{2}}{4} \quad \text { and since } \\
(\beta+\gamma-\alpha-\delta)^{2} & \equiv \sum \alpha^{2}+2 \lambda-2 u-2 v \\
\sum(\alpha-\beta)^{2} & \equiv 3 \sum \alpha^{2}-2 \lambda-2 u-2 v-\frac{48 H}{a^{2}} \\
\text { Where } \quad & =2-b^{2} \\
7 & =(\beta \gamma+\alpha \delta), \\
v & =-(\alpha \beta+\gamma \delta), \\
v & =-(\beta \delta+\alpha \gamma) .
\end{aligned}
$$

We find the following values of t_{1}, t_{2}, t_{3}

$$
\begin{array}{ll}
t_{1} \equiv \frac{2 \lambda-u-y}{12}-\frac{H}{2^{2}} & t_{2} \equiv \frac{2 u-y-\lambda}{12}-\frac{H}{a^{2}} \\
t_{3} \equiv \frac{2 y-\lambda-u}{a^{2}}
\end{array}
$$

So

$$
\begin{aligned}
& t_{1}+t_{2}+t_{3}=-\frac{3 M_{1}}{a^{2}} . \\
& t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}=\frac{3 H^{2}}{2^{4}}-\frac{1}{56} \sum(u-\nabla)^{2}=\frac{3 H^{2}}{a^{4}}-\frac{I}{4 a^{2}}, \\
& \begin{aligned}
t_{1} t_{2} t_{3}=\frac{q^{2}}{4 a^{6}} . \text { Where } \quad I \equiv a-4 b d+3 c^{2}, \\
G \equiv a^{2} d-3 a b c+2 b^{3} .
\end{aligned} \\
& J \equiv 2 c e+2 b c d-2 d^{2}-e b^{2}-c^{3} .
\end{aligned}
$$

Then the equation whose roots are t_{1}, t_{2}, t_{3} le

$$
\left(2^{2} t\right)^{3}+2 H\left(2^{2} t\right)^{2}+\left(3 H^{2}-\frac{z^{2} I}{4}\left(a^{2} t\right)-\frac{c^{2}}{4}=0\right.
$$

We substitute G for 1 te value

$$
4\left(a^{2} t+H\right)^{3}-a^{2} I\left(a^{2} t+H\right)+a^{3} J=0
$$

which can be transformed into the standard reducing cubic by the substitution $\left(a^{2} t+H\right)=-a^{2}$.

To determine α, β : f, δ we have the following equations

$$
\begin{aligned}
-\alpha+\beta+\gamma-\delta & =4 \sqrt{t_{1}}, \\
\alpha-\beta+j-\delta & =4 \sqrt{t_{2}}, \\
\alpha+\beta-j-\delta & =4 \sqrt{t_{3}}, \\
\alpha+\beta+\gamma+\delta & =\frac{-4 b}{a},
\end{aligned}
$$

From which we find
$\alpha=-\frac{b}{a}-\sqrt{t_{1}}+\sqrt{t_{2}}+\sqrt{t_{3}}, \quad y=-\frac{b}{a}+\sqrt{t_{1}}+\sqrt{t_{2}}-\sqrt{t_{3}}$,
$\beta=-\frac{b}{2}+\sqrt{t_{1}}-\sqrt{t_{2}}+\sqrt{t_{3}}, \quad \delta=-\frac{b}{2}-\sqrt{t_{1}}-\sqrt{t_{2}}-\sqrt{t_{3}}$.
We also find that $\sqrt{t_{1}} \sqrt{t_{2}} \sqrt{t_{3}}=\frac{G}{2 a^{3}}$ by means of which
one radical own bo expressed in terms of the other two.

A Solution of the Quartic Equation by means of a Twentyf cur Valued Function of the Roots
we aaswe the quartile equation in the form
(1) $x^{4}+a x^{3}+b x^{2}+c x+d=0$.

We call its roots α, β, \neq and δ and consider the twentyfour valued function

$$
v=\nabla_{1}=(\alpha-\beta+1 \mathcal{f}-1 \delta) \text { where } 1^{2}=-1
$$

"trader the subgroup F_{4} of C_{4}^{4}; 7 , take e the values." 24

$$
\begin{array}{ll}
v_{1}=\alpha-\beta+i \gamma-i \delta & v_{3}=\gamma-\delta+i \sigma-i \beta \\
v_{2}=\beta+\alpha-i \gamma+i \delta & v_{4}=\delta-\gamma+i \beta-i \alpha .
\end{array}
$$

These four functions are the roots of the equation
(2)

$$
z^{4}-\left(v_{1}^{2}+v_{3}^{2}\right) 2^{2}+v_{1}^{2} v_{3}^{2}=0
$$

The coefficients of equation (2) may be determined in
texas of the coefficients of (1)
Then

$$
v_{1}^{2}+v_{3}^{2}=41 y_{1}
$$

$$
v_{1}^{2} \quad v_{3}^{2}=-x_{9}\left[3 a^{2}-8 b-2\left(y_{2}-y_{3}\right)\right]^{2}
$$

where

However

$$
\begin{aligned}
& y_{1}=(\alpha-\beta)(\gamma-\delta) \\
& y_{2}=(\beta-\gamma)(\alpha-\delta) \\
& y_{3}=(\gamma-\alpha)(\beta-\delta) .
\end{aligned}
$$

$$
\left(y_{2}-y_{3}\right) \text { can be expressed in terms of } y_{2} \text { for }
$$

y_{1}, y_{2}, y_{3} are roots of a certain cubic equation of the $\operatorname{tom} z^{z}+c_{2} y+c_{3}=0$
\qquad
24 J. D. Hutchinson, "An Analysis of Several of the Methods of Solution of the General quartic Equation from the point of View of Resolvent junctions, Including an Illustration of Laerame 's Theorem," (Unpublished Master's thesis: The University of Illinois, Urbane, 1930), p. 15.

We know that
(3) $y_{2}-y_{3}=\frac{432 J}{y_{1}-y_{2} / y_{1}-y_{3}}=\frac{-432 J}{y_{1}^{2}-y_{1}\left(y_{2}+y_{3}\right)+y_{2} y_{3}}$.

Let
$\notin(y)=\frac{y^{3}+c_{2} y+c_{3}}{y-y_{1}}=y^{2}-y_{z} y+e_{2}+y_{1}^{2}$.

$$
\begin{aligned}
& \text { Why) has roots y, and } y z \text {, therefore } \\
& -y_{1}=y_{2}+y_{3} \text { and } y_{2} y_{3}=y_{1}^{2}+{ }^{c}{ }_{2} .
\end{aligned}
$$

Then expression (3) becomes

$$
y_{2}-y_{3}=\frac{-432 J}{3 y_{1}^{2}+c_{2}} \equiv ?
$$

where

$$
c_{2} \sum y_{1} y_{2}=3 a c-22 d-b^{2}
$$

The quartile (2) become e
(4)

$$
z^{4}-41 y_{1} z^{2}+1 / 9\left[3 a^{2}-3 b+\frac{2(432 J)}{3 y_{1}^{2}+c_{2}}\right]^{2} .
$$

If In equation (t) wet $Z^{2}=\theta$ have quadratic, whose roots we may call θ_{2} and θ_{2}. have then the equations
(3)

$$
\begin{aligned}
& v_{1}=\theta_{1} \\
& v_{3}=\theta_{2} \\
& \alpha+\beta+\gamma+\delta=-a
\end{aligned}
$$

Hy using tiv other tweaty viluas for one can obtain anotier independent relation of α, β, γ and δ. This eixth equation, together with equationa (5), form a eystem of equations which can be solved for the roots of the quartic, α, β, γ and δ.

CHAPTER IV

Higher Degree Zquationa

The theory of abstitutione and groups of eubstitutJons erew out of the lnveatleation by Lagrange, Fuffind and Abel concerning the question of solvablilty by radicals of the general algebrgic acuation of degree n.

Galois" Theory, which ie applicable to any algebralo ecuation, whether its coefficients are conatante or depend upon one or more variables, eablishes the modern theory of equations in astiefactory manner. 25 To Galois, the molvabillty of any equation of $n^{\text {th }}$ decree by radieals depends on the discovery that to each equation there corresponds eroup of substitutions, which leaves the function unchaneed, known as the Exoup of the equation or Galois group. according to Galola' theory. given an equation we shall seociate croup of substitutions on ita roots. Then the alegrade equation is solvable by radicala if, and only if, the eroup is solvable.

[^6]Before describing the group of the equation we define the domain of rationality f . If we denote the conetants or variables of eiven problem by K^{1}, Kll , . . ., R^{u} together with all quantities derived from them by a finfte number of additions, subtractions, multiplications and divisions (except by zero), the resulting sys. tem of quantities is called the domain of rationality.

The set of all subetitutions (on the root x_{1}, x_{2}, . . . x_{n} of the equation satiefying properties a and b, listed below, form a unique group G of order N. This le called the group of the equation.

2
b

Every rational function ($x_{1}, x_{2}, \ldots, x_{n}$) of the roots which remains unaltered by all substitutions of G lles in the domain of rationality R.

Ivery rational function $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ if the roots which equals a quantity in R remaine unaltered by all the aubstitutions of G.

An integral rational function $f(x)$ of degree n of a variable x whoge coefficients belong to the domain R is said to be reducible in R if it can be expressed as a product of integral rational functiona of x, each of degree less than n, with coefficiente in R; irreducible if no much factorization is possible.

For better understanding let
(1) $f(x) \equiv x^{n}-c_{1} x^{n-1}+c_{2} x^{n-2}-\ldots+(-1)^{n} c_{n}=0$
whose oofficients belong to the domain R. We assume that the roots $x_{1}, x_{2}, \ldots, \ldots x_{n}$ are all distinct. It is possible to construot a rational function ∇_{1} of the roote with coefficients in R such that ∇_{1} takes n : distinct values under the n : substitutions on x_{1}, \ldots, x_{n}. Such function ia
(2) $\quad \nabla_{1} \equiv m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{n} \quad x_{n}$ where $m_{1}, m_{2}, \ldots, m_{n}$ are properiy chosen in R. Then the n : values of the function r_{1} are the roots of an equation

$$
F(v) \equiv\left(v-v_{2}\right)\left(v-v_{2}\right) \cdot \cdot\left(v-v_{n}\right)=0,
$$

whose coefficients are integral rational functions of the m's in (2) and the c^{\prime} in (1), with integral coefficiente. Hence the $\mathrm{v}^{\prime} \mathrm{s}$ belong to R .

