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Abstract

In this dissertation, we present the numerical schemes in simulating immiscible two-

phase flow problems. The goal of this work is to find a unified solution for numerical

modeling of any kind of immiscible two-phase flow with a moving interface. The fluid

flows are modeled using the Navier Stokes equations with discontinuous coefficients. We

introduce a Volume Fraction method to evaluate discontinuous integrals arise from the vari-

ational formulations in the Finite Element method. The Volume Fraction method avoids

the approximation of the Dirac Delta function, and therefore no regularization procedures

are needed. Several operator splitting variants are studied in detail with their linearized

and non-linearized versions. The interface is captured using the Level Set approach, where

a transport equation is solved numerically with fourth-order scheme without any stabi-

lizations. The surface tension effect is implemented in a semi-implicit way, thus larger

time steps can be used compared with the explicit method. A recent, well-developed re-

initialization technique is included as a way to preserve the signed distance property of the

Level Set function. All mentioned numerical methods are used to build the two-dimensional

solvers. Solvers have been tested in single-phase and two-phase flow benchmark problems.

In particular, the bubble dynamics are presented to validate the stated numerical schemes.
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Chapter 1

Introduction

1.1 Background and motivation

A large number of fluid flows encountered in real life and industry are a mixture of phases.

These problems are traditionally named as multiphases flows. Multiphase flows could

capture flows with different states or phases, namely solid, liquid, or gas. They could also

refer to materials with different chemical properties but in the same state or phase. Two-

phase flow is a special case of such problems. The liquid liquid system such as oil droplets

in water is an example of two-phase flow.

Modeling two-phase flow problem is not an easy task. Empirical correlations have

been used for many years. They are based on measurements consisting mostly of low

pressure, small diameter data. Extrapolations of correlations to filed conditions may result

in errors. Lockhart and Martinelli [30], and Beggs and Brill [3] attributed to these methods.

Mechanistic models are developed based on the fundamental mechanisms of two-phase flow.

Navier Stokes equations are used to represent conservation of momentum and continuity.

1



Chisholm [5] predicted flow patterns in tube bundles for gas bubble in liquid. OLGA, and

LedaFlow are two established commercial tools to simulate the complex flow patterns used

in the oil and gas industry currently.

Numerically, some commercial softwares, for example ANSYS Fluent and CFX, have

excelled in solving some one-phase Navier Stokes benchmark problems, while extra user

modifications and interventions are often necessary when simulating two-phase problems.

Moreover, computation efficiency and accuracy are still open problems for those in the

Computational Fluid Dynamics (CFD) research community. NASA released their vision

for all aspects of CFD simulations [32]. They provided a 15-year road map for CFD de-

velopment. Hence, it worthy of studying two-phase flow problem using CFD approach.

Intuitively, there are some numerical difficulties in simulating immiscible two-phase flows,

including:

• Robust solvers are needed for Navier Stokes systems with discontinuous density and

viscosity;

• Interface capture and topological changes of interface with capillary force effect;

• Coupling with fluid flows and interface.

With all those numerical difficulties in mind, we present numerical methods for numerical

simulations of two-dimensional incompressible two-phase flow problems. The interface is

captured using Level Set method. Flows and interface are both based on Finite Element

discretization spatially on structured meshes. Operator splitting schemes are applied for

time integration. Corresponding detailed subproblems are investigated in detail due to

the presence of discontinuous density and viscosity coefficients. Two-phase flow solvers are
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built based on mentioned numerical schemes. They have been tested from the one-phase

fluid flow governing by Navier Stokes equations, and extended to two-phase problem solver

using proposed Volume Fraction method. A recently developed reinitialization technique

is also implemented in solvers.

