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ABSTRACT

Regression analysis is a powerful and general solution-
method for the analysis of variance of experimental design
problems. However, when the traditional experimental design
model is expressed in the matrix‘form, Y = Xb + e, the X
matrix will always be singular. Since X'X will also be
singular, the normal equations, x'5B =\X'Y, will have no
unique solution. This means that standard regression tech-
niques cannot be used for an analysis of variance without
reparameterizing tﬁe model into a full-rank form.

In this study, a new method of formulating experimental
design models is developed that leads directly to a full-
rank system of normal equations without reparameterization.
The full-rank model bases the expected value of the response
veriable on a standard.cell of the cxperiment, rather than
the overall mean of the experiment.

The technique is demonstrated for several example
problems. It is concluded that the combination of full-
rank model formulation and regression analysis_is a very
useful tool for the analysis of designed experiments.

This is especially true for nonorthogonal design that are
difficult or impossible to handle by the traditional

sum-of-squares methed.
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CHAPTER I

INTRODUCTION

It is known that regression analysis can be used to
find the variance estimates required for the analysis of
variance of experimental design problems. 1In fact, regres-
sion is the most general solution method available since
it solves problems with missing data, incomplete blocks,
or unequal group sizes as easlily as it solves problems with
complete data and equal group sizes. However, in spite of
its generality, the application of regression has been
limited.

One of the reasons for this is that it has computational
disadvantages. The heart of the regression technique is
the solution of a system of simulganeous linear equations

-

called the normal equétions. 'This is tedious work for even
fairly small problems since these.s§stems of equations tend
to become large very fast. For example, a two treatment,
five levels per treatment, factorial experiment with one
observation per cell would call for a solution to a system
of twenty-five equations with thirty-six unknowns to find

the error sum of squares. Additionally, three smaller

systems must be solved to find the sums of squares associated
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with the main effects and the interaction effect. Obviously
regression is not a hand or desk calculator technique except
for the very smallest problems.

In this era of digital computers, these computational
difficulties would not-be sufficient to hold back the appli=-
cation of regression analysis if there were no other dis-
advantages. Unfortunately there are. Returning to the
example, notice the excess of the number of unknowns over
the number of normal equations. This means there are an
infinite number of solutions to the normal equations.
Increasing the number of replications per cell will produce
more normal equations but since the new equations are not
independent of the original twenty-five, there is basically
no change in the system. The .standard regression technicucs,
by hand or computer subroutines, are designed to solve systems
of N nermal equations with M unknowns where N is equal to I
A system of normal equations from an experimental design
problem where N is less than M cannot be solved without
modifications. These modifications could be any one of

the following which are listed on the next page.



1. Add K more independent equations to the system
so that N + K = M,

2. Combine or reparameterize the M unknowns such
that there are L less of them so that N =M - L.

3. Change the normal equation solution method so that
it will find a feasible solution when N is less than M.

4, Change the experimental design model so that when
the normal equations are formed, N = M.

It appears that the main effort to tailor regression
analysis to experimental design problems has been by methods
1 and 2. The difficulty is that the application of these
two methods seems to be almost unique for every type of
problem. That is, no general method of adding independent
equations or reparameterizing the unknowns can be applied
to all problems. Eéch problem entails considerable effort
on the part of the experimenter to fit the problem to a
regression routine.

This difficulty is reflected in the lack of application
of regression analysis in experimental design textbooks.
These books usually stress the traditional sum of squares
approach to analysis of variance problems. This method is
popular since it is amenable to hand or desk calculator

solution of fair-sized problems as long as they have equal



group sizes. If regression analysis is mentioned at all,
it is wusually in the context of being only an interesting
fact that analysis of variance problems can be solved by
regression. For example, in Hicks (7), the use of regrec
is demonstrated only fer single-factor problems where ha:
solution of the normal equations is feasible. The book
never demonstrates how to set up simple factorial models
for regression solution. In Draper and Smith (4), a
regression textbook, it reads:

'"We are not recommending that fixed-effects
analysis of variance problems be handled by general
regression methods. We are pointing out that they
can be, if the correct steps are taken in handling
the problem and that it is valuable to realize thi:
is possible."

In Cooley and Lohnes (2), after describing their analysi
of variance computer program, they state:

"The multiple-regression approaeh to analysis -
variance allows greater flexibility than the apprco
used here, but the preparation for execution of th.
programs is more complicated."

In sunmary, the difficulty of adding more independ.
equations or reparameterizing the unknowns seems to over:s
the generality advantage of the regression technique.

Method 3, where the normal equations are solved for

feasible solution with N less than M can be handled by
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either linear programming or generalized inverse techniques.
The linear programming a?proach as_presented by Cashler (1),
has all the advantages of regression analysis with respect
to solving large unbalanced problems but it also has two
unique disadvantages. The first one is that the number of
unknown variables in the model musﬁ be doubled when the
problem is formulated to overcome the linear programming
non-negativity constraint. The second disadvantage is one
of higher computer processing time for linear programming
routines as compared with regression routines.

This brings us to method 4, which is the topic of this
paper. Is there a way to write experimental design models
that leads directly to a full-rank system of normal equatious?
If there is, then the.application of regression analysis
to experimental design problems will be greatly simplified
and advantage can be taken of its.generality.

A restriction on the new model will be that it also
has physical significance to the experimenter rather than
being an abstract combination of parameters. If this is
true, the experimenter who knows the technique of formu-
lating the model, which will apply to all prcblems, can
feed problems directly into regression routines and deter-
mine the various sums of squares required for an analysis

of variance.



Chapter II contains a brief overview of some of the
background material for experimental design problems. In
Chapter III, the new model is developed. Chapter IV con-
tains examples showing the épplication of the technique to
various types of problems. The advantages and disadvantages
of the technique are summarized in Chapter V along with the
conclusions about its application to analysis of variance

problems.



" CHAPTER II
ANALYSIS OF VARIANCE AND REGRESSION ANALYSIS

Analysis of Variance

The analysis of variance is a statistical technique
introduced by R. A. Fisher about 1923 in connection with
experimental design applications 'in biological research.

It is a method of dividing the variatiop observed in experi-
mental data into different parts, each part assignable to

a known source, cause, or factor. It allows the assessment
of the relative magnitude of variation resulting from
different sources and the determination whether a particular
part of its variation is greater than expected under a null
hypothesis.,

Normally the analysis of variance is used to test the
significance of the differences between the means of the
observed dependent variables in different groups where
each group has received a different treatment. The purpose
being to see if the treatment has a significant effect on
the dependent variable or if the deviations in the group
means are due to random error.

The analysis of variance makes two basic assumptions
about the distribution of the dependent variable within

each group. .These are listed on the following page.



1. The dependent variable in each of the treatment
groups is normally distributed.

2. The variance of the dependent variable in each
of the treatment groups is equal.

Assume an experiment is performed to determine the
effect of a factor théfghas been set or measured at k
different levels. A measurement of the dependent variable,

Y from one of k treatment groups is considered to be composed
of three quantities:

u - the overall expected value of the dependent variable

ti = the deviation from the expected value of the
dependent variable due to the effect of the ith treatment

e - a deviation from the expected value due to the
fact that measurements of the dependent varielLle are normally

. . . : - . 2
distributed with a mcan of zero and a variance of o

] , .th
To represent the j observation from the i treatment
group the model is written as
Y., =u+t, +e,,
1] 1 1]
i=1,2, ...,k
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The null hypothesis is that all the treatment effects are
equal to zero.

L, = 0

i=1,2, ...,k
This hypothesis is tested by First partioning the total
sum of squares of the deviation of the measurements from
the overall mean, ?, into two additive and independent parts.
These are called the within groups sum of squares and the

between groups sum of squares. To show this is possible

let n, be the number of observations in the ith group and

ey e oth v 1 . - . -
let ¥4 be the mean of the 1 group. We begin by writing

the identity

Squaring this identity and sﬁmﬁing over the n, cases in

the ith group yields

n4 —o D — o Di
PRI LIS SRR AR S (A
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The last term on the right disappears since the sum of
deviations of group observations from the group mean 1is

zero. Therefore

n. n.
i =2 _ i 2 5 \2
. (Yij - Y) -..E'(Yij - ¥y)" + n; (Y; - Y)
j=1 j=1
We now sum over the k groups to obtain
k n; k n, k
i -2 i, -2 - 2
z 2 (Yl_'] -Y) = E. z (Yij = Yj_) + Z ni(Yi - Y)
i=1 j=1 i=1 j=1 i=1

Thus the total sum of squares is partioned into two additive
groups, a sum of squares within groups and a sum of squares

between groups. Of the three terms, any two are independent

and could be used to estimate the common group variance, cé“
To do this we must know the degrees of freedom
. . . . 2
associated with each sum of squares since the estimate, S,

of a variance is

2

S“ = (deviations from mean of distribution)

degrees of freedom of estimate

k
If the total number of observations, 2 n;, is equal
i=1
to N, then the total sum of squares has N-1 degrees of
freedom. One degree of freedom is lost due to the mean of

the distribution being estimated. The within groups degreces
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of freedom can be found by knowing that in each group there
are n; - 1 degrees of freedom. One degree of freedom is
lost in each group to estimate the group mean. Summing

over the k groups yields

k k
S (n; -1) = Sn -k=N-k
i=1 i=1

For the between groups sum of squares there are k means
and one degree of freedom is lost by expressing the group
mean as deviations from the grand mean so there are k - 1
degrees of freedom. Notice that the degrees of freedom
are additive,

Total = Within + Between
-1 -k k-1

With the sums of squares and the degrees of freedom we can
now estimate the within and between groups variances.

These variance estimates are also called the mean squares.

k n.

2

sy = 33 (¥i5 - ¥;)?
=1 j:: -
N - k

k

2 - .2
= Kk - 1

While the sums of squares and the degrees of freedom are



additive, the variance estimates are not.

2 2 2
sT *Sw +SB

Going back to the second basic assumption of the
analysis of variance, remember that the within groups
variance is the same for all groups. This means the
expected value of the within groups variance is oéz,
the population variance.

E(SWZ) = o,2
The expected valué of SB2 may be shown to be

K K

2

E(Sp2) = 0o~ + '21 @ - w? - 2
l= 1=

k - 1 R -1

niZ/N)

Where uy, and u are population means. When the null
hypothesis is true, the term on the right is equal to

zero since the mean of each group is equal to the overall

mean. Therefore the expected value of SB2 reduces to céz

and

) 2
E(Sg2) = E(S;)
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When the null hypothesis is false and the means of

the groups differ from u,

i from u

E(SBZ) = céz + measure of the variation of u
To test the null hypothesis, the ratio of SBZ/SW2

is examined. If the population means differ from each other
E(SBZ/SWZ) will be greater than unity.\ Therefore if this
ratio is significantly greater than unity this is evidence
for the rejection of the null hypothesis and for the acceptance
of the alternativé hypothesis that a significant difference
exists between the treatment group means. The significance
of the deviation from unity may be assessed by reference
to a table of F values with k ~ 1 degrees of freedom asso-
ciated with the numerator and N - k degrees of freedom
associated with the dénomina&ér. The quantities involvcd
in the preceeding discussion are usﬁally displayed in an

analysis of variance table which follows on the next page.



AOV TABLE

Source of Degrees Sum of Mean F Ratio
Variation of Freedom Squeres Squares
= Y '
Between Groups k -1 s on. (Y, - Y) ss./(k - 1) SSp(N - k)
$=1 iYi B .
SSB st(k - 1)
Within Groups N - k PSS (Yij - Y3) 5Sy/ (N - k)
. i=1 j=1
S5y
k n;
Total N -1 3 i (Yij Y)2
i=1 j=1

71
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Regression Analysis

Regression analysis 1is a statisticai technidue for
extracting the main features of the relationships hidden
or implied in tabulated figures. Even if no sensible
physical relationship exists beéween the variables, we may
wish to relate them by some sort of mathematical equation.
While the equation might be physically meaningless it may
nevertheless be extremely valuable for predicting the
values of some variables from knowledge of other variables.
In this paper we will be concerned with only linear regressi
analysis which assumes that the relationship is linear in
unknown parameters.