If $F(v)$ is reducible in R, we let $F_{0}(v)$ be that irreducible factor for which $F_{0}\left(\nabla_{1}\right)=0$, if $F(v)$ is irreducible in F, jet $F_{0}(v)$ be $F(v)$ iteelf. Then $F_{0}(v)=0$ is an irreducible equation called the Galois resolvent of equation (1).

Wext, we let the roots of this resolvent be V_{1}, $\nabla_{k}, \nabla_{b}, \ldots \nabla_{k}$

The substitutions by which they are erived from v, are

$$
\text { 1. a.b. . . . } 1
$$

which fona eroup ahich is the eroup of the eiven equation (1) with respect to the domain R. The group of given equation for given domain ie unique. In partleular the eroup of en equation is independent of the pecial n ! - valued function vi chosen. 26 The group of the general equation of degree n whose co--ficienta and roota are independent variables is the symetric eroup Ga!. The group of the equation is solvable If it has composition sexies in which tho indices are all prine numbers.

Munerleal Hethode of Approximation of the foote of an Equation.

Findlng roota of numbera, the solution of quations and even the approximation methods co as far back as the carly Zgyptian and Eabilonian civilization. Babylonians tried to find the folution of equations by the method of Fadse Foeltion (kecula Falei) which le the oldest one. 27

26 L. Dickaon. Introduction to the Theory of Aleebrele mouations (firet editions liew Lork Joan mbey and Sons, Inc. 1803). p. 55.

27 J. B. Scarborough, सunericah gathematicat Analyda (Ealtimore: the John Hopkins rress. 1930. p. 174.

To solve the quation $x+\frac{x}{7}=19$, the unknown number x was assumed to be seven. The sum of the number and 1 ts seventh part was eight and the number solution of the equation ia the same multiple of seven that nineteen is of the guesed number elght. ${ }^{28}$

Chuquet used the rule of mean numbers which is illustrated in the following example

$$
x^{2}+x=38 \frac{13}{81}
$$

Let $x=5$ and ubstitute in the equation. It is too amall. Let $x=6$. It is too blg. We write these two numbers in ratlonal form to obtain the first mean. Firet mean $\frac{5+6}{1+2}=\frac{11}{2}$ By ubstitution we see it is too small.

New bound $\frac{11}{2}$ and $\frac{6}{2}$.
Eecond mean $\frac{11+6}{2+\frac{6}{2}}=\frac{17}{3}$. It is too mall.
Yew bounds $\frac{17}{3}$ and $\frac{6}{2}$.
Thirdmean $\frac{17+6}{3+1}=\frac{23}{4}$. It is too small.
New bound $\frac{23}{4}$ and $\frac{6}{2}$.

[^7]Fourth mean $\frac{23+6}{4+1}=\frac{29}{5}$. It is larece
New bound $\frac{23}{4}$ and $\frac{20}{5}$
Ifth mean $\frac{23+29}{4+5}=\frac{52}{9}$ whioh ia the oxact root. 29
The tegula Aurea (Golden huie) of Cardan publiahed In his Ars magna (1545) wes built on the basis of two false poaltions and particular mode of interpolation. He used it for equations of tindrd and fourth degree, but It is applicable to equations of every decree. 30 To oolve an equation by tils method of double falae position we let the quation be
(1)

$$
f(x)=\nabla
$$

: astume for the coment two values, bay and b. Then wo deteraine the errore by ubstituting a and in (1) and we wite $f(a)=A$ and $f(b)=B$. Next we compute the error for and b,

$$
\mathrm{z}_{\mathrm{a}}=V-A \quad \text { and } \mathrm{E}_{\mathrm{b}}=V-B
$$

 But 1t ia accurate mhenever $f(x)=V$ ls a linear function of x.

29 ~A. Nordeara, K Mstorler Eurvey of Alcebrale Setiode of Aporox mation the footg of gumerlesi Hicher vecree Yquations up to the year 1819 (How Yorx: Columbia univereity 1922). 19. 6.
 Lacia11an Company, 1919). p. 103.

Newton'e method is applicable to any equation $f(x)=0$, whether $f(x)$ is a polynomial or not as long as $f(x)$ is alferentiable.

First determine two numbers a and $b(a<b)$ such that there is one and only one root of $f(x)=0$ between them, We find a closer approxitution + in to the root by neglecting the powere h^{2}, h^{3}. . Of the small number h in Taylor's formula.

$$
f(a+h)=f(a)+f^{\prime}(a) h+\frac{f^{\prime \prime}(a) h^{2}}{a^{\prime \prime}-1 n(a) h^{3}} \frac{f^{\prime \prime}}{3!} \cdots a n d
$$

hence by taklng $f(a)+f^{\prime}(a) h=0^{2}$

$$
h=-\frac{f(a)}{f(a)}
$$

We repeat the process with $a_{1}=a+h$ in place of the former a.

Numerical example. 31

$$
\begin{aligned}
& f(x) \equiv x^{3}-2 x-5=0 . \\
& \text { For }=2 \\
& h=-\frac{(2)}{f^{\prime}(2)}=\frac{1}{10} . \\
& \begin{array}{l}
a_{1}=a+h \\
a_{1}=2+.1 .
\end{array} \\
& \text { For } a_{1}=2.1 \quad h=-\frac{f(2.1)}{f^{L}(2.1)}=-.0054 \\
& a_{2}=a_{1}+h_{1} \\
& a_{2}=2.1-.0054 \\
& \text { For } 2_{2}=2.0946 \\
& h_{2}=-2(2.0946)=-.00004852 \\
& \mathrm{I}^{j}(2.0946)
\end{aligned}
$$

31 L. D. Dickson, Yirst Course in Theory of Equationg (Mew York: John Wiley and Eons, 1922). D. 91.

$$
\begin{aligned}
& a_{3}=a_{2}+h_{2} \\
& a_{3}=2.0846 \ldots .00004852 \\
& a_{3}=2.09455148 \text { in which seven decimal places are }
\end{aligned}
$$ correct.

A Modification of Newton's Method. ${ }^{32}$

Newton's formula for approximating the roots of an equation $f(x)=0$, namely,

$$
\begin{equation*}
x_{p+1}=x_{p}-\frac{f\left(x_{p}\right)}{f^{\prime}\left(x_{p}\right)} \quad(p=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

may be modified in the following manner. The equation of the parabola through the point $\left[x_{p}, f\left(x_{p}\right)\right]$ having the same first and second derivatives at x_{p} as $y f(x)$ is $y=f\left(x_{p}\right)+\left(x-x_{p}\right) f^{\prime}\left(x_{p}\right)+\frac{1}{2}\left(x-x_{p}\right)^{2} f^{\prime \prime}\left(x_{p}\right)$.
Let x_{p+1} be solution of the equation which results if we put $y=0$. Then $x_{p+1}=f_{f}\left(x_{p}\right)$

$$
f^{\prime}\left(x_{p}\right)+\frac{1}{8}\left(x_{p+1}-x_{p}\right) f^{\prime \prime}\left(x_{p}\right)
$$

If we take in this formula

$$
x_{p+1}-x_{p}=\frac{-f\left(x_{p}\right)}{f^{\prime}\left(x_{p}\right)} \text { obtain in }
$$

(2)

$$
x_{p+1}=\frac{f\left(x_{p}\right)}{f^{\prime}\left(x_{p}\right)-\frac{f\left(x_{p}\right) f^{\prime \prime}\left(x_{p}\right)}{2 f^{\prime}\left(x_{p}\right)}} \quad(p=0,1,2 \ldots), \ldots
$$

$32 \mathrm{H} . \mathrm{S}$. Well, "A Modification of Newton's Me tho," The American Mathematical Monthly, 55:90-94, February, 1948.
whioh is the deared modfication of ienton's fomula. The converence of the sequence $\left\{x_{p}\right\}$ is more rapld in the case of formula (2) than in the case of formula(1).

Nowton's rethod has a eerlomefect; it le lnoperative if two roots cre cloze togethar, for then the serles would not converze, and sight after a while actually diverge. In 2767 Lagrange announced new method. It consiste of three parta.

1 A method of findine the intecral part of the root. 2 th rule for geparatine roote.

3 Technicue of aproximation by the uge of continued fracticns.

Suppose that the equation $f(x)$ o has real positive root between p and $(p+1)$. Then $x=p+\frac{1}{y}$ and $y>1$. Cubetituaing the value of $x \ln f(x)=0$ gives tre equation $y(j)=0$. Since $y>1$ we find ite integral value by the prescribed method, Suppose it lles between intecers q snd $(q+1)$. Then $y=q+\frac{1}{2}$ and so on.

$$
x=p+\frac{1}{9+\frac{1}{x+\cdots}}
$$

Numerical example

$$
x^{3}-2 x-5=0
$$

One root lies between 2 and 3 .
Let $x=2+\frac{1}{y}$ then the equation beconee $y^{3}-1 \mathrm{cy}^{2}-6 y-1=0$. We find where y lies $10<y<11$. Then $y=10+\frac{1}{2}$ and we cet
an equation $\ln z$

$$
61 z^{3}-92 z^{2}-20 z-1=0
$$

Fe find where z lies $1<z<2$.
Then $z=1+\frac{1}{u}$ gives the quation $54 u^{3}+25 u^{2}-89 u-61=0$.
We find where u liea, $1<u<2$. A continuation of this process gives the series $2,10,1,1,2,1,3,1,1,12$. Hence

$$
x=2+\frac{1}{10+1}
$$

Evaluating we have

$$
\begin{aligned}
& \text { ng we have } \\
& x_{=}^{16415} 7837
\end{aligned}=2.09455149 .33
$$

In Horner's method the first step in finding the numerical value of a real root of a rational integral algebraic equation is to icolate the root. The root is obtained digit by digit, in the accessive order of decimal places; that means, first the coefficient of the highest power of ten and then the other coefficients, till any desired number of places of accuracy. His method is based on the next two theorems.

33 w. A. Nordgaard, A Historical Eurvey of Algebrale Methode of Approximating tho Roote of Kumerical Higher DeEree Equations up to the Year 1819 TVew York Columbia University, 1922才, p. 50.

1 If the firat member of an equation of the form $f(x)=0$ be divided by ($x-a$), then the quotient be again divided by (x - a) , and so on, the succeative remaindere will be, In reverse order, the coefficients of an equation whose roote are lean by a than those of the given equation. ${ }^{34}$

2 when the root of an equation is siall, with reapect to all the coefficiente, it is approximately equel to the absolute term divided by the coefficient of the first power of x .

