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Abstract 

Selection in fluctuating environments can lead to novel adaptations that may limit or facilitate 

evolution. I used Escherichia coli populations experimentally evolved in limited-glucose and -

lactose environments to examine the effect of historical contingency and test for compensation of 

the cost normally produced by an evolved non-functional lac operon repressor (lacI-) in glucose. 

I surveyed 23 diverse strains for natural variation in regulatory function of the E. coli lac operon, 

which integrates transcriptional control of the lac operon with environmental signals from glucose 

and lactose availability. Although lac operon regulation has been extensively studied, a 

considerable amount of research is based on a small number of closely related strains. I found that 

populations initially evolved in a limited-glucose environment, and clones randomly selected from 

these populations, were more evolvable than the common ancestor during 1k generations of 

evolution in a lactose-limited environment, indicating specific genetic changes throughout glucose 

selection led to increased evolvability. Genome sequencing of the pre-evolved glucose clones 

revealed mutations in the gene iclR as candidates for increasing evolvability. Next, I tested for 

compensation of the glucose cost of lacI- in experimentally evolved populations after 8k 

generations of selection in minimal glucose and lactose fluctuating environments. Competitions 

measuring the lacI- fitness effect indicated that compensation rarely alleviated the cost in glucose, 

but epistasis commonly increased the benefit in lactose compared to the ancestor. A reporter 
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introduced into these evolved clones indicated lac operon expression changed but had different 

fitness effects. Finally, using the same reporter but placed into 28 distinct strains, I measured E. 

coli lac operon expression in inducers combined at different concentrations. The results 

encompassed regulatory functions of a vast range, and aspects that were associated with genetic 

relatedness were the most effective at predicting initial lactose growth. Hybrid reference strains 

containing lacI and the lac operon of five different natural isolates indicated regulatory elements 

that had more control over expression could be either global or local. My results demonstrate 

selection can lead to diverse adaptations that can depend on selective history, mutation interactions, 

or idiosyncrasies.  
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Chapter 1  

 

General Introduction 

 

1.1 Adaptation 

 

Adaptation, the process through which a population becomes better fitted to its environment, is a 

cornerstone of evolution. When there are heritable traits that produce differential fitness between 

organisms, those organisms that are better adapted to their environment thrive and produce more 

offspring; a process known as natural selection. Fundamental questions regarding adaptation and 

natural selection include determining the underlying genetic changes that drive adaptation 

(Matange et al., 2019), mechanisms affecting the production of adaptive mutations (Velicer and 

Yu, 2003; Chubiz and Marx, 2017), how adaptive mutations interact with each other and their 

genetic background (Wang et al., 2012; Peng et al., 2017), how selective history affects future 

adaptation (Fragata et al., 2014; Travisano et al., 1995), and how changes in the environment affect 

adaptation (Bennett and Lenski, 2007; Melnyk et al., 2017).  
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Predicting what adaptations will arise in response to a given selection is difficult because it can 

depend on the unique selective history of a population (Gould, 1989; Buckling et al., 2003; 

McBride et al., 2008; Bedhomme et al., 2013; Phillips et al., 2016). Because past selective 

pressures select for different adaptations with different underlying genetic changes, independently 

evolving populations will have distinct combination of mutations. When new potential adaptive 

mutations depend on the broader genetic background for their effect, these distinct combinations 

will cause them to differ in the likelihood that they are selected.  

 

Variation in the effect of available adaptive mutations is likely to depend on the specific genetic 

background, but how this background depends on past selection may not be predictable. The 

stochastic nature of mutations and random genetic drift cause differences in the genetic 

composition of populations that depend on chance, as well as on their selective environment. 

Gould believed that these chance differences would have a dominant role in determining 

subsequent evolutionary outcomes so that inevitable changes to the sequence of mutational events 

occurring during evolution, even of populations exposed to the same selective pressures, will result 

in different outcomes (Gould, 1989). In contrast, Simon Conway Morris suggested that evolution 

was largely repeatable (2003). He argued that an organism’s history can be erased by natural 

selection, leading to the same adaptations (Morris, 2003). Morris believed that there are many 
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evolutionary paths but only few destinations which will constrain evolutionary outcomes (2003). 

One of the purposes of my study is to examine whether evolutionary outcomes are contingent on 

prior selective environments. In testing contingency, working with experimentally evolved 

populations confers the significant advantage that past selective environments are known and can 

be manipulated.  

 

1.2 Benefits of Experimental Evolution 

 

Experimental evolution allows scientists to study evolutionary processes in controlled 

environmental conditions which aids in isolating the cause of evolutionary outcomes (Lázaro et 

al., 2002; Spencer et al., 2008; Marks et al., 2010; Le Gac et al., 2012; Toprak et al., 2012; Hayden 

et al., 2013; Herron and Doebeli, 2013; Kvitek and Sherlock, 2013; Lang et al., 2013; Burke et al., 

2014; Hong and Gresham, 2014; Plucain et al., 2014; Laan et al., 2015; Lind  et al., 2015; Selmecki 

et al., 2015; Sunshine et al., 2015; Consuegra et al., 2017; Kram et al., 2017; Kutnjak et al., 2017; 

Sandberg et al., 2017). The selective history of experimentally evolved populations is known and, 

for many systems, at any point during evolution populations can be frozen in time. In natural 

populations, it is impossible to determine every selective pressure that occurred in its past or led 

to specific adaptations. Another advantage of working with experimentally evolved populations is 
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that evolved strains can be compared directly to their known common ancestor, which greatly 

simplifies identification of underlying genetic changes that led to specific adaptations. 

Comparisons between evolved populations can indicate adaptations that are specific to an 

environment and the effect of selective history (Le Gac et al., 2013). Experimental evolution 

studies can indicate what adaptations will likely evolve in a natural environment (Traverse et al. 

2013).  

   

1.3  Regulatory Functions  

 

In this thesis, I examine the influence of selective history on the identity and effect of mutations 

that confer benefits mediated through changes in the expression of genes involved in nutrient 

acquisition. To understand these changes and the potential for them to depend on selective history, 

it is necessary to understand the basis of bacterial gene regulation and its potential to mediate 

adaptation. Expression of bacterial genes is regulated by cis- and trans- acting transcription 

elements whose influence and interaction is based on environmental signals. An important and 

well-studied adaptive mechanism by which gene regulation can evolve is through mutational 

changes that alter the function of transcription elements (Chan et al., 2010; Jones et al., 2012; 

Chang et al., 2013; Fraser, 2013; Halligan et al., 2013; Cleves et al., 2014; Guo et al., 2018; Payne 
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et al., 2018; Tangwancharoen et al., 2018; Lewis and Reed, 2019; Bleuven and Landry, 2016). 

When evolved in a glucose-rich environment, the bacterium Shewanella oneidensis, which does 

not normally catabolize glucose, gained the ability to metabolize glucose through a loss of function 

mutation in the transcriptional repressor nagR (Chubiz and Marx, 2017). However, the non-

functional NagR that was necessary for the newly acquired metabolic ability diminished growth 

on the preferred resource lactate, creating a tradeoff between glucose and lactate metabolism 

(Chubiz and Marx, 2017). Escherichia coli grown in lactose-limited environments in chemostats 

has been shown to quickly result in constitutive expression of the lac operon, the genes necessary 

for lactose metabolism, caused by mutations in its repressor lacI (Dykhuizen and Davies, 1980; 

Novick and Horiuchi, 1961). Constitutive expression was critical in maintaining low frequencies 

of bacteria that utilize lactose in a limited mixed resource environment where 99% of the carbon 

source was maltose (Dykhuizen and Davies, 1980). Mutants constitutively expressing the lac 

operon did not fix when maltose and lactose were present at 90% and 10%, respectively, of the 

carbon source, and were undetectable in maltose single resource environments. These results 

indicate a trade-off between lac operon constitutive expression and maltose utilization (Dykhuizen 

and Davies, 1980). In both examples, the availability of a carbon source led to a selected change 

in regulatory functions that mediate trade-offs in fitness across environments that are likely to 

affect future adaptation depending on past selection for the trade-off.    
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1.4 Epistasis 

 

When new mutations arise during evolution they may interact with other mutations in a way that 

is non-additive. Mutation interactions that produce phenotypic effects that are greater or less than 

their cumulative individual additive effects are called epistatic interactions. Epistatic interactions 

are context-dependent; meaning the mechanism of epistasis can not only depend on the interactions 

or function of the mutations and protein(s) involved, but also on the broader genetic background 

and environmental conditions (Flynn et al., 2013). There are different types of epistatic interactions. 

The phenotypic effect produced by epistatic interactions can be caused by mutations that interact 

positively – such that a combination of mutations causes a fitness higher than expected – or 

negatively – such that a combination of mutations causes a fitness lower than expected. Epistatic 

interactions between genes can cause widely different outcomes in the phenotypic effects of 

mutations (Vogwill et al., 2016; Press and Queitsch, 2017; Lagator et al., 2017; Domingo et al., 

2018; Sackman and Rokyta, 2018; Pokusaeva et al., 2019).  

 

Epistatic interactions between mutations can produce phenotypic effects that depend on the 

environment (de Vos et al., 2013; Flynn et al., 2013), where the sign and magnitude of an epistatic 

interaction is dependent on the environment, or cause fitness differences among individuals with 
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different genetic backgrounds (Wang et al., 2012). Epistasis can impose constraints on the fitness 

effect of an evolved allele that increases gene expression (Chou et al., 2009), and lead to a 

decelerating rate of adaptation based on mutations in the genetic background (Chou et al., 2011; 

Khan et al., 2011, Wünsche et al., 2017). Epistasis has important implications in adaptation (Wiser 

et al., 2013; Plucain et al., 2014; Kryazhimskiy et al., 2014; Peng et al., 2017; Dasmeh et al., 2017; 

Burch and Chao, 1999; Remold and Lenski, 2004; Sanjuán et al., 2005; Kryazhimskiy et al., 2011), 

developmental biology (Vijendravarma and Kawecki, 2013), pathogenesis of diseases (Mansoori 

et al., 2012), drug resistance in pathogens (Moura de Sousa et al., 2017; Schenk et al., 2013; Silva 

et al., 2011; Salverda et al., 2011; MacLean et al., 2010), and speciation (Schumer et al., 2015; 

Fishman and Willis, 2001; Brideau et al., 2006; Meiklejohn et al., 2013). 

 

1.5 Consequences of Epistasis  

 

Epistatic interactions affect phenotypes directly, but can also influence evolutionary processes to 

affect subsequent evolutionary outcomes (Chiotti et al., 2014; Draghi and Plotkin, 2013; Anderson 

et al., 2015; Good et al., 2017; Sailer and Harms, 2017; Wünsche et al., 2017; Matange et al., 2019; 

Zhao et al., 2019). Some related consequences of epistasis include evolution being heavily 

dependent on evolutionary history (Kvitek and Sherlock, 2011; Anderson et al., 2015; Gupta and 
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Adami, 2016; Steinberg and Ostermeier, 2016; Starr et al., 2017), differences in evolvability 

(Woods et al., 2011; Gifford et al., 2016; Jerison et al., 2017; Kutch and Fedorka, 2018), 

compensation of deleterious mutations (Szamecz et al., 2014; Filteau et al., 2015; Qi et al., 2016; 

Rojas Echenique et al., 2019), and differential fitness of horizontally transferred genes (Sota  et 

al., 2010; Silva et al., 2011; San Millan et al., 2014; Vogwill and MacLean, 2015; Maddamsetti 

and Lenski, 2018).  

 

1.5.1 Historical Contingency 

 

Epistasis influences the effect of newly arising mutations such that the set of potentially beneficial 

mutations available to a population can depend on those that have already occurred, known as 

historical contingency (Lindsey et al., 2013). An example of historical contingency, which 

underlies Gould’s belief that chance historical events will dominate future evolutionary outcomes, 

is the evolution of citrate utilization in experimentally evolved populations of E. coli (Gould, 1989; 

Blount et al., 2008). The capability to utilize citrate was contingent on specific genetic changes, 

and their epistatic interactions, that occurred during a population’s history, and without these 

mutations or citrate in the environment, citrate utilization would not have been realized or even 

beneficial (Blount et al., 2008; Blount et al., 2012; Quandt et al., 2014; Quandt et al., 2015; Good 
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et al., 2017). Besides genetic changes, a lower level of competition caused by smaller fitness gains 

at later time points during evolution was also important in achieving citrate metabolism (Leon et 

al., 2018). Each step in the sequence of events that led to citrate metabolism were hypothesized to 

be necessary in preventing the ability to utilize citrate from being purged at earlier timepoints 

(Leon et al., 2018; Quandt et al., 2015).  

 

Historical contingency has also affected evolution of the ancestral glucocorticoid receptor in bony 

vertebrates, changing the receptor from being promiscuous to cortisol-specific (Ortlund et al., 

2007). Cortisol specificity was contingent on initial rare “permissive” mutations that allowed the 

receptor to remain functional in the presence of function-altering epistatic mutations that would 

otherwise destroy the protein’s function (Harms and Thornton, 2014; Ortlund et al., 2007). Snakes 

resistant to high levels of tetrodotoxin (TTX) in prey evolved resistance over millions of years 

through sequential mutations in three different voltage-gated sodium channels (McGlothlin et al., 

2016). The most recent sodium channel to evolve, which provides the highest level of resistance 

to TTX, was contingent on ancient evolved changes in sodium channel paralogs (McGlothlin et 

al., 2016).  
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Of course, just because chance events can influence future outcomes, it doesn’t mean that, in some 

circumstances, selection will not have a dominant role. A well-studied example where a similar 

current selection has resulted in similar adaptation involves changes in pigmentation of Nebraska 

deer mice. Pigmentation changes have repeatedly been selected to match soil color even though 

many single nucleotide polymorphisms (SNPs) within the Aguoti locus for pigmentation and 

several other candidate regions were found to affect coloration (Pfeifer et al., 2018). In Nebraska 

deer mice the repeatable adaptive benefit of pigmentation, which is constrained to soil color of the 

habitat, is causing convergence in coloration of distinct locals based on the high fitness benefit it 

provides, which coincides with Morris’ views (Pfeifer et al., 2018). Overall genetic diversity was 

low indicating recent divergence of populations but high at alleles affecting pigmentation (Pfeifer 

et al., 2018). Snake venom across extant species has also converged on similar adaptations due to 

constraints on the number of strategies that are effective against prey (Barua and Mikheyev, 2019). 

However, determining the exact past selective pressures that led to specific adaptations and which 

genetic changes led to those adaptations are not easily ascertained in natural populations.  
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1.5.2 Evolvability 

 

Evolvability is a product of historical contingency in that it too is based on the presence of 

mutations that were obtained in a population’s past. Evolvability is the capability of a population 

to adapt to an environment, usually operationally assessed by measuring the degree of fitness 

increase over time. Epistatic interactions between mutations can increase or decrease evolvability 

of an organism. Saccharomyces cerevisiae was shown to have differences in evolvability after 230 

hybrid strains with unique genotypes were evolved for 500 generations in two different 

environments (Jerison et al., 2017). The hybrids were created by crossing two divergent S. 

cerevisiae strains. The rate of adaptation, or evolvability, was influenced by genotypic 

heterogeneity of founder strains, several quantitative trait loci (QTLs), and initial founder fitness 

(Jerison et al., 2017). Epistasis was widespread in their evolved populations, and epistatic 

interactions between a QTL and other mutations were found to affect evolvability in one of their 

evolution environments (Jerison et al., 2017). Woods and colleagues found that the source of 

differences in evolvability of E. coli populations was from negative epistasis among beneficial 

mutations, which led to significant shifts in predominant genotypes (2011). Mutations that led to 

quickly arising predominant genotypes restricted fitness gains at later timepoints, whereas, those 

with slower fitness gains obtained mutations that were more evolvable and eventually led to higher 
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fitness (Woods et al., 2011). Pseudomonas phage j6 was shown to be less evolvable through 

mutations that restricted host range due to epistatic interactions between mutations necessary for 

host range expansion (Zhao et al., 2019). These studies indicate the importance of epistasis in the 

ability of organisms to adapt to current and future environmental conditions. I will present an 

experiment that consistently results in populations and clones that are more evolvable compared 

to the ancestor due to genetic changes that occurred in a previous environment.  

 

1.5.3 Compensation 

 

Another process that involves the effect of epistasis on an organism’s ability to adapt to its 

environment is compensation. Compensatory mutations alleviate the negative effect of deleterious 

mutations while being neutral or deleterious in their absence. Compensatory mutations have been 

extensively studied in the context of antibiotic resistance (Levin et al., 2000; Björkman et al., 1998; 

Nagaev et al., 2001), compensation to specific perturbations (Björkman et al., 2000; Buckling et 

al., 2000), and in the determination of interacting components of gene networks (Jarvik and 

Botstein, 1975; Reinhart et al., 2000; Zhao et al., 1998; Gu et al., 1998; Johnson et al., 1990; 

Jenkins et al., 1986; Van Dyk et al., 1989; Takeda and Hirota, 1982). Multidrug-resistant 

Mycobacterium tuberculosis (MDR-TB) has been found to obtain a compensatory mutation that 
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reverses the deleterious effect of rifampicin resistant mutations (Meftahi et al., 2016). Not only did 

the secondary mutation increase doubling time to levels comparable to the wild type strain in an 

antibiotic free environment, it also increased the rifampicin minimum inhibitory concentration that 

MDR-TB could withstand (Meftahi et al., 2016). The mutations were hypothesized to both be 

necessary for MDR-TB to obtain the fitness benefit because of their locations in the RNA 

polymerase b subunit and the fact that the compensatory mutation always occurred with this 

specific resistance mutation (Meftahi et al., 2016). There are many examples of compensation 

associated with antibiotic resistance, however, few studies have focused on compensatory 

mutations during more general adaptation, especially in the presence of fluctuating environments. 