The variables involved can be classified as either
independent or dependent variables. The dependent varice -
is'also called the response variable. The indecpendent
variables are those which can be set to a desired value or
else the values can be observed bqt not controlled. As
a result of changes in the independent variables, an eflccc
is reflected in the dependent varisbles. 1In éeneral, we
shall be interested in finding out how changes in the

independent variables affect the response variables. Howcv
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the end result is a mathematical formula that describes
the relationship between the independent and dependent
variables.

The simplest example of this is the case with only
one independent variable, x, and.one dependent variable,
y. The problem is to find an equation that will predict
the expected value of y given the value of x.

E(y[x = X) = £(X)
where £(X) is the regression equation. The highest power
of x found in £(x) 1s called the order of the regression
equation so that

f(x) = by + byx + b2x2 + b3x3

would be a linear third order model with constant coeffi-
cients b;. Examining the first order equation

E(v|x = X) = b, + biX
we see that this equation describes a straight line on the

plot of y versus x.

k

/ y=bo+b]-x
b i
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So to develop this regression equation, the straight line
relationship between y and x must be determined. ?pe task
here, of course, is to find the value of b, and by so that
they do the best job of deécribing the relationship between
y and x. The estimation of these coefficients is the essence
of regression analysis. To perform thg estimation of bO
and by it is required to obtain some empirical data con-
sisting of pairs of observations of y and x where x was
set or measured and the response of y was simultaneously
observed.,

(v1, xl)

(y2, x2)

(yus %x)

Plotting the observations might yield

A
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Obviously no straight line can pass through all the N
points so some method must be adopted to "fit" the line to
the points. Since the points will not all lie on the
regression line, we can express each point Yi by the model
yi ; by + byxy + ey
i=1,2, ..., N

or graphically

‘\_____ y = by *+ bix

P X

when e; is the deviation from the regression line. To
find the best regression line we will estimate bO and by
by the method of least squares. This method finds the

b, and by that minimizes the sum of the squares of the e;.

Nz 5 ) N,
é e < Q.
i=1 * £:l *
= 0 = (
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To do this the equations
i=1,2, ..., N

are expressed in the matrix form

Y=Xb+e
y1 1 % bo ey
- - - * N + *
. bl .
N 1 XN eN

Then from Theorem 6.2 in Graybill (6), it is shown that
the best (minimum variance) linear unhiased estimate of
b is given by least squares. That is, the % that is the
solution to the normal equations
5= -l xy
is the best linear unbiased estimate of b.
If X'X is nonsingular, the estimates of bO and b

1

are given by

?
-1

Cl= B=anoxy

B

1
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The regression equation can then be written as
E(ylx = X) = b0 + biX

knowing that it is the best estimate of the expected value
of y based on the method of least squares. This equation
can now be used to predict the value of y given the values
of x, or in other words, it describes a relationship be=-
tween the independent and dependent variables.

The question may be asked."How well does the regression
equation fit the data?" This is answered by partioning
the total sum of squares about the line y =0 (SST) into
two categories, the sﬁm of squares due to regression and
the sum of squares about regression.

The sum of squares due to regression is the portion
of the total sum of squares that is explained or accounted
for by the regressién equation. The larger the sum of
squares due to regression, the better the fit of the
regression equation to the data.

The sum of squares about regression is the sum of squarcs

of the deviations of the data points from the regression line.
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If the regression line passed through every data point,
the sum of squares about regression would be zero and it
would be apparent that the regression was perfectly fitted
to the data. If the sum of squares about regression is
large, it shows that tﬁére are significant deviations of
the data from the regression line. This means that there
is some lack of fit present. Since the sum of squares about
regression is a measure of the fit error of the regression
line, it will hereafter be referred to as the error sum
of squares (SSE). The sum of squares due to regression
will be referred to as the regression éum of squares (SSR).
Therefore, we have
SST = SSR + SSE

To illustrate thése quaﬁtities, suppose we were asked

to find the first order regression éf y on x given the

following quantities,

NN ;M
o B w }<



Expressing the data in matrix form yields

1 11 b

3 = 1 1 © + (e)
4 1 2 by

6 1 2

>

The normal equations X'Xb = X'Y are developed as follows.

¢ il

X'X = 1
1
2
2
= 14
24

o

N =

1
1

e

X'y = ‘

o
o
ISR
Nr—-
> OV

\6 10 \Ell | 24

Solving for'%

o> o>
o~
™

5/2  -3/2 14

’151 -3/2 1 24




Therefore

E(v) = -1 + 3x

The total sum of squares about y = 0 is

Y'Yy = (1L 3 4 6)

1
3
4
6

23

62

The degrees of freedom associated with the total sum of

squares is equal to the number of observations.

The regression sum of squares is equal to the sum of

the squares of the distances of the regression line from

y = 0 at each observation of x.

{

NN

X

1
3
A
6

=1
L1t W W
4

For our example SSp = 32 + 32 4 52 4 52

by matrix analysi
SS

SS

5SS

S

R

R

Prxty

(-1 3) ll
1

58

1
1

1
2

it

58.

NP

Equivalently,
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The degrees of freedom of the regression sum of squares is
equal to the number of coefficients in the regression equation, p.

DF, = p = 2

R
The error sum of squares is the sum of squares of de-
viations of the observed points .from the regression line.
In our example, since each point has a deviation of 1 from
the regression line
SSE=12+12+12'+12=4
Normally the error sum of squares is determined by
S8 = Y'Y - B'X'Y
S8 = 62 - 58
S8 = 4
As mentioned earlier, the regression equation with the best:
fit to the data is thg one with the lowest value for the
error sum of squares. This means it has a minimum of var-
iation of data points from the régression line. The degrees
of freedom associated with the error sum of squares is equal
to the number of data points, N, minus the number of regres-
sion coefficients to be estimated, p. In our.example
DFE =N-p=4 -2 =2

Summarizing the results yields

Source DF Sum of Squares
Repression p =2 'y = 58
Error N-p=2 Y'Y ~ b'X'Y = 4
Total N =4 Y'Y = 62
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Relation between Regression Analysis and Traditional
Analysis of Variance Techniques '

In this section the methods of the two previous
sections will be drawn togéther to show how regression can
be used to find the sums of squares and their associated
degrees of freedom required for analysis of variance prob-
lems. This will be done by an example rather than a
theoretical development. Using an example means that a loss
of generality will be inevitable, but this is accepted with
the hope of increasing the wvisibility of the relationship.-

For our example we will take results from a hypothetical
two-level single-factor experiment and demonstrate how the
analysis of variance would be performed by the traditional
method and by regression analysis. The computations shown
here are‘designed to emphasize the similarities between the
two methods and not to demonstrate exactly how the methods
would be used to solve the problem.

The data for the problem is as follows:

Treatment tl to
Results 3 7
5 9
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The model for this experiment is

yij=u+ti+eij
i=1, 2
i=1, 2
N =4
k =2

In equation form the experiment is written

3 =u-+t ty | + eqq
5=u-+ £ + €19
7 =u + to + e,y
9 =u + t, + egy

or expressed in the matrix notation

Y=Xb + e
3 1 1 0- u 1y
5 3 | 1 1 0 . Tty . eqy
7 1 0 1 ty er1
9 1 0 1 €9

In Table (2.1), which follows, the calculations
required to form an analysis of variance table are shown.
In the left-hand column is the traditional sum of squares
method and the right-hand column shows the associated

regression calculations.



TABLE 2.1

Sum of Squares

Regression

1. No rcparameterization necessary

Before beginning the regression analysis,
the problem of the singularity of the X
matrix must be overcome. For this example
the problem will be reparameterized so that
the X matrix is of full~-rank. The matrix
equation Y = Xb + e is written:

u + t
EE T R oS

W N W
e i
-0 O

tz"tl

Notice that this yields the same four equations
as the previous matrix expression of the
experiment. ’

2. Find the total sum.of squares about Y.

Y=3+5+7+9=6¢6
A

SSm = (3 - 6)% + (5 - 6)2 + (7 - 6)% + (9 - 6)2

20

9]
0
i

Find the total sum of squares about Y = 0.

SS.. =Y'Y=(3579)

T = 164

3
5
7
9

The total sum of squares for the two methods

has a different reference point so the
numerical results will be different.

N
~



TABLE 2.1 (2)

Sum of Squares

Regression

3. Find the total degrees of freedom. Find the total degrees of freedom.
DFp =N=-1=4-1=3 DFp = N = 4
4, Find the within groups sum of squares Find the error sum of squares.
about the group means. ‘
Yy =3 ; 5=4 SSg = SSq - SSp
A
— S8p = Y'y - b'X'Yy
Y2=7":'9=8 .
: =@ lxy= [a2] -t [1111] 3
) 2 2 0011 5
_ = (2 7
i=1 j=1
2 b= |4
S5y = (3 - 42 + (5 -4)2+ (7 -8)2%+ (9-8)° “l&_’
SSy =1+ 1+ 1+ 1=
w=l+l+l4+l=2a E(y) = & + 4xg

87



TABLE 2.1 (3)

Sum of Squares

Regression

4.  (continued)

A
10
1 g —_—
8 ' Y
14 2
y 6- ;
h 1 ! s
Z 7 !
!
t o
t1 t2

Treatment

[‘"

(continued)

ssg = (4 4) [24] =160
16

SSg ='164 - 160 = 4

A

N
!

Y

o
»
=

5. Find the degrees of freedom for the within
grou s sum of squares.

Find the degrees of freedom for the error

. sum of squares.

DF, = N - Rank(X) = 4 - 2 = 2

E

6¢



TABLE 2.1 (4)

Sum of Squares Regression
Find the between groups sum of squares. 6. With the hypothesis Hy: t3 = ty = 0,
rewrite the matrix equation in the form,
2
SSB= Zni(Yi-Y)z ' Y = Za + e
i=1 :
Y = 10 u-0 + (e)
2 9 10 .
SSB = 2(2)7 + 2(2)° = 16 11 0
11
which reduces to
Y = () + (e)

1
1
1
1

Find the reduction in the regression sum of
squares 1f the hypothesis is true.

SSg - S8 =5'x'y - 8'2'y

R(a)
s = lzy=wlai11n

0
1
(o)}

WS W

0¢



TABLE 2.1 (5)

Sum of Squares Regression

(continued) 5. {(continued)

SSR(&) = ﬁ‘Z'Y

= 144

SSR(a) = (6)(1 1 1 1) 3
5
7
9
SSp - SSg(a) = 160 - 144 = 16

A

10 10 A

. _ y =4 + dxjmme— :
3 T Y2 8 A
z{; _ 2
. Y =6
Y]_ 4 -

| I

1
i
i
[
!
{
i
i
1

ty Treatment to Xq

1€




TABLE 2.1 (6)

Sum of Squares

Regression

7. Find the degrees of freedom for the between
rou .s sum of squares.

DF

B

=k - 1 =2 -

1 =

1

7. Find the difference in the degrees of freedom
for the regression sum of squares with
Hy false and Hy true.

DF = rank(X) - rank({(Z) =2 -1 =1

8. Set up the Source, Degrees of Freedom, and

8. Set up the Source, Degrees of Freedom, and
Sum cf Squares columns for the AOV Table. Sum of Squares columns for the AOV Table.
Source DF SS Source DF SS
‘Regression R(X) = 2 B'X'Y = 160
(Hp False)
Regression R(Z) =1 aA'Z2'Y = 144
Retween k-1=1|% _ Reduction in |R(X) - R(z) = 1|B'x'Y - 8'2'Y = 16
Groups :L n; (Y; - Y)2 = 16 iSSg if Hy is
i=1 true
Within N -k=2| K. T (v;; - ¥,)% = 4 |[|Brror S5 N -REX) =2 |Y'Y-%XY=4
Groups i;;_fgl_‘"i_ _ . _“-E(HO False)
k nj A i
Total _ju-1-= o (Y3; - vr =20 Total N =4 Y'Y = 164
(About ¥ = Y) Lo

('bout ¥ = 0)

7C
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The regression analysis of experimental design models
is summarized in the following steps.
1. Write the experiment model in terms of a full-
rank matrix equation.
Y'; Xb + e
2. Find the total sum of squares about Y = 0 and its
degrees of freedom.
SST =Y'Y "
DFp = N
3. Find the regression sum of squares and its degrees
of freedom.