1.2 Dissertation outline

This dissertation is organized as follows: Chapter 2 carefully derives mathematical mod-

eling of fluid flows in a classic manner, and introduces Level Set method to model the

interface between two immiscible fluid flows. It then couples the modelings of fluid flows

and the interface. Chapter 3 devotes the main computational strategies of two-phase flow

problem. It begins with a short review of the Finite Element method. It continues with the

detailed numerical discretization techniques to solve the Navier Stokes equations. It follows

with a new approach to evaluate the discontinuous coefficients arise from the Navier Stokes

equations, named the Volume Fraction method. Numerical test cases and error analysis

using the Volume Fraction method to approximate discontinuous integrals are presented

as well. This is followed with a section to describe the Finite Element approach to im-

plement Level Set method. The semi-implicit integration method is applied to surface

tension force. It is a efficient method because the time step criterion has been removed.

The algorithm is completed with a recent developed reinitialization approach, where the

interface is preserved by minimizing a cost functional with a penalty term. This method

ends up with a nonlinear elliptic problem, and it can be solved using a simple fixed point

iteration method. The dissertation is completed with benchmark test results and numeri-

cal validations in Chapter 4. Every single part of the operator splitting scheme is verified
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using well-developed classical problems. Beginning with Burgers’ equation where convec-

tion and diffusion terms are considered without pressure and divergence free part, the

steady state of single-phase flow around cylinder problem is tested using operator splitting

scheme. It follows with the unsteady driven cavity problem. Single-phase flow and flows

with different densities and viscosities are presented. Surface tension force validation is

carried out using static bubble and oscillating bubble tests. Solvers are finally tested using

rising bubble test. Results and measured quantities are compared with reference data from

other research groups. Solutions are also presented using commercial software for plausible

options. The dissertation is concluded with all current work in simulating two-phase flow

problems.
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Chapter 2

Mathematical modeling of

two-phase flow problem

An important consideration to simulate the fluid flow problems numerically is to to under-

stand the meaning of each equation. Classical mathematical description of fluid mechanics

is derived from continuum mechanics.

2.1 Flow model

2.1.1 Description of motion

In classic fluid mechanics, the description of motion can be stated in differential form,

applicable at an infinitesimal control volume, or it can also be stated in the integral form,

applicable at a control volume of a finite size. No matter which form one uses, they all

lead to the same equations. We use the integral form in this dissertation to derive all the
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motions mathematically. In classic fluid mechanics, there are two ways to describe the

flow field: the Lagrangian description and the Eulerian description. In the Lagrangian

description, one follows an individual particle as it moves through time and space. In the

Eulerian description, one focus on a specific location in space where the fluid flows pass by.

The Lagrangian desctiption is related to Eulerian description of motion via the following

substantial (or material) derivatives:

Definition 2.1. The substantial derivative of some physical quantity describes the time

rate of change for a moving fluid particle. Let F (x⃗, t) be any physical quantity, and u⃗ be

the velocity of fluid flow. The substantial derivative of F is defined to be

dF

dt
=
∂F

∂t
+ u⃗ · ∇F (2.1)

where the substantial derivative can be expressed as the sum of local derivative and the con-

vective derivative. This substantial derivative will be essentially useful when the Eulerian

description of motion is adopted.

2.1.2 Conservation of mass and momentum

All fluid mechanics is based on the conservation laws for mass, momentum, and energy.

Conservation of energy is based on first law of thermodynamics. We do not consider this

aspect in our work. We focus on conservation of mass and conservation of momentum

only. As mentioned in previous section, we are going to derive conservation of mass and

momentum using an Eulerian description in integral form. The following results will be

helpful:

Theorem 2.2. For any fluid property F (x⃗, t), the time derivative of an integral of F (x⃗, t)
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over a fixed control volume Ω is

d

dt

∫
Ω
F (x⃗, t)dΩ =

∫
Ω

∂F (x⃗, t)

∂t
dΩ (2.2)

and the time derivative of an integral of F (x⃗, t) over a moving control volume Ω(t) is

d

dt

∫
Ω(t)

F (x⃗, t)dΩ =

∫
Ω(t)=Ω

∂F (x⃗, t)

∂t
dΩ+

∫
S(t)=S

F (x⃗, t)u⃗ · n⃗dS (2.3)

Equation (2.3) is also named Reynolds transport theorem, which states the rate of change

in a moving volume is the sum of rate of change in a fixed volume and the convective

transfer through the surface. With all these preparations, we begin with conservation of

mass using a fixed control volume.

