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ABSTRACT

The effects of IF filtering on the error rate performance of QPSK
transmission systems utilizing integrate~and-dump detectors are studied.
It is assumed that (1) the QPSK demodulator reference signals are noise-free,
(2) timing for the integrate-and-dump detectors is perfect, and (35 the
channel noise is additive, white, and Gaussian, with zero mean. Two different
filter types are considered: the ideal rectangular filter and a practical

single-pole filter.

It is found that the bit error probability for bandlimited QPSK systems
is affected by (1) a reduction in amplitude of the bit under detection,
(2) intersymbol interference from adjacent bits in the same channel, and
(3) crosstalk from the data stream in the guadrature channel. Computations
of error probability are made for each filter type, using a éeries
approximation method which can provide any desired degree of accuracy. For
the cases considered, it was sufficient to assume fhat the effects of
intersymbol interference and crosstalk were limited to 5 bits on either

side of the bit under detection.

It is observed that the ideal filter provides superior performance
in the noise-limited (low signal-to-noise ratio) region of operation.
However, better performance is generally provided by the single-pole filter
in the region of high signal-to-noise ratio where intersymbol interference

and crosstalk become significant.
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CHAPTER I

INTRODUCTION

Considerable interest has developed over the past several years in
communications systems which transfer information in discrete or digital
form. Tbe digits which are transmitted may constitute information directly
or they may represent approximations (usually in coded form) of samples of
a continuous (analog) information signal. In the latter case, the
transmission system must be designed such that no more than some acceptable
level of quantization noise is introduced by the process of representing
each sample of the analog signal by one of a finite number of possible
amplitude levels. In general, quantization noise can be reduced by
quantizing more finely (increasing the number of possible amplitude levels),
but this requires a greater number of digits to identify (code) each level.
As will subsequently be pointed out, transmission of a greater number of
digits per secqnd decreases the capability to make error-free decisions
regarding the identity of each digit. Hence the advantage of guantization
decreases as more stringent requirements are imposed on the signal-to-
quantization-noise ratio. Assuming that an acceptable tradeoff has been
achieved between quantization noise and transmission rate, the problem is
essentially how to combat the effects of channel noise, which may be

introduced anywhere between the transmitter and the detector.

Fig. 1.1 illustrates in block diagram form the basic components of a
digital communications system. In general, each digit which is transmitted

" can assume one of m possible values,-and the resulting system is called an
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3
m-ary system. Of special interest, and by far the most widely used, is the

binary system, for which m = 2. This is the system illustrated in Fig. 1.1.

The transmitter has the task of assigning to each message digit mi(t)
a waveform Si(t) which is suitable for transmission over the channel.
For carrier systems, the transmitter thus must perform, in addition to
other tasks such as power amplification, the process of modulation, in which
each digit mi(t) is used to determine either the phase, fregquency, or

amplitude of Si(t).

The waveforms provided by the transmitter are passed through the
channel, which can be a wire link or a radio link. It is during passage
through the channel that the transmitted waveforms are invariably
contaminated by noise. Most frequently this noise is assumed to be
additive, white, and Gaussian; this is a particularly good assumption for
certain classes of channels such as the space communications channel and
a notably bad assumption for certain other channels such as many of the

wire links in use today.

The task of the receiver is to consider each noisy waveform which it
receives and to decide which message digit mi(t) most likely resulted in
that particular received waveform. The receiver output is thus indicated
in Fig. 1.1 as consisting of a sequence of estimated message digits ﬁi(t).
The process of formulating the estimates ﬁi(t) is generally referred to
as bit deteetion. For carrier systems, the operations performed by the
receiver are sometimes identified separately as carrier demodulation and

bit detection, where the latter is considered to be a baseband process.



In actuality, however, carrier demodulation can be visualized as being

merely the first step of a multistep bit detection process.

Because of the presence of noise at the receiver input, the bit
detector will occasionally make an erroneous decision. The probability of
error associated with the estimated digits ﬁi(t) is a convenient and
widely used criterion for evaluating the overall performance of any digital
transmission system. For any given application, there will generally be a
maximum allowable bit error probability. The optimum bit detector minimizes
the signal-to-noise ratio required to provide operation at or below some
designated error probability; alternately, the optimum detector minimizes
the bit error probability for a given signal-to-noise ratio. For ideal
binary communications over the additive, white, Gaussian noise channel, the
optimum bit detector has been shown (see, for example, [1], [2], or [3]) to
be a correlation detector or, equivalently, a matched filter. Fig. 1.2
illustrates these two embodiments of the optimum detector. It has also
been shown [4] that the bit error probability which results when the

optimum bit detector is used is given by

oc
FZ
| -
Pe = 2 ;:%—‘-—-" c Af
I-C)E, /2N,
= 5 ech\/ Géc;)gb (1-1)
]

where Eb is the average energy per signal bit

NO is the single-sided noise spectral density
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and p is the correlation coefficient of the two waveforms Sg(t)

and S (t)

Note that so far there have been no restrictions placed on the waveforms
Si(t)._ However, choice of a different set of waveforms does, in general,
affect the correlation coefficient p and thus the error probability Pe.

In addition to having an optimum bit detector for a given signaling set,
it appear; that there should also be an optimum signaling set. This is
indeed the case, and the optimum set is that for which p = -1 and P, 1is
thereby minimized. The optimum waveforms for binary transmission over the

additive, white, Gaussian noise channel are thus related by

Se(#) = -5, (1) (1-2)

For baseband signaling, an optimum set of waveforms is the set of bipolar
pulses shown in Fig. 1l.3(a), while an optimum set of waveforms for carrier
signaling is the set of phase-shift keyed (PSK) sinusoids shown in

Fig. 1.3(b). When one of the optimum signaling sets is used, the structure
of the correlation detector can be somewhat simplified. This is because the
binary decision can now be based upon simply the algebraie sign of the
received waveform. Fig. 1.4 illustrates these simplified correlation
detection schemes. Note that the detection scheme for PSK requires a
reference waveform accurate in both freguency and phase. This detection
scheme is therefore sometimes referred to as a coherent detection scheme,

and the multiplication process is sometimes called coherent demodulation.

By substituting (1-2) into (1-1), it is readily determined that the
probability of error for the optimum binary signaling sets (using

correlation detection) is given by
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\
= =5 ersrc (1-3)
s Ep
The familiar plot of Pe vS. Nt obtained using (1-3), is included for
(o)

reference as Fig. 1.5. The ratio of signal energy per bit to single-sided
E

noise spectral density, ﬁfy is sometimes referred to as signal-to-noise
ratio in' the bit rate bandwidth or, more simply, as sigral-to-noise ratio:
Justification for this terminology can be obtained by substituting the
appropriate expression for Eb' (this expression will always involve the

bit transmission rate, R = %) and making a simple modification. Thus,

for baseband signaling

_E_b_ - Az—‘_ - Az = Az
N° NO Np (-"—'—r.) NOR

(1-4)

and for PSK signaling,

Ey _AT/2 _ /2 _ A2 -
No No N. (&) ~ NoR )

Ep
For either class of signaling, it can be observed that T is equivalent
(e}

to signal power divided by the noise power in a (fictitious) bandwidth

numerically equal to the bit rate R.

The digital transmission systems that have been described up to this
point have been Zdealized systems, in the sense that performance (bit
error probability) was assumed to be limited only by the noise encountered
during transmission. In practice, however, signal distortion is frequently
a significant factor in determining the overall performance of the system.
Signal distortion can be introduced in a number of ways, including

filtering, limiting, nonlinear amplification, and system phase
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instabilities. The effects of some of these sources of distortion can be
made insignificant in many cases by careful system design. One major source
of distortion, however, is inevitable in most systems. This is the result
of restricted system bandwidth or of filtering in the transmitter, the channel,
or the receiver. Bandwidth limiting will generally cause a reduction in

energy per bit (E and, more importantly, can cause a significant amount

b)
of intersfmbol interference due to the smearing of waveforms in time.

The effects of filtering on digital signaling systems are discussed
in more detail in Chapter II, and the results which have been obtained by
previous researchers in their attempts to completely describe the effects

of bandwidth limiting on bit error probability are summarized.

Ideal quadriphase signaling, which provides a 2:1 reduction in
required channel bandwidth while transmitting information at the same rate
(and at the same bit error probability) as PSK, is briefly described in
Chapter III. Since quadriphase can theoretically double the information
rate which can be transmitted over a fixed bandwidth channel, it is an
important digital signaling technique. Unfortunately, the effects of
signal distortion are even more severe in quadriphase systems than in PSK

systems.

The central problem of this dissertation is, simply, Aow is the bit
error rate of a quadriphase transmission system affected by bandwidth
limiting? Chapter IV treats this problem in detail and shows that
bandwidth limiting results in (1) a reduction in energy per bit,

(2) intersymbol interference, and (3) crosstalk between the two quadrature

channels associated with a quadriphase signal. Performance curves



E

b . . .
P, vs. n ] are obtained for quadriphase systems containing (1) an ideal
o

rectangular bandpass filter and (2) a practical (single-pole) bandpass

filter.

12
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CHAPTER II

EFFECTS OF BANDLIMITING ON DIGITAL SIGNALING

As discussed in the previous chapter, optimum systems for transmission
of binary information over the additive, white, Gaussian noise channel
utilize either a set of bipolar pulses (for baseband transmission) or a set
of PSK éinusoids (for carrier transmission). An optimum detector for
baseband signaling consists of an integrate—and-dump circuit [Fig. 1l.4(a)],
and for carrier signaling consists of an integrate-and-dump circuit preceded
by a product device [Fig. 1.4(b)l. The bandwidth of the transmission system

has been assumed to be infinite.

For finite transmission bandwidth, the detectors shown in Fig. 1.4 are
no longer optimum. This is because bandlimiting alters the shapes of the
received waveforms, such that the inputs to the integrate-and-dump circuits
are no longer rectangular pulses. The integrate-and-dump circuits are true
matched filters (and are therefore optimum) for rectangular pulses, but are
not true matched filters for bandlimited pulses. In practice, however, the
relative simplicity of the integrate-and-dump circuit frequently dictates
its use in the detection process for bandlimited signals. Considerable
research has been performed to relate the system error probability (using
the integrate-and-dump circuit) to the transmission bandwidth. As
transmission bandwidth decreases, of course, the waveforms become more
distorted, the integrate-and-dump circuit becomes less optimum, and the

error probability increases.
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There are actually two effects introduced by bandlimiting a binary
signal, each of which tends to increase error probability. First, the
energy per bit (Ep) seen by the integrate-and-dump circuit is decreased.
Fig. 2.1, which shows the response of an ideal (rectangular) lowpass filter
to a rectangular pulse, illustrates this reduction in Ey, with decreasing

bandwidth.

The‘second effect of bandlimiting, also evident from Fig. 2.1, is due
to the "smearing" of each bit in time. That is, after bandlimiting, each
bit occupies more than a single time slot. The result of this time-smearing
of bits is that the energy per bit seen by the integrate-and-dump circuit
is affected not only by the bit to be detected (the current bit), but also
by adjacent bits. Fig. 2.2 provides an example of this intersymbol
interference by applying superposition to determine the response of an ideal
lowpass filter to a rectangular pulse train. It can be observed that the
energy of the second bit (the shaded area between T and 2T) is greater
than that of the fourth bit (the shaded area between 3T and 4T). The
energy of any particular bit of a bandlimited pulse train is, in fact,
determined by the state of that bit and by the states of some number of

adjacent bits.

Depending on the pattern which exists around a certain bit, its
energy may be greater than, less than, or equal to its energy prior to
bandlimiting. It has been argued [5] that for a random pulse train (since
the average energy per bit is the same as the energy of a single filtered
bit without intersymbol interference), the average error probability for
the filtered pulse train is the same as for a single filtered bit. However,

as was pointed out in [6], this argument is in error because the relationship
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between error probability and energy per bit is not a linear one. Thus the
average error probability does not correspond to the average energy per bit
and, consequently, the effects of intersymbol interference cannot be
neglected. 1In fact, intersymbol interference is frequently the most
significant factor in determining the performance of a given transmission

system.

Determination of error probability for the bandlimited digital system
is considerably more difficult than for the ideal (infinite bandwidth)
system. One possible analytical approach involves the convolution of the
probability density of the intersymbol interference with that of the noise.
As noted by Saltzberg {[7], however, this can be very difficult, since the
probability density of the intersymbol interference is itself typically
highly complex and irregular and hence difficult to compute. Approximations

to this density by simpler functions may lead to gross misinterpretation.

An approximation to the error probability for a bandlimited digital
system can be obtained by first assuming that the intersymbol interference
is limited to a finite number (N) of symbols preceding and following the
symbol under detection. The conditional error probabilities are computed
for each of the truncated pulse sequences and then averaged with respect to
the probability of occurrence of these sequences. This approach gives good
results if the intersymbol interference is limited to only a few adjacent
symbols, but the computational effort becomes prohibitive as N becomes
large. Martindes and Reijns [8] applied the averaging method to a 40-bit
periodic sequence and assumed that the intersymbol interference was

limited to only the two nearest bits on either side of the bit under
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detection. Tu [9] applied the averaging method to a random sequence and
assumed that the intersymbol interference was limited to the five nearest
bits on either side of the bit under detection. Excellent agreement was
obtained between these two investigations for lowpass filter bandwidths
greater than the bit rate. However, for smaller bandwidths, Tu showed that

Martinides' results were optimistic.

Because of the difficulties associated with the purely analytical
approach involving convolution of the probability densities of intersymbol
interference and noise and because of the computational problems associated
with the averaging method, several researchers have made attempts to obtain
bounds on the average error probability for bandlimited digital systems.
The effects of intersymbol interference have frequently been bounded by
means of the eye pattern [10]. The eye pattern is the superposition of all
possible signals presented to the integrate-and-dump circuit and can be
determined analytically or experimentally. The experimental determination
involves exciting an oscilloscope with a random binary pulse train and
synchronizing fo the bit rate. A typical eye pattern is shown in Fig. 2.3.
In the absence of intersymbol interference, the eye is open (rectangular).
The two worst-case transmitted sequences (which are negatives of each other)
result in the inner boundaries of the eye; hence, the size of the open
portion of the eye pattern is a measure of the margin against intersymbol
interference for the most adverse message sequence. As pointed out by
Saltzberg [7], however, to use the eye opening to bound error probabilities
is, in many instances, to be exceedingly pessimistic. A system with a
completely closed eye pattern (and therefore a worst-case error probability

of 0.5) can have a very low average bit error probability.
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Hartmann [11] analyzed the bandlimited PSK system by applying a
numerical method to find the worst-case probability of error and using
this value as an upper bound. Hartmann's bound suffers from the same
problem as the eye pattern analysis, namely that it can be overly pessimistic.
Lugannani [12] obtained an improved upper bound (which never exceeds the
worst-case upper bound) by applying the Chernoff inequality. Unfortunately,
evaluation of the parameters of Lugannani's bound poses a computational
problem about equal in magnitude to the problem of applying the averaging

method to obtain an approximate solution.

Saltzberg [7] obtained an improved upper bound for error probability
by separating intersymbol interference terms into two sets, one set
containing larger components which subtract from the signal amplitude and

another set containing smaller components which add to the noise power.

A very important result was recently obtained by Shimbo and Celebiler
[13], in which an exact expression was obtained for the probability of error
of a binary system having intersymbol interference and additive Gaussian
noise. The procedure involves multiplying the characteristic functions of
the noise and the intersymbol interference, which proves to be a
considerably easier task than convolving the probability densities. Tu [9]
applied the method of Shimbo and Celebiler to obtain numerical results for
the error probabilities of several practical baseband and carrier binary
systems. The computational effort reguired was orders of magnitude less
than was required for obtaining the same results using the averaging method.
Figs. 2.4 through 2.6 summarize the results obtained by Tu for the case of
ideal bandpass filtering (rectangular filter characteristic) of a random

binary PSK signal. The fCT product represents the number of cycles
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of the carrier (fc = carrier frequency) per bit of data (T = bit period, or
1/T = bit rate). The B;pT product represents the ratio of filter bandwidth
(BIF) to bit rate. ©Note that, for any particular value of £.T, Pg
increases as BIFT decreases. This is, of course, due to the increased
intersymbol interference which results when the filter bandwidth is
decreased. Also note that, for a constant value of BIFT’ Pe increases as
£.T decreases. This is because of the aliasing effect due to finite carrier
frequency. Finally note from Fig. 2.6 that when f_ T =« and BI T =,

F

the curve previously shown in Fig. 1.5 for optimum binary signaling results.
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CHAPTER III

IDEAL QUADRIPHASE SIGNALING

The discussion in Chapters I and II was primarily directed towards ideal
(infinite bandwidth) and non-ideal (finite bandwidth) binary transmission
systems. The remainder of this dissertation will be concerned with a
signaligg scheme known as quadriphgse or ¢PSK, which theoretically allows
a 2:1 reduction in the bandwidth required for transmission of a given
information rate. For ideal systems, PSK and QPSK signals provide
equivalent performance (the same bit error probability for the same power
levels) although the actual bandwidth occupied by the QPSK signal is only
one~half that occupied by the PSK signal. QPSK offers a real advantage
when the system is bandlimited and when it is desired to reduce the error
probability which is achievable for a given transmitted or received power

level.

A QPSK signal may be generated in several ways, as illustrated in
Fig. 3.1. These methods of generation are different in terms of the
hardware required for mechanization, but equivalent in terms of the four-
phase signal that results. The signal Sj;(t) that is generated in the

manner shown in Fig. 3.1l(a) is given by

S, (&) = A coslwt+Aa,®) + Aysinlw.t+Bb,¢)]

= A coswDes[ha, )] - A, sinwBsin[Aa,B)

+ A, sm(wet) cos [Bb, W] + A, cas We)sin[Rb,

+))

(3-1)
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Aa_(t) Phase Bjcos[u_t + Aa_(t)]
Modulator
Alcos(mct)
E : S1 (t)
p—
90°
A251n(wct)
Bb (t) Phase Azsinfw_t + Bbp (t)]
Modulator

(a) Addition of phase-modulated quadrature carriers [an(t) = t1, bn(t) = il]

Rap(t) Aan(t) cos(wct)
cos(w t)
c
12
* ————
90°
sin(w.t)
Bbp (t) Bb, (t) sin (wct)

(b) Addition of DSB-modulated quadrature carriers [an(t) = %1, bn(t) = il]

RAa_(t) Ajcostw t + Aa_(t) + Bb_(t)
n E Phase L < n n ]7
modulator S3 (t)
I Ajcos w_t
c
an(t)

(c) Phase modulation of a single carrier by a gquaternary (four-level) signal
[Aan(t) + Bb (t) is four-level for a (t) =1, b (t) = %1, and A # B]

Fig. 3.1. - Generation of QPSK signals
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Substituting an(t) = +1 and bn(t) = +1 into (3-1l), the output signal

reduces to

S () = [A, cos A + A, b, (B)sin B]c.os (wet)

+[Azc,osB - A,a,‘(’c)s'mAJ sin(Wt) (32

Using the relationship

AcosX + Bsinx = YA*+B% cos(x-6) (3-3)
where 8 = fan” (é’)

the signal Sj(t) can be represented by

s5() =\[[A,cosA +A,b,@®sin B]2+ [Az_cosB-A,a,‘(t)SinA]z‘a)s (k-6

(3-4)

. + -1 | Azcos B - A,an®) sin A
where 0= Tan A cosA <A, bDsinB

From (3-4), it can be seen that $;(t) has, in general, four possible
amplitude states and four possible phase states corresponding to the

possible combinations of an(t) and bn(t). For A =B =

SIS

r S1 (t)

becomes

S\(¥) = \/A; + Alz cos {ew.t - fan [—_ﬂ;ﬁ(_ﬂ] (3-5)
AZ bn('éD
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which is a signal having only one amplitude and four phase states. Further,
for A; = Ay (equal power in each quadrature carrier), the four phase
states are exactly 90° apart. This condition will henceforth be referred to
as balanced quadriphase. The condition for which the phase states are not

90° apart will be referred to as umbalanced quadriphase.