SSp =b' X'Y

SSR

. = e (Y
DFR rank (X)

Y'X (x'x)'l X'y

4, Find the error sum of squares and its degrees of

freedom.
SSg = SSp - $Sp
ssp = Y'Y - B'x'y
S$Sp = Y'Y - v'x (x'x)"F x'y
DF. = N - rank(X)

E
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5. Form a hypothesié that states that the effect
of each of the experimental factors is zero. For each
hypothesis, write a reduced model of the experiment that
assumes the hypothesis is true. For a fixed factor, t,
the ty are assumed to be fixed constants and the hypothesis
would be
Hy: ty = 0 for all j
If t is a random factor, the tj are assumed to be normally
distributed random variables with a mean of zero and a
variance of GEZ. The hypothesis to test the effect of t
in this case would be
Hp: otz = 0
In either case, a model is formed by setting all terms

in the original model that contain a t to zero which will

yield a reduced model.

Y = Ziai + e
i = 1’ 2’ . . L] , NH
where Ny = number of hypotheses

6. Find the regression sum of squares and its degrees
of freedom for each model.
=4 = -1 ,
SSRi = ai‘Zi'Y = Y'zi(zi'zi) Zi'X

DFp; = rank(Z;)
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7. Find the difference in the regressioh sum of squares

and the degrees of freedom for this model (ith

hypothesis
is true) and the original model (ith hypothesis is false.)

SSg-pi = SSR - SSpi = B'X'Y - 8;'Z;'Y

DFR-gi = rank(X) - rank(zi)
8. Form the analysis of variance table based on the

following quantities.

AOV TABLE
Source Degrees of Freedom Sum of Squares
Regression rank (X) Brx'Y
5 Dbt A 1~
Factor 1 rank(X) - rank(Z;) b'X'Y - a,'7,
. . Mgty . AN 1o
Factor n rank(X) - rank(zn) b'X'Yy -&a,'zZ '.
A
Error N - rank(X) Y'Y - b'X'Y
Total . N Y'y




From the previous table it is clear .that regression
is a fairly straight-forward, although computationally
tedious, method of determining the sum of squares. The
real problem as stated earlier, is in step 1. That is,
the reparameterization of the model to a full-rank model.
The remainder of this paper will be concerned with the
method and examples of writing experimental design models

that make this step of reparameterization unnecessary.
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CHAPTER III

FULL-RANK EXPERIMENTAL DESIGN MODELS

The first part of this chapter will demonstrate why
the traditional experimental design models always lead to
an indeterminant system of normal equations with an excess
of unknowns over independent equations,

Consider a single-factor experiment with r levels
of the factor to be investigated as to their effect on a
response variable. Also assume there are ng replications
for each level i. The model for this experiment is expressed
by the following:

Yik = u + L’i + ein
i=1,2,. ..., 71
k=1, 2, . SR
where
. th . ; .

¥iix 1s the k observation of the response variable
under the experimental condition of level i of the treatment, +.

u is the overall expected value of the response variablc
for the entire experiment.

ts is the deviation from u caused by the effect of level
i of the treatment t.
€1 is the random error in the experiment which is

1

. . . . 2
normally distributed vith a mean of 0 and a variance of o, .
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In matrix form (y = Xb 4 e), the experiment is ex-

pressed by the following:

where the

Y11 1100.00 u e1q
t2

] . 3 . . . . . . + .
Y1n 1100.0 0\ elnl
Y91 1010.00 . ey

. tr .
Y2n9 1010.00 ©2n,
y31 1001L.00 631
anr 1060. 01 ernr

matrices have the following dimensions

Matrix Dimension

Row Column
r

Y n. 1

i

i=1
r -

X 2 n, r + 1
. i
i=1

b r+ 1 1
r

e n. 1
i=1 ©
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When the normal equations

X'%b = X'Y
are formed, the matrix X'X will be a square (r + 1) by
(r + 1) matrix. From Theorem 1.20 in Graybill (6), the
rank of X'X will be equal to the rank of X which will be
equal to the number of independent rows in the matrix.
In our experiment there are r different experimental con-
ditions, one for each level of t, and for each condition
there is an equation expressing the expected value of y

for the condition.

Level 1: E(Y) = u + t,
Level 2: E{®) =u + ts
Level f: “CEQY) = u + t,

Without adding any supplemental conditions on the
experiment, it is clear that there is only one independent
equation for each different condition in the experiment.
This means, for our example, there are only r independent
rows in the X matrix. Since X is of rank r, X'X is a

singular (r + 1) by (r + 1) matrix of rank r. So there is
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no unique solution
= x'x)7t xy

to the normal equatioms. —

Regardless of the number of factors or type of ex-
periment, there will be no more independent rows in the
X matrix than there are different experimental conditionms.
For a two-factor experiemnt with r and s levels per factor
there will be rs different ¢on§itions so the rank of the
X matrix will be rs. So, in general, rank(X) equals the
product of the number of levels for each factor of the
experiment,

The column dimension of X, designated p, will be equal
to the number of unknowns in the experimental design model.
For the single-factor. example, p was equél tor + 1. For

a two-factor experiment with r and s levels per factor,

we have:
Factor Number of Terms
u. 1
1 r
2 s
1 X 2 interaction rs

Total = 1 +r +s +rs =1p
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It is apparent that p is much greater than the rank
of X which is rs. This means, of courée, that X'X is
again singular. As the number of factors in an experiment
is increased, p will always be greater than the rank of X.
This is obvious since the rank of X‘will always be equal
to the number of the highest level interaction terms in
the b matrix. The dimension p will be equal to this, plus
all the lower level terms in the b matrix. So, in summary,
regardless of the experimént, the ﬁodel will always lead
to a set of indeterminant normal equations since X'X will
be singular,

The preceeding discussion also leads us to the fact
that the rank of X'X will be equal to the number of experi-
mental conditions, or cells, in the experiment. Therefore,
if the number of unknowns in the b ﬁatrix, P, can be re-
duced to the number of cells, X'X will be a p x p matrix
of rank p. Under these conditions we can find b by

b= @'x)°t x'y
and proceed to find the sums of squares by the method of

the preceeding chapter. We already know that this can be
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done by reparameterizing'the model after it is written{
However, this is extra work that must usually be done man-
ually before the regression solution method begins.

The problem now, is how can we write the model directly
so that the number of unknowns is eéual to the number of
experimental cells which leads directly to a full-rank
X'X. 1t appears that the key to this is getting away
from expressing the response variable as being equal to
an overall mean, u, plus deviations caused by the experi-
mental factors.

E(Y) = u + deviations
To reduce the number of unknowns, it is possible to select
one of the cells of the experimenﬁ as standard from which
the expected response of all 6ther cells deviates.

E(Y) = standard cell.+ deviations

Ve will denotc the expected response of the standard
cell as S and will choose the cell where all factors are
at level 1 as the standard cell. For a 22 factorial
experiment (factors a and t) with 2 replications, the

model would be developed as follows:



43
Cell aj, t7 is the standard cell so the expected

response for this cell is simply S.

t]_ tz

al E(Y) = 5

as

For the aj, tsy cell the only deviation from S would
be caused by the change in treatment t from level 1 to

level 2. Therefore,

1 2
ay E(Y) = S E(Y) = 8§ + ty
42
Likewise for a,, ty
t1 )

it

a, E(Y) S + ay
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For the ay, ty there are two sources of deviations
from S so there will also be an interaction term between

the two factors.

1 | 5
a; E{(Y) = S E(X) = S + ty
\‘ 7
a, | e(¥) =5 +a, E(Y) = S + ay + ty + aty,

Notice that there are no terms in the equations with
a subscript containing a 1. This is caused by the defini-
tion of cell 1 to be the standard from which deviations

are measured. Writing the new model for the experiment

yields
i=1, 2
j=1, 2
k=1, 2

al = tl = atll = at12.= at21 = 0

Listing the number of unknowns in the model
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shows that there are only four of them which equals the
number of cells in the experiment. Thérefore, we have
succeeded for this case in expressing the experiment with
the same number of unknowns as gxperimental conditions.
Although not proved fo; the general case, it should be
apparent that each cell introduces only one new term which
is the highest level interaction possible between the
single-factor terms in the cell. Since each cell intro-
duces one new unknown and one more.independent equation,
this insures the fact that the number of unknowns and
cells will be equal.

Writing the model of our 22 example in matrix form,

Y=Xb + e
yiclds
Y111 1000 S
Y112 1000 ty
§121 1100 a, el
Y122 1100 atgy
yoi1 | | 1010
Y212 1010
Y221 1111

}’222 1111
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To examine the rank of X it is rewritten as

100

1

1

0

1

1

1

0

0

1

Notice that the top four rows form a diagonal of 1's with

only 0's above the diagonal.

top four rows, it appears as

1

1000

100 4.

0

1

Forming a determinant of the

Since this 4 x 4 determinant has a nonzero value and

the column dimension is 4, the rank of X is equal to four.

This means X'X will be a (4 x 4) with a rank of 4 which

means our system of normal equations will have a unique

solution.
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To summarize the method of expressing models that
lead to a full rank X'X matrix:

1. Choose a cell of the experiment as the standard,
S, from which the deviations in the expected value of Y
for all other cells will be based on. In this paper,
this will always be the level 1 cell for all factors.

2, Write the expected value for all other cells as
Y = 8 + deviations from standard cell. Or, in equation
form it may be written

Yeifl.., =S tagtt ... L tatgs F ...

1]

where all experimental factors containing a subscript of

- toerijk...

one are zero.

The next chapter will contain examples, primarily
from Hicks (7) and show how they can be solved with the
combination of expressing the model in full-rank form end

using regression analysis.



CHAPTER 1V

EXAMPLE PROBLEMS

This chapter demonstrates how some representative
experimental design probleﬁs can be systematically solved
using the combination of full-rank model formulation and
regression analysis. The method is applied to four different
types of problems. They are as follows:

1. A completely randomized single-factor experiment
with unequal group sizes.

2. A single~factor experiment with an incomplete
block design.

3. A 2 x 2 factorial experiment with missing data.

4. A nested-factorial experiment with fixed and
random factors.

The four problems are solved using a standard stepwise
regression routine designed for regression analysis rather
than analysis of variance problems. The routine is the
BMDO2R Stepwise Regression program which is one of the
UCLA Biomedical Computer Programs described in Dixon (3).
This widely~used package is available in many large-scale
computing centers. The stepwisc feature of the routine is

not required but it is mandatory that the user be able to



easily control which variables enter the regression
equations. The BMDO2R routine accomplishes this by the
Control-Delete commands which force variables into, or
keep variables out of, the regression calculations. The
routine also automatically provides the regression and
error sums of squares and degrees of freedom for each re-
gression as part of the output. This is a great advantage
over a routine that only provides the regression coefficients
and leaves the user to calculate

ssp = b'x'y

and

ssp = Y'Y - bx'y

A limitation of BIDOZR for analysis of variance work
is that it can handle no more than &0 variables in its
regression calculations. The user must, therefore, insure
that when the full~-rank model is formulated, it contains
no more than 80 different terms. If necessary, the number
of terms in the model can be reduced by assuming certain
factors or interactions have no effect and deleting the
terms associated with those factors. BIMDOZ2R can process up

to 9999 observations which should be sufficient to handle

most experiments.,
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On the following pages, the four example problems are
solved with the BMDOZR program and a step-by-step descrip-
tion of the solution is presented for each problem. A
listing of each problem's input data for BMDO2R is provided

in Appendix A.
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EXAMPLE NO. 1

Type:
A single fixed-factor experiment with unequal

group sizes.

Source: \

Hicks (7), page 42.

Problem:

In this experiment, a single factor, t, is set to
five different levels and the number of measurements of.
the response variable in each group is different. The

iy

data for the experiment is the following:

Treatment = |ty -|'ty | t3 | t, | tg

83 | 84 | 86 | 89 | 90
85 | 85 | &7 | 90 | 92

85 | 67 | 90
Response 86 87 91
86 | 88
87 | 88
88
&8
88
89

90
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Solution:

1. Express model in terms of a full-rank matrix

equation.
The full-rank model as developed in Chapter III for

this experiment is:
Yik = S * & toegy

i=1,2,3,4,5

k=1, . . . ., n; where ny; = 2
nz = 6
ny = 11
ny, = 4
ty =0 ng = 2
The matrix representation of this model is the following:
83. - 10620, S
85, - 10vO0
84, 11000 .
85, 11000 2
85. 11000
Bo. 11600 t3 + (e)
- T o1lou0
87. 11000 £,
86, 10100
37. : 10100 £
87. | = | 10100 >
87, 10100
S 88. 10100
£8. 10100
88. 10100
88, 10100
83, 10160
23, 12100
G0. 10100
v T, 12010
0. 12710
90, 10G10
31. 10010
99, 10001
92, 10001
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2. Find the total, error, and regression sums of

squares and degrees of freedom.