Numerical Bxample
$f(x) \equiv x^{3} \quad x^{2}-6 x-10$
$f(0)=-$
$f(1)=-$
$f(2)=-$
$f(3)=+$. So there is a root between 2 and 3. We diminieh the roots of the equation by 2

34 J. Downey, Higher Algebra (New York: American Book CO., 1901). P. 331.

$$
f_{1}\left(x_{1}\right)=x_{1}^{3}+7 x_{1}^{2}+10 x_{1}-1=0 \text { which has a root }
$$

between 0 and 1. we obtaln, from $10 x_{1}=1$, the approximate value $x_{1}=.1$.
This value of x_{1} makes the flest two terma positive and $I_{1}(.1)>0$ hence the constant term in the recond traneformed equation wouls be pugitive mich llows that the value of x_{1} is too large. The constant term in each tranoformed equation wust retaln the same algn as the constant teraln the orfelnal equation. For $x_{1}=.00 . f_{1}\left(x_{1}\right)<0$. Sow ve diminish the roote of $f_{1}\left(x_{1}\right)=0$ by .09 which eivea us the eecond trensformed equation

$$
x_{2}^{3}+7.27 x_{2}^{2}+11.2843 x_{2}-.042571=0
$$

From the two lat terma we cet $\mathrm{z}_{2}=0 \operatorname{co3}$. We diminish the roote of $\mathrm{I}_{2}\left(\mathrm{x}_{2}\right)=0$ by . $C=3$ which gives the third transformed equation

$$
x_{3}^{3}+7.278 x_{3}^{2}+21.327947 x_{3}-. \operatorname{coss} 2643=0 .
$$

From the two lat terms wo find

$$
.0007<x_{3}<.0008
$$

Thence $000003570<\left(x_{3}{ }^{3} \quad 7.279 x_{3}^{2}\right)<.000004664$. Lenore the first two terms provided the congtant term in rem duoed by an amount between these lisalts.

$$
\begin{aligned}
& .008652643-.000603570=.008649073 \\
& .003652643 \text {-. } 000004664=.008647979 \text {. } \\
& \text { From } \\
& 11.327947 x_{3}-.008647979=0 \text { we obtain } \\
& x_{3}=.0007634+\quad . \\
& \text { Trom } \\
& 11.327947 x_{3}-.006649073 \text { o obtain } \\
& \mathrm{H}_{3}=\cdot 0007635+\text { - }
\end{aligned}
$$

Therefore correct to six decimal places we have

$$
x_{3}=.0007634 \quad .
$$

Thls can be shortened in thla way

$$
11.327947 \frac{.0007634}{.008647}
$$

SInce the quotient is . $00 C 7$ we use only two decimala in the divisor, exeept by inspection, to see how ruch should be carried in making the first multiplication. Place dot above the flgare 2 in the divisor and use 11.32 as a divisor. Before aultiplying by 6 , tice second significant ligure in the quotient, place a dot over the fiedure 3 and ase 11.3. zor the root of the original equation we heve $x=2.0937634+$ where the six flest decimal piaces ere correct. There is doubt as to whether the last flgure should be 4 or 5 . If more dechanis are required, it is not necessary to form a new transformed equation. We need to revise the conetant term in
$f_{3}\left(x_{3}\right)=0$ waking use of our'preseat better value of x_{3}. "Tils contracted method may be used after taree or four decimala have boen found. 135

Horner's Hethod shortened. 36
When the real root of an equation above the second degree la wanted accurately, Forner' method is the old standby. But it is very laborious and the work increases with each digit. The following shows how to get an answer to two, and often three, more decimal placea for a given number of transformitions. After the orlginal equation is transformed to new equation one of whose roots lie between 0 and 1 it le of the type endiag in
. . $b x^{2}+c x+k=0$.
Since $x<1$, the square, cube and higher terma are small so that a rough value for the root can be obtained

$$
\begin{equation*}
\text { ex }+k=0 \quad \text { where } x=-\frac{k}{c} \tag{2}
\end{equation*}
$$

This is mometmes useful, but alnce it is a linear approximintion it mas be poor fit to a curve with a distinct curvature. A curvilinear approximation would be obviously

35 .W. V. Lovitt, Blenentery Theory of Ecuations (New York: Prentice Eall, Inc., 1839), p. 235.

36 H. D. Hatch, "Horner's Me thod Ehorteneă" Echood. Science and Yathematics, 361007-8, December, 1836.
better and can be gottan as collowsz
Consider the result of dividing

$$
c^{2} x \text { by }(c-b x)
$$

Mhe quotlent cx $+b x^{2}+\frac{b^{2} x^{3}}{c}+\cdots$ Le a serioa which 15 convergent for value of x betioen 1 and -1 . ror such values the cube and hicher powara are mall and $\frac{c^{2} x}{c-b x}$ is a cood approxination for $b x^{2}+e x$.
I.et us eubstitute then for the lase two x termg of (1)
$\frac{c^{2} x}{c-b x}+k=0$.
Then

$$
\begin{aligned}
& c^{2} x+k c-k b x=0 \\
& x\left(c^{2}-k b\right)=-k c
\end{aligned}
$$

$x=\frac{k c}{k o-c^{z}} \quad$. There is less to cal-
culate with this than if we conthue

$$
\frac{1}{x}=\frac{1 b-c^{2}}{k c} \text { and } 1 \ln \alpha 14
$$

(3) $\frac{1}{x}=\frac{b}{c}-\frac{c}{x}$ This le only an approximation because the cube and higher terms have been onitted, but it becomes increasingly aceurate aa the oaltted terme become small.

Note: In the thirteenth century Chinese enployed a nethod of approximation, virtually the mane aa liorner's mothod." The Chineae method did not pass lnto the living
atream because neither In the orient nor in Turope did It start a formard wovement. ${ }^{37}$

In 1804 paolo Ruffinl invented a similar method in Italy which was soon forgotten and in 1819 the same procedure was reinvented by Horner.

Graeffe's Zethod

Of the many methods which have been proposed for colving algebralc equations the most practlcal one, where complex rocts are concerned, is the one known root squaring method usually referred to as Graeffe's method even though the antronomer J. F. Incke was an early exponent of thls process and did all he could to make it well known. ${ }^{38}$ It was suggested independently by DandeLin in 1826, Lobacherskg in 1834 and Graeffe in 1837. But Dandelin's work was not widely circulated and the process went under the name of Carl craeffe wo publlshed it as a prize paper: This metried has the advantage

37 E. T. Bell, The Development of pathematics (second edltion; Hew Yorkz YcGraw-Hill Book Company, Inc.. 1945). p. 116

38 D. H. Lehmer, "The Craeffe Frocess as Applied to Pomer Ceries," Mathematical Tables and Alds to Computation, 1:377-83, 1943-45.

39 C. A. Hutchinson, "On Craeffe's fethod for the Numerical Solution of Alebralc equations," The Anerican Hathematical Monthly, 42:149-61, Harch, 1935.
of findine all the roots at once and not requixing any prelisinary aetermination of their puroximate position. Its principle, for an equation with only real roots, is to form new quation whome roots are come high power of the roota of the given equation. Suppoze we say the 128 th power, so that if the roota of the civen equation are $x_{1}, x_{c}, x_{3}, \ldots, x_{n}$ then, the roota of the nevequation are $x_{1}^{128}, x_{8}^{128}, x^{\frac{128}{3}}, \ldots, x_{n}^{128}$. These numbers wre widely caparated; thus if x_{1} vere twice xa, then $x_{1}{ }^{123}$ would be more than 10^{38} times x_{2}^{128}. The adrantage of an equation whoge roots are very widy geparated is that it can be solved at once nuaerloally.

Let the oquation be

$$
\begin{equation*}
x^{n}+a_{1} x^{n-2}+2^{n-2}+\cdots+a_{n}=0 \tag{1}
\end{equation*}
$$

with real coeficionts. We wite all teras of evendegree on one side of the equation and all terms of odd degree on the other side. Pqualng both olde we have $\left(x^{n}+a_{2} x^{n-2}+a_{4} x^{n-4}+\cdots\right)^{2}=\left(a_{1} x^{n-1}+a_{3} x^{n-3}+\cdots\right)^{2} \ldots$ If $x^{2}=-y$.
(2) Then $y^{n}+b_{1} y^{n-1}+b_{2} y^{n-2}+\cdots+b_{n-1}{ }^{y}+b_{n}=0$
where

$$
\begin{aligned}
& b_{1}=a_{1}^{2}-2 a_{2} \\
& b_{2}=a_{2}-2 a_{1} a_{3}+2 a_{4} \\
& b_{3}=a_{3}^{2}-2 a_{2} a_{4}+2 a_{1} a_{5}-2 a_{6}
\end{aligned}
$$

$$
\begin{aligned}
& b_{k} a_{k}^{2}-2\left(a_{k-1}\right)\left(a_{k+1}\right)+2\left(a_{k-2}\right)\left(a_{k+2}\right)+\cdots+(-1)^{k} \\
& 2 a_{2} k \\
& b_{n=}^{2}
\end{aligned}
$$

The following rule will give the coefficients of quacion (2).

The coefficient of my power of y la formed by squaring the coefficient of the corresponding power of x in the orleinal equation and adidas twice the product of every pair of coefficients which are equally distant on either aide, these prouncte being taken with edens alternately positive and negative, nisoling power of x being supplied with zero coefficients.

We lat the route of the original equation be a, b, c,*.. Then, the moke roots of (2) are $a^{2}, b^{2}, c^{2}, \ldots$ The process may buepeated m thea giving an equation whose 2ncke roots are the $2^{\text {moth }}$ power of the Incke roots of the original equation. The equation whose toke roots are $a^{m} b^{\text {em }} c^{m}, \ldots$ is

$$
\begin{aligned}
& \left(x+a^{m}\right)\left(x+b^{m}\right)\left(x+c^{m}\right) \ldots=0 \quad o r \\
& x^{n}+\left[m^{m}\right] x^{n-1}+\left[a^{m} b^{n}\right] x^{n-2}+\left[a^{m} b^{m} c^{m}\right] x^{n-3} \ldots=0
\end{aligned}
$$

where

$$
\begin{aligned}
& {\left[a^{m}\right]=a^{m}+b^{m}+c^{m}+\cdots} \\
& {\left[a^{m} q^{m}\right]=a^{m} v^{m}+a^{m} c^{m}+\cdots+b^{m} c^{m} * * \text { tc }}
\end{aligned}
$$

We continue the process untll the doubled producta bring no change la the digits wish to ratain. Unagr the maungtion that all the $x 00$ ta are real end unequal $|a|>|b|>|c|>*$ Ifmentificientiy luree the ratio of a^{m} to $\left[a^{m}\right]$ ie approxinately one wikente the rav: or
 bicouns $x^{n}+a^{n} x^{n-1}+n^{m} b^{m} x^{n+2}+\cdots+\left(a^{m} b^{m}+\cdots\right)=0$. The numbteal value of car be determined from the second coefileiant: $|\mathrm{b}|$ ixon the third coefilcient and soon. The agn of tha actual roots can be checked by Descarte's rule of aigna.

