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ABSTRACT

Regression analysis is a powerful and general solution • 

method for the analysis of variance of experimental design 

problems. However, when the traditional experimental design 

model is expressed in the matrix form, Y “ Xb + e, the X 

matrix will always be singular. Since X'X will also be 
As singular, the normal equations, X'Xb = X’Y, will have no 

unique solution. This means that standard regression tech­

niques cannot be used for an analysis of variance without 

reparameterizing the model into a full-rank form.

In this study, a new method of formulating experimental 

design models is developed that leads directly to a full­

rank system of normal equations without reparameterization. 

The full-rank model bases the expected value of the response 

variable on a standard cell of the experiment, rather than 

the overall mean of the experiment.

The technique is demonstrated for several example 

problems. It is concluded that the combination of full­

rank model formulation and regression analysis is a very 

useful tool for the analysis of designed experiments. 

This is especially true for nonorthogonal design that are 

difficult or impossible to handle by the traditional 

sum-of-squares method.
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CHAPTER I

INTRODUCTION

It is known that regression analysis can be used to 

find the variance estimates required for the analysis of 

variance of experimental design problems. In fact, regres­

sion is the most general solution method available since 

it solves problems with missing data, incomplete blocks, 

or unequal group sizes as easily as it solves problems with 

complete data and equal group sizes. However, in spite of 

its generality, the application of regression has been 

limited.

One of the reasons for this is that it has computational 

disadvantages. The heart of the regression technique is 

the solution of a system of simultaneous linear equations 

called the normal equations. This is tedious work for even 

fairly small problems since these, systems of equations tend 

to become large very fast. For example, a two treatment, 

five levels per treatment, factorial experiment with one 

observation per cell would call for a solution to a system 

of twenty-five equations with thirty-six unknowns to find 

the error sum of squares. Additionally, three smaller 

systems must be solved to find the sums of squares associated 
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with the main effects and the interaction effect. Obviously 

regression is not a hand or desk calculator technique except 

for the very smallest problems.

In this era of digital computers, these computational 

difficulties would not“be sufficient to hold back the appli­

cation of regression analysis if there were no other dis­

advantages. Unfortunately there are. Returning to the 

example, notice the excess of the number of unknowns over 

the number of normal equations. This means there are an 

infinite number of solutions to the normal equations. 

Increasing the number of replications per cell will produce 

more normal equations but since the new equations are not 

independent of the original twenty-five, there is basically 

no change in the system. The-standard regression techniques, 

by hand or computer subroutines, are designed to solve systems 

of N normal equations with M unknox-ms where N is equal to M. 

A system of normal equations from an experimental design 

problem where N is less than M cannot be solved without 

modifications. These modifications could be any one of 

the following which are listed on the next page.
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1. Add K more independent equations to the system 

so that N + K = M.

2. Combine or reparameterize the M unknowns such 

that there are L less of them so that N = M - L.

3. Change the normal equation solution method so that 

it will find a feasible solution when N is less than M.

4. Change the experimental design model so that xvhen 

the normal equations are formed, N = M.

It appears that the main effort to tailor regression 

analysis to experimental design problems has been by methods 

1 and 2. The difficulty is that the application of these 

two methods seems to be almost unique for every type of 

problem. That is, no general method of adding independent 

equations or reparameterizing the unknowns can be applied 

to all problems. Each problem entails considerable effort 

on the part of the experimenter to fit the problem to a 

regression routine.

This difficulty, is reflected in the lack of application 

of regression analysis in experimental design textbooks. 

These books usually stress the traditional sum of squares 

approach to analysis of variance problems. This method is 

popular since it is amenable to hand or desk calculator 

solution of fair-sized problems as long as they have equal 



group sizes. If regression analysis is mentioned at all, 

it is usually in the context of being only an interesting 

fact that analysis of variance problems can be solved by 

regression. For example, in Hicks (7), the use of regres 

is demonstrated only for single-factor problems where ha: 

solution of the normal equations is feasible. The book 

never demonstrates how to set up simple factorial models 

for regression solution. In Draper and Smith (4), a 

regression textbook, it reads:

”We are not recommending that fixed-effects 
analysis of variance problems be handled by general 
regression methods. We are pointing out that they 
can be, if the correct steps are taken in handling 
the problem and that it is valuable to realize thit 
is possible."

In Cooley and Lohnes (2), after describing their analysi 

of variance computer program, they state:

"The multiple-regression approach to analysis - 
variance allows greater flexibility than the appro? 
used here, but the preparation for execution of tlu 
programs is more complicated."

In summary, the difficulty of adding more independ., 

equations or reparameterizing the unknowns seems to overc 

the generality advantage of the regression technique.

Method 3, where the normal equations are solved for 

feasible solution with N less than M can be handled by 
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either linear programming or generalized inverse techniques. 

The linear programming approach as presented by Cashier (1), 

haa all the advantages of regression analysis with respect 

to solving large unbalanced problems but it also has two 

unique disadvantages. The first one is that the number of 

unknown variables in the model must be doubled when the 

problem is formulated to overcome the linear programming 

non-negativity constraint. The second disadvantage is one 

of higher computer processing time for linear programming 

routines as compared with regression routines.

This brings us to method 4, which is the topic of this 

paper. Is there a way to write experimental design models 

that leads directly to a full-rank system of normal equations’.' 

If there is, then the.application of regression analysis 

to experimental design problems will be greatly simplified 

and advantage can be taken of its generality.

A restriction on the new model will be that it also 

has physical significance to the experimenter rather than 

being an abstract combination of parameters. If this is 

true, the experimenter who knows the technique of formu­

lating the model, which will apply to all problems, can 

feed problems directly into regression routines and deter­

mine the various sums of squares required for an analysis 

of variance.



Chapter II contains a brief overview of some of the 

background material for experimental design problems. In

6

Chapter III, the new model is developed. Chapter IV con­

tains examples showing the application of the technique to 

various types of problems. The advantages and disadvantages 

of the technique are summarized in Chapter V along with the 

conclusions about its application to analysis of variance 

problems.



CHAPTER II

ANALYSIS OF VARIANCE AND REGRESSION ANALYSIS 

Analysis of Variance

The analysis of variance is a statistical technique 

introduced by R. A. Fisher about 1923 in connection with 

experimental design applications 'in biological research. 

It is a method of dividing the variation observed in experi­

mental data into different parts, each part assignable to 

a known source, cause, or factor. It allows the assessment 

of the relative magnitude of variation resulting from 

different sources and the determination whether a particular 

part of its variation is greater than expected under a null 

hypothesis.

Normally the analysis of variance is used to test the 

significance of the differences between the means of the 

observed dependent variables in different groups where 

each group has received a different treatment. The purpose 

being to see if the treatment has a significant effect on 

the dependent variable or if the deviations in the group 

means are due to random error.

The analysis of variance makes two basic assumptions 

about the distribution of the dependent variable within 

each group. .These are listed on the following page.
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1. The dependent variable in each of the treatment 

groups is normally distributed.

2. The variance of the dependent variable in each 

of the treatment groups is equal.

Assume an experiment is performed to determine the 

effect of a factor that has been set or measured at k 

different levels. A measurement of the dependent variable, 

Y from one of k treatment groups is considered to be composed 

of three quantities:

u - the overall expected value of the dependent variable 

tf - the deviation from the expected value of the 
dependent variable due to the effect of the i^ treatment

e -a deviation from the expected value due to the 

fact that measurements of the dependent variable are normally
* ‘ 2distributed with a mean of zero and a variance of cre 

m , .th . , .thTo represent the j observation from the i treatment 

group the model is written as

Y. . = u 4- t. 4- e. . " 1 3J
i = 1, 2, . . . , k
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The null hypothesis is that all the treatment effects are 

equal to zero.

t. = 0 i
i = 1, 2, . . . , k

This hypothesis is tested by first partioning the total 

sum of squares of the deviation of the measurements from 

the overall mean, Y, into two additive and independent parts. 

These are called the within groups sum of squares and the 

between groups sum of squares. To show this is possible 

let n^ be the number of observations in the i^h group and 

" thlet Yj_ be the mean of the iL group, we begin by writing 

the identity

<Yii ‘ Y> = <Yii ” Yi> + <Yi " Y> X J-
Squaring this identity and summing over the n^ cases in

. .th . _ ,the i group yields

I (Y^ - Y)2 = X (Y - yp + X (Y - Y) 
j-1 J j-1 iJ j-1 1

- nl
+ 2(Y1 - Y) X <Yi1 " Yi> . t -LJ •L 3=1



The last term on the right disappears since the sum of 

deviations of group observations from the group mean is 

zero. Therefore

10

1 — 9 i 2 —22 (Yy - Y)2 = 2 (Y - Yi) + - Y)
j-1 j-1 J

We now sum over the k groups to obtain

k nl _ oS S (Y - Y)z 
1=1 j-1 J

k nl , - x2
S S (Yi. " Yi) + 
1=1 j-1 J

Thus the total sum of squares is partioned into two additive 

groups, a sum of squares within groups and a sum of squares 

between groups. Of the three terms, any two are independent

and could be used to estimate the common group variance, (T^*".

To do this we must know the degrees of freedom
2associated with each sum of squares since the estimate, S , 

of a variance is
2 ' 2S = (deviations from mean of distribution) 

degrees of freedom of estimate 
k

If the total number of observations, X is equal 
i-1 .

to N, then the total sum of squares has N-l degrees of 

freedom. One degree of freedom is lost due to the mean of 

the distribution being estimated. The within groups degrees 
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of freedom can be found by knowing that in each group there 

are n^ - 1 degrees of freedom. One degree of freedom is 

lost in each group to estimate the group mean. Summing 

over the k groups yields

k k
X (n. - 1) = x n. - k = N - k 
i=l 1 i=l 1

For the between groups sum of squares there are k means 

and one degree of freedom is lost by expressing the group 

mean as deviations from the grand mean so there are k ~ 1 

degrees of freedom. Notice that the degrees of freedom 

are additive.

Total = Within + Between 
(N - 1) (N - k) (k - 1)

With the sums of squares and the degrees of freedom we can 

now estimate the within and between groups variances.

These variance estimates are also called the mean squares.

2 k n. SW - S i (Yij - Yj.)2 
i=1 1 = 1--- :--

N - k

2 — _ 9SB - S n. (Y1 - Y )
1=1 —i--- ;-----

While the sums of squares and the degrees of freedom are
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additive, the variance estimates are not.
2,2 2ST + SWZ + SB

Going back to the second basic assumption of the 

analysis of variance, remember that the within groups 

variance is the same for all groups. This means the 
\ 2expected value of the within groups variance is <7e , 

the population variance.
E<SW2) " 

2The expected value of Sg may be shown to be 

1c kE(Sb2) = cre2 + I (u. - u)2 (N - X n^/N) 
i=l  i=l

k - 1 k - 1

V«There u^, and u are population means. When the null 

hypothesis is true, the term on the right is equal to 

zero since the mean of each group is equal to the overall 
2 2mean. Therefore the expected value of Sg reduces to cre 

and 
9 9E(SgZ) = E(S/)
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When the null hypothesis is false and the means of 

the groups differ from u, 
2 9E(Sg ) = tTez + measure of the variation of Uj_ from u

2 2To test the null hypothesis, the ratio of Sg /Syr

is examined. If the population means differ from each other 
2 2E(Sg /Sw ) will be greater than unity.' Therefore if this 

ratio is significantly greater than unity this is evidence 

for the rejection of the null hypothesis and for the acceptance 

of the alternative hypothesis that a significant difference 

exists between the treatment group means. The significance 

of the deviation from unity may be assessed by reference 

to a table of F values with k - 1 degrees of freedom asso­

ciated with the numerator and N - k degrees of freedom 

associated with the denominator. The quantities involved 

in the preceeding discussion are usually displayed in an 

analysis of variance table which follows on the next page.



AOV TABLE

Source of
Variation

Degrees 
of Freedom

Sum of 
Squares

Mean
Squares

F Ratio

Between Groups

ssB

k - 1

ii
 M H 
fl

H- ^1 1

N> SSR/(k - 1) ssb(n - k)
SSw(k - 1)

Within Groups 
ssw

N - k
ni _ o2 X (Yii - Yj,)2 

i=l j=l J
SSw/(N-k).

Total 

... , ■

N - 1
k ni —2
X 1 (Y^ - Y)z 
i=l j=l

•
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Regression Analysis

Regression analysis is a statistical technique for 

extracting the main features of the relationships hidden 

or implied in tabulated figures. Even if no sensible 

physical relationship exists between the variables, we may 

wish to relate them by some sort of mathematical equation. 

While the equation might be physically meaningless it may 

nevertheless be extremely valuable for predicting the 

values of some variables from knowledge of other variables. 

In this paper we will be concerned with only linear regress! 

analysis which assumes that the relationship is linear in 

unknown parameters.

The variables involved can be classified as either 

independent or dependent variables. The dependent varic" 

is also called the response variable. The independent 

variables are those which can be set to a desired value or 

else the values can be observed but not controlled. As 

a result of changes in the independent variables, an effecL 

is reflected in the dependent variables. In general, we 

shall be interested in finding out how changes in the 

independent variables affect the response variables, llowcv 
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the end result is a mathematical formula that describes 

the relationship between the independent and dependent 

variables.

The simplest example of this is the case with only 

one independent variable, x, and one dependent variable, 

y. The problem is to find an equation that will predict 

the expected value of y given the value of x.

E(y|x = X) - f(X) 

where f(X) is the regression equation. The highest power 

of x found in f(x) is called the order of the regression 

equation so that
f(x) = bQ 4- b]_x 4- b2X^ 4- bgx^ 

would be a linear third order model with constant coeffi­

cients b^. Examining the first order equation

E(y|x = X) “ bo + b^X 

we see that this equation describes a straight line on the 

plot of y versus x.