The regression routine is used to generate a regres-
sion equation which includes all five variables of the b
matrix. The following output of the routine shows the
regression and error (labeled residual) sum of squares

and degrees of freedom.

ANALYSIS NF VARTANCE

e . nEF Slnw A7 SINARES MEAN S \RE
PEARESSTO 5 !?l767.R57 318353671
o _RESTOUAL 2% T 23.143 0 1el5T
A
AR T AV FS I EOUATIOY .
VAT panLE COTFFICIEMT  5TD, LRRAP F 10 REMOVFE o
Q
— e ACONSTANT el ) —_— LI
S 2 0, 3297 IAT AN ] Tenl=y 121960¢9%545 .
~MT2 _____ N 3 o0 N2 2 e __“1-_7‘1"7!__'____; _‘20?!7!_7:‘-
T3 Yy 3,18 21A2%47 0 Ba27=1 213234 .
IH S L 6em U220 %02 9e32=3) . H1e4846 o
T5 A TFeNMTT210400 fe R1amn 423508 .

Using these to find the total sum of squares and degreecs

of freedom yields,

SSp(s,t) = 191767.857  DFp(g ¢) = 5
SSg = 23.140  DFy =20
SSqp = 191790.997  DF, =25
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3. Form the appropriate hypotheses to test the

significance of the experimental factors.

For this example there is only one factor, t, which
is fixed, so the only hypothesis to be tested is
Ho: tp =tz =1t, =t5 =0
This null hypothesis states that treatment levels 2, 3,
4, and 5 cause no significant deviation from the standard

response which is defined to be level 1 of the factor t.

4, TFor each hypothesis, find the regression sum of

squares and degrees of freedom for the reduced model that

assumes the hypothesis to be true.

This is accomplished by removing from the b matrix
those variables assumed to be zer& and finding a new
regression cquation fér the reduced model., For this examplie,
the new regression equation will inélude only the variable
35 since ty, L3, ty and tS are set to zero. ‘he regression

results for the reduced model are

AMALYSTS OF VARJA'CE

e ‘ . _nhF [Un NF SAQUARES  MEAM 50UrRE
REGRESSTON t 1q1669.832 171668.832
RESINUAL 24 1224164 5.390

— R o . U JE L 3

vARTARPLES IN FRUATION .

P - - R e e [ .
Varyanpr CAFFFICIENT  5TN, FRRAR F T0O REMOVE

. —_—- - PR - - —— . —————— e —e = = e s e —————— ——— ._. — i
L ]

T {COMSTANT Ceni?Im 1 Yy _— B

5 2 ReTRGF999+7] aoth 1= 37AG4e4787 .
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which show that

SSp(s) = 191668.832 DFR(s) = 1

5. Find the regression sum of squares and degrees

of freedom associated with the factors tested in each

hypothesis.

\

This is done by subtracting the regression gquantities
of the reduced model from the regression quantities of the
full model. For this example, the sum of squares calcula-
tions are

SS..

L

R(S)
191767.857 - 191668.832

H

|

S5, = 99.025

The degrees of freedom calculations are

. DFt = DFR(S,t) - DFR(S)
DFt 5 -1

DF,.

It

}

4



6. Form the analysis of variance table and make

the appropriate F tests.

AQV
Source DF Sum of Mean F
Squares squares
Factor t 4 99.025 24.756 21.397
Error 20 23.140 1.157
Total 25 191790.997

The factor t is found to be significant at the 99% level

of confidence.



57

EXAMPLE NO, 2

Type:
A single fixed=-factor experiment with an incomplete

block design.

Source:

Hicks (7), page 57.

Problem:
In this example, the factor t is set to four different
levels and only three levels can be run in a block. There

are four blocks of data as follows.

Treatment t1 t2 ts ty
Block 1 2 - 20 7
Block 2 --1 32 | 14 3
Response
Block 3 4 13 31 -
Block 4 0 23 - 11

Solution:

1. Express model in terms of a full-rank matrix

equation.
The full-rank model as developed in Chapter IIIL

for this experiment is shown on the following page.



Yijk = S+ t; + bj + eijk
i=1,2, 3, 4

"3 =1, 2,3, 4

k=1"
tl = bl = O
The matrix representation of the model: is
2. 1000000 S
20. 101C000
7. 1001000 £
32, 1100100 2
14. : 1010100 ‘
3. _ | _tooir1ioo 3
4, = T 1900010
13. 1100010 ts
31. 1610010
0. 1000001 b,
23, 1100001 “
11. 1001001 b
3
by,

+ (e)
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2. TFind the total, error, and recression sums of

squares and degrees of freedom.

The regression results for the full model are

A f\_)_#iL Y ‘DI:’_._QJ.__ v l}.i{' _I hiiCu

DF T SUR UF SQUARES  HEAN SwUARE
sfevnaion 7 300A.edd 44490
T T Restweual s 3630167 724633
»
VAR apl S Ty Lk\-‘UATIU_Nk I
L ]
VARTABLE CUELFFICIENT  STDe ERKOR  F 70 REWMOVE
Lo VANEARRE o RERTTALIEDNL 2 h )
— I S
(COUSTANT Cedoa g ) ) °
5 y Je b oo el gt g e. 7y .
T2 K) 2o /iy 72 s ki Je'r 137 .
T3 4 2092499946701 7 «36*ul le927% o
T4 5 T B ed4IYRTE A+ JERERITS e5556 3 e
b2 ) 284299y N 0"l 7ederop - elitll] e .
k3 / YelZbauaudtity Je3s+uu L2HT e
£ 4 & LebLuddud*le 7s38+40 sutl3
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To find the total sum of squares and degrees of freedom

SSp(s,t,by = 3114.833  DFpg y py =7
SSg = 363.167  DFg =5
55, = 3476.000.  DFy =12

3. Form the appropriate hypotheses to test the

significance of the experimental factors.

For this example there are two fixed factors, t and b,
to be investigated. Therefore, two hypotheses are formed.
To test the significance of the factor t, the hypothesis is

Ho(t): tp = ty =t = 0
To test the significance of the blocks, b, the hypothesis is

Ho(b): by = by =b, =0

4

L., TFor each hypothesis find the regression sum of

squares and the decrees of frecdom for the reduced model

that assumes the hypothesis to be true,.

For Ho(t) the reduced model contains the variables
S, by, b3, and b4. ‘The regression results for this model

are shown on the following page.
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ANALYSIS OF vaR[ANCE

SUn_OF SWUARES ~ MEAy SwUARE

. DF
REGQRESSLONL q 223%e3uy 5560504
RESIQuUAL A 1244.0u0 15545085
[
VARIABLES 1w LWUATIUN "
. . [ 3
VARIANLE COLFFICIENT S§TDe ERRUR F TO KEMOVL
—_— ’-v-‘...
o L]
(CONS YA JelJUYL IS ) o
5 2 FebbabueY+oy 7920400 1eb228
b2 b bedbobnra3tLa lep2tui WH2ET v
B3 7 Ged333331+uu lei2+0} s 3UBY N
B4 s lebbobob4ril Led2+ut L eUZéR e
which yield
= sl =

For Hy(b) the reduced model contains the variables

S, t2, tg, and ty, - The regression results for this model

are - .

ANKLYS1S 0F vanlAanCe

vt sUN OF SwuanreS My SGuaiRt
) O RUGnbosalui 4 Jludebal 77707
LS LJAL o 3690333 466167
e —— —_— * -
T - Vsl a,key T EwdATTUN *
.‘, ————
VAR TASLE TTCOUEFFLICIENT  5TDe ERKOR  F TO REMOVE
e e _
S '
(CUNSTANT el LuDhy ) .
5 P 200000007 Y00 3+92+00 «259%
12 3 2edbbboébral HeBoaln. . 13.8773 o
T3 4 Le7bb6b0esrc] 555404 125663 o
T4 5 4099999914630 5eB54UD V8123



which yield

SSR(S,t)-= 3108.667 ’ DFR(S,t) = 4

5. Find the regression sum of squares and degrees

of freedom associated with the factors tested in each

hypothesis.

For the factor t, the calculations are

5S¢ = S5R(s,t,b) ~ S8R(s,b)

$S, = 3114.833 - 2234.000
SS, = 880.833

DFy = DFp(g ¢ 1) ~ PFR(s,b).
DF, =7 - 4

DF_ = 3

For the blocks b, the calculations are

58, = SSgp(s,t,b) " S5r(s,t)

SSb = 3114,.833 - 3108.667
SSb = 6,165

DIy, = DIp(s, ¢,b) = DFR(S,t)
DFb=7'4

DF, = 3



6. Form the analysis of variance table and make

the appropriate F tests.

AOV
Source DF Sum of
Squares
Factor t 3 880.833
Factor b 3 6.166
Error 5 363.167
Total 12 3478.000

Neither factor is significant at the 957 level

confidence.

Mean

Squares

293.611
2.055

72.633

of

=

4.042
.028

62
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EXAMPLE NO. 3

Type:
A 2 x 2 fixed-effect factorial design with three

replications per cell and two missing values.

Source:

Dixon (3), page 550.

Problem:

In this example, two factors, a and b, are each set
to two different levels and three response measurements
are made in each cell., 7Two mcasurcuwenis are missing.

The data for the experiment is

Treatment "bl b2
al 5 6

3 5

- 7

az 13 12

14 10

15 -

Solution:

1. Express the model in terms of a full-rank

makrin couation.




The fulle-rank model for the experiment is

Yijk = S +a; + bj + ab]._j + i3k
i=1, 2
i=11 2
k =1, 2; o e w9 nij where n 4
12
nzy =
‘ 122 <
a; = by = ab11 = aby, = abgy =0

The matrix representation of this model is

5, 1060 S
3. 1000
13. 1100 g
14. 1100 2 +
15. _ 1100 ~ (e)
6. _ 1916 by
5. 1010 .
7. 1010 a
12, 1117 22
10. 1111

2. Find the toral, error, and regression sums of

squares, and degrecs of freedom.

The regression results for the full model are

64



ANALYS LS OF VARIANCE

uF SUM OF SUUARES MEAN SwUARFE
- _ _REGRESS510N 4 974.009 0 242500
RESTDUAL (=} delUD 12343

.
VAR aublES [ ewUATION .
»

VARIARLE COEFFICHLNT  3YDe ERROR _p_TO REMOVE o
o 9
T — S L]
{COUNSTANT Gaeduuudig ) .
g 2 o dt g2t 54 Belo=} 2aelid )l
A2 3 Ved9¥9,94 0y P edb+d) 899998 .

_b2_ 4 12997279 ud _  _deuBSTdy _ __ 3e6v00 e
Ad22 5 ~4e 79719993+ 240 ) o4 +u 11.2%33 .

To find the total sum of squares and degrees of freedom

SSR(S,a,b,ab) = 970.000 DFR(S,a,b,ab) = 4
55, = 8.000 DFy =6
55, = 978.000 DF . =10

3. Torm the appropriate hypotheses to test the

sienificance of the experimental factors.

For this example there are three fixed factors, a, b,

and ab to be investigated. . Therefore, three hypotheses are
formed. For the interaction effect, ab, the hypothesis is

Ho(ab): ab22 = 0

For the factor a, the hypothesis is

Ho(a) Poa, = 0



66
Notice that this hypothesis also implicitly sfates that
the interaction effect is removed. Whenever a factor is
removed from the model, it also implies that all higher
level interaction terms containing that factor are removed.
For the factor b, the hypofhcsis is

Ho(b): b2 = 0

4. TFor each hypothesis, find the regression sum

of squares and degrees of freedom for the reduced model

that assumes the hypothesis to be true.

