REGRESSION ANALYSIS OF FULL-RANK

EXPERIMENTAL DESIGN MODELS

A Thesis

Presented to

the Faculty of the Department of Industrial and Systems Engineering University of Houston

In Partial Fulfillment

of the Requirements for the Degree Master of Science

by

Sheridan J. Berthiaume

December 1971

REGRESSION ANALYSIS OF FULL-RANK

EXPERIMENTAL DESIGN MODELS

An Abstract of a Thesis `

.

Presented to

the Faculty of the Department of . Industrial and Systems Engineering

University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science

Ъy

Sheridan J. Berthiaume

December 1971

ABSTRACT

Regression analysis is a powerful and general solution method for the analysis of variance of experimental design problems. However, when the traditional experimental design model is expressed in the matrix form, Y = Xb + e, the X matrix will always be singular. Since X'X will also be singular, the normal equations, $X'X\hat{b} = X'Y$, will have no unique solution. This means that standard regression techniques cannot be used for an analysis of variance without reparameterizing the model into a full-rank form.

In this study, a new method of formulating experimental design models is developed that leads directly to a fullrank system of normal equations without reparameterization. The full-rank model bases the expected value of the response variable on a standard cell of the experiment, rather than the overall mean of the experiment.

The technique is demonstrated for several example problems. It is concluded that the combination of fullrank model formulation and regression analysis is a very useful tool for the analysis of designed experiments. This is especially true for nonorthogonal design that are difficult or impossible to handle by the traditional sum-of-squares method.

TABLE OF CONTENTS

СНА	PTER	PAGE
I.	INTRODUCTION	1
II.	ANALYSIS OF VARIANCE AND REGRESSION ANALYSIS	7
	Analysis of Variance	7
	Regression Analysis	15
	Relation between Regression Analysis and Tradi- tional Analysis of Variance Techniques	25
III.	FULL-RANK EXPERIMENTAL DESIGN MODELS	37
IV.	EXAMPLE PROBLEMS	48
	Single Factor with Unequal Group Sizes	51
	Single Factor with Incomplete Block Design	57
	Factorial Design with Missing Values	63
	Nested-Factorial Design with Fixed and Random Factors	70
۷.	CONCLUSIONS	88
BIE	LIOGRAPHY	91
APF	'ENDIX A	
	BMDO2R Input Data for Examples	A-1
APF	PENDIX B	
	ANOVA Description	B-1
	ANOVA Listing	B-4
	HYPOTH Listing	B-10
	ANOVA Input Data for Examples	B-12
	ANOVA Output for Examples	B-14

.

CHAPTER I

INTRODUCTION

It is known that regression analysis can be used to find the variance estimates required for the analysis of variance of experimental design problems. In fact, regression is the most general solution method available since it solves problems with missing data, incomplete blocks, or unequal group sizes as easily as it solves problems with complete data and equal group sizes. However, in spite of its generality, the application of regression has been limited.

One of the reasons for this is that it has computational disadvantages. The heart of the regression technique is the solution of a system of simultaneous linear equations called the normal equations. This is tedious work for even fairly small problems since these systems of equations tend to become large very fast. For example, a two treatment, five levels per treatment, factorial experiment with one observation per cell would call for a solution to a system of twenty-five equations with thirty-six unknowns to find the error sum of squares. Additionally, three smaller systems must be solved to find the sums of squares associated with the main effects and the interaction effect. Obviously regression is not a hand or desk calculator technique except for the very smallest problems.

In this era of digital computers, these computational difficulties would not be sufficient to hold back the application of regression analysis if there were no other disadvantages. Unfortunately there are. Returning to the example, notice the excess of the number of unknowns over the number of normal equations. This means there are an infinite number of solutions to the normal equations. Increasing the number of replications per cell will produce more normal equations but since the new equations are not independent of the original twenty-five, there is basically no change in the system. The standard regression techniques, by hand or computer subroutines, are designed to solve systems of N normal equations with M unknowns where N is equal to M. A system of normal equations from an experimental design problem where N is less than M cannot be solved without modifications. These modifications could be any one of the following which are listed on the next page.

1. Add K more independent equations to the system so that N + K = M.

2. Combine or reparameterize the M unknowns such that there are L less of them so that N = M - L.

3. Change the normal equation solution method so that it will find a feasible solution when N is less than M.

4. Change the experimental design model so that when the normal equations are formed, N = M.

It appears that the main effort to tailor regression analysis to experimental design problems has been by methods 1 and 2. The difficulty is that the application of these two methods seems to be almost unique for every type of problem. That is, no general method of adding independent equations or reparameterizing the unknowns can be applied to all problems. Each problem entails considerable effort on the part of the experimenter to fit the problem to a regression routine.

This difficulty is reflected in the lack of application of regression analysis in experimental design textbooks. These books usually stress the traditional sum of squares approach to analysis of variance problems. This method is popular since it is amenable to hand or desk calculator solution of fair-sized problems as long as they have equal

group sizes. If regression analysis is mentioned at all, it is usually in the context of being only an interesting fact that analysis of variance problems can be solved by regression. For example, in Hicks (7), the use of regres is demonstrated only for single-factor problems where har solution of the normal equations is feasible. The book never demonstrates how to set up simple factorial models for regression solution. In Draper and Smith (4), a regression textbook, it reads:

"We are <u>not</u> recommending that fixed-effects analysis of variance problems be handled by general regression methods. We are pointing out that they can be, if the correct steps are taken in handling the problem and that it is valuable to realize this is possible."

In Cooley and Lohnes (2), after describing their analysi of variance computer program, they state:

"The multiple-regression approach to analysis variance allows greater flexibility than the approxused here, but the preparation for execution of the programs is more complicated."

In summary, the difficulty of adding more independent equations or reparameterizing the unknowns seems to over the generality advantage of the regression technique.

Method 3, where the normal equations are solved for feasible solution with N less than M can be handled by either linear programming or generalized inverse techniques. The linear programming approach as presented by Cashler (1), has all the advantages of regression analysis with respect to solving large unbalanced problems but it also has two unique disadvantages. The first one is that the number of unknown variables in the model must be doubled when the problem is formulated to overcome the linear programming non-negativity constraint. The second disadvantage is one of higher computer processing time for linear programming routines as compared with regression routines.

This brings us to method 4, which is the topic of this paper. Is there a way to write experimental design models that leads directly to a full-rank system of normal equations? If there is, then the application of regression analysis to experimental design problems will be greatly simplified and advantage can be taken of its generality.

A restriction on the new model will be that it also has physical significance to the experimenter rather than being an abstract combination of parameters. If this is true, the experimenter who knows the technique of formulating the model, which will apply to all problems, can feed problems directly into regression routines and determine the various sums of squares required for an analysis of variance.

Chapter II contains a brief overview of some of the background material for experimental design problems. In Chapter III, the new model is developed. Chapter IV contains examples showing the application of the technique to various types of problems. The advantages and disadvantages of the technique are summarized in Chapter V along with the conclusions about its application to analysis of variance problems.

CHAPTER II

ANALYSIS OF VARIANCE AND REGRESSION ANALYSIS Analysis of Variance

The analysis of variance is a statistical technique introduced by R. A. Fisher about 1923 in connection with experimental design applications in biological research. It is a method of dividing the variation observed in experimental data into different parts, each part assignable to a known source, cause, or factor. It allows the assessment of the relative magnitude of variation resulting from different sources and the determination whether a particular part of its variation is greater than expected under a null hypothesis.

Normally the analysis of variance is used to test the significance of the differences between the means of the observed dependent variables in different groups where each group has received a different treatment. The purpose being to see if the treatment has a significant effect on the dependent variable or if the deviations in the group means are due to random error.

The analysis of variance makes two basic assumptions about the distribution of the dependent variable within each group. These are listed on the following page. 1. The dependent variable in each of the treatment groups is normally distributed.

2. The variance of the dependent variable in each of the treatment groups is equal.

Assume an experiment is performed to determine the effect of a factor that has been set or measured at k different levels. A measurement of the dependent variable, Y from one of k treatment groups is considered to be composed of three quantities:

u - the overall expected value of the dependent variable

 t_i - the deviation from the expected value of the dependent variable due to the effect of the ith treatment

e - a deviation from the expected value due to the fact that measurements of the dependent variable are normally distributed with a mean of zero and a variance of σ_e^2

To represent the jth observation from the ith treatment group the model is written as

> $Y_{ij} = u + t_i + e_{ij}$ i = 1, 2, ..., k

The null hypothesis is that all the treatment effects are equal to zero.

$$t_i = 0$$

 $i = 1, 2, ..., k$

This hypothesis is tested by first partioning the total sum of squares of the deviation of the measurements from the overall mean, \overline{Y} , into two additive and independent parts. These are called the within groups sum of squares and the between groups sum of squares. To show this is possible let n_i be the number of observations in the ith group and let \overline{Y}_i be the mean of the ith group. We begin by writing the identity

$$(Y_{ij} - \overline{Y}) = (Y_{ij} - \overline{Y}_i) + (\overline{Y}_i - \overline{Y})$$

Squaring this identity and summing over the n_i cases in the ith group yields

$$\sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y})^{2} = \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{i})^{2} + \sum_{j=1}^{n_{i}} (\overline{Y}_{i} - \overline{Y})^{2} + 2(\overline{Y}_{i} - \overline{Y}) \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{i})$$

The last term on the right disappears since the sum of deviations of group observations from the group mean is zero. Therefore

$$\sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y})^{2} = \sum_{j=1}^{n_{i}} (Y_{ij} - Y_{i})^{2} + n_{i} (Y_{i} - \overline{Y})^{2}$$

We now sum over the k groups to obtain

$$\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y})^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{i})^{2} + \sum_{i=1}^{k} n_{i} (\overline{Y}_{i} - Y)^{2}$$

Thus the total sum of squares is partioned into two additive groups, a sum of squares within groups and a sum of squares between groups. Of the three terms, any two are independent and could be used to estimate the common group variance, σ_o^2 .

To do this we must know the degrees of freedom associated with each sum of squares since the estimate, S^2 , of a variance is

$$S^2 = (\frac{\text{deviations from mean of distribution}}{\text{degrees of freedom of estimate}}^2$$

If the total number of observations, $\sum_{i=1}^{\infty} n_i$, is equal to N, then the total sum of squares has N-1 degrees of freedom. One degree of freedom is lost due to the mean of the distribution being estimated. The within groups degrees of freedom can be found by knowing that in each group there are n_i - 1 degrees of freedom. One degree of freedom is lost in each group to estimate the group mean. Summing over the k groups yields

$$\sum_{i=1}^{k} (n_{i} - 1) = \sum_{i=1}^{k} n_{i} - k = N - k$$

For the between groups sum of squares there are k means and one degree of freedom is lost by expressing the group mean as deviations from the grand mean so there are k - 1degrees of freedom. Notice that the degrees of freedom are additive.

Total = Within + Between
(N - 1) (N - k)
$$(k - 1)$$

With the sums of squares and the degrees of freedom we can now estimate the within and between groups variances. These variance estimates are also called the mean squares.

$$S_{W}^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} \frac{(Y_{ij} - \overline{Y}_{i})^{2}}{N - k}$$
$$S_{B}^{2} = \sum_{i=1}^{k} n_{i} \frac{(\overline{Y}_{i} - \overline{Y}_{i})^{2}}{k - 1}$$

While the sums of squares and the degrees of freedom are

additive, the variance estimates are not.

$$s_{T}^{2} \neq s_{W}^{2} + s_{B}^{2}$$

Going back to the second basic assumption of the analysis of variance, remember that the within groups variance is the same for all groups. This means the expected value of the within groups variance is σ_e^2 , the population variance.

$$E(S_W^2) = \sigma_e^2$$

The expected value of S_B^2 may be shown to be

$$E(S_B^2) = \sigma_e^2 + \sum_{i=1}^k (u_i - u)^2 + \frac{(N - \sum_{i=1}^k n_i^2/N)}{\frac{i=1}{k-1}}$$

Where u_i , and u are population means. When the null hypothesis is true, the term on the right is equal to zero since the mean of each group is equal to the overall mean. Therefore the expected value of S_B^2 reduces to σ_e^2 and

$$E(S_B^2) = E(S_W^2)$$

When the null hypothesis is false and the means of the groups differ from u,

 $E(S_B^2) = \sigma_e^2$ + measure of the variation of u₁ from u

To test the null hypothesis, the ratio of S_B^2/S_W^2 is examined. If the population means differ from each other $E(S_B^2/S_W^2)$ will be greater than unity. Therefore if this ratio is significantly greater than unity this is evidence for the rejection of the null hypothesis and for the acceptance of the alternative hypothesis that a significant difference exists between the treatment group means. The significance of the deviation from unity may be assessed by reference to a table of F values with k - 1 degrees of freedom associated with the numerator and N - k degrees of freedom associated with the denominator. The quantities involved in the preceeding discussion are usually displayed in an analysis of variance table which follows on the next page.

AOV TABLE

.

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Squares	F Ratio
Between Groups SS _B	k - 1	$\sum_{i=1}^{k} n_i (\overline{Y}_i - \overline{Y})^2$	SS _B /(k - 1)	$\frac{SS_B(N - k)}{SS_W(k - 1)}$
Within Groups SS _W	N - k	$\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y}_{i})^{2}$. ss _w /(N - k)	
Total	N - 1	$\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Y_{ij} - \overline{Y})^{2}$		

Regression Analysis

Regression analysis is a statistical technique for extracting the main features of the relationships hidden or implied in tabulated figures. Even if no sensible physical relationship exists between the variables, we may wish to relate them by some sort of mathematical equation. While the equation might be physically meaningless it may nevertheless be extremely valuable for predicting the values of some variables from knowledge of other variables. In this paper we will be concerned with only linear regressi analysis which assumes that the relationship is linear in unknown parameters.

The variables involved can be classified as either independent or dependent variables. The dependent variais also called the response variable. The independent variables are those which can be set to a desired value or else the values can be observed but not controlled. As a result of changes in the independent variables, an effect is reflected in the dependent variables. In general, we shall be interested in finding out how changes in the independent variables affect the response variables. Howey the end result is a mathematical formula that describes the relationship between the independent and dependent variables.

The simplest example of this is the case with only one independent variable, x, and one dependent variable, y. The problem is to find an equation that will predict the expected value of y given the value of x.

$$E(y | x = X) = f(X)$$

where f(X) is the regression equation. The highest power of x found in f(x) is called the order of the regression equation so that

$$f(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

would be a linear third order model with constant coefficients b_i. Examining the first order equation

 $E(y | x = X) = b_0 + b_1 X$

we see that this equation describes a straight line on the plot of y versus x.

So to develop this regression equation, the straight line relationship between y and x must be determined. The task here, of course, is to find the value of b_0 and b_1 so that they do the best job of describing the relationship between y and x. The estimation of these coefficients is the essence of regression analysis. To perform the estimation of b_0 and b_1 it is required to obtain some empirical data consisting of pairs of observations of y and x where x was set or measured and the response of y was simultaneously observed.

> (y_1, x_1) (y_2, x_2) (y_N, x_N)

Plotting the observations might yield

Х

Obviously no straight line can pass through all the N points so some method must be adopted to "fit" the line to the points. Since the points will not all lie on the regression line, we can express each point y_i by the model

$$y_i = b_0 + b_1 x_i + e_i$$

i = 1, 2, . . . , N

or graphically

when e_i is the deviation from the regression line. To find the best regression line we will estimate b_0 and b_1 by the method of least squares. This method finds the b_0 and b_1 that minimizes the sum of the squares of the e_i .

$$\frac{\partial \sum_{i=1}^{N} e_i^2}{\sum_{i=1}^{N} e_i} = 0 \qquad \qquad \frac{\partial \sum_{i=1}^{N} e_i^2}{\partial b_1} = 0$$

To do this the equations

$$y_i = b_0 + b_1 x_i$$

i = 1, 2, ..., N

are expressed in the matrix form

$$\begin{pmatrix} y_1 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ y_N \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & x_N \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} + \begin{pmatrix} e_1 \\ \cdot \\ \cdot \\ \cdot \\ e_N \end{pmatrix}$$

Then from Theorem 6.2 in Graybill (6), it is shown that the best (minimum variance) linear unbiased estimate of b is given by least squares. That is, the \hat{b} that is the solution to the normal equations

$$\hat{b} = (X'X)^{-1} X'Y$$

is the best linear unbiased estimate of b.

If X'X is nonsingular, the estimates of ${\bf b}_{\rm O}$ and ${\bf b}_{\rm l}$ are given by

$$\begin{pmatrix} \hat{b}_{0} \\ \hat{b}_{1} \end{pmatrix} = \hat{b} = (X'X)^{-1} X'Y$$

The regression equation can then be written as

$$E(y|x = X) = b_0 + b_1 X$$

knowing that it is the best estimate of the expected value of y based on the method of least squares. This equation can now be used to predict the value of y given the values of x, or in other words, it describes a relationship between the independent and dependent variables.

The question may be asked "How well does the regression equation fit the data?" This is answered by partioning the total sum of squares about the line y = 0 (SS_T) into two categories, the sum of squares <u>due</u> to regression and the sum of squares <u>about</u> regression.

The sum of squares due to regression is the portion of the total sum of squares that is explained or accounted for by the regression equation. The larger the sum of squares due to regression, the better the fit of the regression equation to the data.

The sum of squares about regression is the sum of squares of the deviations of the data points from the regression line. If the regression line passed through every data point, the sum of squares about regression would be zero and it would be apparent that the regression was perfectly fitted to the data. If the sum of squares about regression is large, it shows that there are significant deviations of the data from the regression line. This means that there is some lack of fit present. Since the sum of squares about regression is a measure of the fit error of the regression line, it will hereafter be referred to as the error sum of squares (SS_E) . The sum of squares due to regression will be referred to as the regression sum of squares (SS_R) . Therefore, we have

$SS_T = SS_R + SS_E$

To illustrate these quantities, suppose we were asked to find the first order regression of y on x given the following quantities.