A

X
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So to develop this regression equation, the straight line 

relationship between y and x must be determined. The task 

here, of course, is to find the value of bQ and b]_ so that 

they do the best job of describing the relationship between 

y and x. The estimation of these coefficients is the essence 

of regression analysis. To perform th^ estimation of bo 

and b^ it is required to obtain some empirical data con­

sisting of pairs of observations of y and x where x was 

set or measured and the response of y was simultaneously 

observed.

(yi» xi> 

(Y2> x2>

(yn> xn)
Plotting the observations might yield

x
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Obviously no straight line can pass through all the N 

points so some method must be adopted to "fit" the line to 

the points. Since the points will not all lie on the 

regression line, we can express each point by the model

Yi = bo + b^. + ei

i » 1, 2, . . . , N

when e^ is the deviation from the regression line. To

find the best regression line we will estimate bQ and b^ 

by the method of least squares. This method finds the 

bo and b^ that minimizes the sum of the squares of the e^.

N 9 N6 X e. X e-2
i=l i=l

 = 0  = 0
•? bo 6 bi
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To do this the equations

Vi - bo + blxi

1 » 1, 2, . . . , N 

are expressed in the matrix form

Then from Theorem 6.2 in Graybill (6), it is shown that 

the best (minimum variance) linear unbiased estimate of 

b is given by least squares. That is, the that is the 

solution to the normal equations
b = (X’X)"1 X'Y

is the best linear unbiased estimate of b.

If X'X is nonsingular, the estimates of bo and b^ 

are given by

= 'b =■ (X’X)"1 X'Y
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The regression equation can then be written as

E(y|x =- X) - bQ + bpS 

knowing that it is the best estimate of the expected value 

of y based on the method of least squares. This equation 

can now be used to predict the value of y given the values 

of x, or in other words, it describes a relationship be­

tween the independent and dependent variables.

The question may be asked "How well does the regression 

equation fit the.data?" This is answered by partioning 

the total sum of squares about the line y = 0 (SS-p) into 

two categories, the sum of squares due to regression and 

the sum of squares about regression.

The sum of squares due to regression is the portion 

of the total sum of squares that is explained or accounted 

for by the regression equation. The larger the sum of 

squares due to regression, the better the fit of the 

regression equation to the data.

The sum of squares about regression is the sum of squares 

of the deviations of the data points from the regression line. 
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If the regression line passed through every data point, 

the sum of squares about regression would be zero and it 

would be apparent that the regression was perfectly fitted 

to the data. If the sum of squares about regression is 

large, it shows that there are significant deviations of 

the data from the regression line. This means that there 

is some lack of fit present. Since the sum of squares about 

regression is a measure of the fit error of the regression 

line, it will hereafter be referred to as the error sum 

of squares (SSg). The sum of squares due to regression 

will be referred to as the regression sum of squares (SSp). 

Therefore, we have

SST - ssR + ssE

To illustrate these quantities, suppose we were asked 

to find the first order regression of y on x given the 

following quantities.

x y

1 1
1 3
2 4
2 6
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Expressing the data in matrix form yields

1
3
4

+ (e)

The normal equations X’Xb = X'Y are developed as follows.

X'X = 1111
112 2

X'Y = 1111
112 2

X'X

1 1
1 1
1 2
1 2

1
3
4
6

4 6
6 10

14
24

X'Y

14

24

14

24
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Therefore

E(y) = -1 + 3x

The total sum of squares 0about y is

(1 3 4 6)
= 62

The degrees of freedom associated with the total sum of

squares is equal to the number of observations.

The regression sum of squares is equal to the sum of

line from

y = 0 at each observation of x.

2 52 = 58. Equivalently

by matrix analysis

3) 1
2

1
3
4
6

1
3
4
6

1
1
2
2

1
2

3
3
5
5

1
3
4
6 . .

the squares of the distances of the regression

SSR 1 1
1 1

SSR = b’X'Y

For our example SSR = 32 + 32

SSD = 58 K



The degrees of freedom of the regression sum of squares is 

equal to the number of coefficients in the regression equation, p.

DFR = p = 2

The error sum of squares is the sum of squares of de­

viations of the observed points -from the regression line. 

In our example, since each point has a deviation of 1 from 

the regression line
SS^ = I2 + I2 4- I2 + I2 = 4

E
Normally the error sum of squares is determined by

SSE = Y’Y - ^’X’Y

SSE =62-58

As mentioned earlier, the regression equation with the best: 

fit to the data is the one with the loxvest value for the 

error sum of squares. This means it has a minimum of var­

iation of data points from the regression line. The degrees 

of freedom associated with the error sum of squares is equal 

to the number of data points, N, minus the number of regres­

sion coefficients to be estimated, p. In our example

DFe =N-p=4-2=2 

Summarizing the results yields

Source DF Sum of Squares

Regression p = 2 b’X'Y = 58
Error N - p = 2 Y’Y - ^’X’Y = 4
Total N = 4 Y’Y = 62
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Relation between Regression Analysis and Traditional 
Analysis of Variance Techniques

In this section the methods of the two previous 

sections will be drawn together to show how regression can 

be used to find the sums of squares and their associated 

degrees of freedom required for analysis of variance prob­

lems. This will be done by an example rather than a 

theoretical development. Using an example means that a loss 

of generality will be inevitable, but this is accepted with 

the hope of increasing the visibility of the relationship.

For our example we will take results from a hypothetical 

two-level single-factor experiment and demonstrate how the 

analysis of variance would be performed by the traditional 

method and by regression analysis. The computations shown 

here are designed to emphasize the similarities between the 

two methods and not to demonstrate exactly how the methods 

would be used to solve the problem.

The data for the problem is as follows:

Treatment tl fc2

Results 3 7
5 9
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The model for this experiment is

i = 1, 2
j = 1, 2

N = 4
k = 2

In equation form the experiment is written

3 = u 4- t^ + e-^]_

5 = u + ti + e12

7 - u + t2 + e21

9 = u + t2 + 622

or expressed in the matrix notation

Y = Xb + e

/1 1 ° A
110

10 1

\1 ° 1 /
In Table (2.1), which follows the calculations

required to form an analysis of variance table are shown. 

In the left-hand column is the traditional sum of squares 

method and the right-hand column shows the associated 

regression calculations.



TABLE 2.1

Sum of Squares Regression

1. No reparameterization necessary 1. Before beginning the regression analysis, 
the problem of the singularity of the X 
matrix must be overcome. For this example 
the problem will be reparameterized so that 
the X matrix is of full-rank. The matrix 
equation Y = Xb + e is written:

3 1 0 u + t1
5 _ 1 0 + (e)
7 11 t2 -

19/ |1 1 ■

Notice that this yields the same four equations 
as the previous matrix expression of the 
experiment.

2. Find the total sum.of squares about Y.

Y = 3 + 54-7+9 = 6
4

SST = (3 - 6)2 + (5 - 6)2 + (7 > 6)2 + (9 - 6)2

SST = 20

2. Find the total sum of squares about Y = 0.
SST = Y’Y =(3579) 1 3 =164

5
7
9

to
The total sum of squares for the two methods 
has a different reference point so the 
numerical results will be different.



TABLE 2.1 (2)

Sum of Squares Regression

3. Find the total degrees of freedom.

DFt =N-1=4-1=3
3. Find the total degrees of freedom.

DFt = N = 4

4. Find the within groups sum of squares 
about the group means.

Yi = 3+5 = 4
2

Y2 = 2_±_9 = 8
2

22 -2
SSW = x I (Y.. - Yi)Z

i=l j=l J

SSW = (3 - 4)2 + (5 - 4)2 + (7 - 8)2 + (9 - 8)2

SSW =1+1+1+1=4

4. Find the error sum of squares.

SSg = SSrp — SSj^

SSE = Y’Y - b’X’Y

b = (X’X)"1 X'Y = 42 "1 1111 3
2 2 0 0 1 1 5

7 
19/

b » 4
4

E(y) = 4 + 4xj_

to co



TABLE 2.1 (3)

Sum of Squares Regression

4. (continued)

5. Find the degrees of freedom for the within 
grou '3 sum of squares.

DFT1 = N - k = '■ -2-2w |
i

5. Find the degrees of freedom for the error 
. sum of squares.

DFe = N - Rank(X) =4-2=2



TABLE 2.1 (4)

Sum of Squares Regression

6. Find the between groups sum of squares.

2 - - 2
SSB = I ni(Y. - Y) 

i=l

SSB = 2(2)2 + 2(2)2 = 16

6.

Y

ofthe

1)

a = 6
w

3
5
7
9

regression sum 
is true.

Find the reduction in 
squares if the hypothesis

With the hypothesis Hq: tj_ = t£ - 0, 
rewrite the matrix equation in the form, 

which reduces
Y= jl\

1
1
1

SSR - SSR(a) = b'X'Y - a’Z’Y
a = (Z’Z)"1 Z’Y = (4)-1(l 1 1

to



TABLE 2.1 (5)



TABLE 2.1 (6)

Sum of Squares Regression

7. Find the degrees of freedom for the between 
grou s sum of squares.

DF=k-l = 2- l = lB

11
7. Find the difference in the degrees of freedom 

for the regression sum of squares with 
Hq false and Hq true.

DF = rank(X) - rank(Z) =2-1 = 1

8. Set up the Source, Degrees of Freedom, and 
Sum cf Squares columns for the AOV Table.

8. Set up the Source, Degrees of Freedom, and 
Sum of Squares columns for the AOV Table.

Source DF SS Source DF . SS

Lc

Regression 
(Hq False)

R(X) = 2 b’X'Y = 160

.Regression 
(H0 True)

R(Z) = 1 a’Z’Y = 144

Between 
Groups

k - 1 = 1 k
X n.(Yi - Y)2 = 16 
i=l

Reduction in 
SSR if Hq is 
true

R(X) - R(Z) = 1 S'X'Y - a’Z’Y = 16

Within
Groups

N - k = 2 k . nA ry.. - y.I2 = 4 
1^1 pf

Error SS 
i(H0 False)

N - R(X) = 2 Y’Y - b’X'Y = 4

Total _
(About Y = Y)

II - 1 = 3
k n-;

: '1 = 20 .Total
(/bout Y = 0)

N = 4 Y'Y = 164
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The regression analysis of experimental design models 

is summarized in the following steps.

1. Write the experiment model in terms of a full- 

rank matrix equation.

¥ = Xb + e

2. Find the total sum of squares about Y = 0 and its 

degrees of freedom.

SST = Y’Y

DFt = N
3. Find the regression sum of squares and its degrees 

of freedom.

SSR = b' X'Y
SSD = Y'X (X’X)"1 X'Y

K.

•DFr = rank(X)
4. Find the error sum of squares and its degrees of 

freedom.

SSg — SSip " tiSR

SSE = Y’Y - b’X'Y

88^ = Y’Y - Y'X (X’X)"1 X’Y

DF1? = N - rank(X)
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5. Form a hypothesis that states that the effect 

of each of the experimental factors is zero. For each 

hypothesis, write a reduced model of the experiment that 

assumes the hypothesis is true. For a fixed factor, t, 

the tj are assumed to be fixed constants and the hypothesis 

would be

Hq: tj = 0 for all j

If t is a random factor, the tj are assumed to be normally 

distributed random variables with a mean of zero and a 

variance of . The hypothesis to test the effect of t 

in this case would be
2 Hq: (Tt = 0

In either case, a model is formed by setting all terms 

in the original model.that contain a t to zero which will 

yield a reduced model.

Y = Z.a. + e i i
i = 1, 2, . . . , NH 

where - number of hypotheses

6. Find the regression sum of squares and its degrees 

of freedom for each model.

ssRi -61'ZVY - Y'z^zpzp-1 zpy

DFRi = rankCZi)
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7. Find the difference in the regression sum of squares
t*Kand the degrees of freedom for this model (iL hypothesis

is true) and the original model (i^ hypothesis is false.)

SSR_Ri = SSR - SSRi =^X’Y - a^Zi'Y

DFR_Ri = rank(X) - rank/zp

8. Form the analysis of variance table based on the 

following quantities.

AOV TABLE

Source Degrees of Freedom Sum of Squares

Regression rank(X) 'b'X’Y

Factor 1

Factor n

rank(X) - rank(Z£)

rank(X) - rank(Zn)

'b’X’Y - a. ’Z. ’’’ 1 X•

^'X’Y - 
n n

Error N - rank(X) Y’Y - b'X'Y

Total N Y’Y
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From the previous table it is clear .that regression 

is a fairly straight-forward, although computationally 

tedious, method of determining the sum of squares. The 

real problem as stated earlier, is in step 1. That is, 

the reparameterization of the model to a full-rank model. 

The remainder of this paper will be concerned with the 

method and examples of writing experimental design models 

that make this step of reparameterization unnecessary.



CHAPTER III

FULL-RANK EXPERIMENTAL DESIGN MODELS

The first part of this chapter will demonstrate why 

the traditional experimental design models always lead to 

an indeterminant system of normal equations with an excess 

of unknowns over independent equations.

Consider a single-factor experiment with r levels 

of the factor to be investigated as to their effect on a 

response variable. Also assume there are n^ replications 

for each level i. The model for this experiment is expressed 

by the following:

>'ik u + 4 + e.k

i — 1, 2, . . . . , r

k = 1, 2, ... . , ni 

where
thy^l is the k observation of the response variable 

under the experimental condition of level i of the treatment,

u is the overall expected value of the response variable 

for the entire experiment.

t^ is the deviation from u caused by the effect of level 

i of the

eik 

normally

treatment t.

is the random error in the experiment which is

distributed xzith a mean of 0 and a variance of o*.
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where the matrices have the following dimensions

In matrix form (y == Xb + e), the experiment is ex-

pressed by the following:

yn 110 0.00 /u\ ell

^12 110 0.00 h e12

• t2 •
• • •••••• • + •

yin 1 1 0 0 . 0 O' • Ini
y2i 10 10.00 \ • / e21

\tr / •
• •
• • •••••• ♦

y 2n£ 10 10.00 e2n2

yai 10 0 1.00 e31
♦ •
• ............. •
• » e » e * • • •

yrnr 1 0 0 0.0 1 ernr

Matrix Dimension

Row Column

Y
r
2 n.
i=l

1

X
r
•Vi 
1=1

r + 1

b r + 1 1

e

H-
 .
 . 
I-
J 

ii
 M 3 1
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When the normal equations

X'Xb = X’Y

are formed, the matrix X’X will be a square (r + 1) by 

(r + 1) matrix. From Theorem 1.20 in Graybill (6), the 

rank of X’X will be equal to the rank of X which will be 

equal to the number of independent rows in the matrix. 