I aimed to determine whether compensation occurs to alleviate costs of an evolved pleiotropic 

mutation and if compensatory mutations have an effect on the benefit of the evolved pleiotropic 

mutation in its selected environment. 

 

1.6 Lactose Utilization Network 

 

Throughout the experiments in my dissertation, I take advantage of the utility of the lactose 

utilization (lac) network, because it is a well-characterized metabolic network that is regulated 

based on inducer concentrations in the environment (Dean, 1995; Dekel and Alon, 2005; Kalisky 
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et al., 2007). The lac operon structural genes encode:  LacZ, a beta-galactosidase that cleaves 

lactose into glucose and galactose; LacY, a permease that imports lactose into the cell; and LacA, 

a transacetylase that triggers export of toxic derivative sugars that cannot be metabolized by the 

cell. The lac operon is negatively and positively regulated by transcription factors based on inducer 

concentrations in the environment (Figure 1.1). Negative regulation occurs in the absence of 

natural (lactose) or artificial (e.g., isopropyl β-D-thiogalactoside (IPTG)) inducers by the LacI 

repressor, which can bind three different operator binding sites to prevent lac operon expression 

(Lewis et al., 1996; Oehler et al., 1990). Positive regulation takes place in the absence of glucose, 

which increases intracellular cyclic AMP (cAMP) concentrations allowing the cAMP receptor 

protein-cAMP (CRP-cAMP) complex to form. The CRP-cAMP complex binds upstream of the 

promoter region and promotes transcription by recruiting RNA polymerase (Zubay et al., 1970). 
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cAMP

lacZ
Plac

lacY lacAlacI O1CRP
O3 O2

cell

allolactose

CRP

glucose lactose 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 lac operon regulation schematic. The schematic shows positive and negative 
regulation of the lac operon with the approximate locations of the promoter region (Plac), structural 
genes (lacZ, lacY, and lacA), and binding sites for cAMP-CRP (CRP) and lacI (O1, O2, and O3) 
(Lewis et al., 1996). Transcription of the lac operon is inhibited through binding of the LacI 
tetramer to its operator sites. In the presence of glucose, lactose is prevented from entering the cell, 
allowing the LacI tetramer to bind to its operator sites, which also occurs in the absence of lactose 
or artificial inducers. When glucose is depleted from the environment cAMP levels rise in the cell 
and available lactose enters the cell through the LacY permease. Lactose is either cleaved into 
glucose and galactose or converted to allolactose by LacZ. Allolactose forms a complex with LacI, 
which prevents LacI binding to its operator sites, allowing transcription of the lac operon. 
Transcription is further promoted through the formation of the cAMP-CRP complex that binds to 
the CRP binding site and attracts RNA polymerase to the promoter region.  
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The availability of genetic and chemical tools with which to manipulate and examine lac gene 

regulation and function has led to it becoming a model system in which to study the underlying 

cause of adaptive changes in the response of gene regulation to environmental changes. The lac 

network has been studied widely, for example as a model to: understand environment-response 

functions (Dean, 1995), predict and test evolutionary optimization (Dekel and Alon, 2005), and to 

examine the cost-benefit ratio for optimal protein expression (Kalisky et al., 2007). It has also been 

recognized as a focus of adaptive responses following selection of E. coli populations in 

environments containing lactose and artificial galactosides (Zhong et al., 2009; Quan et al., 2012; 

Satterwhite and Cooper, 2015). Mutations that change the regulation of the lac genes, usually to 

increase expression, increase fitness in lactose containing environments (Quan et al., 2012). These 

benefits depend on the focal genetic background, indicating that they may also be more or less 

likely to occur in different strains. Additionally, while differences in benefits have been examined, 

differences in costs of expression, the likely basis for selection of the initial tight gene regulation, 

have not. Finally, past work has focused almost exclusively on the functioning of the lac network 

in a few model lab strains. How the environment-response function has evolved in natural isolates 

and to contrasting environmental conditions in long-term experimental evolution populations is 

not well characterized.  
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1.7 Dissertation Overview 

 

In this dissertation, I study the basis and consequences of adaptation to constant and fluctuating 

environments within the context of selective history and compensatory mutations, and examine 

within species variation in regulatory functions of a metabolic pathway relevant to my studies. 

Specifically, I examine:  (1) if variation within a population led to increased evolvability in a new 

environment; (2) if the cost of an evolved pleiotropic mutation that produces a tradeoff is alleviated 

after evolution in fluctuating environments, and, if so, what is the mechanism of reducing that cost 

and does it affect the benefit; and (3) how control of lac operon expression varies between strains 

of E. coli, and if the level of lac operon expression is more dependent on global or local regulators.  

 

In Chapter 2, I present experiments testing the influence of selective history on future adaptation. 

Specifically, I run a replay evolution experiment in a minimal lactose environment using 

populations previously evolved in a minimal glucose environment, clones selected from each of 

these populations, and the initial common ancestor. I find that after 500 generations of evolution 

in a lactose environment glucose evolved populations and clones had higher and faster fitness gains 

than the common ancestor that had never experienced selection in glucose. The previously evolved 

clones maintained a similar genomic mutation rate as the common ancestor. The results 
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demonstrate how adaptive genetic changes that occur during an individual’s selective history 

increase evolvability during adaptation to a new environment, which may be a consequence of 

compensatory mutations.  

 

In Chapter 3, I study compensation of an evolved pleiotropic mutation resulting from selection in 

fluctuating environments. The evolved pleiotropic mutation under study is lacI-, a nonfunctional 

regulator of the lac operon, which provides a benefit in lactose but a cost in glucose supplemented 

environments. After measuring the fitness effect of lacI- in evolved clones, I find that 

compensation for the cost in glucose was rare but possible and did not reduce the benefit in lactose. 

The mechanism for reduced cost was partly explained by a reduction in lac operon expression, but 

was also dependent on other mutations in the evolved background. The type of evolution 

environment, single resource and daily or long-term fluctuations, did not increase the likelihood 

of compensation to occur. Compensation in this system appears to be distinctive to or hindered by 

specific genetic adaptations.   

 

In Chapter 4, I examine natural variation in regulatory control, described as logic functions, of the 

lac operon in a diverse set of 23 E. coli strains. After introducing, into each strain, a GFP reporter 

driven by the lac promoter and CRP binding site while controlled by the LacI repressor by 
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containing two of its operators (O1 and O3), I measured lac operon expression in a concentration 

gradient of inducer combinations. I found substantial variation in regulatory functions of natural 

isolates that was explained in part by genetic relatedness of strains, which best predicted initial 

growth in lactose, suggesting these regulatory characteristics were selected. I then examine the 

role of global (trans) and local (cis) regulators by transferring the lac operon and lacI gene of five 

natural isolates into a reference lab strain. I found that some of the variation in regulatory function 

is attributed to trans-regulators in the genetic background of the recipient strain. This work 

demonstrates that there can be variability in regulatory functions within a species that best matches 

an environment and is specific to a genetic background.   
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Chapter 2  

 

Adaptation of Escherichia coli to glucose promotes 

evolvability in lactose 

 

Phillips KN, Castillo G, Wünsche A, Cooper TF. 2016. Adaptation of Escherichia coli to glucose 

promotes evolvability in lactose. Evolution 70(2):465–470.a 

a. This chapter is published in Evolution. I ran all experiments and statistical analyses with 

help from undergraduate students.  

 

2.1   Introduction 

 

Historical contingency—when the evolutionary history of a population affects its subsequent 

evolution—can profoundly influence evolutionary outcomes (Gould, 1989). For example, 

populations with different evolutionary histories might respond differently when they are selected 

in a common environment due to epistatic interactions that cause new mutations to have effects 

that depend on different genetic backgrounds (Barrick et al., 2010; Perfeito et al., 2013; Harms 

and Thornton, 2014; Kryazhimskiy et al., 2014). To the extent that historical contingency is 
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influential, it can mean that predicting evolutionary outcomes will require some knowledge of the 

past selection of a population. 

 

In practice, it is difficult to distinguish between the action of contingent and chance effects in 

shaping evolutionary outcomes. To do so requires a comparison of the replicated evolutionary 

response of populations with known histories evolving in identical environments. Microbial 

evolution experiments represent one way to meet these conditions. Indeed, several such studies 

have found evidence for contingency. For example, replicate populations that diverged from one 

another during adaptation to glucose responded differently, largely erasing those differences, 

following subsequent selection in maltose (Travisano et al., 1995). A similar result was seen in a 

recent study that identified the current fitness of a population as the primary driver of subsequent 

evolutionary potential (Kryazhimskiy et al., 2014). Other examples include finding differences in 

the evolvability—usually measured as the extent of fitness improvement over a defined time 

interval—of bacterial and viral populations that were initially isogenic except for different 

deleterious or beneficial mutations (Burch and Chao, 2000; Moore et al., 2002; Cuevas et al., 2009; 

Barrick et al., 2010; Salverda et al., 2011; Woods et al., 2011; Perfeito et al., 2013; Plucain et al., 

2014) or degree of specialization (Buckling et al., 2003), and cases where early 'potentiating' 
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mutational events are required for the evolution of subsequent phenotypic novelty (Blount et al., 

2012; Meyer et al., 2012).  

 

The studies cited above have clearly identified a role of history in influencing future evolutionary 

potential. In most cases, however, this history is either the result of: chance differences in mutation 

order leading to differences between genotypes despite selection in a common environment 

(Travisano et al., 1995; Blount et al., 2008; Salverda et al., 2011; Woods et al., 2011; Kryazhimskiy 

et al., 2014) or deliberately selected or engineered differences in genotypes (Moore et al., 2002; 

Barrick et al., 2010; Perfeito et al., 2013). Alternatively, genotypes with different selective 

histories have been compared, but without replication at the level of the past selective environment 

(Cuevas et al., 2009). It has rarely been possible to test for a systematic effect of past selection 

environments on future evolvability (Buckling et al., 2003; McBride et al., 2008; Bedhomme et 

al., 2013).  

 

We previously presented an observation consistent with adaptation of Escherichia coli to a 

glucose-limited environment increasing the rate of subsequent adaptation to an otherwise identical 

lactose-limited environment (Satterwhite and Cooper, 2015). Here we carry out an experiment that 

repeats and extends the basis of this observation. We find that glucose-evolved populations had a 
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consistent advantage in subsequent adaptation to lactose, increasing fitness at a higher rate and to 

a higher final level, relative to populations started from the original ancestral strain. This result 

held even when populations were started from individual glucose-evolved clones, indicating that 

the advantage was a property of individual genotypes. We interpret these results as evidence that 

adaptation to one or more components of the glucose environment resulted in a repeatable increase 

in evolvability in the lactose environment. 

 

2.2 Materials and Methods 

 

2.2.1 Bacterial strains and selection experiments 

 

The initial evolution experiment consisted of six E. coli populations evolved in each of seven 

selection treatments (Cooper and Lenski, 2010). These treatments differed only in the nature of 

the limiting carbon source(s) added to Davis Mingioli (DM) medium. All populations were 

founded by strain REL606 or strain REL607, an otherwise isogenic derivative of REL606 that is 

able to grow on arabinose (Ara+) (Lenski et al., 1991). Here, six populations—referred to as 

founder populations—previously evolved for 2,000 generations in glucose (175 µg/ml) 

supplemented medium were used to found a series of new replay populations that were selected in 
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lactose (210 µg/ml) supplemented medium. These replay populations comprised: (i) replication of 

each of the six founder populations into six new populations (36 total populations), (ii) isolation 

of a randomly chosen clone from each founder population that was used to found six new 

populations (36 total populations). In addition, eighteen control populations were founded from 

the ancestral strains REL606 or REL607. A schematic of this experimental design is presented in 

Fig 2.1. A derivative of REL606 that encodes GFP was used as a reference strain in competition 

experiments (Zhang et al., 2012).  
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Figure 2.1 Schematic of experimental design. Six replicate populations were started from an 
ancestral strain and evolved for 2,000 generations in a glucose-limited environment. Each of these 
founder populations was used to found 12 new populations, six started from a random clone and 
six from a population sub-sample. These new populations and 18 populations started directly from 
the ancestor were evolved in lactose for 1,000 generations and their fitness compared. 

 

 

 

 

  

from 
population 
subsample

from clone }
six clone and six 

population 
subsample replay 
populations from 

each founder 

} 18 replicate 
populations from 

ancestorevolution in 
glucose

evolution in 
lactose

Generations
2,000 3,000

six founder 
populations

0



 26 

A new evolution experiment involving the 90 populations described above was carried out using 

the same protocols and growth conditions used in the original evolution experiment (Cooper and 

Lenski, 2010). Briefly, populations were grown in 1 ml DM supplemented with 210 µg/ml lactose 

(DM210 lactose) for 1,000 generations by daily transfer of 10 µL samples. Propagation was in 96-

deep well polypropylene plates. As far as possible, populations with different Ara marker states 

were arranged in a checker board pattern to facilitate checking for cross contamination of wells. 

Every 13 days cultures were stored at -80 ºC in 20% glycerol, and tested for cross contamination 

by inoculating 10 µL from each well onto DM+arabinose agar and plating onto tetrazolium 

arabinose (TA) indicator medium. 

 

2.2.2 Fitness competitions 

 

Relative fitness of evolved populations was measured at 0, 500 and 1,000 generations of evolution 

using competitive growth assays in the DM210 lactose selection environment. All assays were 

carried out as complete experimental blocks by using three 96-well deep well plates, one for each 

assayed evolutionary time point. Prior to each competition, experimental and reference fluorescent 

ancestor (one per competition) populations were acclimated to the selection environment over two 

daily transfer cycles. On the third day, paired reference and experimental populations were 
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combined at 1:1 and a 1:100 dilution of this mix was used to start competition cultures. An Accuri 

C6 (Becton Dickinson, NJ) flow cytometer was used to measure the ratio of competing strains. To 

do this, competitions were diluted 1:100 from the original 1:1 mix (t0) or from the end of one-day 

of competition (t1) into a 96-well polystyrene plate where each well contained a solution of 150 

nM SYTO17 fluorescent dye and 10% DM made without MgSO4 or thiamine. Cells were 

separated from background noise on the basis of SYTO17 fluorescence, which indicates the 

presence of nucleic acid. Reference cells were distinguished from their competitors on the basis of 

their GFP fluorescence signal. At least 5,000 events were collected from each sample time point. 

The percentage of each competitor at the beginning and end of each competition was used to 

estimate fitness as the ratio of Malthusian parameters (Satterwhite and Cooper, 2015). Using the 

percentage, rather than density, of competitors to calculate this ratio will underestimate fitness 

differences if evolved populations consistently reach lower stationary phase densities than 

ancestral populations. Although we cannot exclude this possibility, we were not able to find 

evidence for it in a previous study examining these populations (Satterwhite and Cooper, 2015). 

 

 

 

 



 28 

2.2.3 Mutation rate estimates 

 

Mutation rate to rifampicin resistance was measured for the ancestor and each of the six clones 

isolated from the founder glucose-evolved populations. To do this, freezer stocks were grown 

overnight at 37 °C in lysogeny broth (LB) and then diluted to give an inoculum of approximately 

~103 cells that was added to each of 23 fresh LB cultures. After overnight growth, a sample from 

each replicate population was plated onto LB + rifampicin (100 µg/mL) to determine the number 

of Rfr mutants. Samples from three populations were also plated onto LB to determine total cell 

density. Colonies were scored after 24 hours incubation at 37 °C. Analysis was carried out using 

the MSS-MLE method implemented in the FALCOR online calculator 

(http://www.keshavsingh.org/protocols/FALCOR.html) (Hall et al., 2009). 

 

2.2.4 Genome sequencing 

 

Illumina library preparation was carried out using the NexteraXT kit protocol, except that reaction 

volumes were reduced by a factor of four, or the TruSeq kit protocol. Sequencing was performed 

on HiSeq2000 and NextSeq500 machines.  Mutational changes occurring in evolved clones were 

identified by comparison to the previously sequenced ancestral strain, REL606, using BRESEQ 
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(Barrick et al., 2009). A mutation in recD (V10A) was found in the three clones derived from 

REL607 and was subsequently identified to be present in our stock culture of that ancestral strain. 

Extensive competition experiments between the Ara- REL606 and our Ara+ derivative indicate 

that the mutation is neutral, so we omit it from further consideration (data not shown). 

 

2.2.5 Statistical analyses 

 

Statistical analyses were performed in R version 3.1.1 (R Core Team, 2013). Differences in 

evolvability were determined by using the package NLME4 to fit a linear mixed effects model 

(Bates et al., 2014). Replicate populations were nested within their initial founder population or 

genotype as appropriate and were fitted with random intercepts. Models were fit with and without 

the effect of interest, usually whether populations were evolved directly from the ancestor or from 

glucose-evolved founder genotypes, and their explanatory power compared using a χ2 test with 

one degree of freedom. Replay populations started from the glucose-evolved founders started off 

at a lower fitness in lactose than did populations started from the ancestor, which can have a 

systematic effect on evolvability (Barrick et al., 2010; Kryazhimskiy et al., 2014). It was not 

possible to account for this effect by using initial fitness as a covariate because it is completely 

confounded with population history. For this reason, in most cases, we focus on comparing the 
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final fitness of replay populations, rather than overall change in fitness, because a higher final 

fitness of initially less fit populations clearly indicates a meaningful difference in evolvability due 

to genotype. Initial fitness was included as a covariate in analyses that test for differences between 

founder populations or clones.  