<u>_X</u>	<u>_y</u>
1	1
1	3
2	4
2	6

Expressing the data in matrix form yields

$$\begin{pmatrix} 1 \\ 3 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} b \\ 0 \\ b_1 \end{pmatrix} + (e)$$

The normal equations $X'X\hat{b} = X'Y$ are developed as follows.

$$X'X = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 6 & 10 \end{pmatrix}$$
$$X'Y = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 3 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 14 \\ 24 \end{pmatrix}$$
$$X'X = \begin{pmatrix} 4 & 6 \\ 6 & 10 \end{pmatrix} \begin{pmatrix} b_{0} \\ b_{1} \end{pmatrix} = \begin{pmatrix} 14 \\ 24 \end{pmatrix}$$

Solving for b

.

$$\begin{pmatrix} \hat{\mathbf{b}} \\ \circ \\ \hat{\mathbf{b}}_{1} \end{pmatrix} = \begin{pmatrix} 4 \cdot 6 \\ 6 \cdot 10 \end{pmatrix}^{-1} \begin{pmatrix} 14 \\ 24 \end{pmatrix}$$

$$\begin{pmatrix} \hat{\mathbf{b}}_{0} \\ \hat{\mathbf{b}}_{1} \end{pmatrix} = \begin{pmatrix} 5/2 & -3/2 \\ -3/2 & 1 \end{pmatrix} \begin{pmatrix} 14 \\ 24 \end{pmatrix}$$

$$\begin{pmatrix} \hat{\mathbf{b}}_{0} \\ \hat{\mathbf{b}}_{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Therefore

$$E(y) = -1 + 3x$$

The total sum of squares about y = 0 is

$$Y'Y = (1 \ 3 \ 4 \ 6) \begin{pmatrix} 1 \\ 3 \\ 4 \\ 6 \end{pmatrix} = 62$$

The degrees of freedom associated with the total sum of squares is equal to the number of observations.

The regression sum of squares is equal to the sum of the squares of the distances of the regression line from y = 0 at each observation of x.

x	Y	<u>E(y)</u>
1	1	3
1	3	3
2	4	5
2	. 6	5

For our example $SS_R = 3^2 + 3^2 + 5^2 + 5^2 = 58$. Equivalently, by matrix analysis

$$SS_{R} = \hat{b}' X' Y$$

$$SS_{R} = (-1 \ 3) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{vmatrix} \begin{vmatrix} 1 \\ 3 \\ 4 \\ 6 \end{vmatrix}$$

$$SS_{R} = 58$$

The degrees of freedom of the regression sum of squares is equal to the number of coefficients in the regression equation, p.

$$DF_R = p = 2$$

The error sum of squares is the sum of squares of deviations of the observed points from the regression line. In our example, since each point has a deviation of 1 from the regression line

 $SS_E = 1^2 + 1^2 + 1^2 + 1^2 = 4$

Normally the error sum of squares is determined by

$$SS_{E} = Y'Y - \hat{b}'X'Y$$
$$SS_{E} = 62 - 58$$
$$SS_{F} = 4$$

As mentioned earlier, the regression equation with the best fit to the data is the one with the lowest value for the error sum of squares. This means it has a minimum of variation of data points from the regression line. The degrees of freedom associated with the error sum of squares is equal to the number of data points, N, minus the number of regression coefficients to be estimated, p. In our example

$$DF_E = N - p = 4 - 2 = 2$$

Summarizing the results yields

Source	DF	Sum of Squares
Regression Error Total	p = 2 $N - p = 2$ $N = 4$	$\hat{b}'X'Y = 58$ Y'Y - $\hat{b}'X'Y = 4$ Y'Y = 62

Relation between Regression Analysis and Traditional Analysis of Variance Techniques

In this section the methods of the two previous sections will be drawn together to show how regression can be used to find the sums of squares and their associated degrees of freedom required for analysis of variance problems. This will be done by an example rather than a theoretical development. Using an example means that a loss of generality will be inevitable, but this is accepted with the hope of increasing the visibility of the relationship.

For our example we will take results from a hypothetical two-level single-factor experiment and demonstrate how the analysis of variance would be performed by the traditional method and by regression analysis. The computations shown here are designed to emphasize the similarities between the two methods and not to demonstrate exactly how the methods would be used to solve the problem.

The data for the problem is as follows:

Treatment	t ₁	t ₂
Results	3 5	7 9

The model for this experiment is

$$y_{ij} = u + t_i + e_{ij}$$

 $i = 1, 2$
 $j = 1, 2$
 $N = 4$
 $k = 2$

In equation form the experiment is written

$3 = u + t_1$		+ e ₁₁
$5 = u + t_1$		+ e ₁₂
7 = u	+ t ₂	+ e ₂₁
9 = u	+ t ₂	+ e ₂₂

or expressed in the matrix notation

$$\begin{array}{cccc}
Y &= Xb + e \\
\begin{pmatrix} 3 \\ 5 \\ 7 \\ 9 \end{pmatrix} &= \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} & \begin{pmatrix} u \\ t_1 \\ t_2 \end{pmatrix} + \begin{pmatrix} e_{11} \\ e_{12} \\ e_{21} \\ e_{22} \end{pmatrix}$$

In Table (2.1), which follows, the calculations required to form an analysis of variance table are shown. In the left-hand column is the traditional sum of squares method and the right-hand column shows the associated regression calculations.

TABLE 2.1

Sum of Squares	Regression
1. No reparameterization necessary	1. Before beginning the regression analysis, the problem of the singularity of the X matrix must be overcome. For this example the problem will be reparameterized so that the X matrix is of full-rank. The matrix equation $Y = Xb + e$ is written: $\begin{pmatrix} 3 \\ 5 \\ 7 \\ 9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u + t_1 \\ t_2 - t_1 \end{pmatrix} + (e)$ Notice that this yields the same four equations as the previous matrix expression of the experiment.
2. Find the total sum of squares about \overline{Y} .	2. Find the total sum of squares about $Y = 0$.
$\overline{Y} = \frac{3+5+7+9}{4} = 6$ $SS_{T} = (3-6)^{2} + (5-6)^{2} + (7-6)^{2} + (9-6)^{2}$	$SS_{T} = Y'Y = (3 5 7 9) \begin{pmatrix} 3 \\ 5 \\ 7 \\ 9 \end{pmatrix} = 164$
$ss_{T} = 20$	The total sum of squares for the two methods has a different reference point so the numerical results will be different.

TABLE 2.1 (2)

.

•

Sum of SquaresRegression3. Find the total degrees of freedom.3. Find the total degrees of freedom.		
3. Find the total degrees of freedom. 3. Find the total degrees of freedom.	Sum of Squares	Regression
$DF_T = N - 1 = 4 - 1 = 3$ $DF_T = N = 4$	3. Find the total degrees of freedom. $DF_T = N - 1 = 4 - 1 = 3$	3. Find the total degrees of freedom. $DF_T = N = 4$
4. Find the within groups sum of squares $\overline{Y}_{1} = \frac{3+5}{2} = 4$ $\overline{Y}_{2} = \frac{7+3}{2} = 8$ $SS_{W} = \frac{2}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} (Y_{ij} - \overline{Y}_{i})^{2}$ $SS_{W} = (3-4)^{2} + (5-4)^{2} + (7-8)^{2} + (9-8)^{2}$ $SS_{W} = 1 + 1 + 1 + 1 = 4$ 4. Find the error sum of squares. $SS_{E} = SS_{T} - SS_{R}$ $SS_{E} = Y'Y - \hat{b}'X'Y$ $\hat{b} = (X'X)^{-1} X'Y = \begin{vmatrix} 4 & 2 \\ 2 & 2 \end{vmatrix} \stackrel{-1}{=} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix} \begin{pmatrix} 3 & 5 \\ 7 & 9 \\ 9 & 5 \\ 9 & 5 \\ 8 & 1 + 1 + 1 + 1 = 4 \end{pmatrix}$ $E(y) = 4 + 4x_{1}$	4. Find the within groups sum of squares about the group means. $\overline{Y}_{1} = \frac{3+5}{2} = 4$ $\overline{Y}_{2} = \frac{7+9}{2} = 8$ $SS_{W} = \sum_{i=1}^{2} \sum_{j=1}^{2} (Y_{ij} - \overline{Y}_{i})^{2}$ $SS_{W} = (3-4)^{2} + (5-4)^{2} + (7-8)^{2} + (9-8)^{2}$ $SS_{W} = 1 + 1 + 1 + 1 = 4$	4. Find the error sum of squares. $SS_{E} = SS_{T} - SS_{R}$ $SS_{E} = Y'Y - \hat{b}'X'Y$ $\hat{b} = (X'X)^{-1} X'Y = \begin{vmatrix} 4 & 2 \\ 2 & 2 \end{vmatrix} \stackrel{-1}{ } \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix} \begin{pmatrix} 3 \\ 5 \\ 7 \\ 9 \end{pmatrix}$ $\hat{b} = \begin{vmatrix} 4 \\ 4 \end{vmatrix}$ $E(y) = 4 + 4x_{1}$

TABLE 2.1 (4)

•

Sum of Squares	Regression
6. Find the between groups sum of squares. $SS_{B} = \sum_{i=1}^{2} n_{i} (\overline{Y}_{i} - \overline{Y})^{2}$ $SS_{B} = 2(2)^{2} + 2(2)^{2} = 16$	6. With the hypothesis H ₀ : $t_1 = t_2 = 0$, rewrite the matrix equation in the form, $Y = Za + e$ $Y = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u - 0 \\ 0 \\ \end{pmatrix} + (e)$ which reduces to $Y = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \end{pmatrix}$ (u) + (e) Find the reduction in the regression sum of squares if the hypothesis is true. $SS_R - SS_{R(a)} = \hat{b}'X'Y - \hat{a}'Z'Y$ $\hat{a} = (Z'Z)^{-1}Z'Y = (4)^{-1}(1 \ 1 \ 1 \ 1) \begin{pmatrix} 3 \\ 5 \\ 7 \\ 9 \end{pmatrix}$ $\hat{a} = 6$

i .

TABLE 2.1 (5)

	Sum of Squares	Regression
6. (continued) 10 $\frac{10}{8}$ y $\frac{10}{2}$ 4 $\frac{2}{1}$ t $\frac{1}{1}$ Tr	$\frac{2 \left\{ \begin{array}{c} \overline{Y}_{2} \\ \overline{Y}_{2} \\ \overline{Y}_{1} \\ \overline{Y}_{2} \\ \overline{Y}_{1} \\ \overline{Y}_{1} \\ \overline{Y}_{2} \\ \overline{Y}_{2} \\ \overline{Y}_{1} \\ \overline{Y}_{2} \\ \overline{Y}_{1} \\ \overline{Y}_{2} \\ \overline{Y}_{1} \\ \overline{Y}_{2} \\ \overline{Y}_{2} \\ \overline{Y}_{1} \\ \overline{Y}_{2} \\ \overline{Y}_{1} \\ \overline{Y}_{2} \\ \overline{Y}_{2} \\ \overline{Y}_{1} \\ \overline{Y}_{2} \\ \overline{Y}_{2}$	5. (continued) $SS_{R(a)} = \hat{a}^{T}Z^{T}Y$ $SS_{R(a)} = (6)(1 \ 1 \ 1 \ 1)$ $\begin{pmatrix} 3 \\ 5 \\ 7 \\ 9 \end{pmatrix} = 144$ $SS_{R} - SS_{R(a)} = 160 - 144 = 16$ $10 \frac{1}{8}$ $4 + 4x_{1}$ $4 + 4x_{$
		<u>س</u>

TABLE 2,1 (6)

	Sum of	Squares		Regression	
7. Find the degrees of freedom for the between grous sum of squares. $DF_{B} = k - 1 = 2 - 1 = 1$		7. Find the difference in the degrees of freedom for the regression sum of squares with H ₀ false and H ₀ true. DF = rank(X) - rank(Z) = 2 - 1 = 1			
8. Set up the Sum of Squ	e Source, L Jares colum	Degrees of Freedom, and mns for the AOV Table.	8. Set up the Sum of Squ	e Source, Degrees ares columns for	of Freedom, and the AOV Table.
Source	DF	SS	Source	DF .	SS
		•	Regression (H ₀ False)	R(X) = 2	$\hat{b}'X'Y = 160$
			Regression (H ₀ True)	R(Z) = 1	â'z'y = 144
Between Groups	k - 1 = 1	$\sum_{i=1}^{k} n_i (Y_i - \overline{Y})^2 = 16$	Reduction in SS _R if H _O is true	R(X) - R(Z) = 1	b'x'y - â'z'y = 16
Within Groups	N - k = 2	$\frac{k}{1-1}, \frac{n_{i}}{j-1}(Y_{ij} - \overline{Y}_{i})^{2} = 4$	Error SS (H ₀ False)	N - R(X) = 2	$Y'Y - \hat{b}'X'Y = 4$
Total (About $Y = \overline{Y}$)	11 - 1 = 3	$\frac{k}{1} = \frac{n_{i}}{(Y_{ij} - Y)^{2}} = 20$	Total (.'bout $Y = 0$)	N = 4	Y'Y = 164

.
The regression analysis of experimental design models is summarized in the following steps.

1. Write the experiment model in terms of a fullrank matrix equation.

$$Y = Xb + e$$

2. Find the total sum of squares about Y = 0 and its degrees of freedom.

$$SS_T = Y'Y$$

 $DF_T = N$

3. Find the regression sum of squares and its degrees of freedom.

$$SS_{R} = \hat{b}' X'Y$$

$$SS_{R} = Y'X (X'X)^{-1} X'Y$$

$$DF_{R} = rank(X)$$

4. Find the error sum of squares and its degrees of freedom.

$$SS_{E} = SS_{T} - SS_{R}$$

$$SS_{E} = Y'Y - \hat{b}'X'Y$$

$$SS_{E} = Y'Y - Y'X (X'X)^{-1} X'Y$$

$$DF_{E} = N - rank(X)$$

5. Form a hypothesis that states that the effect of each of the experimental factors is zero. For each hypothesis, write a reduced model of the experiment that assumes the hypothesis is true. For a fixed factor, t, the t_j are assumed to be fixed constants and the hypothesis would be

$$H_0: t_j = 0$$
 for all j

If t is a random factor, the t_j are assumed to be normally distributed random variables with a mean of zero and a variance of σ_t^2 . The hypothesis to test the effect of t in this case would be

$$H_0: \sigma_t^2 = 0$$

In either case, a model is formed by setting all terms in the original model that contain a t to zero which will yield a reduced model.

> $Y = Z_i a_i + e$ $i = 1, 2, \dots, N_H$ $N_H = number of hypotheses$

where

6. Find the regression sum of squares and its degrees of freedom for each model.

$$SS_{Ri} = \hat{a}_{i}'Z_{i}'Y = Y'Z_{i}(Z_{i}'Z_{i})^{-1}Z_{i}'Y$$
$$DF_{Ri} = rank(Z_{i})$$

7. Find the difference in the regression sum of squares and the degrees of freedom for this model (ith hypothesis is true) and the original model (ith hypothesis is false.)

$$SS_{R-Ri} = SS_R - SS_{Ri} = \hat{b}'X'Y - \hat{a}_i'Z_i'Y$$

 $DF_{R-Ri} = rank(X) - rank(Z_i)$

8. Form the analysis of variance table based on the following quantities.

Source	Degrees of Freedom	Sum of Squares
Regression	rank(X)	ъ́'х'ү
Factor 1 Factor n	<pre>rank(X) - rank(Z₁)</pre>	$b'x'y - \hat{a}_{i}'z_{i}''$ $b'x'y - \hat{a}_{n}'z_{n}'$.
Error	N - rank(X)	Y'Y - b'X'Y
Total	. N	Y'Y

AOV	TABLE

From the previous table it is clear that regression is a fairly straight-forward, although computationally tedious, method of determining the sum of squares. The real problem as stated earlier, is in step 1. That is, the reparameterization of the model to a full-rank model. The remainder of this paper will be concerned with the method and examples of writing experimental design models that make this step of reparameterization unnecessary.

CHAPTER III

FULL-RANK EXPERIMENTAL DESIGN MODELS

The first part of this chapter will demonstrate why the traditional experimental design models always lead to an indeterminant system of normal equations with an excess of unknowns over independent equations.

Consider a single-factor experiment with r levels of the factor to be investigated as to their effect on a response variable. Also assume there are n_i replications for each level i. The model for this experiment is expressed by the following:

> $y_{ik} - u + t_i + e_{ik}$ i = 1, 2, ..., r $k = 1, 2, ..., n_i$

where

 y_{ik} is the kth observation of the response variable under the experimental condition of level i of the treatment, *.

u is the overall expected value of the response variable for the entire experiment.

t_i is the deviation from u caused by the effect of level i of the treatment t.

 e_{ik} is the random error in the experiment which is normally distributed with a mean of 0 and a variance of σ_e^2 .

In matrix form (y = Xb + e), the experiment is expressed by the following:

^y 11		1100.00 /u	e ₁₁
y ₁₂		1100.00 / t ₁	^e 12
•		$\begin{vmatrix} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \cdot \end{vmatrix} = \begin{vmatrix} t_2 \end{vmatrix}$	•
•	=	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +$	•
y _{ln}		1100.00	e 1n1
y ₂₁		1010.00	^e 21
•		$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \setminus \langle \mathbf{r}_{\mathbf{r}} \rangle$	•
			•
y _{2n2}		1010.00	e _{2n2}
У ₃₁		1001.00	e ₃₁
•			•
			•
yrnr		1000.01	e_{rn_r}

where the matrices have the following dimensions

Matrix	Dimension				
	Row	Column			
Y	$r \\ \sum_{i=1}^{n} i$	1			
x	$r_{\substack{\sum_{i=1}^{n} n_{i}}}$	r [:] + 1			
b	r + 1	1			
. e		1			

When the normal equations

$$X'X\hat{b} = X'Y$$

are formed, the matrix X'X will be a square (r + 1) by (r + 1) matrix. From Theorem 1.20 in Graybill (6), the rank of X'X will be equal to the rank of X which will be equal to the number of independent rows in the matrix. In our experiment there are r different experimental conditions, one for each level of t, and for each condition there is an equation expressing the expected value of y for the condition.