The signal §S,(t) that is generated in the manner shown in Fig. 3.1(b),

by adding two PSK signals which are in phase quadrature, is given by

S, (®) =Aa,®)cos(wt) + Bb, *)sin (w.t)

=‘/Az + B cos{w.t - fan™ ﬁzﬁi))] (3-6)

which is equivalent to the expression given by (3-5) in that four phase

states and a single amplitude state results.

The signal S3(t) that is generated in the manner shown in

Fig. 3.1(c) 1is given by

S, ()= A, cos [wct +Aa,.@&)+Bb, U‘-)] (3-7)

This signal has a single amplitude state and four possible phase states (A+B,

T
A-B, -A+B, -A-B). For A =— and B =

> , or for A =

NE
SES

these four phase states are 90° apart.

As discussed in the preceding paragraphs, several methods are available
for generating a quadriphase signal. Each of the methods illustrated
utilizes two bipolar (*1l) signals an(t) and bn(t). As no restrictions
were imposed upon an(t) and bn(t), they could be obtained either from
separate, independent sources or from a single source (by means of a

serial to parallel conversion device which converts a signal of
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rate R bits/second to two parallel signals each of rate %-bits/second).
The latter case will be referred to as single-channel operation, while the

former case will be referred to as dual-channel operation.

Regardless of the method used to generate the quadriphase signal, the
quadrature detection scheme shown in Fig. 3.2 is the optimum means of
recovering the two signal components an(t) and bn(t). This is because
for the ideal case, no crosstalk occurs between the two quadrature channels
and each signal component is recovered using a correlation detector. Using
the quadriphase representation.given by (3-6), the input to the upper

integrate-and-dump circuit is
e, &) = [Aa, B)cos(wt) + Bb, B sin(wet)] A, cos (Wt + P)
= [A6, @) cos (et)+ Bb, Rsinwt) ][ Ascastwcteos p - A, Suuct)sn )

AA,an(d)cos @ - BAb,)sing
2

BAo bn({:)CDS ¢ - AAoan(f)SW\ ¢
+ 2

AA,a,®)ces ¢2+ BA, bn(t)sin®

sin (2w, t)

+ cos (2w.t) (3-8

Assuming that the double-frequency terms make no contribution to the output
of the integrate-~and-dump circuit, and assuming ¢ = O (the ideal case), the

effective signal input to the upper integraﬁe—and-dump circuit is given by

Ao Ao, (¥)
2

el,e;; ®) = K, &, () (3-9)
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A® 2
©

Ta
f ( )Ydat
o

(t)

Ajcos (wct + ¢)

Aosin(wct + )

@

T
f ()at
o]

(t)

Sample at
t = Tp and
check sign

Sample at

check sign

Fig. 3.2. - Detection of a QPSK signal
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Likewise, it is easily shown that the effective signal input to the lower

integrate-and-dump circuit is

A, Bb.@)
2

ez,e# t) = = K, bn (‘E) (3-10)

Therefore, for the ideal case in which the reference phase error ¢ = 0,

the upper half of the quadriphase detector is a correlation detector for
an(t) and the lower half is a correlation detector for bn(t). In the
event that ¢ # 0, an undesirable crosstalk terms appears in each quadrature
channel. The problem of recovering a good phase reference will not be

treated here, so it will be assumed throughout that ¢ = O.

Since the detection of a quadriphase signal has been shown to consist
of two separate correlation detection processes, the probability of error
associated with each of these processes is the same as previously given by

(1-1):

P = + er-Pc‘[ (E(;,)f" (3-11)

For each of the two correlation detection processes, p = -1 and the

energy per bit is given by

3]
1l

channel power + rate

(p
Eé for upper channel
A

-9

P
=2 for lower channel (3-12)

Cs
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In order to meaningfully compare the performance of quadriphase

transmission to that of biphase transmission, the same total information

rate should be assumed for each scheme. For quadriphase signaling, the

error probability in the upper channel can be expressed as

l l’ E
- = —bA
PeA = 2 er~Pc_ N,
| f ‘/_EL

Similarly, the error probability in the lower channel can be expressed as

- \ : E
Pee = =z erfey33t

er'FC. S:ﬂ; (3-14)

vl

The error probabilities P, and Pe can be compared with the error

probability for PSK transmission of the same information rate (Ry + Ry

bits/second) at the same total power level (P, + Pp watts), as given by

P, = "i.' erfec i"
o
I Pa+ Py _
= werfe RO (3-15)

For balanced QPSK operation, half of the total power is allocated to each of

the two quadrature channels, or
= - P -

Also, for balanced QPSK operation, the individual transmission rates are

equal, or

(3-17)

The QPSK energy per bit is thus given by
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Fi i

2 = — for upper channel

R R

2

E, —ﬁ . (3-18)

— P

2 T

= = 5 for lower channel

2

.

The resulting error probability for QPSK transmission of R bits/second is

therefore

| P
= = - —1 -
PeA Pe-5 = 2 er‘FC N,R (3-19)

and is the same as for PSK transmission of R bits/second (with the same
total power). Note, however, that the bandwidth occupied by each quadrature
channel (corresponding to a rate R/2) is only one-half that occupied by the

equivalent PSK channel.

For unequal bit rates in the two guadrature channels, it is necessary
to divide the channel powers unevenly in order to maintain equal error
probabilities. That is, more of the total transmit power must be allocated
to the higher rate channel in order to equalize the energy per bit in the
two channels. For this case, A # B and unbalanced operation results. For
equal error probabilities

PA /RA = PB / RB (3-20)

and

| A
= = erfc ¢/—2— (3-21)
P‘1l\ FL]; z hL’RA

For PSK transmission of RA + RB bits/second with a power level of PA + PB

watts, the error probability is given by
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i

-

()

‘

“

o
™
>

———— (3-22)
No RA

which is again the same as for QPSK.

The preceding discussion establishes the error rate performance of
ideal (infinite bandwidth) QPSK signaling with a perfect phase reference.
Since QPSK is very attractive for bandlimited applications, however, it is
important to determine the error rate performance of non-ideal QPSK systems.

This problem is investigated in considerable detail in the next chapter.



CHAPTER IV

PERFORMANCE OF BRANDLIMITED QUADRIPHASE SYSTEMS

This chapter is concerned with the error rate performance of bandlimited
OPSK systems. The more significant assumptions which will be made for this
analysis‘are as follows:

e The demodulator reference signals are noise-free.
e Timing for the integrate-and-dump detectors is perfect (no jitter).
e The channel noise is additive, white, Gaussian, zero-mean, and

has single-~sided noise spectral density NO.

The system model which will be used for this investigation is shown in
Fig. 4.1. The effects of bandpass (RF or IF) filtering will be considered,
but it will be sometimes convenient to include lowpass (baseband) filters
prior to the bit detectors. Baseband filtering alone (either prior to
modulation or subsequent to demodulation) need not be considered here
because the results previously obtained [9] for baseband filtering of PSK
signals are directly applicable to each of the two quadrature channels of
the QPSK system. As will be shown, however, bandpass filtering of a QPSK
signal results in the generation of crosstalk which (along with a reduction
in energy per bit and the generation of intersymbol interference) contributes
to the degradation in bit error rate performance. The results previously
obtained for bandpass filtering of PSK signals do not account for this

crosstalk and, therefore, are not applicable to QPSK systems.

The QPSK modulator of Fig. 4.1 could be any of the three types

discussed in the previous chapter and depicted in Fig. 3.1. The QPSK
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detector is the correlation detector (for ideal QPSK signals) shown in
Fig. 3.2. Two different types of bandpass filters will be considered in this
analysis. A filter with the ideal rectangular characteristic will first be
assumed, and attention will then be directed to a more practical filter, the

bandpass equivalent of the single-pole Butterworth.
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IDEAL RECTANGULAR FILTERING

The ideal rectangular filter will first be assumed as the device which
limits the bandwidth of the QPSK signal. As shown in Fig. 4.2, the
magnitude of the filter characteristic H(f) for this filter is equal to a
constant value (normalized to unity) for frequencies within the passband and is
zero elsewhere. The characteristic for the ideal rectangular filter is
actually given by

H(P =

c (4-1)

He)|

where to represents the constant time delay introduced by the filter.

Without loss of generality, to can be assumed to be zero. (The impact of
this assumption is that the period of integration for the QPSK integrate-

and-dump circuits will be 0 to T, rather than to to tO + T).

The QPSK signal present at the input to the bandpass filter can be

expressed as the sum of the two infinite sequences

o0 Ld

S(E) =) anWeost) + ) b Wsin@d) @
Ll n= - o0
where
Am=+A or —A for m'ﬁﬁ-b-‘-én-ﬂ)"l’k
Am(t) = o] elsewhevre
and
6,\ = +B o -B for nTy =t £ @+)Ty
b, (£) =
" 0 elsewhere
The sequence i O.m(-k) is the desired output signal from the
M =00

upper (in-phase) channel of the QPSK detector of Fig. 3.2. This in-phase
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channel will henceforth be referred to as Channel A. Likewise, the sequence

e d
Z bn(t) is the desired output signal from the lower (quadrature)
ne-ee

channel, which will be referred to as Channel B. Fig. 4.3 defines the

detection model which will be used in this portion of the analysis. As

- o

discussed in Chapter III, the sequences 2 Ocm (t) and Z bn(t) are
m=—eo N —od>

either derived from a single source (single-channel operation), in which

case TA'= TB' or from two independent sources, in which case (in general)

TA # TB.

To determine the effects of ideal rectangular filtering, a frequency
domain (rather than a time domain) approach will be used initially. This is
because the mathamatics associated with the ideal filter are much simpler in

the frequency domain. Consequently, the Fourier transform of the nmth bit of

Channel A (at the filter input) is

(m+)Ty . -
-) &
A ('F) = [@m @) cos (w.4)] € dt
mT,
o+ )77 e3z1r-F¢,t+ e..;,zﬂ"-&t Ry
= /\Wi 21 e C*t
mT, (
~3w(F-F)(+2mT,
'A"N-S{"[hT(F;{;)T;] 62.3 A
= 2w (F-fo) ( -
“3W(F+FH(+2
An smTE+ETA]e ST (Faf(1+2m)Ta
+ 2w(F+F)

(4-3)

This expression can be simplified by making the assumption that

f TA is an integer, or that an integral number of cycles of the carrier
c

frequency fc occurs in each bit period TA of Channel A. This assumption

is not unreasonable, as the bit timing for many practical systems is derived
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from the same source as the carrier frequency. Making this assumption and

simplifying accordingly, (4-3) reduces to

Am('F) - A:T-F(f: :n.(:;f;",) e-st O0+2m)TH

(4-4)

The output of the bandpass filter corresponding to the mt? bit of

Channel A can be expressed in the frequency domain as

A. P for -F-EZ’-E <fFe< -F;\—BIF

- Z
SnA (F) = Am(‘F> for -.F"... _3_%5 LFe -F 4 géf
o otherwise s,

The time domain response of the filter to the mth bit of Channel A is

determined by taking the inverse Fourier transform of (4-5).

sa = F [S.®)

it +yewFE
= [ s.0e”T s
-4:=+§%E
_ T A F sin(FFTR) i wF(+2MT,  sjemhE
- Jﬁ ;;épz__;-z) A e ! A e ) 5147
-£- B ¢
2 'F;"‘_?;F
“ B F sin@FT)  —iwE(HemTa . owFt
M Tl:‘(-Fz—ﬂ’) € e df
fe- B | (4-6)

As shown in Appendix A, (4-6) can be reduced to
) wB3rTa
2
s @ = & f [29? - 2w TaY]Sin Y
A ™ YLy —@wF.TaY]

cos {[z (£) - (1+2m] 91 dy S» cos (i)

° wiT Z
2
o 2t} [ o sl - arlo}dy {smos)
(7]

! (4-7)
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Following the same procedure for Channel B and making the assumption
that chB is an integer, the Fourier transform of the nth bit of Channel B

is easily found to be

-3y Bn £, sin (9 Tp)

- =)y TRO+N)T (4-8)
Bn ('F) = TT(-Fz—-Fcz) e B 8

The time-domain response of the bandpass filter corresponding to the

nth bit of Channel B is

-fo + Bje

e ; - ywF(1+2 ;
o < [ gt cmen gy
‘*}-fﬁf (3
> f.02
+ i Bafl s (TFTp) A TF(12N) Ty sjemrft
T -R) e’ &
{;' §£E (4-9)

2
which, as shown in Appendix A, can be reduced to

( ieh
2
Sis(d =2B,ET; ? j oty s 2() ~thely] dy b cosemie)
e mByTs

- 2' B T 47"‘:-,7— n i
ntTg ) Smg-’ﬁ_ (wi_r";, T 5[2(-*-‘.?’)— (|+zn)]9} dy b st (2T it)

(4-10)
An interesting observation can be made from (4-7) and (4-10). The
response of the bandpass filter to the mth bit of CHannel A contains both'
in-phase (cos 2nfct) and quadrature (sin 2ﬂfct) terms. Likewise, the
filter response to the nth bit of Channel B contains both cos 2nfct and

sin anct terms. This means that the output of the Channel A demodulator

(-3 o0
will depend on Z bn (-]_-) as well as on Z a—m&) , with the same
n

2 - 00 wmes~ o9
phenomenon occurring at the output of the Channel B demodulator. One effect

of the bandpass filter then, is the introduction of crosstalk between the
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two QPSK channels. The ultimate effect of this crosstalk will be an increased

error rate in each channel.

Combining (4-7) and (4-10), rearranging terms, and summing the response
to all m bits of Channel A and all n bits of Channel B yields

S, () = Zs,,,(a + Zs,,&)

s —-00

Ta

s 2 -
= {Z‘o :jtz‘a =i TaY] Siny w{[z(-%)—(u—zm)]g}dg

m=- YLy - (awiea ]
T".E%I’
+ "
2 2BAT; %—‘%3;_1_)1 sin (%)~ (irem]y } dy }cas(zrrﬂi)
TTEIFT

e 2An z-“-p._j-A " .
+{m§n ™) SE s [2(F)- (+2myf dy

B Ts
—n;f BafTs [ %F%] cos {[2(3) - (w2} dy } sin(arfL)
S]»I ('E)COS (ZTT'Pcf) + S, Q (f) S]n(zwﬁt) (4-11)

As illustrated in Fig. 4.3, the signal s;(t) is applied to the
Channel A and Channel B demodulators. The signal output from the Channel A

multiplier is given by

SZA (’t) = [S| b 4 ('t) CoS (ZTT'Fc,‘t) * S| Q &) sin (ZTT'Fc t)] cos CZTI"FC'E)

Sz )
= '2 [1+ cos(aT -P-t)] + —S—“‘&S n(4THt) (4-12)

Since the double-frequency terms will not appear at the output of the

lowpass filter, the signal output of the Channel A lowpass filter is

S @&
Ssp(¥) = —2"_—(‘2‘ (4-13)
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Likewise, the signal output from the Channel B lowpass filter is

Siq @)
S;p(®) = 3 (4-14)

The output of the Channel A integrator (at the sampling instant TA)

resulting from all m bits of Channel A and all n bits of Channel B

is given by

Ta
S4a(Ta) = f S3a () di
L
o0 Am faud -z : :
i -]; sz_:-.o—*? L‘;’ [5‘(-“::})3':; 4 eos iz (%) - (1+2m) B}Jg}olt

T iyT
f{ZB.F fifaﬁrT)a ‘“{[2(%>’('+Z")]H}Ag}di-

nz-ed

o ‘Wh—‘ "Ta
mZ” fesf - e Siny { f cos §[2(F)- (1+2m) v} dt} dy
+

s Iy - ew i Ta)2)

o~ “‘%’t"f. Ta
n;.»B"Eﬁ f%s { f swfl2 (R - (ire]sfds } dy

0

Buﬂ'
= ) AT f Lz’ -(zrhTa Y] Sinly) sin(y) cos(emy) g,
m=—eo A Wiy - ewhTa)]

-2 2B, [v'f' sinlg)sn[(T8) y]sm[(1- *2")9343

e Ty - (2 Tay?
2
Iy~ (erkTa)'] (4-15)
The signal output of the Channel B integrator at the sampling instant
TB is similarly given by
Ts
S (Tg) = js“ () dt
(]
TBpTa
(15 s
= 2T +:Ta Sin Y s 2(EN
o {r;--o o Yt GWETAY Mg[ (ﬁs (H‘ZM)JQ}A& dt
wBpTs

8 o
- e TaSng LY.
jo {E fnﬁ-ﬁs D:}r;jzzz:-_n) 5 wg[Z(_"l‘.‘) (1+2n)] 5}(15 } dt

ns-
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o0

s
meces 5‘ (e RTaY: {f sw32(%) —(|+Zm)J5}J-z:} dy

i B¢ M
- "+c 1\‘ 83

n=-so
- 253
= ;;.OZA"_E—GZISMQ) S‘m[@%)iﬁn[ﬂ—%z,@g] by
° ‘5[‘)2-CZT'F¢-’_5)&J
o3 BTy RgTe ]
[ GwiTs?] s (y) sin (4) cos(zmy)
e T Y* [y? - (2mh Ta)2] 4y @

-]

Inspection of (4-15) and (4-16) reveals the presence of both a desired
signal term and an undesired crosstalk term at the output of each integrator.
As could be expected, the signal terms in Channels A and B are identical in
form, as are the crosstalk terms. The computation of error probability,
therefore, is identical for each channel. Consequently, these

computations wll be made only for Channel A.

From (4-15), the signal voltage for Channel A is seen to be

_ °° A T f _
Sus oo (T) = [2y4* = (rfTaY" ] sin(W)sin(y) cas(2my)
AA,Sagna.l A) e~ 52 [51 A(ZT-F,_‘T'A) ] &9

4-17
and the crosstalk voltage is seen to be BTy ( )

sm(s)sm[é -&)HJ sm[(1- I *2")5]
$4A c.rosstalkﬁ—) = Z 28 -FT 3[-'5 - CzT"'Fe.T-s)z.] 0\

NnN=-o0

(4-18)
Appendix B shows that the signal voltage can be reduced to

S4p , signal (Ta) = z —%—[an(m) = .\ﬁz_ (W\)] (4-19)

me= —oo
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where L _Bé'JA

Y. m = & | (?5)»“5(2"'”) dy

and ° E%I\r

-\I, (m) = 2 | sim*(w) cos (zmy) Aj
I2

o

The expression for the Channel A output signal given by (4-19) is identical to
that derived in {9] for bandlimited PSK transmission. The \PII (o)

term indicates an amplitude reduction in the bit being detected (oth bit)
while the ‘PII (m) terms for m # 0 define the intersymbol interference
(contributions due to all previous and subsequent bits). The ‘l’Iz(m)

terms result because of aliasing or because the ratio of carrier frequency

(fo) to bit rate (1/Tap) is not infinite.