Numerical andoplo.

$$
x^{3}-8 x^{2}-6 x+6=0
$$

1	$\frac{1}{1}$	$\begin{array}{r} -2 \\ 4 \\ 10 \end{array}$	$\begin{aligned} & -5 \\ & 25 \\ & 24 \end{aligned}$	$\begin{array}{r} 6 \\ 36 \end{array}$
2	1	14	49	36
	1	196	2401	1296
		-38	-1009	
4			1393	
	1	9.0043	1.940^{6}	1.620^{6}
8		-2.786^{3} $\mathrm{E} .218^{3}$	-0.254 1.6606	$1.6: 6$
	1	4.6497	2.84312	2.52212
		-0.3377	-0.023 ${ }^{12}$	
16	1	4.3127	$2.820 \frac{12}{2}$	2.822 21
	1	1.85915	7.952^{24}	7.964 ${ }^{44}$
		-0.006 ${ }^{25}$		
32	1	1.853^{28}	7.952^{24}	7.964^{24}

Determination of absolute value of the roota using

Logkin ithis

$$
\begin{aligned}
& \mathrm{a}^{32}=2.053^{24} \\
& \log e^{32}=40.2679 \\
& \log |a|=.4771 \\
& a=3.000 \\
& m^{32} 32 c^{32}=7.764^{24} \\
& \log e^{32}=24.9011-24.9003=.0003 \\
& \log |0|=.0000 \\
& c=1.000 .
\end{aligned}
$$

The oxiginal equabion muat have two pocitivo roota and ona negative, go tho roote are $3,-\operatorname{sit}$,
finle aethod ann be uaed in the oase of complex roots. se take the case of a cubic equation with one real root and a pair of conjugate complax roots.

If the facke roote are a. re ${ }^{-1 \theta}$ whara $x>0$ then the m$^{\text {th }}$ power aquaton la $\left(x+\operatorname{m}^{2}\right)\left(x^{2}+2 x^{2} 006 \max ^{2}+x^{2 a}\right)=0$ or
 If $|\mathrm{a}|>\mathrm{r}$, and m la lare enoukh, a in larce compared to $z^{r a}$ cos mo and can be computed by taxing the $n^{\text {th }}$ root of the coefficient of x^{2}, and x firon the congtint term any ${ }^{2 n}$. In thi case the approximete erucition is

$$
x^{3}+m^{2}+2 x^{2} x^{m}+003 m \theta x+\theta^{m} x^{2} a=0
$$

If $|a|<x$, then $r^{2 m}$ is large compared to $2 a^{n} y^{i a}$ cos $m \theta_{0}$ and I oan be ouputed by taking tie $2 a^{\text {ta }}$ root of the coefflolent of x, and a frcis the constant term. The approxinace açuation in thia caze is

$$
x^{3}+2 x^{m} \cos \sec x^{2}+x^{2 m} x+m x^{2 n}=0
$$

ruppose the comalax roots are $u t i v$, tion u can be coilputed from the relation $-a_{1}=2 u-a$
and u can be computed from the relation $x^{2}=u^{2}+v^{2}$. In thife partioular cass one coliwn of the coefficionce showa minua aign diter the first row during tho procesa mbich neans that there is a dats of omplex routa presont.

In the case of a zuartic ejuation two falrs of colplax routs may occur. Te let the Encke roots of the - ruation b $r e^{ \pm 1 \phi}$ and $e^{ \pm 1 \theta}$ wiere x and >0. The equation of the inth powers of the roote is $x^{4}+2\left(x^{m} \cos n \phi+\theta^{m} \cos n \theta\right) x^{3}+\left(x^{2 m}+4 x^{m} n^{m} \cos m \phi\right.$ $\left.\cos m \theta+g^{2 m}\right) x^{2}+2 r^{m} m^{m}\left(m^{m} \cos n \theta s^{m} \cos m \phi\right) x+r^{2 m} n^{2 m}=0$. The approximate ecuations are:

If $r>$ then
$x^{4}+2 x^{n g} \cos m \phi x^{3}+x^{2 m} x^{2}+2 x^{2 m} m^{m} c o s m \theta x+x^{2 m} m^{2} m=0$, and r can be deterained froe the coefficient of x^{2} and then a from the constant term.

In efther case we have two colwans behaving irregularly witb respect to slens; these two coluans are segarated by one regalar columa. The complex roote of the original equation can be repreaented by

$$
u_{1} \pm i v \text { and } u_{2} \pm i \nabla_{2}
$$

u_{1} and u_{2} can be determined from the quations

$$
\begin{aligned}
& 2 u_{1}+2 u_{2}=-2 \\
& 2 r_{2}^{2} u_{1}+2 r_{1} 2 u_{2}=-2_{3} .
\end{aligned}
$$

Then ∇_{1} and ∇_{2} can be determined from the se relations

$$
r_{1}^{2}=u_{1}^{2}+\nabla_{1}^{2} \text { and } r_{2}^{2}=u_{2}^{2}+v_{2}^{2} .
$$

The equation which aw three gatrs of coajlex roots,
swy

$$
u_{j} \pm i \nabla_{j}
$$

$$
j=1,2,3
$$

is
$x^{6}-2\left[u_{1}+u_{2}+u_{3}\right] x^{5}+\left[r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+4 u_{1} u_{2}+4 u_{1} u_{3}+4 u_{2} u_{3}\right] x^{4}$
$-2\left[2 u_{1}\left(r_{2}^{2}+r_{3}{ }^{2}\right)+2 u_{2}\left(r_{1}{ }^{2}+r_{3}{ }^{2}\right)+2 u_{3}\left(r_{1}{ }^{2}+r_{2}^{2}\right)+8 u_{1} u_{2} u_{3}\right] x^{3}$
$+\left[r_{1}{ }^{2} r_{2}{ }^{2}+r_{1}{ }^{2} r_{3}{ }^{2}+r_{2}{ }^{2} r_{3}{ }^{2}+4\left(u_{1} u_{2} r_{3}{ }^{2}+u_{1} u_{3} r_{2}{ }^{2}+u_{2} u_{3} r_{1}{ }^{2}\right] x^{2}\right.$
$\left.-2 r_{2}^{2} x_{3}^{2} u_{1}+r_{1}{ }^{2} r_{3}{ }^{2} u_{2}+r_{1}{ }^{2} r_{2}{ }^{2} u^{3}\right] x+r_{1}{ }^{2} r_{2}{ }^{2} r_{3}{ }^{2}=0$.
Te find x_{1}, r_{2}, r_{3} by Craeffa's method and if we proceed as in the cass of two complex roots we must deterinine u_{2}, u_{2}, u_{3} froa the equations $2 u_{1}+2 u_{2}+2 u_{3}=-a_{0}$
$2\left(r_{2}^{2}+x_{3}^{2}\right) u_{1}+2\left(r_{1}^{2}+r_{3}^{2}\right) u_{p_{1}}+2\left(r_{1}^{2}+r_{2}^{2}\right) u_{3}+8 u_{1} u_{2} u_{3}=-a_{3}$ $2 r_{2}{ }^{2} r_{3}{ }^{2} u_{1}+2 r_{2}{ }^{2} r_{3}{ }^{2} u_{2}+2 r_{2}{ }^{2} r_{2}{ }^{2} u_{3}=-5$.

Elimination of u_{2}, u_{3} leada to a cuble in u_{1} which we can Bolve.

For four paiss of complex ruote the problein becomes more complicatad. A system of chaltaneous equations has to be solved for $u_{1}, u_{2}, u_{3}, u_{4}$. This can be solved a 2 POL10wn. ${ }^{40}$
$f(z)=C_{0} z^{n}+C_{1} z^{n-1}+\cdots+0 n=0$
where $z=x+i y$. expant by Taylox's eerles
$f(x+i y)=f(x)+f^{1}(x)!y-f^{11} \frac{(x) y^{2}}{2!}-f^{111} \frac{(x) 1 y^{3}}{3!}+f^{I V} \frac{(x) y^{4}}{4!}+\cdots=0$ which can ba written
(1) $f(x)-f^{I L} \frac{(x) y^{2}}{2!}+f^{\text {IV }} \frac{(x) y^{4}}{4!}=0$
(2) $f^{I}(x)-f^{I I I} \frac{(x) y^{2}}{3!}+\frac{V}{f} \frac{(x) y^{4}}{5!}=0$. We substltute
$(3) y^{2}=x_{3}^{2}-x^{2}$ in (2) and solve for x the resulting equation by Graeffe's aethod. One of the real rootg obtained will be u_{3}. If the equation has aore than one real root, we coapute the correspondiag values of y fur each real x by meana of (3) and we subatitute each pair in (1).

40 B. A. Hausmann, "Graeffe' Method, and Cosplex Footw," The American Yathematical Yonthly, 43:225-29, Apri1: 1936.

The palr which gatisfies (1) elves the values, namely uz and V_{3} For more than three pairs of corplax roots we repeat the process.
Let $y^{2}=r_{4}^{2}-x^{2}$ to get u_{4} man ∇_{4}.
To IInd u_{1} and u_{2} the best procedure is to use jometrio functions of the roote ewloying the sacond and the next to the last terms of tre original equation which are linear expressions in u_{1} and $u_{2} *$ and subetituting in them the values for $u_{3}, u_{4 * *}$ which have been found already. Nunertcal example

$$
z^{6}-12 z^{5}+72 z^{4}-262 z^{3}+601 z^{2}-650 z+650=0
$$

Uning Greeffe's nethod we find that all the roots are came plex With the çuare of the absolute values

$$
r_{1}^{2}=13 \quad r_{2}^{2}=10 \quad r_{3}^{2}=5
$$

We use equations (1) and (2)

$$
\begin{aligned}
& f(x) \equiv x^{6}-12 x^{5}+72 x^{4}-252 x^{3}+601 x^{2}-950 x+650=0 \\
& f^{I}(x)=6 x^{5}-60 x^{4}+208 x^{3}-760 x^{2}+1202 x-850 \\
& f^{I I}(x)=30 x^{4}-40 x^{3}+854 x^{2}-1572 x+1202 \\
& f^{I I I}(x)=160 x^{3}-720 x^{2}+1720 x-1572 \\
& f^{I V}(x)=360 x^{2}-1440 x+1720 \\
& f^{V}(x)=720 x-1440 \\
& f^{V I}(x)=720 .
\end{aligned}
$$