Conservation of mass principle says the rate of increase of mass within any fixed volume

must be equal to the rate of inflow through the boundary. Mathematically it means:

∫
Ω

∂ρ

∂t
dΩ = −

∫
S
ρu⃗ · n⃗dS (2.4)

Apply divergence theorem to the right hand side, then

∫
Ω

∂ρ

∂t
+∇ · (ρu⃗)dΩ = 0 (2.5)

Notice this (2.5) holds for any fixed volume, thus we come up with the following conser-

vation of mass equation:

∂ρ

∂t
+∇ · (ρu⃗) = 0 (2.6)

Conservation of momentum can be derived using a moving volume based on Newton’s
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second law, which says the rate of change of momentum equals the sum of body force

throughout the volume and the surface force at the surface. Mathematically it means:

d

dt

∫
Ω(t)

ρu⃗dΩ =

∫
Ω(t)

ρg⃗dΩ+

∫
S
σ · n⃗dS (2.7)

where g⃗ is the gravitational acceleration, σ = −pI + τ is the stress tensor, p is pressure,

I is identity matrix, and τ is viscous stress. Apply Reynolds transport theorem as well as

divergence theorem,

∫
Ω

∂(ρu⃗)

∂t
+∇ · (ρu⃗⊗ u⃗)dΩ =

∫
Ω
ρg⃗ +∇ · σdΩ (2.8)

Again, (2.8) holds for any volume, thus we come up with the following conservation of

momentum equation:

∂(ρu⃗)

∂t
+∇ · (ρu⃗⊗ u⃗) = ρg⃗ +∇ · (−pI + τ) (2.9)

2.1.3 Navier Stokes equations

Under the assumption that the fluid flow is homogeneous, meaning densities and viscosities

are constant within the fluid, and it is incompressible, meaning the rate of change of the

density with respect to time is zero, i.e. ∂ρ
∂t = 0, the conservation of mass (2.6) reduce to

∇ · u⃗ = 0 (2.10)

Besides, as we consider viscous Newtonian fluid, shear stress is assumed to be proportional

to velocity gradient, i.e. τ = µ(∇u⃗ + ∇u⃗T ). Rewrite the second term in conservation of

momentum (2.9), using the identity ∇ · (ρu⃗⊗ u⃗) = u⃗ · ∇(ρu⃗) + ρu⃗(∇ · u⃗), and conservation
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of mass, the second term reduce to ∇ · (ρu⃗⊗ u⃗) = ρu⃗ · ∇u⃗, which leads to the conservation

of momentum for viscous Newtonian fluid

ρ(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗) = ρg⃗ −∇p+∇ · (µ(∇u⃗+∇u⃗T )) (2.11)

Together with the incompressibility condition (2.10), the following systems describe incom-

pressible viscous Newtonian fluid flow and are named Navier Stokes equations:

ρ(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗) = ρg⃗ −∇p+∇ · (µ(∇u⃗+∇u⃗T )) (2.12)

∇ · u⃗ = 0

The system must be completed with corresponding initial and boundary conditions, which

will be discussed in later subsections.

Remark 2.3. If µ is constant, namely the case of single-phase flow, the term µ(∇u⃗+∇u⃗T )

simplifies to

∇ · (µ(∇u⃗+∇u⃗T )) = µ∇ · (∇u⃗+∇u⃗T ) = µ(△u⃗)

since ∇ · u⃗ = 0.