Appendix B also shows that the crosstalk voltage at the output of

\
Channel A can be reduced to

>~ B.Ta( !
S4A:C“'°$5MK(TA) = Z ——Z-—'(ZTFJT—’ [-ﬁs (n>— YI4(H)]
where " =—':Bx T (4-20)
F1B
—Z
YIB (n) = _%_—fs.l’\ (4) s [( T%é)‘ﬂ] S'm[(l -T-f‘i- +2 n)yJ 0{%
and 011:5_%1'3
2 : s . _Ta
. 2 |ysn@sw(Bdy]si[(1-Ta +2n) 4]
‘\I/I.; (V‘) ™ X A 8 ﬂAs

The total voltage at the output of Channel A (at the sampling instant

TA) is
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-]

€, (Th) MZ”A—'Z'.‘J_B.[\P (m) - ¥, ()]
Z Ela (;_,,;1-,)[? (n)- ¥, (m)]

N= - 00

+ Q out (—T—A) (4-21)

The signal and crosstalk terms are deterministic and can be evaluated
directly for specific sequences of bits in Channel A and Channel B. As
discussed in Chapter II, if all possible sequences of finite length are
considered, an averaging method could be applied to obtain a solution for
error probability. The noise voltage aaout(TA) is a random variable,
however, and only certain of its statistical properties can be determined.
As shown in Appendix C, the noise power at the output of Channel A is given

by

2% = ._r\_‘.:}l_&_ \I/I\ (o) (4-22)

n

where WIl(o) is as previously defined.

Although error probability could be determined in a straightforward
manner using an averaging method, it was previously noted that such an
approach has the disadvantage of requiring excessive computational time,
even when a very high-speed computer is used. To overcome this disadvantage,
a series expansion procedure similar to that followed by Shimbo and Celebiler
[13] and later by Tu [9] for PSK systems will be applied here. The details

of this approach are contained in Appendix D. The resultant expression for
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the bit error probability is

_ - AT [ (-, ()]
Pe = £ e"’"VE‘ﬁs“:[—L«%m@‘"("]

]
.Mz

- fnd k
2 by; (—l)*é'zi_' - ,,Z, 2h,, (-1 Gy
o0 oo k*h
2 2 2b; hzk - Gaivzk —:} (4-23)

A= le=g

-

where the b,; are defined by (D-27), the hy, are defined by (D-28), and
the Gj are defined by (D-36). In order to compute the error probability
for a given value of AZTA/ZNO‘ (the Channel A energy per bit per single-
sided noise spectral density), the recursive relationships for b,;, hyy’

and Gj given by (D-44), (D-51), and (D-37), respectively, must be used.

It should be noted that the expression for bit error probability given
by (4-23) is actually valid only for Channel A. However, it was previously
observed that the error probability computation for Channel B is identical
to that for Channel A. Thus if such a computation is to be made for
Channel B, the A.ZTA/ZN0 term in (4-23) can simply be replaced by BZTB/2NO.
Since WIl(m) and WIz(m), and therefore by; and Gy, were originally
defined in terms of the parameters m, A, and TA’ it is also necessary to
substitute the parameters n, B, and TB into the appropriate expressions.
Likewise, since the h,, were originally defined in terms of WIB(n) and
WIu(n) which, in turn, were dependent on the parameters n, B/A, and TB/TA'
it is necessary to substitute m, A/B, and TA/TB into the appropriate

expressions.

It is convenient at this point to express (4-23) in the form

P

e Pen T Ve, *Tes ¥ Jeq (4-24)

"
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where

{: - e.-P\/ ah [v,.w ~ Vs (N
¥, (o)

N.U
N
1}
My M-

L
2by; (D G,

f-—
"

oo
(VY]

)
M3

2 hy, (")U‘Gzh-a

L*k

Z:Zb chey G

The first term (Pe ) in (4-24) represents the contribution to the total
1

Fig4, =

’M8 x

A

probability of error due to the bit being detected. It can be observed that

the energy per bit per single-sided noise spectral density for the bit under

[t (@ - ¥ (2)]?

\PII (o)

bandlimiting the signal and noise. Recall that the term WIl(o) represents

detection is degraded by the factor ; which results from

an amplitude reduction in the bit being detected (m = 0), and that the term
WIZ(O) represents an additional degradation which results because of
aliasing. For a large value of chA’ the WIz(o) term is very small, and

the energy per bit per single sided noise spectral density for the bit under

detection is degraded only by the factor WIl(o).

A review of the derivations outlined in Appendix D reveals that the
second term (Pe } in (4-24) represents the contribution to the total

2
probability of error due to intersymbol interference (and aliasing) on the

bit under detection. Equation (D-37) shows that the G, j.; terms in the
expression for Pe2 are affected only by [YI (0) - WI (o)L but (D-41) and
1 2 J
(D~44) indicate that the by4y terms are dependent on [QI (m) - WI (mﬂ for
1 2

all m not equal to zero.
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From Appendix D it can also be seen that the third term (Pe3) in (4-24)
represents the contribution to the total probability of error due to cross-
talk from Channel B. The Czk_l terms are still affected only by
[Pll(o) - le(oﬂ, but (D-51) and (D-49) indicate that the hy terms are

dependent on [P (n) - VY (nﬂ for all n.
I3 Iy

The significance of the fourth term (Pe ) in (4-24) is not intuitively
. 4
obvious, since Appendix D shows it to result from a cross-product due to
the multiplication of the characteristic functions of the intersymbol

interference and crosstalk terms.

In order to obtain numerical results for bit error probability, it is
necessary to assume that the effects of intersymbol interference and
crosstalk are confined to a finite number of bits preceding and following
the bit under detection. To assist in determining how many bits must be

considered, numerical solutions for Y¥_ (m), V¥ 2(m), Y

I, I 3(n), and

I

qu(n) were first obtained. Table 4.1 shows values of YIl(m) for various

values of BIFTA and for various bit positions. Note from (4-19) that

the integrand of WI {m) is an even function of m and therefore that
1

computations need not be made for negative values of m.

The numbers presented in Table 4.1 satisfy previous observations

regarding the significance of the WI {(m) . The term WI (o) represents
1 1

the amplitude of the bit being detected, and a finite IF filter bandwidth

should cause WI (o) to be less than unity. Table 4.1 indicates that as
1

the IF filter bandwidth increases (BIFTA > «), WI (0) » 1 and that as the
1

filter bandwidth decreases (BIFTA + 1), WIl(o) does become smaller. The

Wll(m) for m # 0 represent intersymbol interference from bits preceding



Table 4.1. - Some

values of Y_ (m)
Iy
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wla || ¥, @ |, @ [y @ vy @ v @ v (5 |y (6

1.0 0.7737 0.1291 -0.0222 0.0094 -0.0052 0.0033 -0.0023
1.2 0.8393 0.0673 0.0292 -0.0271 0.0152 -0.0028 -0.0063
1.6 0.8960 0.0433 0.0033 0.0054 0.0031 -0.0012 -0.0029
2.0 0.9028 0.0471 0.0012 0.0002 0.0001 0.0000 0.0000
2.4 0.9066 0.0493 0.0002 -0.0025 -0.0017 0.0004 0.0013
2.8 0.9218 0.0440 -0.0082 0.0051 -0.0023 0.0001 0.0014
3.0 0.9311 0.0353 -0.0011 0.0004 -0.0002 0.0001 0.0014
4.0 0.9499 0.0248 0.0002 0.0000 0.0000 0.0000 0.0000
5.0 u0.9592 0.0206 -0.0003 0.0001 -0.0000 0.0000 0.0000
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and following the bit under detection. Intuitively, the interference
resulting from more remote bits (|m| >> 0) should be less than from bits
closer to the bit being detected. Table 4.1 verifies this observation.

Note that for any particular filter bandwidth, IW (m)[ generally decreases
1

I

with increasing m. Also note that for any particular value of m,

| ¥

I

> o
1(m)[ 0 as BIFTA > o,

Table 4.2 shows values of WIZ(m) for various values of chA’ BIFTA'

and for various bit positions.. Since, from (4-19), the integrand of WIZ(m)
is an even function of m, computations need not be made for negative values
of m. The WI (m) terms represent signal degradations which result from

2

aliasing. Note that for any particular values of m and BIFTA'

¥ A

I

(m)l +~ 0 as chA + o, Also note that for any given values of ch
2

and B__T_, IW

TFTA (m)| generally decreases with increasing m.
2

I

Values of WI3(n) are shown in Table 4.3 for various values of TA/TB'
BypTp, and n. Although values are shown'only for positive values of n,
it can be seen from (4-20) that it is actually necessary to compute WI (n)

3

for negative values as well. For the special case when TA = TB’ WIa(n)
is an odd function of n and values need not be computed for negative

values of n.

As previously observed, the WIs(n) terms represent signal degradations
which result because of crosstalk from the bit stream in Channel B.

Table 4.3 shows that the WI (n) are generally less significant for larger

3
values of n. It is interesting to note that WI (0) is always zero when
3
TA = TB. That this should be the case is readily seen by substituting
TA = TB into the defining expression for WI (n) given by (4-20).
3
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Table 4.2. - Some values of ‘YIz(m)
Ta| Bretaf Y, @ | Y, | ¥,@ [ @ Y@ s |y e
|

1 1.0 0.0131 -0.0067 0.0001 -0.0000 0.0000 -0.0000 0.0000
1.2 0.0184 -0.0116 0.0042 -0.0028 0.0013 -0.0001 -0.0007
1.6 0.0258 -0.0144 0.0003 0.0011 0.0007 -0.0002 -0.0006
2.0 0.0273 -0.0135 -0.0001 ~0.0000 -0.0000 -0.0000 -0.0000
0.0511 -0.0267 0.0016 -0.0006 0.0003 -0.0002 0.0001
0.0575 -0.0300 0.0016 -0.0006 0.0003 ~0.0002 0.0001
2 . 0.0032 -0.0016 0.0000 -0.0000 0.0000 -0.0000 0.0000
. 0.0044 -0,0028 0.0010 -0.0006 0.0003 -0.0000 -0.0002
. 0.0061 -0.0034 0.0001 0.0002 0.0001 -0.0000 -0.0001
. 0.0064 -0.0032 0.0000 -0.0000 -0.0000 -0.0000 -0.0000
. 0.0100 ~0.0050 0.0000 -0,0000 0.0000 -0.0000 0.0000
5.0 0.0187 ~0.0094 0.0001 -0.0000 0.0000 -0,0000 0.0000
3 . 0.0014 -0.0007 0.0000 -0.0000 0.0000 -0.0000 0.0000
0.0020 -0.0012 0.0004 -0.0003 0.0001 -0.0000 -0.0001
. 0.0027 -0.0015 0.0000 0.0001 0.0001 -0.0000 -0.0001
. 0.0028 -0.0014 -0.0000 | ~0.0000 -0.0000 -0.0000 -0.0000
. 0.0043 -0.0022 0.0000 -0.0000 0.0001 -0.0000 0.0000
5.0° 0.0075 -0.0038 0.0000 -0.0000 0.0000 -0.0000 0.0000
5 1.0 0.0005 ~0.0003 0.0000 -0.0000 0.0000 -0.0000 0.0000
0.0007 -0.0004 0.0002 -0.0001 0.0000 -0.0000 -0.0000
0.0010 -0.0005 0.0000 0.0000 0.0000 -0.0000 -0.0000
. 0.0010 -0.0005 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
. 0.0015 -0.0008 0.0000 -0.0000 0.0000 -0.0000 0.0000
5.0 0.0026 -0.0013 0.0000 -0.0000 0.0000 =-0.0000 0.0000
10 1.0 0.0001 ~-0.0001 0.0000 -0.0000 0.0000 -0.0000 0.0000
1.2 0.0002 -0.0001 0.0000 -0.0000 0.0000 -0.0000 -0.0000
1.6 0.0002 -0.0001 0.0000 0.0000 0.0000 -0.0000 -0.0000
2.0 0.0003 -0.0001 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
3.0 0.0004 -0.0002 0.0000 -0.0000 0.0000 -0.0000 0.0000
5.0“0.0006 -0.0003 0.0000 -0,0000 0.0000 -0.0000 0.0000
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Table 4.3. - Some values of Y_ (n)

T /TB BIFTB WIa(O) WIa(l) WIa(Z) W13(3) W13(4) WIB(S) WI3(6)

0.01. 1.0 0.0050 0.0000 | -0.0000 0.0000 | -0.0000 0.0000 | -0.0000
1.2 0.0069 | -0.0017 0.0013 -0.0007 0.0002 0.0001 | -0.0004
1.6 0.0095 | -0.0011 -0.0008 | -0.0001 0.0004 0.0002 -0.,0001
2.0 0.0100 —0.0006 -0,0000 } -0.0000 | -0.0000 } -0.,0000 | -0.0000
3.0 0.0150 0.0001 -0.0001 0.0000 | -0.0000 0.0000 | -0.0000
5.0 0.0248 0.0002 | -0.0001 0.0001 | -0.0001 0.0000 | -0.0000

0.10 1.0 0.0471 0.0039 -0.0021 0.0015 -0.0011 0.0009 -0.0008
1.2 0.0666 -0.0142 0.0124 -0.0082 0.0035 0.0005 -0.0031
0.0954 -0.0136 -0.0071 0.0008 0.0042 0.0018 -0.0018
0.1030 -0.0027 -0.0008 -0.0004 -0.0002 -0.0002 -0.0001
3.0 0.1353 -0.0110 -0.0060 0.0041 -0.0032 0.0026 -0.0022
0.2073 -0.0161 -0.0087 0.0060 -0.0046 0.0038 -0.0032

0.0000 0.3638 -0.1099 0.0699 -0.0516 0.0410 -0.0341
1.2 0.0000 0.3311 -0.0506 | -0.0056 0.0277 -0.0307 0.0222

0.0000 0.2283 -0.0230 0.0055 -0.0074 -0.0084 -0.0003
2.0 0.0000 0.2139 0.0077 0.0020 0.0008 0.0004 0.0002
3.0 0.0000 0.2915 -0.0390 0.0238 -0.0174 0.0138 -0.0114
0.0000 0.2752 -0.0235 0.0143 -0.0105 0.0083 -0.0068
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Table 4.4 shows values of VY_ (n) for various values of £ T_, T /T_,
I|+ c B A" B
BIFTB’ and n. As for the computation of WI {n), it is actually necessary
3

to compute WIh(n) for negative values of n except for the special case

of TA = TB. Table 4.4 indicates that the Wi (n) are generally less
4

significant for the larger values of n. Again, for the special case when
T = T_, it can be observed that V¥_ (o) = 0 for all values of £ T_ and
A B Iy c'B

B..T.. It can also be observed that IW

IF TR 4(n)| decreases for all n as

I

£ increases.
c B

Tables 4.1 through 4.4 indicate that WI {m), Y. (m), WI (n), and
1 2 3

I
qu(n) generally are negligibly small for values of m and n greater

than about 5. Values of P, were computed for several cases of interest,
using Im[ < 5 and In[ ¢ 5. The effects of intersymbol interference and

crosstalk were therefore assumed to be limited to the 10 bits closest to

the bit under detection.

The results of these Pe calculations will now be summarized.

Single-Channel (Balanced Power) Results

As pointed out in Chapter III, single-channel operation refers to the
case in which a serial to parallel device converts a signal of rate R bits/
second to two parallel signals each of rate R/2 bits/second. These two
parallel signals are then applied to the inputs of the two quadrature channels
of the QPSK modulator. After QPSK demodulation and after independent bit
detection processes have been performed, the two parallel signals are
recombined to form an estimate of the original signal of rate R bits/

second. If equal transmit powers are allocated to each of the two QPSK



Table 4.4.

- Some values of VY_ (n)
Iy

(94}

chB TA/TB qu(O) qu(l) WIH(Z) WI“(B) WIH(4) qu(s) WIH(G)
1 0.01 1. 0.0050 0.0000 -0.0000 0.0000 -0.0000 0.0000 ~0.0000
0.0069 -0.0017 0.0013 | -0.0007 0.0002 0.0001 -0.0004

l.6 0.0095 -0.0011 -0.0008 | -0.0001 0.0004 0.0002 ~-0.0001

0.0100 -0.0000 -0.0000 | ~0.0000 | -~0.0000 -0.0000 =0.0000

0.0149 0.0001 -0.0001 0.0000 -0.0000 0.0000 -0.0000

. 0.0247 0.0002 -0.0001 0.0001 -0.0001 0.0000 -0.0000

0.10 . 0.0360 0.0025 -0.0014 0.00}9 -0.0007 0.0006 -0.0005
. 0.0507 -0.0111 0.0094 | ~0.0062 0.0025 0.0005 - .0024

. 0.0723 ~0.0100 -0.0055 0,0004 0.0031 0.0015 -0.0013

2. 0.0778 -0.0017 -0.0005 | ~0.0003 -0.0002 -0.0001 -0.0001

3. 0.1046 0.0071 -0.0039 0.0027 -0.0021 0.0017 -0.0014

5. 0.1638 0.0106 ~0.0058 0.0040 -0.0031 § - 0.0025 -0.0021

1.00 0.0000 -0.0082 0.0077 | -0.0048 0.0035 -0.0028 0.0023
0.0000 -0.0053 0.0026 0.0017 0.0032 0,0031 ~0.0021

0.0000 0.0086 -0.0059 | ~0.0016 0.0013 0.0017 0.0002

2. 0.0000 0.0117 -0.0024 | -0.0007 -0.0003 -0.0001 -0.0001

3. 0.0000 -0.0479 0.0465 | -0,0298 0.0221 -0.0176 0.0146

5. 0.0000 0.3139 -0.0615 0.0389 -0.0287 0.0228 -0.0189

2 0.01 1.0 0.0049 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
0.0068 -0.0017 0.0012 -0.0007 0.0002 0.0001 -0.0004

1.6 0.0094 -0.0011 -0.0008 } -0.0001 0.0004 0.0002 -0.0001

2. 0.0099 -0.0000 -0.0000 } ~0.0000 -0.0000 -0.0000 ~0.0000

3. 0.0148 0.0001 -0.0001 0.0000 -0.0000 0.0000 -0.0000

5.0 0.0246 0.0002 -0.0001 0.0001 -0.0001 0.0000 -0.0000

0.10 1. 0.0121 -0.0004 0.0002 | ~0.0002 0.0001 -0.0001 0.0001
1.2 0.0167 -0.0043 0.0030 | -0.0017 0.0004 0.0005 -0.0009