Level 1:	$E(Y) = u + t_{1}$
Level 2:	$E(Y) = u + t_2$
•	•
•	•
•	•
Level r:	$T : E(Y) = u + t_r$

Without adding any supplemental conditions on the experiment, it is clear that there is only one independent equation for each different condition in the experiment. This means, for our example, there are only r independent rows in the X matrix. Since X is of rank r, X'X is a singular (r + 1) by (r + 1) matrix of rank r. So there is

39

no unique solution

$$\hat{b} = (X'X)^{-1} X'Y$$

to the normal equations.

Regardless of the number of factors or type of experiment, there will be no more independent rows in the X matrix than there are different experimental conditions. For a two-factor experiemnt with r and s levels per factor there will be rs different conditions so the rank of the X matrix will be rs. So, in general, rank(X) equals the product of the number of levels for each factor of the experiment.

The column dimension of X, designated p, will be equal to the number of unknowns in the experimental design model. For the single-factor example, p was equal to r + 1. For a two-factor experiment with r and s levels per factor, we have:

Factor	Number of Terms
u.	1
1	r
2	S
1 X 2 interaction	rs
	Total = 1 + r + s + rs = p

It is apparent that p is much greater than the rank of X which is rs. This means, of course, that X'X is again singular. As the number of factors in an experiment is increased, p will always be greater than the rank of X. This is obvious since the rank of X will always be equal to the number of the highest level interaction terms in the b matrix. The dimension p will be equal to this, plus all the lower level terms in the b matrix. So, in summary, regardless of the experiment, the model will always lead to a set of indeterminant normal equations since X'X will be singular.

The preceeding discussion also leads us to the fact that the rank of X'X will be equal to the number of experimental conditions, or cells, in the experiment. Therefore, if the number of unknowns in the b matrix, p, can be reduced to the number of cells, X'X will be a p x p matrix of rank p. Under these conditions we can find \hat{b} by

$$\hat{b} = (X'X)^{-1} X'Y$$

and proceed to find the sums of squares by the method of the preceeding chapter. We already know that this can be

41

done by reparameterizing the model after it is written. However, this is extra work that must usually be done manually before the regression solution method begins.

The problem now, is how can we write the model directly so that the number of unknowns is equal to the number of experimental cells which leads directly to a full-rank X'X. It appears that the key to this is getting away from expressing the response variable as being equal to an overall mean, u, plus deviations caused by the experimental factors.

E(Y) = u + deviations

To reduce the number of unknowns, it is possible to select one of the cells of the experiment as standard from which the expected response of all other cells deviates.

E(Y) = standard cell + deviations

We will denote the expected response of the standard cell as S and will choose the cell where all factors are at level 1 as the standard cell. For a 2² factorial experiment (factors a and t) with 2 replications, the model would be developed as follows: Cell a_1 , t_1 is the standard cell so the expected response for this cell is simply S.

For the a_1 , t_2 cell the only deviation from S would be caused by the change in treatment t from level 1 to level 2. Therefore,

$$\begin{array}{c|c}t_1 & t_2\\ a_1 & E(Y) = S & E(Y) = S + t_2\\ a_2 & & & \\ \end{array}$$

Likewise for a2, t1

t₂

 t_1

 $a_1 = E(Y) = S = E(Y) = S + t_2$ $a_2 = E(Y) = S + a_2$ For the a_2 , t_2 there are two sources of deviations from S so there will also be an interaction term between the two factors.

	t ₁	, ^t 2
^a 1	E(Y) = S	$E(Y) = S + t_2$
^a 2	$e(Y) = S + a_2$	$E(Y) = S + a_2 + t_2 + at_{22}$

Notice that there are no terms in the equations with a subscript containing a 1. This is caused by the definition of cell 1 to be the standard from which deviations are measured. Writing the new model for the experiment yields

> $Y_{ijk} = S + a_i + t_j + at_{ij} + e_{ijk}$ i = 1, 2 j = 1, 2 k = 1, 2 a_1 = t_1 = at_{11} = at_{12} = at_{21} = 0

Listing the number of unknowns in the model

S ^a2 ^t2 ^{at}22 44

shows that there are only four of them which equals the number of cells in the experiment. Therefore, we have succeeded for this case in expressing the experiment with the same number of unknowns as experimental conditions. Although not proved for the general case, it should be apparent that each cell introduces only one new term which is the highest level interaction possible between the single-factor terms in the cell. Since each cell introduces one new unknown and one more independent equation, this insures the fact that the number of unknowns and cells will be equal.

Writing the model of our 2^2 example in matrix form,

Y = Xb + e

yiclds

/ 5	′111 \		/ 1 0	00	\.	/	s \	
/ y	112	1	1 0	0 0			t ₂	+101
y y	121		11	0 0			^a 2	1 1 [2]
У	/122	•	1 1	0 0			^{at} 22	I .
у	211	=	1 0	10				
У	212		1 0	1 0				
\ у	221		11	1 1				
7 2	222		\ 1 1	11				

To examine the rank of X it is rewritten as

Notice that the top four rows form a diagonal of 1's with only 0's above the diagonal. Forming a determinant of the top four rows, it appears as

Since this 4 x 4 determinant has a nonzero value and the column dimension is 4, the rank of X is equal to four. This means X'X will be a (4×4) with a rank of 4 which means our system of normal equations will have a unique solution. To summarize the method of expressing models that lead to a full rank X'X matrix:

1. Choose a cell of the experiment as the standard, S, from which the deviations in the expected value of Y for all other cells will be based on. In this paper, this will always be the level 1 cell for all factors.

2. Write the expected value for all other cells as Y = S + deviations from standard cell. Or, in equation form it may be written

 $Y_{rijk...} = S + a_i + t_j + ... + at_{ij} + ... + e_{rijk...}$ where all experimental factors containing a subscript of one are zero.

The next chapter will contain examples, primarily from Hicks (7) and show how they can be solved with the combination of expressing the model in full-rank form and using regression analysis.

CHAPTER IV

EXAMPLE PROBLEMS

This chapter demonstrates how some representative experimental design problems can be systematically solved using the combination of full-rank model formulation and regression analysis. The method is applied to four different types of problems. They are as follows:

1. A completely randomized single-factor experiment with unequal group sizes.

2. A single-factor experiment with an incomplete block design.

3. A 2 x 2 factorial experiment with missing data.

4. A nested-factorial experiment with fixed and random factors.

The four problems are solved using a standard stepwise regression routine designed for regression analysis rather than analysis of variance problems. The routine is the EMDO2R Stepwise Regression program which is one of the UCLA Biomedical Computer Programs described in Dixon (3). This widely-used package is available in many large-scale computing centers. The stepwise feature of the routine is not required but it is mandatory that the user be able to easily control which variables enter the regression equations. The BMDO2R routine accomplishes this by the Control-Delete commands which force variables into, or keep variables out of, the regression calculations. The routine also automatically provides the regression and error sums of squares and degrees of freedom for each regression as part of the output. This is a great advantage over a routine that only provides the regression coefficients and leaves the user to calculate

$$SS_R = \hat{b}'X'Y$$

and

$$SS_{E} = Y'Y - \hat{b}'X'Y$$

A limitation of BIDDO2R for analysis of variance work is that it can handle no more than 80 variables in its regression calculations. The user must, therefore, insure that when the full-rank model is formulated, it contains no more than 80 different terms. If necessary, the number of terms in the model can be reduced by assuming certain factors or interactions have no effect and deleting the terms associated with those factors. BMDO2R can process up to 9999 observations which should be sufficient to handle most experiments. On the following pages, the four example problems are solved with the BMDO2R program and a step-by-step description of the solution is presented for each problem. A listing of each problem's input data for BMDO2R is provided in Appendix A.

Type:

A single fixed-factor experiment with unequal group sizes.

Source:

Hicks (7), page 42.

Problem:

In this experiment, a single factor, t, is set to five different levels and the number of measurements of the response variable in each group is different. The data for the experiment is the following:

1

Treatment ·	t ₁ ·	•t2	t3	t ₄	t ₅
Response	83 85	84 85 86 86 87	- 86 87 87 88 88 88 88 88 88 88 88 89 90	89 90 91	90 92

Solution:

1. Express model in terms of a full-rank matrix

equation.

The full-rank model as developed in Chapter III for this experiment is:

$$y_{ik} = S + t_i + e_{ik}$$

 $i = 1, 2, 3, 4, 5$
 $k = 1, ..., n_i$ where $n_1 = 2$
 $n_2 = 6$
 $n_3 = 11$
 $n_4 = 4$
 $t_1 = 0$ $n_5 = 2$

τ1

The matrix representation of this model is the following:

83. 85. 84. 85. 85. 85.	 10000- 10000 11000 11000 11000 11000 11000 	$ \begin{vmatrix} s \\ t_2 \\ t_3 \end{vmatrix} $	+ (e)
87.		$ \langle \gamma \rangle$	
88.	10100		
88.	10100		
89.	10100		
88.	10100		
88.	10160		
89.	10100		
90.	10100		
49.	10010		
·•0•	10.10		
90.	10010		
91.	10010		
	10001		
92.	1 10001	l	

2. Find the total, error, and regression sums of squares and degrees of freedom.

The regression routine is used to generate a regression equation which includes all five variables of the b matrix. The following output of the routine shows the regression and error (labeled residual) sum of squares and degrees of freedom.

ANALYSIS OF N	ARTANCE				
		ሳድ	SUN OF SQUAR	175 MEAN SO	UYRE
PEGRE	55101	5	1,1767,857	38353.57	1
RESIC	UAL	20	23.140	1.13	7
				6	
	VARI	AN! FS I	N ECHATION	•	
				÷	
VARIABLE	COTEF	TCTENT	STP, ERROP	F TO REMOVE .	
				•	
			•	٥	
ICO'ISTA	<u>. 17</u> 1	. <u>nueron</u>	()	•	
S 2	5 3 3 3 3 3 3	989471	7.61-31	12196+9545 .	
T2 3	1.5160	22 *+ * 2 -	3.79-31	2+9171 +	
T3 4	3.8192	129+10	8.27-31	21.3236 .	
_ <u>14</u> 5	6.2000	221+10	9.32-11	41.4956 .	-
T5 6	7.000.	219+70	1.18+30	42:3508 .	

Using these to find the total sum of squares and degrees of freedom yields,

SS _R (S,t)	=	191767.857	DFR(S,t)	- 5
SSE	Π	23.140	df _E	=20
ss _T	=	191790.997	DF _T	=25

53

3. Form the appropriate hypotheses to test the significance of the experimental factors.

For this example there is only one factor, t, which is fixed, so the only hypothesis to be tested is

$$H_0: t_2 = t_3 = t_4 = t_5 = 0$$

This null hypothesis states that treatment levels 2, 3, 4, and 5 cause no significant deviation from the standard response which is defined to be level 1 of the factor t.

4. For each hypothesis, find the regression sum of squares and degrees of freedom for the reduced model that assumes the hypothesis to be true.

This is accomplished by removing from the b matrix those variables assumed to be zero and finding a new regression equation for the reduced model. For this example, the new regression equation will include only the variable S since t_2 , t_3 , t_4 , and t_5 are set to zero. The regression results for the reduced model are

	a second and and a second s	a the second and the second	2
5101 1	1,1663.83	2 171668.1	832
AL 24	122.16	4 5	<u>990</u>
			•
VARIABLES	S IN FRUATION		•
COFFFICIE	IT STO, ERROR	F TO REMOVE	•
-			. •
т б.елог	ן ניהי		•
2.7559999+r	*1	37454+4787	•
-	STON I AL 24 VARIABLES COFFFICIES T 0.0000	STON 1 191063.83 AL 24 122.16 VARIABLES IN FOUNTION COFFFICIENT STO. FRROR T 0.900000000000000000000000000000000000	STON I Ig1663.832 171668.8 AL 24 122.164 5.4 VARIABLES IN FOUATION

which show that

$$SS_{R(S)} = 191668.832$$
 DF_{R(S)} = 1

5. Find the regression sum of squares and degrees of freedom associated with the factors tested in each hypothesis.

This is done by subtracting the regression quantities of the reduced model from the regression quantities of the full model. For this example, the sum of squares calculations are

/

$$SS_t = SS_R(S,t) - SS_R(S)$$

 $SS_t = 191767.857 - 191668.832$
 $SS_t = 99.025$

The degrees of freedom calculations are

$$DF_{t} = DF_{R}(S,t) - DF_{R}(S)$$
$$DF_{t} = 5 - 1$$
$$DF_{t} = 4$$

6. Form the analysis of variance table and make the appropriate F tests.

.

•

•

AOV

Source	DF	<u>Sum of</u> Squares	<u>Mean</u> Squares	F
Factor t	4	99.025	24.756	21.397
Error	20	23.140	1.157	
Total	25	191790.997		

The factor t is found to be significant at the 99% level of confidence.

. .

.

•

.

.

.

Type:

A single fixed-factor experiment with an incomplete block design.

Source:

Hicks (7), page 57.

Problem:

In this example, the factor t is set to four different levels and only three levels can be run in a block. There are four blocks of data as follows.

Trea	t ₁	t2	t3	t4	
	Block 1	2		20	7
Deserves	Block 2	- .	32	14	3
Kesponse	Block 3	4	13	31	
	Block 4	0	23	-	11

Solution:

1. Express model in terms of a full-rank matrix equation.

The full-rank model as developed in Chapter III for this experiment is shown on the following page.

$$y_{ijk} = S + t_i + b_j + e_{ijk}$$

$$i = 1, 2, 3, 4$$

$$j = 1, 2, 3, 4$$

$$k = 1$$

$$t_1 = b_1 = 0$$

The matrix representation of the model is

2. 20. 7. 32. 14. 3. 4. 13. 31. 0. 23. 11.	$= \begin{pmatrix} 1000000 \\ 101000 \\ 1001000 \\ 1001000 \\ 1100100 \\ 1001100 \\ 100010 \\ 1000001 \\ 1000001 \\ 1000001 \\ 1001001 \\ 0 \\ 0$	+ (e)
---	---	-------

2. Find the total, error, and regression sums of squares and degrees of freedom.

The regression results for the full model are

			DE	SUM OF SQUARE	S HEAN	SWUARE
	ntbr	LS-LUN	7	3114.033	4440	410
	RESIDUAL		5	363.167	72.	633
						٠
		VANIA	<u> Prrz I</u>	H EQUATION		•
VA	ABLE	CUEFFI	CIENT	STD. ERROR F	TO REMOVE	•
						•
	(CUNST)	ANT C.	<u></u>			•
5	(CUNST)	ANT Coo		ار بر المراجع (الم	• _ `7,	•
5 T 2	(CUAST) / 3	ANT C 1. 1. 2. 1 2. 0/477		j) acts (+ j), 1 + 3 a + (1),	· _ ' 7 ; ; • ' / ; • ' ; • '	•
5 T 2 T 3	(CUNST) / 3 4	ANT C 1. 1. 2. 1 2.07477 2.024999		j) a+:+,+,; />3,5+i); /+38+U3	• - '7 / 1 • 4 134 1 • 5274	9 0 0 0 6 8
5 T 2 T 3 T 4	(CUNST) 2 3 	ANT C 1. 1. 2. 1 2. 0/477 - 2. 02499 5. 49999	000000 707.1 98401 93401	J) 0+5++J 7+30+000 7+30+00 7+30+00	• - 177 7•7337 7•5275 •5553	9 • • • • •
5 T 2 T 3 T 4 B 2	(CUUST) 3 	ANT C 2.0/477 2.02499 5.49999 -2.49999	000000 //m.1 90401 /0400 /0400	3 3 7 + 3 5 + (1) 7 + 3 5 + (1) 7 + 3 5 + (1) 7 + 3 6 + (1) 7 + 3 6 + (1)	- 177 7-7337 7-5275 - 5553 - 60111	• • • • • • • •
5 T 2 T 3 T 4 H 2 H 3	(CUAST) 2 3 	ANT 2 • 0 / 4 7 7 2 • 0 / 4 7 7 2 • 0 2 4 9 9 9 5 • 4 9 9 9 9 - 2 • 4 9 3 9 9 9 1 • 2 5 0 0 0	303300 76*31 53*33 53*33 53*33 53*33	J 0 + 15 + 31. 7 + 3 5 + 60. 7 + 3 8 + 60. 7 + 3 8 + 60. 7 + 3 8 + 90. 7 + 3 8 + 90.	• - '77 7•737 7•5275 • 5553 • 6011 • 6287	•

To find the total sum of squares and degrees of freedom

SS _{R(S,t,b)}	=	3114.833	DF _{R(S,t,b)}	=	7
ss _e	=	363.167	DF_{E}	=	5
ss _T	=	3478.000	df _T	=]	12

3. Form the appropriate hypotheses to test the significance of the experimental factors.

For this example there are two fixed factors, t and b, to be investigated. Therefore, two hypotheses are formed. To test the significance of the factor t, the hypothesis is

 $H_0(t): t_2 = t_3 = t_4 = 0$

To test the significance of the blocks, b, the hypothesis is

 $H_0(b): b_2 = b_3 = b_4 = 0$

4. For each hypothesis find the regression sum of squares and the degrees of freedom for the reduced model that assumes the hypothesis to be true.

For $H_0(t)$ the reduced model contains the variables S, b_2 , b_3 , and b_4 . The regression results for this model are shown on the following page.

ANALY	SIS OF	VARIANCE		<u></u>		
		· ·	DF	SUM OF SQUA	RES MEAN	SQUARE
	REG i	RESSION	4	2234.00	ΰ 558	•588
RESIDUAL		IDUAL	B	1244.00	0155	<u>.500</u>
		VARI	LABLES 1	N EQUATION		•
VĂr	RIAHLE	COEFF	ICIENT	STD. ERKOR	F TO REMOV	
	COMS	TANT C	.00000.0	10)		•
S	2.	9.0661	5069+24	7+29+00	1.8028	•
62_	6	5.6600	5563+63	1:02+01	.4287	•
ВЗ	7	6.333	ن ل: + 1 3 3 4	1+02+01	.3869	•
	ម	100606	5564+UJ	1.02+01	.0268	•

which yield

 $SS_{R(S,b)} = 2234.000$ $DF_{R(S,b)} = 4$

For $H_0(b)$ the reduced model contains the variables S, t_2 , t_3 , and t_4 . The regression results for this model are

. . .