For Ho(ab), the results are

XhKLYb[S_ET ;KE}AHCL

. OF SUSM OF S5qUaRLS ME AL SwUAML
REGHELSSION 3 955eull 3181333
B =Y VIO S _7‘7__: - 23 edad 3200
- - e e e . b ——— —— e SO J
VAKIApLES 1.4 EWUATIUN R
——— *
VAR LASLE COEFFICIENT  STU, ERROURK F 10 KEMOVE o
. e s . . 2
.
- {CulSTAWT Qe ddddIgg. Y
5 2 SeIPITY 3¢ Ly 1eG7+0, 2663L43 o
A2 3 Jeotlliongt i lel7+00 41,0889 .
B2 4 =5eUICULIC=TI fel7+un s 1826 s




67
which yield

SSR(S,a,b) = 955,000 DFR(S,a,b) =3

For Ho(a), the results are

AHALYSIS OF VARIANCE

- o VF SUM OF S9wuaRES  HMEAN _SGUARE.
nEGRLSSION £ B2ietul Y100
RESJUUAL & 158 e5iu3 17755

—— .. ——— &

VARIAHLES I £EGUATIUN .

VARLABLE CUEFFIicienl STU. ERRUK F TO KENOVE o
-
L]

o ACUNSTAYT  BeCundaely ) o oL e

S 2 Fe9YIIrYY UL 169940y 2563105 .

R2_ 4 =l e 7999999+ Jii L R4 T - 1113 I

which yield

SS = 820,000 * DF = 2
R(S,b) R(S,b)

For Hy(b), the results are

ARALYSIS OF VARIAUCE

] o ur SJUM OF SWduaREy oMb an SyURPE
RUTRCICE ORI I FI 2 75444y 477 24du
e RULBIUUAL 2 23600 _ 24900
_ - . _ - o - - . - . — _ L. — L)
VARInOLES 14 EwUATIUR .
L]

VARIARLL COLTFICIENT  5TUs ERROR ¢ [0 KEUOVE e

o [ ]
*

e ACOHSTANT  OsudESdUL O YU
) P4 Hel¥7779140u 7e68«3] 95eb30 e

A2 S TeDL9797y¥¥ 304 1e09%10 Hue 2491 e
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which yield

SSR(S,a>.= 954.000 DFR(S,&) = 2

5. Find the regression sum of squares and degrees

of freedom assoclated with the factors tested in each

hypothesis.

For the interaction effect, ab, the calculations are

SS.p = S5R(s,a,b,ab) ~ SSR(s,a,b)
870.0 =« 955.0

It

SSab = 15.0

DFap, = DFR(S,a,b,ab) = PFR(S,a,b)
DF_, =4 - 3
DFab =1

For the factor a, the calculations are

552 = S5g(s,a,b,ab) ~ SSr(s,b) - SSab

SS 970.0 - 820.0 - 15.0

a

sS,

H

135.0

Notice that the difference in the sum of squares between

the full and reduced models yields the sum of squares due

to factor a plus the sum of squares due to the interaction
effect, ab. This is caused by the fact that the hypothesis
Hy(a) implicitly includes the assumption that all interaction

effects with tl.c factor a are also removed from the model.



For the factor b, the calculations are

SSb

SSb

SSb

DFb

6. Form

i

SSR(S,a,b,ab)
970.0 - 954.4 - 15.0

O'

6

- SSR(S,a) - Ssab

= DFR(s,a,b,ab) = DFR(g a) = DFap
4 -2 -1

1
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the analysis of variance table and make

the appropriate F tests.

Source

Factor a
Factor b
Factor ab
Error

Total

The factors a and ab are significant at the

of confidence.

AOV

Sum_of
Squares
135.00
0.60
15.00
8.00

970.00

Mean
Squares
135.00

0.60

15.00

1.33

I

101.25

11.25

99% level



Type:

EXAMPLE NO. 4

70

A three-factor, nested-factorial experiment with

fixed and random effects.

Source:

Hicks (7), page 172,

Problem:

In this experiment, three factors, methods (m),

groups (g), and teams (t) are investigated to find their

effect on the numver of rounds of amnunition per minute

that can be loaded into a gun.

The factors m and g are

fixed and t is a random factor which is nested within g.

The data for the experiment is:

Croups (g) 1 2 3
Teams (t) 1 2 3 4 5 6 7 &
M
e 20.2 26.2 23. 22,0 22.6 22.9 23.1 22.9 21.¢
t 1
h 24,1 26.9 24, 23.5 24.6 25.0 22.9 23.7 23.:
O
d
s 14.2 18.0 12, 14.1 14.0 13.7 14.1 12.2 12.
2
(m) 16.2 19.1 15. 16.1 18.1 16.0 16.1 13.8 15.




Solution:

1. Express model in

71

terms of a full-rank matrix

equation.

The model for the experiment is written as a full-

factorial model. After the sum of squares are determined,

\
some of the interactions will be combined to account for

the fact that the t is nested within g.

The full model is

yijkl = S + m, + gj + tk + mg:.Lj + mtik + gtjk
+ mgt.jk + eijkl
i=1, 2
j=1,2,3
k=1, 2, 3
1 =1, 2
m =gy Tty = 0
mgij = mt,, = gtjk = mgtijk = 0 when i = 1
or j =1
or k=1

The matrix representation

following page.

of the model is shown on the



20.2
24a.1
2642
26.9
T 23.8
244G
14,2
16.2
18.0
19.1
12.5
15.4
22.0
23.5
2245
2% eh
~'220797‘
25.0
1o
leal
14.0
18.1
T13.7 7
16.90
23.1
22.9
2245
23.7
T21.R
235
14,01
15.1
12.2
13.8
12.7
15.1

. 101010000001000000™

1C00C000002C000000
10000000500C02C000
11000000000C000000
110000600000000000
101ICC0000003000000
101000000000000000
100100C Q00060000000
100100C000000C00000
11G100100000000000
1101001090000000C0O°

T 710112901C0060000000
10110041030060000600

©130010C0200L00020000
100010000C00000000

- 110010060001000€000
110219CC221000C000

101010000001000000
100110001220000000 ~
100110C01L000000000
1101101010100010G0
110115101010001000
101110011001 CCIInG T
101110011001000100
10000100J300000C000
10202 1C00U00UIBOC0
110C0100320010C0C0O
1120C1CCRI201000C0
TTI01001950300010000
1010010000GC010000
10010100910000U09D
1C0101000100000500
©1101C1100100100010
_11010110010010C010
121120101010931C001
10110101010C010001

l'ngzz

mgtyog
mgtoong
mgto3o

mgtygg

+ (e)

72
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2. Find the total, error, and regression sums of

squares and degrees of freedom.

The regression output for the full model is

ANALYS1S uwF VARTANCE

e LE SUM OF SUUaRES  MEAN _SuUARE
REGRESSION 18 1417516867 787 5%
RESTUDULAL | K 41e5%1] 2311

- e e ——— _ - — e — e e e - ____,_‘ R
VARTABLEDS In ENUATION .

— v e m— —_— —— e e e ——— e e e ———— e . —— - —— e e e .__ ——
VAR TASLE COLFFICIENT ST ERRUK F 10 REHOVE »

J U, S
*

o KLUBSTANRT  LedGuGUls )y o . .

5 ’ 2e2149%9%0i% 4l P ed7 +00, 4246074 °
T2 3 O HedbULINSt g 1eB240h b 37HEL e

T3 4 deldiuunl sty Feb2+liiy 20947 .

_he b ~609995 561 ¥ ko Je B2+ 296 s

62 & Gevuulll 1l 71=01 JebZvyuu elbby .

G3 oo eesaenrl3m0l 0 Lebituu - e3127 s

M14e & mlebbo w3ty Zelbh+oy e 3B .

w23 9 Comdedibor oLt 2etbec SeS756 s

rodl e LR NN TRV B BT R 2eifat el AL .

Lh623 dl_eFebuliioeriTul Zedbrul 21953 _ s
aT22 )2 “3enhulUQ 140y 2a1h+Uy 267271
GT23 i3 ol K JAINTETRY WS R ST LY 2elb+uny s 2164 .

67320 4 T ek ouastoy Zeinttn 4.6376 e

___GI;3 Y -ZoesLliLuYltoa Loy 1471 .
MGT2o2 1a o1t Fin+na Jenueun BT

_haTéz3 17 A R URTS O e R LIV _Sefi4roy 24328 o
FeT232 1& ~lel3boLul a¥uu Aaltths 4y, 1972 -

_hGeT433 15 deo.covod¥ie 0 deuntl . 47314 e

which shows that
Q -
S92 ,m, 8,8, mg,me, gemge) T 1ALT0-167
SSE = 41,591

w
wn

b
i

14216.758



and
DFR(S,m,g, t,mg,mt,gt,mgt) ~ 1O

3. Form the appropriate hypotheses to test the

significance of the experimental factors.

Still considering the problem as a full-crossed
factorial model, the following hypotheses are used to
test the significance of the three factors and their

interactions.

The mgt interacticn includes the random factor t, so

N

HO (Ulgt): s} rﬂgt = 0
This random-factor hypothesis is different from a fixed-
factor hypothesis but since the random factor is assumed

to be N<O’°2mgt) the reduced model is still developed by

setting all the terms containing mgt to zero.

The mg interaction term contains only fixed effects =

Ho(nlg): mgzz = m823 =0
The mt and gt terms include the random factor t, so

Ho(mt): 6%y = 0

mt

Hy (st) : ngt =0

The n and g factors are fixed so

Ho(m): my = 0

Hy(g): gy =83 =0

74



The t factor is random so

Hy(t): o =0

t

4., TFor each hypothesis, find the regression sum of

squares and degrees of freedog‘for the reduced model thr:

assumes the hypothesis to be true.

For Hy(mgt) the result is \
AnwALYD IS GF varlAwCo T I
. E U UF SUWUARES MEAN Lo
{LGhEoSlull 14 (417 3eiub lulZelas
o RESTOVAL 2e 0 Hbae7b2 0 2elen
_ —— . S e e — k)
VAKIabLES 1a LWUATIIN .
e P L. - .. e e .. *
VAR [ADLL CUbFFLCIEIY STUs ERKXOR ¢ TO REMOVE
. I e R - _ . o L
L
Qs T g T e dedaedl, ) o .
S 7 2023944324 01 e3Pt 6060439 s
17 3 H"mﬁlﬁdjaflifﬁli___.LLL9+JJM«~"_J§:§131 ‘
13 . 1 Lo d333nh2% 0 P 94y o452 o
M2 L =7ed35BHL4%LL 1090 HooB715 .
Gé & 7eulllinsl=02 1ol 2+idy, AL Ty °
Go 7 ce'fleuys~ul Le} @+uter 2906 .
nT2c . “leiloiagetia Pel9+iu WB032 e
LMT2S . Y mlednbantl Vel 9o __ 25930 .
MO2Z 1. 30 Y I I 1= belY+Gy f865  »
Ma23 1V =5e3333263%0)  1el9+0s 208 .
uwl2d 1e wlae 7ol b rtyuy Jeta+(g G164 .
_6T23 0 13 =9e73381%67L0 dadb*l0 W 00UQ e
G132 ] R kN Y-R AN 1e4bh+i30) 17292 .
GT33  1C o R AT R AT le4b+u 27353 .
which shows that
= 14170.005

5SS
R{S ,1a,§ , 0 0, Tt , o)

DFR(S:mag’t:mg,mtsgt) = 14



For Ho(mg) the result is

ANALYS1S OF VARIANCE
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LF SUM OF SQUARFS MEAN SGUARE
RLGRESS IO 12 14163+317 1181¢735
RESTDJAL 24 47939 16997
_ — - =
o L VARTABLES i EWUATIIN e
[ ]

Vanlaglr

COEFFICILNT

3Tue EridUR

TO <EMOVEL e

[
U SR
(CAINS T AT Uedu ol ) .
S 2 2028249 n0+1 Belb=i] 79262727 .
T2 3 Ye4333937420 Leld+uu 147595 N
T3 4 (e4333452%00 1e15%00  1eb5d428 .
M2 5 -7 e 4999V 6L Y . delé~id} B4ed4ilhH .
62 6 2eDTYUTSHmIL 0 Fe99"dL . ay626
63 7 367530037751 FeGv=yl Q1408
_mr22 3 ~lelloboga+yl 1e15+27 09364 o
MT23 9 ~leRlH67 5t 0y lela+ly R LY A .
61722 12 =~Z2e9750000%5u Led1+.1 41309 o
G123 13 ~Te72349392"ub fedl+dy « 12399 .
GT32 14 =4e7750usb* Ly  bedqt¥al L1e4147 »
6T33 15 wl o2 udalvdl 1edi+iy 7022 .
which shows that
SSR(S,m,g,t,mt,gt) 14168.819

DFR(s,m,g,t,mt,gt)

=12
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For Ho(mt) the result is

ANALYSIS OF varlAmCHE

ufb . SUn OF SYUARES MEAN SQUARE
REGRESSION 12 141616446 L1B80e370
KLSITDUAL é4 2,313 20180
]
. —_YArlahtEd Ty HHUATIUN L . _
\‘ o
VAR ] auLF COEFFICItnT  STDe FRRUK  F TO REMDJE o
S THCUNS TR Geudewlag  y T o mo o o

S 2 £a2B8999¢L sty Belh2mii] 7217635

12 3 ded7uudlvoy 1eGutgy 1347775 .