 

2.3 Results 

 

We previously reported the evolution of six replicate populations that were selected in a glucose-

limited environment for 2,000 generations and then transferred to selection in an otherwise 

identical lactose-limited environment (Satterwhite and Cooper, 2015). Here, we follow up the 

observation that the six glucose-evolved populations improved in fitness more rapidly when 

switched to selection in lactose than did populations started directly from the same ancestral strain. 

Following transfer to lactose selection, glucose-evolved populations increased in fitness measured 

in lactose by an average of 32.1% after 1,000 generations compared to 23.1% for replicate 

populations derived directly from the ancestor. All fitness measurements are relative to the same 

ancestral strain. This observation is consistent with a period of selection in glucose systematically 

increasing the potential to adapt—which we here refer to as an increase in evolvability—to the 

lactose environment (ANOVA F1,74=10.95, p = 0.001). Increased evolvability may be due to 
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mutations that commonly accumulate during selection in glucose acting to increase subsequent 

evolvability in lactose. Alternatively, higher evolvability might reflect a higher initial genetic 

variance in fitness within glucose-evolved populations relative to populations started from the 

ancestor. Higher variance in fitness is expected to increase the rate of adaptive response 

independently of any change in the adaptive potential of a specific genotype (Fisher, 1999).  

 

To disentangle the effect of genotype specific evolvability from the effect of differences in initial 

population-level genetic variation on subsequent adaptation to lactose, we repeated the part of our 

previous evolution experiment involving adaptation to lactose including replication at the level of 

each of the six founder glucose-evolved populations. From each founder population 12 new 'replay' 

populations were started, six from population subsamples and six from a single randomly selected 

clone. These replay populations and 18 reference populations started directly from the original 

ancestral genotype were evolved for 1,000 generations in lactose.  

 

After 500 generations of evolution in lactose, the fitness of the replay populations started from 

both clones and population subsamples were significantly greater than that of populations started 

directly from the ancestor (ANOVA; population subsamples vs. ancestor: p < 0.001; clones vs. 

ancestor: p < 0.001), but were not significantly different from each other (ANOVA; p = 0.36) (Fig. 
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2.2). These differences reflect that the glucose-evolved populations overcame an initially lower 

fitness to reach a higher fitness than the populations started directly from the ancestor. After 1,000 

generations of evolution, the glucose-evolved populations still had higher total fitness increases 

than did populations started from the ancestor. At this time point, however, the final fitness of 

populations started from founder clones was marginally non-significantly higher than the fitness 

of populations started from the ancestor (final fitness: population subsamples vs. ancestor, p = 

0.003; clones vs. ancestor, p = 0.086). Again, the fitness of replay populations started from clones 

and from population subsamples were not significantly different from one another (ANOVA; p = 

0.27).  

  



 33 

●

●

●

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

0 500 1000
Generation

R
el

at
ive

 F
itn

es
s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 Fitness change in the lactose-limited environment of populations evolved in this 
study. Each symbol represents the mean of six replicate populations started from the same 
founding clone or population sub-sample (blue and black, respectively) or of 18 replicate 
populations started directly from the ancestor (red). For each treatment, solid lines connect the 
grand mean across assayed time points. Error bars indicate SEM. All fitness measurements are 
made relative to the ancestor. Points are offset slightly on the X-axis to increase legibility. 
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We focused on the six founder glucose-evolved clones to begin to examine a possible basis for 

their higher evolvability in lactose. A candidate explanation is that the glucose-evolved clones had 

a higher genomic mutation rate than did the ancestral strain. Higher genomic mutation rates have 

been associated with more rapid fitness improvement in several lab-evolution experiments (Chao 

and Cox, 1983; de Visser et al., 1997). To test this, we used fluctuation tests to measure the 

spontaneous mutation rate to rifampicin resistance of the glucose-evolved clones and the ancestral 

strain. We found no substantial difference in this rate, with all ancestor vs. glucose-evolved clone 

mutation rate estimates being within a factor of three of one another (Fig. 2.3).  
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Figure 2.3 Mutation rate to rifampicin resistance of the ancestor and the six glucose-evolved 
founder clones. Symbols and error bars represent the estimated mutation rate to rifampicin 
resistance and 95% confidence intervals. 
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A similar mutation rate between founder clones and the ancestor indicates that selection in glucose 

led to accumulation of mutations that increased lactose evolvability directly. To identify candidate 

mutational changes that might contribute to evolvability, we sequenced the six founder clones. 

Because the increased lactose evolvability trait was common to all clones, judged by their similar 

fitness increases following selection in lactose, we reasoned that mutations that occurred in the 

same genes in multiple clones would be candidates for contributing to lactose evolvability. We 

identified 3-7 mutations per clone with four genes or gene regions being mutated in at least four 

clones; rbs, spoT, iclR, and nadR (Table 2.1). These genes are candidates for affecting evolvability, 

though a determination of their influence will require their removal from founder strains and 

measurement of the evolvability of those derived strains.  
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Table 2.1 Mutations in founder glucose-evolved clones 

 Founder clone 
Mutated 
gene/region 

1 2 3 4 5 6 

bioA   G150S    
ECB510/nohB   -144/-245*    
fabG/acp +156/-55*      
iclR  T60P G219R  -58/-142 Δ48 
nadR ::IS150 S178L ::IS186  +4 L289P 
pykF    D336N   
rbs Δ4,398 Δ4,649 Δ6,390 Δ6,213 Δ290 Δ3,252 
spoT  G207D Δ1 F409V R701Q R209L 
wecF N206D      
ybbN  ::IS150     
ycjX      S294R 
yijC  ::IS150     
yjeP      Δ36 
yoaD  G367G     
*For intergenic mutations, numbers indicate bases upstream/downstream of adjacent genes. For 
coding sequence mutations residue and change in one-letter amino acid code, insertion/deletion 
size, or identity of IS insertion are given. 
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2.4 Discussion 

 

Several experiments have found that evolutionary history can influence subsequent evolutionary 

potential (Travisano et al., 1995; Burch and Chao, 2000; Buckling et al., 2003; Cuevas et al., 2009; 

Barrick et al., 2010; Woods et al., 2011; Perfeito et al., 2013; Kryazhimskiy et al., 2014). In general, 

this dependence reflects the pervasive effect of epistasis in making the influence of new beneficial 

mutations dependent on a particular genetic background. For example, to the extent that there is a 

generally antagonistic relationship between beneficial mutations, initially low fitness genotypes 

are expected to adapt more quickly than fitter genotypes (Chou et al., 2011; Khan et al., 2011; 

Wiser et al., 2013; Kryazhimskiy et al., 2014). Indeed, Kryazhmiskiy et al. (2014) found that 

differences in the effect of evolutionary history on adaptive potential could be explained mainly 

through the effect of differences in initial fitness rather than the different genotypes that are the 

specific basis of those fitness differences.  

 

We found that despite ancestral and glucose-evolved populations having similar initial fitness in 

lactose, glucose-evolved populations increased in fitness more quickly and to higher levels than 

the ancestral genotype. Clones derived from the glucose-evolved populations were also more 

evolvable than the ancestor, indicating that increased evolvability was a consequence of specific 
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mutations, not just of initially higher within-population genetic variability. We can’t distinguish 

between these mutations being selected to provide a benefit to the glucose component of the 

environment, or, perhaps to other components, for example, the particular growth regime 

(oxygenation and pH levels, etc.) prevailing during selection. This result is distinct from some 

previous studies that have found populations with different evolutionary histories, but with the 

same or unknown selective histories, to have different responses to subsequent selection (Burch 

and Chao, 2000; Woods et al., 2011). Here, we find that the difference in evolvability is associated 

with a difference in selective history.   

 

The significant trend of independent glucose-evolved populations being more evolvable than the 

ancestor indicates that the genetic basis of higher lactose evolvability is a common outcome of 

evolution in glucose. To explain this, we suggest that increased evolvability could be due to the 

availability of compensatory mutations that reverse the effects of mutations accumulating during 

evolution in the glucose environment that are deleterious in the lactose environment. As part of 

the experiment reported here we also selected populations derived from the ancestral strain in a 

constant lactose environment (Cooper and Lenski, 2010; Satterwhite and Cooper, 2015). We found 

mutations in rbs and spoT in six of six, and mutations in nadR in five of six, of these populations, 

suggesting that mutations in these genes confer a benefit in lactose. Indeed a rbs deletion allele 
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and a spoT allele isolated previously (Khan et al., 2011), were found by themselves to confer 

significant fitness benefits in the lactose environment, as well as the glucose environment in which 

they were selected (rbs: glucose 3.2%, p <0.001, lactose 5.2%, p < 0.001; spoT: glucose 10.1%, p 

<0.001, lactose 5.6%, p = 0.002). Although it is possible that some evolved rbs, spoT and nadR 

alleles have glucose-specific benefits, we think a more likely explanation for our observation that 

the glucose-evolved founder populations had not increased in fitness in lactose is that they 

accumulated a mix of mutations with beneficial and deleterious effects in the lactose environment 

that effectively cancel out each others effects. A candidate for lactose deleterious mutations are 

those in iclR, which were found in 5 of 6 glucose but 0 of 6 lactose selected populations. During 

selection in lactose, any mutations that arose and compensated for the deleterious mutations would 

therefore 'reveal' the pre-existing beneficial mutations. Under this scenario, higher evolvability 

could result if compensatory mutations occurred at a higher rate than generally beneficial 

mutations of similar effect or if single mutations could confer very large benefits by compensating 

large-effect deleterious mutations (Moore et al., 2000; Barrick et al., 2010; Perfeito et al., 2013). 

In summary, while the genetic mechanism(s) of increased lactose evolvability remains unknown, 

what is clear is that adaptation to the glucose evolution environment moved genotypes to regions 

of genetic space where mutations that increased fitness in lactose were either more common or of 

higher benefit.   
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Selection in glucose consistently leads to changes in lactose evolvability through accumulation of 

specific mutations that change the effect of additional mutations. Our results demonstrate that even 

when adaptation to one environment confers no immediate benefit, or even a small cost, in a second 

environment, it can nevertheless confer a longer-term benefit. We emphasize that fitness in lactose 

had no direct benefit to the glucose-evolved populations prior to the switch to lactose as the 

limiting sugar in their selective environment at 2,000 generations. The increase in evolvability, 

while perhaps a consequence of mutations that increased direct fitness, was not itself selected. Of 

course, whether such a benefit will be realized will depend on the specific circumstances of 

environmental change. 
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Chapter 3  

 

The cost of evolved constitutive lac expression is usually, but 

not always, maintained during evolution in environments 

with fluctuating expression demand 

 

3.1 Introduction 

 

Fluctuating environments pose several challenges to evolving populations. While some potential 

adaptations might confer benefits across all relevant selection regimes (Bennett and Lenski, 1999; 

Buckling et al., 2000; Buckling et al., 2007; Kassen and Bell, 1998; Satterwhite and Cooper, 2015), 

others will confer benefits in some and costs in others (Bailey and Kassen, 2012; Jasmin and 

Kassen, 2007; Lee and Marx, 2012; McGee et al., 2015; Roemhild et al., 2015). Indeed, even if 

unconditionally beneficial mutations are initially available, they are likely to become less common 

over time (Martin and Lenormand, 2015; Satterwhite and Cooper, 2015; Schick et al., 2015). When 

a mutation that confers a benefit in one environment, and a cost in another, fixes in a population, 

it creates selection for subsequent mutations that compensate for that cost (Fig. 3.1) (Maisnier-

Patin et al., 2002; Moore et al., 2000; Moura de Sousa et al., 2017; Wood et al., 2013).  
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Figure 3.1 Schematic of the fitness effects of the individual and combined focal deleterious 
and compensatory mutation. The open rectangle on the far left represents a wild-type genotype. 
A compensatory mutation (blue diamond) alone is neutral or deleterious but will lessen the effect 
of an original deleterious mutation (red triangle). For example, addition of a secondary mutation 
(blue diamond) can return fitness to a level similar to that of the wild-type strain, or it can increase 
fitness to a level greater than the wild-type. 
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Compensatory mutations have long been used in molecular genetic studies as a tool to identify 

physical and genetic changes that can suppress the effects of a focal mutation, thereby identifying 

interacting components (Blank et al., 2014; Gu et al., 1998; Jarvik and Botstein, 1975; Kacar et 

al., 2017; Manson, 2000; Ponmani and Munavar, 2014; van Leeuwen et al., 2016). Increasingly, 

they are also recognized as being important in broadening the scope of evolutionary trajectories a 

population can follow (Szamecz et al., 2014; Zee et al., 2014), allowing adaptations to be selected 

that might otherwise prove to be evolutionary dead-ends (Harrison et al., 2015), and influencing 

the ability of populations to simultaneously adapt to multiple environments (Melnyk et al., 2017).  

 

Mutation interactions arising after selection in fluctuating environments have been extensively 

studied in the context of antibiotic resistance evolution. Antibiotic resistance mutations often 

confer a cost to bacteria in antibiotic free environments (Moura de Sousa et al., 2017; Nilsson et 

al., 2003; Rozen et al., 2007), but subsequently generate selection for compensatory mutations that 

relieve the cost (Levin et al., 2000; Björkman et al., 1998; Björkman et al., 2000; Nagaev et al., 

2001). These compensatory mutations are typically neutral or deleterious in the absence of the 

original resistance mutation (Brandis et al., 2012; Maisnier-Patin et al., 2002; Moura de Sousa et 

al., 2017). Compensatory mutations would not be selected by themselves but allow resistance 

mutations to be maintained when they would normally be selected against, influencing short-term 
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evolutionary outcomes and perhaps longer-term potential. Similar patterns of compensatory 

mutations depending on earlier resistance mutations for their benefit have been seen in studies of 

bacterial resistance to bacteriophage (Lenski 1988; Wielgloss 2016). Compensation during 

evolution has also been found to occur to overcome the loss of essential genes (Blank et al., 2014), 

the negative effects of synonymous (Knöppel et al., 2016) and gene deletion (Szamecz et al., 2014) 

mutations, and to restore a social trait (Zee et al., 2014).  

 

In contrast to studies that have focused on mutations that compensate for a specific genetic 

perturbation, few studies have examined compensation during more general adaptation to an 

environment, especially when this adaptation involves repeating rounds of selection in contrasting 

environments. This distinction might be important. Compensation to a specific genetic 

perturbation, as to an antibiotic resistance mutation or a deletion of a focal gene, is thought to 

generally act locally to reverse the costly effect (Brandis et al., 2012; Filteau et al., 2015; Szamecz 

et al., 2014), although they can operate from pathways unrelated to the perturbation (Blank et al., 

2014). At least in experimentally evolving populations, adaptation often involves mutations in 

regulatory genes that are likely to have highly pleiotropic consequences (Cooper et al., 2003; 

Kurlandzka et al., 1991; MacLean et al., 2004; Rosenzweig et al., 1994). Such mutations are likely 

to have widespread effects on cell physiology so that effective compensation may also be 
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pleiotropic (Velicer and Yu, 2003; Zee et al., 2014). Moreover, in many cases it remains unclear 

how compensatory mutations will affect fitness in the original environment in which a focal 

mutation was selected. It is easy to imagine that compensation causing a reduction in the cost of a 

focal mutation in a new environment might be associated with a reduction of the benefit it confers 

in the original environment. In that case, reversion to the original environment might select for 

reversal of the effects of the compensatory mutation. This could occur through its direct reversion 

or through a second compensatory mutation, creating potentially complex patterns of 

environmentally dependent epistatic interactions between selected mutations. 

 

The particular nature of the environmental fluctuations a population is exposed to is expected to 

play a major role in the selection of compensatory mutations. In a rapidly changing environment, 

mutations that increase in frequency are likely to confer a net benefit across the different 

environments (Buckling et al., 2007; Melnyk et al., 2017; Turner and Elena, 2000). With this 

limitation, such mutations can only confer at most relatively small costs in any one environmental 

component so that the strength of selection for compensation may be small (Poon and Chao, 2005a; 

Poon and Chao, 2006). In a more slowly fluctuating environment, mutations selected in one 

component might fix before the population experiences a second component in which they might 

confer substantial costs (Bennett and Lenski, 2007; Cooper and Lenski, 2001; Kassen and Bell, 
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1998; Phillips et al., 2016). Such differential costs are consistent with the generally higher 

between-environment trade-offs seen in populations selected in slowly compared to quickly 

fluctuating environments (Bono et al., 2017; Satterwhite and Cooper, 2015; Schick et al., 2015).   

 

I examine compensation to an adaptive mutation selected in a series of experimentally evolved 

populations selected in environments that contained either lactose or glucose alone or a 

combination of lactose and glucose fluctuating on daily or 2000 generation time-scales (Cooper 

and Lenski, 2010).  Mutational inactivation of the LacI repressor was rapidly selected in many of 

the replicate bacterial populations that were selected in the presence of lactose (Quan et al., 2012). 