Navier Stokes equations are widely used to describing unsteady, incompressible, viscous

Newtonian single-phase flows. We still want to use Navier Stokes equations to model two-

phase immiscible fluid flows by assuming within each fluid, it is unsteady, incompressible,

viscous Newtonian homogeneous fluid flow, but densities and viscosities are different for

two different flows. There are essentially two approaches to realize this goal. One way is to

model each fluid flow separately using its own Navier Stokes equations and corresponding
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initial and boundary conditions. It is computationally expensive because we have to solve

two Navier Stokes equations, and it is difficult to capture the interaction between two fluids

because two Navier Stokes equations are related to each other. Another way is to model

the two-phase flow using the same Navier Stokes equations with densities and viscosities

as functions of space. By doing so, only one system need to be solved, and in this case

the interaction between two fluids can be captured as an additional boundary condition

for the whole system. Besides, we will see in section (3.3) that dealing the discontinuous

coefficients is very handy when using the Volume Fraction approach. In summary, the two

immiscible fluid flows can captured by the following system:

ρ(x⃗)(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗) = ρ(x⃗)g⃗ −∇p+∇ · (µ(x⃗)(∇u⃗+∇u⃗T )) (2.13)

∇ · u⃗ = 0

We do not consider phase transition and mass transfer here. So additional conditions

should hold on the interface, namely velocity must be assumed to be continuous across

the interface. Besides, surface tension force as the interfacial force should be incorporated.

Details of analysis will be presented in the description of interface section. In addition,

suitable boundary and initial conditions have to be added, which are stated in the following

subsection.

2.1.4 Boundary and initial conditions

In applications, we can always restrict ourselves to some domain of interest. This can be

simplify our problem from computational point of view. Boundary and initial conditions are

essentially important in this artificial domain. Theoretically, we do need those conditions

to insure the problem is well-posed, meaning a solution exists, the solution is unique, and it
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changes continuously with the input. Typically, there are two types of boundary conditions

for the velocity field: Dirichlet boundary conditions, and Neumann boundary conditions.

Dirichlet boundary conditions specify the value of velocity on the boundary:

u⃗(x⃗, t) = b⃗ on ΣD

where ΣD is the Dirichlet part of boundary in domain Ω. This type of boundary condition

is also known as the non-slip condition when the boundary is a solid wall contacting the

fluid, i.e. the velocity boundary value b⃗ is equal to the velocity of the wall. And when we

consider a computational domain where the fluid enters the domain, the Dirichlet type of

boundary condition for velocity and pressure fields must be specified at this inflow part of

boundary.

The Neumann boundary condition describes the flux of the fluid,

u⃗(x⃗, t) · n⃗ = b on ΣN

Here ΣN is the Neumann part of boundary in domain Ω, and n⃗ is the outward normal of

the boundary as usual. This type of boundary conditions can be specified when the outflow

part is included in the computational domain. In this case, zero normal stress and zero

tangential velocity on the outflow part of boundary should be specified.

Dirichlet boundary conditions and Neumann boundary conditions describe different

physics phenomena, and from a computational point of view, it is very important to dis-

tinguish them in the Finite Element regime. The Dirichlet boundary condition is named

principle boundary condition in standard the Galerkin Finite Element approach, and all
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test functions have to be zero on the Dirichlet boundary, whereas there are no such re-

strictions on the boundary of the Neumann type. In another Finite Element approach, like

the Mixed Finite Element method, the boundary condition of the Neumann type is the

principle boundary condition and the Dirichlet boundary condition is a natural one.

The following initial condition for the velocity field must be given in the computational

domain as well:

u⃗(x⃗, 0) = u⃗(0) in Ω

and it has to be divergence free due to the incompressibility condition, namely,

∇ · u⃗(0) = 0 in Ω

Notice we do not have to specify the initial condition for the pressure field at this point,

because there is no time derivative with respect to the pressure term in the system. How-

ever, when Dirichlet boundary conditions are prescribed everywhere in the computational

domain, pressure is determined only up to an arbitrary constant due to the gradient term

in the Navier Stokes equations. In this case we do need to impose the value of pressure at

one point to make the solution uniquely defined.