From $\mathrm{r}_{3}{ }_{3}=5$

$$
y^{2}=x_{3}^{2}-x^{2}
$$

$$
y^{2}=5 \cdots x^{2} \text {. cubstitute thie value in equation. (2) }
$$

together with the values of $I^{I}(x), f^{I I}(x)$, etc... which glves the equation
$g(x)=32 x^{5}-192 x^{4}+416 x^{3}-328 x^{2}-88 x+160=0$.
If we solve it by Graeffe's method we find thut the only root which atiafies (1) is one. fence $u_{3}=1$. ie find u_{1} and u_{2} from these relations
$\begin{aligned} 2 u_{1} & +\quad 2 u_{3}+2 u_{3} \\ 2 r_{2}{ }^{2} r_{3}^{2} u_{1} & +2 r_{1}{ }^{2} r_{3}{ }^{2} u_{2}+2 r_{1}{ }^{2} r_{2}{ }^{2} u_{3}=650\end{aligned}$
whlch gives $u_{2}=2$

$$
u_{2}=3 .
$$

From

$$
\begin{aligned}
& r_{1}^{2}=u_{1}^{2}+v_{1}^{2} \\
& r_{2}^{2}=u_{2}^{2}+v_{2}^{2} \\
& r_{3}^{2}=u_{3}^{2}+v_{3}^{2}
\end{aligned}
$$

$$
\mathbf{v}_{1}=3 \quad \nabla_{2}=1 \quad \nabla_{3}=2
$$

Then the roots of $f(z)=0$ are

$$
\begin{aligned}
& 2 \pm 3 i \\
& 3 \pm i \\
& 1 \pm 2 i
\end{aligned}
$$

If the equation has multiple roots, they cun be detected and eliminated by findiag the highest common factor of $f(x)$ and $f^{I}(x)$. But if thla test and
elimination have not been made hefore applyine Craeffe's method the procedure is allown.

Let the Fincke roote of cubic equation le

$$
a,-a, b \quad|a| \neq b
$$

inen the equation of the $n^{\text {th }}$ powers of the roots is $a^{3}+\left(2 a^{m}+b^{m}\right) x^{2}+\left(a^{2 m}+2 a^{n} b^{n}\right) x+a^{2 m} b^{n}=0$. If $|a|>|b|$ the approximate equation is
$x^{3}+4 a^{m} x^{2}+a^{2 n} x+a^{2 n_{b} m}=0$
and if $|a|<|b|$
$x^{3}+b^{n} x^{2}+2 a^{n} b^{2} x+a^{2 n} b^{m}=0$.
If m im large that tne doubled products of the coefficients are necligible one of the colums exhibits the pecularity that its coefficient is not squared by another rout-squarine tranaformation, but becomes one half of the square of 1 ts former value.

$$
2 a^{2 m}=\frac{1}{2}\left(2 a^{m}\right)^{2} \text { and } 2 a^{2 m} b^{2 m}=\frac{1}{2}\left(2 a^{m} b^{m}\right)^{2}
$$

This change in the mingitudes of the coefficients of one colum with no irregularity in algn, showe the presence of a pair of roots qual in magnitude, but the signa can Oither be equal or opposite.
Now, sugpoae $f(x)=0$, a cubic, has the Encke roots a, a, -a, then, the $m^{\text {th }}$ power of the oquation is $x^{3}+3 a^{m} x^{2}+3 a^{2 m} x+a^{3 m}=0$.

In thla case two adjecent columng will increage ultimateLy at one third of normal rate, since $3 a^{2 m}=1 / 3^{\left(3 a^{m}\right)^{2} \text {. }}$

If four roots are equal the correaponding equation w111 be

$$
x^{4}+4 a^{m} x^{3}+6 a^{2 m} x^{2}+4 a^{3 m} x+a^{4 / n}=0
$$

Then three djacent coluans Increase ultimately at one fourth, one ixth, one fourth of normal rate respectively. Hotice that the fraction appearing here are the reciprocala of the binomial coefficients. Thia behavior extenda to multiglicities of any order.
mis behavior can be ammarized in aet of rules of Identification* 41

First detect and elidinate equal roots.
1 All aigne plus after the given quation and mll columns Increase at normal rate, all roots real and of unequal absolute values.

2 A elngle column irregular in sign, one palr of complex roots.

3 If two adjecent columns are irregular in sign, one pair of complex rootg with modulus equal to that of the remi root.

41 C. A. Hutchinson, Mo Graetfe' a thod for the Numerical Solution of Algebraic Rquations," The Anerican

4 One colum increase eventually at one-half of normal rate, two qual roota in magnitude, but unequal sign.

5 Two adjacent columns increase eventually at one-third of normal rate, triplet.

6 Two non-adjacent columas increase at one-half of normal rate, two doublets, not quadruplet.

7 Three adjacent columns increase at one-fourth, one-sixth and one-fourth of normal rate respectively, quadruplet.

8 One column increases at one-half of normal rate, and nonadjacent column is irregular in aign, doublet and a pair of complex roots.

9 Two non-adjacent columns irregular in signt two pairs of complex roots with unequal modull.

10 Three adjacent columns irregular in sign, two pairs of complex roots with equal moduli.

11 One column irregular in aign and one column adjacent on each aide, regular in sien, but irregular in magnitude, doublet and a pair of complex roots w ith the same moduli as the doublet.

Location and Separation of the Roots

The real roots of an equation, $(x)=0$, are sald to be isolated if one or more intervals have been found such that each real root is contained in one of these intervaly
and no other roots of $f(x)=0$ are known to lie in those intervals.

We may isolate the real roots of $f(x)=0$ by means of the graph of $y=f(x)$. But to obtain a reliable graph it is necessary to employ the critical pointe, whose abscissan occur among the roots of $f^{I}(x)=0$. Since the latter equation is of degree $(n-1)$ when $f(x)=0$ is of degree n, this method is usually impracticable when n exceeda three.

Rolle's theorem states that between two consecutive real roots of $f(x)=0$ there exists an odd number of real roots of $\mathrm{f}^{I}(x)=0$, provided a root of multiplicity m is counted as m roots. A method based on this theorem is open to the same objection as the method described above.

Descartes" rule of elgns sags that the number of positive real roots of rational integral algebraic equation $f(x)=0$, with real coefficiente, is either equal to the number of variations of gign in its coefficients or 1ess than that number by a positive even integer. The number of negative roota of the same equation is ither equal to the number of variations of sign of $f(x)=0$, or less than that number by positive even integer. This rule of signs gives, in many casea, information regarding the total number of real roots.

Budan's theorem (1807) is another theorem concerning isolation of roots of an equation. In this case we let $f(x)=0$ be an integral algebralc equation of degree n, with real coefficients, and a and b two real numbers $(a<b)$ nedther a root of $f(x)=0$, be substituted in the series formed by $f(x)$ and its successive derived functions $f(x), f^{I}(x), f^{I I}(x), \ldots ; f^{n}(x)$; then the excess of the number of variations of sign in the series when $x=a$, over the number of variations of eign when $x=b$, either equals the number of real roots of $f(x)=0$, between a and b or exceeds the number of roots by a positive even integer. A root of multiplicity m is here counted as m roots. This method has one adrantage over that of Sturm, in that Budan's functions are easily obtalned.

Numerical Bxample.
Locate the roots of

$$
\begin{aligned}
& \quad x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1=0 \\
& f(x) \equiv x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1=0 \\
& f^{I}(x)=5 x^{4}+4 x^{3}-12 x^{2}-6 x+3 \\
& f^{I I}(x)=20 x^{3}+12 x^{2}-24 x-6 \\
& f^{I I I}(x)=60 x^{2}+24 x-24 \\
& f^{I I I}(x)=120 x+24 \\
& f^{5}(x)=120 .
\end{aligned}
$$

We form the following table

\times	1	$4^{\text {I }}$	2^{11}	$\underbrace{*}$	f^{1}	4^{5}	V
-2	-	+	-	+	-	+	5
-1	-	-	+	+	\cdots	+	3
0	+	+	-	-	+	$+$	2
1	-	-	+	+	\dagger	+	1
2	+	+	+	+	+	+	0

yron the table we see that there may be two roots in the interval ($-2,-1$) and must be one root in each of the intervala $(-1,0):(0,1):(1,2)$.

The first complete solution of the problem of lsolatlag the real roote of an equation with real coefficiente was furnished by cturn in 1829.42 Iif work was as follows Let $f_{0}(x), f_{1}(x), \ldots, f_{r}(x)$ be an ordered set of polynomials in the fleld of real numbers Substitutine $x=a$; (a fa a real number) an ordered et of real numbers fala), P_{1} fa;..... $P_{r}(a)$ is obtained. All zeros present in this set are supresced, except $f(a)$ and $f(b)$. The number of variations in siga in passing from term to term is counted

42 L. Weisner, Introduction to the Theory of Znustions (second edition; yew York: The iacillian Company, 1947). p. 80.
and denoted by Va. The basic ldea of Sturn's aetiod is to conatruct, for every polynomial with real coefficients, a sequence of polynomials of which it may be asserted that for any a and $b(a<b)$, the exact number of real roots of $f(x)=0$, between a and b, is exactly equal to the number of varlations of aign in the series when $x=2$, diminished by the number of variations of sign in the series when $x=b$.

The polynomials which sturn proved to have the desired property were constructed in the following nianner.

Let $f(x)$, the given polynomial, be identical equal to $f_{0}(x)$ and $f^{I}(x) \equiv f_{1}(x)$. on dividing $f_{0}(x)$ by $f_{1}(x)$ a remainder is obtained whose negative was $f_{2}(x)$. In the sace manner $f_{3}(x)$ is the negative of the remainder obtained when $f_{1}(x)$ is divided by $f_{2}(x)$, to. The polynomials $f_{0}(x), f_{1}(x), f_{2}(x) \ldots$ are called Sturn's functions for the civen polynomial $f(x)$. The calculations terminate naturally when a remalnder is obtained which is non-zero constant whose negative is the last Sturm function. During the paseage of \times from a to b, the only cases in which there can be any changes in the number of variations of sign of the eeries of Sturm's functions are the following:

1 When x pasaes throuch value which causes one of the functions $f_{0}(x), f_{1}(x)$... to vaniah

2 When x pasaea through a root of $f(x)=0$.
In the case of equal roots $f_{0}(x)$ and $f_{1}(x)$ have cone mon tactori hence $f_{r}(x)$, the last of cturm' functions, ia not a non-zero conetant, but the ereateat common divisor of $\mathcal{L}_{0}(x)$ and $f_{1}(x)$.