ANALY	515 OF 1	VARIANCE	•	
		υF	SUN OF SQUARES	5 NEAN SQUAR
	REGRI	. s. I u i 4	3130.607	717.107
	4L511	JAL 5	<u> </u>	46.16/
				••••••••••••••••••••••••••••••••••••••
		V, (1), LED 1	N EWUATION	•
VAR	IABLE	CUEFFICIENT	STD. ERROR F	TO REMOVE .
	(CUNST)	ΑΗΤ υσίουρου	_;)	•
S	2.	2.0990667+90	3+92+00	.2599 .
T2	3	2.1666665+111	5+55+00	13.8773 .
Т3	4	1.7666065+01	5+55+00	12.5668 .
T 4	5	4 • 9977971400	5.55+40	•8123 •

which yield

·

$$SS_{R}(S,t) = 3108.667$$
 $DF_{R}(S,t) = 4$

5. Find the regression sum of squares and degrees of freedom associated with the factors tested in each hypothesis.

For the factor t, the calculations are

$$SS_{t} = SS_{R}(S,t,b) - SS_{R}(S,b)$$

 $SS_{t} = 3114.833 - 2234.000$
 $SS_{t} = 880.833$
 $DF_{t} = DF_{R}(S,t,b) - DF_{R}(S,b)$
 $DF_{t} = 7 - 4$
 $DF_{t} = 3$

For the blocks b, the calculations are

$$SS_b = SS_R(S,t,b) - SS_R(S,t)$$

 $SS_b = 3114.833 - 3108.667$
 $SS_b = 6.166$
 $DF_b = DF_R(S,t,b) - DF_R(S,t)$
 $DF_b = 7 - 4$
 $DF_b = 3$

6. Form the analysis of variance table and make

the appropriate F tests.

AOV

Source	DF	<u>Sum of</u> Squares	<u>Mean</u> Squares	<u>F</u>
Factor t	3	880.833	293.611	4.042
Factor b	3	6.166	2.055	.028
Error	5	363.167	72.633	
Total	12 [.]	3478.000		

Neither factor is significant at the 95% level of confidence.

EXAMPLE NO. 3

Type:

A 2 x 2 fixed-effect factorial design with three replications per cell and two missing values.

Source:

Dixon (3), page 550.

Problem:

In this example, two factors, a and b, are each set to two different levels and three response measurements are made in each cell. Two measurements are missing. The data for the experiment is

Treatment	- ъ ₁	^b 2
^a 1	5 3 -	6 5 7
^a 2	13 14 15	12 10 -

Solution:

1. Express the model in terms of a full-rank

matrix equation.

The full-rank model for the experiment is

$$y_{ijk} = S + a_i + b_j + ab_{ij} + e_{ijk}$$

$$i = 1, 2$$

$$j = 1, 2$$

$$k = 1, 2, \dots, n_{ij} \quad \text{where} \quad n_{11} = 2$$

$$n_{12} = 3$$

$$n_{21} = 3$$

$$n_{22} = 2$$

$$a_1 = b_1 = ab_{11} = ab_{12} = ab_{21} = 0$$

The matrix representation of this model is

$$\begin{pmatrix} 5.\\ 3.\\ 13.\\ 14.\\ 15.\\ -6.\\ -5.\\ 7.\\ 12.\\ 10. \end{pmatrix} = \begin{pmatrix} 1000\\ 1000\\ 1100\\ 1100\\ 1100\\ 1010\\ 1010\\ 1010\\ 1010\\ 1111\\ 1111 \end{pmatrix} \begin{pmatrix} S\\ a_2\\ b_2\\ a_{b_2} \end{pmatrix} + (e)$$
2. Find the total, error, and regression sums of

squares, and degrees of freedom.

The regression results for the full model are

			νF	SUM OF	SUUARES	MEAN	SWUARE
	REGRES	51011	4	ç	170.000	242.	500
	RESIDU	JAL	6		ថ∙ព∪ប	1 •	333
							•
		V A K	LADLES 1	N EWUAT	[]ÜN		•
M		COFF	CLE IN UT		1204	TO 05 30:00	•
VARI	4546		ICTENT	JIVe t	RRUR F	IU REMOVE	• • • • • • • • • • • • • • • • • • • •
							•
			·		-		•
	CONSTAN	iT i	¢، ∪ ∪ تا تا تا ت				•
5	2	<u>4. Je ji</u>		8 • 1	6-,11	24.6000	•
AZ	3	9+9979	9,94+30	1 • 0	15+33	89.9998	•
62	4	1.797	1195+00	1.1	.S+JQ	3.60.00	•
A A 2 2	5	-4.9979	1193+20	3 . 4	19430	11.2525	•

To find the total sum of squares and degrees of freedom

^{SS} R(S,a,b,ab)		970.000	DF _{R(S,a,b,ab)}	= 4
ss _e	=	8.000	DF _E	=_6
ss _T	=	978.000	${}^{\mathrm{DF}}\mathrm{T}$	=10

3. Form the appropriate hypotheses to test the significance of the experimental factors.

For this example there are three fixed factors, a, b, and ab to be investigated. Therefore, three hypotheses are formed. For the interaction effect, ab, the hypothesis is

$$H_0(ab): ab_{22} = 0$$

For the factor a, the hypothesis is

$$H_0(a) : a_2 = 0$$

Notice that this hypothesis also implicitly states that the interaction effect is removed. Whenever a factor is removed from the model, it also implies that all higher level interaction terms containing that factor are removed.

For the factor b, the hypothesis is

$$H_0(b): b_2 = 0$$

4. For each hypothesis, find the regression sum of squares and degrees of freedom for the reduced model that assumes the hypothesis to be true.

For $H_0(ab)$, the results are

			ÐF	SUM 0	F SQUAT	RLS ME	AN S	UUAN
	REGRESSION		3		955.000		318+333	
	RES1	UUAL	7		23•94) 	3•2	66
	···	VAR	IADLES I	N EQUA	TION			ŧ
VAN	LAJLE	CÜLF	FICILIAT	STD.	ERHUH	F TO KEM	OVE	•
								•
	(CUHST	AisT	0. ເມຍດບໍ່ມ	(t)				•
5	2	5.499	89993420	1 •	67+93	26.30	43	•
A.2	3	7.505	61+10		17+30	41.38	69	•
R 2	4	-5.000	0002-01	1 •	17+00	. 18	26	•

which yield

 $SS_{R(S,a,b)} = 955.000$ $DF_{R(S,a,b)} = 3$

For H₀(a), the results are

ANALYS	SIS OF	VARIANCE			
			JF	SUM OF SAUARE	S NEAN SQUARE
	REGRESSION RESIDUAL		2	8211.100	410.000
			88	158.000	19.750
		VARI	AHLES I	N EQUATION	•
VARIABLE CUEFF		ICIENT	STU. ERNOR F	TO REHOVE .	
					•
					•
	(CUNS1	AHI0	<u>ຼຸເບບ</u> ຸລຸບຸລ		· · · · · · · · · · · · · · · · · · ·
S	2	9 99944	44 4 400	1+99+00	25.3105 .
B 2	4	-1.7999	999+Ju	2 - 81 + 45	.5:163 .

which yield

 $SS_{R(S,b)} = 820.000$ $DF_{R(S,b)} = 2$

For $H_0(b)$, the results are

.

ALALYSIS OF	VARIAHCE					
		_ Ur_	SUH OF SQUAR	15 MI	LAN SSUNPE	
REGRESSION RESIDUAL		2	754.400	, , , , , , , , , , , , , , , , , , ,	477.200	
		ь	23,600	}		
	VARI	NOLES I	N ENUATION			
VARIABLE COLF		ICIEN1	STD. ERROR	F TO REI	10VE •	
(Cons.	IANT É	ເເບັນມີປະບຸ	.,ı)		•	
5 2	5+1977	199+00	7.68-31	45.0	305 •	
A23	7.5979	199+34	1.09+30	40.91	491	

67

which yield

For

$$SS_{R(S,a)} = 954.000$$
 $DF_{R(S,a)} = 2$

5. Find the regression sum of squares and degrees of freedom associated with the factors tested in each hypothesis.

For the interaction effect, ab, the calculations are

$$SS_{ab} = SS_{R}(S,a,b,ab) - SS_{R}(S,a,b)$$

$$SS_{ab} = 970.0 - 955.0$$

$$SS_{ab} = 15.0$$

$$DF_{ab} = DF_{R}(S,a,b,ab) - DF_{R}(S,a,b)$$

$$DF_{ab} = 4 - 3$$

$$DF_{ab} = 1$$
the factor a, the calculations are

$$SS_a = SS_R(S,a,b,ab) - SS_R(S,b) - SS_{ab}$$

 $SS_a = 970.0 - 820.0 - 15.0$
 $SS_a = 135.0$

Notice that the difference in the sum of squares between the full and reduced models yields the sum of squares due to factor a plus the sum of squares due to the interaction effect, ab. This is caused by the fact that the hypothesis $H_0(a)$ implicitly includes the assumption that all interaction effects with the factor a are also removed from the model.
For the factor b, the calculations are

$$SS_b = SS_R(S,a,b,ab) - SS_R(S,a) - SS_{ab}$$

 $SS_b = 970.0 - 954.4 - 15.0$
 $SS_b = 0.6$
 $DF_b = DF_R(S,a,b,ab) - DF_R(S,a) - DF_{ab}$
 $DF_b = 4 - 2 - 1$
 $DF_b = 1$

6. Form the analysis of variance table and make the appropriate F tests.

VOA

Source	DF	<u>Sum of</u> Squares	<u>Mean</u> Squares	F
	•			
Factor a	1	135.00 .	135.00	101.25
Factor b	1	0.60	0.60	.45
Factor ab	1	15.00	15.00	11.25
Error	6	8.00	1.33	
Total	10	970.00		

. The factors a and ab are significant at the 99% level of confidence.

EXAMPLE NO. 4

Type:

A three-factor, nested-factorial experiment with fixed and random effects.

Source:

Hicks (7), page 172.

Problem:

In this experiment, three factors, methods (m), groups (g), and teams (t) are investigated to find their effect on the number of rounds of ammunition per minute that can be loaded into a gun. The factors m and g are fixed and t is a random factor which is nested within g. The data for the experiment is:

	Groups (g)		1			2			3	-
	Teams (t)	1	2	3	4	5	6	7	ç	 ,
M e t h	1.	20.2 24.1	26.2 26.9	23.8 24.9	22.0 23.5	22.6 24.6	22.9 25.0	23.1 22.9	22.9 23.7	21.8 23.5
d s (m)	2	14.2 16.2	18.0 19.1	12.5 15.4	14.1 16.1	14.0 18.1	13.7 16.0	14.1 16.1	12.2 13.8	12.7 15.1

Solution:

1. Express model in terms of a full-rank matrix equation.

The model for the experiment is written as a fullfactorial model. After the sum of squares are determined, some of the interactions will be combined to account for the fact that the t is nested within g.

The full model is

$y_{ijkl} = S + m_i + g_j + t_k + mg_{ij} + mt_i$	k + gt	t jł	c	
+ mgt _{ijk} + e ijk1				
i = 1, 2				
j = 1, 2, 3				
k = 1, 2, 3				
1 = 1, 2				
$m_1 = g_1 = t_1 = 0$				
^{mg} ij ^{mt} ik ^{gt} jk ^{mgt} ijk ⁰	when	i		1
	or	j	t 22	1
	or	k	Ξ	1

The matrix representation of the model is shown on the following page.

20.2 10000000000	00000	-
24.1 1000000000000		S
26.2 110000000000	00000	•
26.9 110000000000	00000	t _o
23.8 10100000000	00000	Z
24.9 101000000000	00000	ta
14.2 100100000000	00000	-3
16.2 100100000000	00000	
18.0 1101001000000	00000	^m 2
19.1 1101001000000	00000'	
12.5	00000	^g 2
15.4 1011000100000	20000	_
22.0 10010000000	00000	8.
23.5 100010000000	00000	-3
22.5 1100100000100	00000	mtoo
24.6 1100100000100	00000	
	00000	
25.0 1010100000010	00000	^{mc} 23
14.1 1001100010000	00000	_
16.1 1001100010000	00000	^{mg} 22
14.0 = 11011010101000	01000	
18.1 1101101010100	01000	mgaa
13.7 10111001100IC	00100	-23
16.0 1011100110010	00100	etaa
23.1 100001000000	00000	8-22
22.9 100001000000	00000	~ =
22.9 1100010000001	0000	^{gc} 23
23.7 1100010000001	00000	
21.8 1010010000000	10000	gt ₃₂
23.5 1010010000000	10000	
14.1 1001010001000	00000	gtaa
15.1 1001010001000	00000	- 55
12.2 1101011001001	00010	mgtooo
13.8101011001001	00010	
12.7 101101010000.	10001	mat
15.1 1 1011010101000	10001	^{mgc} 223
		^{mgt} 232
		mgt ₂₃₃
		200

.

.

+ (e)

72

2. Find the total, error, and regression sums of squares and degrees of freedom.

The regression output for the full model is

ANALYS	IS UF	VARIANCE					
			64	SUM OF SUUA	RES	MEAN S	UARE
	REG	RESSION	18	14175+16	7	787.5:	9
	RES	IDUAL	18	41.54	'1	2 • 3	11
			•				
							•
		VAKI	ABLES	IN ENVALION			•
		COLEE	TELE	STH. 50200	r 10	artour	•
* A IV 1 7	4.1864		1616141	DIDA ERNOR	F 10	NEHUVE	•
							•
	(CUIS	TAKT O	• ເປັນເປ	(ب			*
5	2	2.2145	101+21	1.07+00	424	.6674	0
T 2	3	4+4906	165+00	1+52+90	ь	.3788	•
т3	4	2.2000	136+40	1+52+64	2	. P947	•
H2	5_	-6 • 9 4 9 9	961+00	1+52+00	23	.9046	•
62	6	6.0001	171-01	1+52+00		.1558	•
63 _	/ .		773-01	1.52+40		.3127	5
NT22	ú	-1+6500	1334400	2+15+00		.2386	•
hT23	. 9	-3-451	156+114	2+15+60	2	.5756	•
1622	1+1	-1 + 10000	911-01-	- 2+15+2J		.1046	•
K623	11	-9.54JU	521-01	2.15+113		.1953	•
GT22	12	-3:55u(បទា+បំផ	2+15+00	7	.7271	ŧ
GT23	13	-1.0000	120+110	.2 · 15+00		.2164	•
GT32	14	- 4 e 11 . u	1160+111	2+15+911	3	. 6376	e
6133	15	-2.5500	09740V	2.15+00	1	.4071	•
MGT22	2 16	1.12.0	111+11	3•04+50		.1431	1
11GT223	3 17	2.0%.00	044410	3+114+00		.4328	•
MoT232	2 18	-1.35.00	0(1+00	3+14+34		.1972	*
ngr23.	3 1 5	2.0-1-	- J2+1L	3+04+60		,7314	

which shows that

 $SS_{1}(C,m,g,t,mg,mt,gt,mgt) = 14175.167$ $SS_{E} = 41.591$ $SS_{T} = 14216.758$ and

$$DF_{R}(S,m,g,t,mg,mt,gt,mgt) = 18$$
$$DF_{E} = \frac{18}{36}$$
$$DF_{T} = 36$$

3. Form the appropriate hypotheses to test the significance of the experimental factors.

Still considering the problem as a full-crossed factorial model, the following hypotheses are used to test the significance of the three factors and their interactions.

The mgt interaction includes the random factor t, so

$$H_0(mgt): \sigma_{mgt}^2 = 0$$

This random-factor hypothesis is different from a fixedfactor hypothesis but since the random factor is assumed to be $N(0,\sigma_{mgt}^2)$ the reduced model is still developed by setting all the terms containing mgt to zero.

The mg interaction term contains only fixed effects so

$$H_0(mg): mg_{22} = mg_{23} = 0$$

The mt and gt terms include the random factor t, so

$$H_0(mt): \sigma_{mt}^2 = 0$$
$$H_0(gt): \sigma_{gt}^2 = 0$$

The m and g factors are fixed so

$$H_0(m): m_2 = 0$$

 $H_0(g): g_2 = g_3 = 0$

The t factor is random so

$$H_0(t): \sigma_t^2 = 0$$

4. For each hypothesis, find the regression sum of squares and degrees of freedom for the reduced model the assumes the hypothesis to be true.