In our experiment there are r different experimental con­

ditions, one for each level of t, and for each condition 

there is an equation expressing the expected value of y 

for the condition.

Level 1: E(Y) = u + t1

Level 2: E(Y) = u + t£

Level f: ' 'E(Y) = u + tr

Without adding any supplemental conditions on the 

experiment, it is clear that there is only one independent 

equation for each different condition in the experiment. 

This means, for our'example, there are only r independent 

rows in the X matrix. Since X is of rank r, X’X is a 

singular (r + 1) by (r + 1) matrix of rank r. So there is 
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no unique solution
b = (X'X)”1 X'Y 

to the normal equations.

Regardless of the number of factors or type of ex­

periment, there will be no more "independent rows in the 

X matrix than there are different experimental conditions. 

For a two-factor experiemnt with r and s levels per factor 

there will be rs different conditions so the rank of the 

X matrix will be. rs. So, in general, rank(X) equals the 

product of the number of levels for each factor of the 

experiment.

The column dimension of X, designated p, will be equal 

to the number of unknowns in the experimental design model. 

For the single-factor, example, p was equal to r + 1. For 

a two-factor experiment with r and s levels per factor, 

we have:

Factor Number of Terms

u. 1

1 r

2 s

1X2 interaction rs

Total = l+ r4-s4-rs=p
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It is apparent that p is much greater than the rank 

of X which is rs. This means, of course, that X'X is 

again singular. As the number of factors in an experiment 

is increased, p will always be greater than the rank of X. 

This is obvious since the rank of X will always be equal 

to the number of the highest level interaction terms in 

the b matrix. The dimension p will be equal to this, plus 

all the lower level terms in the b matrix. So, in summary, 

regardless of the experiment, the model will always lead 

to a set of indeterminant normal equations since X'X will 

be singular.

The preceeding discussion also leads us to the fact 

that the rank of X'X will be equal to the number of experi­

mental conditions, or cells, in the experiment. Therefore, 

if the number of unknowns in the b matrix, p, can be re­

duced to the number of cells, X'X will be a p x p matrix 

of rank p. Under these conditions we can find b by
" b = (X'X)"1 X'Y 

and proceed to find the sums of squares by the method of 

the preceeding chapter. We already know that this can be
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done by reparameterizing the model after it is written. 

However, this is extra work that must usually be done man­

ually before the regression solution method begins.

The problem now, is how can we write the model directly 

so that the number of unknowns is equal to the number of 

experimental cells which leads directly to a full-rank 

X’X. It appears that the key to this is getting away 

from expressing the response variable as being equal to 

an overall mean, u, plus deviations caused by the experi­

mental factors.

E(Y) = u + deviations

To reduce the number of unknowns, it is possible to select 

one of the cells of the experiment as standard from which 

the expected response of all other cells deviates.

E(Y) = standard cell + deviations

We will denote the expected response of the standard 

cell as S and will choose the cell where all factors are
2 at level 1 as the standard cell. For a 2 factorial 

experiment (factors a and t) with 2 replications, the 

model would be developed as follows:
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Cell a^> t]_ is the standard cell so the expected 

response for this cell is simply S.

11

al E(Y) = S

a2

For the a-^, t£ cell the only deviation from S would 

be caused by the change in treatment t from level 1 to 

level 2. Therefore,

2

al E(Y) = S E(Y) = S + t2

a2

Likewise for 32, t^
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For the , t2 there are two sources of deviations 

from S so there will also be an interaction term between 

the two factors.

E(Y) = S E(Y) = S + t2

e(Y) = S + a2
\

E(Y) = S + a2 + t2 + at22

Notice that there are no terms in the equations with 

a subscript containing a 1. This is caused by the defini­

tion of cell 1 to be the standard from which deviations 

are measured. Writing the new model for the experiment 

yields

Y. ., = S 4- a. + t. + at. . 4- e. .. j.jk i j ij ijk
i = 1, 2"

j = 1, 2

k = 1, 2

a*|_ tj^ ^^*11 ^^12 " ^^”21 ™

Listing the number of unknowns in the model

S

a.
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shows that there are only four of them which equals the 

number of cells in the experiment. Therefore, we have 

succeeded for this case in expressing the experiment with 

the same number of unknoxvns as experimental conditions.

Although not proved for the general case, it should be 

apparent that each cell introduces only one new terra, which 

is the highest level interaction possible between the 

single-factor terms in the cell. Since each cell intro­

duces one new unknoxm and one more independent equation.

this insures the fact that the number of unknowns and 

cells will be equal.
nWriting the model of our 2^ example in matrix form,

Y = Xb + e

0 0 0

0 0 0

10 0

110 0

10 10

10 10

1111

1111
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To examine the rank of X it is rewritten as 

10 0 0

110 0

10 10

1111

10 0 0

110 0

10 10

1111

Notice that the top four rows form a diagonal of 1’s with 

only 0's above the diagonal. Forming a determinant of the 

top four rows, it appears as

10 0 0 

.10 0.

1 0

1

Since this 4x4 determinant has a nonzero value and 

the column dimension is 4, the rank of X is equal to four. 

This means X’X will be a (4 x 4) with a rank of 4 which 

means our system of normal equations will have a unique 

solution.
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To summarize the method of expressing models that 

lead to a full rank X’X matrix:

1. Choose a cell of the experiment as the standard, 

S, from which the deviations in the expected value of Y 

for all other cells will be based on. In this paper, 

this will always be the level 1 cell for all factors.

2. Write the expected value for all other cells as

Y = S + deviations from standard cell. Or, in equation 

form it may be written

Yrijk... = s + ai + tj + • • • • + at^ + ....+ erijk> 

where all experimental factors containing a subscript of 

one are zero.

The next chapter will contain examples, primarily 

from Hicks (7) and show how they can be solved with the 

combination of expressing the model‘in full-rank form and 

using regression analysis.



CHAPTER IV

EXAMPLE PROBLEMS

This chapter demonstrates how some representative 

experimental design problems can be systematically solved 

using the combination of full-rank model formulation and 

regression analysis. The method is applied to four different 

types of problems. They are as follows:

1. A completely randomized single-factor experiment 

with unequal group sizes.

2. A single-factor experiment with an incomplete 

block design.

3. A 2 x 2 factorial experiment with missing data.

4. A nested-factorial experiment with fixed and

random factors. • . .

The four problems are solved using a standard stepwise 

regression routine designed for regression analysis rather 

than analysis of variance problems. The routine is the 

BMD02R Stepwise Regression program which is one of the 

UCLA Biomedical Computer Programs described in Dixon (3). 

This widely-used package is available in many large-scale 

computing centers. The stepwise feature of the routine is 

not required but it is mandatory that the user be able to 



49

easily control which variables enter the regression 

equations. The BMD02R routine accomplishes this by the 

Control-Delete commands which force variables into, or 

keep variables out of, the regression calculations. The 

routine also automatically provides the regression and 

error sums of squares and degrees of freedom for each re­

gression as part of the output. This is a great advantage 

over a routine that only provides the regression coefficients 

and leaves the user to calculate

SSR = 'b’X'Y 

and

SSE = Y5Y - b’X'Y

A limitation of BIIDO2R for analysis of variance work 

is that it can handle.no more than 80 variables in its 

regression calculations. The user must, therefore, insure 

that when the full-rank model is formulated, it contains 

no more than 80 different terms. If necessary, the number 

of terms in the model can be reduced by assuming certain 

factors or interactions have no effect and deleting the 

terms associated with those factors. BMD02R can process up 

to 9999 observations which should be sufficient to handle 

most experiments.
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On the following pages, the four example problems are 

solved with the BMDO2R program and a step-by-step descrip­

tion of the solution is presented for each problem. A 

listing of each problem’s input data for BMDO2R is provided 

in Appendix A.



51

EXA14PLE NO. 1

Z£2e:

A single fixed-factor•experiment with unequal 

group sizes.

Source: \

Hicks (7), page 42.

Problem:

In this experiment, a single factor, t, is set to 

five different levels and the number of measurements of- 

the response variable in each group is different. The 

data for the experiment is the following:

Treatment 4 ' ^2 t4 t5

83 84 86 89 90
85 85 87 90 92

85 87 90
Response 86 87 91

86 88
87 88

88 •
88
88
89
90
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Solution:

1. Express model in terms of a full-rank matrix 

equation.

The full-rank model as developed in Chapter III for 

this experiment is:

yik - s + ti + eik

i = 1, 2, 3, 4, 5

k = 1, . . . . > n^ where n^ = 2

n2 = 6

n3 = 11

n^ = 4

t-^ ~ 0 n^ = 2

The matrix representation of this model is the following:

83. * Luu 0-0 -
8 5. lOuOO
84. 11000
85. 11000
85. 11000
88. 11000

"8 6 7" 110 00
8 7. 11000
86. 10100
87. 10100
87. —• 10100

_8 7. _ 10100
8 8 7 " fdlOO
8 8. 10100
8 8. 10100
88. 10100
8 8. 10100
8 9 . 13100
90." "" 10100

o 1 ?■ ■' 1 0
'W. 10. '10
90. 10010
9 1. 10010
90. 1000 1
92. 10001"
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2. Find the total, error, and regression sums of 

squares and degrees of freedom.

The regression routine is used to generate a regres­

sion equation which includes all five variables of the b 

matrix. The following output of the routine shows the 

regression and error (labeled residual) sum of squares 

and degrees of freedom.

ANALYSIS OF VARIANCE 
_________  _______ _

REGRESS I 0'1 S
 _ RES J OU AL_. ____

su--' 0r R_eS 
i9T767;857" 

23.140

MEAN SOURE
393S3.S71

1.137

VAR I 4 •’ I F S J N U A T I Q-|

COEEFiCiEmT " stp, Lrrqp " f’ I O 'Rr'IOVF VV A r> I 'U. E

irO’iST A iT A. ■■ii o )
s 2 '>.1 > 9 9 9 ,3 * ' 1 7 6 61-31. 12196. 9 3 4 B
T2 3 1 . ' ' '22 " * ' . • 3 . 7 4 - ? ) 2. 9 17 1 t

T3 4 3 , n 102029 27 -01 2 1 • 3 2 3 6 ♦

_ J. 5 - _____5 ... . 6.7 *' 7 ?. 2 2 1 i- "* 0____ _9 . 3 ? - I ) 4 1 . 4 3 6 6 •

T5 6 7 . ■' ■- o 2 1 9 + 0 r. ' * I n 4 2 » 3 3 0 4 e

Using these to find the total sum of squares and degrees 

of freedom yields,

SSR(s,t) = 191767.857 DFR(s>t)=5

SSF = 23.140 DF„ =20- -- - -

SST = 191790.997 DFT =25
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3. Form the appropriate hypotheses to test the 

significance of the experimental factors.

For this example there is only one factor, t, which 

is fixed, so the only hypothesis to be tested is

H0: t2 - t3 - t4 - t5 - 0
This null hypothesis states that treatment levels 2, 3, 

4, and 5 cause no significant deviation from the standard 

response which is defined to be level 1 of the factor t.

4. For each hypothesis, find the regression sum of 

squares and degrees of freedom for the reduced model that 

assumes the hypothesis to be true.

This is accomplished by removing from the b matrix 

those variables assumed to be zero and finding a new 

regression equation for the reduced model. For this exampl 

the new regression equation will include only the variable 

S since t2, tg, t^, and t$ are set to zero. The regression 

results for the reduced model are

ANALYSTS OF VARIANCE
________  _ nr____ SQUaRES_ M E A M S 011 t

REGRESS IO*.1 t 1g 16 69,8 32 166 8.8 32
_____________ RFLS.IJVJAJ_7 5.090

VA 0 1 ARLES IN FOIIATTON ,

VAnl,inLF COEFFICIENT 5 T , FRRDR F TO RemOVf ,

(CONSTANT l-.n/’Tj
2 8.7'-.59999 + r* 1 

) . ______________ ______ .
37 65 1*67 8 7
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which show that

SSR(S) = 191668.832 DFr(s) = 1

5. Find the regression sum of squares and degrees 

of freedom associated with the factors tested in each 

hypothesis.
\

This is done by subtracting the regression quantities 

of the reduced model from the regression quantities of the 

full model. For this example, the sum of squares calcula­

tions are

SSt = SSR(S,t) " SSR(S)

SSj. = 191767.857 - 19.1668.832

SSt = 99.025

The degrees of freedom calculations are

• DFt = DFR(S,t) " DFR(S)

DFt = 5 - 1

DFt = 4
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6. Form the analysis of variance table and make 

the appropriate F tests.

AOV

Source DF Sum of 
Squares

Mean
Squares

F

Factor t 4 99.025 24.756 21.397

Error 20 23.140 1.157

Total 25 191790.997

The factor t is found to be significant at the 99% level 

of confidence
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EXAMPLE NO. 2

Type:

A single fixed-factor experiment with an incomplete 

block design.

Source:

Hicks (7), page 57.

Problem:

In this example, the factor t is set to four different 

levels and only three levels can be run in a block. There 

are four blocks of data as follows.

Treatment 4 t2 t4

Response

•
Block 1 2 20 7

Block 2 - • 32 14 3

Block 3 4 13 31

Block 4 0 23 * 11

Solution:

!• Express model in terms of a full-rank matrix 

equation.

The full-rank model as developed in Chapter III 

for this experiment is shoxm on the following page.



58

yijk = s + ti + b. + e.jk

i = 1, 2, 3, 4

' j = 1, 2, 3, 4 

k = l-

- b-^ = 0

The matrix representation of the model\ is

2.
20.