T3 4 ‘i.lbu}‘nli"_'ul e+ VAT TR -
M2 S euedY9Y 62t au belyz=} P062i37 »
62 6 7ebUllulbmn2  1e21%20_ . JGL335. e __

63 7 6edlolor =)} 1e21+uy 2034
_ MG27 1T 3049997350l Ledi+0d e GoYd43 e

hazd il =~be333808L"ul LeZlviiy ’ s 1957 o

G122 Ve =Ze Y7 DULESY L ledutuy  deltbnlhy e
GT23 13 =9e737.454%06 e dis+0u LJUGU

GT32 14 ~4e/Tbnat /a0 pelddeyy losbdbnn o

GT33 ib =] el2blUniil vy Jela+vln - «eF169 N

which shows that

SSR(S,m’g, t,mg,gt) = 14164.446
12

PFR(s,m,g,t,mg,gt)
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For Hy(gt) the result is

ANALYSIS OF VvAxIAMNCE

e - wt Sdh UF SwlaHKgpd MEAN SwUARE
REGRESS TN 1v T 141434520 14144352
KESIouAaL 26 /3239 o 2e817

\\
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which show that

SSR(s,m,g, t,mg,mt) = 14143.520

PFR(s,m,g,t,mg,mt) = 10
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For Ho(m) the result is

ANALYSES OF vARIAWCE

UF SUN UF SWUARES  MiAd SwUARE

o REGRESSION 7 ©13511e3wd 1bJleZn0

KLSluwual 27 735451 2hel 2y
\ .
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which shows that

SS = 13511.308
R(S,g,t,gt) |

DFR(s,g,t,at) = 9
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For Ho(g) the result is

ANALYSIS OF VARIANCE

L ok SUM_OF SWUARES MEAN SWUARE
RECGRESSTON é 141264201 23544384
e RESTDUAL S0 . FJed478  3.016
VARTAGLLES T4 EWUATION .
- ..
CVARIABLE  (COEFFICIENT "STL, ERROUR F TO KEWOVE
o e e et
(CONSTAAT Qe disa } .
5 2 262633327+, 7e0%9=01 101741249
_T2 _3 _deBSanabdYug eyt ug . 344044 e
T3 4 1e0lb66726+%uy 12324040 JeU282 o
M2 5 =T eH979i61T00 1 edstudd 0 5ne9529 &
MT22 ] ~lalloobyo+ Il 1e42+39 e 6202 o
MT 23 9 101667 0u%S0 1e42%40 LeB223 o
]

which shows that
SSR(S ,m,t,mt) = 14126.281

DFR(S,m,t,mt) = ©
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And finally, for Ho(t), the result is

ANALYSIS OF VARIANCE

e — Lt SUM UF SWURRES | MEAN SwUARE
REWRL3SION ) 141256107 2354419y
_ RESTDUAL 3 9leu/71 . 3eUbZz _
s
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R _ e e D oo L
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{CONSTANT Ul dIT Ut ) °
S 2 2eM309194% 41 7el3=1y 11656497,3
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G2 ts “Felbohjhha=yl 1e31 4030 <289 .
63 o mlesenbo2l g LGl L Y e8357 e
1622 14 o997 26"51 Je43vun sidB2 e
G231l =92:3333509=u1 defH3+dg el 38 e
*

which shows that

SSR(S,m,g,mg) = 14125.187

DF
R(S,m,g,mg)
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5. Find the regression sum of squares and degrees

of freedom associated with the factors tested in each

hypothesis.

For mgt
Ssmgt N SSR(S,m,g,t,mg,mt,gt,mgt) - SSR(S,m,g,t,mg,mt,gt
SSmgt = 14175.167 - 14170.606
Ssmgt = 5.161
DFmgt = DFR(S,m,g,t,mg,mt,gt,mgt) ~ DFR(S,m,g,t,mg,mt, ot
DFmgt =18 ~ 14
DFper = 4

For mg

Ssmg = SSR(S>m,gst’mg>mtagt’mgt) - SSR(S:m’g>t:mﬁ>"

. -5 Smgt
SSmg = 14175.167 - 14168.819 - 5.161
SSpg = 1.187
DFmg - DFR(Ssm’g’t’mg:mt:gt’mgt) - DFR(Ssmagat,mtaL‘
| " Dpgt
DFp = 18 - 12 - 4
DF = 2
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Similar calculations for mt and gt yield

SSpe = 5.560
DF ¢+ = 2
SSgt = 26.486
Dth =4

For m

S8y = SSr(s,m,g,t,mg,mt,gt,mgt) ~ SSR(S,g,t,gt)

= SSpat - SSmg - SSp¢

Ss,, = 14175.167 - 13511.308 - 5.161 - 1.187 - 5.500
$S,, = 651.951
DF, = DFR(S,m,g,t,mg,mt,gt,mgt) - DFR(s),g,t,gt)
- DFmgt - DFmg - DFmt
DF, = 16 - 10 - 4 - 2 = 2
DF, = 1

Similar calculations for g and t yield

SSg = 16.052
DFg = 2
SSt = 12,773
DFt = 2

Up to this point the problem has been treated as a
fully-crossed factorial experiment. To correct for the
fact that t is nested within g, the following terms are

adjusted to include the interaction terms.
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For the factor t
Sstk(j) = SSt + SSgt
SStk(j) = 12,773 + 26.486

SS A = 39,

DFe) (5)

PPeggy =2 +4

DFt + Dth

DF =
te(j) = O

For the factor mt

= SS + 5§

SSmt e (5) mt mgt
S8ty gy © 0-360 * 5.161
SSmtik(j) = 10.721
DFintsy 5y = DPme *+ DFppe
DFmtik(j) =2+ 4
DFmtik(j) = 6

6. TForm the analysis of variance table and make

the appropriate T tests.

When the enalysis of variance table for this problemn
is formed it will include an expected mean squares (EMS)
column. Since this problem has both fixed and random factors,

the appropriate F tests are determined from the EMS quantities.



Source

Tk (3)

Error

Total

18

36

Sum of
Squares
651.951
16.052
39.259
1.187
10.721
41.591

14216.758

AQV

Mean
Squares
651.951

8.026
6.543
0.594
1.787

. 2.311

EMS F
2 2 2

O+ 20, + 180, 364.830

5 + 4o % + 120, 1.227

ol + bo, 2.831
2 2 2 |

o~ + 20, + 6cmg 0.332
2 2

o2 + 20, 0.775

. 2

The factor m is significant at the 997 level of confidence.

¢s8
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The four preceeding examples demonstrate that widely
different types of problems can be solved by the one con-
solidated method of regression analysis of full-rank models.
The fact that the solutibn method is the same, regardless
of the orthogonality of the problem, has both advantages
and disadvantages. For nonorthogonal problems, it is a
great advantage since the experimenter need only have one
regression routine to solve any type of analysis of variance
problems. However, if the problem to be solved is orthogonal
it can usually be solved in a short time with only a desk
calculator by the traditional sum of squares method. There-
fore, the main benefits of the full-rank model and regres-
sion technique are realized when solving nonorthogonal
problems. . ..

Most of the work involved in- using a standard regres-
sion package for experimental design problems is concerncd
7ith the following four items.

1. Writing the full-rank X matrix for the model.

2. Generating the commands to include or delete

variables for the regression calculations.



87

3. The addition and subtraction of regression quan-
tities to find the sums of squares and degrees of freedom
associated with the experimental factors.

4. The division required to compute the mean squares
and F ratios to complete the analysis of variance table.

To demonstrate how a regression routine might be modi-
y

\

fied to more efficiently handle analysis of variance pro-
blems, the program, ANOVA, was written. It consists of a
regression routine with a front end that converts traditional
experimental design data to the full-rank form and a back

end that outputs an analysis of variance table. ANOVA is
described in Appendix D where the four example probluws

of this chapter are solved with the ANOVA routine to dcrmon-

strate how it simplifies the regression procedure.



CHAPTER V

CONCLUSIONS

The advantages of the full-rank model formulation
and regression analysis of experimental design problems
are as follows.

1. The approacﬁ is completely general since any
design model, regardless of orthogonality, can be written
as a full-rank model and solved by regression analysis.

2. The full-rank model is easily formulated since
the terms of the model have physical significance to the
experimenter.

3. The method eliminates the task of reparameter-
ization since the full-rank model always leads to a system
of normal equations that have a unique solution.

4, The analysé needs‘énly one computer program,

a regression routine, for all his‘analysis of variance
work.

5. Regression analysis codes are available at almost
all computing facilities.

The disadvantages of the technique are as follows.

1. Orthogonal problems are more easily solved using
a desk calculator and the traditional sum of squares

method.
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2. The number of variables that a regression code
can handle may limit the number of factors that can be
tested for their effect on the response variable.

3. The standard regression codes leave the analyét
with several computééions to make, manually or with another
computer run, prior to the construction of an analysis of
variance table.

4. The regression calculations cannot be done man-
ually except for small problems that could be easily
handled by the traditional methods.

The first disadvantage leads to the conclusion that
the regression technique is profitable in terms of time
and effort only for nonorthogonal problems. The second
and third disadvantéges could be overcome by a specialiscd
computer code such as ANOVA, to fécilitate the solution
of analysis of variance problems. The fourth disadvantage
is lessened by the fact that the analyst should use regres=-
sion only for nondrthogonal problems which are difficult

to solve manually by any method.
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In summary it appears that regression analysis is
well known to be a powerful and general solution method
for experimental design problems but its application has
been retarded by the additional work of preparing the
problem for the regression calculations. The full-rank
formulation of experimental design models eliminates this
task and makes regression a mucﬁ more desireable solution

method for analysis of variance work.
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APPENDIX A

BMDO2R Input Data For Examples of Chapter IV
The following pages show the listings of the

BMDO2R input cards for the examples in Chapter 1IV.