1

For $H_0(mgt)$ the result is

ANALYSIS OF VARIANCE

			υF	SUN OF SAUA	RES MEAN Sau
	4+64	ESSIUN	14	14170000	6 1012.14:
	RESI	DUAL	22	45.75	2 2.12.
		VÅK.	ABLES 1	A EQUATION	. •
VARI	AULL	CUFFI	· ICIENT	STU. ERADR	+ TO REMOVE .
					• • • • • • •
	(Coust	<u>кі</u> , Т	<u>ا و زیرا ب</u> ال ارار	· · · · · · · · · · · · · · · · · · ·	•
ς	2	2.2374	+432+1	7·39-01	606.8449 .
_12	3	4+433	3 + 3 - 3 + 1 - 2	<u> </u>	13.8/31 4
13	· 4	1=133	3452460	1+19+03	1.4532 .
14.2	5	-7-+35	3834400	1+69+00	46.8715 .
G2	6	7.5010	3567-02	1+19+00	.0040 .
GS	7	6+416	7092-01	1 . 19 +	.2936 +
HT22	6	-1-1100	6096+20	1+19+00	•80J2 +
MT23	9	-1.9150	5100+60	1=19+03	2.5930 .
MG22	1.	3.444	9/51=01	1+19+00	.0865 •
MG23	11	-5.333	3563-01	1.19+00	.2008 .
6122	14	-2.9731	_ ປຣາ+ບົບ	1+46+61	4.1648 +
6123	13	-9+7338	5140-66	1+46+60	• ບໍ່ມີນັກ •
GT32	14	-4.775	1949+59	1+46+60	10.7292 .
GT33	15	-1-253	0001+06	1.46+03	.7353 .

which shows that

$$SS_{R(S,u,i,c,u_{3},u_{4},d_{5})} = 14170.005$$

 $DF_{R(S,m,g,t,mg,mt,gt)} = 14$

For H₀(mg) the result is

ANALYS	IS OF	VARIANCE			
			UF	SUM OF SQUARF	S MEAN SQUARE
	RLG	RESSION	12	14163.819	1187.735
	3E5	LDJAL	24	47 + 939	1 • 9 9 7
			•*		•
		VAR	LABLES	IN EQUATION	•
VANI	ABLE	CUEFI	FICIENT	STD. EKRUR F	TO REMOVE .
					•
	(0045)	ANT :	ى ئەلەت بىلۇ دە ب		•
5	2	2 . 242	4950+01	8 • 16 = 01	755.2727 .
T 2	.3	4.433.	3437+20	1+15+00	14.7595 •
тз	4	1.433	3452+00	1+15+00	1.5428 .
M2	5	-7.4599	7461+10	16-16-11	84.4615 .
G 2	6	2.5509	3764-31	7.99-01	.0626 .
G 3	7	3 . 7 5 3 (0007-01	9:94-41	•1408 •
M[22	3	-1.100	6096+21	1+15+00	• 9364 •
MT23	9	-1.9150	57:5:1+35	1+15+39	2.7587 .
G T 2 2	12	-2.975	ວິນຄວ+ວິນ	1+41+30	4.4309 .
GT23	13	-9.723	1392-06	1.41+30	.UJOJ .
GT32	14	-4.775;	ju66+65	1+41+93	11.4147 .
GT33	15	-1.254	1001+00	1+41+111	.7022 .

which shows that .

 $SS_{R}(S,m,g,t,mt,gt) = 14168.819$ DF_R(S,m,g,t,mt,gt) = 12

. .

For H₀(mt) the result is

			υF.	SUN OF SQUARES	MEAN	SQUAR
	REGRI	- 551011	12	14164.446	1180.	370
•	KESI	DUAL	24	52.313	2	180
						•
		VAR]	ABLES 1	W EQUATION		
			.	\mathbf{N}		•
VARJA	<u>49LF</u>	CUEFF	ICIENT	STD. FRRUK F	TO REMOVE	•
						-
		·				•
	(0005)	Aist i	វត់ស្រុកស្រុសប៉ុ	(L.		ę
5	2	2.289	1920+01	3+52-01	721.7635	•
12	3	3.3751	1091400	1+04+04	13.7778	٠
T 3	4	4.753	1017-01	1+14+13:5	.2019	e
MZ	<u></u>	=0 e 4 4 9 9	7462+ 44	6+52-31	90+2/37	•
G 2	6	7.561	1018-02	1.21+00	.6.339	•
63	7	6.410	701,5-01	1+21+444	.2034	•
MG22	10	3 . 499	9733-01	1+21+00	- (1843	
11623	11	-5,333	3202-01	1.21+44	. 1957	•
6124	12	-2.475	3685+36	1 • 415 + (1.1	4.6685	
GT23	13	-9.737	1454-06	1+48+30		*
GT32	14	-4.775	136/+11	1+43+11	1.4605	•
6133	15	-1.25.11	1481+111	1.4/4	. 1.29	-
4100	• •	, , , , , , , , , , , , , , , , , , ,	J# (J L) (J U	111000	•/167	

•

.

which shows that

•

.

 $SS_{R}(s,m,g,t,mg,gt) = 14164.446$

 $DF_{R(S,m,g,t,mg,gt)} = 12$

For H₀(gt) the result is

.

•

-

.

NALYS	IS OF	VARIANCE			
			<u></u>	SUM UF SWUAH	ES MEAN SUUARE
	h E G R	ESSION	16	14143.520	3 1414,352
	RESI	JUAL	26	73.239	2.817
				\setminus	
		VAR	AULES 1	N EQUATION	· · · · · · · · · · · · · · · · · · ·
VARL	ABLE	CUEFF	ICIENT	STD. ERMUR	F TO REPUVE .
	CONST	AIST .	1•0000	, i)	•
5	Z	2+3394	1433+01	5085-51	69704536 .
T2	3	1+85.4	. 152+30	9+69=61	3.6451 .
т 3	4	1.0100	5720+Qu	9.69-ul	1.1008 .
<u>MZ</u>	5	-7.4350	2034+00	1.025+63	35.3006
62	6	-901660	5179-1	9:69=01	. 8749 .
63	7	-1-3000	ნი23+მმ	Y•67™ü]	1.9092 .
MT22	8	-1+116	5056+00	1•37+ປປ	• 6 6 4 () •
MT23	9	-1-916	5761+03	1+37+20	1.9362 .
1.622	1:	3.477	141-01	1.3/+00	.1652 .
8623	11	-5+3333	3260-41	1.37+01	. 1515 .

•

.

.

which show that

•

•

.

 $SS_{R}(s,m,g,t,mg,mt) = 14143.520$

 $DF_{R}(S,m,g,t,mg,mt) = 10$

•

For H₀(m) the result is

			νF	SUN OF SQUARES	MEAN	SQUARE
	REGR	ESSION	9	13511.308	1501.	250
	KES1	JUAL	27	735+451	26•	128
,						•
<u> </u>	<u>. </u>	VARI	ABLES 1	A EQUATION		•
VARI	ADLE	CUEFF	ICIENT	STD. ERROR F	TO REMOVE	•
						•
	(00421	ANT. L	1.0041	(ر ا		
5	(CUHST 2	ANT . C	100000. 991401	2•56+99	53.3722	•
5 T 2	$\frac{2}{-\frac{2}{3}}$	ANT . L <u>1.8674</u> 3.8750	+00432_ <u>991+⊎1</u> ⊔81+⊎2	is) 2∙56+0₀ 3∗61+0₀	53.3722 1.1494	• • *
5 T 2 T 3		ANT . L <u>1</u> .8674 3.8750 4.7500	991401 991401 081400 920=01	2 • 56 + 9 0 3 • 61 + 9 9 3 • 61 + 9 9	53.3722 1.1494 0173	0 • •
5 T 2 T 3 G 2	(COHS) 2 3 4 6	ANT	991+01 991+01 991+01 920-01 920-01	2 • 56 + 90 3 • 61 + 00 3 • 61 + 00 3 • 61 + 00 3 • 61 + 00	53.3722 1.1494 0173 .JJ48	• • •
5 T 2 T 3 G 2 G 3	(COHS) 2 3 4 6 7	ANT 1.8674 3.8750 4.7500 2.5000 3.7500	991+01 991+01 920-01 920-01 971-01 717-01	2 • 5 6 + 9 u 3 • 6 1 + 0 9 3 • 6 1 + 0 9	53.3722 1.1494 0173 .JJ48 0108	• • • •
5 T 2 T 3 G 2 G 3 G 1 2 2	(COHS) 2 3 4 6 7 12	ANT 1.8674 3.8750 4.7500 2.5000 3.7500 -2.97500	991+01 991+01 923=01 923=01 871=31 717=31 874+.10	2 • 56 + 9 ±	53.3722 1.1494 0173 0178 0128 0128 .3387	0 8 8 8 8
5 T 2 T 3 G 2 G 3 G 1 2 2 G T 2 3	(COHS) 	ANT 1 • 8674 3 • 8756 4 • 7566 2 • 5 900 3 • 7566 - 2 • 9750 - 8 • 6337	991+01 081+00 920=01 071=01 071=01 074+.00 768=06	$ \begin{array}{c} 2 \cdot 56 + 0 \cdot 1 \\ 3 \cdot 61 + 0 \cdot 1 \\ 5 \cdot 11 + 0 \cdot 1 \\ 5 \cdot 11 + 0 \cdot 1 \\ 5 \cdot 11 + 0 \cdot 1 \\ \end{array} $	53.3722 1.1494 0173 0173 0178 0108 0108 0108 0109	• • • • •
5 T 2 T 3 G 2 G 3 G 1 2 2 G T 2 3 G T 3 2	$ \begin{array}{c} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ANT . <u>1.8674</u> <u>3.8756</u> <u>4.7566</u> <u>2.5766</u> <u>3.7560</u> <u>-2.9756</u> <u>-8.6337</u> <u>-4.7756</u>	+00000 991+01 920=01 920=01 971=01 717=01 717=01 768=06 056+00	$ \begin{array}{c} 2 \cdot 56 + 9 \cdot 1 \\ 3 \cdot 61 + 3 \cdot 1 \\ 5 \cdot 11 + 3 \cdot 1 \\ \end{array} $	53.3722 1.1494 .0173 .0048 .0048 .0048 .3387 .0000 .8727	• • • • •

which shows that

 $SS_{R(S,g,t,gt)} = 13511.308$ DFR(S,g,t,gt) = 9

For $H_0(g)$ the result is

DF SUM OF SQUARES MEAN SQUARES REGRESSION 6 14126.2a1 2354.385 RESIDUAL 30 95.478 3.016 VARIAGLES 1.420 3.016 VARIAGLES 1.420 3.016 VARIAGLES 1.420 1.019.1249 COEFFICIENT STD. ERROR F. TO REMOVE (CONSTANT 0.9000001 1.019.1249 . 12 3 1.85500000 1.009-01 1019.1249 12 3 1.85500000 1.009-01 1019.1249 12 3 1.85500000 1.009-01 1019.1249 12 3 1.85500000 1.009-01 1019.1249 13 4 1.0166726+00 1.009-00 3.4044 13 4 1.0166726+00 1.009-00 3.4044 142 5 -7.4999761+00 1.000 55.9529 MT22 8 -1.1160695+100 1.42+00 .6202 MT23 9	ANALYS	IS OF	VARIANCE	-•	•		
REGRESSION 6 14126.261 2354.385 RESIDUAL 30 95.478 3.016 VARIABLE COEFFICIENT STD. ERROR F TO REMOVE (CONSTALT 0.0103031 1 5 2 2.265332/+31 7.09-01 1019.1249 72 3 1.8530354+03 1.03+00 3.4044 73 4 1.0166/26+03 1.33+00 1.0282 M2 5 -7.4979761+30 1.93+00 55.9529 MT22 8 -1.11666/95+35 1.42+30 .6202 MT23 7 -1.9166703+35 1.42+30 1.8271				υF	SUM OF SQUAR	ES MEAN	SQUARE
RESIDUAL 30 9.3.478 3.016 VARIABLE COEFFICIENT STD. ERROR F. TO. REMOVE (CONSTANT 0.00000000000000000000000000000000000		REGR	ESSION	6	14126.201	2354.	38
VARIAGLES IN EQUATION VARIABLE COEFFICIENT STD. ERROR F TO REMOVE (CONSTANT 0.0J0J0J) S 2 2.263332/+21 7.09-01 1019.1249 T2 3 1.8530354+03 1.03+00 3.4044 T3 4 1.0166/26+03 1.03+00 1.0282 M2 5 -7.4999761+03 1.03+00 55.9529 M122 8 -1.1160695+33 1.42+00 6202 M123 9 -1.9166703+33 1.42+00 1.8271		<u>RES1</u>	DJAL	30	9.1.478		016
VARIAGLES IN EQUATION VARIABLE COEFFICIENT STD. ERROR F TO REMOVE (CONSTANT 0.00000000000000000000000000000000000							•
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE (CONSTANT 0.00000000000000000000000000000000000			VARI	ALLES 1	N EQUATION		•
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE (CONSTANT 0.00000000000000000000000000000000000							•
(CONSTANT 0.00000000000000000000000000000000000	VARI	ABLE	COEFF	ICIENT	STD. ERROR	F TO REMOVE	٠
(CONSTANT 0.00000000000000000000000000000000000		· ·· , ··	····· . ······				- °
S 2 2.25332/+21 7.09+01 1019.1249 T2 3 1.8520254+00 1.03+20 3.4044 T3 4 1.0166/26+00 1.03+00 1.0282 M2 5 -7.4999761+00 1.03+00 55.9529 MT22 8 -1.1160695+30 1.42+00 .6202 MT23 7 -1.9166703+00 1.42+00 1.6271		(CONST	Aut	1.00000			•
T2 3 1.8530054+00 1.037400 3.4044 T3 4 1.0166/26+00 1.037400 1.0282 M2 5 -7.4979761+00 1.03400 55.9529 M122 8 -1.1166695+00 1.42+00 .6202 M123 7 -1.9166703+00 1.42+00 .6202	S	2	2.2533	332/+21	7 . 39-01	1019.1249	•
T3 4 1.0166/26+00 1.000+00 1.0282 M2 5 -7.4999761+00 1.000+00 55.9529 MT22 8 -1.1160695+00 1.42+00 .6202 MT23 7 -1.9166700+00 1.42+00 1.8271	12	3	1.851	154+45	1.00+00	3.4044	e
M2 5 -7.4999761+00 1.000+00 55.9529 MT22 8 -1.1160695+00 1.42+00 .6202 MT23 7 -1.9166700+00 1.42+00 1.8271	T 3	4	1.0166	126+40	1.32+60	1.0282	•
MT22 B =1+1160695+JU 1+42+UU +6202 + MT23 7 =1+91667UU+UU 1+42+UU 1+8271 +	112	5	-7 . 4999	761+30	1+9./+00	55.9529	•
MT23 7 -1.9166700+00 1.9271 .	MT22	8	-1+1160	645+19	1+42+00	.6202	•
•	MT23	7	-1.4166	104400	1.42+30	1.5271	٥
•							
							•

•

.

which shows that

•

 $SS_{R(S,m,t,mt)} = 14126.281$ $DF_{R(S,m,t,mt)} = 6$

•

• • •

.

•

.

ANALYS	515 UF	VARIANCE				
			DF	SUM OF SAUAL	RES MEAN	SUUARE
	REG	RESSION	<i>ن</i>	14125 - 10	7 2354	.198
	RES	IDUAL	30	91.57	13	•U52
	····	VARI	AULLS I	H EQUATION		
						····•
VAR	LABLE	CULFF	ICTENT	SID. EKKOK	F TO REHOV	E •
	-					¢
						0
	10045	FANT C	1.030201)		•
S	2	2+4349	11++41	7+13-01	1165.4970	•
M 2	5	- 304475	762+30	1.01+11)	73.1773	•
GΖ	6	-Y.1606	165-01	1+01+00	.8259	•
G 3	?	-1-3666	121+JJ	1+01+00	1.8357	•
MG22	10	3 + 4 7 9 9	126-31	زان+43+ [.0602	•
11623	1 1	= 5=3333	1509-01	.1+43+33	•1396	8
						-

•

.

which shows that

.

$$SS_{R(S,m,g,mg)} = 14125.187$$

 $DF_{R(S,m,g,mg)} = 6$

•

5. Find the regression sum of squares and degrees of freedom associated with the factors tested in each hypothesis.

For mgt

$$SS_{mgt} = SS_{R}(S,m,g,t,mg,mt,gt,mgt) - SS_{R}(S,m,g,t,mg,mt,gt)$$

 $SS_{mgt} = 14175.167 - 14170.006$
 $SS_{mgt} = 5.161$
 $DF_{mgt} = DF_{R}(S,m,g,t,mg,mt,gt,mgt) - DF_{R}(S,m,g,t,mg,mt,gt)$
 $DF_{mgt} = 18 - 14$
 $DF_{mgt} = 4$

For mg

$$SS_{mg} = SS_{R}(S,m,g,t,mg,mt,gt,mgt) - SS_{R}(S,m,g,t,m_{C}, m_{C}) - SS_{mgt}$$

 $- SS_{mgt}$
 $SS_{mg} = 14175.167 - 14168.819 - 5.161$
 $SS_{mg} = 1.187$
 $DF_{mg} = DF_{R}(S,m,g,t,mg,mt,gt,mgt) - DF_{R}(S,m,g,t,mt,f)$
 $- DF_{mgt}$
 $DF_{mg} = 18 - 12 - 4$
 $DF_{mg} = 2$

Similar calculations for mt and gt yield

$$\begin{split} & SS_{mt} = 5.560 \\ & DF_{mt} = 2 \\ & SS_{gt} = 26.486 \\ & DF_{gt} = 4 \\ \end{split}$$
 For m
$$SS_m = SS_R(S,m,g,t,mg,mt,gt,mgt) - SS_R(S,g,t,gt) \\ & - SS_{mgt} - SS_{mg} - SS_{mt} \\ & SS_m = 14175.167 - 13511.308 - 5.161 - 1.187 - 5.560 \\ & SS_m = 651.951 \\ & DF_m = DF_R(S,m,g,t,mg,mt,gt,mgt) - DF_R(S),g,t,gt) \\ & - DF_{mgt} - DF_{mg} - DF_{mt} \\ & DF_m = 18 - 10 - 4 - 2 - 2 \\ & DF_m = 1 \\ \end{split}$$
 Similar calculations for g and t yield
$$SS_g = 16.052 \end{split}$$

$$DF_g = 2$$

$$SS_t = 12.773$$

$$DF_t = 2$$

Up to this point the problem has been treated as a fully-crossed factorial experiment. To correct for the fact that t is nested within g, the following terms are adjusted to include the interaction terms.

•

For the factor t

$$SS_{tk(j)} = SS_t + SS_{gt}$$

 $SS_{tk(j)} = 12.773 + 26.486$
 $SS_{tk(j)} = 39.259$
 $DF_{tk(j)} = DF_t + DF_{gt}$
 $DF_{tk(j)} = 2 + 4$
 $DF_{tk(j)} = 6$

For the factor mt

$$SS_{mt_{ik}(j)} = SS_{mt} + SS_{mgt}$$

$$SS_{mt_{ik}(j)} = 5.560 + 5.161$$

$$SS_{mt_{ik}(j)} = 10.721$$

$$DF_{mt_{ik}(j)} = DF_{mt} + DF_{mgt}$$

$$DF_{mt_{ik}(j)} = 2 + 4$$

$$DF_{mt_{ik}(j)} = 6$$

6. Form the analysis of variance table and make the appropriate F tests.

When the analysis of variance table for this problem is formed it will include an expected mean squares (EMS) column. Since this problem has both fixed and random factors, the appropriate F tests are determined from the EMS quantities.