7.
32.
14.

3.
'*4.
13.
31 .

0.
2 3.
11.

1000000
1010000
1001000"
1100100^
1010100
1001100_
1000010
1100010
1010010
1000001
1100001
1001001

2. Find the total, error, and regression sums of 

squares and degrees of freedom.

The regression results for the full model are

A N A L Y 3 1 S Of V A K I A h C L

UP SO a UF 50UhU(. S M F- A N s 0 U A r- E
tL <■> 7 3114.d33 4 4 4 . V / r.
K E5 1 u u A L b 3 6 3. 167 72.633

_______ _ - - _ __ — _ _ A f' 1 h til’L *’ _ ^u__lwuaT i uj->;
♦ 
0

VaKI able C u L h F 1 c I E- fi T STD. E K K 0 R F TO REMOVE .
• 
•

( (. U >4 S" T A U T 0,0u'ju a J )
b / l . ! ■■ - ’ <) t ‘ * » + J ’ . • _ ' ? / *
T2 .s 2 . .j / 4 > i , x v . j / • ? .3 *• a i.i / . 7 U V •
I 3 2 i U2 *t VY I 7 « 3 6 + U J 1 . b 2 7 u, .
T 4 9 5 • 4 9 VV 7 S "I + '.‘i 9 7 • 3 A ♦ u J .bbbj »
6 2 6 - 2 • 4 ■? 9 v 9 e, - .j ; 7 • * .1,41 1 •
B3 / 1 • 2 t>.: U J i. 2 + ! 'J / e 3d to J e i> 2 H / •

8 1 . b L> u 0 J <? <.’+ o u _ 7.3ti+uu .0413 •
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To find the total sum of squares and degrees of freedom

SSR(S,t,b) = 3114.833 DFR(S,t,b) = 7

ssE = 363.167 DFe = 5

ssm = 3478.000. DFm =12

3. Form the appropriate hypotheses to test the 

significance of the experimental factors.

For this example there are two fixed factors, t and b, 

to be investigated. Therefore, two hypotheses are formed. 

To test the significance of the factor t, the hypothesis is

H0(t): t2 = t3 = t4 = 0

To test the significance of the blocks, b, the hypothesis is

Ho(b): b2 = b3 = b^ = 0

4. For each hypothesis'find the regression sum of 

squares and the degrees of freedom for the reduced model 

that assumes the hypothesis to be true.

For Hg(t) the reduced model contains the variables

S, b2, bg, and b^. The regression results for this model 

are shown on the following page.
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analysis of variance

_________________________ ■ _____D F S U jj 0 F S O U A R E 5_____M E A N.. Sj^.U. AR E
RE.ORESSlOh 223‘t.OUU S5b. biJd

____ RES I Ou AL 8 124 4 .J.IU 0 1 b 5j 5 -JO

JL

variable

V AR I a t3 L E s I rj L W U A T J U N »

COLPF IC I LN T STD. ERROR F TO REMOVE •

( C 011 s I A I j I U • L J U L) b J j ) »
S 2 9 • ti 6 6 6 q 6 V + u u 7.29 + 30 i . b o 2 a .
f> 2 6 b « 6 6 o 6 '> b. 3 + C; J I • 'j 2 + U i .4287 ♦
B3 7 6.J333J3I+UJ I »02+31 .3b69 •
o 4__________ b _______ I . 6 6 o 6 3 6 4*- U .J _______ „ I. . 3 2 + J 1____________ f_y_z_6.B___ •______

which yield

SSR(S,b) ~ 2234.000 DFR(S,b) != 4

For H0(b) the reduced model contains the variables

S, t^, tg, and t^. The regression results for this model 

are

ANhLYbIS Or" VaRIAhCE
OF 3 U fl u f So u A A fc 5 ML * S u u A R L

ci 1. u r. 1. ) „s I c* i'4 4 3 1 u 0 • 6 ci 7 7/7.167
R L b j L- J A I. ____ ______ 3 6 9.3 3 3. _ ___4 6. I 6/

V..A1 I E <*' J A 1 I U iM

V Aii I A r3 L E C u'e f- I- 1 C 1 E N I STD. ERROR F TO REMOVE e

♦

( C U N S T A N T J . 1 l- u i? Ci u )
• 

•

S 2 2 » U'JUUuu / +0 J 3.92+00 .2599 •

T2 3 2 . J 6 6 6 6 6 b + il 1 b • 5 b + 0 0 . 13.8773 •

T3 4 j . 9 6 6 6 o <_■ -3 + J 1 5 • 5 3 + U d 12.5663 •

T4 5 4.9999uvl+uJ 5 » 5 5 + U 0 • 8 1 2 3
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which yield

ssR(S,t) = 3108.667 DFR(Sit) = 4

5. Find the regression stun of squares and degrees 

of freedom associated with the factors tested in each 

hypothesis.

For the factor t, the calculations are

SSt " SSR(S,t,b) “ SSR(S,b)

SSt = 3114.833 - 2234.000

SSt = 880.833

DFt = DFR(5)t?b) ~ DFR(s,b).

DFt = 7 - 4

DFt = 3

For the blocks b, the calculations are

SSb = SSR(S}t,b) ’ SSR(S,t)

SSb = 3114.833 - 3108.667

SSb = 6.166

DFb - DFR(S>t>b) - DFR(g>t)

DFb = 7 - 4

DF. = 3b
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6. Form the analysis of variance table and make 

the appropriate F tests.

AOV .

Source DF Sum of 
Squares

Mean
Squares

F

Factor t 3 880.833 293.611 4.042

Factor b 3 6.166 2.055 .028

Error 5 363.167 72.633

Total 12 3478.000

Neither factor is significant at the 95% level of 

confidence.
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EXAI4PLE NO. 3

Type:
A 2 x 2 fixed-effect factorial design with three 

replications per cell and two missing values.

Source:

Dixon (3), page 550.

Problem:

In this example, two factors, a and b, are each set 

to two different levels and three response measurements 

are made m each cell. Two KicasurcmenLs are mrssxng.

The data for the experiment is

Treatment ' ^1 b2

al 5 6
3 5
* 7

a9 13 12z 14 10
15 -

Solution:

1. Express the model in terms of a full-rank 

matrix ccuation.
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The full-rank model for the experiment is

i. j k = S + ai + bj + ab.. + e. ., ij ijk
i = 1, 2

j = 1, 2 •

k = 1, 2, . . . . , n.. where

al bl abH = ab12 = ab21 = 0

nll ’ 2

n12 “ 3

n21 " 3

n22 = 2

The matrix representation of this model is

2. Find the total, error, and regression sums of

squares, and degrees of freedom.

The regression results for the full model are



65

analysis of variance____________________________________________________
uF SUM OF SnUiVReS MEAN SwUARF.

R L_GRL_S_SJ.ON 9 7 U . 0 J0________  .2/42.5(JU____
RESIDUAL t> 6»i J u u {.333

variables in equation

v a R i A t LE,COEF F I C l-LNT S _T_D,'_ ER RU R j O_. R E_ri 0 V E.

(Cons Fant u. J'Juu jij j j
s____________2________ 4 . Jl ________ 0 , 1 ti-a 1________2 H.buJ.j
A2 3 9.99V9 ,9'( + jj I’NS + JJ 89.9998
B2_________4 i • 9 9 y ? 7 9 o * u J  l.ruSTJ) 3.6UJU
A822 5 --4.99'/9793*UG 1.49+jO 11.2S3 j

To find the total sum of squares and degrees of freedom

SSR(S,a ,b,ab) = ”0.000 DFR(S,a,b,ab) = 4

SSE = 8.000 d17e = 6

ssT = 978.000 dft =10

3. Form the appropriate hypothes es to test the

significance of the experimental factors.

For this example there are three fixed factors, a, b, 

and ab to be investigated. • Therefore, three hypotheses are 

formed. For the interaction effect, ab, the hypothesis is

HQ(ab): ab22 = 0

For the factor a, the hypothesis is

H0(a) : a2 = 0
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Notice that this hypothesis also implicitly states that 

the interaction effect is removed. Whenever a factor is 

removed from the model, it also implies that all higher 

level interaction terms containing that factor are removed.

For the factor b, the hypothesis is

H0(b): b2 - 0

4. For each hypothesis, find the regression sum 

of squares and degrees of freedom for the reduced model 

that assumes the hypothesis to be true.

For HQ(ab), the results are

Ar. AL Yb is Of VAnlAtiCL
l)F 3 I'‘"I OF SwUaRL t MLA14 square

R £ (a E, b S 10 N 3 9 S S 0 <) u 0 3 1 A.333
i\’t. S i b U m L _______ 7 -____ .23.0ju __3.2b6

VARI

! 5| 1

Ln
i

2 
1

E. U A T I 0 it ♦ 
•

V A i A d L E C 0 L r F I C 1 Lhr S T U » E H R 0 r< f- 10 REMOVE .

(_CpjjS,TA yJ_________ U • J J.;ji u J J_______ )

b 2 5 . -1 9 y V '7 y -.1 J kJ i « G 7 + 3 J, 2 6 • 3 u 4 3 •

A2 3 Zeb v. S u S 0 J * JO F 4 1 . 0 8 () 9 e
B2 »5eUCiL-Uu.?2-0 1 1 • 1 7 <-U0 .1826 9
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which yield

SSR(S,a,b) " 955-000 DFR(S,a,b) = 3

For HgCa), the results are

    
AUALYblS OF VaRIANCL 
____________________________ 0 F 5 0 r1 0 F S u /i R £; b_____ H L a H| S Q U AJLL,

REGriLbSlON 2 b2UiUG0 41u»OUO
_____________ RESIDUAL_____________ 8______________ 158* 'J vi 3______________ 1 9.753______

   
VARlaHUES In l 0 U A TIU i j

V AR 1 AULL cuE FF I c 1 Lim I S TD . ERROR F TO R EH0 </E • 

________ LCuRSTAiJj_______ 5 « CUU.Jy-t3 v) . ___________ ____ o
s 2 9 .'99 99999 +Ju 1.99 + 3U 25.3165
B 2 M - 1 . 9 9 9 9 9 9 9 + J u 2 • 8 1 + U J, b U 6 3,_  •

which yield

SSR(S,b) = 820-000 ’ DFR(s,b) = 2

For HQ(b), the results are

A f. ALYS ]S OF VhRIAuCE
Dr SUH _UF SDU/aRlS ..Mt A’■J SsU/'RF

L 'j R L 3 5 I G .» 2 9 5 4« AU J 977.2011
_____________ I< i-,3 l.u.uAL_____________ 8 2.3 ..6 U0________________5 j  

VARIABLES 13 EOUATIUH

variable colFF iciehi siu. error f to keiiove

_ ( C 0 i J 5 1 A ;m T______________U_« J JudiJ J ,j 1 ________ _   
s 2 b«lV7?;v?»uu 7«68-3l
A 2 3________ l_ 1 aXj ZV V R-t-O-J________L*_D V ♦ JO_______ 9 o . ?/i 91
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which yield

SSR(S,a) = 954-000 DFR(S,a) = 2

5. Find the regression sum of squares and degrees 

of freedom associated with the factors tested in each 

hypothesis.

For the interaction effect, ab, the calculations are 

SSab = SSR(S,a,b,ab) “ SSR(S,a,b) 

SSab = 97O-° ' 955-° 

SSab = 15.0

DFab = DFR(S,a,b,ab) * DFR(S,a,b) 

DF„t =4-3 

DFab = I

For the factor a, the calculations are

SSa SSR(S,a,b,ab) “ ssR(S,b) " ssab 

SSQ = 970.0 - 820.0 - 15.0 

ssa = 135.0

Notice that the difference in the sum of squares between 

the full and reduced models yields the sum of squares due 

to factor a plus the sum of squares due to the interaction 

effect, ab. This is caused by the fact that the hypothesis 

Hq(3) implicitly includes the assumption that all interaction 
effects vzith tl.c factor a are also removed from the model.



69

For the factor b, the calculations are

SSb = SSR(S,a,b,ab) " SSR(S,a) " SSab

SS, = 970.0 - 954.4 - 15.0 b
SS, = 0.6b
DFb = DFR(S,a,b,ab) " DFR(S,a) ” DFab

DF, = 4 - 2 - 1 b
DFb - 1

6. Form the analysis of variance table and make

the appropriate F tests.

AOV

Source DF Sum of 
Squares

Mean
Squares

F

Factor a 1 135.00 . 135.00 101.25

Factor b 1 0.60 0.60 .45

Factor ab 1 15.00 15.00 11.25

Error 6 8.00 1.33

Total 10 970.00

, The factors a and ab are significant at the 99% level

of confidence
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EXAMPLE NO. 4

IZRe:

A three-factor, nested-factorial experiment with 

fixed and random effects.

Source:

Hicks (7), page 172.

Problem:

In this experiment, three factors, methods (m), 

groups (g), and teams (t) are investigated to find their 

effect on the number of rounds of ammunition per minute 

that can be loaded into a gun. The factors m and g are 

fixed and t is a random factor which is nested within g. 

The data for the experiment is:

Groups (g) 1 2 3

Teams (t) 12 3 4 5 6 7 8

M 
e 
t 
h 
o 
d 
s

(m)

1
20.2 26.2 23.8

24.1 26.9 24.9

22.0 22.6 22.9

23.5 24.6 25.0

23.1 22.9 21J

22.9 23.7 23.5

2
14.2 18.0 12.5

16.2 19.1 15.4

14.1 14.0 13.7

16.1 18.1 16.0

14.1 12.2 12.7

16.1 13.8 15.1
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Solution:

1. Express model in terms of a full-rank matrix 

equation.

The model for the experiment is written as a full­

factorial model. After the sum of squares are determined, 
\

some of the interactions will be combined to account for 

the fact that the t is nested within g.