0.0225 -0.0022 -0.,0020 { -0.0003 0.0009 9.0007 -0.0002

2. 0.0234 0.0003 0.0001 0.0000 0.0003 0.0002 0.0000

3. 0.0378 -0.0010 0.0005 § -0.0004 0.0003 -0.0002 0.0002

5. 0.0678 -0.0008 0.0004 -0.0003 0.0002 -0.0002 0.0001

1.00 1.0 0.0000 -0.0020 0.0019 | ~0.001L1 0.0008 -0.0007 0.0005
1.2 0.0000 -0.0013 0.0007 0.0004 -0.0007 0.0007 ~0.0005

1.6 0.0000 0.0018 -0.0013 } -0.0003 0.0003 0.0004 0.0000

2.0 0.0000 0.0025 -0.0006 } -0.0001 -0.0001 -0.0000 -0.0000

3.0 0.0000 -0.0068 0.0064 -0.0039 0.0029 -0.0023 0.0019

5.0 “ 0.0000 -0.0159 0.0149 | -0.0092 0.0067 -0.0053 0.0044
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Table 4.4. - Some values of qu(n) (continued)
£.1 | T/ Ty % || Yo, ¥, @ qu(z) WI“(3) Y, @ WIH(S) ¥, (8
e e e ]
5 0.01 1.0 0.0047 0.0000 | -0.0000 | 0.0000 | -0.0000 0.0000 | ~0.0000
1.2 0.0065 | ~0.0016 0.0012 | ~0.0007 0.0002 0.0001 | -0.0003
1.6 0.0089 | -0.0010 | -0.0007 | -0.0000 0.0004 0.0002 | -0.0001
. 0.0094 | -0.0000 | -0.0000 | -0.0000 | ~0.0000 | -0.0000 | ~0.0000
3. 0.0140 0.0001 | -0.0001 | 0.0000 | -0.0000 0.0000 | -0.0000
0.0232 0.0002 | -0.0001 | ©0.0001 | -0.0001 0.0000 | -0.0000
0.10 1.0 || -0.0001 | ~0.0000 | -0.0000 | 0.0000 0.0000 | -0.0000 [ ©0.0000
.2 -0.0001 0.0000 | -0.0000 | 0.0000 | -0.0000 | -0.0000 | 0.0000
1.6 -0.0003 0.0001 0.0000 | -0.0000 | -0,0000 | -0.0000 0.0000
. -0.0003 | -0.0000 | ©0.0000 | 0.0000 0.0000 0.0000 0.0000
. -0.0010 | ~0.0001 0.0001 | -0.0001 0.0001 | -0.0001 0.0000
. -0.0036 | -0.0009 0.0005 | -0.0004 0.0003 | -0.0002 0.0002
1.00 1.0 0.0000 | -0.0003 0.0003 | -0.0002 0.0001 | -0.0001 0.0001
1.2 0.0000 | -0.0002 0.0001 | o0.0001 | -0.0001 0.0001 | -0.0001
1. 0.0000 | 0.0003 [ -0.0002 | -0.0001 0.0000 0.0001 0.0000
0.0000 | ©0.0004 | -0.0001 | -0.0000 | -0.0000 | -0.0000 | -0.0000
.0 0.0000 | -0.0010 0.0009 | -0.0006 0.0004 | -0.0003 0.0003
5.0 0.0000 | -0.0017 0.0016 | -0.0010 0.0007 | -0.0006 0.0004
10 0.01 1.0 0.0038 0.0000 | -0.0000 | 0.0000 | -0.0000 0.0000 | -0.0000
1.2 0.0052 | ~0.0013 0.0010 | -0.0006 0.0002 0.0001 | -0.0003
1.6 0.0072 | -0.0008 | -0.0006 | -0.0000 0.0003 0.0002 | -0.0001
2.0 0.0076 | -0.0000 { -0.0000 | -0.0000 | -0.0000 | ~0.0000 | -0.0000
3.0 0.0113 0.0001 | -0.0000 | 0.0000 | -0.0000 0.0000 | =0.0000
£.0 0.0188 0.0001 | -0.0001 | 0.0000 | -0.0000 0.0000 | -0.0000
0.10 .0 -0.0000 0.0000 | -0.0000 | ©0.0000 | 0.0000 | -0.0000 0.0000
' .2 -0.0000 0.0000 | -0.0000 | 0.0000 | -0.0000 | -0.0000 0.0000
+-0.0001 0.0000 0.0000 | -0.0000 | -0.0000 | -0.0000 0.0000
. -0.0001 | -0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000
3. -0.0002 | -0.0000 0.0000 | -0.0000 { ©0.0000 { -0.0000 0.0000
5.0 || -0.0009 | -0.0002 0.0001 | -0.0001 0.0001 | -0.0001 0.0000
1.00 1.0 0.0000 | -0.0001 0.0001 | -0.0000 0.0000 | -0.0000 | 0.0000
1.2 0.0000 | -0.0001 0.0000 | 0.0000 | -0.0000 0.0000 | -0.0000
1.6q{ ©0.0000 0.0001 | -0.0000 | -0.0000 [ ©0.0000 0.0000 0.0000
2.0 0.0000 0.0001 | -0.0000 | ~0.0000 | ~0.0000 | -0.0000 | -0.0000
3.0 0.0000 | -0.0002 0.0002 | -0.0001 0.0001 | -0.0001 0.0001
5.0 0.0000 | -0.0004 0.0003 | -0.0002 0.0002 | -0.0001 0.0001
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channels, the bit error probabilities will be the same for both channels.
Computation of error probability thus need only be performed for one of

the two channels.

Tables 4.5 through 4.7 show values of Pel, Pez’ Pes, Peq’ and total
error probability, Pe’ for various signal-to-noise ratios (EbA/No) and for
various values of BIFTA and chA' From Table 4.5, it can be seen that
when fcéA is high (corresponding to a large number of carrier cycles per
bit) and B pTh is low, the QPSK transmission system is noise-limited
(Pel dominates) at low signal-to-noise ratios and intersymbol interference-
limited (Pe2 dominates) at high signal-to-noise ratios. However,

Table 4.7 shows that when chA and BIFTA are both low,
crosstalk (Pe3 and Peq terms) becomes very significant at high
signal-to-noise ratios.

Although it is very often assumed that the carrier frequency is much
higher than the data rate, such an assumption is not always valid in
practical situations. Even though the RF carrier frequency for a practical
QPSK transmission system might be much higher than the data rate, hardware
considerations would probably dictate that the QPSK demodulation process
be performed at some intermediate frequency. This intermediate frequency
could well be comparable to the data rate. The values of chA used in

Tables 4.5 through 4.7 are therefore considered to be representative of

practical transmission systems.

To provide additional insight into the performance of bandlimited
QPSK systems, the results presented in Tables 4.5, 4.6, and 4.7 are plotted

in Figs. 4.4, 4.5, and 4.6, respectively. It should be noted that the



60

Table 4.5. - Error probability results for single-channel QPSK transmission

with ideal rectangular filtering (£.,T4 = 10)
BT, | E

‘IF A TE? (dB) Pel Pe2 Pea Peu F
1.0 0 1.068 x 1071 | 1.002 x 1072 | 2.352 x 1070 | -1.498 x 207° | 1.168 » 107!
2 5.870 x 1072 1.282 x 1072 2.985 x 107° | -1.322 x 107° 7.155 x 1072
4 2.435 x 1072 1.304 x 1072 | 2.900 x 107 | 1.875 x 107® 3.742 x 1072
6 6.540 x 10> | 9.574 x 107> | 1.864 x 107> | 8.637 x 10°° | 1.614 x 1072
8 8.917 x 1074 4.537 x 10°° 6.148 x 10°° 1.285 x 107> 5.448 x 107"
10 4.196 x 107> 1.227 x 1073 | 7.087 x 1077 8.960 x 107° 1.278 x 1072
12 3.680 x 107 | 1.617 x 1073 | 1.547 x 1078 | 2.827 x 10 | 1.649 x 107¢
1.5 ) 9.128 x 1072 9.976 x 1073 7.674 x 10°° | -4.288 x 1078 9.228 x 1072
2 4.667 x 1072 1.186 x 1073 | 9.107 x 107® | -1.306 x 1078 4.786 < 107"
4 1.732 x 1072 1.045 x 1073 7.975 x 107° 1.302 x 1077 1.837 x 1072
6 3.912 x 1073 5.773 x 1074 4.315 x 107° 3.166 x 107/ 4.494 x 1073
8 4.068 x 1074 1.543 x 1074 | 1.089 x 107® 2.669 x 1077 5.624 x 1077
10 1.249 x 107° 1.354 x 1070 8.194 x 107/ 6.529 x 1070 2.618 x 107°
2.0 0 8.958 x 1072 | 1.073x 1073 | 5.585 x 107® | -3.302 x 107® | 9.066 x 1072
2 4.540 x 1072 1.265 x 107> | 6.574 x 10°° | -7.935 x 107° 4.667 » 1072
4 1.662 x 1072 1.101 x 1073 5.683 x 1070 1.054 x 1077 1.773 x 1072
6 3.677 x 1073 5.957 x 1074 3.013 x 10°° 2.461 x 1077 4.276 x 107>
8 3.700 x 1074 1.541 x 1074 7.3555x 107/ 1.997 x 1077 5.250 x 10 4
10 1.079 x 107> 1.280 x 107> 5.258 x 1070 4.621 x 1078 2.368 x 107°
5.0 0 8.316 x 1072 | 1.036 x 107 | 8.621 x 107 | -8.544 x 1077 | 8.33¢ x 1072
2 4.071 x 1072 2.206 x 1072 9.823 x 1070 4.724 x 1072 4,094 x 1072
4 1.413 x 1072 1.814 x 1074 | 8.065 x 107° 3.340 x 1070 1.432 x 1072
6 2.875 x 107> 8.898 x 107> 3.940 x 107° 6.626 x 100 2.968 x 1073
8 2.538 x 1072 1.931 x 1070 8.454 x 107/ 4.466 x 1078 2.740 < 1074
10 6.022 x 10°° 1.159 x 107° 4.926 x 1078 7.532 x 107° 7.238 x 10°°
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Table 4.6. - Error probability results for single-thannel QPSK transmission
with ideal rectangular filtering "(£,Ta = 5)

BrpTa i;& (dB) Pel Pez Peg Peq Pe

[+]

T=:iT; 0 1.069 x 1071 | 1.005 x 2072 | 9.425 x 1075 | -6.024 x 10° | 1.171 x 107t

2 5.879 x 1072 | 1.287 x 1072 | 1.197 x 1074 | =5.341 x 107 | 7.177 x 1072

4 2.441 x 1072 | 1.300 x 1072 | 1.167 x 1074 | 7.461 x 1076 | 3.762 x 1072

‘6 6.562 x 1072 | 9.626 x 1073 | 7.497 x 107> | 3.463 x 1070 | 1.630 x 1072

8 8.964 x 1074 | 4.371 x 1073 | 2.486 x 1077 | 5.172 x 107 | 5.544 x 1073

‘ 10 4.229 x 107> 1.240 x 1073 2.902 x 107 3.634 x 107° 1.322 x 1073

12 3.736 x 1077 | 1.644 x 1074 | 6.525 x 1078 | 1.163 x 10™° | 1.764 x 1074

14 2.336 x 10729 8.138 x 1078 | 1.100 x 20730 1.301 x 20 | e.530 x 1076

1.5 0 9.145 * 2072 | 1.014 x 107> | 3.069 x 107 | -1.746 x 1077 | 9.249 x 1072

2 4.679 x 1072 | 1.207 x 1073 | 3.645 x 107> | -5.441 x 10 | 4.804 x 1072

4 1.739 x 1072 | 1.065 x 1073 | .3.197 x 107> | s5.270 x 1077 | 1.849 x 1072

6 3.936 x 107> | 5.985 x 107 | 1.734 x 107° | 1.288 x 10® | 4.546 x 1073

8 4.106 x 1072 1.582 x 1072 4.393 x 10°° 1.091 x 10°° 5.743 x 1074

10 1.267 x 1070 | 1.397 x 1077 | 3.336x 1077 | 2.695 x 1077 | 2.725 x 107>

2.0 ) 8.976 x 1072 | 1.001 x 1073 | 2.230 x 1070 | -1.343 x 1077 | 9.087 x 1072

2 4.554 x 1072 | 1.288x 107> | 2.627x 107> | -3.331 x 10°° | 4.685 x 1072

4 1.670 x 1072 | 1.122x 1070 | 2.274x 10> | 4.260 x 1077 1.784 x 1072

6 3.702x 1073 | 6.088 x 1071 | 1.209x 107> | 9.995x 1077 | 4.324 x 1073

8 3.738 x 1004 | 1.581x 1074 | 2.964x 1076 | s.154x 1077} 5.357 x 107%

10 1.096 x 107> | 1.324 x 107> | 2.136x 1077 | 1.905x 1077 | 2.460 x 107°

5.0 0 8.359x 1072 | 2.125x 107% | 3.491x 107 | -3.818 x 10°% | s.384 x 1072

2 4.202x 1072 | 2.427x 1074 | 3.988x 1073 | 1.277x 107 | 4.130x 1072

4 1.429 x 1072 2.003 x 1074 3.287 x 107> 1.473 x 1077 1.452 x 1072

6 2.925 x 1073 | o.885x 107> | 1.616x 107° | 2.954x 1077 | 3.041x 1073

8 2.606 x 10~% 2.167 x 107> 3.504 x 107° 2.016 x 107/ 2.860 x 1074

b 10 || sz 1008 | 1.323x 10| 2.080x 1077 | 3.472x 108 | 7.839x 1076
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Table 4.7. - Error probability results for single-channel QPSK transmission
with ideal rectangular filtering (£cTp = 1)

BT, —Nbﬁ (dB) Pel Pez Peg Pe:, Pe
[+]
3
1.0 0 1.107 x 107% 1.110 x 1072 2.500 x 107> | -1.804 x 1074 1.241 x 10°%
2 6.184 x 1072 | 1.441 x 1072 | 3.227 x 1073 | -1.800x 1074 | 7.930 x 1072
4 2.630 x 1072 1.502 x 1072 3.247 x 1073 1.455 x 104 4.473 x 1072
6 7.345 x 107> 1.150 x11072 2.253 x 1072 9.190 x 107% 2.202 x 1072
8 1.064 x 1073 5.857 x 107> 8.821 x 1077 1.571 x 107> 9.374 x 1073
10 5.510 x 107> 1.783 x 1073 1.502 x 1074 1.374 x 1073 3.362 x 107°
12 5.634 x 107/ 2.832 x 1074 7.968 x 107° 6.662 x 1077 9.580 x 107°
14 4.443 x 1071°] 1.854 x 107° 8.821 x 107° 1.800 x 10 1.986 x 1072
1.5 0 9.741 x 1072 1.697 x 1073 7.552 x 1074 | -7.501 x 107® 9.986 x 1072
2 5.133 x 1072 2.076 x 1073 9.226 x 1073 | -4.053 x 107® 5.432 x 1072
4 1.995 x 1072 1.918 x 10-3 8.482 x 1072 1.836 x 107° 2.274 x 1072
6 4.845 x 1070 | 1.148 x 1073 | 4.990 x 1074 | 5.333 x 107> | 6.544 x 107°
8 5.640 x 107% 3.521 x 107% 1.461 x 1074 5.380 x 107> 1.116 x 10°°
10 2.070 x 107> 3.940 x 1077 1.451 x 107° 1.805 x 107> 9.266 x 107°
2.0 0 9.628 x 1072 | 1.804 x 1073 | 5.110 x 107* | 5.406 x 107® | 9.858 x 1072
2 5.045 x 1072 2.195 x 1073 6.210 x 1077 2.676 x 10°° 5.327 x 102
4 1.945 x 1072 2.013 x 1073 5.656 x 1077 1.365 x 107° 2.208 x 1072
6 4.662 x 107> 1.190 x 1072 3.271 x 1074 3.385 x 100 6.217 x 10>
8 5.318 x 1074 3.588 x 10 9.273 x 107" 3.752 x 107> 1.021 x 1073
10 1.890 x 107> 3.903 x 107> 8.631 x 107° 1.194 x 1073 7.850 % 107>
5.0 o 9.646 x 1072 1.185 x 1073 5.279 x 107° | -3.673 x 107’ 9.769 x 1072
2 5.059 x 1072 1.443 x 1073 6.416 x 107> | -1.775 x 107’ 5.210 « 1072
4 1.953 x 1072 1.321 x 1073 5.837 x 107> 9.498 x 107/ 2,001 « 1077
6 4.690 x 1073 7.742 x 1074 3.357 x 107° 2.632 x 10°° 5.501 x 107>
8 5.368 x 1072 2.274 x 10°% 9.339 x 107° 2.490 x 107° 7.761 « 1074
10 1.917 x 107° 2.313 x 107> 8.243 x 107/ 7.169 x 1077 4.385 x 107°
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rlcts are versus Eb/NO rather than the EbA/No used in the tables.

This is because the tables contained values of Channel A error probability
corresponding to the enercy ver bit (in Channel A) per single~sided noise
spectral density. In order to meaningfully assess the performance of a

OPSK transmission system, however, the QPSK error probability should be
compared with the error probability for PSK transmission of the same
information rate (R_. + RB bits/second) at the same total power level

A

(PA + P_ watts). Thus instead of plotting Channel A error probability

B
versus EbA/No’ plots of Channel A and Channel B error probability versus
Eb/No should be presented. For balanced, single-channel operation, the
error probabilities are equal in Channel A and Channel B, so only one plot
is required. Since (3-13), (3-18), and (3-19) show that Eb/No = EbA/No’

the preceding discussion is of little consequence for this case. However,

for unbalanced, dual-channel operation, these points will be very significant.

To facilitate evaluation of the performance of bandlimited single-
channel QPSK transmission, two additional curves are presented on each of
the three figures. The bit error probability curve for ideal (infinite
bandwidth) PSK transmission is included, along with a curve for bandlimited
PSK transmission [9]. The curves for bandlimited PSK are for the case when
the IF filter bandwidth is equal to the data rate, or when B__T = 1.

IF
These curves should be compared with the QPSK curves for BIF A~ 2,
because the input to the IF filter consists of two parallel channels each
of half the rate of the equivalent PSK channel. A comparison of the PSK

curves with the appropriate QPSK curves indicates that the effects of a

fixed bandwidth IF filter are not as severe in a QPSK transmigsion system.



Tais is an intuitively satisfying result and indeed provides justification

for the additional complexity involved in implementing a QPSK system.

Dual-Channel (Unbalanced Power) Results

Dual-channel operation refers to the case in which the parallel inputs
to the two quadrature channels of the QPSK modulator are obtained from
separate, independent sources. After QPSK demodulation and after independent
bit detection processes have been performed, the two parallel signals are
routed to different points. Equation (3-20) shows that, for equal output
error probabilities in the two channels,

PR/RA = Pg /EB (4-25)
For RA # RB' however, this relationship is valid only for the infinite
bandwidth case. The reason for this is obvious if it is observed that a
finite bandwidth filter will result in a more severe performance degradation
in the high rate channel than in the low rate channel. It would appear,
then, that if the bandwidth is limited and if it is desired to equalize the
Channel A and Channel B error probabilities, the power in the high-rate
channel will have to be somewhat greater than the value which satisfies

(4-25).

Figs. 4.7 through 4.10 show Channel A and Channel B error probabilities
for various signal-to-noise ratios (Eb/No) and for various values of
i th
BIFTA' TA/TB, and chA' No attempt has yet been made to equalize e
Channel A and B error rates by properly unbalancing the power levels in the

two channels. Rather, for the cases illustrated in Figs. 4.7 through 4.10,

the ratio of amplitudes for the two channels was obtained using (4-25),
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which assumes infinite bandwidth. Substituting

72

Az
PA= > (4-26)
and
2
PB = % (4-27)

into (4-25) yields

A*Ta B*Ts

7 5 (4-28)
or
B . T
A T (4-29)

The signal-to-noise ratio, or energy per bit per single-sided noise
spectral density (Eb/No) , used in Figs.4.7 through 4.10 is a total

signal-to-noise ratio and is given by

Eb PA -+ P.B
— = 4-30
Ne N, (Ra * R2) e
Substituting (4-26) and (4-27) into (4-30) gives

Ew _ _A* +8*

N ~ 2N, ('/‘TA + l/—,—-‘) (4-31)
Using the ratio of amplitudes given by (4-29) gives

Ey _ A (+Tafrm) _ AT, 4-32)

No ZNo (/10 *+ V78D ZNo
or

E, _ B (Ta/ma +1) . B'Ty

No ZN°(|/"]'A + '/'1"’) ZNo (4-33)

Thus the total signal-to-noise ratio used in Figs. 4.7 through 4.10 can be
directly related to the individual signal-to-noise ratios in Channels A

(SNRp) and B (SNRp) .