Loss of LacI causes the lac operon, a set of genes required for utilization of lactose, to be 

constitutively expressed (Markiewicz et al., 1994; Quan et al., 2012).  Constitutive expression of 

lac genes provided a benefit of ~9% during growth in lactose by shortening the lag time before 

resumption of growth following transfer into fresh medium (Quan et al., 2012). It also conferred a 

cost of ~3% in an environment containing glucose as the sole resource, probably due to some 

combination of the energetic cost of expressing unnecessary genes and toxicity of the LacY 

permease (Dekel and Alon, 2005; Stoebel et al., 2008; Quan et al., 2012; Eames and Kortemme, 

2012). In populations selected in environments containing both lactose and glucose, this trade-off 



 48 

in the effect of lacI- mutations creates potential for subsequent mutations to provide a fitness 

benefit by compensating for the cost of the mutation in glucose.  

 

I present a series of experiments to determine if evolved populations that fixed the lacI- mutation, 

and therefore constitutively express the lac operon, evolved mechanisms to alleviate the cost of 

this expression during growth in glucose and, if so, whether this compensation comes at a cost of 

the benefit conferred by lacI- in lactose. To do this, I isolated strains from populations evolved for 

8,000 generations in lactose, glucose, and combinations of both fluctuating daily and every 2,000 

generations. The lacI- mutation was reverted in those strains that had substituted it, and its effect 

on fitness determined. I found that the fitness cost of lacI- in glucose was variable, but did not 

differ consistently between populations evolved in lactose only, where compensation is not 

expected to be selected, and in environments containing glucose, where it is. Similarly, strains 

varied in their relationship between the fitness benefit conferred by the lacI- mutation in lactose 

and costs in glucose, but this variation did not depend on their selection environment. Together, 

these results demonstrate the potential for the action of compensatory mutations to influence costs 

of adaptation, but indicate that their effects may either be idiosyncratic or be overwhelmed by the 

effects of additionally selected mutations. 
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3.2 Materials and methods 

 

3.2.1 Bacterial strains and strain construction 

 

Bacterial strains were selected from replicate populations started with strains REL606 and REL607, 

which are isogenic except for a neutral arabinose marker and a mutation in recD that also appears 

to be neutral (Tenaillon et al., 2016). Populations were evolved in Davis-Mingioli (DM) minimal 

media supplemented with different presentations of glucose (175 µg/ml) and lactose (210 µg/ml) 

(Cooper and Lenski, 2010). The evolution environments included DM supplemented with lactose 

(Lac), daily fluctuations of glucose and lactose (G/L), or long-term switching from glucose to 

lactose every 2,000 generations (G_L) or from lactose to glucose every 2,000 generations (L_G). 

Each population was evolved for 8,000 generations, except for one G/L population, which was 

evolved for 7,000 generations (G/L2). Six replicate populations were evolved in each environment. 

Clones with a lacI- mutation were selected from populations based on their growing as a blue 

colony on indicator plates that contained X-gal (5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside) and glucose (TGX plates) (Fig. 3.2; Quan et al. 2012). On TGX plates, the blue 

phenotype is indicative of a strain constitutively expressing the lac operon. A total of nine clones 

were selected, one from each of three lactose only populations, a G_L population, and five G/L 



 50 

populations. In all clones the lacI gene was amplified and sequenced to verify that lac operon 

constitutive expression was caused by a mutant LacI repressor (Fig. 3.2). Amplification was 

carried out using the primers:  5’-GCGGAGCTGAATTACATTCC-3’ (11-F) and 5’-

GGGTGCCTAATGAGTGAGCT-3’ (12-R).   
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Figure 3.2 X-gal phenotype and lacI mutations of sequenced region.  A representative colony 
for each clone on X-gal indicator plates is shown at left. All mutations across evolved clones were 
either a 4 bp insertion or deletion frameshift mutation in a mutational hotspot region of lacI. Only 
the insertion is shown for ancestor lacI-, but the deletion was also assessed and had the same fitness 
effect and X-gal phenotype.   
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To construct ancestral lacI allele derivatives of evolved strains that had substituted a lacI- mutation, 

I first PCR amplified the ancestral allele using primers 11-F and 12-R. The PCR product was 

ligated into pCR2.1 using a TA cloning kit (Invitrogen, California) and used to transform TOP10F’ 

cells. After blue/white colony screening to identify transformants having a plasmid insert, 

pCR2.1::lacI+ was purified from TOP10F’ cells (QIAGEN, Germany) and checked for the correct 

size insert by restriction fragment length polymorphism. To transfer the lacI+ allele to the suicide 

vector pDS132, pCR2.1::lacI+ and pDS132 were both digested using enzymes SacI and XbaI 

(New England Bio Labs, Massachusetts). The lacI+ encoding fragment from the pCR2.1::lacI+ 

digestion products were extracted from the gel and purified using a gel purification kit (QIAGEN, 

Germany). The pDS132 digestion products were purified using a PCR purification kit. The lacI+ 

gel extract inserts and purified pDS132 digestion products were ligated together and used to 

transform MFDpir cells (Ferrières et al., 2010). MFDpir (pDS132::lacI+) was separately 

conjugated with each target evolved strain by mixing donor and recipient at a 1:2 ratio, respectively. 

Conjugation was carried out on LB agar plates supplemented with 2,6-diaminopimelic acid (DAP; 

30 µM) for 3-4 hours at 37 °C. The conjugation mixture was resuspended in 200 µL DM medium 

and plated onto minimal glucose agar (MG) supplemented with chloramphenicol (Cm; 20 µg/mL) 

to select for strains with the pDS132 plasmid successfully integrated into the chromosome 

(Philippe et al., 2004). MFDpir were counter-selected by omitting DAP, which they require for 
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growth. After overnight incubation, six colonies were restreaked onto MG + Cm agar, again 

incubated overnight, and then restreaked a second time to the same medium. A colony descended 

from each of the original six was resuspended in 500 µL DM base liquid media and plated (50 µL) 

onto sucrose plates supplemented with X-gal to select for excision of the pDS132 plasmid 

(Philippe et al., 2004) and screen for clones that had retained the introduced lacI+ allele. One blue 

colony and one white colony were selected from each plate and each were restreaked twice onto 

sucrose + X-gal plates. White colonies indicate clones that successfully integrated the lacI+ allele 

and the blue colony (negative control) is a clone that went through the allele replacement process 

but did not retain the lacI+ allele. The blue negative control clone was used to test for the presence 

of additional mutations that occurred during the allele replacement process. All clones were tested 

for chloramphenicol sensitivity by spotting onto DM + glucose + Cm agar to ensure the plasmid 

was excised. Clones that were sensitive to chloramphenicol were grown up in 3 mL lysogeny broth 

(LB) and made into a freezer stock (600 µL LB culture mixed with 400 µL 80% glycerol) and 

stored at -80 °C. The lacI+ insertion was verified by using PCR to amplify a portion of lacI that 

contained the transferred mutation (using primers 11-F and 12-R) and sequencing this product 

using the 11-F primer. 
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To evaluate the possibility of secondary mutations being inadvertently added during construction 

of lacI+ strains, I measured the fitness of control strains that went through the conjugation process 

but that did not retain the introduced lacI+ allele in competition with an otherwise isogenic strain 

with a distinct neutral ara marker. The ara marker strains were constructed either by pairwise 

conjugations between the evolved strain and MFDpir (pDS132::ara-) (same method as above 

except X-gal was not used in the media), or by plating 100 µL of overnight LB cultures onto 

minimal arabinose agar (MA) and selecting for spontaneous ara+ mutants. Indistinguishable 

fitness between competing strains was interpreted as indicating the absence of a fitness-effecting 

secondary mutation.  

 

3.2.2 Fitness assays 

 

Fitness effect of the lacI- mutation in each isolated strain was measured in the relevant evolution 

environment and in glucose (175 µg/ml) and lactose (210 µg/ml) only environments. Cells were 

transferred daily into fresh media at a 1:100 dilution and incubated at 37 °C with shaking at 200 

rpm. Strains were initially acclimated to the assay environment over two 24-hour transfer cycles 

with a 1:100 dilution occurring between each cycle. Pre-conditioned competitors were mixed at a 

1:1 ratio by diluting each competing strain 1:200 directly into the assay environment. Competitions 
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were carried out over two or four transfer cycles as noted in figure legends. On the initial and final 

day of competitions, cells were plated onto TGX plates and incubated at 37 °C for 18-20 hours in 

order to distinguish competing genotypes. Relative fitness effect of the lacI- mutation was 

determined based on the change in density of blue (lacI-) and white (lacI+) colonies on TGX plates 

using the formula: ln(blue2´100z/blue0)/ ln(white2´100z/white0), where subscripts indicate the 

time at which competitor density was estimated, and z accounts for transfer cycles during the 

competition (Lenski et al., 1991). Test competitions checking for additional mutations occurring 

during allele replacement procedures or selection of spontaneous ara+ mutants were performed as 

described above, except competitors were distinguished by plating onto tetrazolium arabinose agar 

(TA). 

 

3.2.3 Expression assays 

 

Expression of the lac operon was measured using a GFP reporter construct controlled by the Plac 

promoter region including the O1 and O3 LacI operator sequences, and native CRP and ribosomal 

binding sites (Fig. 3.3) (Quan et al., 2012). This reporter was previously cloned into a mini-Tn7 

cassette in a suicide-vector (Quan et al., 2012) and was introduced into target strains by tri-parental 

conjugations between a target recipient evolved strain, a donor strain (MFDpir 
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(pUC18R6KT::Plac-GFP, kanr)), and a helper strain (MFDpir (pTSN2)) (Choi et al., 2005; 

Ferrières, et al., 2010; Quan et al., 2012). Strains were mixed at a 3:1:1 ratio (recipient : donor : 

helper) on LB + DAP (30 µM) agar and incubated at 37 °C for 3 hours. DAP is added to the 

medium because the donor and helper strains are both MFDpir, which is a diaminopimelic acid 

auxotroph (Ferrières et al., 2010). The conjugation mix was resuspended in DM medium and 

plated onto LB + kanamycin (Km; 60 µg/mL) + isopropyl b-D-1-thiogalactopyranoside (IPTG; 1 

mM) agar plates. Kanamycin selects for clones that successfully obtained the Plac-GFP reporter 

while IPTG induces expression of the reporter allowing identification of clones that stably 

incorporated the GFP reporter. After 24-36 hours of growth, six fluorescent colonies were 

restreaked onto LB + Km (60 µg/mL) plates. Restreaked colonies were streaked a second time on 

LB + Km + IPTG plates and then tested for ampicillin (Ap) sensitivity by spotting colonies onto 

LB + Ap (100 µg/mL) agar. Ampicillin sensitivity ensures that the pUC18R6KT vector was lost 

from the cell. Insertion of the Plac-GFP reporter into the attTn7 site was confirmed by PCR 

(primers:  5’-TAACAGCCAGCACCACGCCG-3’ (120-F) and 5’-

CGCGAATCCGATCTGGCGCT-3’ (121-R)). Transposition of the reporter into each recipient 

strain’s attTn7 site allows consistent insertion of the reporter into the same region of the genome 

minimizing divergent effects on reporter fitness and expression costs (Choi et al., 2005).  
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Figure 3.3 GFP reporter and lac operon schematic. The top schematic shows lacI and the lac 
operon with the approximate locations of the structural genes (lacZ, lacY, and lacA), binding sites 
of CRP and lacI (O1, O2, and O3), and the lac operon promoter region (Lewis et al., 1996). LacI 
forms a tetramer that binds to the operators. The bottom schematic shows the PlacGFP reporter, 
which includes the promoter region of the lac operon including the lacI operator binding sites O1 
and O3, and CRP and ribosomal binding sites (Quan et al., 2012).   
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To measure expression, reporter strains were grown up in LB broth from freezer stocks. The 

overnight cultures were diluted 1:10,000 in the assay environment and allowed to grow for 24 

hours. The following day cultures were diluted again 1:10,000 in the assay environment and grown 

in a VersaMax spectrophotometer (Molecular Dynamics, CA) until mid-log phase (OD450 ~0.1-

0.15) to allow measurement of a steady-state level of Plac-GFP reporter expression. Plac-GFP 

expression was measured in an Accuri C6 flow cytometer (Becton Dickinson, NJ). Assay 

environments included DM+175 µg/mL glucose, DM+210 µg/mL lactose, and DM 4000 µg/mL 

glycerol + 100 µM TMG as noted in the text. 

 

3.2.4 Statistical analyses 

 

Data was analyzed using R (version 3.5.0) (R Core Team, 2018). Non-parametric tests were used 

to analyze data having a non-normal distribution or unequal variances, as determined using 

Shapiro-Wilk and Levene’s tests, respectively. I used a Kruskal-Wallis rank sum test to determine 

if the evolution environment significantly influenced selection of compensatory mutations. I used 

a Fisher’s exact test to determine if the presence of both glucose and lactose versus lactose alone 

influenced the presence of compensatory mutations. 
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3.3 Results 

 

3.3.1 Evolution of compensatory mutations 

 

In the ancestor to our evolution experiment, mutations that inactivate LacI confer a fitness cost of 

approximately 4% during growth in glucose (Quan et al., 2012). To determine whether this cost is 

compensated during evolution in environments containing both glucose and lactose resources, and, 

if so, whether this compensation differed depending on the presentation of the two resources, I 

reverted evolved lacI- mutations in a total of nine clones isolated from populations selected in 

lactose alone (three populations), long-term switching of glucose and lactose (one population), and 

daily switching of glucose and lactose (five populations). I ran fitness competitions in glucose to 

test the fitness effect of the lacI- mutation in the ancestor and in evolved backgrounds. Clones with 

compensatory mutations that alleviate the cost of lacI- in glucose will have a higher fitness than 

the lacI- ancestor (Fig. 3.1). I found that the cost of lacI- in glucose was significantly changed only 

in evolved clone G/L4, isolated from the daily fluctuating glucose and lactose environment (Fig. 

3.4; Dunnett’s Test, P < 0.05). In this clone, the lacI- mutation became beneficial. 
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Figure 3.4 Pleiotropic effects of lacI-. This figure shows the fitness effect of lacI- in the ancestor 
and evolved genetic backgrounds measured in minimal glucose (purple) and lactose (green) 
environments. The asterisk indicates a significantly different lacI- fitness effect when compared 
to the effect in the ancestor (Dunnett’s test, P < 0.05). Symbols and error bars indicate mean and 
standard error of at least 6 or 3 replicate fitness estimates for glucose and lactose competitions, 
respectively. Note that error bars are smaller than symbols for many of the glucose fitness estimates. 
The lines represent the fitness effect of lacI- in the ancestor in glucose (dashed) and lactose (dotted). 
Evolution environments are shown directly above clone names which denotes the population a 
clone was selected (“Anc” represents the ancestor). In the glucose environment, one clone had a 
significantly higher fitness than the ancestor indicating that compensatory mutations are alleviating 
the cost of lacI- in glucose.  
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3.3.2 Effect of environment on compensatory mutations 

 

Although the cost of lacI- was significantly changed in only one clone when compared to the 

ancestor, there may be significant changes in costs seen when grouping clones based on their 

evolution environment. To test this, I used a Kruskal-Wallis rank sum test to compare the relative 

fitness of each group (strains evolved in Lac, G/L, or G_L). I expect clones evolved in the presence 

of fluctuations of glucose and lactose (i.e., G/L and G_L selection environments) to have a reduced 

fitness cost of the lacI- mutation in glucose because compensation for the original cost would 

provide an advantage. There was no significant difference among evolution environments 

(Kruskal-Wallis c2 = 2, df = 2, P = 0.37), indicating that compensation was not more likely to 

occur in a specific evolution environment. Since a particular evolution environment doesn’t seem 

to promote selection of compensatory mutations, I tested if clones exposed to both glucose and 

lactose at some time during their selective history were more likely to evolve compensatory 

mutations than clones that had only experienced selection in lactose. I was not able to detect a 

significant signal of compensation being dependent on exposure to both glucose and lactose 

(Fisher’s exact test, P = 0.67).  
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3.3.3 Pleiotropic effect of lacI- compensation 

 

Given that compensation for the cost of constitutive lac expression evidently can occur, one 

explanation for the low frequency at which it does occur is that it imposes a correlated cost in 

lactose. For example, it might be that compensation to constitutive expression of the lac operon 

involves a reduction in the maximum level of lac expression, perhaps reducing fitness in lactose 

and thereby causing compensation to be selectively disfavored. To test this possibility, I examined 

the fitness effect of lacI- mutations across glucose and lactose environments. To determine if there 

was any trend of a lower cost of lacI- in glucose corresponding to a lower benefit in lactose, I 

examined the relationship between the fitness effect of lacI- mutations in glucose and lactose. I 

found that there was, in fact, a marginally significant positive correlation between fitness in the 

two environments, indicating that a low cost of the lacI- mutation in glucose was, if anything, 

associated with an increased benefit in lactose (Fig. 3.5A and 3.5B; Spearman’s rank correlation, 

rho = 0.72, P = 0.04). The positive relationship remained, although it was no longer significant, 

even when I considered only those clones that had experienced selection in both glucose and 

lactose (Fig. 3.5C and 3.5D; Spearman’s rank correlation, rho = 0.6, P = 0.24). The significance 

of the correlation is dependent on the one evolved clone (G/L4) that had compensated for the lacI- 

mutations cost in glucose, which is an extreme outlier when compared to the other clones (fitness 
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in glucose: Bonferroni outlier test, P < 0.05 with Bonferroni correction for multiple comparisons). 