The full model is

Yi 41,1 - S + m. + g. + t. 4- mg. . + mt.. + gt..•'i.jkl x J k °ij ik & jk
+ mgt. .. + e. 6 ijk ijkl

i =: 1, 2

j = 1, 2, 3

k = 1, 2, 3

l = 1, 2

m1 = gx = tj, = 0

following page.

mg. . = mt.. =6ij ik gtjk = mgt ==ijk 0 when i -• 1

or j = 1

or k = 1

The matrix representation of the model is shown on the
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20.2 
24. 1
2 6.2
2 6.9
23.8
24.9
14.2
16.2
18.0
19.1

'12.5
15.4
22.0
23.5
22.6
2 4.6
2 2.9
25.0
14. 1
16.1
14.0
13.1 

"1 3.7
16.0
23.1
22.9
22.9
23.7

’2 1.8'
2 3.5
14. 1
15. 1
12.2
13.8
12.7
15.1

ICOOCOOOOOOCOOOOOO 
10000000000000000 0 
110000000000000000“ 
110000000000000000 
1010 C 0'0 000 0 0'00000'0“ 
101000000000000000 
100100C00000000000 
100100000000000000 
110100100000000000 
1101001ooooooooocoj_ 
10110001000000000'0 
101100010000000000 
100010000000000000' 
100010000000000000 
110010000010090000 
110019000910000000 
101010000001000000“' 
101010009001000000 
100110001090000000 ’ 
1001 10001000009000 
110110101010901000 
110110101 0 wool 00 0 
10 11 100119010 0 9'1 no ' 
101110911001000100 
10900100000009000 0 
10 C0 0 10 0 0 0 0 0 u 0 0 0 0 0 
110001000000100000 
110001000990109000 _ 

To 1 00 10009090'1000 9 " 
101001009000010000 
19010100010000O090 
100101000100000000 
110101109100100019 
110J_0 1100 100100010_ 
1911 91 01 0’109 9'1000 1 
101101019100010001

s

fc3

m2

§2

g3 

mt22 

mt23 

mg22 

ms23

gt22 

^23 

gt32 

gt33 

mgt222

mgt223

mgt232

mgt233



73

2. Find the total, error, and regression sums of 

squares and degrees of freedom.

The regression output for the full model is

analysis uf VARIANCE
____L-f SUM Oj;' S M R £ S H I- A N S u U A K E 
REGRESSION lb Ml7S»1b7____________ 7 8 7 .& U 9
R E S I i) u A L I F 4 1.5 1 2 ♦ 3 1 1

V A R 1 A b L L 3 I rj E N U A T I U N ♦ 
e

V A f. I A .1L L coefficient STD. ERROR F TO R E i-i OVE •

__________ (.cyjiSTjv T_ ____ 0 • U M L# U cj U ) e

S ? 2.2 1 'f 9 -/ b / * j I 1.0 7+0;,. 4 2 4.6 ti 7 4 «
. T 2 3 4 . *H?Cila I r.bn-d 1 .52 + 96. b , 3 7 H K e

T3 4 2 « 2 l u i, 1 3l +uli 1 • 5 2 * G11 7 . r> 9 q 7 .

nz s - 6.9 4 9 9 9 1 + 0 u _J.52*uU 2 ^..V!i'i6_ .
G2 b 6 .uui: 1 1 7 1 ”1' 1 1 .52 + 00 . 1 5 b K •
G 3 .. J ___U . .j.. v 13J2 u_i_ ____  1. • 5 Z + U O .3127 ‘
h I 2 2 b - 1 .l,bw 0u3 1 ’•■uu 2 e I b + o u . 2 3 8 a
MT 23 _ - 3 • 4 S i. ' a '_> 6 * in. 2 • 1 b + l- 0 2.57b/, .
f- b 2 2 111 - / « L.J'--] I r ' 2 • 15+7 u.i . 1 C 6 !.
K G 2 3 ... 1 1 - 9 • b ■- J u b 2 1 - L' 1 2 • i b + u ii . 1 9 3 3___
G T 2 2 12 "•3 c *?- u f. U V 1 Li d 2"15+00 2.7271
GT23 13 - 1 « OC -ji.i J . 2 « 1 b + u l.l . 2 ! 6 4 ,
G T 3 2 i 4 - ‘•1 « 1 1 . 16 O •* ii d 2 • i b + 011 3.6376 «
G T 3 3 IS -2 . jLol ...9 7 <■ u.<. 2 • i j 1.49/1
M G T 2/2 16 ] • 1 b , * 'J 1 b + • । j 3 . () « + -J a .14 3 1
|-,G I 223 1/ 2 « L*' i. u A 4 * i i u 3 e f) 4 + Ui) ,4328 ♦
M u I 2 3 2 1 V- - 1 . Sb./uu: j 3.t<4 + J,, .19 7 2
riGT2 33 IS 2.o- - • _ u-3 2 * Ju 3.04+00 .7314 .

which shows that

Sl’’l(C,m,g,t,mg,nit,gt,mgt) 14175.167

SSE = 41.591

SST = 14216.758
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and

DFR(S,m,g,t,mg,mt,gt,mgt) 18

DFe = 18

DFt = 36

3. Form the appropriate hypotheses to test the 

significance of the experimental factors.

Still considering the problem as a full-crossed 

factorial model, the following hypotheses are used to 

test the significance of the three factors and their 

interactions.

The mgt interaction includes the random factor t, 
2

^0mgt “ ®

This random-factor hypothesis is different from a fixed- 

factor hypothesis but since the random factor is assumed 
2to be N(0, cr ) x 5 mgtz the reduced model is still developed by 

setting all the terms containing mgt to zero.

The mg interaction term contains only fixed effects so 

H0(mg): mg22 = mg23 = 0

The mt and gt terms include the random factor t, so
H0(mt): ^ = 0

H0(gt): o2gt. = 0

The m and g factors are fixed so

H.Q(m) : m2 = 0

H0(g): g2 = g3 = 0



The t factor is random so

Ho(t): crZt = O

4. For each hypothesis, find the regression sum of 

squares and degrees of freedom^ for the reduced model thr■ 

assumes the hypothesis to be true.

For HQ(mgt) the result is

U F V A I, 1 A h C l

M E A M 5IjF G u n U F b U U A R V 5
'< r. G h L 5 S 1 U! 1 1 4 I 4 1 7 j = C: 6 IU12.1 4
iX L: b 1 U U A L 2 2 4 b , 7 b 2 2 . 1 /. a

— -
V A t< 1 n b L E S 1.1 LUU A F I

— *

V A n I A d L l CuFFFiCltlil bl U . LKKOK b TO KEI10VL e

( C •? ri b f i, T 'J t i. '.i l, >_* U' L J ) -

S 2 • 2 3 -i A 4 3 2 + J 1 v-av-ui 6O6 . ti 4 .j 9 »
1 ? 3 A . 3 3 .! 3 i j ■) + .: rj * 1 * 1 9 + j j 1 3 .b/3i t
1 3 'i 1 • « 3 3 3 '* * l, u 1 • i 9 * U J 1 . 4 b .J 2 «
*‘2 _____ b - 7 • 3 6 -3 3 4 * -j 3 M()9 + .ju 4 6 .8715 •
G2 6 7.bP1Oob/-u2 1 . 1 9+00 .004 0 »
G 7 6 • 'H #> 7 y y 2 •• u 1 I- 19 + ■.-•/ _____ ,29j6 *
:;t 27 <, - 1 . s 1 o L .■> 9 6 * 2 1*19+30 . 8 o  2 •
-IT23 7 - I • 7 1 b 6 / if + ('.i 1 - 1 9 + •>: i 2 . 5 9 3 :T
Mu22 1 ■_ 3.4777/51-31 1 . 1 9 + C J » 0 S 6 5 •
Mti23 1 I _ - 5 • 3 3 3 3 b 6 3 ” u 1 1 e 1 9 + U u___________ .2 00 6 e
u r 22 it *• 2 • 7 7 .> i. A 'i + tj J 1 « 4 b + G J 4 .1648 ♦
G T23 13 -7.733ti17o-L6 1•46+LU . 0 013 3 e
GT32 1 « - 4 . / 7 b J J 6 6 + J ci 1 • 4 6 + u O 1 u . 7292 e
GI3 3 IE - 1 . Zb 1 +!JG 1 • 4 6 + UJ $7 353

which shows that

SSR(S,ia^ = 14170.005

DFR(S,m,g,t,mg,mt,gt) 14
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For HgCmg) the result is

A hl AL YS I Ji 0 F V ARI A N C E
DF

Rl G H LS S LQij______ 1 2 .
SUM OF 53UaRfS

14103.819
MEAN SQUARE 
I I 8 1.7 3 b

RESlDJAL 24 4 7.939 1.997

------------- — ------------- ------------ J/.A 'llA B l-AJ__ 12 ■1 _E 0 U A T 1 0 N_______ _ •

VM n I A 3 __________ CUL FF I C I L NT a T 0 . E h R U R f TO
t

kE MO VL •_______
•
«

( C J ,J b I A T u . V u .J . ) «
5 2 2 .24249-3 0*31 6 • 1 6 ~ J 1 7 h 5 .212 7
T2 3 4 »4333437+C^ I . 1 3 * ■ JIJ 1 4 .7395 »
T3 4 1 .43334b2+uJ 1 » 1 5 * J') I .5428 .
M2 5 -7 .4999761*3v d . 1 6 - J 1 0 1 •4615 •
G2 6 2 • br. JU 964-J 1 9.99-J1 •0626 .
G 3 7 3 * / b ■ J U o J 9 ” "j I 9.99-jI .14uy ,
MI 22 -3 -1 • l!r>6o96*JJ 1 « 1 6 * J D .9364 ♦
Ml 2 3 ‘7 -1 « 9 1 6 6 7 J* J J 1 • 1 S + JU 2 .7587
GT 22 1 2 -2 » 9 7 3 0 j n □ * .j 2i 1 • 4 I * ■ J; .8309 .
GT 23 I 3 -9 .7234392“u6 1 •41 *Ju . U 3 Q J .
GT32 14 -4 • 7 7 b:j u 6 6 * l j 1.41 *'JJ 11 .4147
GT33 lb -1 . 2 -> -j j o 1 * j J i .4 1+Ju • 7o22

which shows that -

SSn/n „ „ = 14168.819R(S,m,g,t,nit,gt)
DFR(S,m,g,t,nit,gt) = 12
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For HgCmt) the result is

A N A L 1 S 1 b OF V A K 1 ANCE
ub . sun OF bOUARES MEAN S (j U A R E

R E G L 3 S 1 0 N 12 I 4 1 6 -f. 4 4 6 1 I 8 J . 3 7 U
R L S 1 D U A L 24 52.313 2.180

Vari AhLL3 I KUUrt I 1 Ulj
•
•

VARIABLE C 0 h r F 1 C 11- i-l T
\

5T0. ERROR f TO
e

R E <■! 0 V E •

( C 6 (■!a r /m-i i
2

U S U Li L, U 3 wi j
• 2 9 9 V L d * u 1 8 « 5 2 ” u 1 72 1 . 7635

♦ 
•S 2

T 2 3 3 .375Uu91*mJ 1 • 0 4 * u1 i 1 3 . 7 7 7 a •
T3 4 4 . 7 5-j 1 u i 7 "J 1 j ♦ 11 i- U i J . 2ii/ 0 e
M2 1 J » u . -1 4 7 9 9 6 2 + <J b ♦ b 2 " J 1 9i> • 2/37 e

G2 b 7 .bbl 1 u 1 8 “ !"l 2 1 • 2 1 ♦ 0 0 . L. 03 9
G3 7 6 . 4 11> 7 o i. b - J I 1 • 2 1 + it u . 2 b 3 4 J
MG2 2 1 u 3 . 4 9 9 9 7 3 3 " u 1 1 • 2 ) *GCL . fj 6 4 3
I; ti 2 3 1 1 15 .3333acs2”iii 1 • 2 1 * u U . 1 957 •
G T 2z 1 2 -2 e y / 5 0 L- b 5 * j L 1 . 4 U + U u 4 . Ci b!l 5 e
G T23 J 3 -9 •739^^54-06 1•48+00 . Juuu *
G T 3 2 1 4 ■M ^4 • 7 7 b 11 j 6 7 + J J 1 . 4 ti + J 1 1 V, . 4 b F1 5 e
GT 33 1 b -1 • 2 3 J u v n 1 * (J L ) • 4 <•> + u v .7169 ■

which shows that

s^R(S>m,g,t,mg,gt) = 14164.446

^RCSjiUjgjtjmgjgt) “ 12
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For HQ(gt) the result is

analysis OF vAi< 1 akcl
___ ___________ijJ S dV f" S vv U K 21S HL A N S U A i< Fl 

hEGRLSSlON lu__________' 141^3.523

RESIDUAL 26 74.239________ 2.317_____

\
V AR I AbuES luEGUATIOh •

VANlArfLL C Ot I-F i C I E i-i 1 STD, f.RriUK r TO rxLHUVL

( COUSTA^T
» 3 3 9 1 M j d +

o 3 . i
1

)
b . 8 -j” 1 6 9 T o 4 b 3 62 2

T2 3 1 fb5v,i.jijD* J u 9.6 4-1,1 3.6 4 b j
T3 ‘t I , Li I e> fe 7 2 o * t.» v 9 e (i 9 ** j 1.10 0h

-J-12 5 - 7 .4383834+ i j 3 8.3 o 3 6
G2 6 9 • 18 6 6 17V" 1 9.6 V ” I.: 1 .89 49
G3 7 * i • 4 6 t> fc :> "2 3 * v! Li 9 • 6 V - j J 1.9672

M T 2 2 8 1 * 1 1 6 6 O $ 6 + G u 1 . 37 +-JJ . 664:j
N T 2 3 9 1 .4 1 667 1 + d J 1 . 3 7 + u i . 9 o 6 2
A. G 2 2 1 * 3 . 'i '* i S / '1 ; •• tj i f • 3 / . L 6 b /
F. G 2 3 J 1 b < 3 3 3 3 .> 6 ti " Ct 1 1.37tu.J .ISIS

which show that

SSR(S,m,g,t,mg,mt) “ 14143.520

DFR(S,m,g,t,mg,mt) = 10
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For HqCu) the result is