The advantage of Sturn' method is that it elves alway the exact number of real and alstinct roots of $f(x)=0$, between, a and be

Nuansical txample
Locate the roote of $x^{4}-4 x^{3}+4 x^{2}+4 x-3=0$. We find firet $f^{\prime}(x)$ of $f(x)=0$ and diviae $f(x)=f(x)$.

$$
f^{2}(x) \quad f^{1}(x)
$$

Then we proced to ind the reat of Sturin' functhong according the rule already mentioned. To avold fractions, we may multiply $f_{0}(x)$ by a positive conetant before dividine by $f_{1}(x)$, and multiply any $f_{j}(x)$ by a positive constant before divialne by $f_{j}+1(x)$. Also, we can rewove any constant poaltive factor from $s_{j}(x)$ before uging it as divimor.
$f_{0}(x)=x^{4}-4 x^{3}+4 x^{2}+4 x-3=0$
$f_{1}(x)=4\left(x^{3}-3 x^{2}+2 x+1\right.$
$f_{2}(x)=4\left(x^{2}-5 x+2\right)$
$f_{3}(x)=4(-10 x+3)$
$f_{4}(x)=-235$.

We cive a tabla of ligns for the indicated values of x of Eturm's functions

x	$f_{a}(x)$	$f_{1}(x)$	$f_{2}(x)$	$f_{3}(x)$	$f_{4}(x)$	v
-3	+	-	+	+	-	3
-2	+	-	+	+	-	3
-1	+	-	+	+	-	3
0	-	-	+	+	-	2
1	+	+	-	-	-	1
2	+	+	-	-	-	1
3	+	+	-	-	-	1
4	+	+	-	-	-	1
5	+	+	+	-	-	1

Accordincly, we have one real root between (-1, 0), another real root between (0,1) and two lmaglary roota. rometime Fourler' theoren is ugeful in eeparating roota of an equation. Fourier's theorem atates that if $f(x)=0$ is a rational integral algebrale equation, which has one and only one real root between a and $b(a<b)$,
and if $f^{2}(x)=0$ has no real'root between and b, and also $f^{I I}(x)=0$ has no real root between a and b; then iewton's method of approxination will cartalniy be successfut if it be becun and continued from that bound for which $f(x)$ and $f^{I I}(x)$ have the same sign. Cuses must occur in practice where the roots of an equation cannot be separated by any of the well - known easier methods and where Eturm'a functions involve too much work. In such cases a combination of Fourler'a theorem and Lagrange's method of approximation lis very useful.
Mumerical example. 43

$$
x^{17}-35 x^{15}+11 x^{14}-1000 x^{10}+2500 x^{5}-151 x^{3}+1=0 .
$$

At firet application of Fourier'g theorem shows that there are

1 Two positiva roots: one betwean (1,2) and one between $(5,6)$.

2 Three nezative roots: one between ($0,-1$), one batween $(-1,-2)$ and one between $(-6,-7)$.
3 A doubtiul interval $(0,1)$ in which four chanees of ien are lost and which consequentily include four more poselble positive roots.

[^8]Now, to digpose of the doubtful interval we let $x=\frac{1}{u_{1}}$ and obtain an equation in u_{1}
$u_{1}{ }^{17}-151 u_{1}{ }^{14}+2500 u_{1}{ }^{12}-1000 u_{1}{ }^{7}+11 u_{1}{ }^{3}-35 u_{1}{ }^{2}+1=0$. Call it $\mathrm{FA}_{\mathrm{A}}\left(\mathrm{u}_{1}\right)$.
Fourierts functions of Fa(u_{1}) sive for $u_{1}=1$ two changes of ign and for $u_{1}=2$ no changes of aign. Then $F_{A}\left(u_{1}\right)=0$ may have two roots between 1 and 2, but hae no other poiltive rootg ereater than unity. Now tha doubtiul roots are reduced to two. To dispoes the remaining palr we set $u_{1}=1+\frac{1}{u_{2}}$ and we get an equation in u_{2} which we call
$F_{B}\left(u_{2}\right)$. Thle quation can have no positive roots greater than unity. The four originally doubtful roots are all imaginary.

Remarks.
1 The auxlliary equations were concerned only with positive values of the variable greater than unity.

2 Negative roots of the original equation are more convenIently located by qubstituting $-y$ for x and seeking for the positive roote of the resulting equation.

3 Fallure of the method is due to equal roota.
Concerning complex roots Sturm's Theorem gave a method for determining the number of them, but not their
values. Thie was revealed by a ceneral theores of a Ereat French mathematician Auguatia Louie Cauchy (2789-1857) Efting the number of roota, real or complex, which ile within a eiven contour. ${ }^{4} 4$
If the roots of an equation $f(x)=0$ are under conslderation the theorem 8 tates that if N is the nuaber of roots In the complez plane within a closed olrcuit A, not pasing throuch any of the roots, then

$$
X=\frac{1}{2 / \pi^{I}} \int \frac{f^{1}(x) d x}{f(x)}, \text { the integral be } \ln \text {, }
$$

Then two real roote of an integral rational equation are nearly equal, it is often difficult to separate them. This difiticulty is frequently due to the fact that we cannot readily approximate the roots by Mewton's method. The echem described below for lsolating such roote is usually setisfactory, ${ }^{45}$

Illustration.

[^9]We consider the quartic (Lovitt p. 138)
(1) $f(x)=x^{4}+8 x^{3}-70 x^{2}-144 x+936=0$.

We readily find that

$$
\begin{aligned}
& f(3)=171 \\
& f(4)=8 \\
& f(5)=91 .
\end{aligned}
$$

By Descartes rule of signs the equation $f(x)=0$ has two or no real positive roots. Hence we conclude that if the equation has any positive roote they are near $x=4$. We shift the axes horizontaliy by setting $x=(y+4)$. we obtain
(2) $f(y)=y^{4}+24 y^{3}+122 y^{2}-64 y+8=0$.

We discard the two first terms and oolve the quadratic equation obtaining

$$
\begin{aligned}
& y^{1}=-206 \\
& y^{1 I}=\cdot 319
\end{aligned}
$$

$$
x_{y}=4.206
$$

$$
x_{4}=4.319
$$

If $f(y)$ has any positive roots, they ile inslde the interval (y_{1}, y_{2}) since the first two terme are positive for every $y>0$. Hence, $f(y)$ cannot be zero except possibly for values of y, between $\left(y_{1}, y_{2}\right)$ that make the quadratic negative. We can get better reaults by tranelating the axes by letting $y=a+a$ where $y_{1}<a<y_{2}$.

Usually ona would take $a=\left(y_{1}+y_{2}\right) \quad$ approxiadtely.

$$
G(z)=z^{4}+25 z^{3}+\frac{113 z^{2}}{8}+\frac{25 z}{16}+\frac{1}{256}=0 .
$$

From this ge obtain by decarding the flest two teras

$$
\begin{array}{lll}
z_{1}=-.00734 & \text { or } & x_{1}=4.24263 \\
z_{2}=-.00379 & & x_{2}=4.24261 .
\end{array}
$$

Hence if $G(z)=0$ has any real roota near gero, they lie oubside the interval $\left(z_{1}, z_{2}\right)$. Thus if $f\left(x_{i} j=0\right.$ has any poeitive roots, they lie inside the interval (x_{1}, x_{2}) and outalde tiv Laterval (x_{3}, x_{4}) where

$$
x_{1}<x_{3}<x_{4}<x_{2}
$$

To decise the question we find the sign of $G(p)$ where p 14 any value between z_{1} and z_{2}. For example we find $G(-.005)<0$ or $f(4,245)<0$. Thls provea the existence of two poaltive real roots of $f(x)=0$. As a matter of fact, it is evident that $G(z)=0$ has a root between zero and z_{2} bocause $O(0)>0$ and $O\left(z_{2}\right)<0$, aince $z^{3}(z+25)<0$ for negative values of z near zero and the quadratic vanishes at z_{2}. Einco z_{1} and z_{2} are very mall. it follows that x_{3} and x_{4} are clore approximation to the twa roots in question.

These roots are

$$
\begin{aligned}
& n_{1}=4.24264 \\
& r_{2}=4 \cdot 34622
\end{aligned}
$$

lad we taken some vilue fore, a litto different from .25, wo micht heve found that the roote of $G(z)<0$ restod inmide the interval (z_{1}, z_{2}). However the values obtained for x_{3} end x_{4} would have beea close approximations to the roota R_{1} and n_{2} of $f(x)=0$, and the point $\left.x=\frac{\left(x_{3}+x_{4}\right)}{2}\right)$ would very 12 ke 1 y have goparated K_{1} and K_{2}. Incidentally, thie valus of x shoula be a very clome approxination to the abscisse of the mintem point in thic neletborhood.

Graphical and Eechanical Methode of Colution

One of the principal ues of the rectangular Cartesian coorginate gribais the graghical repreentation of an equation $y=f(x)$ where the function is a polynomial with real ooefficiente. To conetruct this eraph, we aseign to x a ecrien of values and compute the corresponding y's. It is usually convenlent to start by aselgning integral values of x, to plot the resulting pointe and then to epproximate for fractional values of x where the efneral ahepe of the curve doez not agea
already to be cleariy indicated. Considerable lnformation about the roots of an equation $f(x)=0$ can be obtalned by inspecting the graph of $y=f(x)$. These roots are the x 's of the points where $y=0$, that 18 , the ln tersections of the curve ith the $x-a x i s, f^{1}(x)$ is the slope of the tangent of $y=f(x)$. In atudying the apape of the curve, it is convenient to think of it ge traced with x varying from - ∞ (numerically large negative numbers) to $+\infty$ (numerically large positive numbers). The curve rises or falls according as $f^{\prime}(x)$ Is poilive or negative. If $\mathrm{f}^{1}(x)=0$, the tangent is parallel to the x - axiw.

It is useful to plot the curve $y f^{1}(x)$ elther on the same axes as $y=f(x)$ or with the ame y - axle and different x - exis. Similariy for the higher deriva. tives. These derived curves are very useful in bringIng out propertien of the function beoause they are interrelated.