R

- a

PROBLM UNEQAL 25 6 2 5 YES
CABELS 25 372 473 5T4% 575
(F10.4,70F1.0) ; .
83. 10000
85. 10000
"84, 11000
85. 11000
85. 11000
86, 11000
86, 11000
87. 11000
86, 10100
87. 10100 s
87. 10100
87. 10100
88. 10100
88. 10100
88. 10100
88, 10100
88, 10100
89. 10100
50. 10100
89. 10010
90. 10010
90, 10010
91. 10010
90, 10001
T 92. 10001
SUBPRO 1 YES
~ CONDEL 33333
SUBPRN 1

YES

~ CONDEL 31111

FINISH

Input for Example 1




PROBLM  IBLOCK 12 8 - 37 . YES
LABELS 23 AT2 4T3 . 574 31 783 8t
(F10.4,70FL.0) -
2. 1000000
20.. 1010000
7. 1001000
32. 1100100
i%. 1010100
3. 1001100
%, 1000010
13. 1100010
31, 1010010 . . .\\
0. 1000001 : ~
23. 1100001
11. 1001001 .
SUBPRO 1 | YES
CONDEL 3333333 '
SUBPRI 1 - YES
CONDEL 3333111
TTIUBPRO I YES
CONDEL 3111333 :
FINTSH

Input for Example 2




LA™ .
I PN

PROBLM  2X2MVL 10 5 YES
TTLABELS  2S 3A2 4B 72 BABYY
(F10.4,70F1.0) ‘
5. 1000
. 3. - 1000
13. 1100
14. 1100
15. 1100
6o 1010
5. 1010
7. 1010
12. II11 _
10. 1111 i
SUBPRO™ 1 YES
CONDEL 3333
SUBPRO 1 YES
CUNDEL 3331
T SUBPRO 1 YES
CONDEL 3311
T SURPRD T 1 YES
CONDEL 3131
FINISH

Input for

Example 3




PROBLM NESFAC 36. 19 8 18 YES 1
CABELS 7S 372 ZT3 . SM2 6G7 7G3 BMT
LABELS 9MT 23 10MG22 11MG23. 126722 136723 146732 1567
CABELS " 15MGT22Z2 174GTZ223 1884GT232 1%4GT23% -/ /—/—0H——® 7/ ——
(F10.4,70F1.0)
2042 1C60C0000070000000
24,1 100000000060C000000
26.2 1'1000000000C000000
26.9 110000600000900000
23.8 1010CC000000000000
2445 101000000000000000
14.2 100100C000G0000000
16.2 100100C00000C00000
18.0 1101001000006000000
19.1 1101001020000000C0
12.5 101100010000000000
15.4 101100010000000000
22.0 100010C000060000000
23.5 100010000000000060
22.6 1100100000100000090
24.6 11001900901000C000
22.9 101010000001000000
25.0 101010000001000000
T 14,1 T1I0011000100000C00C }
16.1 100110C01000000000
14.0 110110101010001000
iB8.1 110110101010001000
13.7° 101110011950ICCDI0N0 - “‘
16.0 10111001100106001090
23071 100001003000000000
22.9 1020601€000000200C0
22,9 T110001000900100000 ‘—
23.7 1100C1CC0000100000
21.8 101001000000010000
23.5 10100100005G010000
14.1 1001010001000006000
16.1 100101000100000000
12.2  1101C1I001C0150010 -
13,8 110101100100100010
12.7 101101010100010001
_15.1 _;01101010100010001 -
SUBPRD 1 YES I
___CCNDEL 333333333333333333
SUBPRQ 1 YES -
___CONDEL 333333333333331111 .
SUBPRO 1 , YES
___CONDEL 333333333311111111
SUBPRD 1 YES -
_ CONDEL 333333113333331111
SU3PRA 1 YES *“
___CONDEL 333333331133331111
TsuBPRY 1 YES ”
CONDEL 311333113311111111
TTSUBPRD 1 YES B
CONDEL 333133111133331111
TTSUBPRO 1 YES -

COMDEL 333311321111111111

FINISH

Ttttk Frar Fvamnle /L



APPENDIX B

ANOVA Description

The routine ANOVA was written to demonstrate how the
analysis of variance calculations might be performed
automatically as part of a specialized regression routine.
The ANOVA user provides as input the following:

1. Number of factors.

2, Number of observations.

3. Number and identifiﬁatipn of factors that are
blocks and have no interaction with other factors.

4., Data for the problem consisting of a response
measurement and the levals of the factors asceciated with
the response.

The program then does the following:

1. Builds & full-rank mode; of the experiment as
described in Chapter III.

2. Finds the total, error, and regression sums of
squares and degrees of freedom for the full model.

3. Forms a full-rank reduced model for each possible

factor to be tested (up to three-level interactions).
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4. Finds the regression sum of squares and degrees
of freedom for each reduced model.

5. Finds the sum of squares and degrees of freedom
associated with each factor.

6. Computes and outputs-an analysis of variance
table,

There are several limitations to the program that
could be eliminated by additional programming effort.

First of all, the progfam is limited to 150 observa=-
tions and a combined total of 100 single, two-level inter-
action and three-lével interaction terms. It is reasonable
Lo assuwe that this problem couid be overcume by transiers
between core storage and disk or drum storage units for the
manipulation of larger matrices.

Secondly, the analysis of variance table generated
by ANOVA assumes that all factors are fixed. Therefore,
the last column of the table provides the F ratio between
the mean squares of the factor and the error mean squares.
To be complete, ANOVA should include an algorithm that

computes the correct F ratio for fixed or random factors.
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The third limitation is that the program treats all
problems as fully-crossed factorial problems. Therefore,
for problems with nested factors, some of the sums of
squares and degrees of freedom must be manually combined
to obtain the proper results for nested terms. An algorithm
to combine the appropriate interactign terms prior to the
printing of the analysis of variance table should be included
in a program of this type.

In spite of. the previously described shortcomings,
the program appears to be a useful tool for analysis of
variance problems, especially ones with nonorthogonal
designs.,

The following pages contain a listing of ANOVA and its
subroutine HYPOTH, the input data for the examples in
Chapter IV, and the ANOVA results.for the examples in
Chapter IV. The results agree with the BMDO2ZR solutions
except for Example Number 4., ANOVA treated it as a fully-
crossed, fixed-effect, factorial design, so the sums of
squares and degrees of freedom must be appropriately com-
bined to account for the nested factor, t. Once these
quantities are computed, the analysis of variance table

would have to be manually completed.
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— FJK AVJVA . .
AMON YL 150, L) XUL15N, 170} 3 XA(150,1C02) 3 XTX{133,100),3T(1,100),

1LC\/£L(l({)«yNLFVrL(].'Uy\lvﬂL{l(”?)ySS(? ToeT)Y NDFELT 7 7’1ICLL(1”0),
1I0dCKlo) 100 {1C0) ZZml
o MPATITh=1

<E£AD SIZL OF PROBLEH

1 READ(S5,100, END=4T INFAZ,NIBS,N3LOCK

127 FIOIMAT (3120 -
IF{BLOCK fJ. <160 TO 2
REAU 101, (loLulk{I)eI=1,13LOCK)
131 FORMAT (40]12)
2 NFACl=iiFAC— 1
NFAC2=IFAC-

C
C _ KEAD OATA
C

O RLADIS 17 FIVUH 1) g CLEVEL (J] 4 d =1, HFAC)
172 FIRMAT(F] .7 ¢ 3512)

c TRV ER CSTAGLE SFALTIR TERMS INTD X ANDTE MATR
-

1CES
0o 3 1=l yNFAL
IF (LoVELLT)Y 0T NLEVELIIYINLEVE L(I)"LEV&L(I)
IF{LevELLL) oFye 1}50 TO &
ﬁ}CJ;tﬁ)=i*1'i)‘ tLoVELET =100
EDERTER
Y7} % ICPK=1,WI
£t L) otie TUTUCICHCT M)GY TO 7
)(lvy')—].. ’
=4+ 1
o—] T &
7T XNy Tome D=1,
A CoNT INUL
TFLLAFAC abwe 12.0RNBLUZK o022 NFACL))IGO TO 19

r
C (NTFR TW3=-TACTUR INTERACTION TLRMS INTO X AND 3 MATHRIZ. G

D9 13 1=1,NFACL

IJ=1+1

DY 17 J=1JsiFAC

IF(NALOCK ofQe M)63 TU 10

D3, [B=1,NELSCK
9 TF((T . el IBLICR(Tu) I W OR G IJLEQLIBLOCKLIBI)IGO TU 13
12 TFULLEVELEI) WFile 1) eCRJ{LEVEL(J) LEQe 1))50 TO 137
LM )= IL N e s 1N e L VEL LT )% 17 G+ LEVEL(J) *1D
D211 10HR=3,

O N U P R T EVIR N O SV SC U [ RIS B S B
S U T A
M=v+l
TV e S N T S T e e s

14 X(MdyiCim=-1)=1.
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e 212 CONTINUE
[H{NFAC EC. 2060 TO 19

C ENTEF THREE-FACTIR INTERACTION TERMS INTO X AND B MATRICES
C

33 19 I=1,NFAC2
[J=1+1
DI 18 J=IJyKkFAC]
JK=J+1

D3 18 K=Jiky NFAC
IF(NBLUOLK oJTe O)¥GD TO 15
D) 14 IB=1,"3LUCK
14 IF({(1aFL e IBLILK(TID)) oORW{JEQIBLUCKIIBY) +CRe{KLEQ.IBLOCK(IB)))
150 T2 18
15 TF{{LOVEL(T Yoo 2ol )R (LEVELLJYoTQ.1) e 0R(LEVEL(KILEG. 116D TO 1

TCO_ (M =121 2) - 4 dx1r I 4<% L2 )+ LEVELUI )R ImO# LEVEL (I # 12+ LEVEL(K
Y 16 1CHR=32, 4

1o IF(ICOL{M) LY ICILLICHK=-13)5D Tu 17
X{N, M) =1,
_‘.1_-:.11-1
G T2 1s

17 X{Ny 1CHR=1) =1

13 CIONTINUL
15 CONT INUL . ) ) T o “ B
c .
C DETERMING IF X AND B MATRICES ARE CUMPLETE
r .
i=E9=1 - - T — -
TF{N o B e NISSIGHG 10 29
N=N+ ]
G Tl 5
c : -
. FI«0 TCOTAL SU” OF SGUAES N o o ~
27 535137 =7,
Hzhad . - -
V=4,
N2t I=1,7 i )
- 21 SSTUT=SSTOT+Y (I, )%x2 )
C
C FOeM LOAMAL BEQULATIONS
C
DU 22 I=1,"
NG 22 Jd=1,4 B o
LTIy )=
DI 22 IFGw=Y,N T o
22 AVX( I3 )=XTX{ 1, J)+X{IRODW, 1) kX {IROW, J}
D0 23 U=1.4V S - .
XTx{T,M%1}=",
Do 22 d=1,~ T -
23 XTAL Ly M4l )= TX (T M+ #x(Jsl)xY(Jy1)
¢
C SDILVE MU AAL EOOIATIUNS
C

S O AP S G B T Rk SR RPN SO |
-~ =147
TULy [)=ATXCL, 410

—— - = U

C FIND FEGHESSIEN SUM (F SJUARES

. L




SSEG=D,
D) 26 I=1,¥

XTY=72, '
JO 25 J=1,4N
725 XTY=XTY+X{J, L)%Y J,1)
26 SSIEG=SSREG+3T(1, I)%XTY

FIND TOTAL, REGRESSION AND ERROR DEGREES OF FREEDOM

OO O

IDFTOT =N
[DFREG=M
IVFERR =h=-H

FIND ERRUR SUM OF SYUARES AND MEAN SQUARES

)

SSE =SSTOUT-S3REL
VARFRR =S8SERK/FLALTIN=-M}

DETERMINE IF MUDEL HAS THREE-LEVEL INTERACTION TERMS

YOO

O THNFAC JEG. LIGE TU 35
IF(NFAC oEG. 2)6U T2 29 i
IFCa2LUCh EQ. NFACZIGD TO 29

TND SURS OF SGJARES AND DEGKEES OF FREEDOM FOR THREE-LFVC
\

t
TNTERACTION TERAS

OO OO

N

+ .0
-

[=14NFAC2

[
it

J=idyaFALl

A C
I e
—

EN RSN

1’:+Jﬂ:1‘+ﬁ

—
rr
“ ' 7

\“_HJL—L'FQG
P
it
]

".\r' L N R S
_l-w,....c

~

51T
N 1ii= 2 M . - .
Henl=I0i ¢ {14)/10
TH{IT=S5T JNe. STESTIST TO 27
NI =NDELETHY
NUILCsELEL Y= T T T
27 CONTTNUE
ChLe HMYFPLINL L BT IDTLET9MeNy SSHYPO)
LSl d s} =852 5=88SHYPL
MUF(I,J K)=NJELFT
22 €4l Ty

DETERMING 1F “UDEL HAS TN7 LEVEL INTF&A(TION TERMS

YOO

25 IF(NBLUCK JF ). WFACLIGD TD 35

FIND SUMS UF SGUARES AND DEGREES OF FREEDOM FOR Tw(0=~- LtVtL

INTERACT LUy TERHS

C oo o,

D3 34 [=1,nNiACL
[J=1+1
D3 346 J=luy maiL
NDCLET =0
COINELIT =0
£SCIR=¢C.