ANALYSIS Of- V A R I A C L
pF SUil Up SUUARf- S nlan square

REPRESS ION 9 ' 13511.Jud 1 50 t •
R l S 1 u ij )\ L 27 705.-Ibl 26 • 1 2ti

V
V A K I A h L L 3 I 4 EQUATION

V A R 1 A b L E —— C U t F r 1 c 1 t i' i F ___SID. ERROR F TO RE >■10 v L
• 

e

(CuUST A.H U » GO'.ik. j j ) e
5 _ __ 1 .3A 74 9 911 2 • 56*!)u _ 53.3922 t
T2 3 3 » b 7 13 -j -i n 1 * ll J 3 • 6 1 ♦ -J J 1.14 9-4 •
T3 q 4 ♦ 7 5‘JLV 2 J"u 1 3.61+jJ .0173 ♦
G2 6 2 . 5 j u j o 7 1 ” J 1 3 « 6 1 + J 0 . U J 4 a *
G 3 7 ____ 3 .♦ 7.5 LU/J..?" IL________3.6,1+OQ.. ______ _____ « (J 1 .1 B •
G 1 2 2 1 2 -2 . 973ii.j74*.lp 5 • 1 1 * u J .3337 e
GT 2 3 1 3 -b . 6 3 3 7 / 6 ti ” iJ 6 bell +,11 . OJUO •
GT32 I ‘i -H « 7 7 5 u J b 6 * j L 5 » 1 1 + J .Ji .6727 •
G T 3 -J 1 L> -I « 2 b „ , i J 7 i J ) _ b » 1 1 + :JJ . J .3 V l>

which shows that

SSR(S,g,t,gt) ’ 13511.308

^(S.g.t.gt) * 9
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For Hg(g) the result is

ANALYSIS OF" v A R I A NC c.
______________ _______________________ i)F______ SUM OF SUUAKES 

REGRESSION__________ 6____________l 4 1 2 fc>«2«1
_____________ RESJ p J AL__________ 30_________________ 9 j . 4 7 8

MEAN SNUARE
2 3 5 4 « 3 8 u

_ __3».QL6_____

variaelLS in E u' U A I I U rj •
e

VaRlAbLE coefficient STD, ERROR F TO k E i'i 0 V E •

( C 0 N S T A . I 0.0 J J U J .1 )
• 
•

S 2 2.26^332 / + ul 7 .□9-01 1019.1249 .
T2 3 1 . 8 b j :j j S 4 + u a 1 • U 3 ♦ 'J o 3.4044 .
13 4 l»!3 166/2i>*uu 1 • 3 ■: ♦ u d 1.U282 .
02 b - 7 » 4 9 ? 9 / 8 i 0 ,j 1 bb.9b29
H T ? 2 9 - 1 » 1 I 6o69s +JC< 1 .42*00 .6202 •
KT 2 3 ? - 1 • V 1 6 6 7 u -j * j 1 • 4 2 * j a ____ ___ j. ♦ b 2_7 1___ • —

which shows that

ssR(S,m,t,nit) = 14126.281

^R(S,m,t,mt) ~ k
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And finally, for HgCt), the result is

AUALYSIb UF VARIASCt
______________________________________Dt

REuRLSSlON 6
ij L 5 I U u A L____________3jJ

5 Uli UF 5uUaRE^S
14 125. 1o 7

? 1 . 5 7J

HL A il. 5:jiU A Rt
2364.19b

3.?.U5 2

____________________________________________________________________________________ *.
V A R I m Li I. L 5 I f । l’_ U U A T 1 U N .

___ __________________________________________ ______ ___ _  ________ ___________ __ _ _
VARlAdLL CULFFlClEHr 5Tu. ERROR c TO REHUvL .

( C 0 ■'! S I" A i-l T U « D J U C U11 1 )

5 2 2. ') 3 'f 9 ) 9 -1+ j 1 /• 13'0 1 1165.497,)
M2 (.j • 6 o 4 4 9 9 7 6 2 + U j __ l_e J I * •) ) _ 7 « 1 7 7 4 •
C-2 h -9 . ! 6 o i A h *" i j 1 1 • J 1+ J0 =42 5 9

_G3 7 - 1 . J b h 6 3 2 1 * J j i < 01 * J J 1.6337 «
11G 2 2 1; I 3 . -t 9 ') 9 ) 7 6 ~ j 1 1 f 43*J4 .U6a2 •
UG23 11 -5 • 333 33o9-iJ 1 • 1 •43* Jj .13 9 6

which shows that

ssp7c m n = 14125.187 R(S,Tn,g,ing)
DFR(S,m,g,Tng) - 6
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5. Find the regression sum of squares and degrees 

of freedom associated with the factors tested in each 

hypothesis.

For ragt

ss = ss * ssmgt R(S,m,g,t,mg,mt,gt,mgt) RCS^jg^^g^it^t

SSmgt 1^175.167 - 14170.006

ssmgt = 5-161

DFmgt = DFR(S,m,g,t,mg,mt,gt,mgt) " DFR(S,m,g,t,mg,mt,gt

DFmgt =18-14

DFmgt " 4

For mg

SSmg = SSR(S>m>g>t.>mg>int>gt>mgt) ~ SSR(S}m,g,t,mt',5 "

- SS _mgt
, SS = 14175.167 - 14168.819 - 5.161 mg

SSmg = 1.187

DFmg = DFR(Ssm,g,t,mg,mt,gt,mgt) " DFR(S ,m,g, t,wt. ?.•

- DF mgt
DFmg =18-12-4

DFmg =2
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Similar calculations for mt and gt yield

SSmt - 5.560

= 2 mt
SS^ = 26.486gt
DFgt = 4

For m

SSm = SSR(S,m,g,t,mg,mt,gt,mgt) " SSR(S,g,t,gt) 

ssmgt * ssmg " ssmt

SSm = 14175.167 - 13511.308 - 5.161 - 1.187 - 5.560 

SSm = 651.951

DFm “ DFR(S,m,g,t,mg,mt,gt^mgt) - DFR(S),g,t,gt)

~ DFm„,. - DFm„ - DFmgt mg mt
DFm = 18 - 10 - 4 - 2 2

DF = 1

Similar calculations for g and t yield

SSg = 16.052

DF„ = 2 o
SS = 12.773

DF = 2 t
Up to this point the problem has been treated as a 

fully-crossed factorial experiment. To correct for the 

fact that t is nested within g, the following terms are 

adjusted to include the interaction terms.
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For the factor t

SStk(j) - sst + ssgt 

sstk(j) = 12.773 + 26.486 

sStk(j) = 39.259 

DFtk(j) ~ DFt + DFgt

DFtk(j) =2+4

DFtk(j) ° 6

For the factor mt

= SSmf. + SS _ mtik(j) mt mgt
SSmf. = 5.560 + 5.161

S3ml. = 10.721mtik(j )
DFmf.i /.x = DFwf- + DF *- mr-ik(j) mgt
DF mtik(j) =2+4

DF-,,. = 6mtik(j)

6• Foriu the analysis of variance table and make 

the appropriate F tests.

When the analysis of variance table for this problem 

is formed it will include an expected mean squares (EMS) 

column. Since this problem has both fixed and random factors, 

the appropriate F tests are determined from the EMS quantities.



AOV

Source DE Stun of
Squares

Mean
Squares

EMS F

mi 1 651.951 651.951 9 9 2<T + 2o+ 18cr e mt m 364.830

gj 2 16.052 8.026 2 9 2de + 4crf.z + 12cr, e L g 1.227

.^(j) 6 39.259 6.543 cre2 + 4cr. 2 2.831

mgij 2 1.187 0.594 2 , - 2 , , 2<7 + 2cr . + 6<Tm_e mt mg 0.332

6 10.721 1.787 2 . Ar, 2 + 2cr„x.e mt 0.775

Error 18 41.591 . 2.311

Total 36 14216.758

The factor m is significant at the 99% level of confidence.

oo
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The four preceeding examples demonstrate that widely 

different types of problems can be solved by the one con­

solidated method of regression analysis of full-rank models. 

The fact that the solution method is the same, regardless 

of the orthogonality of the problem, has both advantages 

and disadvantages. For nonorthogonal problems, it is a 

great advantage since the experimenter need only have one 

regression routine to solve any type of analysis of variance 

problems. However, if the problem to be solved is orthogonal 

it can usually be solved in a short time with only a desk 

calculator by the traditional sum of squares method. There­

fore, the main benefits of the full-rank model and regres­

sion technique are realized when solving nonorthogonal 

problems. - . .

Most of the work involved in- using a standard regres­

sion package for experimental design problems is concerned 

w7ith the following four items.

1. Writing the full-rank X matrix for the model.

2. Generating the commands to include or delete 

variables for the regression calculations.



3. The addition and subtraction of regression quan­

tities to find the sums of squares and. degrees of freedom 

87

associated with the experimental factors.

4. The division required to compute the mean squares 

and F ratios to complete the analysis of variance table.

To demonstrate how a regression routine might be modi- 
\

fied to more efficiently handle analysis of variance pro­

blems, the program, ANOVA, was written. It consists of a 

regression routine with a front end that converts traditional 

experimental design data to the full-rank form and a back 

end that outputs an analysis of variance table. ANOVA is 

described in Appendix B where the four example problems 

of this chapter are solved with the ANOVA routine to der'on- 

strate how it simplifies the regression procedure.



CHAPTER V

CONCLUSIONS

The advantages of the full-rank model formulation 

and regression analysis of experimental design problems 

are as follows.

1. The approach is completely general since any 

design model, regardless of orthogonality, can be written 

as a full-rank model and solved by regression analysis.

2. The full-rank model'is easily formulated since 

the terms of the model have physical significance to the 

experimenter.

3. The method eliminates the task of reparameter­

ization since the full-rank model always leads to a system 

of normal equations that have a unique solution.

4. The analyst needs only one computer program, 

a regression routine, for all his analysis of variance 

work.

5. Regression analysis codes are available at almost 

all computing facilities.

The disadvantages of the technique are as follows.

1. Orthogonal problems are more easily solved using 

a desk calculator and the traditional sum of squares 

method.
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2. The number of variables that a regression code 

can handle may limit the number of factors that can be 

tested for their effect on the response variable.

3. The standard regression codes leave the analyst 

with several computations to make, manually or with another 

computer run, prior to the construction of an analysis of 

variance table.

4. The regression calculations cannot be done man­

ually except for small problems that could be easily 

handled by the traditional methods.

The first disadvantage leads to the conclusion that 

the regression technique is profitable in terms of time 

and effort only for nonorthogonal problems. The second 

and third disadvantages could be overcome by a specialised 

computer code such as ANOVA, to facilitate the solution 

of analysis of variance problems. The fourth disadvantage 

is lessened by the fact that the analyst should use regres­

sion only for nonorthogonal problems which are difficult 

to solve manually by any method.
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In summary it appears that regression analysis is 

well known to be a powerful and general solution method 

for experimental design problems but its application has 

been retarded by the additional work of preparing the 

problem for the regression calculations. The full-rank 

formulation of experimental design models eliminates this 

task and makes regression a much more desireable solution 

method for analysis of variance work.
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APPENDIX A

BMD02R Input Data For Examples of Chapter IV

The following pages show the listings of the

BMD02R input cards for the examples in Chapter IV.



PROBLM UNEQAL 25 6 2 5 YES
LABELS 
(F10.4,

2S
70F1.0)

312 4y3 . 61 4 616

83.
85.

10000
10000

• 84.
85.

11000
11000

85.
86.

11000
11000

86.
87.

11000
11000

86.
87.

10100
10100 - —

87.
87.

10100
10100

88.
88.

10100
10100

88.
88.

10100
10100

88.
89.

10100
10100

90.
89.

10100
10010

90.
90.

10010
10010

91.
90.

10010
10001

92.
SUBPRO

10001
1 YES

CONDEL
SUBPRO

33333
1

*
YES

CONDEL
FINISH

31111

Input for Example 1
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F fNTSH

PROBLM I BLOCK 12 8 3 7 YES
LABELS 2S 3T2 413 . 5T4 6B2 7B3 8E
(FlO.At 70F1.0)

2. 1000000
20.. 1010000

' 7. 1001000
32. 1100100
14. 1010100

3. 1001100
4. 1000010

13. 1100010
31. 1010010 »

0. 1000001
23. 1100001
11. 1001001 \

SUBPRO 1 YES
CONDEL 3333333
SUBPRO 1 YLS
CONDEL 3333111
SUBPRO 1 YES
CONDEL 31 11333

Input for Example 2



Z4-M-

PROBLM 2X2MVL 10 5 - 4 4 YES
LABELS 2S 3A2 4B2 - 5AB22
(FLO.4, 70F1.0)

5. 1000
. 3. 1000
13. 1100 '
14. 1100
15. 1100
6. 1010
5. 1010
7. 1010

12. 1111
10. 1111

SUBPRO 1 YES
CONDEL 3333
SUBPRO 1 YES
CONDEL 3331
SUBPRO 1 Yes
CONDEL 3311
SUBPRO 1 YES
CONDEL 3131
FINI'SH

Input for Example 3
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FINISH

PROBLM NESFAC 36. 19 8 18 YES 1
"'"-LABELS 28 31 2 41 3 5 M2 6G2 ZG3 8M1

LABELS 9MT23 10MG22 11MG23 12GT22 13GT23 14GT32 15GT
LABELS 16MGT222 17MGT223 18MGI232 19MGT233
(F10 .4t 70F1.0)

20.2 ICOOCOOOOOOOOOOOOO
24. 1 100000000000000000
26.2 nooooooooocoooooo
26.9 110000000000000000
23.8 101000000000000000
24.9 101000000000000000
14.2 100100000000000000., -
16.2 100100000000000000
18.0 110100100000000000
19.1 110100100000000000
12.5 101100010000000000
15.4 101100010000000000
22.0 100010000000000000
23.5 100010000000000000
22.6 110010000010000000
24.6 110010000010000000
22.9 101010000001000000
25.0 101010000001000000
14. 1 100110001000000000
16.1 100110001000000000
14.0 110110101010001000
18.1 110110101010001000
13.7 1011 10011001000100
16.0 101110011001000100
23.1 100001000000000000
22.9 lOOOOlCOOOOOOOOOOO
22.9 110001000000100000
23.7 110001000000103000 - -
21.8 101001000000010000
2 3.5 101001000000010000
14. 1 100101000 100000000
16.1 100101000100000000
12.2 110101100100100010
13.8 110101100100100010
12.7 101101010100010001
15.1 101101010100010001

SUBPRO 1 YES
CCNDEL 333333333333333333
SUB PRO 1 YES
CONDEL 333333333333331111 •
SUBPRO 1 YES
CONDEL 333333333311111111
SUBPRO 1 YES
CONDEL 333333113333331111
SUBPRO 1 YES
CONDEL 333333331133331111
SUBPRO 1 YES
CONDEL 311333113311111111
SUBPRO 1 YES
CONDEL 333133111133331111
SUBPRO 1 YES
CONDEL 33331 133111111111 1

Tn-nnt- Vvflmnlp A



APPENDIX B

ANOVA Description

The routine ANOVA was written to demonstrate how the 

analysis of variance calculations might be performed 

automatically as part of a specialized regression routine. 