When G/L4 is removed the correlation is no longer significant, though was still positive, regardless 

of whether or not the lactose only evolved clones are included (with Lac clones:  rho = 0.6, P = 

0.13; without Lac clones:  rho = 0.3, P = 0.68). Focusing on the G/L4 clone in which lacI- effects 

in glucose appear to have been compensated revealed that the lacI- mutation is beneficial in 

glucose and its effect in lactose is significantly higher than in three of the evolved clones tested, 

as well as the ancestor (G_L1, G/L1, and G/L2; Dunnett’s test, P < 0.05). These results indicate 

that there is no universal constraint on the ability of populations to compensate for the fitness cost 

of lacI- mutation in glucose. 
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Figure 3.5 Reduced cost of lacI- in glucose does not reduce the benefit in lactose. Symbols 
represent the evolution environment or genotype of each clone that the fitness effect of lacI- was 
measured in a glucose or lactose environment. The closed circle, fitness effect of lacI- in the 
ancestor, shows what we expect if there were no epistatic interactions between lacI- and other 
mutations in the evolved background. To determine if a reduced fitness cost of lacI- in glucose 
was associated with a reduced benefit in lactose I ran a correlation between the fitness effect of 
lacI- in glucose and lactose. There was a significant positive correlation between fitness in glucose 
and lactose when including all clones (A and B), which became insignificant when excluding 
clones that had only experienced selection in lactose (C and D), indicating that alleviation of lacI- 
costs in glucose is not detrimental to the benefit in lactose. The ancestor was not included in 
analyses but is shown for reference.   
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3.3.4 Mechanisms of lowered costs 

 

To determine if lac operon expression, an indicator of LacZ activity, is associated with changes in 

the fitness effects of the lacI- mutation, I measured lac operon expression in glucose using a 

reporter that is controlled by the Plac promoter region (Fig. 3.6; expression in lactose and TMG 

were included as controls). Expression levels of the lac operon have been shown previously to 

contribute to the cost of constitutive expression, so I expected a negative relationship, such that 

clones that had higher lac operon expression would have lower fitness in the glucose environment 

(i.e., a higher cost) (Dekel and Alon, 2005; Stoebel et al., 2008). In fact, there was no correlation 

(Fig. 3.7A and 3.7B; Spearman’s rank correlation, rho = 0.12, P = 0.78). This is especially 

surprising because half of the evolved strains had significantly higher lac expression in glucose 

than the ancestor lacI- (Dunnett’s test, P < 0.05).  
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Figure 3.6 PlacGFP expression of lacI+ and lacI- clones in glucose, lactose, and TMG 
(maximum expression). The symbols and colors represent the genetic background and evolution 
environment of each clone. The x-axis shows the genotype and assay environment that PlacGFP 
expression was measured in. Each measurement is the average of the median expression values of 
independent replicates (at least 13, 2, and 4 replicates each for glucose, lactose and TMG, 
respectively). The error bars indicate the standard error.   
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Figure 3.7 lacI- fitness effect is not caused by differences in lac operon expression. Symbols 
are the mean of replicates and represent the genotype or evolution environment of clones. To 
determine if the mechanisms of the fitness cost in glucose was due to higher lac operon expression 
I ran a correlation between the effect of lacI- on fitness and expression in glucose (A and B). There 
was not a significant correlation between lac operon expression and lacI- fitness effect in glucose, 
indicating that differences in fitness are not explained by the level of lac operon expression. The 
ancestor is shown for reference but was not included in analyses.  



 68 

That increased lac expression was not associated with any fitness cost might indicate the action of 

compensation to some portion of the costs that would otherwise be associated with increased lac 

expression. Alternatively, there could be a limit to the costs associated with constitutive lac operon 

expression as has been found with lacZ expression (Eames and Kortemme, 2012), although the 

model most relevant to the situation prevailing in our experiments predicts exponentially 

increasing costs with increasing expression (Dekel and Alon, 2005). All clones except G/L4 had 

similar fitness costs when compared to the ancestor, but clones were divided when it came to 

differences in expression when compared to the lacI- ancestor. The clone that had the highest 

fitness in glucose (G/L4) also had significantly lower expression in glucose compared to all clones 

except two (Dunnett’s test, P < 0.05; except for G/L3, P = 0.87; and G/L6, P = 0.43). Epistatic 

interactions between lacI- and the genetic background of evolved clones that affect expression 

were common in glucose. The effect of lacI- on expression (calculated as the change in expression 

caused by lacI-) was significantly lower for G/L2, G/L3 and G/L4 but higher for all Lac evolved 

clones when compared to the effect in the ancestor (Dunnett’s test, P < 0.05). Together these results 

suggest that there was some differential selection of expression based on environment but the 

consequences are inconsistent. 
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3.4 Discussion  

 

Few studies have focused on the influence of compensatory mutations during adaptation to a 

general environment rather than to a specific genetic perturbation. I found that compensation to 

the deleterious consequences of an adaptive lacI mutation is possible but rare among evolved 

clones in this experiment. Of the nine clones tested, only one clone (G/L4) evolved a mechanism 

to alleviate the cost of constitutive lac operon expression in glucose (Fig. 3.4). No differences in 

compensation were evident comparing groups of clones evolved in different environments, 

including some that were and some that were not expected to select for compensation, likely 

reflecting the small number of populations considered and rarity of compensation for small effect 

mutations.  

 

A possible reason compensation did not occur more often is that beneficial mutations of large 

effect outcompete compensatory mutations that provide only small benefits. These small benefit 

compensatory mutations will continue to be outcompeted until mutations of large effect are 

exhausted. Previously, populations of the present study were shown to have higher fitness gains at 

early versus later time points (Satterwhite and Cooper, 2015), however, the latter gains may still 

be larger than the small ~2.2% cost of lacI- in glucose observed here. G_L populations were shown 
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to steadily increase in glucose fitness up to 6k generations (Satterwhite and Cooper, 2015) so small 

effect compensatory mutations may not be sufficiently competitive to increase in frequency. At 8k 

generations the G_L populations had just finished 2k generations of selection in a constant lactose 

environment so the need to compensate for the cost of lacI- in glucose was absent from 6k to 8k 

generations. However, G/L populations had an overall net decrease in fitness across glucose and 

lactose environments during 4-5k generations (Satterwhite and Cooper, 2015), which would have 

allowed small benefit mutations to get to higher frequencies in the population and may be why 

only a G/L clone was suggested to have compensatory mutations.  

 

A caveat to the preceding interpretation for G/L populations is that fitness measurements for 

glucose and lactose environments were made independently (Satterwhite and Cooper, 2015), 

instead of the original evolution environment which is daily switching from glucose to lactose. 

Measuring fitness in only one environment, either glucose or lactose, could overlook a possible 

fitness advantage during the switch from glucose to lactose (Quan et al., 2012). To confirm 

declining fitness of G/L populations during 4-6k generations, fitness competitions would need to 

be remeasured in the original evolution environment of glucose and lactose daily fluctuations. 

Populations that have a decline in G/L fitness over an extended amount of time would indicate the 

presence of conditions that would permit small effect mutations to be compensated. If increases in 
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G/L fitness are observed over time, it would indicate that an advantage lies in a reduction in lag 

time when switching to a new carbon source. However, it may be possible that the phenomenon 

of compensation for small effect mutations is contingent on differential cell death during stationary 

phase or fitness during exponential growth in either glucose or lactose. 

 

Another possible explanation for why compensation is rare is that multiple mutations are required 

to compensate the cost of lacI- in glucose without affecting its benefit in lactose (Poon and Chao, 

2005b). Multiple compensatory mutations will take longer to fix and will be rare because 

successful compensation can depend on the order in which each required mutation occurs (Gong 

et al., 2013), the presence/absence of other mutations in the genetic background (Shah et al., 2015; 

Lunzer et al., 2010), and a clone’s fitness at each step relative to others in the population which 

can subject an intermediate clone to being purged by purifying selection. Replacing lacI- with a 

functional LacI repressor in the G/L4 clone, in which compensation did occur, significantly 

reduces fitness in glucose and expression of the lac genes. In other words, this clone has somehow 

rewired the lac network to where lac operon expression is beneficial for growth in glucose. The 

basis of this rewiring is unknown, but might depend on multiple mutations as is the case, for 

example, of evolved citrate utilization selected in a population started from the same ancestor as 

the one used here (Blount et al., 2008, 2012). I note that both a clone isolated from a G/L selected 
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population, but not used in the work presented here, and clones from three glucose evolved 

populations, have also evolved in a way that caused the lacI- mutation to become beneficial in 

glucose (KP unpub. obs.; Satterwhite and Cooper, 2015). These observations argue that 

mechanisms underlying compensation are more likely to be constrained by selection than by the 

requirement for a specific mutational history.  

 

We know that compensation is possible but the underlying mechanism of compensation is 

unknown. While unnecessary lac operon expression is likely to confer some cost (Dong et al.,1995; 

Stoebel et al., 2008; Scott et al., 2010), most of the cost has been associated with the mechanism 

of LacY (Eames and Kortemme, 2012). A possible explanation for the benefit of G/L4 

constitutively expressing the lac operon in glucose is that at least one of the lac proteins has been 

repurposed for another task that provides a benefit in glucose. The most likely candidates involved 

in novel functions inside the cell are LacI and LacY, although it is possible that LacA has evolved 

to tag some unknown nonmetabolizable molecule for export. Perhaps the LacY permease is now 

importing glucose. Although the LacY permease is typically inhibited through inducer exclusion 

when glucose is present (Hariharan et al., 2015), it has been found that overactive LacY in lacI- 

constitutive cells can provide a fitness advantage in glucose (Dykhuizen and Dean, 1994). LacY 

has been proposed to differentiate between galactosides and glucosides by the position of the -OH 
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group on the C4 of the galactosyl moiety (Sahin-Tóth et al., 2001). When amino acids that 

recognize this area are mutated, they no longer have a specificity for galactosides, which can 

increase the affinity of non-galactoside sugars to LacY but sometimes decrease affinity to lactose 

(Gram and Brooker, 1992; King and Wilson, 1990). Although import of lactose is reduced, these 

studies indicate that LacY can potentially be mutated to interact with both lactose and glucose. A 

sugar similar to glucose that LacY has been shown to inefficiently import is galactose, an epimer 

of glucose, only differing by the conformation of the -OH group on C4 of the pyranose ring (Sahin-

Tóth et al., 2000). LacY mutants have also been shown to import maltose, a disaccharide of two 

glucose monomers (Brooker and Wilson, 1985; King and Wilson, 1990). The ability to import 

maltose suggests that recognition of the galactosyl C4 -OH group in lactose is not an absolute 

requirement for some transport by LacY. Collectively, this indicates the potential for LacY to 

evolve to import glucose, however, it is unclear if it would provide a substantial benefit. Glucose 

transport is not likely a limiting factor at the concentration used in this experiment, because the 

Km for the normal pathways in glucose uptake is well below the concentration used in this 

experiment (reviewed in Jahreis et al., 2008; Ferenci, 1996; and Postma et al., 1993). For this 

reason, the basis of the benefit of lacI- likely lies elsewhere but perhaps additional glucose 

transporters are advantageous when glucose is utilized and becomes increasingly low in the 

environment. A previous study found that glucose transport evolved during long-term evolution in 
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a minimal glucose environment through mutations in catalytic enzymes that indirectly affect 

glucose uptake through the phosphotransferase system (Lenski et al., 1998; Woods et al., 2006).   

 

The 4 bp insertion frameshift mutation in lacI- of G/L4 results in a truncated non-functional LacI 

repressor that consists of 203 amino acids due to the replacement of Y204 with a premature stop 

codon. The ancestral LacI protein consists of 360 amino acids. The first 201 amino acid residues, 

which include the DNA binding domain of LacI (Platt et al., 1973), are identical to the ancestor, 

and since LacI has been shown to diffuse throughout the cell and non-specifically bind to DNA 

(Hammar et al., 2012; Garza de Leon et al., 2017), the LacI monomer could be interacting with 

another region in the genome. However, amino acids 202 and 203 are positively charged 

hydrophilic amino acids that are replaced with neutral hydrophobic residues (H202L, K203A). 

Genetic studies have shown that the specific amino acid replacements at these two positions still 

result in a functional LacI repressor when part of the whole protein (Kleina and Miller, 1990; 

Markiewicz et al., 1994), but when alanine is at the end of a truncated protein it results in an 

unstable protein that will likely be rapidly degraded (Parsell et al., 1990).  

 

Another possible mechanism for a lacI mutation to provide an advantage in glucose is that an 

operator site for a different gene has evolved to provide a benefit in the absence of LacI+. The 
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LacI repressor has homology to other repressors in E. coli (Weickert and Adhya, 1992), and studies 

have shown that as few as two mutations are needed to increase the affinity of LacI to another 

operator (Lehming et al., 1987; Lehming et al., 1990; Salinas et al., 2005; Daber and Lewis, 2009). 

A potential candidate is a GalP operator binding site for the GalR repressor, which is a repressor 

with high similarity to LacI. The regions of the operators that are necessary for recognition by the 

GalR and LacI repressors are identical except at the fourth position. Mutations in GalR and its 

operator binding site have been previously found in only G/L clones of our evolved populations, 

including galR (28-29/1032) IS150 +2 bp in a different 8k clone selected from the same G/L4 

population of the clone used in this experiment (TC unpub. obs.). GalR inhibits the GalP permease, 

a transporter with the ability to import glucose that is normally inhibited under low glucose 

concentrations (Hernández-Montalvo et al., 2003; Lu et al., 2011; Steinsiek and Bettenbrock, 

2012). Although GalP has three independent repressors and multiple operator binding sites, 

mutations in its primary operator greatly reduce repression (El Qaidi et al., 2009). If the primary 

operator for the GalP transporter of G/L4 has mutations at only the fourth position in the operator 

half sites, it would resemble the O1 operator for LacI and may result in constitutive expression of 

GalP in the presence of lacI- but repression when lacI+ is added to the genetic background (Haber 

and Adhya, 1988). This is hypothesized because GalR has been shown to form a complex with a 

LacI operator variant that resembles the GalP operator due to a single point mutation (Lehming et 
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al., 1990). The benefit of GalP constitutive expression lies in the ability of the GalP transporter to 

import glucose (Hernández-Montalvo et al., 2003; Lu et al., 2011). Perhaps the glucose pathway 

in the G/L4 clone has evolved and alternative methods of glucose import are necessary (Steinsiek 

and Bettenbrock, 2012). 

 

Finally, it is possible that the ancestral lacI+ allele, which was lost early in this population so that 

most mutations occurred in its absence, interacts epistatically with the evolved background to be 

deleterious so that the lacI- allele provides only a relative benefit (Bridgham et al., 2009; Shah et 

al., 2015; Starr et al., 2018). A previous study on genetic interactions throughout the genome of E. 

coli found that lacI+ interacts epistatically with 11 different genes that are not directly associated 

with lactose metabolism (Babu et al., 2014). Of these 11 genes, eight were associated with positive 

epistatic interactions (Babu et al., 2014), indicating the potential for negative interactions to arise 

if these genes evolved and no longer interacted positively with lacI+. To differentiate between 

novel functions of lac proteins including LacI- and the deleteriousness of LacI+, future research 

could perform deletion studies of each lac gene followed by competitions between knockout 

strains and G/L4 in glucose. A decrease in glucose fitness caused by knocking out any of the 

canonical lac genes suggests that expression of that particular gene is beneficial in glucose and it 

has a novel function. However, if knocking out each lac gene increases fitness relative to G/L4, it 
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indicates that expressing the lac genes is still costly but less than the effect of adding lacI+ to this 

genetic background. If there is an indication of novel functions for any of the canonical lac genes, 

future research could determine differences in gene expression between G/L4 and each G/L4 lac 

knockout (lacKO) that decreases fitness. A cluster analysis of gene expression data would indicate 

gene expression networks that change based on the presence or absence of the knockout gene. The 

networks of the genes that have changes in expression in the lacKO strain compared to G/L4 would 

be candidates for processes that involve the novel protein function. Isolating which networks 

involve the novel protein function will facilitate identifying the novel function by reducing the 

number of potential interacting components.  

 

Another more laborious method that could be used alone or in conjunction with DNA microarrays 

is testing for epistatic interactions between each evolved mutation (ev-) and evolved lac gene (lac-) 

in glucose. This could potentially narrow down interacting components of the novel protein 

function. Epistatic interactions between each lac gene (lac-) and each evolved mutation in glucose 

can be tested by replacing lac- and another evolved mutation (ev-) with the ancestral alleles (lac+ 

and ev+, respectively) in the evolved background and adding lac- and the same evolved mutation 

(ev-) to the ancestor background. Differences in the fitness effect of the double mutants in 

competitions between G/L4 vs. G/L4 lac+ ev+ and ancestor lac- ev- vs. ancestor in glucose would 
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indicate epistatic interactions between the two mutations and the potential for interactions that 

create novel functions.  

 

Although compensation was rare for constitutive lac operon expression in glucose, alternative 

mechanisms to reduce costs of lacI- in glucose may be present in populations. The present study 

selected blue colonies on X-gal plates because it indicates that cells were likely to have constitutive 

lac expression and thus a cost in glucose that would need to be overcome. However, cells that have 

a lacI- mutation and produce white colonies on X-gal plates indicate an alternative mechanism to 

compensation for constitutive expression that reduces expression in the presence of glucose by 

reverting the phenotype. Future studies should consider analyzing a variety of phenotypes on 

indicator media to prevent excluding any possibilities and to determine if suppressor mutations are 

more likely to occur than compensation in this system, which could help explain why 

compensation was rare. 