Source	DF	<u>Sum of</u> Squares	<u>Mean</u> Squares	EMS	<u>F</u>
mi	1	651.951	651.951	$\sigma_e^2 + 2\sigma_{mt}^2 + 18\sigma_m^2$	364.830
^g j	2	16.052	8.026	$\sigma_e^2 + 4\sigma_t^2 + 12\sigma_g^2$	1.227
t _{k(j)}	6	39.259	. 6.543	$\sigma_e^2 + 4\sigma_t^2$	2.831
^{mg} ij	2	1.187	0.594	$\sigma_{\rm e}^2 + 2\sigma_{\rm mt}^2 + 6\sigma_{\rm mg}^2$	0.332
<pre>mtik(j)</pre>	6	10.721	1.787	$\sigma_e^2 + 2\sigma_{mt}^2$	0.775
Error	18	41.591	. 2.311	σ_e^2	•
Total	36	14216.758			

The factor m is significant at the 99% level of confidence.

The four preceeding examples demonstrate that widely different types of problems can be solved by the one consolidated method of regression analysis of full-rank models. The fact that the solution method is the same, regardless of the orthogonality of the problem, has both advantages and disadvantages. For nonorthogonal problems, it is a great advantage since the experimenter need only have one regression routine to solve any type of analysis of variance problems. However, if the problem to be solved is orthogonal it can usually be solved in a short time with only a desk calculator by the traditional sum of squares method. Therefore, the main benefits of the full-rank model and regression technique are realized when solving nonorthogonal problems.

Most of the work involved in using a standard regression package for experimental design problems is concerned with the following four items.

1. Writing the full-rank X matrix for the model.

2. Generating the commands to include or delete variables for the regression calculations.

86

3. The addition and subtraction of regression quantities to find the sums of squares and degrees of freedom associated with the experimental factors.

4. The division required to compute the mean squares and F ratios to complete the analysis of variance table.

To demonstrate how a regression routine might be modified to more efficiently handle analysis of variance problems, the program, ANOVA, was written. It consists of a regression routine with a front end that converts traditional experimental design data to the full-rank form and a back end that outputs an analysis of variance table. ANOVA is described in Appendix B where the four example problems of this chapter are solved with the ANOVA routine to demonstrate how it simplifies the regression procedure.

87

CHAPTER V

CONCLUSIONS

The advantages of the full-rank model formulation and regression analysis of experimental design problems are as follows.

1. The approach is completely general since any design model, regardless of orthogonality, can be written as a full-rank model and solved by regression analysis.

2. The full-rank model is easily formulated since the terms of the model have physical significance to the experimenter.

3. The method eliminates the task of reparameterization since the full-rank model always leads to a system of normal equations that have a unique solution.

4. The analyst needs only one computer program, a regression routine, for all his analysis of variance work.

5. Regression analysis codes are available at almost all computing facilities.

The disadvantages of the technique are as follows.

 Orthogonal problems are more easily solved using a desk calculator and the traditional sum of squares method. 2. The number of variables that a regression code can handle may limit the number of factors that can be tested for their effect on the response variable.

3. The standard regression codes leave the analyst with several computations to make, manually or with another computer run, prior to the construction of an analysis of variance table.

4. The regression calculations cannot be done manually except for small problems that could be easily handled by the traditional methods.

The first disadvantage leads to the conclusion that the regression technique is profitable in terms of time and effort only for nonorthogonal problems. The second and third disadvantages could be overcome by a specialized computer code such as ANOVA, to facilitate the solution of analysis of variance problems. The fourth disadvantage is lessened by the fact that the analyst should use regression only for nonorthogonal problems which are difficult to solve manually by any method. In summary it appears that regression analysis is well known to be a powerful and general solution method for experimental design problems but its application has been retarded by the additional work of preparing the problem for the regression calculations. The full-rank formulation of experimental design models eliminates this task and makes regression a much more desireable solution method for analysis of variance work.

BIBLIOGRAPHY

- Cashler, F. L. <u>Linear Programming Applied to the</u> <u>Analysis of Variance of Designed Experiments</u>. Unpublished Masters Thesis, University of Houston, 1970.
- Cooley, W. W. and Lohnes, P. R. <u>Multivariate</u> <u>Procedures for the Behavioral Sciences</u>. New York: John Wiley & Sons, 1962.
- 3. Dixon, W. J. <u>BMD Biomedical Computer Programs</u>. Berkeley: University of California Press, 1970.
- 4. Draper, N. R. and Smith, H. <u>Applied Regression Analysis</u>. New York: John Wiley & Sons, 1966.
- 5. Ferguson, G. A. <u>Statistical Analysis in Psychology</u> and <u>Education</u>. New York: McGraw-Hill, 1966.
- 6. Graybill, F. A. <u>An Introduction to Linear Statistical</u> <u>Models</u>. New York: McGraw-Hill, 1961.
- Hicks, C. R. <u>Fundamental Concepts in the Design of</u> <u>Experiments</u>. New York: Holt, Rinehart, and Winston, 1964.

- -

APPENDICES

APPENDIX A

BMDO2R Input Data For Examples of Chapter IV

The following pages show the listings of the BMDO2R input cards for the examples in Chapter IV.

PROBLM	UNEQAL	2,5	6			2	5	YES
LABELS	25	312		413,	51	4	6T5	
(F10.4,	70F1.0)			·.			•	
83.	10000							
85.	10000							· · · · · · · · · · · · · · · · · · ·
· 84.	11000							
85.	11000							
85.	11000			•				
80.	11000	······						
00.	11000							
86	10100							· · · · · · · · · · · · · · · · · · ·
87	10100				•		·	
87	10100				<u> </u>			
87.	10100							
88.	10100							
88.	10100							
88-	10100		. .					,
88.	10100							
88.	10100							
89.	10100				•			
90.	10100				·····		•	
89.	10010							
90.	10010							
90.	10010							
91.	10010	· · · · · · · · · · · · · · · · · · ·					· ·	
90.	10001							•
92.	10001							
SUBPRO	1						YES	
CONDEL :	33333	•						
SUBPRO	1				•		YES	·
CONDEL	31111							
FINISH		· · · · · · · · · · · · · · · · · · ·		y			·	
	·	· · · · · · · · · · · · · · · · · · ·						
			,,					•
		Inp	ut fo	or Exam	ple 1			
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			•			
							-	
			·····					
						•		
					-			
			•					
		'				•		
		· · · · · · · · · · · · · · · · · · ·						
•								
		-						
	· · ·			· · ·				•
	······				· · · · · · · · · · · · · · · · · · ·			

A-3 . **In.** . . ,

PROBLM	IBLOCK	12	8 -			3	7	YES	•
LABELS	25	3T2		4T3 .	5T4		682	7B3	81
(F10.4,	70F1.0)								
2.	1010000								
	1010000					<u></u>			
32	11001000		•						
14.	1010100						- <u></u> .		
3.	1001100					·.			
4.	1000010							· · · · · · · · · · · · · · · · · · ·	<u> </u>
13.	1100010								
31.	1010010				•	•			
0.	1000001		<u></u>				. ~		
23.	1100001								
11.	1001001				\		VEC		
	1						TES		
SUBPRO	1					·	YES-		
CONDEL	3333111								
SUBPRO	1			· · · · · · · · · · · · · · · · · · ·			YES		
CONDEL	3111333				•				•
FINISH		·····	•						
		····	······	······································			······································		
	·····				<u></u> .				
		Inp	ut for	c Exampl	.e 2				
₽ ₽., ₽ ., ₽		•			·····				
		· · · · · · · · · · · · · · · · · · ·					<u></u>		
		•							
			•						_
	•								
					•				
<u> </u>			<u></u>				•		-
					· · · · · · · · · · · · · · · · · · ·				
							-		
				·····		•	•		
						•			
		•							
•		•							
	•				<u> </u>	•		<u> </u>	
								·	
								•	
	*****						•••••••••••••••••••••••••••••••••••••••	······································	
·			······································						

.**·**

TADEIC	25	212		7.0.2	EXO 2	2	······································		,
LABELS	23 70F1.0)	382		48Z ·	, DAB2	2			
5.	1000								
3.	1000								
13.	1100		•				<u>, , , , , , , , , , , , , , , , , , , </u>		,
14.	1100								
15.	1100					•.			
<u> </u>	1010								
7.	1010								
12.	1111				•	• • •			
10.	1111								
SUBPRO	1				•		YES		
CONDEL :	3333						VEC	<u>.</u>	
SUBPRU	1 3331						165		
SUBPRO	1				······································		YES		
CONDEL	3311								
SUBPRO	1	· · · · · · · · · · · ·					YES	···	
CONDEL	3131								
FINISH									
							•		
•						·			
·····									
		Tnn	ut fo	r Fyamr	16 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				a
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3		······································		
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3			· · · · · · · · · · · · · · · · · · ·	
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		Inpu	ut fo	r Examp	ole 3				
· · · · · · · · · · · · · · · · · · ·		Inp.	ut fo	r Examp	ole 3			· · · · · · · · · · · · · · · · · · ·	
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3			· · · · · · · · · · · · · · · · · · ·	
		Inpu	ut fo	r Examp	ble 3			· · · · · · · · · · · · · · · · · · ·	
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				
		Inpu	ut fo	r Examp	ole 3				

•

. .

.

•

.

-

.

A-5

i.

					•		
PROBLM	NESFAC	36. 19	-	8	18	YES	1
LABELS	25	312	413 .	5M2	662	763	
LABELS	9M123	10MG22	11MG23	126122	136123	146132	1561
LADELS	15MG1222	1/10/223	10/16/252	12601522			
20.2		<u>.</u>	00	•			
20.2	100000	000000000000000000000000000000000000000					
26.2			00	······			
26.9	1100000	000000000000000000000000000000000000000	00				
23.8	1010000	000000000000000000000000000000000000000	00	<u></u>	<u> </u>		
24.9	1010000		000				
14.2	1001000	000000000000	00	•		·····	
16.2	1001000	00000000000	000				
18.0	110100	10000000000	00		······		
19.1	110100	100000000	000				
12.5	1011000	0100000000	000		·····		
15.4	1011000	0100000000	000				•
22.0	1000100	000000000000000000000000000000000000000	000				·- ·-··
23.5	1000100	0000000000	000				
22.6	1100100	0000100000	00			**************************************	······································
24.6	1100100	0000100000	000	•			
22.9	1010100	0000010000	000		······		
25.0	1010100	0000010000	000				
14.1	100110	0010000000	00				
16.1	100110	0010000000	000				
14.0	110110	1010100010	000	<u></u>			
18.1	110110	1010100010	000				
13.7	101110	0110010001	.00				
16.0	1011100	0110010001	.00				
23.1	100001	000000000000000000000000000000000000000	000				
22.9	1000010	00000000000000000	000				
22.9	110001	0000001000	000			•	
23.7	110001	000001000	000			•	. .
21.8	101001	0000000100	000				
23.5	101001	0000000100	000	•			
14.1	1001010	0001000000	000				
16.1	100101	000100000	000				
12.2		1001001000	010				
13.8	110101	1001001000	$\frac{10}{21}$				-
12.1		0101000100					
12.1		0101000100	101	·····	VEC		
SUBAKO	1	· • • • • • • • • • • • • • • • • • • •			TES		
	1	5555555555					<u> </u>
CONDEL	רכככ <u>כ</u> כרכנככ ו	222221111		•	16.5		
CUNDEL .	1	222222111	·····		VEC		
CONDEL	111111111111111111111111111111111111111	31111111		· .	100		
SUBPRO	1				YES	•	
CONDEL	222222112	222221111					
SUB PRO	1				YES		
CONDEL	1133333331	133331111			100		,
SUBPRO	1		<u> </u>		YES		
CONDEL	311333113	311111111					
SUBPRO	1				YES		•
CONDEL	333133111	133331111					
SUBPRO	1				YES		
CONDEL 3	333311331	111111111					
FINISH		Τ~~	ut for Eva	mnle /			

.

APPENDIX B

ANOVA Description

The routine ANOVA was written to demonstrate how the analysis of variance calculations might be performed automatically as part of a specialized regression routine. The ANOVA user provides as input the following:

1. Number of factors.

2. Number of observations.

3. Number and identification of factors that are blocks and have no interaction with other factors.

4. Data for the problem consisting of a response measurement and the levels of the factors associated with the response.

The program then does the following:

1. Builds a full-rank model of the experiment as described in Chapter III.

2. Finds the total, error, and regression sums of squares and degrees of freedom for the full model.

3. Forms a full-rank reduced model for each possible factor to be tested (up to three-level interactions).

4. Finds the regression sum of squares and degrees of freedom for each reduced model.

5. Finds the sum of squares and degrees of freedom associated with each factor.

6. Computes and outputs an analysis of variance table.

There are several limitations to the program that could be eliminated by additional programming effort.

First of all, the program is limited to 150 observations and a combined total of 100 single, two-level interaction and three-level interaction terms. It is reasonable to assume that this problem could be overcome by transfers between core storage and disk or drum storage units for the manipulation of larger matrices.

Secondly, the analysis of variance table generated by ANOVA assumes that all factors are fixed. Therefore, the last column of the table provides the F ratio between the mean squares of the factor and the error mean squares. To be complete, ANOVA should include an algorithm that computes the correct F ratio for fixed or random factors.

B-2

The third limitation is that the program treats all problems as fully-crossed factorial problems. Therefore, for problems with nested factors, some of the sums of squares and degrees of freedom must be manually combined to obtain the proper results for nested terms. An algorithm to combine the appropriate interaction terms prior to the printing of the analysis of variance table should be included in a program of this type.

In spite of the previously described shortcomings, the program appears to be a useful tool for analysis of variance problems, especially ones with nonorthogonal designs.

The following pages contain a listing of ANOVA and its subroutine HYPOTH, the input data for the examples in Chapter IV, and the ANOVA results for the examples in Chapter IV. The results agree with the BMDO2R solutions except for Example Number 4. ANOVA treated it as a fullycrossed, fixed-effect, factorial design, so the sums of squares and degrees of freedom must be appropriately combined to account for the nested factor, t. Once these quantities are computed, the analysis of variance table would have to be manually completed.