The ANOVA user provides as input the following:

1. Number of factors.

2. Number of observations.

3. Number and identification of factors that are 

blocks and have no interaction with other factors.

4. Data for the problem consisting of a response 

measurement and the levels of the factors ossocl.atc'd with 

the response.

The program then does the following:

1. Builds a" full-rank model of the experiment as 

described in Chapter III.

2. Finds the total, error, and regression sums of 

squares and degrees of freedom for the full model.

3. Forms a full-rank reduced model for each possible 

factor to be tested (up to three-level interactions).
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4. Finds the regression sum of squares and degrees 

of freedom for each reduced model.

5. Finds the sum of squares and degrees of freedom 

associated with each factor.

6. Computes and outputs'an analysis of variance 

table.

There are several limitations to the program that 

could be eliminated by additional programming effort.

First of all, the program is limited to 150 observa­

tions and a combined total of 100 single, two-level inter­

action and three-level interaction terms. It is reasonable 

Lu assuiue that this problem could be overcome by transfers 

between core storage and disk or drum storage units for the 

manipulation of larger matrices.

Secondly, the analysis of variance table generated 

by ANOVA assumes that all factors are fixed. Therefore, 

the last column of the table provides the F ratio between 

the mean squares of the factor and the error mean squares. 

To be complete, ANOVA should include an algorithm that 

computes the correct F ratio for fixed or random factors.
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The third limitation is that the program treats all 

problems as fully-crossed factorial problems. Therefore, 

for problems with nested factors, some of the sums of 

squares and degrees of freedom must be manually combined 

to obtain the proper results for nested terms. An algorithm 

to combine the appropriate interaction terms prior to the 

printing of the analysis of variance table should be included 

in a program of this type.

In spite of. the previously described shortcomings, 

the program appears to be a useful tool for analysis of 

variance problems, especially ones with nonorthogonal 

designs.

The following pages contain a listing of ANOVA and its 

subroutine HYPOTH, the input data for the examples in 

Chapter IV, and the ANOVA results.for the examples in 

Chapter IV. The results agree xvith the BMD02R solutions 

except for Example Number 4. ANOVA treated it as a fully- 

crossed, fixed-effect, factorial design, so the sums of 

squares and degrees of freedom must be appropriately com­

bined to account for the nested factor, t. Once these 

quantities are computed, the analysis of variance table 

would have to be manually completed.
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Y( l* c * * f * * * * * Iv., 1), X( 15''-, ir.O) , X4( 150,1 C?) , XTXdOO, 100 f, 81(1,100) , 
1LCVEL( 10),rjLFVFL( 10),;siC0L(100),SS(7,7,7) ,N0F(7,7,7) ,ICCL(1?D), 
1 ItiL'JC< ( 6) ,IC3^("1CC)

132 F3xv| AT (‘31'2 ) '
IF(\bLuCK .EJ. G)GO TO z
REAU 101, ( InLUCrd I ), I =1 rMBLOCK)

13 1 FGR',1 A l ( 4^ 12 )
2 MFAC1=NFAC-1

 ^FAC2^r;FAC-2  
M = 1 " " ■“ ‘ '
■ • = 7

D3 l=l,i\F/C
3 ILcV EL ( I ) =2

JO A 1 = 1, k: BS "
A X ( 1, 1 ) = 1 . 

C '
C <EAl) 1)A1A
C '

5 •< t_ A J ( 5 , 1r' z ) Y ( : J, 1 ) , ( L E VF L ( J ) , J =1, MF AC )
H 2 FJRv,/a- ( f-1 ' . r , 35 I ? >

 
c TVi'Eh "s'l'iOL t -'TaCtor i mTTF x" and~'ls matrTcES-
r

x l=l,MFAC
IF (LEVEltl) .GT. MLtVELI I) )NLEVELI I)=LEVEL(I )
IFILlvEK I) .-a. DJJ TO b
i c:;_ t •!) = ii■ j ) • ■» Lc vfl (i) v io:>__

' i = -i -1
)'.) A ICHK =1,'11

f 11 ' r.: ;l( v ) .E;. icti. (ichx- d i/j to 7
X I x , ) — 1 •
-1 = X + 1
33 T? E   

7 X < \, I C nX ) - 1 .
L J ■J T 1'1 0 L
If ( ( ,FAC .r«. 1 ) .03.( Mi LOCK .CO. MF AC 1) )GO TO 19 

r
C lMTFP T.-D-FACTOR 1NTFRAC TI CM TERMS INTO X AND d MATPICuS

__ C_______ ____  _ _______ "_____ ______ __ _____ _______________  
DO 1'3 I = 1",NFAC1 ~_____ ‘__________ "___________ . - - .

13=1+1
03 12 J = I J,NFAC
IF(XHLOCK .CJ. 0)(rJ TO 10
DO , I b=1,MLLDCK

9 IF( { I .cJ. IGL )C\( Id) ) .OR.I J.EQ.IBLOCKfIB) ) )GO TO 13
1? I F( ( LEVEL ( I ) .FQ. 1) .0:<.(LEV“L( J) .EQ. l))30 TO 13

I C jL ( ) = 1*1 1+ J:-= 1 ''+Ll VE L (I ) * l'"u+ LEVEL ( J ) * 19
DJ 11 IL Ox = 3,’I

11 3 . . . M ) j. lu3L( Li 1 TO 12
' ( i r ) - 1 «
'.'I - Vt + 1
f' ■

12 X(N, 1Cm\- 1)=1 .

N^"J5= 1
*" C

0 READ SIZE OF PPObLEM  
C •

1 RtAD( 5,1 OO, L"W=47 )\F A2 , M38 S, N3LOG K
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13 Cf)\TI\UF.

It-iNFAC .EC. 2)GU TO 19

C tNTEF TH^EE-FACTO^ INTERACTION TERMS INTO X AND B MATRICES
C 

DO 13 I=1,NFAC2
 I J=I + 1  

DO 19 J = IJ,NFAC"1 ’ ' ’ ' — ;
JK=J+1 
DO 19 K=JK7NFAC 
IFtNBLUCK .TO. 0) GU TO 15 
DJ 19 IB= 1, NBLOCK

19 IF{ ( I. EG. I BUCK! IB ) ) . fiQ . (J . E . I BL UC K( I B ) ) .OR. (K.EQ.IBLOCK(IB) ) ) 
13a TO IB

 15 IF( { LEVEL ( 1 } .^ 1. 1 ) ,L)R . (LEV^LI J) .EQ. 1 ) .OR. (LEVEL (K) .EG. 1) ) GO TO 1
'“fClL ( M')= lv 1 K) ' .<*J^lf'3'r+<*10'.)+LFVEL”d )* 1/'O + LE Vt: L f J ) 1 3 + LEVt L ( K 

Di) 16 lCHr.. = 3, 1 
lu I F( IC3L (li ) .E j . ICT L( ICHK-1 ) )G3 TO 17 

X { N , ) = 1 . 
'-1 = -U 1

 G J T J 1   
17 X (\UC OK-1) = r. 
16 CONTINUE 
19 CO m TIN UI • ’

C 
C DL-T ER INF. IF X AND B MATRICES ARE COMPLETE

   

IF(X .EQ. NOBS IGO 10 2') 
\| = N+1 
GO TO 5 

C
_ C___ FImD TCTAL SO" Of" S.IIA9ES____ ___

?■' S S T 3 T = '■ . 
‘ " "

V=9. 
DO 2! 1=1tN

2 1 SST JT = SSTrT+Y ( 1, ) ) **2  
’ C 

C FORM I. OK MA L EQUATIONS
C

DU 2 2 1 = 1, '’ 
DO "22 J = 1,M 
X T < ( I r J ) -' .    

" "D3"22" IPU^ = 17n'
22 XI X( I , J ) =XTX( 1 , J )+X( I RON , I ) *X (I RON, J) 

DO 2 3 1 = 1,!-'
XTX(I,M+l)=n. 
DO 23 J=1,X

23 X J K( 1 , M-tl )=X TX ( 1 ,M+1)+X( J , I )*¥( J, 1) j  
'C
C dOLVF 'iUh.4AL f Q-IA T I uN S

. . . L. I.)':' ( ' T X , 1 ‘ , 1 . 1 > , J C , V )
)" i=l<:

2-t BK 1, 1 )=XTX( I , 1+1 I   
C 
C FIND F Eb!-ESS KN SUM (iF SQUARES
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SS:<EG=,'>.
DJ 26 I=1,M
XTY=O.
DD 25 J=1,N

25 XtY = XTY+X(Jt I )*Y{ J, 1 )
_26 SS^E3=SSREG + 3T( 1, I HXTYC ' ----- -

C riND TOTAL, REGRESSION AND ERROR DEGREES OF FREEDOM

IDPTOT=N _ _
I DFR EG=M ------
IDHER-<=N-M 

C 
c find error sur- of squares ano mean SQUARESC . - - - - - . -

SSE-'I =SSTl)T-SSREC 
V ARFRR =SSEkR/FL’JAT( N-M ) 

C 
C ‘ " OlTEEMIM IF MODEL HAS THR EE-LE VEL^ I NT E RAC TI ON T E RMS
C 

""TFInFAC .Eu". L)G"L'"TU'35 
IF(NFAC .EQ. 2) GO TD 29 
IFl jELuCK .EQ. ■NFAC2)GO TO 29 

C 
C F-IsiD SUr S OF SQUARES AND DEGREES OF FREEDOM FOR THREfc-LF v cl
C 1 N I ENACT UN TERUS
C 

D'J 2a I = 1,NFAC2
I J = I + I
J J r.6 J - 1 J , <F AC 1 
JR = J + U
'V; ? >1 f.-Jk ,\U,C 

~ ITUTr. I* U; U + k "
NDrL F T=C 
D.i 27 I--?,'-; 

■ I c.'.->U IL' L ( i J )/!-' 
IKITEST .'-jc. MIESTUO TO 27 
N i)L_ u F =N D r I E T + 1 

' N CJL (N'DEL U J = I •“ 
2 7 CJU I 'JOE 

CALu. HYPO I U( Uhl ET, L)FLET,M,N, SSHYPO) 
S S I 1 , J , <x) =SS U j-S S'lYPC _
NDFl I, J, K )=RJELET 

2 c- CUI U JE 
C 
C DETERMINE IF «ODEL HAS TW3-LEVEL INTERACTION TERMS

29 IFINBLUCK .Fj. (.FACIUO TO 35 
C ' “ " - . . -

__ C FIND SUFS OF SQUARES AND DEGREES OF FREEDOM FOR TwO-LEVtL 
C 1 01 Ei'AC 1 1G N TER-iS
C

D J 3 A 1 = 1, N F A C 1 
I J- I + 1 
'Ji 3 A J = 1 j , . - l 
.NUCLEI =r- 

' I DEL_LT=G"
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— 'JC3k = D

DO 3 3 IF = 2,M
IFAC=ICCL ( If*) /IT-c j.TD
JFAC=ICUL( IM) /1O( 03-1 ICfJK IM) /IGDOOG) *10
< FAC = I COL ( I M ) / 1( C'C-I I COL ( I M ) / 1 _V)?0) * 1 0
*IF((r .NE. IFACr.AMD.d .NE. JFAC))GO TO 33
IF((J .NE. JFAC).AND.(J .OE. KFAC))GO TO 33
IFKFAC .EU. O)KFAC = 1
IF(<FAC .EO. DGO TO 32
IDELEI=IUELET+1
IFtMCOk .EQ. ?)GU T'J 31

33
l)0 3-’ lCHK=l,i\COr
Ir( ICULI IM)/lfO? .EQ. I CUR(ISHK))GO TO 32

31 \ CUR = 4 C(?R +1
I CUR (\i COR }=ICOL( IM)/I JOH
8 SU J •< = 5 8CGrs + 5 ( I F AC i J F AC , XF AC )

32 NJELET=I\')ELET<-1 
mCA MjFLET ) = IM

33 CJ4TIMUC
CALL HYPUTrilNDELt T, I OELF T ,M ,N , SSHYPO) ' 
SSI I , J , 1) =SS<E .,-S8HYPU-SSCJR
NDF( I , J, 1 )=N.)lLFT-IDELET

34 COMT IMJE —

c FTiD SUFS OF SQUARES AMD DEGREES OF FREEDIO.M FOR SINGLE-
c I ERMS
c

3 5 D J 4 I = 1, N FA C
NJEL FT =r. 
I JEL t'r =.? 
SSCJa=C.
'JCJs\ = ''
Du IM = 2,,-:
I FAC=I CL L I IM. )/l< CL.) ")