 

In summary, compensation was rare and did not occur based on specific fluctuations of glucose 

and lactose. In the clone that compensation of lacI- did occur lac operon expression was reduced 

but not more so than other strains that had a similar cost in glucose compared to the ancestor. This 

indicates that costs of constitutive expression were overcome by epistatic interactions with other 
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mutations in the evolved background, and that the reduction in cost was not due solely to a 

reduction in expression. Future studies should look into the potential long-term tradeoffs of 

compensation and what makes compensation rare. 
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Chapter 4  

 

Diversity in lac operon regulation among diverse Escherichia 

coli isolates depends on the broader genetic background but 

is not explained by genetic relatedness 

 

Phillips, K. N., Widmann, S., Lai, H.-Y., Nguyen, J., Ray, J. C. J., Balázsi, G., & Cooper, T. F. 

2019. Diversity in lac operon regulation among diverse Escherichia coli isolates depends on the 

broader genetic background but is not explained by genetic relatedness. MBio 10(6):1–14.a 

a. This chapter is published in mBio. I ran most experiments (with help from undergraduate 

students) and statistical analyses. I did not contribute to the experiments and analyses 

associated with Fig. A4.6 in the appendix.   

 

4.1   Introduction 

 

Gene regulatory networks allow bacteria to respond to changes in their environment by activating 

or repressing target genes (Lee et al., 2012). In this way, cells can exhibit phenotypes that balance 

the demands of expressing necessary genes while minimizing the diverse costs associated with 
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expression of genes that are not necessary (Kalisky et al., 2007; Dekel and Alon, 2005; Dean, 

1989; Acar, 2008; Eames and Kortemme, 2012; Frumkin et al., 2017; Scott et al., 2010). 

Regulatory networks must respond to a diverse array of signals, for example, integrating 

information regarding availability of multiple resources that the organism uses with different 

preference (Aidelberg et al., 2014). For a particular group of co-regulated genes, the integration of 

these signals defines its regulatory input function. Knowledge of this function aids in the prediction 

of gene responses, understanding of the mechanistic basis of regulation, understanding the 

potential for regulation to evolve, and is likely to be helpful in the pursuit of engineering of specific 

responses in artificial circuits (Kashiwagi et al., 2006). Despite the importance of regulatory input 

functions, understanding of their variation within a species is limited. This variation is important 

as it reflects potential for evolutionary changes in regulatory function and might reveal differences 

in selection pressures affecting different sub-populations.   

 

A good model system with which to study a regulatory input function is the lac operon (lacZYA) 

of Escherichia coli (Pardee et al., 1959; Jacob and Monod, 1961; Setty et al., 2003; Mayo et al., 

2006; Kuhlman et al., 2007). This operon has been a focus of efforts to examine the effect on gene 

expression and regulation of transcription factor stochasticity (Choi et al., 2008), DNA topology 

(Kuhlman et al., 2007), transcriptional fidelity (Gordon et al., 2013), and hysteresis (Ozbudak et 
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al., 2004). It has also been examined to understand costs of protein expression (Dekel and Alon, 

2005; Eames and Kortemme, 2012; Stoebel et al., 2008), the importance of coordinated gene 

expression (Ray et al., 2016), and is established as a target of selection during growth in defined 

environments (Dekel and Alon, 2005; Quan et al., 2012; Zhong et al., 2009). The wealth of 

information gained from empirical study of lac operon regulation has made it a focus of attempts 

to understand and model gene regulation, including attempts to learn how to manipulate the system 

to change regulatory outputs (Mayo et al., 2006; Ray et al., 2016; Perfeito et al., 2011; Savageau, 

1998; Semsey, 2014).  

 

The lac operon encodes three gene products. LacY is a permease that imports lactose into the cell 

where it is cleaved by LacZ, a b-galactosidase, into glucose and galactose. LacA is a transacetylase 

that is thought to facilitate export of toxic sugars that cannot be metabolized by the cell. These 

genes are beneficial to express in environments where lactose is the best available carbon source, 

being required for its import and initial catabolism, but their expression is also associated with a 

significant cost (Dekel and Alon, 2005; Eames and Kortemme, 2012; Quan et al., 2012). The lac 

operon is directly regulated by two environmental signals, positively by lactose and negatively by 

glucose, that modulate that activity of transcription factors that bind to cis-regulatory DNA regions. 

The LacI repressor, a trans-regulator, binds at three operator binding sites, the cis-regulators, in 
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the vicinity of the lac promoter and can interact to cause DNA looping, which promotes repressor 

binding and increases repression (Fulcrand et al., 2016; Vilar and Leibler, 2003). In the presence 

of allolactose (a derivative of lactose) or artificial inducers (e.g., isopropyl β-D-thiogalactoside 

(IPTG)) LacI is released from DNA, allowing transcription to occur (Jobe et al., 1972). The cAMP-

CRP global regulator complex, another trans-acting factor, binds upstream of the lac operon 

promoter to its cis-regulatory region and enhances transcription by promoting the recruitment of 

RNA polymerase to the lac promoter (Zubay et al., 1970). Production of cAMP is decreased in the 

presence of glucose thereby decreasing availability of the cAMP-CRP complex.  

 

The regulatory control of many genes can be described as logic functions. These functions 

integrate complex mechanistic details of regulatory control to describe how regulator activities 

combine at a cis-regulatory region to determine the expression of target genes (Setty et al., 2003; 

Mayo et al., 2006; Kaplan et al., 2008). A simple expectation is that lac genes will be controlled 

by AND type logic, whereby expression requires the presence of lactose and absence of glucose. 

In fact, experiments using the artificial IPTG inducer and exogenous cAMP to independently 

control LacI and CRP activity found that the underlying function is more complex, being 

intermediate between AND and OR functions (Setty et al., 2003; Mayo et al., 2006). That work, 

however, focused on the gene input function of a single K-12 E. coli strain, MG1655, and close 
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derivatives, which may not be representative of other strains. Though often considered a wild-type 

strain, MG1655 was isolated in 1922 and during subsequent propagation and storage may have 

been subject to inadvertent selection that affected the lac gene input function (Bachmann, 1996; 

Jensen, 1993). Even if the lac regulatory function has not changed, it remains unknown if different 

natural isolate strains demonstrate different functions.  

 

Two factors suggest the potential for variation in a given regulatory function within a species. In 

the case of the lac operon, model and experiments have revealed many different regulatory 

functions can evolve through single mutations (Mayo et al., 2006; Quan et al., 2012; de Vos et al., 

2013). Second, lac regulation can be affected by changes occurring outside its immediate 

regulatory network. Indeed, a previous study of E. coli populations evolved in environments 

containing lactose or combinations of lactose and glucose, evolved changes in lac expression that 

were common and, at least in part, due to mutations occurring outside the canonical regulatory 

network (Quan et al., 2012). Moreover, that work found that the nature of lac regulatory changes 

reflected the selection environment. For example, most populations evolving in an environment 

that fluctuated daily between glucose and lactose evolved to constitutively express the lac genes, 

whereas populations evolved in the simultaneous presence of glucose and lactose evolved a graded 

response function, allowing a continuous expression response. Similar findings of selection 
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dependent changes in gene regulation have been found in populations adapted to chemostat 

environments (Zhong et al., 2009; Dykhuizen et al., 1987) and during evolution of a stress response 

network (González et al., 2015), and inferred from selective benefits of naturally occurring variants 

controlling biosynthesis of arginine (Suiter et al., 2003). Although studies have not compared 

detailed lac logic functions of different E. coli strains, lac structural gene enzyme activity and 

fitness effect can vary between isolated lac operons (Dean, 1989; Dykhuizen et al., 1987). 

 

To the extent that there is variation in gene regulatory functions, a key question is the relative 

contribution of cis-regulatory changes that affect expression of a specific transcriptional unit (i.e., 

an operon) and trans-regulatory changes that have the potential to affect expression of a regulon 

potentially containing hundreds of genes (Cooper et al., 2008; Treviño et al., 2012). This 

distinction is important because a few trans-regulatory changes may allow a large number of key 

expression changes to evolve relatively quickly, whereas the same expression change occurring 

through cis-regulatory change would take much longer, though perhaps with fewer pleiotropic 

side-effects. The distinction between cis and trans control of gene regulation is also relevant to the 

consequences of horizontal gene transfer. If adaptive changes in gene regulation are cis-regulatory 

they are likely to have fewer antagonistic pleiotropic consequences following transfer to 

alternative genetic backgrounds, allowing transfer to more genetically diverged recipients. 
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To examine natural variation in the lac regulatory input function we introduced a GFP reporter 

driven by the lac promoter and containing the primary (O1) and upstream (O3) LacI repressor, and 

CRP, binding sites into 21 divergent natural isolate strains and into two reference lab strains, 

MG1655 and REL606. We found substantial variation in regulatory functions, which we 

quantified by fitting a simple regulatory model to the observed expression data. Some aspects of 

this variation were explained by the genetic relatedness of strains, assessed using phylogenies 

constructed from core and accessory genes, and from only the lac genes. Other parameters varied, 

but without any phylogenetic signal, consistent with them changing on a relatively short time-scale. 

Transfer of a subset of lac operons into a common reference strain indicated that at least some of 

the variation is determined by trans-regulators encoded by the recipient strain, not the cis-

regulatory sequences local to the lac genes. To the extent that regulatory functions are influenced 

by trans-regulators that have pleiotropic activity that varies between strains, adaptive changes in 

gene regulatory functions may be less likely to remain beneficial following horizontal transfer to 

new strains.  
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4.2 Materials and Methods 

 

4.2.1 Bacterial strains and strain construction 

 

Natural isolate strains used as recipients of a lac reporter construct were chosen from a collection 

of 96 strains collected and sequenced as part of a Broad institute project and obtained from the 

Michigan State University STEC Center, and from strains described in (Moore and Woods, 2006) 

(Fig. 4.1, Table 4.1). Genome sequences of strains were downloaded from the Broad Institute 

(http://www.broadinstitute.org/annotation/genome/escherichia_antibiotic_resistance/MultiDownl

oads.html) or obtained by de novo Illumina sequencing as described in (Wang et al., 2016). One 

strain, B156, was included in this work despite being classified as E. albertii. This species lacks a 

functional LacI repressor and LacY permease and is unable to grow on lactose. Throughout, we 

include this strain in individual strain descriptions but omit it from summary data.  
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Figure 4.1 Phylogeny based on the core genome shared between 96 diverse natural isolates 
of E. coli. Strains whose lac regulatory function was determined and whose lacI-ZYA region was 
transferred to the reference strain, REL606, are indicated by the red symbols in columns labelled 
'expression' and 'transfer', respectively. The former group of strains represents a random sample of 
the complete phylogeny (Fig. A4.1). The lac regulatory function was also measured for three 
strains for which we do not have genome sequence and, therefore, are not included here: B156, 
B1167 and TA263 (Table 4.1). The lac operon of TA263 was also transferred to REL606. 
Phylogeny construction is described in Materials and Methods.  
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Table 4.1 Strains used in this study. 

Strain IDa Alternative ID    Obtained from Genome sequence 

B093 TW15931 Broad Institute via MSU STEC center Broadb 

B156 TW15934 Broad Institute via MSU STEC center  

B175 TW15935 Broad Institute via MSU STEC center Broad 

B354 TW15938 Broad Institute via MSU STEC center Broad 

B706 TW15943 Broad Institute via MSU STEC center Broad 

B921 TW15945 Broad Institute via MSU STEC center Broad 

B1167 TW15933 Broad Institute via MSU STEC center  

E560 TW15955 Broad Institute via MSU STEC center Broad 

E1002 TW15946 Broad Institute via MSU STEC center Broad 

TA135 FBGM4 F.B.-G. Moore Broad 

TA263 FBGM10 F.B.-G. Moore  

ECOR1 FBGM17 F.B.-G. Moore Wang et al. 2016 

H413 TW15974  Broad 

H504 TW15981 Broad Institute via MSU STEC center Broad 

H588 TW15982 Broad Institute via MSU STEC center Broad 

M056 TW15990 Broad Institute via MSU STEC center Broad 

M646 TW15993 Broad Institute via MSU STEC center Broad 

M863 TW15995 Broad Institute via MSU STEC center Broad 

MG1655  CGSC NCBI: NZ_CP027060 

R424 TW15997 Broad Institute via MSU STEC center Broad 

REL606  R. E. Lenski Jeong et al. 2009 

TA014 TW16005 Broad Institute via MSU STEC center Broad 

TA280 TW16018 Broad Institute via MSU STEC center Broad 

a ID from Moore and Woods (2006) or MSU STEC center documentation. 
b Broad genome sequences downloaded from: 
http://www.broadinstitute.org/annotation/genome/escherichia_antibiotic_resistance/MultiDownl
oads.html  
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The lab strain REL606 was used as the recipient for transfer of lacI-ZYA genes from five natural 

isolate strains. First, we deleted the corresponding genes in REL606 and replaced them with a 

chloramphenicol resistance (Cmr) gene cassette. To do this we amplified the chloramphenicol 

cassette from pKD3 (Datsenko and Wanner, 2000) using primers containing 5' extensions 

complementary to REL606 sequence on either side of the lacI-ZYA genes (forward primer 

(overlaps with region immediately downstream of lacA and pKD3):  5'-

GCTGAACTTGTAGGCCTGATAAGCGCAGCGTATCAGGCAATTTTTATAATTGTGTAG

GCTGGAGCTGCTTC; reverse primer (overlaps with region immediately downstream of lacI and 

pKD3):  5'-GCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAAT 

CATATGAATATCCTCCTTAG). This product was used to transform REL606 containing the red 

recombineering plasmid pSIM5 (Datta et al., 2006) and Cmr transformants were selected. These 

strains had the lacI-ZYA gene region replaced by the Cmr gene. In the second step, this replacement 

strain containing pSIM5 was transformed with the lacI-ZYA region amplified from donor natural 

isolate strains using Phusion Hot Start polymerase (New England Biolabs, MA) (forward primer 

(overlaps at 39 bases downstream of lacA):  5’-AGGCCTGATAAGCGCAGCGT; reverse primer 

(overlaps at 44 bases upstream of lacI):  5’-TGGCATGATAGCGCCCGGAA). Transformants 

were selected for incorporation of the incoming DNA by plating on Davis-Mignoli (DM) minimal 

medium supplemented with thiamine and containing lactose as the sole carbon source. The 
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transformed cells contain lacI-ZYA and 44 bases upstream of the lacI gene from the donor, while 

maintaining the -35 promoter site of lacI from REL606. Sequencing of junctions between recipient 

and incoming DNA was performed to confirm the successful incorporation of incoming DNA into 

the target chromosomal site.  

 

Expression of the lac operon was measured using a reporter construct controlled by the Plac 

promoter region including the O1 and O3 LacI, and the primary CRP, binding sites (Quan et al., 

2012). This reporter was cloned into a mini-Tn7 cassette in a suicide-vector that was introduced 

into target strains by conjugation (Choi et al., 2005). Transposition into the recipient strain attTn7 

site was confirmed by PCR. Although the reporter encodes its own cis-regulatory sites and is 

present at a chromosomal location separate from the native lac operon, it does reflect expression 

of the native operon because it responds to inducer levels in the cell as a whole, which are 

determined by expression of the LacY permease encoded by the native operon. Previous work has 

shown that reporter driven GFP expression is correlated to native lac operon expression as judged 

by direct enzymatic assays (Setty et al., 2003; Quan et al., 2012). 
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4.2.2 Expression assays 

 

Regulatory input functions were characterized by measuring the expression of a Plac-GFP reporter 

at different combinations of cAMP and IPTG in DM supplemented with 2000 µg/ml glucose. This 

environment was used because glucose inhibits production of cAMP, allowing measurement of 

the regulatory input function from as close to the basal level of Plac-GFP expression as possible. 

Strains containing the Plac-GFP reporter were pre-conditioned in DM medium supplemented with 

2000 µg/mL (DM2000) glucose for 24 hours then transferred at a 1:1000 dilution to the test 

environments containing combinations of DM2000 supplemented with cAMP and IPTG. cAMP 

was added at eight concentrations (0, 0.625, 1.25, 2.5, 5, 10, 20, and 40 mM) and IPTG was added 

at 10 or 6 concentrations (0, 0.78, 1.56, 3.125, 6.25, 12.5, 25, 50, 100, and 200 µM; 0, 6.25, 12.5, 

25, 50, and 100 µM) as noted in the text. Strains were grown in these environments for ~16 hours 

to an OD450 of ~0.1-0.2, which corresponded to mid-log growth phase as determined by tracking 

changes in population OD using a VersaMax spectrophotometer (Molecular Dynamics, CA). An 

OD of 0.1 reflects approximately six population doublings from the initial inoculum such that we 

assume GFP expression is at steady state and at a level dependent on promoter activity. GFP 

expression was measured using an Accuri C6 (Becton Dickinson, NJ) flow cytometer. The analysis 

pipeline was implemented in R. Expression estimates are presented as arbitrary fluorescence units 
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following subtraction of the fluorescence value of the corresponding strain that did not contain the 

Plac-GFP reporter. In comparisons of gene regulatory functions involving the reference strain 

(REL606), a natural isolate strain, and a hybrid with the natural isolate lacI-ZYA region replacing 

that of REL606, all compared strains were measured in the same experimental block.  