B-3

		D-4
_ FJR	ANDVA COMMON Y(150,1),X(150,100),XH(150,100),XT 1LEVEL(10),NLEVEL(10),NCOL(100),SS(7,7,7),	X(195,100),BT(1,100) NDF(7,7,7),ICOL(190)
	11BL 3C((6), 1C3N(1CC))	
	NPR 15=1	·
C		
<u> </u>	READ SIZE OF PROBLEM	
C	•	
1	READ(5,100,END=47 INFAC,NOBS,NBLOCK	
100	FJRMAT (312)	
	IFUNDLUCK . E.J. CJGU IU Z	
1 . 1	KEAU IVI;(IDEUUK(II;I-I;ADEUUK) EDIMAT(ANTI)	
2 2 2	NEAC1-0EAC-1	
1_	NEAC2=NEAC+2	
	V=1	
	4 = 2	
	00 3 1=1, NF/C	
3	- 1LEVIL(1)=2	
	DO 4 1=1, KCBS	
	X(1,1)=1.	
С		
С	KEAD DATA	
С		
5	READ(5,1"2)Y(0,1),(LEVEL(J),J=1,NFAC)	
112	FUKMAT(F1:.0,3512)	
	CALLER CHARLERATING THERE THERE AND	VATEICES
C C	CALLA SI BLEMMACIJA TEKMS INTO A ANU B	D PHAINIUES
0		
	$0 : B = 1 = 1 \cdot NEAC$	
	DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LFV	/EL(I)
	DJ B 1=1,NFAC IF (LEVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .E	(EL(I)
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .FQ. 1)30 TO 8 1001(4)=1×1(3). +LEVEL(I)×100</pre>	/EL(I)
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F.g. 1)30 TO 8 1001(4)=1×1(3). +LeVEL(I)×100 M1=N-1</pre>	
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO 8 100144)=1×1:30 +LeVFL(I)×100 M1=N-1 00 6 ICHK=1,M1</pre>	
	<pre>DJ B 1=1,NFAC IF (LEVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .FQ. 1)30 TO 8 1001(4)=1×1*3) +LeVEL(I)×100 M1=N=1 00 6 ICHK=1,M1 IF(10)L(K) .EQ. ICCL(ICHK: 7)60 TO 7</pre>	(EL(I)
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO 8 1001(4)=1×1'0) +LEVEL(I)*100 M1=N-1 00 6 ICHK=1,M1 IF(10)L(M) .E. ICOL(10HK 10)G0 TO 7 K(N, ')=1.</pre>	
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NEEVEL(I))NEEVEL(I)=LEV IF(LEVEL(I) .FQ. 1)SD TO B 1CDL(A)=1×1'SD + LEVEL(I)×100 M1=N-1 DD B ICHK=1,M1 IF(ID)L(M) .EQ. ICTL(ICHK 17)GD TO 7 Ktv, ')=1. M=4+1</pre>	/EL(I)
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO 8 10D1(4)=1×1:30 +LeVEL(I)×100 M1=N-1 00 6 ICHK=1,M1 IF(10)L(*) .E. 10TL(10HK: 7)60 TO 7 Ktv, ')=1. M=4+1 30 TO 8</pre>	/EL(I)
<i>(</i> 	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO 8 1001(4)=1×1:0) +LeVEL(I)*100 M1=n-1 00 6 ICHK=1,M1 IF(10)L(*) .E. ICTL(ICHK: 7)60 TO 7 K(v,')=1. M=4+1 30 TO 8 X(v,ICHK))=1.</pre>	
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .6T. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F.g. 1)30 TO 8 10DL(4)=I*1'3) +LEVEL(I)*100 M1=N-1 DO 6 ICHK=1,M1 IF(IC)L(*) .E.g. ICOL(ICHK 1))GO TO 7 K(v, ')=1. M=4+1 SO TO 8 X(v,ICHK)=1. CONTINUE ICOL(ICHK 1)=1.</pre>	
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .FQ. 1)3D TO B 1CDL(A)=1×1'3D +LEVEL(I)*10D M1=N=1 DD B ICHK=1,M1 IF(ID)L(*) .EQ. ICTL(ICHK 1))GD TO 7 Ktv, ')=1. M=4+1 3D TD B X(V,ICHK)=1. CONTINUE IF((VFAC .EQ. 1).CR.(NBLOCK .EQ. NFAC1))G</pre>	/EL(I)
	<pre>DJ B 1=1,NFAC IF (LEVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO 8 1001(4)=1×1'3) +LeVEL(I)*100 M1=N-1 00 6 ICHK=1,M1 IF(ICOL(*) .E. ICOL(ICHK: 7))60 TO 7 K(N, ')=1. M=4+1 30 TO 8 X(N,ICHK)=1. CONTINUE IF((NFAC .E. 1).CR.(NBLOCK .E. NFAC1))6 NFAC1)6 NFAC1.E. INTERACTION THRMS INTERACTION THRMS.</pre>	/EL(I)
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO 8 1CDL(4)=1*1'3) +LeVEL(I)*100 M1=N-1 00 6 ICHK=1,M1 IF(10)L(*) .E. ICOL(1CHK 1))GO TO 7 K(N, ')=1. M=4+1 30 TO 8 X(N,ICHK)=1. CONTINUE IF((NFAC .E. 1).CR.(NBLOCK .E. NFAC1))G ENTER T.O-FACTOR INTERACTION TERMS INT</pre>	/EL(I) 50 TO 19 TO X AND 8 MATRICL3
7 2 2 2 2 2 2 2 2 2 2	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .6T. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)50 TO 8 1CD1(4)=1*1'0) +LeVEL(I)*100 M1=N-1 00 5 ICHK=1,M1 IF(10)L(*) .E. ICCL(ICHK 1))60 TO 7 K(v, ')=1. M=4+1 GD TO 8 X(v,ICHK)=1. CONTINUE IF((vFAC .E. 1).CR.(NBLOCK .E. NFAC1))6 LNTEF T.O-FACTOR INTERACTION TERMS INT DD 13 I=1.NFAC1</pre>	/EL(I) 50 TO 19 TO X AND 8 MATRICL3
7 7 2 C C C C	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .FQ. 1)3D TO B 1CD1(4)=1*1'3D +LeVFL(I)*10D M1=N-1 DD B ICHK=1,M1 IF(ID)L(*) .EQ. ICTL(ICHK 1))GD TO 7 Ktv, ')=1. M=4+1 3D TD 8 X(N,ICHK)=1. CONTINUE IF((NFAC .EQ. 1).CR.(NBLOCK .EQ. NFAC1))G ENTER T.D-FACTOR INTERACTION TERMS INT DD 13 I=1,NFAC1 IJ=I+1</pre>	/EL(I)
(7 2 C C C	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO 8 1051(4)=1*1'3) +LeVEL(I)*105 M1=n-1)0 B ICHK=1,MI IF(100L(*) .E. 107L(10HK 10)G) TO 7 K(v, ')=1. M=4+1 30 TO 8 X(N,ICHK)=1. CONTINUE IF((NFAC .E. 1).CR.(NBL00K .E. NFAC1))G LNTEF T.D-FACTUR INTERACTION TERMS INT DO 13 I=1,NFAC1 IJ=I+1 DO 13 J=IJ,NFAC</pre>	/EL(I)
€ - 7 2 C C C C	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F.g. 1)30 TO B 1CD1(4)=I*1'0) +LeVEL(I)*100 M1=N-1 00 5 ICHK=1,M1 IF(10)L(M) .E.g. ICOL(ICHK: 7)60 TO 7 KLN, ')=1. M=4+1 30 TO 8 X(N,ICHK)=1. CONTINUE IF((NFAC .E.g. 1).CR.(NBLOCK .E.g. NFAC1))G ENTER TWO-FACTOR INTERACTION TERMS INT DO 13 I=1,NFAC1 IJ=I+1 DO 12 J=IJ,NFAC IF(NBLOCK .E.g. 7)60 TO 10</pre>	/EL(I) 50 TO 19 TO X AND 8 MATRICLS
7 7 2 C C C	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F.g. 1)3D TO B 1CD1(4)=I*1'3) +LeVFL(I)*100 M1=N-1)D 6 ICHK=1,M1 IF(1C)L(M) .E.g. ICCL(ICHK * 7)60 TO 7 KLV, ')=1. M=4+1 GD TD 8 X(N,ICHK)=1. CCNTINUE IF((NFAC .E.g. 1).CR.(NBLOCK .E.g. NFAC1))G ENTFR T.D-FACTOR INTERACTION TERMS INT DD 13 I=1,NFAC1 IJ=I+1 DD 12 J=IJ,NFAC IF(NBLOCK .E.g. 7)6J TO 10 DD 7 IB=1,NELJCK</pre>	/EL(I) 50 TO 19 TO X AND 8 MATRICL3
	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO B 1CD1(4)=I*1'3) +LeVFL(I)*100 M1=n-1 00 5 ICHK=1,M1 IF(IC)L(*) .EQ. ICCL(ICHK:))GO TO 7 KLN,')=1. M=4+1 30 TO 8 X(N,ICHK)=1. CONTINUE IF((NFAC .E. 1).CR.(NBL0CK .EQ. NFAC1))G ENTER TWO-FACTOR INTERACTION TERMS INT DO 13 I=1,NFAC1 IJ=I+1 DO 13 I=1,NFAC1 IJ=I+1 DO 13 J=IJ,NFAC IF(NBL0CK .FQ. 2)GJ TO 10 DJ > IB=1,NELJCK IF((I.EJ.IBL0CK(IB)).CR.(J.EQ.IBL0CK(IB))</pre>	/EL(I) 50 TO 19 TO X AND 8 MATRICL3)GO TO 13
(7 2 2 2 2 3 1 2	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F.g. 1)30 TO 8 1052(4)=1×1×30 + EEVFL(I)×105 M1=x-1 00 5 ICPK=1,M1 IF(105E(*) .E.g. ICTL(10FK * 7)60 TO 7 KLv, *)=1. M=4+1 30 TO 8 X(v,ICFK)=1. CONTINUE IF((vFAC .E.w. 1).CR.(NBE00K .E.g. NFAC1))6 ENTER T.D-FACTOR INTERACTION TERMS INT DO 13 I=1,NFAC1 IJ=I+1 00 13 I=1,NFAC1 IJ=I+1 00 13 I=1,NFAC1 IJ=I+1 00 13 I=1,NFAC1 IJ=I+1 00 13 I=1,NFAC1 IJ=I+1 00 13 I=1,NFAC1 IF(NBE00K .E.g. 2)6J TO 10 DD > IB=1,NEEJ0K IF((I.E.J.IBED0K(IB)).CR.(J.E.G.IBE00K(IB)) IF((LEVEL(I) .E.g. 1).CR.(LEVEL(J) .E.g. 1)</pre>	/EL(I) 0 TO 19 TO X AND 8 MATRICLS)GO TO 13)GO TO 13)GO TO 13
7 C C C C C	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F.g. 1)30 TO 8 1052(4)=1×1/0) +LeVEL(I)×100 M1=x-1 DD 5 ICPK=1,M1 IF(100L(*) .E.g. ICCL(10PK * 7))00 TO 7 KLv, *)=1. M=4+1 30 TD 8 X(N,ICPK)=1. CONTINUE IF((VFAC .E.g. 1).CR.(NBE00K .E.g. NFAC1))6 ENTER TWD-FACTOR INTERACTION TERMS INT DD 13 I=1,NFAC1 IJ=I+1 DD 13 I=1,NFAC1 IJ=I+1 DD 13 J=IJ,NFAC IF(NBE00K .E.g. 7)6J TO 10 DD 7 IB=1,NEEJOK IF((I.E.G.IBEDCK(IB)).CR.(J.E.G.IBE00K(IB)) IF((LEVEL(I) .E.g. 1).CR.(LEVEL(J) .E.g. 1) ICDL(*)=I*100UT0+J×10000*LEVEL(I)*100+LEV</pre>	/EL(I)
7 C C C C - - - - - - - - - - - - - - -	<pre>DJ B 1=1,NEAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)JD TO 8 1CDL(A)=I*1'D) +LEVEL(I)*10D M1=n=1 DD 6 ICHK=1,M1 IF(ID)L(M) .E. ICTL(ICHK 1))GD TO 7 K(v, ')=1. M=4+1 GD TD 8 X(v,ICHK)=1. CONTINUE IF((vFAC .E. 1).CR.(NBLOCK .E. NEAC1))G ENTER TWD=FACTOR INTERACTION TERMS INT DD 13 I=1,NEAC1 IJ=I+1 DD 12 J=IJ,NEAC1 IJ=I+1 DD 12 J=IJ,NEAC IF(NBLOCK .E. 2) C)GJ TO 10 DD J IB=1,NELGCK IF((I.E. IBLOCK(IB)).CR.(J.E. IBLOCK(IB)) IF((LEVEL(I) .EQ. 1).CR.(LEVEL(J) .EQ. 1) ICJL(M)=I*1CCHC5+J*1COCC+LEVEL(I)*1CO+LEV DJ 11 ICHK=3, M</pre>	/EL(I) 0 TO 19 TO X AND 8 MATRICL3)GO TO 13)GO TO 13 /EL(J)*10
C C C C C 11	<pre>D3 B 1=1, NEAC IF (LFVEL(I) .6T. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1)30 TO 8 1CD144)=I*1'3) +LEVEL(I)*105 M1=n-1 00 5 ICHK=1, M1 IF(IC)L(*) .E. ICTL(ICHK: 1)60 TO 7 Ktv, ')=1. M=4+1 30 TO 8 X(V,ICHK)=1. CONTINUE IF((VFAC).E. 1).CR.(NBLOCK .EQ. NEAC1))6 ENTER TWO-FACTOR INTERACTION TERMS INT D0 13 I=1,NEAC1 IJ=I+1 00 12 J=IJ,NEAC IF(NBLOCK .EQ. 2)6J TO 10 D0 J IB=1,NELGCK IF((I.E. IBE)CK(IB)).CR.(J.EQ.IBLOCK(IB)) IF((LEVEL(I) .EQ. 1).CR.(LEVEL(J).EQ. 1) ICJL(M)=I*12CHT5+J*10000(+LEVEL(I)*100+LEV DJ 11 ICHK=3, M IF(V,ICHK=1).CQ.(ICHK=1))3) TO 12</pre>	/EL(I)
(7 2 2 2 2 3 1 2 1 1	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F.v. 1)30 TO B 1CDL(A)=I×1'3) .+LeVFL(I)×100 M1=n-1 00 6 ICHK=1,M1 IF(IC)L(M) .Ev. ICTL(ICHK: 1)60 TO 7 KEV, ')=1. M=4+1 30 TO 8 X(N,ICHK)=1. CONTINUE IF((NFAC .Ev. 1).CR.(NBLOCK .Ev. NFAC1))6 ENTFF TND-FACTOR INTERACTION TERMS INT DO 13 I=1,NFAC1 IJ=I+1 DD 12 J=IJ,NFAC IF(NBLOCK .Ev. 1)60 TO 10 DD 0 IB=1,NELGCK IF((I-Ev.IBLOCK(IB)).CR.(J-Ev.IBLOCK(IB))) IF((LEVEL(I) .Ev. 1).CR.(LEVEL(J) .Ev. 1) ICJL(M)=I*1005+100E(ICIK-1))5) TO 12 Y(4, 1)-1.</pre>	/EL(I) 0 TO 19 TO X AND 8 MATHICLS)GO TO 13)GO TO 13)GO TO 13 /EL(J)*10
7 7 2 2 2 3 1 1 1	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .F. 1) SD TO B 1CDL(4)=I*1' S) .+LEVFL(I)*105 M1=n-1 DD 5 ICPK=1,M1 IF(1CDL(M) .EQ. ICTL(ICPK * 7))GD TO 7 Ktv, ')=1. M=4+1 GD TD 8 X(V,ICPK)=1. CONTINUE IF((VFAC .F. 1).CR.(NBLOCK .EQ. NFAC1))G ENTFF THD-FACTOR INTERACTION TERMS INT DD 13 I=1,NFAC1 IJ=I+1 DD 12 J=IJ,NFAC IF(VBLOCK .FQ. 2)GJ TO 10 DD 7 IB=1,NELUCK IF((I.ED.IBLOCK(IB)).CR.(J.EQ.IBLOCK(IB)) IF((LEVEL(I) .FQ. 1).CR.(LEVEL(J) .EQ. 1) ICJL(M)=I*125.75+J*16067+LEVEL(I)*160+LEV DJ 11 ICHK=3,M IF(.LEVEL(I) .FQ. 1)CR.(IST.)J) TO 12 /(4,)=1. M=M+1</pre>	/EL(I) 0 TO 19 10 X AND 8 MATHICLS)GO TO 13)GO TO 13 /EL(J)*10
7 C C C C 11 11	<pre>DJ B 1=1,NFAC IF (LFVEL(I) .GT. NLEVEL(I))NLEVEL(I)=LEV IF(LEVEL(I) .Fq. 1)50 TO B 1CD1(4)=1×1'0) +LEVFL(I)×100 M1=n-1 00 5 ICHK=1,M1 IF(10)L(*) .EQ. ICCL(ICHK * 7)60 TO 7 Ktv, ')=1. M=4+1 30 TO 8 X(v,ICHK)=1. CONTINUE IF((vFAC .Eq. 1).CR.(NBLOCK .EQ. NFAC1))6 ENTER TWO-FACTOR INTERACTION TERMS INT DO 13 I=1,NFAC1 IJ=I+1 00 13 J=1,NFAC1 IJ=F+1 00 13 J=1,NFAC1 IJ=F+1 00 13 J=1,NFAC1 IJ=F+1 00 J 3 J=1,NFAC1 IF(NBLOCK .FQ. 2)6J TO 10 DO J IB=1,NELGCK IF((I.EQ.IBLOCK(IB)).CR.(J.EQ.IBLOCK(IB)) IF((LEVEL(I) .EQ. 1).CR.(LEVEL(J) .EQ. 1) ICJL(M)=I*120.CD+J*ICOC(+LEVEL(J).EQ.1) ICJL(M)=I*120.CD+J*ICOC(+LEVEL(I)*100+LEV DJ 11 ICHK=3,M IF(.LEVEL(I) .EQ.IDC(ILFC-))D) TO 12 X(4,)=1. M=M+1 GO TO 1%</pre>	/EL(I) 0 TO 19 TO X AND 8 MATRICL3)GO TO 13)GO TO 13 /EL(J)*19

•

•

•

21 S 23 X 23 X	ENTER THREF)GU TO 19
2 - S - C - C - C - C - C - C - C - C	ENTER THREEF	
21 S 23 X 23 X	- ENIER 105-EF-	
2 2 3 X		-PACIJE INTERACTION (EEMS INTO X AND B MATRICES
I I I I I I I I I I I I I I I I I I I	DINS IF1,NFAC2	2
D: JH D: JH D: I JH I JH I JH I J I J I J I J I J I J	J = I + 1	
Ji Di IV Di IV Di IV IV IV IV IV IV IV IV IV IV IV IV IV	0 18 J=IJ,NFAC	
14 II 13 14 II 13 15 II 16 II X 4 5 16 II X 18 C 17 X 18 C 19 C 21 S 9 9 9 10 10 10 10 10 10 10 10 10 10	K=J+1	
14 II 13: 14 II 13: 15 II 10: 10: 10: 10: 10: 10: 10: 10:	U 19 KEJK,NFAU Finblock fo	
14 II 15 II 15 II 16 II X 16 II X 18 C 17 X 18 C 17 X 18 C 17 C 27 S 4 7 7 21 S 0 21 S 0 22 X 0 X 0 23 X	J 14 IB=1•\3L0	JCK
13: 15 II 16 I 16 I 16 I 3 17 X 18 C 17 X 18 C 17 C 27 S 4 0 21 S 0 22 X 0 X 0 23 X	F((I.EC.IBLJCK	<pre>(IB)).GR.(J.EQ.IBLUCK(IB)).CR.(K.EQ.IBLOCK(IB)))</pre>
15 I I I I I I I I I I I I I I	U TO 18	
10 10 10 10 10 10 10 10 10 17 18 C 19 C 10	F({L2VEL(1).E	2.1),0&.(LEVFL(J).EQ.1).OR.(LEVEL(K).EQ.1))GO TO
1 6 I X M G I 7 X I 8 C I 7 X I 9 C I 9 C	UJE(M)=18133 U 16 ICHK=324	/ +J#1////+K#1////+LEVEL(1/#1/0+LEVEL(J/#10+LEVEL(
x + M; G 17 X 18 C 19 C 19 C 19 C 19 C 19 C 10 21 S 0 0 0 0 0 0 0 0 0 0 0 0 0	F(1CDL(M).EJ.)	IC(L(ICHK-1))G0 TU 17
Ma I 7 I 8 I 7 I 8 I 7 I 8 I 7 I 8 I 7 I 8 I 7 I 8 I 9 I 9 I 19 G I 19	(N, M) = 1.	
C 17 X 18 C 19 C 19 C 19 C 19 C 19 C 10 20 S 19 00 21 S 00 22 X 00 23 X	= 1+1	
17 X 18 C 19 C 19 C 19 C 19 C 10 00 21 S 00 21 S 00 22 X 00 X 00 23 X		
1 9 C 1 9 C 1 1 0 1 1 1 1 1 1 0 0 2 2 3 X 0 2 2 X 0 0 2 2 X 0 0 0 0 0 0 0 0 0 0 0 0 0	NTINHE	
21 S 21 S 21 S 21 S 21 S 21 S 22 X 20 X 22 X 20 X 23 X	JUVITVUE	- · · · · · · · · ·
2 ^ 5 2 ^ 5 2 ^ 5 4 0 2 1 5 0 2 2 X 0 2 2 X 0 X 0 2 2 X 0 0 2 2 X 0 0 2 2 X		
21 S 22 S 3 9 21 S 21 S 22 X 22 X 20 X 22 X 20 X 2 3 X	DETERMINE IF	- X AND B MATRICES ARE CUMPLETE
2 - S 2 - S 4 	1-1-1	
V G C 2 1 S C 2 1 S C C C C C C C C C C C C C C C C C C C	F(N .EK. NUBS)	1GO 10 20
C 2 C 2 C 3 4 7 7 2 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7	= 1 + 1	- · · ·
2 3 3 9 21 5 21 5 0 22 x 0 22 x 0 0 x 23 x	(IT) 5	
2 3 3 4 9 21 5 0 22 5 0 0 21 5 0 0 22 5 0 2 2 5 1 9 0 2 1 5 0 1 2 0 5 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1		
2 S 3 4 9 21 S 0 22 S 0 22 S 0 22 S 0 22 S 0 23 S 0 23 S	TIND ILIGE 3	50° 0° 54 04* ES
21 S 01 21 S 02 02 02 02 02 02 02 02 02 02	STOT=C.	
21 S 21 S 0 0 22 X 0 22 X 0 X 0 X 23 X	= 1-1	• • • •
21 S 21 S 0: 0: 0: 22 X 0: 22 X 0: 23 X	=4.	•
21 3 D: D: X D: 22 X D: X D: 23 X	$\begin{array}{cccc} 0 & 21 & 1=1 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	· ·
0: D: 2 2 x 0: 2 3 x 0: 2 3 x	2121=22161+11	1, J / m Z
0 0 X 0 2 2 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0	FORM LORMAL	ECUATION:S
0 X D 2 2 X D X D X D X Z 3 X		
2 2 X Di 2 2 X Di X Di 2 3 X	0 22 I=1,7	
2 2 X 0 X 2 3 X	$J = 22 J = 1 \cdot M$	
2 2 X 0 X D 2 3 X	1 22 IR(1w=1.N	·
00 X Di 2 3 X	X(1, J) = XTX(1)	,J)+X(IROW,I)*X(IROW,J)
2 3 X	0 23 1=1,1	
23 X	$T\lambda(I,M+1)=n.$	- es es as an anciente es
	U 23 J=1;N TV/T MitterTVI	(1, N+1) + Y(1, 1) + Y(1, 1)
	SOLVE NUR AAL	LEDHATIONS
	•	
		1 · · • 1 / · • * • * * * * · · · · · · · · · · · ·
) n. D.	1=1,7 T/1 ()	14 J J
2+ 3	1(1+1)=XIX(1+1)	
~		STEN SHA DE SOHARES