Graphical Method for an $n^{\text {th }}$ Degree Iquation. ${ }^{46}$
We take any numerical equation of the form

$$
A_{n} x^{n}+B_{n} x^{n-1}+C_{n} x^{n-2}+\cdots-\cdots-T_{n} x+V_{n}=0
$$

46 \%. H. Blxby, "Graphical Solution of Wumerlcal Fquations": The Amerloan 世athematical Monthly, 29:344-46, October, 1922.
where A_{n} is any positive number efther whole ur iraction21. On b blank sheet of paper, we tart at any asauned point α, and using any convenient scale, we laj off in a downara directiona diatance n_{n}, from α to a, throuch a, we draw perpendicular, and lay off upon it, with the same scale an before, the volue Bn_{n} ((o the right if B_{n} is positive, to the left if B_{n} is negative) through the end of B_{n} we drew perpendioular to B_{n} upon which we lay off the value of C_{n}, upgard if positive, downard if negative; and so on. For each new line the positive direction turna through an angle counter - clockwise. we deaignate the end of the last line. Then we have a rectanculax oontour, that is a broken line all of mhoze anclea are right angles, of $n+1$ sides connecting α ans w.
Now staxtine meain at α, draw at randon any giralcht 1ne cutring Bn_{n} in some point,
 Ca in mox point ad c^{2}, and to on * wow we kave a nem rectanculat contovx of n sides. If the $n^{\text {th }}$ elde passas throuch the point wen $\frac{a b}{\alpha a}$ taken with 1 ts wen changed. is root of the givon equation. mere will de a many such cantours of n giseg as these are cen roote to a given ecuaticn.

Suppose only one root is found by the above metroc. elven as one new rectancular contouly $\alpha \operatorname{col}^{2} \ldots \ldots$, of n
 on this new rectanguier contowr $\alpha \operatorname{cb}^{2} * * w=*_{n-1}$ * $\mathrm{B}_{n-1} \ldots$.. ©tc. repreenta the equation of degrea (n-1) obtained by aividing out by the root, ie treat the new contour of a sices Like the preceeding odtainiag d. new reotangular contour of (n-2) eldes whose firgt vertex 1 s at wome polnt C upon the line bit then $\frac{\mathrm{bo}}{\mathrm{L}}$, taken with itw ign caanced, will bo anotier root
 applicable to cates where the aesired roota be between $\pm \frac{1}{8}$ and ± 51 if the roots of the given equation Li* beyond these limita, the eiven equation may be transformed into another whose roote will be between

The Figure in for $n=3$:

between the bove 1lmite. In the cace of a uadratic. represented by the inner contour, the roote, if real, may be found by means of a circle on α was diatreter, as Indicated in the figure.

Wechanical solution of the Cubic Equation. ${ }^{\text {P }}$
(1) We take the general cublo equation

$$
u^{3}+A u^{2}+B u+C=0
$$

and by letting $u=T-\frac{1}{3}$ we

$$
\begin{equation*}
\nabla^{2}+a v+b=0 \tag{2}
\end{equation*}
$$

By the following rational transformation $v=\frac{k x}{a}$ wet

$$
x^{3}-m(x+1)=0 \text { where } m=-\frac{a^{3}}{b^{2}}
$$

Now we eolve (3) eraphically by replacinc (3) by the set
(4)

$$
y=x^{3}
$$

$y=m(x+1)$ mose a foultaneous raluas of x also belong to (3). To the have for all cuiles, a plxed curve and a varlable lino. mut thig verimie line has tie distinct virtue of alway paseine theough die point
 errangerent bhoun. A cardbourd atrif is atbached to the

47 R. C. Yatec, "A Hechanicad Colution of the Cublo Pruation, "Yathemetion geacher, 32:215.

A Xechanical Solution of Cubic

plane on which the curve $y=x^{3}$ is drawn, so that its straight edge rotates about ($-1,0$). Ita poaition, of course in determined by the slope $m=\frac{-a^{3}}{b^{2}}$ measured directiy upon the vertical scale. The root x is then determined by the perpendicular dropped from the interm section onto the horizontal axis.

Hechanical Solution of an Equation of $n^{\text {th }}$ Degree 48

The mechanien consists of a main bar thirty-two Inche long to which ere hinged three axms ewch about eight inches long, the diatance between the hinges being equal. A lichter conneoting bar is attached to the free ends of the arms in such a manner that these arme always turn through the game angla. On the main bar, and almo each of the mam, are beveled cleata along which grooved alides moves freely, Bach of these elides on the maln bar carries ma eye haaded ecxew placed so that when the ingtrument la closed and these olides are at their zero pointe, the eyes are in line ith the pins of the hinges. Hach slide on the arat carriea a mall drum that is held firm by means of milled nut. To each of the drum is attached a rall, flexible, inelastic cord, which passes through the oye cazried by the adjacent milde on the main bay, and is fastened to the next slide below on the maln bss: the lower end of the last cord beang made iad to the main bar. The

48 A. L. Candy, "A Hechanism for the Colution of an Iquation of nth Deeree. The American Fathematical Monthly, 27:195-99, Nay, 1920.

Pirst slife is held in place ly mesne of a small iron pin inserted in holes in the main bar. A graduated circular scale is placed under the first arm, from whioh the roots of the quation are read. The reale for reading the gositions of the slides are mariked off on the left side of the main bar. The instrument may be ueed in a vertical position, so that the leng thening of any string by unwinding will cause some of the slides to move donnwards by their own weight, or lying on a table and operated with both hands.

Let us solve the equation
(1) $10 x^{3}+24 x^{2}+9 x-7=0$.

The process is as follows. First, close the instrument, wind up the drume until each sidde comes to the zero point of its scale, and all the cords are taut. The arme will now move fresly thircugh an angle of 90°, with all the cords continuously taut. Now move the firet silde ten units (the coefficient of x^{3}) downird, by moving the iron pin which alway holds this slide in a fixed position; unwind twenty-four unlta (the coefficient of x^{2}) from the cord wound around the first drum; likewise, unwind nine unite (coefficient of x; from the second drum;
alnce the constant term la negative, wind up the last drum until the last cord is shortened by seven units. Now turn the arma through some angle until all the cords become taut, with the alldee on the aris 0 adjusted that the cords attached to them shall be at right angles to the arrs. The reading on the scale under the firet arm now ehows one root of the equation to be 388 . The exact root is $\frac{(\sqrt{3}-1)}{2}$.

The author has called the attention to the followIng liailta of the aechanian
1 The mechaniam will find ondy a root of the equation that Lies between 0 and 2.
2 The equation to be solved must have the constant term negative, and all the coefficients positive.
3 An equation of firat degree can be solved by using only the upper or lower arrs. An equation of second degree can be solved by using two arms, either the upper two or the lower two. For a cuble equation three arms are needed, and so on.

CHAPTER V

> Ferrari 'e, Descartes' and Zuler's' Reducing Cubios Obtalned from eingle quadratio Function of the Roote

In chapter III, the solutions of the general quartic equation an discovered by Ferrari. Deacartea sind Euler were preaented. In each case the solution depended on the solution of a certain reducing cubic. Also in chapter III it was ghown that by using certain quadratic function of the roots of the quartie a olution by meane of symmetria functions could be obtalned. This latter method also gave rise to a reducing cuble that depended on the choice of the quadratie function of the roots. With a proper chole of thle function the reducing cubics found by Ferrari, Descartes and Suler were obtained. In this part of the paper I wish to prove that all three of the functions chosen in chapter III, to produce the several roducling oubles, are linear functious of t. (where $t x_{1} x_{2} x_{3} x_{4}$, and and are arbitrary quantitles in the domaln of rationallty) and that, by a proper choice of and all three solutions of the quartic can be obtained.

We assume the general quartic In the form
(1) $u x^{4}+4 b x^{3}+6 c x^{2}+4 d x+=0$
and let x_{1}, x_{2}, x_{3} and x_{4} be its roots.
We consider the given function $Q=\alpha t+\beta$ where
$t=x_{1} x_{2}+x_{3} x_{4}$. Under the tienty-four ubetitutions of $G_{24}^{4} \&$ taka only three values.

$$
\begin{array}{lll}
q_{1}=\alpha t_{1}+\beta & \text { wore } & t_{1}=x_{1} x_{2}+x_{3} x_{4} \\
q_{2}=\alpha t_{2}+\beta & & t_{2}=x_{1} x_{3}+x_{2} x_{4} \\
q_{3}=\alpha t_{3}+\beta & & t_{3}=x_{1} x_{4}+x_{2} x_{3} .
\end{array}
$$

We let Q_{1}, Q_{2} and Q_{3} be the roots of the resolvent cubic equation

$$
y^{3}-\sum Q_{1} y^{2}+\sum Q_{1} Q_{2} y-Q_{1} Q_{2} Q_{3}=0
$$

We compute $\sum Q_{1} \sum \sum Q_{1} \psi_{2}$ and $Q_{1} Q_{2} \psi_{3}$ which are elementary symmetric functions of the roots of the quartic. The roots of this cubic are expressed in terms of the coefficlente of equation (1).

$$
\sum q_{1}=\alpha\left(\sigma_{2}\right)+3 \beta
$$

(2) $\sum \theta_{2} n_{2}=\alpha^{2}\left[\sqrt{1} \sigma_{3}-4 \sigma_{4}\right] \quad 2 \alpha \beta\left[F_{2}\right]+3 \beta_{2}^{2}$
$Q_{1} Q_{2} Q_{3}=\alpha^{3}\left[\sqrt{1}^{2} \sqrt{4}+\sqrt{3}^{2}-4 \sqrt{2} \sqrt{4}\right]+\alpha^{2} \beta[\sqrt{1} \sqrt{3}-4 \sqrt{4}]+$ $\alpha \beta^{2}[\sqrt{2}]+\beta^{3}$
where

$$
\begin{array}{ll}
\sqrt{1}=-\frac{4 b}{2}=\sum x_{1} & \sqrt{3}-\frac{4 d}{2}=\sum x_{2} x_{2} x_{3} \\
\sqrt{2}=\frac{60}{2}=\sum x_{1} x_{2} & \sqrt{4}=\frac{6}{2}=x_{1} x_{2} x_{3} x_{4} .
\end{array}
$$

Ferrari's Cage
III resolvent coble is of the form
(3) $4 a^{3} \theta^{3}-\left(a \theta-4 b a \quad 3 c^{2}\right) a \theta+a c e+2 b d-a d^{2}-a b^{2}-c^{3}=0$. From (2) and (3) we have the following wgrtem of equations
(4) $\quad \alpha \sqrt{2}+3 \beta=0$
(5) $\alpha^{2}[\sqrt{1} \sqrt{2}-\sqrt{4}]+2 \alpha \beta(\sqrt{2})+3 \alpha^{2}=-\left(a c-4 b \alpha+3 c^{2}\right) a$
(6) $\alpha^{3}\left[\sqrt{1}^{2} \sqrt{4}+\sqrt{3}^{2}-4 \sqrt{2} \sqrt{4}\right]+\alpha^{2} \beta\left[\sqrt{r_{1}} \sqrt{3}-4 \sqrt{4}\right]+\alpha \beta^{2}(\sqrt{2})+\beta^{3}=$

$$
-\left[a c c+2 \operatorname{bcd}-a d^{2}-0 b^{2}-c^{3}\right]
$$

Solving (4) and (5) for α and β the roots are,

$$
\beta=\sqrt{a} \quad \alpha=-\frac{a \sqrt{2}}{2}
$$

and $\quad \beta=-0 \sqrt{a}$

$$
\alpha=\frac{a \sqrt{a}}{2}
$$

Next, we check the two pairs of roots in equation (6).
This yields the following expression
$2 a \sqrt{a}\left[a c e+2 b a d-a a^{2}-a b^{2}-c^{3}\right]=\left[a c a+2 b c d-a d^{2}-a b^{2}-c^{3}\right]$
from which
(7)
aa $\sqrt{a}=1$. gut the left - hand eide of (7) is
equal to $4 \alpha_{0}$
So

$$
\begin{aligned}
& 4 \alpha=\frac{1}{4} \text {. Substituting this value } \ln (4) \text { we get } \\
& \alpha=\frac{\sqrt{2}}{12} \quad \text { or } \beta=-\frac{c}{2 a} .
\end{aligned}
$$

Descartes' Comes.
The values just found for α and β are the sase for Descartes cane because hie resolvent double io of the same form ae that of Ferrari.