NCI==1
0 33 IM=24M
TEAC=TCCOL (1) / L0000

T IF{KFAC LEQ. JIKFAC=1

JEFACEICCL{IM /719t A3=(IC0L{IM /T5I0050) *1 0
KFAC=ICCLEIM)/ZLOuC—{ICOL{IM)/12970)%1D
IF{{1 JNE« IFAC)AND.{1 «NE. JFAC)IGO TQ 33
IF{{J NE. JFAC) AND.({J «nF. KFAC))IGO TO 33

IF(KFAC . Eg. 1lIGC T2 32

IF(NCIOX  oEQe 2)GU TJ 31
Ud 327 1CHR=1, n{OFK '

32 IF{ICOLCIM)/ZI00Y JEQ. TCOR(ICHKIIGO TO 32

3

1

T USSUIRAESSCuUn 5> TFAC ¢ JFAT #KFAT)

32

NCIR =LK +1
ICIR{NCORI=ICOLLIN}/1)0

NOELET=RDELET ¢] A
NCOL{NUFLET)=1M ' '

33 CunT INUL

CALL HYPCTr{NOELE Ty IDELFT oMy NySSHYPII)
SolTsdysl)=55¢0E,~-354YPU-SSCJIR

NOF( Ty Jy L) =nOCLTT-IDELET

34 CONTINUE

o 1D SUFS UF SWJARES AND DEGREES OF FREFDOM FNR SINGLE~-FACLTL=
T C T ERMS - - D
c
35 DJ 47 I=L14NFAC T T
NDZLET =0
[JOELFT =0
SSC_}:\:'\. .
i NLIR=" T
STUREPETINS DU
I -V XN S (TR T O I 1 R e B T T
JEACSTIOUL IV /100y = ICNLTIY) /1 aNNel ) =10
S S SIS R A R INISN (6 Nt IIE O 0 IV B T lalal B0 B
TFLLT ot e IFAC )Y AR Do (L oNELJFAZ )L AND L (T.NELKFACIIGD TO 20
) TUOTFUTRAC Wfh. JIJFAC=1 S o
[IF{XFAC +JEQs SIKFAC=1
T AT AL srwe L LANPLIKFAC LEGL TNIGOTTY 3R T T
IJLLET=IDELET+])
IF{NCJ~ oEwe $IGL TO 27 )
DJ 2% 1CHK=1,wCJkR
36 TFCICSLOIMNI/ZLN0D Q. ICOK(ICHK)IGO TJ 38 T
3T ONCY =tk 4]
B S S RIEUH S E NS A VA T
S3CIR=5SC- +535(IFAC,UFAC 4KFAL)
33 NOFELFT=hDELET +1 T o
NOuL (MDELET ¥ =1
39 CONT UL )
CALL HYPOTHINDELET,IDELFTyM4yN,SSHYPD)
TS e 1) =SS e Lm S SHY P -SSR T T -
NOF{ T, 1, Y )=RIILET~IDeLET
4 LONT INUFS
z P ALY TASL D b masiNG AND RIOMLSSTun ATA
i

TP RINT T T3 PR U WS LTy LR VI L) LIS NFACYTTT T T T T T T
133 FURuAT {1l 30ay tEXamPLD NUMSZE Y, 127/



L 15xp YUUMEER (F UBSERVATIONS®',14/7/ i

15Xy ' rACTUR Y/
15Xy YU MUERY g4 Xy PLEVELSY//

T1207X5 125 7Xy12/71})

PRINT 1{ 4, ]DrREG,ySSKEG
T1Y4 FURMAT (/39X YANALYSIS NF VARIANCE '/
153(’.1"!5 F"‘\TI’J TO'/
18Xy PSUURCES 3 BXy 'DF 7y 3X,
IR 4SY//

'SUM OF SQUARESY 3 X, *MEAN SQUARES*,8X,?

ER

16Xy *RcGRESSTONYy 3X, 12, 3X4E14.8/7
18Xy * FACTICR /)

c | .
C PRINT DATA FOR SINGLE-FACTOR TERMS
S ,

DD 41 I=1,\FAC

y fi< \5(1111])/{Lrhr(\‘)F(111 Sl
F=Vabl /VARERR
41 PELIGT 105,14 4DF{Lslsl)sSSUIs1,1) yVAR,F

13§ F;R-‘u’-\T(TX,Il.11)(,12,3){,!'14.8,4X.El4.6.6X,F11.2)
C ’JINT UnTA Fbl\ Fild~ FACTOR IJT[FI\LTIHN TtRMS
= MR R —
v
Diio42 I=lyivifACl
Td=1+1 _ h
D7 42 J=1JdyakaC
1«“‘{ ot {ledsl) e ye P16 TO 42 N
VA<=L0S T dy 1V /FLOAT{NDF (T 44,41 1)
F=v/is/Vin sz
rKI\lT 176, 1, J,:\LF(I,J,l),bS(I,J'I),VAQ F
1%y 7 .T(r?(,[l, N '11'(/\'1? .)\yi,l‘* 594X'E1‘+08,5X1F11¢2)
47 LUl LNUE
co e
C 20INY DATA 0k THYEE-FACTOE INTORACTIGN TERMS
c N s ST e e .
OO +3 I=1,NFAL S
Ty=1+1 ‘ N
Ju 4% Jd=1deirancld
Je=J+1 ’ ’
L - ‘)J +3 K=J kgt »\C
FINDT ATy dy b ) oMY 70 63 77T - T
\/\'<-)\(igJy}\}/rL(l\T(\}Df‘(]yJﬂ())
F=vAh /\//‘\' bR
P INT l(‘—?glyJ:f"\yl\JUF(I1JvK),SS(InyK) s VAR F
12T FUSMATHLT7X 11 X ' 11e% X 'l 143X912s3X4F14.8,4X3E14 % 06K,
42 2ot
T T T UPRINT 108, I0%ER Ky SSERR, VARERRZIDFTOT,SSTCTY
173 FURKMATIV/OX s "ERRIR T, 6Ky 12y %X,Fllfa-gy‘:f)(plezt'oi*//
16A, "TUTAL Yy 0K, 125 3X,F14.3) a ’ N
-
c ) CLEAKR FOR WFXT PPIBLE ) )
C

NPLD25hvern GE+1]

DJ 44 I=1,4N
Ud 4% Jd=1 L ]
Go X{iy a0,
Do I=1.7
B Dy v g=1.7
- DY e K=1,7 T o i
Mar{ Ty JyK¥="



45 SS(I,J,}\)=Oc N

oU TJ 1

C
C EK<OR
C

MESSAGL IF SULUTION TO NORMAL EQUATIONS WOT FOUND

Ao PRINT 109, T T T
109 FUXMAT(' GJR FUR X')
7T st ' T Tttt T T T T
END
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FOK HYPOTH _ ]
SU3IRIJTINE HYPOTHINDELET4IDELTT yMyNy SSHYPC)
CUMMON Y{150, 1)y X{152,100),X4(150,100) ,XTX{107,173),BT(1,170),

|
i

ILevEL (IO v LevEL LTI W NCOLTL O0) y SSUT 4747V o NOFLT7, 7,71, ICCLTLO0Y,
TISLICK (6], ICIR(10D) '
V:4'

e Xuln)

FIRM X MATRIX FUOR REDUCED MODEL

FH=M-NDELET -
IF(NDELELT LE). DIGD TO 5
J=1
<=1

1 073 2 I=1,KDELET

2 IF{J JEQ. NCOL(INISO TOU 4

DY 2 I=1,8 T
3 XAl I.K)=x{1,4)
TF(y e MIGU TU 7
J=J+1
L=<X+1
o T3
4 ITH(J
J=J+1
2T 1
5 Dy S5 =14
Jd 6 Jd=leM
2 XdilyJ)=X(IyJ)

S
CEi e FIGU

FarM X'X AATKEX FIR REDUCED MODEL

YOO

T o0 s IT=1,Mu
N7 3 J=1eMb
WTall,d)=",
Y, 2 fesn=lyHd

" XTAL Lo JY=XTRL Ty d)#X{In0ue )R XHTIROW,J)

O

Roset e WL e RUATLONS

O o

D) ) I=1,MH
AIX{IynH+ =0,
2V T U=l

o XTX{Tls i+ 1) = TX{ Ty A+ 1 1+ Xr{J,yT1)Y{Jy1l)

SOLVE MG 4abL EQUATIUNS

OO0

TTUCALT TGJROKT K5 1 100 T, MR L F137 06, V)
U 12 I=1,i4
1™ 3T, D) =XTX{]y0iH+1])

C :
c » RETUKN | FoRESSTIN Sun OF SQUARES FOR KEDUCED MJIOEL

CUSSsiYpo=r . T T S T/ /0 T
Ju 12 I=1yeutd
XTy=",
911D d=1s

11 .‘(IY=XTY*."\"IU1A,A'Y{Jrl)

12 5oiYPI=SSHAYP 48T (1,11 x=XTY
T JRN

¢



13 PRINT 102,

T A e

C , ERROK MESSAGE IF SOLUTION TO NORMAL FQUATIGNS NCT FCUND

133 FU-MAT (Y GJR Xei')
STuP

o CEND -
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The following are listings of the ANOVA-input data
for the examples of Chapter IV.

Example 1:

L.od2s ] -
3. 1
3%. 1
B3te ¢
35. 2
3%, 2
36. &
C 36. 2 B
37. 2 .
T T  se. 5T
87+ 3
37. 3
3?. 3
- 534 3
£3. 3
i,y
23. 3
o 2, 3
s, 3
7. 3
- T R
R
9. 4
[

Example 2:

-
»
&
DN e

»
L]

LS
I\

AN

(V)

L

~Ny
D
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.
.

Example 3

2?:

Example 4:

_. i

i !
e O O M O e OO G
. ! 1
e I I R N A N ST sV oV o

11.11\;111_.‘!11‘1
i '

ot S e Do e

e 0‘ " ° 6 & » -“ » s e
1

ORI ol B TS UL AN O EA TS

i

~“

-

-t
.
hat

..L_../. oYM
TR o~y N

N
PR B e B o JEP RS )

DI P N
el e o o &
O N eT o ey

NN NI N A0 NS N Ny

... 336

|

i
| |
_
_

L B TR VS VIR 2 B P
|

e e e OO
il

G AN OGN g ey
|

27._:..15411_\:17.\

« w{ s 8. e o 8 o
Kd ,.)TJ, o™ N F)./.w. O
o A et et ot et

!
!
o

[aN O NEFe AN a0
NN NN
NN N g
. & 8 e
o0
[ e —

—_r
[ WA
o~
]
s OGN
'v . L)
r){/. l
[
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The following are~the_outputs from the ANOVA program

for the example problems of Chapter IV.

EXaMPLE HUMBER |
" NUMBER OF OBSERVATIONS: 2& S '
FACTOR ‘
L WUMBLR . LEVELS. L S
N 5 o
AALYSIS OF VARIANCE
S e L e e MS BATEO 1.
SQURCE. DF SUM OF SGUAKRES MEAN SQUARES EKRUR NS
REGRESSTON 5 e 17176786+06
FACTOR
! ) Ty cYT19G3] +0)2 C .24754803+402 7. oo
ERROK 20 e l3142z578+02 11571267401
TOTAL 25 e 191 /v iuu+0s
EXANKFLE JINubER 2
WUMBER OF OBSERVATIORSYT 12
 FACTOUR i
_hutibkr o LkveLs e
1 y
2 y
- . L ANALYSIS_OF VARIANCE S
“S b 1 . . i
SOURCE DF SUt OF SUUARES MEAN SGUARES ERKul '
REGRLSSION 7 #31148333+04 . . e
FACTOR L ~ L B}
1 3 PR AR ST+ ¢29361117+03 Hu
2 N IR IR SRR A | 2 20LH55 24D LR
ERRCK 5 ¢ 36316669+03 «72633337402

TOTAL

.34"/!&(]{)(_‘()-#-(,\‘;‘ ‘
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EXAMPLE NUMBER 3

NUMBER OF OBSERVATIONS: 10

FACTOkR

NUMBEK LEVELS e
. 1. 2 S
2 2
e _AMNALYSIS OF VARIANCE - e
NS RATIO 10
L SCUPCE DF  SUM OF SVUAKES M{AN SQUAFES . ERRUR MS
_REGKRESSICH 4 _ e97000000+03 -
e CFARCION .. el
1 1 ¢ 135000060+03 « 13500000+03 101 e.y,
2 1 eH9G99847+00 «e59999847+00 I
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