 

4.2.3 Phylogeny construction 

 

Core (shared across all recipient strains) and accessory (shared amongst a subset of strains) gene 

regions were identified comparing DNA sequence windows as implemented in PANSEQ (Laing 

et al., 2010). Core regions were defined as regions of 250 bp present in an arbitrary reference strain 

that were present at a match of >80% identity in all other strains. A phylogeny was built from the 

core genome by concatenating core regions for each strain and performing a multiple sequence 

alignment. Variable sites in this alignment were extracted as a SNP file. We also generated 

alignments based on the lacI-ZYA region alone. The gene-region alignment, and core and accessory 

genomes, were used to build phylogenies with which to test for a phylogenetic signal in regulatory 

parameters estimated from the different test strains. In all cases, PhyML was used to build 

maximum likelihood trees. For the accessory genome, a binary input file indicating the 
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presence/absence of each accessory gene in each strain was analyzed using default parameters of 

PARS in PHYLIP (Felsenstein, 1989). 

 

4.2.4 Growth rate estimation 

 

Strains were inoculated into LB and grown overnight at 37 °C with shaking. A 2 µl aliquot of each 

culture was transferred to each of three wells in a microtiter plate containing 200 µl DM200 

glucose medium. Following 24 hours incubation at 37 °C with shaking, a 1:100 dilution was made 

into another microtiter plate containing the same medium. After a second 24-hour incubation, 

another 1:100 dilution was made into a microtiter plate containing DM1500 lactose and the new 

plate was incubated in a Versamax plate spectrophotometer. OD450 readings and three second 

shaking periods were carried out every three minutes for 24 hours. A custom script was used to fit 

a modified Gompertz growth function to the resulting growth data (Zwietering et al., 1990). 

Growth parameters for each strain were estimated as the average of estimates for individual 

replicates weighted by the quality of each fit. In the modified Gompertz function, the parameter 

best interpreted as lag time, l, corresponds to the time taken for a population to reach its maximum 

growth rate. 
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4.2.5 Model and statistical analyses 

 

All analyses were carried out using R (version 3.4.3) (R Core Team, 2017). Regulatory input 

functions were analyzed in two stages. First, the optim function was used to estimate parameters 

of a simple model incorporating key features of lac regulation that best fit observed GFP 

expression at each combination of cAMP-IPTG concentrations (Eqn. 1 of (Mayo et al., 2006)). A 

detailed outline of this model is presented in the accompanying Supplementary Information. 

Briefly, it includes terms that describe: CRP activity (fraction bound to cAMP) (A); cAMP-CRP 

binding cooperativity (n); LacI activity (fraction not bound to IPTG)(R); LacI-IPTG binding 

cooperativity (m); affinity to binding sites of RNA polymerase in the absence of cAMP-CRP (a), 

cAMP-CRP (d), and LacI (d); the effect of cAMP-CRP binding on RNA polymerase binding 

stability (h); and maximum (a) and basal (g) expression rates. The model omits some molecular 

details, such as DNA looping stabilized by bound LacI tetramers, that are known to influence lac 

expression (Kuhlman et al., 2007). Nevertheless, for all strains, the fitted models captured a 

substantial portion of the overall expression variation (RMSE of fitted models was low relative to 

overall variation in expression (mean = 0.106, standard deviation = 0.055)).  
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Estimates of each model parameter were used to predict an idealized regulatory function that 

characterized the individual and combined effect of IPTG and cAMP on lac expression (Mayo et 

al., 2006). Following previous work, we used an artificial inducer, IPTG, to manipulate LacI 

activity. IPTG is not metabolized, allowing concentrations to be maintained through cell growth 

and reducing potential feedback between inducer concentration and cell growth rates (Ray et al., 

2016). The resulting expression profiles will probably differ from those that would be seen if the 

natural lactose inducer was used. One reason for this is that IPTG can passively diffuse into cells, 

allowing a baseline intracellular concentration independent of the LacY permease and reducing 

the influence of inducer exclusion, a post-translational regulation mechanism through which 

glucose indirectly reduces activity of the LacY permease (Kuhlman et al., 2007; Ozbudak et al., 

2004; Fernández-Castané et al., 2012). Reduced inducer exclusion has the effect of allowing LacI-

mediated negative regulation and cAMP-CRP-mediated positive regulation to be controlled 

independently so that all combinations of their activity can be measured even when some 

combinations may not be accessible during growth in environments containing only natural 

inducers. We note that many of the analyses we present focus on lac expression occurring at 

saturating inducer concentrations, where LacY-independent uptake of IPTG is not expected to 

have any additional regulatory effect. Supporting this, we observed good correspondence between 

lac expression estimates using high levels of IPTG and TMG, an inducer that depends on LacY 
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for import (Fig. A4.6). We also find a significant correlation between expression levels during 

growth of strains in: (i) glycerol, an environment supporting production of high levels of 

endogenous cAMP, and in glucose supplemented with exogenous cAMP, and (ii) lactose and 

glucose supplemented with cAMP and IPTG (Fig. A4.6).  

 

Regulatory parameter estimates were tested for an association with genetic variation in the lacI-

ZYA region of 18 of the strains for which expression and regulatory parameter information was 

available (sequence of the entire lacI-ZYA region was not available for strains B156, B1167, 

TA135, TA263 and H413). Alignment of this region included 6298 bases of which 322 sites were 

polymorphic. The function BUS in the BUS package was used to determine the association 

between estimated lac expression parameters and polymorphism. The mutual information between 

these variables was determined and significance was estimated using a permutation approach to 

correct for testing over multiple sites (using option: method=2).    

 

Tests for phylogenetic signal were performed using the function phylosig in the Phytools package. 

The functions pd.calc and pd.bootstrap in the package Caper were used to test whether the strains 

we used were representative of the diversity present in our larger collection of 96 strains (Fig. 

A4.1). To do this, we compared the distance separating the strains used here to a distribution of 
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distances between 1000 randomly chosen sets of the same number of strains from the 96 sequenced 

strains contained in our overall phylogeny. Comparisons between strain expression descriptions 

(model parameterization, logic phenotypes and the complete expression landscape) were 

performed using non-parametric Mantel tests as implemented in the Ecodist package.  

 

4.3 Results 

 

4.3.1 lac gene input function of natural isolate E. coli strains 

 

We introduced a Plac-GFP reporter into 21 natural isolates and two lab strains of E. coli (Fig. 4.1 

and Table 4.1). Fluorescence from this reporter was measured in combinations of IPTG and cAMP 

to determine the lac operon expression profile of each strain. These profiles exhibit substantial 

variation across strains (Figs. 4.2 and A4.2). We follow two approaches to quantify this variation. 

First, we fit a simple model to estimate regulatory parameters that explain each strain's expression 

profile. This model includes terms corresponding to the interaction of regulatory molecules (IPTG 

and cAMP) and the transcription factors they bind to (LacI and CRP, respectively), the activity of 

those transcription factors, and their interaction with RNA polymerase binding (see Methods and 

Supplementary Information for details; (Mayo et al., 2006)). Second, we use the fitted model to 
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infer the regulatory logic function of each response–a measure of the individual and combined 

effect of cAMP and IPTG inducers on expression (Fig. 4.3). For example, a requirement of both 

cAMP and IPTG for lac expression represents an AND function, whereas either individual inducer 

being sufficient for high expression represents an OR function.   
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Figure 4.2 Empirical and modelled gene regulatory profiles. Expression of a lac reporter was 
determined during growth in glucose supplemented with combinations of the inducers cAMP 
(mM) and IPTG (µM). Expression was measured from a chromosomally integrated reporter at 
mid-log phase and is reported in arbitrary fluorescence units. Solid symbols indicate expression 
predicted at each measured inducer combination using a simple regulatory model fitted to the 
observed data (SI, (14)). Dashed lines connect model estimates and empirically determined 
expression values. The three profiles shown here are for a lab strain (REL606) and two natural 
isolate strains (M646 and E1002) have profiles that differ in the sufficiency of IPTG to induce lac 
expression to a high level. Additional profiles are shown in Fig. A4.2. 
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Figure 4.3 lac regulatory logic of E. coli strains. Models describing the lac expression phenotype 
were fitted for each of the tested E. coli stains (Fig. A4.1). Model parameters were used to 
determine the ratio of log expression at low IPTG–low cAMP, high IPTG–low cAMP, and low 
IPTG–high cAMP combinations to the high IPTG–high cAMP combination giving parameters, 𝜋1, 
𝜋2 and 𝜋3, respectively (Mayo et al., 2006). Combinations of these parameters describe a 
particular regulatory logic input function. For example, low values of 𝜋1, 𝜋2, and 𝜋3, indicate high 
lac expression only when both IPTG and cAMP levels are present, reflecting an AND type logic 
function.  Black symbols indicate parameter estimates of natural isolate strains. Green and Red 
points indicate estimates of the lab strains REL606 and MG1655, respectively. The grey point 
indicates an E. albertii strain, B156, that does not encode several components of the canonical 
lactose utilization system, including a LacI repressor, and therefore expresses the reporter at high 
levels regardless of IPTG (see also Fig. A4.2).  
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We find considerable variation in both the fitted model parameters and in the logic function 

characterizing lac operon regulation in the different strains. Considering first the regulatory logic 

phenotype, we find that, by itself, IPTG causes between 18% and 83% (mean 57 ± 17% (SD)) of 

maximum lac expression. By comparison, by itself, cAMP causes between 5% and 36% (mean 

21% ±8% (SD)) of maximum lac expression. Synergy between cAMP and IPTG was estimated as 

the difference in maximum expression observed when both are present to that expected based on 

the product of their individual effects. By this measure, strains depended on the combination of 

inducers for between -1 and 70% of maximum expression (mean 28%  ± 21% (SD)). Together 

these results indicate a range of regulatory logic phenotypes where some strains depend strongly 

on both inducers (AND type logic) and others depends largely on the activity of the LacI repressor. 

We note that while logic phenotypes omit potentially important aspects of the overall expression 

phenotype, they nevertheless capture similar relationships among strains as do the overall 

expression profiles that are described below (one-tailed Mantel test: r = 0.41, P = 0.005). 

Comparing logic functions and the parameterization of the regulatory model fitted to the 

underlying expression profiles, we find differences in how these descriptions of expression cluster 

strains (Table A4.1). Logic and model characterizations were only moderately well correlated, 

consistent with a mapping whereby the same logic function can be realized by different underlying 

regulatory parameters (one-tailed Mantel test: r = 0.22, P = 0.11). 
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4.3.2 Comparison of gene input functions to evolutionary distance 

 

It is of interest to examine whether differences in lac regulation have been selected or whether 

they represent effectively neutral variation. The ideal test would be to examine differences in 

fitness consequences of different lac regulation phenotypes in ecologically relevant environments. 

In practice, however, what constitutes such an environment is not known. Moreover, the effect of 

lac regulation on fitness will be confounded by comparisons across different genetic backgrounds. 

We therefore follow two complementary approaches to assess the potential for regulatory 

parameters to have been selected. First, we test the expectation that, if regulatory variation is 

neutral, differences in estimated parameters will correspond to the underlying strain phylogeny 

(Fay and Wittkopp, 2008). Selected differences may correspond to the phylogeny, but are more 

likely to be driven by different ecological pressures relevant to each strain (Le Gall et al., 2005; 

Whitehead and Crawford, 2006). We have previously found that ecological performance of a 

subset of strains considered here was not correlated with their phylogenetic relationships, 

indicating that underlying ecological selection is likely to vary independent of phylogenetic 

relationships (Wang et al., 2016). Second, we examine the effect of lac operon regulatory 

parameters on growth following their transfer to an environment where lac expression is likely to 

be influential in determining dynamics.  
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To test for phylogenetic signal present in regulatory logic and model parameters, we assessed 

variation in those parameters in the context of phylogenies generated based on the core genome 

common to all strains, the accessory genome comprising genes present in some but not all strains, 

and a phylogeny based on the lacI-ZYA genes. Phylogenetic signal was assessed using Pagel’s l, 

which tests for signal against the null hypothesis of a trait evolving independently of an underlying 

phylogeny, as would be the case if it varied either neutrally or due to selection pressures that were 

not correlated to genetic relatedness (Pagel, 1999). In most cases, the pattern of regulatory 

parameter variation was not consistent with any of the tested phylogenies. There were two 

exceptions to this trend: the h parameter—corresponding to the effect of cAMP-CRP on binding 

of RNA polymerase to the lac promoter—exhibited phylogenetic signal over all phylogenies 

considered, and the m parameter—corresponding to the extent of cooperativity of IPTG affecting 

LacI activity—followed the lacI-ZYA phylogeny (Table 4.2 and Fig. A4.3). Consistent with an 

overall lack of phylogenetic signal in lac regulatory parameters, Mantel tests examining the 

relationship between pair-wise strain distance based on genetic relatedness and expression 

landscapes, did not find significant associations (core: r = -0.107, P = 0.37; accessory: r = -0.12, P 

= 0.34; lacI-ZYA: r = -0.15, P = 0.27).  
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Table 4.2 Pagel's l test of phylogenetic signal in parameter variation 

  Phylogeny  

Parameter Core Accessory lacI-ZYA 

a   0.162 

h 0.024a 0.012 0.004 

c    

d    

a    

g    

n    

m   <0.001 

KmcAMP    

KmIPTG  0.055  

p1  0.733  

p2    

p3    

aP-values <0.05 are interpreted as a significant deviation from the null model that parameter values 
are distributed randomly over the phylogeny. Note: For clarity, P-values estimated as 1.0 are 
omitted. 
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4.3.3 Relationship between regulatory parameters and growth 

 

The ideal experiment to test for ecologically meaningful effects of among-strain regulatory 

differences would be to compare strains that are otherwise identical and determine the fitness 

consequences of focal regulation phenotypes in a lab, or even natural, environment. The strains 

we examined are, however, evolutionarily and ecologically divergent and are likely to have growth 

differences independent of lac regulation. Nevertheless, in environments where the effect of lac 

regulation differences are substantial relative to effects of broader background differences, we 

might see a relationship between these lac regulation parameters and a growth phenotype. We 

chose to focus on the phenotype of lag phase following a transition from growth in glucose to 

lactose because this transition is likely to depend on the regulatory induction of the lac genes, 

which is a process dependent on the parameters we have measured (Fig. 4.4A).  

 

To assess the relationship between lac regulatory parameters and lag time we used partial least 

squares regression, an approach suited to the analysis of relationships involving a large number of 

correlated parameters with relatively few data points. This approach was applied to the 23 strains 

described above as well as five hybrid strains having lac genes moved from natural isolate strains 

into REL606 (Materials and Methods). We found that the largest component of the regression 
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explained 45% of the variation in lag time. The largest contributors to this component were the 

activity of RNA polymerase in the absence of cAMP-CRP (a) and its relative stabilization in the 

presence of cAMP-CRP (h), which together accounted for 59% of the component (Fig. 4.4B). The 

proportion of lag time variation explained in this analysis was meaningful by comparison to a set 

of 1000 permutations in which assignment of estimated lag times to strains was randomized (Fig. 

A4.4). Moreover, both the a and h parameters were individually significantly correlated with lag 

times (Pearson correlation, a: r = -0.59, P = 0.002; h: r = 0.54, P = 0.005). Expression landscapes 

illustrating the regulatory influence of observed variation in these parameters (and a, which 

determines the maximum expression) are shown in Fig. 4.4C & D.   
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Figure 4.4 Relationship between regulatory parameters and lag time following transition 
from a glucose to lactose supplemented growth environment. A. Gompertz fits to growth data 
of natural isolate strains and hybrid strains containing the lacI-ZYA region from a natural isolate 
strain replacing the same region in the REL606 genetic background. Growth is in lactose following 
a transition from a day of growth in glucose. B. Partial least square regression indicating 
contribution of regulatory model parameters to the largest four components explaining variation 
in lag time. C and D. Changes in expression landscapes dependent on changing the two parameters, 
a and h, that explain the most lag time variation. Parameters are changed between the extremes of 
their estimated ranges and preserving their negative correlation. Other parameters are as for 
REL606, except that a is increased in panel D so that maximum expression level is comparable. 
C and D correspond to landscapes associated with short and long lag times, respectively. 
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4.3.4 Mutual information between regulatory function and genetic 

polymorphism 

 

We next sought to identify variable sites in known regulatory regions that are correlated with 

variation in estimated regulatory parameters. We used a measure of mutual information to assess 

the association between 322 variable sites throughout the lacI-ZYA region with variation in 

estimated regulatory parameters (Fig. 4.5). This analysis identified a large number of sites 

associated with regulatory parameters, though significance levels were both generally low and 

similar across sites for a given parameter, a signature of linkage between genetic variants that are 

and are not driving regulatory variation. Together, these results suggest that regulatory variation 

is driven by some combination of a complex genotype-phenotype mapping (e.g., multiple genetic 

variants may cause similar phenotypic effects or phenotypes are due to the combined effect of 

multiple variable sites) and by variable regions outside the one considered here. 
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Figure 4.5 Association between polymorphism in the lacI-ZYA region and variation in 
estimated regulatory parameters. For each parameter, mutual information was estimated 
between estimates and genetic variation at each site in the genetic region (see M&M for details). 
All polymorphic sites are plotted. The dashed line indicates a significance cutoff at P = 0.05. Grey 
symbols indicate parameter-polymorphism associations below this cutoff, colored symbols 
indicate associations above this cutoff. Only parameters with at least one significant association 
are colored in the legend. These significant associations primarily affect basal lac expression (𝛾) 
and the dissociation constant of IPTG from LacI (KmIPTG). The left panel presents the entire region 
considered. The right panel provides higher resolution around the key regulatory area between 
lacI-Z indicated by the box in the left panel. Transcription factor binding sites and the promoter 
region are indicated in the right panel (binding site information from Regulon DB).  
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4.3.5 Dependence on genetic background of gene input function 

 

To characterize the dependence of lac operon regulation on its broader genetic background, we 

assessed regulation of different lac operons in their native and in a common genetic background. 