Euler'a Case.
His resolvent is
(8) $\quad \theta^{3}+5 \pi \theta^{2}+\left(3 H^{2}-\frac{2^{2}}{4}\right) \theta-\frac{\theta^{2}}{4}=0$ where

$$
\begin{aligned}
& C=\left(a^{2} a-3 a b c+2 b^{3}\right) \\
& H=\left(a c-b^{2}\right) \\
& I=\left(a-4 b d+3 a^{2}\right)
\end{aligned}
$$

From (2) and (8) we can wite
(8) $\alpha \sqrt{2}+3 \beta=-3 H$
(10) $\alpha^{2}[\sqrt{1} \sqrt{3}-4 \sqrt{4}]+2 \alpha \beta(\sqrt{2})+3 \beta^{2}=3 H^{2}-\frac{e^{2} I}{4}$
(11)

$$
\begin{align*}
\alpha^{3}\left[\sqrt{1}^{2} \sqrt{4}+\sqrt{3}^{2}-4\right. & \sqrt{2} \sqrt{4}]+\alpha^{2} \beta[\sqrt{1} \sqrt{3}-4 \sqrt{4}]+\alpha \beta[\sqrt{2}] \\
& +\beta^{3}=-\left[\frac{-\alpha^{2}}{4}\right] . \tag{8}
\end{align*}
$$

* obtain two pairs of cote by solving equations
and (10)
First pair of roots $\alpha=\frac{2^{2}}{4} \quad \beta=-\frac{3 \pi}{2}+v^{2}$.
Second pals of roots

$$
\alpha=-\frac{a^{2}}{x} \quad \beta=-\frac{a c}{2}+b^{2}
$$

The first pair satisfies identically equation (11). To complete the work we know that $\sum \hat{i}_{1} ; \sum c_{2} 2_{2}$ and $q_{1} q_{6} q_{3}$ can be expressed in terms of the coefficients of equation (1) and that the \&'s are the roots of a cable of the type
$A y^{3}+B y^{2}+C y+D=0$ which oman be solved. Once we know the Q 's, we can express the t 's in term of $\mathrm{in}^{\prime} \mathrm{s}$, $\alpha^{\prime} \mathrm{s}$ and $\beta^{\prime \prime}$ s, and write a quadratic equation of the form $\mathrm{Rz}^{2}+5 \mathrm{z}+\mathrm{T}=0$ whose roots are $\mathrm{z}_{1}=x_{1} x_{2}$ and $z_{2}=x_{3} x_{4}$.
To find $\left(x_{1} x_{2}\right),\left(x_{3} x_{4}\right),\left(x_{1}+x_{2}\right)$ and $\left(x_{3}+x_{4}\right)$
We write the following equations.

$$
\begin{align*}
& x_{1} x_{2}\left(x_{3}+x_{4}\right)+x_{3} x_{4}\left(x_{1}+x_{2}\right)=\sqrt{13}=-\frac{14}{2} \tag{12}\\
& \text { or } \quad z_{1}\left(x_{3}+x_{4}\right)+z_{2}\left(x_{1}+x_{2}\right)=-\frac{4 d}{2}
\end{align*}
$$

$$
\begin{equation*}
\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)=\sqrt{1}=-\frac{4 b}{} \tag{13}
\end{equation*}
$$

$$
\text { Solving (12) ana (13) for }\left(x_{1}+x_{2}\right) \text { and }\left(x_{3}+x_{4}\right) \text { and }
$$

knowing ($x_{2} x_{2}$) and $x_{3} x_{4}$) we can write two more quadratic equations whose roots are x_{1} and x_{2}, for one of them, and x_{3} and x_{4} for the other one.

BIBLICORANHY

Archlbald, F. C., Outline of the History of Watnematics," The american Mathemetiosh Monthly. 56:1-103, January, 1949.

Ba11. I. A. F.: A Chort account of the pletory of Mathematics. Kew Yorki The MaciKllan Company, 1927. 112 pp :

Be11, F. T. The Development of Lathematics. Second cdition: lea York: GaGrammill book Company, Inc., 1945. 293 pp.

Blxby, W. H. Wraphical Solution of Tumerlcal Zquations, The Agerican zathemthat Eonthly, 29:344-46, Cotober; 19\%*。

Durnside, 電. ©. and A. W. Panton, The Theory of Squations. Vol. 2; seventh edition; Dublint Hodees, riegis, and Company, Ltd., 1912. 125 pp.

Cagori. F., A fistory of Fathematics. Second edition; New York: The Lacililan Company, 1919. 6 pp.

Candy, h. Lu, "A Kechanisa for the Solution of an equation of $n^{\text {th }}$ Degree," Tho American Hathenatical Yonthly. 27:195-99. May, 1920.

Dickson, L. So, Firgt Course in Theory of gquationg. New York: John illey and Sons, 1822. $32 p p$.

Dickerson, L. B . Introduction to the Theorg of Alcebralc Equations. Piret dition; Wew Yorkz John illey fnd Gons. Inc. 1903. 72 pp.

Downey, J. Heber Alcebra. New York: Anerican Book Company, 10C1. 27 pp.

Hatch, D. H., Horner'a Method Snortened," Echool, Sclence pnd yathematica, 36:1007-8, December, 1936.

Hausmann，B．A．，＂Graeffe＇s Lethod and Complex Roots，＂ The Amerlcan Mathematical Konthly，43：225－29， April． 1936.

Hutchinson，C．A．，On Graeffe＇s Hethod for the Numerical Solution of Algebralc Equations＂，The American mathematical Monthly，42：149－61，March， 1935.

Hutchingon，J．D．，＂An Analysis of Several of the Lethods of Solution of the General quartic Equation from the Point of View of Fesolvent Functions，Including an Illustration of Lagrange＇s Theorem．＂Unpublished Master＇a theals，The University of Illinols，Urbana， 1930． 20 pp.

Fendall，O．H．＂Colving the Irreducible Case of Cardan＇s鿊e thod，＂American Journal of Mathematics，1：285－87， 1878.

Kennedy，E．C．，＂Concerning Nearly Lqual Foots，＂The American Mathematical Monthly，48：42－43，January， 1941.

Lehmer，D．H．＂The Graeffe＇s Process as hpplied to Power Series，Mathematical Tables and Alds to Com－ putation，1：377－83，1943－45．

Lovitt，V．V．，Rlementary Theory of Bquations．New York：Prentice－Hall，Inc．${ }^{\text {1939．} 95 \mathrm{pp} .}$

发anlove，L．Re，WAn Txample of the Usefulness of rourier Theorem in separatine the Foots of an Equation，＂ The American Mathematical Monthly，19：8－9，January， 1912.

道iller，G．A．，H．F．Blichfeldt，and L．E．Dickson， Theory and Applications of Pinlte Groups．New York：

Nordgard，（if．A．A Historical Burvey of Aleebraic Methods of Approximating the Footh of Mumerical Higher Deqree Squations up to the Year 1819．New yuras Columbia University，1922． 50 pp．
 Loughton ifitin compang 1930. 48 fp.
 3aitimore The Jonn iopxine rrese. 1930. 5py.

Solth, D. 3. Hetery of Latiemetice Vol. E; Ier Yorks The Ginn and Company, 1925. 163 pp.

Strick, D. J. A Concite thetory of zathertuce. Vol. 2;

 science sublithera, Inc, 1947. 23 pp.

 1845.

Weltnar, Lo: Irtroduction to the Thewry of Equations.
 1847. 28 pp .

Yates, X. Co, A Yechanical Solution of Cubic," The

[^0]: 27. T. Bell, The Development of Zathematics (second edition; New York: mecraw-Hill Book Company, Inc., 1945), p. 37 .

 3 D. In. Smith, Higtory of Mathematicg (Vol. 2; New York: Ginn and Company, 1925), p. 454*

[^1]: Intarscience Lubilshers, Inco: 1847) p. 117 .

[^2]: 8 E. T. Be11. The Development of Vathematics (second edition; New Yorki NeGraw-H111 Book Company, Inc. 1945), p. 118.

 9 Ibid. . p. 116 .

[^3]: (⿺辶ev York: The Ginn and Company, 1925). D. 467.

[^4]: 12 2. T. Bell, The Development of latheratics (second edition; Rew York: mecraw-ilil Book Company, Inc., 1945), p. 232.

[^5]: 13 D. E. Smith, Kiatory of Mathematics (Vo1. 2; New York: The Ginn and Company, 1925). p. 469.

[^6]: Theory and Aoplications of Finlte Groups (iew York John Hiley and cona, Inc.: 1916i. p. 279.

[^7]: 23 V. Sanford, A Short Histery of Kathematics (New York: Houghton Mififlin Company, 1930). P. 160.

[^8]: 43 L. R. Hanlove, "An Example of the Usefulness of Pourler's Theorem in separating the foots of an Equation." The American yatheratical yonthiy, 18: 8-9, January, 1912.

[^9]: 44 F. C. Arohibald, "Outline of the History of Mathematics, The American Hgthematieal Monthly, $56: 1-103$, January: 1849.

 45 z. C. Kennedy, "Concerning Mearly Squal Koote," The Amerlean Hathematical Lonthly, 48: 42-43, January, 194.