Letting

SMEA = DA (4-34)

and

SNR; = Z N, (4-35)
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it is seen that

SNRg = SNEA —é—%% (4-36)

or

(4-37)

B _ SNRg (—I_A)
A - SNRa \ Ts
Equation (4-37) provides a means for determining that value of B/A
which equalizes the probability of error in the two channels. It is not
generally possible to make the Channel A and Channel B error probabilities
everywhere equal, since one effect of filtering is to change the shapes of
the error probability curves. However, suppose that it is desired to find
the value of B/A which, for given values of chA, TA/TB' and BIFTA’
equalizes the probability of error at, say, 107", Using the appropriate
curves, such as given by Figs.4.7, 4.8, 4.9, or 4.10, the values of SNRA
and SNRB required for a probability of error of 107" should be determined.
These values, along with the TA/TB ratio being assumed, should be
substituted into (4-37) to yield a new trial value of B/A. The process of
determining the optimum B/A is necessarily iterative, since the probability
of error for each of the two channels is affected by that ratio. Using the
new value of B/A, the probability of error can be computed again for each of
the two channels. This entire process can be fepeated until the error
probability curves c¢ross at 107%., No more than two iterations were required
to equalize error probabilities at 10™* for the particular cases considered
in this study. Figs. 4.11 through 4.14 illustrate the types of results
provided by this iterative process for BIF ' 1. The same process
could be used to obtain results for other values of chA’ TA/TB’ and
B__T , or to force the error probability curves to cross at any arbitrary

IF A
point.
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PRACTICAL FILTERING

In the previous section, the ideal rectangular filter was assumed to be
the device which limited the bandwidth of the QPSK signal. Such a filter is
nonrealizable, however, and can only be approximated in practice. It is of
interest to determine the effects on bit error probability of bandlimiting a
QPSK sigﬁal with a realizable filter. For this analysis, the simple
first-order Butterworth (single-pole) filter will be assumed. The intent
here is to illustrate an approach that can be used to analytically determine

QPSK error rates for systems employing any particular filter type.

The frequency response for the lowpass equivalent of the single-pole
bandpass filter is [14]

_ A
H.( ('F) T+ .%Ii_) (4-38)

2w 5&

where B is the 3-dB cutoff frequency. As shown in [15], the frequency

|

characteristic for the bandpass filter is

H& ('F+'P¢) for Ff<oO
£ =
HEF) Hy(f-+) For F>o0

-+ 'lE;NLfi- 3 4&3? 'F <4O
' ’[z—rﬁf‘-]

A. _
( +§ A For F>0 (4-39)

Fig. 4.15 illustrates the frequency characteristics for the lowpass and

bandpass versions of the single-pole RC filter. Since the 3-@B bandwidth

of the bandpass filter is

Bre = ZBx (4-40)
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then (4-39) can be written as

fco

- for
HG£) = ¢ ' [j-i.ﬁ:_sﬁé]
1+} [ z’(-c;-r,)] For

Normalizing (by letting Ao = 1) and rationalizing denominators, (4-41)

f£>o0

(4-41)

becomes
. ZKP*EQ] J [+ g B.::z ]z For F <o
Brr
HEF) = ). 2 (f5E)
L r2(E-Forr ) F-t) |2
| [zj_&:_ l +[§.L.B_;_]

The output of the bandpass filter corresponding to the mth  bit of

for £ >0

(4-42)

Channel A of the QPSK signal can be expressed in the frequency domain as

S = A, (F)HEF)

where Am(f) is the Fourier transform of the mth  bit of Channel A and is

(4-43)

given by (4-5).

The time domain response of the bandpass filter to the mt®  bit of

Channel A is

NENG)
L{’*m OHP e

Substituting (4-5) and (4-42) into (4-44),

Sia@®
+3 ZT\—'F":

Cl 4: (4-44)
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(]
. £+
Am fsin@fTa) owF(i+2mTa [ .2 jznst
SWOE J( T e ) SRy € 4
o0

) £ i 2nft
Am F sin lrfTa) I TF(142M Ty | c2( _!__s.) +52T
+ "(w(;t_;z) e FYEEE? T)a =) ;.,.[z sz € dF
] S L) /

(4-45)

As shown in Appendix E, (4-45) can be reduced to

o0

_ 28m £ sin (TR cos J 2 f [ - (L TR1}
n® = 5 b BT
vy A £ (F-F)sin@FTa) s {2mf[e - (LEDTR]] 4
o | {1 (T

df

(4-46)

Likewise, the time domain output of the bandpass filter corresponding to the

nth bit of Channel B may be expressed as

g szt
Ss@ = [ BLOHE Ty
= oo
Substituting (4-8) and (4-42) into (4-47) yields
o
-F+4-2>
-1 Bafe sn@rFTe) _ywE(i+2n)Tg | , 2 ( Bz +)2mit
Sie @)= J-“- FI-LL e ? |+ [2(F+5)]2 - l+[z(-F+-Fc3 2 € df
J TEED 5] “E]
r A £-5 2 :
4 I-—J B,,-E._s\n(WW) —j1r-P(l+2n)‘|3§ | - 2 (Bx/ e+_,2r-r-£‘£+\
TE-LD Y E] ERE RN ETE RS lg
| = [ (5

(4-48)
which, as shown in Appendix E, can be reduced to
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o0

28,8 (sinGrFTs) sin f2flt - (1211 d
= A=< 2 2 2 f
S;BG:) v [ (.p - £ )2“' [ZL-F_IE_)] ]

_48.¢ Z-:_-F‘._)s;n(WTQ)Cosglﬂ"P[‘t'(L%‘.)T-Bj} A
TBy | @)1 [2(5E)]*

The response of the bandpass filter to all m bits of Channel A and all n

(4-49)

bits of Channel B is given by

S\ = S\ + 2 sE® (4-50)

ms~- %0 Nz=-oo

The time-domain output of the Channel A multiplier is

S, (@) = S, @) cos(wet)

z S @) cos (Wet) + Z S,g(#)ecos(ut) 4

M= ~os Nm— 00

The output of the Channel A integrate-and-dump circuit (at the sampling

instant K; + TA) is

K,+Ta
Sya (K,+T) = j S,a B dt
K,
Ki+Ta o
- f{i 2A,, | FsinGrfTa)cos ZZn-F[-t-(""_:‘ﬁ)n
- Y m:--oTr ) (‘Fz‘&‘){l-r[z(fi‘ﬁ:)]‘}
Kt Th oo

]} A‘F}COS@J‘-Q)‘H;

S 4Am [£6E)smlnFT)sinf2re - ()0
* “mﬁ\: "'B:J (GEOH +I.z(€§-ti;)]'} AF}

L 4

Ky

. cos(wt) Lt



83

Ki*Ta co |
oo 2 Bnf. Sin(ﬂﬁa)5\n§2ﬂ¥[t-(%m]} A-F} Ky
+£'{ nZ=—oo R J (Ft' ‘Fca'){“' [z(fx-é:)]'-} m(wf. J
K+ Ta

) z“: 48,5, J -c,)s‘».(wfn)cosizwf[t ;( 124)a18 O(-F}as D de
K[‘{nz-wTrBIF A ('Ft" + ){IJ-[Z(%—':E:)] } (4-52)

Interchanging the order of integrations in (4-52) and then performing the

inner (time domain) integrations yields

0

S3 (KT = i’: 2Am f FsntGreTa) ) Feasix Jeas(x) + Fe Sink) sin (%)}

™

R A e ()

PUF-£) S TFTA) £ sw(xVeos(rs) - F casle)sin(x:)] 15
TR [ (5E)] ]

— 4A
+Z B

m
M= —o0 IF

L3 284k f Sin(rF TS WTFT) { Fstnlis) eos (x2) = F co5(Xs )Sinlra)§
™ T(F2-F2 £-Fe\}?
¢ c){l-r[z[Tr;)J }

df

n= -e®

nzos "B, : 5a0))*f
(4-53)
where
X = 2mFT, (& -m)
X, = 2T K,
ana

Xz = TFTy [iéé;ﬂl - (1+2n)]

Since the QPSK receiver is now causal, the output of the Channel A

integrate-and-dump circuit is not affected by bits which occur after the
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sampling instant K; + TA. Assuming that Kj < TA' the Channel A (high-rate
channel) bits corresponding to m > 2 and the Channel B (low-rate channel)
bits corresponding to n > 2 do not affect SsA(Kl + TA)' Modifying (4-53)
accordingly, changing variables by letting vy = waA in the first two

integrals and y = TrfTB in the last two integrals, and considering the

effects of channel noise, the total Channel A output voltage becomes

e = 5 ALY, () - ¥, ()]

A=)

¢ 3 Bl ()Y )-Y,,0)]

Nn= - co

+ N (T;ﬂ> (4-54)

The upper limit of the first infinite summation in (4-54) would be O
if the integrate-and-~dump circuit always integrated over a 0 to TA
interval. However, since integration was assumed to be from K; to
Ky + Ty the effects of all bits prior (-=» < m < 0) to the bit under
detection, plus the effect of the one bit (m = +1) following the bit under

detection must be considered.

Since the period of integration in the Channel A integrate-and-dump

circuit was assumed to be K; to K; + T,, the effects of crosstalk due to

PG
all bits in Channel B prior (-» < n < 0) to the bit under detection, plus

the bit in Channel B occupying the same time slot (n = 0) as the same bit
under detection must always be considered. Additionally, if the data rate in

Channel B is equal to or higher than the data rate in Channel A, the effects

of some additional number of bits in Channel B must be taken into account.
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For data rates of RA and R]3 in Channels A and B, respectively, the
effects of the bits from n=+1 to n = +(RB/RA) (K1 /Tp) must be
considered. Thus if RB = RA and %\— < 1, then the upper limit of the
second infinite summation in (4-54) is +1. On the other hand, assume that

RB = 10R, and that integration begins in the center of the Channel A bit

period. For this example, the upper limit would have to be

K Rs) _ =
(:-ri—)(-f%) = (0.5)<l0) = 5 (4-55)
The functions ‘{’Bi in (4-54) are defined by

'\I/ (m) = 4 35'm'—(l5)§3¢ﬂs@()ms(p)+1rﬁ,‘];szn(d)s;n(g)} 4
TR 0[3‘-6«‘2"3)‘]’fl-r[a_'.is_a_(‘“;f’;'z)]’} Y (a-s6)

(-]

Y ( ) = (_2__._...)(5__) 9(9—1#21:.):'-»\‘(9){yzn@)w(u-11;_1; cas(@)sin(A)]
B2 m) = ‘-n!”'ﬂq T [52_(1T,FGTA)2]I + 2(9-TF.TA) 12
I+ [HTem)]

w IIF'I'A

dy
o (4-57)

’:"" sy {9 5:n(¥) cas(8) -TH.Tp cas(¥)sin(B)]
'\I’”(n} = G‘T’)zj y*rFem)']* )+ [280-TETS)) ‘1 d

Bz Ty
s *Ts

(4-58)

T () = Mel'if(s-wmsm(g)sm[(g).,]{9as(x)cos@)+7r£T,s:n<r)s-..<A)}
Be

Bn:Ta ] [.5; ..(,r.pc-r.)a]a ?, +[z(-w:’_11f?1-’)]z } Aj
o B
(4-59)
where
d =2y (L -w
A= 2riK,
and
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Equation (4-54) is identical in form to equation (4-21), which was derived
for ideal rectangular filtering. The [WBl(m) - WBz(nn] terms represent
signal, intersymbol interference, and aliasing, while the [WB3(n) - qu(nq
terms represent crosstalk from Channel B. 2All these terms are deterministic
and can be evaulated directly for specific combinations of bits in Channels
A and B. The noise voltage .sout(Kl + TA) is a random variable, however,
and its variance (which represents the noise power at the output of

Channel A) is determined in Appendix F to be

O‘;\z - Nz:;ra' '\Ir“ (4-60)

vhere Wn is defined by

22sin* (=)

4 = de
Wn = 1T ] (22-(rFTa)] {H[M&IQ]Z} (4-61)

T8reTaA

and can be obtained from (4-56) by letting m = 0 and K; = O.

Since (4-54) is exactly of the same form as (4-21), except for the
summation limits, then the series expansion procedure detailed in
Appendix D for‘computation of error probability for ideal rectangular
filtering can be used for the practical filtering case now under
consideration. The resultant expression for Channel A bit error probability

is

R - RTa [¥, (0 - ¥, (]
Pe { e \/7'\": WO

o0 . o k
-3 Zbu(-l)‘éz;-. ",‘:’, 2h,, (-G, _,

:lr-l
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Note that (4-62) is the same as (4-23) for ideal rectangular filtering except
that Y y b4 k4
ha Il(o) and Iz(o) have been replaced by Bl(o) and B2(o),

respectively. The bzi' h

2k’ and G, 1in (4-62) are defined exactly as for
J

ideal rectangular filtering in (D-27), (D-28), and (D=-36), except that the

Y ¥y b4 b4 b4 b4
I1(m), Iz(m), Is(n)' and Iu(n) are replaced by Bl(m), 2(m),

B
WB3(n), and WBu(n), respectively, and that appropriate modifications are
made to account for the differences in summation limits in (4-21) and (4-54).

The b2i in (4-62) are therefore defined by a modified form of (D-27).

+1 hiod .
T c,os{["l’,'("\)-?u(m)]w} = | + Z b,, w* (4-63)

mez- 00 A=

m% o
Paralleling the procedure followed in (D-31) through (D-44) for evaluation
of the bbi for ideal rectangular filtering, it is readily seen that if

' -1 _24 , 24
- (27 -1) H 1
28 = (221)! 5212 ["I’B, (m) - Yg; (M)]z (4-64)

Mms -0

d

then the recursive relationship given by (D-44) can be used to evaluate the

kbi for single-pole filtering.

The QZk in (4-62) are likewise defined by a modified form of (D-28).
(%) , -

M cor (BB ¥y O - Yo} = 1+ T, ot
Nns - oo =

(4-65)
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Paralleling the procedure followed in (D-45) through (D-51) for evaluation

of the h2k for ideal rectangular filtering, it is seen that if

] )

L)% FY)
Cu- = @DT 2:2 {(%)(%)(;f';:'ﬁ)[“i",,(n)-“i;(n)]}

n=-ov

(4-66)

then the recursive relationship given by (D-51) can be used to evaluate

the h,y + for single-pole filtering.

The Gj in (4-62) can be evaluated using the recursive relationship

given by (D-37), if [WIl(o) - WIZ(oﬂ is replaced by [YBI(O) - WBZ(OJ .

The expression for the probability of error in Channel A given by

(4-62) can be changed to the following form:

Pe = Pe.| + ez + es3 + @4 (4~-67)

where

Pe
P

ez

Pes

{: _ er-F‘/AlTA [T - Yy, N }
¥, (0)
At

2 b,; (-) G,,

i

Mr i MF

2 th ("l)kﬂé
Pe‘r 2__: 2by ha (- I) Qi 2k

Equation (4-67) is exactly of the same form as (4-24) for ideal rectangular

"E

filtering and it might be expected that the individual P, terms would
have the same significance for both cases. That this is actually true,

becomes evident upon a detailed review of the derivations of the WI' and
i

the WB-’ and upon a review of Appendix D. The term Pel again represents the
i

contribution to the total probability of error due to the bit being
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detected, Pe2 represents the contribution due to intersymbol interference
and aliasing, Pe represents the contribution due to crosstalk from

3
Channel B, and Peq again results from a cross-product of the characteristic

functions of the intersymbol interference and crosstalk terms.

In order to obtain numerical results using (4-67), it is once again
necessary to assume that the effects of intersymbol interference and
crosstalk are confined to a finite number of bits preceding and following
the bit under detection. The §umerical values for [WBl(m) - WBZ(HG]
and [WB3(n) - WBu(n{] contained in Tables 4.8 and 4.9 indicate that these
quantities are negligibly small for values of m and n less than about

-3 or -4.

Assuming that the effects of intersymbol interference were limited to
the 5 bits prior to the bit under detection and to the single bit following
the bit under detection, values of Pe were computed for several cases of
interest. Since it was necessary to use time-consuming numerical
integration techniques to evaluate the WBi functions, and since many
such integrations were required for each value of Pe computed, the cases
considered were limited to single-channel operation (Tp/Tgp = 1). However,
the results obtained are quite sufficient to provide an indication of the

relative performance of a QPSK transmission system employing single-pole

IF filtering.

It was determined that, for most of the cases considered, Pe was a
fairly sensitive function of the normalized starting time (K1/TA) of the
integrate-and-dump circuits. Consequently, for each case, X;/Tp was

varied over a wide range and the value which minimized Pe was finally



Table 4.8. - Some values of Yy ) (m) - ‘PBZ (m)]

B
(X3 = 0)
¥_ (0 - - - -
Bl( ) ‘i’Bl( 1) ‘PBl( 2) ‘FBI( 3) WBI( 4)
- ‘PBZ (0) - ‘i’Bz(-l) - ‘YBZ(-Z) - ‘PBZ(—3) - WBz(—‘l)
1l 0.6833 0.2966 0.0132 ' 0.0006 0.0000
2 0.8237 0.1678 0.0001 -0.0000 eaase
3 0.8753 0.1160 -0.0003 -0.0000 cens
5 0.9186 0.0730 -0.0002 -0.0000 cena
10 0.9542 0.0390 -0.0001 -0.0000 cess
2 1 0.6917 0.2930 0.0128 0.0006 0.0000
2 0.8347 0.1618 0.0003 -0.0000 ceen
3 0.8860 0.1101 -0.0000 ceas cene
5 0.9273 0.0682 ~-0.0000 cese cnea
10 0.9593 0.0363 -0.0000 cese vese
6 1 0.6950 0.2%916 0.0126 0.0005 0.0000
2 0.8402 0.1590 0.0003 0.0000 ceee
3 0.8926 0.1068 0.0000 cese cean
5 0.9344 0.0646 -0.0000 cese ceaa
10 0.9654 0.0332 -0.0000 ceea ceee
10 1 0.6954 0.2914 0.0126 0.0005 0.0000
2 0.8410 0.1586 0.0003 0.0000 cees
3 0.8938 0.1062 0.0000 ceee ceee
5 0.9361 0.0638" 0.0000 cees ceee
10 0.9678 0.0320 0.0000 ceas cean
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Table 4.9. - Some values of | V¥ n) -V =0 T /T =1
wBa(O) WBs(—l) WBB(—Z) WBs(-B) WB3(—4) WBB(-S)
£.T, B pTa
C
- y¥_ (0) -y (-1) -y_ (=2) -¥_ (-3) -y _ (-4) -y (-5)
B, B, B, B, B, B,
1 1 -0.0945 0.0455 0.0012 0.0005 0.0001 0.0001
2 -0.1175 0.0512 0.0048 0.0008 0.0002 0.0001
3 -0.1194 0.0523 0.0047 0.0007 0.0002 0.0001
5 -0.1073 0.0487 0.0033 0.0005 0.0002 0.0001
10 -0.0767 0.0361 0.0016 0.0003 0.0001 0.0000
2 1 -0.0631 0.0318 -0.0000 .
2 -0.0993 0.0484 0.0009 0.0001 0.0000
3 -0.1184 0.0574 0.0013 0.0002 0.0001 0.0000
5 -0.1293 0.0628 0.0013 0.0002 0.0001 0.0000
10 -0.1140 0.0558 0.0009 0.0001 0.0000
6 1 -0.0236 0.0122 -0.0001 -0.0000 . .
2 ~-0.0453 0.0229 0.0000 .. .
3 -0.0636 0.0318 0.0001 -0.0000 vee
5 -0.0915 0.0457 0.0001 0.0000 .
10 -0.1253 0.0624 0.0001 0.0000
10 i -0.0072 0.0037 -0.0000 cen ..
2 -0.0141 0.0073 -0.0000 . - .
3 -0.0206 0.0107 ~0.0000 .
5 ~0.0334 0.0171 ~-0.0000 .
10 -0.0628 0.0317 -0.0000 .
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chosen. Fig. 4.16 illustrates the sensitivity of Pe to variations in

KI/TA .

Tables 4.10 and 4.11 show values of P , P , P , P , and P
el 62 93 e|+ e
for the optimum values of KI/TA' for two different values of chA (10 and 1)
for three values of BIFTA (1, 3, and 5), and for various signal-to-noise
ratios (EbA/No)° From Table 4.10 it can be seen that when chA is high
and B__T is low, P dominates at low signal-to-noise ratios and P
IF A ey €2
dominates at high signal-to-noise ratios. This same observation was made
earlier for the case of ideal rectangular filtering. Table 4.11 indicates

that when chA is low, the QPSK transmission system employing

practical (single-pole) filtering becomes crosstalk-limited (Peq dominates) .