JFAC=I CO 1 ( IV ) / U'P o- -( I COL I IM) /I)*1C
<. FlC- I C( L ( 1 > /I I 1 COL ( IM') / I 3 ?'"" ) vl ?
I F( ( I ...MF . lr A C ) .AND. ( I .NE.JFAC) .AND. (I.NE. F.FACDGO TO 3
I f (j f ;■ c . fl . J ) J F AC = 1
I F ( < F A C . Ef< . ■) )Kf-AC = 1
I F{ ( J CAc • r . 1 ) . A* 1'! n. (K FAC .EQ. 1) ) G0 TO 38

i cTU\ctif; )='icll("im)/inoc '
S5C3k = SSCfJ- +SS( IFAC, JFAC ,KFAC )

38 NUEi. FT =kDELET<-l
\C.jL (•■IDFLET }=1N'

39"C0\lTI1Uh
CALL HYPOTH(NDELET,I DELET,M,N,SSHYPO)
5s_., l t f I <EU-£ SHYPJ-SSCT-i
’OJi=( ! , 1, ) )=i\ )f LET-IDcLET

L r> • i J .'U V TA.iL l A',0 :<E <>l-.L L>SI t ii'i ('ATA
r

3tf<pK(J,5 r-t<7-3sT- ( i", ;Lr Vl L ( I ) , I = n\FAC.r
133 F Jk-iAI { 1H1,3'ia, 'E Xa’IPLF MJ’I iE I- • , I 3 / /

I.TlLET = Ii)£LET+1
IF( xjGJx . E«v. i))GG T3 37
DJ 3:.- 1CHK = 1,-.C JI' __

3 & I F ( I CJ L ( I‘1) / 1 3C 3 ,Ey. I COk ( I CHK) ) GO " TO 38
3 7 >4 C.JUJF ■* 1
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L5\, 'J'JMeEP (JF UBStRVATIUNS", 14// _ '
15X,*rACTUP’/ 
15X, ,4X, 'LEVELS'//
11D{7X, 12, 7X, 12/) )
PRI\T K 4, IDEREG, SSREG    

‘n4^ FURS AT {/3":x , • ANAL YSI S DF VARIANCE'/
153X, *.iS P AT IJ TO'/

"18X, 'SOURCE* ,8X, *DF',3X, 'SUM OF SQUARE S' ,3 X, * MEAN SQUARESSX,* ER 
1R MS'// 
16 X , ' R E CR E SS TO N ' , 3X, I 2,3X , E 1 4. 8/ /
1RX, ' FACTOR ' / )

C •
C PRINT DATA FOP SINGLE-FACTOR TERMS
C

!)J ‘tl I = 1,NFAC  
V A<=Ns"{ r,'l, ] ) 7FLOAT( NDF (I1,11)' 
h — V A -. / V m b- F H

41 PRINT If 5, 1 , JDF( 1 , 1, 1 ) , SS( I , 1 ,1) ,VAl\,F "
13 5 F JR -1AT ( 7X , I 1, 1 IX, I 2, 3 X, I 1 4. 8,4X , E1 4. b , 6 X, Fl 1.2 )

C ____ ^IAT DmTA FOk_THj-FACTOR_INTEf2'C_TJON TERMS 

3;J 4 2 I = 1, i'j E A C 1
IJ^I+1
DO 4? J = IJ,..FAC
lr( Lhll,J,l).C^T)GJ TO 42
V A^. = 3 S ( I , J, 1) / FL DAT 4 NDF ( I , J , 1 ) ) 
F = VAP/V/Th. R
PRINT 1"6,I,J,NUF(I,J,1) , SS(I , J ,1 ) ,VAR,F

1 2 L> F 3 ■ ‘i >\ i ( ( X , I 1 , * X *,il,fX,IP,3X,trl4eb,R-X,El£te8,bX,r-lle2)
4 2 G U si i i 4 U t:

C
C  p-'INT DAT\ F?i- T'-P EF-FAC TC.'F INTERACT I UN TERMS
C ■

-)D +3 1 = 1, NF AC 2 
I J = I <■ 1
Du -t 3 ,J = IJ ,,r mU 1
J< = J4-1'
‘) 3 13 R = J l\, ,NF AC  
] r(\ or ( T, j, R ) .EV.^)GU " TO "43

V = S S ( I, J , K } /FL OAT ( NDF ( I , J , K ) )
F= 7 K/VAr f "'R
P-aNT K7, I, J,K,NDF( I ,J,K) ,SS{I ,J,K) ,VAR,F

13 7 FU-M AT ( 7X , 11, « X ',11,' X ' , I 1,3X, I 2,3X ,F 14. 8 ,4"X, E14 . R , b < , *-1 1
4 3 S . T I , E _ _ ___ _____ _____

PK1 N T l'i8,IiJFt_rK, SSERR,VaRERR,IDFTOT,SS TO T
13 8 F JR'-IAT I /6X, ' ERROR ' , bX , I 2 , 3X, F 1 4. 8,4X , E 1 4. b//

16X, ' TOTAL', oX, 12, 3X,F 14.8)

C " CLEAR FOR NEXT RPJbLF-l
C     

NP< 33-iii''p(;f'+l
DO 44 I=1,N
DO 4 ■+ J = 1 , M
X ( : f J * " e
J 1 P. 1 = 1, 7
DO •<5 J = 1,7
D J 4 J K. = 1,7
MJ.-' ( I, J,K )=^



4!) SSIi,J,K)=C.  
so r j i 

c    
0 EkxDR MESSAGE IF SiJLUTlOil TO NORMAL EQUATIONS NOT FOUND
C   '   _

4 6 PRINT 11. 91
ID 9 FU<'-UT(* GJR FOR X*)  
"47 STDP ‘ "

 END

      

      

    

 

    



B-10
FUR HYPUTH

SU3R3JTINE HYPOTH(NDELET,IDELFT,M,N, SSHYPL)
CU^viaxi Y( 150, 1 } , X ( 15D, 100) , XH ( 15 0,100) , XT X( 1 0 0,103 ) , BT ( 1 , 1 0 0 ) , 

ILevEK H )',hLcVFL( 10 ) , NCL1L11 00 ) , SS (7,7,7 )", NDFf 7,7 ,7 ) ,fCCLTr00j',
 1 I 0L3CK ( 6) , IC JRt ICO)
' V=V.
c   ___
C " " FORM X MATRIX FUR REDUCED MODEL"'
C

CALL UJK( XTX, I'^'S 1 •)>■,"MH , MH + 1 , $13, JC , V)
■JU 10 1=1, MH

_________ 2 IF(J .EQ. NC.QL(I))30 TO 4______J_______  
DO 3 I=1,N

3 Xn( I , X)=X ( 1,J )
IF(J .EQ. M)GU TC 7
J =J + 1
< = <• 4- ]
Ju TO 1

4 IF(J .EQ. M)GU TU 7
J =J 4-1
.,fJ TO 1

5 Du -j 1 = 1, i'* 1
1J J 5 J = 1, M

□ XH{I,J)=X(I,J)
C
C FORM X»X MATRIX FDR REDUCED MODEL

7 U') d 1=1, Mtt
00 .3 3=1,01.
:< T ■; { 1,3)=''.
)u ? Ir>= 1,3

■■ XTxl i,3)=XTX( 1,3 )*XH( lK(Jrt,I )*XH(IRC)W,3)
r * - -
C '-URM N ,<■ \L lQL\ 1 If'QS
C

J J ) 1 = 1,MH
xix( i,:;H-m = ).
03 ' 3 = 1,'.'

-7 X1'X( 1 , .UH 1 ) =A IX ( I , ^i+l ) +XH( 3, 1 ) -Y( 3,1 )

C SOLVE NL14AL EQUATIONS
c

 
MH=M--WE"LE"T 
IF(MDELET .Ej. 0) GO TO 5 
J =1 
< = 1

1 03 2 I=1,RDELET

I"' 3T( 1, I )=XIX( I,MH+1)
C
C' RETURN I EGRESS ION SUH OF SQUARES FUR R EDUCED’MODEL
C

'S'STiYP J ='' . “
DU 12 I - 1, i-i ti
XTY = '''.
on 11 J=l’

11 XI Y = XTY + .X- 1 U, 1 I :,V (J, ) )
12 o j HYP J =S SHY?.) 4BT( 1,1 ).*XTY  

c



tK^OK MtSSAGE_IF SOLUTION TO NORMAL EQUATIONS NCT FOUND
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The following are listings of the ANOVA input data 

for the examples of Chapter IV.

Example 1:

Example 2:

212 1
2

2. 1 1
22. 3 1
7. 1

32. 2 2
 .  3 2

3. 4 2
t.

12. 2
31. 3 ?
3. 1 4

  23. 2 4
'll. 'I 4
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Example 3:
213 

5. 1 1
 3. 1 1 •

"13. 2 1
  2 J_____

15. 2 1
D • 1 2
5 • 1 "2
7. 1 2

"'12. 2 2
 13.2 2

Example 4:

336
2 3.2 
2^t. 1

1
1

I.
1

1
1

2 5.2 1 1 u
<Z U* • "V 1 1 2
23.6 £ 1 3

■ 2-3.-9 1 1 7
2 2. ) 1 <L. 1
2 3.5 1 ? 1
? 7 f. 1 •><— : » • —
2-^.6 1 2 2
22.9 1 2 3
2 5.3 1 2 3
2 5.1 1 3 1

.22.) 3 1
2’ 2 ♦ ; 1 * 2
2 3.7 1 3 2
2 1.3 1 3
2 3.5 1 3 3
13.2 2 1 1
1 5.2 2 1 1
13.: 2 1 2
19.1 2 1 2
12.5 2 1 3
15.4 2 1 3
14. 1 2 2 1
16. 1 2 2 1
1 4. ) 2 2 2
1 d . 1 2 2 2
13.7 2 2 3
16.3 2 2 3
14.1 4 6 1 -
16.1 2 7 -# J
1 ?, 2
1 -•. t

•_) 2

12.7 2 * 7
12.1 2 2 3
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The following are the outputs from the ANOVA program 

for the example problems of Chapter IV.

EXAMPLE MUM9ER 1

N U M d E R OF OBSERVATIONS: 2 5

FACTOR
...-llUllBLft LEVELS- _____  . - ________ . ___________

. . 1 5 _ _ _

115 , R A T 1 o I .
ANALYSIS OF VARIANCE

SOURCE

R E G R f. S S I 0 N

FACT 0R

OF S uM OF SQUARES

.17176706+06

MEAN SQUARES ERROR MS

I 4 .99017531*02 •24754003*02 ? • ’

L R R 0 R 20 . 2 3142 5/ 6*02 .1157)289*01

TOTAL 2 5 »191/yIUUtOb

EXAMPLE IJDuBER 2

I^UHhER OF OBSERVATIONS: 12

FACTOR

rjimbEj:_____m.vlls ___  .. ___  . . ______

1 4
2 4

AN ALYS J S_OE_V.AR±A.NCE _
f; S h t 1 . . ।

. S.O U R r E . OF SUf! OF SuUARES MEAN SQUARES.^.. . r r k u f

REGRESSION 7 .. 3 1 1 '1 8 3 3 3 * U 4 ----- . . _ . -------

. .FACTOR _ - - — - - - - -

1 3 ♦ ? .“r'-' 3 3.: 7 *03 .29361)17+03
2 • a ! i S <’ 5*01 . 2 0 5 b 5 5 V 2 * 0 !

ERROR 5 .36316669+03 .72633337*02

total 1 2 , 3 4 7 b 0 0 0 0 * 0 4
-■ - - - - • ------ -- — —
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EXAMPLE NUMBER 3

numtiep of observations: 10

FACTOR
__ NJJ1W.EK._____LEVELS_______________________  _  

.___1.2 . . ...
2 2

EXAM'LL NUM.ER 9

------------- --------------------- -------- - ANALYSIS, or ..VARJANCf___________
F. S RATIO 1 L

S O.U P C E •OF SOm OF SQUARES ME A N SQUARES ERROR MS

.. REGRESS 1 cii .97000000*03 -

_ _______F.A.CJ.OF'________ — - - — --------- - ... ------- . -------------- _ — -------—_

1 1 ■ .13500000*93 .13500000*03 1 u 1 .; t,

2 1 , 5 9 9 v 9 8 h 7 * 0 0 ,599998^7+00 • £t' -
. .1X2 1 . 1 5 0 0 0 0 L 0 * C 2 ., 1 500000.0*02 11.2'-

_____ E R R G l<_____________ 6_____ __ . 8.1)0.0.0 0.00 * 0-1______ ____ .J.3 3.3J.3.3 3*C)1_—_ „—

TOTAL 1 o . 9 7 r n n n (■ u + 0 3

numjEf of otsSLh V at icns: 36

f A C 1 0 F
_ L'.'l-L-Lr ..... LEVELS

.. _ 1 2
2 3
3 3

analysis of variance
IS r- t 1 .

SOURCE OF SUM OF SQUARES HE Ai^ SQUARES ERROR MS

R E G R1 S S I 0 N 1 8 .18175168+05

F A C 1 0 R

1 1 .65195068+03
. .. 2 2 .16051514+02

3 1 2 .12771484+02
...1X2 ? • > ■ ’ ■< . ' I

1X3 2 © 'j 1 u _j 7 f» 1 L + C')
2X3 9 .26487061+02
1X2X3 h .51607666+01

E Rl.’OF 
 

1 8 .41590576*02

» 6 5 IV 5 0 6 L< + 0 3 2 0 z » 1 e.
«b [j 25756^ + 01 Sth/
. 6 3 E b 7 R 2 2 ♦ 0 1 2,7 t-
• "" '• 3 r. .. ? 1 i -* 1. j . 1 . ,
. 2 / 0 L 3 5 b S * L 1 ' 1 . .

. 6 6 2 1 7 6 b ) + 0 1 2 . H 7

.129 0 19 17*01 .b 6

.23105076*01