We replaced the lacI-ZYA region of REL606 with the corresponding region of five natural isolate 

strains and determined lac expression profiles (Figs. 4.6 & A4.5). In general, there was relatively 

little divergence in profiles, but there were examples of the hybrid strain having a lac expression 

more similar to the strain comprising the broader genetic background (i.e., REL606)—such as in 

the cross between REL606 and B921—indicating that regulatory elements outside the immediate 

lacI-ZYA region are important in determining its regulation. We also saw examples of the lac 

regulation in the hybrid being more similar to that of the donor strain—e.g., the cross between 

REL606 and FBGM17—indicating dominance of local cis-regulatory sequences.  
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Figure 4.6 Effect of genetic background on lac expression. A. Schematic of expression 
comparisons. The lac expression profile was obtained from a common reference strain (REL606), 
different donor natural isolate strains, and a hybrid constructed by swapping the donor strain's lacI-
ZYA genes into REL606 (details in Material and Methods). B. Example expression profiles of one 
comparison set. In this case, the hybrid strain has an expression profile more similar to that of the 
recipient background strain (REL606) than of the donor (B921). C. Dendrograms clustering for 
each of five donors the set of three strains based on Euclidean distances among modelled 
expression landscapes. The height of dendrograms is scaled to the distance between strains. 
Expression profiles for each strain are presented in Fig. A4.5. 
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4.4 Discussion 

 

We characterized and compared lac regulation of 23 diverse E. coli strains (Fig. 4.1). We found 

substantial variation between strains, especially in the degree to which IPTG was individually able 

to regulate expression to a maximum level (Fig. 4.3). This variation is consistent with findings of 

regulatory models that predict that small genetic changes can have large regulatory consequences, 

revealing that a substantial portion of this potential is realized among natural isolate strains (Mayo 

et al., 2006). Such regulatory changes can evolve quickly and have ecological consequences 

(Behringer et al., 2018). Regulatory variation was not well explained by the genetic relatedness of 

strains, consistent with it being selected, rather than evolving neutrally. We also found that a 

significant part of regulatory variation is likely to depend on factors determined by the genetic 

background in which the lac genes are expressed, as well as on the identity of those genes 

themselves.  

 

The most variable of the regulatory parameters we examined was the ratio of expression induced 

by IPTG alone to maximum lac expression induced by the presence of both cAMP and IPTG (𝜋2 

in Fig. 4.3). This parameter describes the extent to which lac expression depends on the LacI 

repressor, with less influence by cAMP. One consequence is the possibility that strains where lac 
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expression depends less on cAMP, and by extension, the absence of glucose in the environment, 

might weaken the hierarchy of resource that is determined by the concentrations of preferred 

resources below which cells switch to catabolism of other alternative resources. Concentration of 

cAMP has been shown to be critical for determining these concentration crossover points 

(Aidelberg et al., 2014). Resources catabolized by genes that were less dependent on cAMP for 

expression were used preferentially to resources that depended on higher cAMP for their utilization. 

A previous study of cell evolved in a mix of glucose and lactose sugars found evolved changes in 

lac operon regulation that caused cells to become more sensitive to inducer, consistent with 

relaxation of the resource use hierarchy (Quan et al., 2012).  

 

Diversity of lac regulation indicates the likelihood of a diversity of regulatory responses to 

different natural environmental conditions, consistent with previous work finding that different lac 

structural genes can confer different growth responses (Dean, 1989). It is clearly of interest to 

determine exactly what ecological consequences the different regulatory profiles might have, 

especially given that profiles were determined using artificial conditions. In practice, however, this 

is difficult to do because the strains we examine differ in ways other than in their regulation of the 

lac operon, so it is not possible to isolate the influence of lac regulatory differences to strain fitness 

across particular environments. This issue is controlled for among strains we constructed in which 
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different lac genes were transferred to a common background, but here regulation often differed 

from that in the donor strains, so that differences in effects cannot be easily interpreted with respect 

to their donor context. Despite the confounding effect of different backgrounds, we still found a 

significant relationship between some lac regulatory parameters and the transition of our strains 

from growth in glucose to growth in lactose. This result underlines the potential ecological 

relevance of the regulatory differences we see.    

 

Several studies have identified natural genetic variation underlying ecologically relevant 

differences in regulation of focal genes (Dean, 1989; Suiter et al., 2003; Osborne et al., 2009). We 

found limited indication of an association between genetic polymorphism in the lacI-ZYA region 

and variation in regulatory parameters. Although it is not possible to determine, which, if any, of 

the SNPs we considered might be driving regulatory variation, we note that there were clusters of 

significant associations between polymorphisms at the end of the lacZ and lacA genes with the 

basal level of lac reporter expression (determined by g). There are several possible sources of 

regulatory variation within these regions. In the end of the lacZ gene, there are sites that are 

responsible for substrate binding, and variation in these sites can affect LacZ catalytic activity and 

allolactose production (Huber et al., 2003; Juers et al., 2003; Sutendra et al., 2007). In lacA, 

associations occur in the stem-loop transcription terminator and in the preceding AT rich region, 



 117 

suggesting they might affect transcriptional termination and thereby influence levels of lacZYA 

transcripts. We note as well that the lac expression parameters we identify using IPTG and 

exogenous cAMP may not be realizable in natural environments, for example because inducer 

exclusion causes lactose uptake to be more dependent than IPTG uptake on the absence of glucose. 

To the extent this is true, some features of the underlying regulatory network are not expected to 

be directly accessible for selection. In general, however, we interpret the lack of clear association 

between polymorphisms and regulatory variation as indicating that most regulatory variation is 

complex, having a different genetic basis in different strains as well as likely involving the action 

of several sites, including genes outside the canonical regulatory network.  

 

A substantial portion of the regulatory variation we considered was not explained by patterns of 

relatedness determined on the basis of core or accessory genomes, or of the genes involved in lac 

utilization. Discordant patterns of phenotypic and genetic evolution are consistent either with 

regulatory parameters varying neutrally at high rates or being selected in a pattern distinct from 

that determined by the genetic relatedness of strains. A previous study found that ecological 

performance of strains from the same collection used here was not correlated with core or 

accessory phylogenies, consistent with the possibility that selection might be important (Wang et 



 118 

al., 2016). This possibility is supported by our finding that regulatory parameters correlated with 

growth dynamics in at least one environment.  

 

Our finding that the broader genetic background can have substantial influence on the regulation 

of transferred lac operons highlights the importance of non-canonical regulation in determining 

expression of lac genes. An example of such regulation is the influence of DNA supercoiling on 

accessibility of regulatory proteins to the lac promoter (Fulcrand et al., 2016). We note that an 

influence of the broader background on gene regulation complicates goals of rational design of 

regulatory networks, potentially putting a premium on strategies that increase robustness.  A strong 

dependence on genetic background might also lead to greater variation in regulation between 

strains, increasing the chance that an effective regulatory strategy can be found in changing 

environments, but also making it less likely that regulation will be successful following horizontal 

transfer of the lac genes to other recipient strains. 

 

In summary, we found that diverse strains of E. coli have different lac regulatory profiles, most of 

which was realized as difference in the form of the regulatory function and of the relative influence 

of the regulators, cAMP and IPTG, on expression.  This variation reveals a wealth of raw material 

on which selection can act to optimize gene regulation to new environmental challenges. It also 
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poses a challenge to relevant models to be able to explain this diversity of regulation, with some 

of it coming from outside the canonical regulatory network.  

  



 120 

Appendices  

 

A. Chapter 4 Supplementary Information  

 

Model 

 

Promoter activity at the lac operon was characterized based on the steady-state binding of the LacI 

and CRP regulators using the model and approach presented by (Setty et al., 2003; Mayo et al., 

2006). Promoter activity was calculated as: 

 

𝑃 = (𝛼 − 𝛾)
𝑎(1 + 𝜂. 𝑑. 𝐴)

1 + 𝑎 + (𝑎. 𝜂 + 1)𝑑. 𝐴 + 𝑐. 𝑅 + 𝛾 

 

where activity of the CRP activator, assessed as the fraction of CRP bound to cAMP, is A = 

Xn/(1+Xn), in which X = [cAMP]/KcAMP (i.e., cAMP concentration in units of its dissociation 

constant for CRP). Cooperativity of cAMP binding to CRP is given by the Hill coefficient, n. 

Similarly, the fraction of active LacI repressor not bound to the IPTG inducer is R = 1/(1+Ym), in 

which Y = [IPTG]/KIPTG (i.e., IPTG concentration in units of its dissociation constant for LacI). 
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Cooperativity of IPTG binding with LacI is given by the Hill coefficient, m. The binding affinity 

of regulators to DNA binding sites is given by parameters a, c, and d. a = [RNAp]/Kp is the 

concentration of RNAp (RNA polymerase) in units of its dissociation constant to the free promoter 

(i.e., CRP is not bound). c = [LacI]/KR is the concentration of LacI repressor in units of its 

dissociation constant with its binding sites. d = [CRP]/KA is the concentration of CRP is units of 

its dissociation constant with its binding site in the lac operon cis-regulatory region. Stabilization 

of RNAp by the presence of CRP is given by the ratio of its dissociation constants in the presence 

and absence of CRP: h = Kp/Kcp. The terms a and g give maximum and basal transcript rates, 

respectively.  
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B. Chapter 4 Supplementary Table 

 

Table A4.1 Model parameterization for natural isolate and lab strains used in this study. 

Strain a h c d a g n m KIPTG KcAMP p1 p2 p3 
B1167 0.12 1.69 14.24 3.29 9.02 0.00 2.45 9.28 6.17 9.98 0.05 0.69 0.26 
B156 0.00 16.79 7.26 11.36 12.82 1.11 4.58 3.98 6.77 1.92 0.78 0.79 0.92 
B175 0.14 1.81 13.53 3.46 8.10 0.00 11.21 7.06 11.09 11.35 0.05 0.66 0.29 
B354 0.27 1.61 20.17 4.32 5.65 0.01 2.89 59.23 17.80 12.08 0.05 0.74 0.28 
B706 0.12 2.03 13.28 5.03 9.16 0.00 3.57 2.44 7.91 4.45 0.04 0.59 0.36 
B921 0.07 3.88 40.74 0.35 14.12 0.03 1.37 1.65 4.50 4.38 0.03 0.51 0.05 
E1002 0.15 1.72 14.44 1.78 8.61 0.00 1.31 14.21 6.55 10.81 0.05 0.73 0.19 
E560 0.11 1.55 36.34 9.53 12.12 0.00 5.71 7.31 7.97 8.55 0.02 0.70 0.25 
TA263 0.11 3.33 10.66 0.70 9.81 0.00 0.94 1.86 1.08 1.44 0.05 0.56 0.16 
ECOR1 0.10 3.70 11.18 0.53 9.61 0.00 3.58 1.57 0.69 1.12 0.05 0.56 0.14 
TA135 0.08 3.17 10.94 1.96 9.79 0.00 1.26 1.46 1.51 1.60 0.04 0.46 0.26 
M863 0.04 8.26 13.89 1.02 10.73 0.00 0.97 2.71 17.93 14.82 0.02 0.25 0.15 
MG1655 0.12 1.57 13.51 5.29 9.34 0.00 2.69 4.16 11.60 6.62 0.05 0.71 0.36 
R424 0.11 2.85 12.47 1.21 9.67 0.00 1.24 2.50 5.86 3.02 0.04 0.55 0.18 
REL606 0.14 2.41 13.33 2.10 8.13 0.00 1.70 9.16 10.09 9.89 0.05 0.57 0.23 
TA280 0.14 1.32 13.68 2.69 10.24 0.00 2.97 7.95 6.86 8.57 0.06 0.83 0.24 
B093 0.09 15.52 11.21 0.08 9.91 0.00 1.05 1.73 4.15 5.00 0.05 0.70 0.25 
H413 0.02 10.07 13.12 1.36 10.64 0.00 1.23 3.64 2.67 10.88 0.01 0.18 0.17 
H504 0.13 1.74 15.92 3.25 9.28 0.00 1.75 15.07 11.73 10.98 0.05 0.68 0.24 
H588 0.14 2.09 12.09 1.03 8.85 0.00 1.56 3.94 5.10 8.04 0.06 0.69 0.17 
M056 0.12 3.46 10.81 0.49 9.33 0.00 0.96 2.05 3.65 4.06 0.06 0.60 0.14 
M646 0.03 10.72 17.67 0.86 12.79 0.00 1.07 2.72 14.09 17.61 0.01 0.20 0.10 
TA014 0.08 3.10 13.44 2.17 9.49 0.00 1.69 3.25 6.35 10.13 0.03 0.46 0.2 

Parameters determining activity of the lac promoter were estimated by fitting the regulatory model 
described in SI (from Mayo et al., 2006). The phenotypic parameters p1, p2 and p3 give the 
predicted ratio of expression at no induction, high-IPTG_low-cAMP, and low-IPTG_high-cAMP 
to expression at maximum cAMP and IPTG levels, respectively.   
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Figure A4.1 Sampled strains are generally representative of the broader strain collection. 
The solid black line indicates the distribution of shared branch lengths following 1000 draws from 
the broader strain collection (Fig. 4.1) of the same number of strains used in expression and transfer 
experiments. The red line indicates the shared branch length of the actual recipient strains. P-values 
are calculated as the fraction of bootstrapped samples with a lower branch length than the actual 
sample. Phylogeny (core or accessory)-mutation combinations are indicated in the title of each 
panel.  
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Figure A4.2 Observed and modelled regulatory functions of 23 strains. Colored landscapes 
indicate experimentally determined lac expression profiles using at least 48 different cAMP-IPTG 
concentration combinations. Solid symbols and drop lines indicate predicted expression at each 
measured point derived from a regulatory model fitted to the observed expression data (Materials 
and Methods for details). Note that B156 is an E. albertii strain that does not encode several 
components of the canonical lactose utilization system, including the LacI repressor, and therefore 
expresses the lac reporter at high levels regardless of the presence of IPTG. 
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Figure A4.3 P-values of Pagel's l tests of phylogenetic signal for regulatory model and 
regulatory logic parameters. The null hypothesis is the absence of phylogenetic signal, P-values 
below 0.05 are consistent with a parameter evolving neutrally over a particular phylogeny. Tests 
for phylogenetic signal are shown against phylogenies based on the core genome, the accessory 
genome, and sequencing encompassing the lacI-ZYA region. 
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Figure A4.4 Permutation tests to assess the significance of variation in lag time explained by 
partial least squares regression (Fig. 4.4). Histograms show the percent of variation in lag time 
explained by the first PLS component (A) and by the two largest contributors to this component 
(B) based on 1000 regressions in which the association between strain names and measured lag 
times was randomized while the association between names and regulatory parameters was 
unchanged. Red arrows indicate corresponding estimates of the actual regression. P-values are 
based on rank ordering of actual estimates against randomized regression outputs. 
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Figure A4.5 Effect of genetic background on lac expression. Expression profile of the lab strain 
REL606 is presented in the left column (mean of 5 separate profiles). The column second from 
left presents expression profiles of hybrid strains constructed by adding the lacI-ZYA region from 
a donor natural isolate strain into REL606 (details in Material and Methods). The column second 
from right presents the expression profile of the donor natural isolate strain.  Dendrograms indicate 
clustering of each set of three strains (i.e., REL606, REL606 with introduced lac region, and 
natural isolate strain) based on Euclidean distance of empirically determined expression profiles 
in arbitrary fluorescence units. 
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Figure A4.6 Comparison of assay and inducer types on inferred lac expression. Expression 
values indicated on the horizontal axes are in arbitrary fluorescence units (AFU) as reported in the 
main text and are inferred from fluorescence derived from a Plac-gfp reporter construct. Strains 
were grown in glucose supplemented with the artificial inducer, IPTG (200 µM) and/or 
exogenously supplied cAMP (40 mM) as noted on axis titles. Expression profiles in Miller units 
(MU) reported on the vertical axes are inferred from Miller assays (Zhang and Bremer, 1995) in 
environments using the natural inducers glycerol (which supports high intracellular cAMP) and 
lactose, and the artificial inducer TMG (200 µM), which depends on LacY for uptake. 
Combinations of these inducers are chosen to manipulate LacI and CRP regulation in a way that 
recapitulates as closely as possible effects using IPTG and exogenous cAMP (glucose+cAMP and 
glycerol environments, high cAMP-low IPTG; glucose+IPTG and glucose+TMG, low cAMP-high 
IPTG; glucose+cAMP+IPTG and lactose, high cAMP-high IPTG). Pearson correlation analyses 
are reported on each plot. Miller assays measure LacZ enzyme activity directly, providing a control 
for expression inferred from the fluorescent reporter construct used in our main set of experiments.   
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