Some of the results presented in Tables 4.10 and 4.11 are plotted in
Figs.4.17 and 4,18, along with the corresponding results previously
obtained for the ideal rectangular filtering case. A comparison of
these results reveals that better performance is generally provided by the
ideal rectangular filter at the lower signal-to-noise ratios, while the
single-pole filter appears superior at the higher signal-to-noise ratios.
Such an outcome is not unreasonable, as the finite area under the ideal
filter characteristic could be expected to pass less noise and thus
provide superior performance in the noise-limited region. On the other
hand, in the region where intersymbol interference is significant, the
practical filter could be expected to offer some potential improvement.
This is because, heuristically, the output of the ideal filter is sharply
limited in frequency and hence must be "smeared" in time, while the output
of the practical filter is not sharply limited in frequency and thus should

not experience the same degree of time-spreading.
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Fig. 4.16. - Error probability results for single-channel QPSK
transmission with practical filtering
(Ki/TA varying, £.Tp = 1, BypTp = 1, Ta/Tg = 1)
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Fig. 4.10. - Error probability results for single~channel QPSK transmission

with practical filtering (£,Tp = 10)
BIFTA 1,1(;1— -ENLA- (dB) “ Pel Pez Pe3 Pe;, P
A -]

1.0 0.0250 | 0 1.119 x 107t 2.358 x 1072 1.808 x 107° | -2.793 x 1077 1.355 x 107>
2 6.281 x 1072 3.075 x 1072 2.340 x 1070 | -2.812 x 1077 9.355 x 1072

4 2.691 x 1072 3.229 x 1072 2.351 x 1078 2.375 x 107/ 5.921 x 1072

6 7.602 x 1073 2.508 x 1072 | 1.582 x 1078 | 1.476 x 10™® | 3.268 x 1072

g |l 1.122 x 1073 1.305 x 1072 | 5.633 x 2077 | 2.482 x 107® | 1.418 x 1072

10 5.972 x 10> 9.804 x 1074 7.323 x 1070 9.035 x 107/ 1.041 x 1073

12 6.380 x 107/ 2.579 x 107> 1.927 x 1072 6.531 x 1070 2.650 x 107°

3.0 0.0735 ] 8.293 x 1072 7.790 x 1074 2.331 x 104 | -9.283 x 1077 8.394 x 1072
2 4.054 x 1072 8.874 x 1074 2.654 x 1072 4.814 x 108 4.169 x 1072

4 1.404 x 1072 7.300 x 10™% 2.178 x 1074 3.606 x 10°° 1.499 x 102

6 2.848 x 1073 3.597 x 1074 1.066 x 1004 | 7.187 x 107® 3.322 x 107

8 2.501 x 1074 7.938 x 107> 2.307 x 107> | . 4.951 x 107° 3.575 x 1074

10 5.884 x 10°° 5,006 x 10 | 1.383 x 107° | 8.965 x 1077 | 1.317 x 107>

12 1.730 X 1072 4.556 x 107° 1.107 x 1078 2.336 x 10°° 9.728 x 1078

5.0 0.0250 ) 8.196 x 1072 4.240 x 1074 5.950 x 107> | -1.273 x 107 8.245 x 102
2 3.985 x 1072 4.802 x 104 | 6.738 x 107> | 1.430 x 1078 | 4.040 x 1072

4 1.369 x 102 3.909 x 1004 ] s5.478x 107> | 5.137 x 1077 | 1.413 x 1072

6 2.740 x 1073 1.888 x 1004 | 2.637x 107 | 9.930 x 1077 | 2.956 x 1073

8 2.357 x 1074 4.002 x 107> | s.533x 107 | 6.528 x 1077 | 2.819 x 107

10 5.366 x 10° 2.319 x 107° 3.122 x 1077 1.068 x 107/ 8.105 x 1070

12 1.499 x 1078 1.758 x 102 | 2.211x 10727} 2.204 x 107 | 3.698 x 1078
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Table 4.11 -~ Error probability results for single-channel QPSK transmiss
with practical filtering (f.Tp = 1)

BIFTA :—l ii:)—a (aB) Pel Pe2 Pe3 Peg l.‘e
A [+]
1.0 0.1068 ) 9.242 x 1072 9.719 x 1073 1.663 x 1072 | -9.338 x 107* 1.178 . 1073
2 4.752 x 1072 1.169 x 1072 2.025 x 1072 | -3.104 x 1074 7.916 « 107"
4 1.779 % 107° 1.070 x 1072 1.947 x 1072 1.400 x 1073 4.936 < 10
6 4.075 » 1072 | 6.533 x 1073 | 1.370 x 1672 | 5.019 x 1073 | 2.934 » 1072
8 4.320 x 10| 2.247 x 1073 | 2.558 x 1077 | 6.887 x 1073 | 1.213 « 1077
10 1.375 x 107° 1.139 x 1077 1.990 x 1074 1.300 x 1072 1.627 .~ 107"
12 6.494 x 1075 1.328 x 107° 2.321 x 10°° 4.097 x 107° 4.468 x 107"
3.0 0.0368 ) 8.424 x 1072 1.102 x 107° 1.219 « 1072 | -7.140 x 107° 9.745 . 107"
2 4.149 x 102 | 1.265 x 1073 | 1.427 x 2072 | 6.692 x 1077 | 4.702 « 1077
4 1.453 x 1072 1.054 x 1073 1.269 x 1072 1.983 x 1072 2.848 < 107"
6 3.001 - 1073 5.315 x 1077 7.805 x 1073 4.008 x 1072 1.183 « 1072
8 2.709 x 1074 1.225 x 1074 1.284 x 1073 5.277 x 107° 2.205 . 107°
10 6.658 » 10°° | 8.422 x 107 | 7.741 x 10_5‘ 6.408 « 107> 1.566 « 1077
12 2.008 x 1078 9.105 x 1078 6.028 x 107/ 1.340 x 107° 2.085 » 107
5.0 0.0441 0 8.302 x 1072 4.846 x 107% 1.066 x 1072 | -2.703 x 107> 9.41a . 1077
2 4.061 x 1072 5.522 x 1077 1.237 x 1072 1.811 x 107° 5.354 . 1072
4 1.408 < 1072 4.541 x 1074 1.237 x 1072 1.811 x 107° 2.545 . 1y7?
6 2.859 « 1070 | 2.232 x 1074 | 6.436 x 1073 | 1.923x 207 | 9.710 . 107}
8 2.516 x 103 | 4.887 x 107° | 2.283 x 1073 | 1.027 x 1074 | 2.776 . 173
10 5.937 x 107° 3.012 x 1078 6.118 x 107> 2.268 x 107° 9.281 . 107>
12 1.754 x 1072 2.580 x 1072 | 4.469 x 1077 4.445 x 1077 9.347 » 107/
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Fig. 4.17. - Comparison of Error probability results for single-channel
QPSK transmission (£,Tp = 10, Tp/Tp = 1, BypTp = 1)
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Fig. 4.18. - Comparison of error probability results for single-channel
QPSK transmission (£,Tp = 1, Tp/Tg = 1, BrrTp = 1)
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The effects of bandlimiting on the error rate performance of QPSK
transmission systems utilizing integrate-and-dump detectors have been
investigated. Two different IF filter types were considered, and
computations of error probability were made for several combinations of

system parameters for each filter type.

It was observed that, for a given ratio of filter bandwidth to total
transmission rate, the QPSK system provided better performance (lower
probability of error) than did a PSK system transmitting the same bit
rate. The reason for this result is obvious, since each parallel channel
of the QPSK system operates at only half the total transmission rate and

hence is not as severely bandlimited as the single channel for PSK.

A comparison of the results obtained for the case of ideal rectangular
filtering and for the case of practical (single-pole) filtering indicated
that the ideal filter provided superior performance in the noise-limited
{(low signal-to-noise ratio) region of operation. However, better
performance was provided by the practical filter in the region of high
signal-to-noise ratio where intersymbol interference and crosstalk became

significant.

The results obtained herein were critically dependent on the
assumptions stated at the beginning of Chapter IV, namely that (1) the

demodulator reference signals were noise-free, (2) timing for the
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integrate-and-dump detectors was perfect, and (3) the channel noise was
additive, white, Gaussian, and zero-mean. For any real system encountered
in practice, it is anticipated that at least one of these assumptions would
prove to be false. Several topics for future study are suggested by

considering this possibility.

Another assumption which was made to simplify the analysis was that the
carrier'frequency was integrally related to the bit rates in each channel
of the QPSK system, or that chA and chB were integers. It is not
believed that this assumption caused optimistic results to be obtained,
but the assumption is by no means always valid in practical systems. Hence
it could be of interest to devote some study to cases in which chA and

chB assume non-integral values.

It was necessary to make still another very important assumption in
order to apply the series expansion method of Shimbo and Celebiler to obtain
error probability expressions for the cases involving ideal and practical
filtering. This was that all of the symbols in the Channel A and Channel B
data streams were mutually independent. However, as pointed out by Glave
[16], correlated data streams are characteristic of many practical PCM
systems. In addition to the study by Glave, in which an upper bound was
derived for the probability of error due to intersymbol interference in a
baseband system for both correlated and uncorrelated signals, an
approximation technique for computing the error probability for certain
kinds of correlated signals was developed by Hill [17]. It is suggested
that these works could be extended to carrier systems such as PSK, DPSK,

and QPSK.
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A final area suggested for future investigation is associated with the
use of detectors other than the integrate-and-dump detector for bandlimited
systems. The integrate and dump detector is optimum only for systems having
infinite bandwidth. Under conditions of severe bandlimiting, it is possible
that (1) a better detector could be implemented for PSK and QPSK or (2) a
suboptimum signaling scheme with a nonlinear detector (such as ASK with
envelope ‘detection or FSK with discriminator detection) could provide

better performance.
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APPENDIX A

EVALUATION OF IDEAL RECTANGULAR BANDPASS FILTER RESPONSE
TO QPSK SIGNAL

Chapter IV shows that if the QPSK signal
o oD
SE) = Q) A coset) + D b, @) sin(Wt) (a-1)
m= - 00 A= ~ 00
is applied to the input of the ideal rectangular filter (with no delay), and
if an integral number of cycles of the carrier frequency fc occurs in each
bit period T of Channel A, the time domain response of the filter to the

A
mth bit of Channel A is

-f.+ Bz
Zz
S () = A m £ sin (TETA) -JT"*F(H-ZM)'R +yzrft
A TE- R e df
“Te~ .EE
z *_IE
. j Ao £ 5in (IBT0)_ STPOZATR_eiamst
TR e
(A (a-2)
The first term of (A-2) can be simplified by a change of variable.
Letting x = £ + £ , this term becomes
C 4B
— = Am | % (x-£)sin[wlx-£)Ta] +3zr(x-&)[t—(lt;z_-’5)‘r;]a(
oo OG-F - 72 € X
“_Bj.E (a-3)

F
Using the previous assumption that chA is an integer, T; can be further

reduced to

L ()
mx [ - T
A —jemh.t &-F.)sin (Tx Ta )e,"& ; ") d
T, = Fe X(x-2%e) X
—;'if (a-4)
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Again changing variables by letting y = wxT_,

+TWBpTa A
; 2 Te(E) -
T = Am e_"zﬂ:‘t Y- TETR) sin(w) e’ ) -(+2m)l y 4
' m Yly=-2mTHTRd Y
i + T T
: e (&) -(i1+2m) y

= &T'-",:- [w(zwﬁt) —-35'.»‘(;174-;_*?] {-mT3) Sinly) | 0(5
Yly- 2wk 7a)
~TEpTa (A-5)
f - fc' the second term of (A-2) becomes

By substituting x

. +EE3
2
T = -&—'Ef (x+£) s [T (x+52) Tal e+,‘z-r|—(x+.[:c)[.t._ (H:.n)'ﬁ]
2 w CX+-F¢)" - -&z JX
’—}F ) (A—6)
which, if chA is an integer, can be further simplified to

+
. . + - jt2m T,
T - Am en?-w{"cf f (x+~F¢).svarx77\)e"zTXE (7]
z -~ ™ X(X+24.)
¥

By substituting y = ﬁXTA, T, can be reduced to

dx (a-7)

+TBTa

+ = ; —(1+2m)]
T, = Ame ﬂvﬁt[(yﬂr-&‘r‘)s‘m(g) eo[z(-ﬁ-,) mdly
z - T

y(y+arkTa) 3

+TBpTa

2 SEG) ~(r2m]y

Am .. (Y + 7FTa) sinly)
= == " et R
2 [cos (ewhet) + jsim(ew )]f W yrerers) Y

~TBerTa (a-8)
2

—TExT
3

By substituting (A-5) and (A-8) into (A-2) and collecting like terms, the
following expression is obtained for the time domain response of the filter

to the mth bit of Channel A.

1T .
2 L RE)-(rem))
_ Ay cas(erit) | Sinly e ™ " Y-7whTy  y+rrhTz d
S, =T y y-2amkTa © YremhTa |49
~T8Ta
2

+¥xTh
27 L ryk
3 Am sinlomfit) anfv)e’[z(ﬁ) (iv2n)]s _STRT | YHTRTA | )
+ p— D y-awkTa | yrzrkers |4Y
T8y 7;
2
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+T8xTa
=

Am cosCegt) | sinly) [24? - (erfeTa)"] i[o(E =)-0+2m)] y
™ - Y[y3- (e Tayt] € Y
~TExTa
2 +TBxTa
2

A, sin(arhd) | 2TRTa Sinly) 3[2(F) -(ramly
- ™ Y2 - mhTy)? Y
~TBzTa

2

(2-9)

Equation (A-9) can be simplifiea considerably by substituting

2(£)-(1r2m)]
.\[ T) 5 {[z( ) (H‘ZM)]3} +j S-n%[l(__r‘) (H’Z"ﬁ]‘j} (A-10)

and then observing (1) that the integral of an even function between the
limits =~a to +0 1is twice the integral of the function from 0 to +%, and
(2) that the integral of an odd function between the limits -¢ to +0 |is

zero. The resultant expression is
([
. 2_
Sl = ZAm f:n(‘i)[w (e fTa¥] 005{[2( ) - (H’ZM)]y} Jg cos (274t)
(]

YLy2 - (zrfoTa)?]
e A

E 2
ZAM 'F; ':( . i
= k’i-Z:,:zasf sufla) -0 emls}dy o SinGrie)

(A-11)

The above procedure can be repeated to determine a simplified expression
for the time domain response of the filter to the ntP® bit of Channel B.

Equation (4-9) shows that if chB is an integer
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_'Fci'-B—aE
-3 . TF(+ 20T +onfE
Siald) = f ) Bn £ sin GrFTR) yr B _+j2
"’ £ty TFERD © € dF
¢T3
e vbr
+ 3B, £. sn(mfT3) _ywF(+28)T3  4jemet
T(F2-F2) - e df
it
= T3 + 7'4 (a-12)

By substituting x = £ + fc into the expression for T3 and x = f - fc

into the expression for T,, and by making the simplifications which apply

when chB is an integer, (A-12) becomes

*
-jamhet > N }+2n
_ -3 Bn'Fc e )2 S.‘"(WTA) ,Z'lrx [‘L’ —(._i_ >T.B]

-8z

P4 +&
3 Bate e+jz~m&-!: & m(TXTE) e3zwx [+ - (12)T3) ”
B ™ X(x+2E)

~ (A-13)

2

Equation (A-13) can be further simplified by substituting vy =1TXTB and

collecting like terms. The result is

ST
Sig® = 3B ET; caseriir) [_25'n () 63 [2(F) - (+2m)1y
yz—(z.,r#‘-r’)l 5
-'Trsxpﬁ
2
+T B3
2
+ B, ET, sinlenkt) | =4 TFeTg sinly) PR [2%) -Gy
’ 9Ly~ Te)?] cly
~TnTs

2
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1r5n7'3
= 2B,f.T, { -gf—'zzﬁh sinf[2(,) - (ven)]y} dy } cos (zmht)
TEyeTh

- 4Ty sin(y) ty_ dy 5 sin(zmft)
2 Bn 'Fc‘T; {_[\,[33?:‘(217-&1’3)‘] cas {[Z(ﬁ) ('+l")‘]9} Y } :‘A_14)
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APPENDIX B

EVALUATION OF CHANNEL A SIGNAL AND CROSSTALK VOLTAGES
FOR IDEAL RECTANGULAR FILTERING

SIGNAL TERM

Chapter IV shows that for ideal rectangular filtering the output signal

voltage for Channel A, at the sampling instant T,, is given by

A
TBeTa
hid P2
S4n,s~.3.u\ (T3) = Z —A-_';‘r——r-ﬂ— [?—9'—(:ﬂ;n)‘lsm*(u)w&mg) dy
m= - oo A Y*[y? ~@rfTa)*]

(B-1)

The above integral can be expressed as the sum of two integrals, resulting

in the following expression:
TBrETa

- = Am-r_ in‘!
S4A,$isnal<n) = Z —'.".—A- fzjz—((gzz:tjs‘]éz):“,) ‘19

T -00
o

T 8,11:77
—

_ fgr-&n)‘sm’-[y)m(zmg) A
Y ly* - GriTa)] J

[+

BT
2

(-4
= AnTa st‘mz'(y)c,os[zmg) d
e 0o m : YT- 2T feTa ) b
T B Ta
2

- S'mz(,)w(ZM'g) _ sint(y) cos (zmy) d
YI-GrRT > ¥ ] J
0
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BTy T8 Ta
©o - 2 . 2
= _A_mzrﬁ_ _%_fsm‘(g) cos(amy) A - _2._ S?nz(g)wCzW)d
2 v ¥ L K75 Yoo

mz=- o
o o

DS ACER ALY

Peduction- of ¥ Il( m)

The function 8 7;
2
2 | sin®(y)cos(z2my)
Vn (m) = "-ﬁ-'J Yz dy (B-3)

°

can be simplified in terms of elementary functions and the tabulated sine

It is first noted that for m = O,

integral.
T BreTa
2 [ Sinxw
- 2 Sin“(Yy
Y, 0 = & | S g,
[]
TBxTa T8 Ta
2. -
2 dy  _ ces(2y) ) (B4
o o
By substituting z = 2y, (B-4) becomes
TByTa 7BxTa
= Z da _ cos ()
‘\FI, (0) T <5 —= de
0 [
1tBIF7; TBre T, TBrrTa
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s (5=

2 . 2
= £S5 (v8,Tp) -= (T??ETQ) (B=3)
2 A
where
TKBIF’TE
SiGeB,T) = | T2 de
. [»]
For m # O, Tl'§ Ta
2
= 2 |[1-cos(zu)] cos(zm
\I/I‘ (m) = [ o ) 0{3
)
e e
| ces(zmy) | | cos[im+d2y]
(- _“_ ‘l’; [
2
(
- 5 ces[(m-1)2y] ‘J“i (5-6)

z
0 3
Substituting 2z = 2my into the first term of the preceding equation,

z = (m + 1)2y into the second term, z = (m - 1)2y into the third term,

and simplifying all three terms yields

mT Bze Ta "I)TB#.TA
_ 2m Cos(2) m+)
Y. (m) = & Teode - | c2® g,
M-DTBreT,

m-=| cos (&)
- ool jeal® .
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- Zm (‘,OSCMTBEF-'-A) 2 .
= - _f[ mT B Ta ] - -#‘Su (MWBIFTA)

m+1 {cos [(m+DTBRTa] } YW+

T ) (MOT B, Ta M Si [(m*')TrBIF-}:]

M-t §cos[(m-1)TByrTa] 2L S [ m-D BT,
+ {(m-T)TBn:TA }"" ™ Si [(”‘ )T B “]