•

__ C __ SSREG=0.DO 26 I=1,M XTY=2. 00 25 J=1,N 25 XTY=XTY+X(J,I)*Y(J,1) 26 SSREG=SSREG+3T(1,I)*XTY C С FIND TOTAL, REGRESSION AND ERROR DEGREES OF FREEDOM C IDFTOT=N I DER EG =M I DEERK = N-M С C FIND ERROR SUM OF SQUARES AND MEAN SQUARES C SSERF = SSTOT-SSREU VARERR = SSERR/FLOAT(N-M) С С DETERMINE IF MODEL HAS THREE-LEVEL INTERACTION TERMS C IF(NFAC .EV. 1)GU TU 35 IF(NFAC .EQ. 2)GU TO 29 IF(NELUCK .EQ. NEAC2) GD TO 29 С FIND SUNS OF SWARES AND DEGREES OF FREEDOM FOR THREE-LEVEL С С INTERACTION TERMS Ĉ 00 28 I=1.NFAC2 IJ = I + JJU 23 J=1J, 4FAC1]Y=]+]_ DE 28 NEURINEGO IT:ST=I*11:+J*10+K NDELET=C 31 27 14=2,M 11EST=IC(E(14)/103% IF(ITEST .NE. MIEST)30 TO 27 NDELET=NDELET+1 NUCL (NDELET)=14 27 CONTINUE CALL HYPUING ADELET, IDELET, M, N, SSHYPO) 2S(1,J,K)=557:3-5SHYPC NOF(I, J, K)=NOELET 2 d CONTINUE Ĉ C DETERMINE IF MODEL HAS TWO-LEVEL INTERACTION TERMS. С 29 IF(NBLUCK .F.). NFAC1100 TO 35 Ċ С FIND SUPS OF SQUARES AND DEGREES OF FREEDOM FOR TWO-LEVEL C INTERACTION TERMS Ċ DJ 34 1=1,NFAC1 IJ=I+101 34 J=10, .- mu NDELETER I DEL ET =G SSCOR=C.

B-6

·····				B-/
	NC38=3			
	00 33 IM=2.M			
•	TEAC=TCOL(1D)/1	10000		
	$\frac{1}{1} \frac{1}{1} \frac{1}$	000-01001 (IM)	160000 *10	•
	$\chi = 1 C(1 (1M)/1)$		20001#10	
·			199919717 188018817 - 1889 - 1889	
	IF((I •NE• IFAU	J.ANU.(I .NE. J	FACTION TO 33	
	IFI(J .NE. JFAC).AND.(J .ME. K	FAC))GO TO 33	
	IF(KFAC .EQ. 3)	KFAC=1		
	IF(KFAC .EQ. 1)	GC TO 32		
·················	IDELET = IDELET+1		······	
	IFUNCOR .EQ. 0)60 TJ 31		
-	00.30 ICHK=1.00	UF .	• ·	
31	TELICOLLIMIZICO	2 .ED. ICOR(ICH	KIIGO TO 32	
21	MC DO = J C O U + 1			
51				
	IUJKINUUR J=IUIL			
	22074=22004+221	IFAL, JFAL, KFALI		
32	NDELET =NDELET+1		١.	
	NCUL (NOFLET) = IM		1	
33	CUNTINUE			
····· ··· ·	CALL HYPOTHINDE	LET, IDELFT, M, N,	SSHYPO)	
	SS(I,J,I) = SS(E)	- SSHYPU- SSCUR		
	$NDE(1 \cdot J \cdot T) = 1 \cdot J \in L$	FT-IDELET		
34	CONTINUE			
~ -	50111102	<u> </u>		
c		C. NOTE AND DE	NOTES OF FOLSE	
	FIID SUPS UP	SCJAKES AND DE	UKCES UF FREEL	JUM FUR SINGLE-F
C C	1 EKMS			
<u> </u>				
35	DJ 40 $I=1$, NFAC			•
	NDELET =0			
	I DEL FT = 0		-	-
	SSCUR=C.			
	NCJK=^			
	Bu st Id=2.8			
			······	
			0.00001#10	
			1.	•
	IFLUL WAR . IFAC .	ARU. (I.NE. JEA.)	AND (I.NE F.F.	ACTICU IU 3,
	IF(JFAC •E(• J)	JFAC = 1	·	
	IF(KFAC .EQ. 0)	K F AC = 1		
	TREEJEAU .FU. 1	T.AND. (KFAC .EG	. I))GN TU 38	
	I DELET = IDELET+1			
	TEINEL FUL OF	GG TO 37		
• • •				
35	IFTICULT TF/100	IUKIICH	N7160 10 38	
37	VCJ:=:/CJ+ +1			
	ICD3(NUOR)=ICGE	(1M)/1000	•	
	SSCDR=SSC0++35(IFAC, JFAC, KFAC)		
<u> </u>	NUELET=NDELET+1			
	NOUL (NDELET) = IM			
. 30	CONTENHE			•••••
	CALL HYDRITHANDE	LET. TOFLET.M.N.	SCHYPOL	
	TECTION NETTINE	CCIVES COMPEND		
	55(1+1,1)=55(EG	- 5 541 P J - 5 5 C J K		
	VDF(1, 1, 1) = N (L)	ヒリーエリュレビエ		
4)	CONTINUE.			
C				
0	PELI ALVIA	BLE FEADTHS AND	REGALSSION DA	AT A
C			-	
	PRIVET INSTRUCT	THRS AT DEVEL	(I) JETTNEACT	
1 7 7	- E 15 6 A T T T 1 (11 - 97) - E 15 6 A T T T 1 (11 - 97) -	TOTAL TRACTOR	、、 . /	
133	E 14 14 1 1 11 1 + 5 14 +	TEXANPLE NUNSER	1 1 1 3 I I	
B-8 15x, NUMBER OF UBSERVATIONS **, 14// 15X, * FACTUP*/ 15X, *NUMBER*, 4X, *LEVELS*// 110(7x, 12, 7x, 12/))PRINT 1(4, IDFREG, SSREG TIN4 FURMAT(/30X, *ANALYSIS OF VARIANCE*/ 163K, MAS FATLU TO!/ 18X, 'SDURCE', 8X, 'DF', 3X, 'SUM OF SQUARES', 3X, 'MEAN SQUARES', 8X, 'ER 1R 4S*// 16X, "REGRESSION", 3X, 12, 3X, E14. 8// 18X, *FACIDR*/) С С PRINT DATA FOR SINGLE-FACTOR TERMS C 03 41 1=1, NFAC VA = SS(1, 1, 1) / FLCAT(NDF(1, 1, 1))H=VAE/VAR EFR 41 PRINT 105,1, JOF(1,1,1), SS(1,1,1), VAR, F 105 FUR 4AT (7X, 11, 11X, 12, 3X, 14, 8, 4X, E14, 8, 6X, F11, 2) PRINT DATA FOR TWO-FACTOR INTERACTION TERMS С Ĉ 00 42 I=1, NFAC1 IJ=I+1DD 4? J=IJ, WFAC IF(JUF(1, J, 1) . C.J. 7) GU TO 42 VAK=5S(I,J,1)/FLOAT(NDF(I,J,1)) F=VIP/VALESA PRINT 106, I, J, NDF(I, J, 1), SS(I, J, 1), VAR, F 105 FUR HAT(7X, 11, * X *, I1, 7X, 12, 3X, F14, 8, 4X, F14, 8, 6X, F11, 2) 42 CUNIINUE С C Ć PRINT DATA FOR THREE-FACTOR INTERACTION TERMS. 05 +3 1=1,NFAC2 $I_{J} = 1 + 1$ DU 43 J=IJ+LFACL $J \prec = J + I$ 93 +3 K=JK, NHAC 1 F(NOF(I,J,K), EQ. 7)60 TO 43 $V \land x = SS(1, J, K) / FLCAT(NDF(1, J, K))$ F=VAR/VAR FHR PKINT 107,1,J,K,NDF(I,J,K),SS(I,J,K),VAR,F 107 FU-MAT(7X,11, * X *,11,* X *,11,3X,12,3X,F14.8,4X,E14.8,6K,F*1 43 CLATINE PRINT 108, IDSERK, SSERR, VARERR, IDFTOT, SSTCT 108 FURMATI/6X, 'ERRUR', 6X, I2, 3X, E14.8, 4X, E14.8// 16x, "TUTAL", 8x, I2, 3x, E14.8) С C CLEAR FOR NEXT PROBLEM С NPKOB=ivrik (if.+1 DJ 44 I=1,N 00 44 J=1,M 44 X(1,J)-'. 01 45 7=1.7 0-1 45 J=1,7 DJ 45 K=1,7 NOF(1, J, K)=0

45 SS(1,J,K)=C. _ GO TJ 1 ----С Č EKKOR MESSAGE IF SULUTION TO NORMAL EQUATIONS NOT FOUND _____C _ _ ____ - -46 PRINT 109, - -. 109 FURMAT(' GJR FUR X') _____ 47 STOP END -. -----. . .. ------

B-9

B-10 FOR HYPOTH SUBROUTINE HYPOTH(NDELET, IDELET, M, N, SSHYPC) CUMMON Y(150,1),X(150,100),XH(150,100),XTX(100,100),BT(1,100), 1LEVEL(1(), NLEVEL(1)), NCOL(10), SS(7,7,7), NUF(7,7,7), ICCL(100), 113LOCK(6), ICOR(100) V=4. 0 0 FORM X MATRIX FUR REDUCED MODEL С MH=M-NDELET IF(NDELET .E.). 0)GD TO 5 J = 1< =1 1 00 2 I=1, NDELET 2 IF(J .EQ. NCOL(I))GO TO 4 00 3 I=1,N 3 X = (I, K) = X (I, J)IF(J .EQ. M)GU TC 7 J = J + 1< = < +1JU TO 1 4 IF(J .EQ. M)GO TO 7 J = J + 130 TO 1 5 DJ 5 1=1,14 00 6 J=1,M (L, I) X = (L, I) hX cC С FURM X*X MATRIX FOR REDUCED MODEL C 7 DH & I=1, MH 00 3 J=1,ML XTX(1,J)=^. N. 2 INDA = 1. 4 F XTx(1,J)=XTX(1,J)+XH(IROw,1)*XH(IROw,J) С FURM NUE AL EQUALIONS Ũ С **リリ 9 1=1,**ME ----- $XIX(I, \mathbb{H}+1)=).$ 00 € J=1,'! > XTX(1, (1)+1)=XTX(1, (1+1)+XH(J,1)*Y(J,1) С С SOLVE NUR 4AL EQUATIONS С CALL GJR(XTX, 100, 100, MH, MH+1, \$13, JC, V) DU 10 I=1,0H 10 3T(1,E)=XTX(I,AH+1) ວ ວີ KETURN LEGRESSION SUM OF SQUARES FOR REDUCED MODEL . С SSHYPJ=1. 00 12 I=1, mit XTY=0. 74 11 J=1. 11 XIY=XIY+X+(0,1)(Y(0,1)) 12 55HYPD=SSHYPD+BT(1,1)*XTY REFURN С

 $- \stackrel{\rm C}{\rm c}$ ERROK MESSAGE_IF SOLUTION TO NORMAL FQUATIONS NOT FOUND 13 PRINT 100, 100 FURMAT(* GJR XH*) . STUP END -------. - - -. -- - -- - - - ------. -- ----- -_ -.

-

D-TT

Example 1:

Example 2:

.

Example 3:

Example 4:

336				
	25.2	1	1.	1
	24.1	1	1	1
•	25.2	1	-1	2
	20.9	1	1	2
	23.8	1	1	3
	24.9	1	1	2,
· ··	22.)	1	2	1
	23.5	ī	2	1
	<u>, , , , , , , , , , , , , , , , , , , </u>	-1		2
	24.6	,	2	2
	27.0	1	2	2
	26.7	1	2	2
-	2 / 1	د ۱	Ś	1
	22.1	1	2	1
	12.3		- <u>5</u> -	1
•	26+3	1	3	2.
	23.1	1	3	2.
	21.3	1	3	3
_	23.5	1	3	3
	14.2	2	1	1
	15.2	2	1	1
	13.5	2	1	2
	19.1	2	1	2
	12.5	2	1	3
•	15.4	2	1	3
	14.1	2	2	1
	15.1	2	2	1
	14.)	2	2	2
	18.1	2	2	2
	13.7	2	2	3
	16.7	2	2	3
-	14.1	;	à	1.
	161	2	2	1
		<u>د</u>	ر د	·
	- L < ● ∡ - 1	,	.•	ζ.
	1 2 • 2	,	,	3
	12.1	4	<i>े</i> 1	-
	12.1	1	- 5	3

The following are the outputs from the ANOVA program for the example problems of Chapter IV.

.

.

		EXAMPLE NUM	BER 1		
NUMBER OF O	BSERVATIO	NS: 25			
FACTOR NUMBLR L	EVELS				
1 .	5		. .		
		AHALYSIS OF	VARIANCE		
SUURCE	DF	SUM OF SQUARES	MEAN SQUARES	ERRUR NS	
REGRESSION	5	•19176786+06			
FACTOR	-				
1	4	•99019531+02	•24754883+02	2, ,,	
ERROR	20	•23142578+02	•11571267+01		
1014	25	•191/9100+Go			
		EXAMPLE HUM	BER 2		
NUMBER OF OF	35ERVATIO	NS: 12			
FACTUR	NELS	· · ·			
- 1 2	4 4		-		
·		ANALYSIS OF	VARIANCE	unan dan samat din	
SOURCE	DF	SUN OF SUUARES	MEAN SQUARES	NS KALAL IN ERRUP 11	
REGRESSION	7	•31148333+04	· · · · · · · · · · · · · · · · · · ·		
FACTOR					
1 2	3 0	• E 8 0 × 3 3 3 7 + 03 • 6 3 6 5 4 5 6 5 + 0 1	•29361112+03 •20555522+01	4,14	
ERROR	5	•36316669+03	•72633337+02		
TOTAL	12	•34780000+C4		· · · ·	

.

.

EXAMPLE NUMBER 3

NUMBER OF 0	BSERVATI	0NS: 10	· · ·	
FACTOR NUMBER L	EVELS			· · · · · · · · · · · · · · · · ·
	2	· ·		
····· ···	-		-	·- · · ·
		ANALYSIS OF	VARIANCE	
SOUPCE	·D F	SUM OF SOUARES	MEAN SQUAFES	EKRUR MS
	4	•97004000+03		-
FACION				
I	1	- •13500000+03	•13500000+03	101.; 4
2	1	•59999847+GD	.59999847+00	• ⁴ 1 ' \
1. X 2 .	1	•150000L0+C2	.15000000+02	11.2%
ERROR	6	• 80000000+0 <u>1</u>	<u>•13333333+01</u>	······································
TOTAL	10	•978000(0+03		
		EXAMPLE NUD	BER 4	
NUMBER OF D	USERVATI	Cii5: 36		
ΕΑΓΙ ΩΕ				
L!!!!!!!!!!!!!!!!!	EVELS _			
1	2			
2	3			
	5			
		ANALYSIS OF	VARIANCE	
SOURCE	DF	SUM OF SQUARES	NEAN SQUARES	EKKUR MS
REGRESSION	18	•14175168+05		
FACTOR				
	-	• 65195068+03		· · · · · · · · · · · · · · · · · · ·
2	2	•16051514+02	+80257568+01	3.47
3	· 2	•12771464+02	+63857422+01	2.74
1 2 2	2	• • • • • • •	-793527114E2	
1 X 3 ·	2	•5365791C+01	•27863555+01	1. 2.2
2 X 3	4 71	• 26487881+02 • X+077777	+66217651+01	2.87
1 ~ 2 X 3	7	epipU/664411	•12701717401	• 5 6
EKHOF	18	•41590576+02	•23105876+01	

.....

~ .