. 2 M"TBETQ)
2 2 | Sin (
- -m ‘.ﬁ:Si (MTF'B;—FTA) - T |: """Br:'rh }

<

.32 (M¥TBLTH jl

Sin
RS -z 3
3 M+ T Si [(M*‘)TBIFTA] ‘rr|: M+ DTBTa
2

Sin 2

2
+mt {2 Sif(m-)wByTa ] -"r'r‘[ (CEDk-a7)
2-

2 (m-DTBypTa J

+ ()Y,

BT, —»mB,. T, BreTp —> )BT,

+ (%:L) YI; (o)

= —m‘q’r | (o)

BIF-'_“ —p (M"‘) BIF-,—A

(B-7)
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Peduction of (m)

The function

TEreTa
2
2 | sin*(y)ces(zmy)
.\YIZ (m) - -7_7-:' f @wﬂ-rsi _52- dg (B-8)
o

can be evaluated in terms of elementary functions and the tabulated cosine
integral. It will be convenient to define the function first for m =0

and then to express the function in terms of this value. Thus,
TB:FTA

= = in?(y)
Y. (0 = fs“ Cy dy (B-9)

Ewfen ) -y*

For m# O Tz
g
_ 2 |zL- CasCzts)J cos (zmy)
©o
- 1 | Ces (zmy) _ caos [(m+,>23] d
= T |@EmhTa)- 3" 271’ CrRTa) -
-]
ngn e
| casL(n-l)zg]
= 2T | @rhTa)® ~y?
TBTa TB:Ta
z z
2 | sinf(my) 1| st [emeny]
= 7w j ey =dy o« nfTa ) - ¥ ;
° Y
T Ta
<
L [sim[em-10y]
+ 4
(rf)t — y2 Jg (B-10)

o
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Substituting z = my into the first term of (B-10), z = (m + 1)y into the
second term, and z = (m - 1)y into the third term results in the following

expression:

nﬂfBFETK

2 | _sin*(@)
Moo [(Zmrrﬂ'r;)"-a" de

’IYIZ (M)

o
)T BTy
)
Py 2 | _SIG) ],
2 T | [(medwhTa]*-2
’ o
(m-c)an;T.
2
- 2 | sin®(?)
+ m-! =
2 T [ [R{m-DTETa]3-2* de
o
m+! )
=- + \—5 o
¥, (9] + (Y)Y,
BTy —» mB. T, BreTa —> (M) BT,
FTa > micTa FeTa —>m)F.Ta

+ (.mz:_,-) er(o)

BIFTA - (m")grp TA
'FG TA g (m-') .F¢1—A

It is now necessary to evaluate

werBeeT, (B-11)
2
V. (o) = 2 | sin®® da
120 T (zmﬁ‘gmz—z'-
BT > mB,, T,
"Fc_T-A-" e Ta mn'
_%’_ ' Sm'(i) S,n ( !
( TT) ( 4"‘""¢f—‘ﬂa> 2mwfc Ty +e znmc

-4

(B-12)
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Substituting x = z + 2m1chTA into the first term of the preceding equation

and x = -z + 2mrrchA into the second term yields
2w . Ta + ﬂlr%ﬂh
l sin? (x-zmmrfTa)
0o = e IA
VIZ( ) ZmT2E, T X dx
BoTa—= mB_Ta tmTF.Ta
‘FC,TA - ua ‘F@‘r; 2 MW'R_TR
st (x-2mmf. T,
+ n ( = e Th) dX (B-13)
2mTRT, - __;-____1"2: Ta
If chA is an integer, then (B-13) reduces to
ZmirdeT, + '%—191; 2R TR
! sint(x) | A2
- —— —_——i X + Sin ()t)
BoTa 2 mB, Ts 2mT4 T 2SI T, - MW,_EET‘
FoTa—
e A M‘E——rA Z""‘W'ET;‘ - mwﬁn-&
{ Sin® (x>
T 2mmtL T, X dx

ZmnfeT, + T BaxTa

i sin2(x)
= Zmr f.Ta Y Tx dx
FeTa~ M'l'szp’li ,ZMW-E,T; - W_E{Eﬁl
2
[ emmfoTe + ’l‘liBﬂA 2mTFT, + 'ﬂ:&:’-ﬁ
| dx - | cse
 Jemnt. T - L N TR - B1eTa |
-
: [y 2t Ta + M%-ﬂl Ci GrmiiT +TmByTa)
= Awatf, T, n lZTrm-F’cT;‘- "L:IL"J:I - Ci @wmf,Tp +TmBTa
+ Ci ( |[47mE.Ty —TmByeTal )
- (B-14)

where

Ci (d) =Ic°-;(‘5)dv
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CROSSTALK TERM

Chapter IV shows that for ideal rectangular filtering the crosstalk

voltage for Channel A at the sampling instant TA is given by

TBrTs

S4A,°"°3$bllk(ﬁ) = ‘ZZB PT[Sm(\s)s-n[('r“ 9]5"\ [U 5 +?»")'5] d
n==-eo YLy? - (2w feT3)*]

(B-15)

The single integral in this expression can be first expressed as the sum of

two integrals, giving

S4-A,crosstalk(Th) = z-f:Fc [SM(M} — [Cz%):] = Kl - IPB+2")3] O{lj
Nn=-os
(2}
Tf§r="j
fiinlu)s»n[( )9] sia[(1- "_*2")53 dy
] 2 (zw-l;'r,)’-
Z (Bn'i’)( 1_'{ sw(y)sin [(T2 )5'] sin [(1-T& +2n)y] d
n=-oo 5
'rrBETB
fyS-n(‘o)sm [(77' Yy] sin[(1-T "2")51
o yz - (zr R T

Z ( nn)(zr#ﬁ)[? (n) - e (n)]

(B-16)
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Reduction of Y. (n)

I3

The function

'ﬂ"5n=TB
s [t B,
T

o

\Prs (n)

4

(B-l7)

can be simplified in terms of the tabulated sine integral. Application of

trigonomefric product formulas yields
TBTs

| in - n
’(YIB(,I) = ﬁfos [2-('3 =t y] dy

TFBxF_tB
z
! Sin (2ny)
tZr : Y . ds

o

TTBrFTj

| sin [z(l-f-n)y] dy
2 Y
o

TTB:F13
_ _l,fs.n =Tyl

rid
& y (B-18)
[

Making simple variable substitutions in each of the four integrals in the

preceding equations provides the following result.

YI3 (Y\) = 2—‘_’? {Si [CYH-I— %)TBIFTB] + S; (n"rB.rF‘TO

_Si[neDTBLTR] - S [(n-%)vram‘l}]}

(B~19)
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(n)

Reduction of \l’IL+

Application of trigonometric product formulas and expansion by partial

fractions allow the function
e Tp
V. (n) = = 55"1(3)6»1[( Byy)sm[0-Ta +zn)3_]d
4 Y2 = (v, T3)*
° [ B) (B-20)

to be expressed as the sum of eight simpler integrals

1"3:13 B T3
2

b 5"\[20—-—5-'-")9] ‘[sm(zmg)
Yo ) = 27 J; geariery 4%t fm—w&v—{d

‘W&TE 'WB;ETQ

2
_Js'm[z(lm)sj d + S [2( —'\)S]d
y+ewiT, J yr sz;er
o [

BT
Ism [2(1- ﬁ-M)g] dy fsm (2ny) dy

Y-2ri. Ty Y—awf Ty
TBy Ty Trkg'rs
" [7-(.“"\) y] s [2( ﬁ -n) y)
[ y- 2vieTg d’ + [ y-2awf.Tp d

o
(B-21)

By making simple variable substitutions in each of these eight integrals
and by making the simplifications that are possible for integral values of

chB' the following result is obtained.



118

Y, () = 7% is: [0-Z& +n)TrT3(4-F+BIF)]
- Si[(1- T2 e TTs (45 - Byy))
+ Si[nT Tz (4, + Brp) - Si [anTz (42-B5))
- 5 [ 7T (4 + B + S [T - Bred)
+ Si [(-nwTs (35 + By)]

- Si [(I-,':', -n)TTy (4Fe- BIF).} } (B-22)
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APPENDIX C

EVALUATION OF CHANNEL A NOISE POWER
FOR IDEAL RECTANGULAR FILTERING

As stated in the beginning of Chapter IV, the channel noise is assumed
to be additive, white, Gaussian, zero-mean, and to have single-sided noise
Spectral.density No watts/Hz. The channel noise is summed with the QPSK
signal and applied to the input of the ideal rectangular bandpass filter.

In order to be able to compute error probabilities at the outputs of the two
quadrature channels of the QPSK detector, it is necessary that the variance of
the noise at the output of each of the integrate-and-dump circuits be
determined. For zero-mean processes, variance is equivalent to power, so it

is actually the output noise power which will be determined.

The variance of the output noise for Channel A can be determined most
readily by first combining the bandpass filter with the components of the
Channel A detector and obtaining a composite frequency characteristic. The
notation used for this step is summarized in Fig. C.l1l. It can first be
observed that the bandpass filter output can be expressed in the frequency

domain as

X| () for —f.- .gL;_fE ¢ & _.F‘__.,.g_rp

2~

)(a(F) = >(,(¢j For 41-— 2?? £F 2L+ 52!

0 otherwise c-1)



Hj (£f)

H(f)
T
x) (t) Bandpass| *2(%) x3(®) Lowpass Xy (t) J/~A( yat y{t) |sample at
evaluated
cos(wct) at t =Tp
.~
N
x7 (t
1(B) y(T,)
H' (f) >
Xy (£) Y (£)
evaluated
at t =T

Fig. C.l. - Combination of

bandpass filter with Channel A detector components

A

oCT
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The time domain output of the bandpass filter is determined by taking the

inverse Fourier transform of (C-1).

X2 (®

7 [X. @]

f X (e gr

-’—O-E+§_E fot+ b

[x@®e e o [ X ®e T,
A fo- 3 (c-2)

The time domain output of the Channel A multiplier is given by

"

X3(+)

X, (B cos{e, t)

jemRt  _jamrhet
e +&
X2 (2) [ 2 ]

_41*-§§E .F)
e yer(Fre)t jar(F-f )t
J_/X,(F) [’ ve ] df

2
—F - B
2
o+ B

yar(Frf )t
! + df

car(F-fe) E
e’ ]

e (c-3)

The frequency domain output of the Channel A multiplier is

X5 () =

Q [X3 (4:)] = ?“ [ X, (¥) c.os(wcz‘:)] (c-4)
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Applying the identity [18)

P cos(wot) = £ | Flw-w.) + Fw+w)]
to (C-4) yields

Xs () = = [X,(5-R) + X, (5+8)]

(C-6)

Substitution of (C-1) into (C-6) gives

%[XI(F--FC)*'Xl('F*‘Pc)] -Rr '?{ff#é.ﬁ_@fﬁ
X3 (‘F) =
& otherwise
(C-7)
The frequency domain output of the lowpass filter is given by

Xs (F)  fow  -Brreps.Bz
)(4,(4? =

o otherwise

TIX F-R) + X, ()] o -Frepelp

2
0) otherwise
(C-8)
The time domain output of the lowpass filter is
-
X4(i3 = z; [:x4_(4:)]
| ‘521FF£
= 1 +x (F-R)+ X, F+R)] e df (-9

The time domain output of the integrate-and-dump circuit, at the sampling

instant TA' is



'a _ 123

y(m) = | X, @ d¢

Ta| *5
- f LIXG-R) + X e i | de
N
32
= f %[Xa('F'Fc)"‘X-({*ﬂ)]feb dt » d+
—&_w [
= / T X F-R) + X (Fe 8] T %‘Ejﬁleﬂmc{;
-?g (C-10)

Equation (C-10) can be simplified by expanding the single integral into two
integrals and making simple variable substitutions. After making the

simplifications which apply when chA is an integer, the result is

g+ Bar

in(mrF y T T
yr) = | & xop) BRI oI

g B
-Fc_+3:a=
f X, (F) 7;5(51';{’;”7_7? ST
+o-B )
Expressing (C-11) as > (C-11)
y(1a) = f X HE) e Mgy -

the desired composite frequency characteristic is readily determined to be
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Ta sin(rFTa) __ymFTa

£._B

2 (FHR)Th fo-F 22 £ B
/
H'(H = :
Ta Sn (Tr‘F Ta) —yTFTa B B
~Br . e o

2T (F—4)Th fm T efihe
O otherwise

(C-13)

The power spectral density of the noise at the output of the integrate-and-

dump circuit is given by

Sh,out (£) = JH/(-F)} Sn,;n (f) (C-14)

where Sn in(f) is the power spectral density of the input noise.
4

Substituting (C-13) into (C-14) and using No/2 as the double-sided power

spectral density of the input noise,

hJo_r;z 53n3(1r4*rh)

-F£~-Br . e
Bri(f+F)2Ta* fo- T epsfor E}F
‘F) = No Tat sin? CTI"-FTR') -
Prou e TR fo-BF efofr B2
) otherwise o5

The variance of the output noise is given by

;* = E{nr@®f

= fSn,m (£) df
-'Fc+§_:'_:F 'Fc,+3__I_F

No Sin (T Th) S 3 TFTa)
= f Grrrge 4T fT";-(T)f‘—G"C
I fo-Bp
2

!

(C-16)
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Substituting x = f + fc into the first integral of the preceding
equation and x = £ - fc into the second integral, and then making the
simplifications which apply when chA is an integer, the output noise

variance becomes

Sin?(TXT in
. _ Noz in £X A) dx + Sin {TrXT;) dx
n g B X X
3

=
No Sm? (TXT-A) d)(

Il

Trl ) Xl
4 EP
=
N + B
° 2
= Sin2 (TXT3) c-17
2m? Sz CLX ( )

Substituting z = 1rxTA allows still another simplification and provides the

esult in the more familiar form
* TBxTA

2
2 - NeTa |2 sintle) |,
,?&

Tn T = T
= _NLJ_T_—A_ '\I/Il (o) (c-18)

where ‘{’Il (o) is defined in Chapter IV for the signal at the output of

Channel A.
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APPENDIX D

DERIVATION OF ERROR PROBABILITY EXPRESSION
FOR IDEAL RECTANGULAR FILTERING

As shown in Chapter IV, the total voltage (at the sampling instant TA)

at the output of Channel A of the bandlimited QPSK system is given by

oS

S = 50 AT (Y (- Y, ()]
v 20 BT () YL 0 - Y ()]
¥ ~°“t (ﬂ) (D-1)

5 WI (o) is the voltage corresponding to the bit under detection
1

(the oth bit) and is reduced in amplitude (due to filtering) by the factor

where

?Il(o). The WIl(m) terms for m # 0 represent intersymbol interference,

the le(m) terms result from aliasing, and the [P

represent crosstalk from Channel B. An expression for error probability at

I3(n) - WIu(nﬂ terms

the output of Channel A will now be derived, using the series expansion
mothod first described by Shimbo and Celebiler [13] and later applied by Tu

[9] for bandlimited PSK systems.

Equation (D-1) is first modified slightly by separating the desired
(m = 0) signal term from the undesired (m # 0) intersymbol interference terms
and then normalizing by dividing by ATA/Z. The normalized Channel A

output voltage is
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ATa
2

2. [, () - ¥, ()]

P-4

£ 2n [V, ) - Y, (w)]

+ 3 = (AR Em 6 - F]

nz~ o0

Z .V‘l, owt (TR)

+ -
AT, (D-2)

where z, = 11 with the same sign as Am, z = *1 with the same sign as

B, and A and B are as defined by (4-2).
n m n

Defining new symbols SI' Sc’ Sn to represent, respectively, the voltages

due to intersymbol interference, crosstalk, and noise, (D-2) can be written

= % [Yr\ (0) 'Yu (o)) + S; +S_ + S, (D-3)
where ©0
SI = Z [Y ( Ytz (M)] [intersymbol interference]
mto
(A ) 1%> zv:L;Tg) i Z, [?1'3 (m - ?14("))
n=-eo [crosstalk]
and

S = 20 oy (TR
no o ATa

[noise]

The normalized output voltage can be further expressed as



X = Z.,["}’I‘(D) —Yn_(o)] + S (D-4)

where
S = S; +S.+S,
A detection error in Channel A is said to occur if the normalized output
voltage - X is negative when the input signal is positive (zo = +1) or if
X is positive when the input signal is negative (zo = =1). The probability

of error is

Pe

"

P(x<o|2,=t)Pl.=+) + P(x>0]z.=-1) P(z.=-D
(D-5)

For the binary symmetric channel,

Plos+) = P(z=-D) = = o-e)
and (D-5) becomes

Pe = E'C P(x<o|z,=+1) + PK>olz.=-1)
From (D-4) it can be observed that z, = +1l means that

X = ["I’I' (o) -11;1(0)] + S (D-8)
and that Zo = -1 means that

x= =[ ¥, (0-Y¥, 0] + S (0-9)

Then

Plx<olz,=+1) = P {[’I’I, ()-¥, ()] + S < 0}

Pis< [V )]

(D-10)
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and

il

POool2=) = PU[%, (=¥, +5 > o]

p { S > [‘I’I,(o)~“1’,,_(a)]} (D-11)
Substituting (D-10) and (D-11) into (D-7) yields

Pe

0
Ni-
"

0
Ny -
—
}
D
®

] (D-12)

Qe = P{ _["P.Il (O) - Yn_(o)] <SS « [?Il(")_?.tz (°)] }

Qe can be expressed in terms of the characteristic function of S wusing

where

the relationship [19]

T A OGO [ (-, (Mw
_ — - e
Re ~ f yZTw ‘Ps(w) dw
et (D-13)

where @s(m) is the characteristic function of S. If an expression for
@S(w) can be determined and if the above integration can be performed, then
the desired result will be obtained. It is first recalled that S is the
sum of the random variables SI, Sc, and Sn. SI’ in turn, is the sum of

the random variables

Sim = Zm ["I’n (m) = ¥, (m)] , m#o (D-14)

and Sc is the sum of the random variables

Scn = (%)( -‘,1—"-: )(zwL,_’l’g) Zn [YIB () - Yr+(")] (D-15)

P { S« - L'\I’I, (o) -"I}z_(o)]} + P{S > ['Y_n(o) -'4},_(0)]}
{t - P{-[¥ o) - Y (D] <5< [«P,,u)-«zn(on}}

}
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If it is assumed that the bit pattern (z,"s) in Channel A is completely
random, then the sIm will all be statistically independent. Likewise, for
a random bit pattern (zn's) in Channel B, the Scn are statistically

independent. Furthermore, the SIm' the Scn’ and the S, will be mutually

independent.

Since St can assume only the values [? (m) -V (m)] or
. m I I

-[%Il(m) - WIZ(m)] with equal probability, the probability density function

of SIm is given by

Ps, D = T S[A+F ()T W] +5S[a-F, () L, ()]

(D-16)
The characteristic function of SIm is given by [19]

&, (w) = _f Ps, (e’ da

W ['\I}' (m) - "Ifn(m)] -y ["In (m)-"rn(b\)] }

[ a)d

"
F.

Z\& + e

= cos { [Ty, (m) - Y, (W] @ } (D-17)

The characteristic function of S; (the sum of all ST, for m # 0) is

given by the product of the individual characteristic functions of the

SIm.
(-3
f_ () = [T cos LY, (m) - ¥, (m)]w (D-18)
SI ME ~« Qo I2
m¥EO
Likewise, the probability density function of the S is

Cn
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Pooy (@ = 55 ot + (D) ) [y -y

r s« BB R Yy - 7,0

(D- 19)

The characteristic function of SCn is

.@sc,, (w) = jﬂ‘f{g‘_ﬂ(o{) ejwo:dd
= { B2 )<211~F¢Ta>[? (n)- 1'4(")]}

(D-20)
and the characteristic function of Sc is

8, (@) = T cos { (BT ¥ (- %, 0]

n=- oo
(D-21)
The probability density of the Gaussian noise term Sn is
- ' —-2—?—-7 (D-22)
Ps. () = = €

where g2 is the variance of the normalized output noise. The variance for

the (unnormalized) output noise n_ t(TA) was shown in Appendix C to be
~ou

- _N-Ta -
o = ; 11/1_’ (o) (D-23)

Since the normalization factor is 2/ATA, the variance for the normalized

output noise is

G—z (AZ'—TA>2 N;-,; ‘\I,.I'l(o)

= Ne ., (o) (D-24)

A* Ty
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The characteristic function of Sh is [20]
- wta?
. (0w) = & * (D-25)
Su
The characteristic function of S can now be written as the product of the

characteristic functions of Str Sc, and Sn'

)

B w) = B (w) &, () @sn(w)

Tl_ P, (W TrCP

mi =00 Sen
m#o

(w) 3@_“ ()

TTCos { w(®) (f’- ) [T 0 -, (")]}2

Me ~p0 ne-eo

mio

= Tr CDS{H’:.(M)- n(m)]a} 2

~wtot
.« Lo - (D-26)

Equation (D-26) is not in an integrable form, so some modifications must be
made in order to be able to evaluate the expression for Qe given by (D-13).
The first modification is to replace the expression for @SI(w) by a power

series in w.

-l_ S {[’Y’n (m)- Yn(m)]uJ} = | + i lo,_;w"i (D-27)
m¥ o 4

The expression for @S () can likewise be replaced by a power series in w.
C

ﬁ- cos { (B2 z*rr&’l})[ ("3-11';4(“)]"’} = | +:Z My Wik

n=-oo
(D-28)

The characteristic function of S is now given by
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2

¢, (w) (1 + _2%0)“)(' + gkuwzh) e

Zo-"-
c e T (1 Shyut - 5 byt

+ Zloz,_w?-i Z hy, ) (D-29)

L" Fg'

Substitution of (D-29) into (D-13) yields

——

e
QC = jemrw e dw

f.o 35 ¥ (o)~ "Pzz(o)] w_ e:.) (¥ ) -F (0 2,2

- o0

. f"’es Lo - Y ] [ (- Tnl]w

jmrw
-0

e i) -t
( 2 by, w )e * dw
A=y

feuq’n (o) - ‘sz(°)]“’ _ e-') (¥, (e) - ¥ (]
-+

yeTw
—e
=, ) -t
.( 24 hzk ¢ ) e Ju)
| A7)
“ .
esw,,(a) g, ]w & (¥, (0) - ¥, (o)) w
* y 2Tw
haid ' .o l}a’
k -
( Z szwu 2 I”z‘af')e z dw
A= ke
= Qed + Qe,_ + @8_3 -+ @e* (D-30)
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EVALUATION OF Qel

252

Since e is the characteristic function of the normalized noise,

the first term of (D-30) is the probability that the normalized output noise

assumes a value between +{¥_ (o) - ¥_ (o) and -|¥_ (o) - ¥_ (0o)|. This
I Iz I Iz

probability can alternately be expressed in terms of the probability density

function of the normalized output noise [19].

+ (o) -, (o)
ﬁe’ [2, (-2, () e;,w,.co)-?n(o)Jw i (¥ : . 3 "
Qe| = f ',Z-:rw : e = [m_e JX
- [2;, (-0 ()] (D-31)
Substituting t2 = x2/2<52 and simplifying, the above expression becomes

¥, (0) - —\Irz(‘»

Nl
2 -t

Q€| = T‘“’= e d't

- o0

erf [ ?r};’;?u(")]

[¥5(0) - ¥ (9]

2 g%

= erf

2
= evf AT\ i (0)- (0] (D-32)
Np ?r| (0)
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EVALUATION OF Qez

Interchanging the order of integration and summation allows the second

term of (D-30) to be expressed as

" o0
oo y [P (o)—'\l'n(o)]“’ Zo-2
—5 T Zh 2
2_;1921 | = T w e = Jw

fl

Qe., _

-

r o [ - ¥nw --‘%5;(
— = 2T w e w

(D=33)
-w only in the first integral of (D-33), interchanging

Substituting x

limits, and then substituting w = x vyields

00 .~ ) ¥, (°7'.@n.(°)] co . wie?
Qe, = S b, |22 wthe S,
e 3 Zi 3 2w
- 00
o ) Al oy
= 2, 2b, (- zm|€ () e dw
A=t
- (D-34)
As shown in [20] the Gaussian probability density function results from
the integration of the Gaussian characteristic, %Z.e.,
) 2 2
\ —wte® L [%, (- ¥ N X )
e w = e X
= | € o o 2
- o0
(b~35)
The integration indicated in (D-34) is similar to the above, but has the
factor (—jm)zi-l. Since multiplication of the characteristic function
by (-jw) results in differentation of the probability density function
(D~34) can be written as
. 2
Ll-"' ' - [‘qn(O)’ n(o)] {
2c®

=

@u_ = Z Z’Dz;(")"“ d[‘i’,.(”"[’n(")]m Jz?r‘e_ S



136

= Z Z'Ezk (’D Gz_*-, (D-36)

A'—

The G2i_1 in this equation can be evaluated by means of a recursive

relationship, as summarized below.

| - [, (- P, (3]
e 20

a, = Jzm O
d - ¥ (0)- ¥, ()]
[6.] = - = a.

Q@ = JFe-%e)

d [, () - ¥y (o))
Gz = d["}:h)-?,_(o)][a’] = - =H = S G, =i @,
= —9 L AT N
Gz = Y et 51 - g2 — G, - &6
. [‘Yx‘ (0)-“P'Iz(0)] Z-i’z
Foe =T o * Gpice = "oz F2i-3 (pean)

Evaluation of the b2i in (D-36) is somewhat more involved. First recall

from (D-26) and (D-27) that

o0

B (w = T eas{{Fe-Yulw} = | 3 byt

msz ~ o0 A=
ms o (D-38)

Differentiating the infinite product of (D-38) with respect to w yields

, y b, (W
CI)SI (W) = -+« + oos{{ [P (-0- ¥, (-0] w}} Cas { [QI,(..).:“_ -|)]w}

Y Py (W)
+ us{{ ["Pn (+) - Y}a (ﬂ)]w}} cos { ['\Prfl-n)_?n(ﬂ)]w}

I

[ 4

~[8, (0 -¥, ()] £an { [, (-1- By (e} B, ()
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= [, 60-Fp (4] tan { [, () - wp,,(ﬁ)]w} (o) = -

= - Q@ W Z %, 008, ()] 2y [, l)-T(m]eo

ms — o0
m*e (D-39)

The power series expansion for tan z given by [21] will now be used. Thus

1-1_ 24/ 21
23 s 1) 25 -1) Bey 2d-i
'th 2 = 2 +_§—+%-z'-_+coa+ ) (z(l)! ) ll£ $oee
where (5-40)
L -
24 (z-n-)"l k kll
={

Equation (D~39) becomes

’ (- 2t
b, () = -8 DT [% -1 mj{ S e (;—U’(a L)

m= - 0o iz
m#¥o

¢ 8 -, (0} ‘}

- (l) z_ _) _1e ¢
- -é ()Z 0! ' uwd 'Z [?r‘(n)-\P,z(m)]z

™M=-e0
m#%o

- (DY dyy, Wt
£=1

(D-41)

where

-t 21 1 .0
~1) 2% (*% 24
d2«!—| = < el !(L ) BzL g__:_“ ["Pn (m)—“I’I,_(m}]

m#* o

An alternate expression for CDSI (w) can be obtained by differentiating the
I

summation of (D-38).
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’ _ <= \ 2i—1
@Sz (w) = 1;2. 2i b“. L0

(D-42)

Setting (D-41) and (D-42) equal to each other now allows a solution for the

(A
D 2ib,, w =

. - @Sz () dzo w?t!
A=t L=1

= - +'Z Luw'"") i ala__,w"‘l"

L=
- LRt (S b ) (G o)

(D-43)
Equating coefficients of the powers of w allows the following recursive

relationship to be obtained.

b o= |

b, = - T%_ d:

L’4 = = :%'(:JJ + bz.dl)
b, =

(D-44)
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EVALUATION OF Qe
3

Referring back to (D-30), it can be observed that the term Qe3 has

”
. with 2: b, ' replaced by

exactly the same form as the term Q
=1

hzkak. Evaluation of Qe is therefore performed in the same manner
k=1 3
as Q . The result is
€2
k- z
$ 2y, (0F | o gt ks D)
= z ! Zk- e 202
2 - ! waw O
PR FIC AR AP (o
= : k.
= 2 2hy DG,y (0-25)
hsl
The G2k—1 in (D-45) can be evaluated by means of the recursive relationship

given by (D-37).

is similar to that for the b2n From (D-26)

Evaluation of the h2k

and (D-28), it can be seen that

& (> = T cos { (DB o) [y~ Epy o]0}

n=-e

= | +3 hy, wik (0-46)

Differentiating the infinite product of (D-46) with respect to w yields

3 () = - () 5 B et [F ) - ¥, (]

N== oo

* taﬂ{ @)(‘% zv-FT. ( (n)-‘};;(n)]w}

(D-47)

Substituting the power series expansion given by (D-40) for tan z into

(D~47) yields
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@S;(“’) -9, C“’)E (AX )(z_ﬁﬁ)i—?:s(“) \PI"I-(")]

{Z Sl éi;(,z {(w)( 2) (77

L=1

S ANORE N (..nw}“"}

2 WE e S (O -t ot

s -od

— L-t _
= =B (W) Y Cpy, (b-48)
i=!

where

ot = DB g, S (BT

24
. [‘PD () - ¥, (] } (D-49)

Differentiating the summation of (D-46) with respect to w yields an

. /
alternate expression for ¢ _ (w).
c

P, (w) = ; Zheh,y, !

(D-50)
Setting (D-48) and (D-50) equal to each other, solving for h__, and

equating like powers of w allows the following recursive relationship to

be obtained.

S
]

h
]

}
N~
n
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]

‘%(C5+h4c, + l’lzC.3>

Je. -1
- Zle + h
Zk[ 2k-i ; 2k-24 CZL-I] (D-51)
=
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EVALUATION OF Qe
L

Referring back to (D-30) it can be observed that the term Qe has the
N

. 2 2i & 2i & 2k
same form as the term @ , if 2: b,.w is replaced by 2: b, w h_ . w
ez R 2i A 23 2k .
=1 i=1 k=1
Evaluating Qe in the same manner as Qe yields
L 2
oo oo )1+k
— _’ ” (D"'52)
C‘)e4 Z Z z bz'» h 2k ¢ Glnak -1
. A1 =1{
The G in (D-52) can be evaluated by means of the recursive

2i+2k=-1

relationship given by (D-37), and the b2i and h2 are exactly as defined

k

earlier in the evaluation of terms Qe and Qe3’ respectively.
2
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APPENDIX E

EVALUATION OF SINGLE-POLE BANDPASS FILTER RESPONSE TO QPSK SIGNAL

Chapter IV shows that if the QPSK signal

S = Y AnBeos®d + 3 b, @sinGd e

M= = o0 Nns -

is applied to the input of the single-pole bandpass filter and if an integral
number of cycles of the carrier frequency fc occurs in each bit period TA
of Channel A, the time domain response of the filter to the mth bit of

Channel A is

o .
£+
s (® (Am Fsin(wf TR é’i"*'("”z”)ﬁ | ; 2(%%) e+5zvr$§$
)= z Frde) 12
A 2_ 2(F+Fe) 2(F+4e
] T(F- £2) lf[ B 1+[ Bre
- o0
e
19 4 - ¥ 2t
At sin (8T ~W‘('*Z"‘)TAS g ZC'??;S) e g
~fe) (F-%c)12
TR R I =~ A b=
]
= ‘1’, + Tz_ (E-2)
The limits of integration for the two terms of (E-2) can be made equal by
substituting f' = -f for the first term. Thus
(o] ] 4 h“ZM
ek [ - (22T,
_ A, &-F’)S‘A(—"ITF'TA.) (=2 * ] ("J.'F?

T | et R [T
IF

+ oo
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o

sans [ - (e A
zA () (-F'+E)SM(-TF'T3) e et [¢ - (2] '
[EF7 - 52014 [e(~¥'++‘=)} } (-ds")

o0

8+'§"

= dF’
- w

A ¥ Su!l(-;r.p’n) ""JZW'F [i ('*ZM)TJ
[ [e0°- 251 {1v [T

' (e-3)

28 (£ (-F L) sl Ta)ed ™ =474
’”‘" L= R [1e [2( 53]

Letting £ = £f' in (E-3) and substituting the result into (E-2) yields

o Y HEm
Am " “yewe[e - (BT,
Sa@® = -ﬁ:'[ £fsmbrfTa)e

o F2- -Fcl)g).'.[zc-? Fc)]z} dF

o
ewF [k - (L2
2Anm f;(;.ﬁ)sm(,rm)e yerF e - ( Jn]ow

SR I

ty=—=

ne [ FemerFra @ 3T F = (4]

L e R I G
. 2A :('F"Fc)&n(’lf-{-‘ﬁ)e*szrr[t'(l'tz;_:‘)'r‘] dF

R [,(J;u-;z) 1+ [z(%@)]z}
- - H-ln . H
(Fewtreny IR, sl

il

T4 EN I [2(5E] d¥
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o0

__') 2Pm [‘F('F ;C)s"lCTﬁFT})E "”ZWF& ('H”‘)‘)}J ..,zn{:[% (HZM)TA]}
) ERRD L [ 5D

oe

2Am | FsinlGrETa) cos §ZJPF[}:— (tﬁgf)T;]jf 6&;‘
T GERI 1 [2(55R)%

+ 4A J’F('F"F"') S\ GrTa) sin § et - (2T, ]z A3
By @#:-F£d f\a- [2 Cfgf;)]‘}

(E-4)

The above procedure can be repeated to determine a simplified expression
for the time domain response of the single-pole filter to the nth bit of

Channel B. Chapter IV shows that if £ T is an integer,

4B, fe sn(meTe) - mF(ven)Ts | ( £ F“ Z +32mFt
Sislt)= o F2- -Fcz) € ,+[2(F+&)] ,,, [z(«n—ﬁ) 2 S &
L o4
+3Bufe sw(IHTe) SSmeivenTy L f%;’—,i) +jemhe
O R I+ [aL‘F~ﬁ)]z_3 |+[z -F- } = df
o ¥ )
= —|/?> + TJI— (E-5)

The limits of integration for the two terms of (E-5) can be made the same by

substituting f' = -f for the first term and then interchanging the upper
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and lower limits. If this is done and if f 1is then substituted for f' in

the resulting expression, (E-5) becomes

00 . :
Sl = 2 J DN D ki AF
'8 ™ A F2-£*) 7 1+ [2(£5)]%¢
- 54, —( 2
_ZSn‘Fg ('F—'FQ)S‘W\(TV'FT;) e—)z .F[t ( +t' >7_8] A-F
TBI; GFZ—'F62> f"f’ [ZC—%)]z}
- 5Bn'Fe ’s.'m(wr#l}) €+;Zﬁ Lt ‘{Eg)-r’j J('F
* ) e RN R EENT
serd (U Te ]

dF

2Bk [G-mdsilrr et
T | (P -RD 1+ (R

o0 er 1 -(22 4 - (L2
= —SBn'Fcf S (T-FTa)geﬂn—t[ ﬁi’e)aWF[* ‘ )T’]} AF

T F-k> 7 )+ [z(%)]z}

2Bk ((-Rommiaprp T ENR] el (],
"Bz A Fe-+.2) §|+[z(f;-_x§>z§ dF

4

= %E_.\_-_Fc_f;m (wFTe)sin J2mF [+~ (B T13]$ AF
T FERD i ()T

_4Bufe [(F-F) s\n (TFTR) cos Sams [+ (B TR IF A5
T |, ERO LD

(E-6)
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APPENDIX F

EVALUATION OF CHANNEL A NOISE POWER FOR SINGLE-POLE RC FILTERING

Evaluation of the output noise for Channel A of the QPSK receiver is
accomplished in much the same manner for practical filtering as for the ideal
rectangu;ar filtering case which was treated in Appendix C. A composite
frequency response is first obtained for the combination of the bandpass
filter with the components of the Channel A detector. Fig. F-1 summarizes
the notation to be used for this computation. For an input Xj(f) to the
bandpass filter, the filter output can be expressed in the frequency domain

X, (8) = X () H($) (F~1)

where H(f) 1is the frequency response of the filter. For single-pole RC

filtering, (4-42) shows that the filter frequency response is
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where H(f) consists of the characteristic of the lowpass equivalent single-

pole filter shifted to appear about plus and minus the carrier frequency fc'

The time domain output of the bandpass filter is given by
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Fig. F.l. - Combination of single-pole filter
with Channel A detector components
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The time domain output of the Channel A multiplier is

‘X3 éf) =:A X} (f) Cos (L%;é)
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The time domain output of the integrate-and-dump circuit, at the sampling

instant K; + TA' is
Kiv+Ta

\jéxt*’ﬂ‘) = IX;(*)J* (F-5)

Ky

If it is assumed that the input noise is stationary, then the actual limits
of integration of (F-5) are not important and any TA interval could be used
for computation of the output noise power. It is convenient to use 0 to

TA as these limits. Therefore

il

T |
y = [ xwdt

-T

. ° A
_ 2 [ x¢e8 { enE e jer (RSOt
- 2 [w fo [e +e Jd":} df

0o : 'Fc Ta
5 X| (‘F) 2 ( 3 [eSzT('F*'Fc)'e 52.TF'(-F-'F¢)+-] A.
— |+ [Z(-F+-Fg)]z + & t

-— OO

d+

=z

X, (¥) T amreRE CF-Fe )t
t f/i 2(F- #52] {{[ s " ]‘1*}
(X EE) { e Ryt
ey 1+[z(; «ﬁ'] [ Jd¢
IF

°
(F-6)



Performing the inner (time domain) integrations in (F-6) and making the

simplifications which apply when chA

of the integrate-and-dump circuit becomes
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is an integer, the time domain output
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The desired composite frequency response is given by
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The magnitude of H'(f) is readily determined by expressing (F-8) in
rectangular form and then taking the square root of the sum of the squares

of the real and imaginary parts. Squaring this result gives
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The power spectral density of the noise at the Channel A output of the

QPSK receiver is
2
S, oue (F7 = IH'('F)l S,,,-m () (F-10)

where S in(f) is the power spectral density of the input noise.
1

Substituting (F-9) into (F-10) and using No/2 as the double-sided power

spectral density of the input noise,
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The variance of the output noise is given by

37 = [ Su e () 4F
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Equation (F-12) can be simplified somewhat by noting that the two integrands

represent a single even function. Thus
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Substituting z = 1rfTA allows still another simplification and provides

z
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the result in a form which is more suitable for numerical evaluation. Thus
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where
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It is interesting to note that Wn can be obtained from the function
WBl(m) given by (4-56) by letting m =0 and K; = O. Thus
Y, = Y, ] e-15)

n
K,=0
This is intuitively satisfying because the corresponding noise variance

result given by (C-18) for ideal filtering was expressed in terms of the

previously defined function WI (m) , evaluated for m = O.

As another check on the result given by (F-14), Wn can be evaluated

for the limiting case of infinite bandwidth. Thus
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Substituting y =z - wchA into the first integral of (F-16) and

y=2 + ﬂchA into the second integral, making the simplifications which
apply when chA is an integer, and then combining the results,
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Substituting (F-17) into (F-14), it can be seen that the output noise power

for an infinite IF bandwidth is given by

N, Ta
/. ot = 52 (F-18)
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which is the same result as that obtained by letting BIF increase without

bound in (C-18) for ideal rectangular filtering.