2.2 Description of the interface

2.2.1 Interface representation

In two-phase flow simulation, it is essential to capture the position and shape of the in-

terface separating two immiscible flows. In general, there are two approaches to track the

motion of interface: explicit and implicit. When the interface is represented explicitly,
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parameterization of the interface is needed. The coordinates of the interface are explicitly

traced using marker particles. The Front-tracking method [58], Marker in Cell (MAC)

method [64], and Immersed Boundary method [40] fall into this category. Since a large

number of particles can be used, the interface can be localized to good accuracy. However,

lots of numerical complexities are introduced as well. Handling break up and merging of

interfaces are also very difficult in this scenario. In the second approach, the interface is rep-

resented by a function instead, where no explicit representation of the interface is needed.

All topological changes of the interface are represented by the continuous evolution of the

corresponding function defined the interface. The Volume of Fluid method (VOF) is an

example of implicit method, which was introduced by Hirt and Nichols [36]. Based on Noh

and Woodward’s work of Simple Line Interface Calculation (SLIC) [65], the basic idea of

the VOF method is that given the interface on a computational domain with fixed grid,

functions named ”cell fractions” are assigned on each grid cell such that they represent

the fraction of the cell containing fluids inside the interface. The interface locations and

evolutions of interface are based on reconstructing and updating such functions. The VOF

method is attractive due to its mass conservative property. Level Set method is another

example of implicit method. It was introduced by Osher and Sethian [50], and is also

based on a fixed grid. The interface is defined as a zero Level Set of a continuous function

on the whole computational domain, and the evolution of the interface can be obtained

by updating the Level Set function. The interface normal and curvature approximations

are straightforward using the level set function. Besides, due to the Eulerian natural of

implicit techniques, the Level Set method is very powerful in handling topological changes

of interfaces. In the following section, we focus on the Level Set method.
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2.2.2 Level Set method

The basic idea of the Level Set method is to define the interface Γ as the zero level set of

a higher dimensional function ϕ, that is defined initially as,

ϕ(x⃗, t = 0) =


dist(Γ, x⃗) x⃗ ∈ Ω1

0 x⃗ ∈ Γ

−dist(Γ, x⃗) x⃗ ∈ Ω2

where dist(Γ, x⃗) is the shortest distance between x⃗ to Γ. Regions that two immiscible fluids

occupy, say, Ω1 and Ω2, can be determined by different signs of the Level Set function

respectively. For example, a zero level of ϕ(x⃗) = 0.25 −
√

(x− 0.5)2 + (y − 0.5)2 defines

a circle of radius 0.25 centered at (0.5, 0.5). In the following figures, the solid black lines

denotes the zero Level Set.

Figure 2.1: (a) the Level Set function
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Figure 2.2: (b) contours of Level Set function

Besides, the normal vector n⃗ and the curvature κ can be defined globally as

n⃗ =
∇ϕ
|∇ϕ|

(2.14)
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and

κ = −∇ · n⃗ (2.15)

Recognized that at a later time t > 0, the following must hold for the moving interface

ϕ(x⃗(t), t) = 0

To evolve this Level Set function, differentiate with respect to time t to yield,

∂ϕ

∂t
+∇ϕ · ∂x⃗

∂t
= 0

Since a point on the interface should move according to the velocity field, we have ∂x⃗
∂t = u⃗.

Thus the following equation must hold globally for the interface

∂ϕ

∂t
+ u⃗ · ∇ϕ = 0 (2.16)

We derived an advection equation for the Level Set function with initial condition ϕ(x⃗, t =

0) = ϕ(0). Another thing to mention is that the boundary condition should be given only

on the inlet of the boundary domain. Besides, the Level Set function may not preserve

its nice property namely, a signed distance function as it transported with the velocity

field. Especially in two-phase simulation, this is critical important since an acceptable

conservation of mass is needed for each fluids. To recover the signed distance property, a

reinitialization step should be included, which will be summarized and analyzed in Chapter

3.
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2.2.3 Interfacial conditions

Since the two fluid flows are assumed to be immiscible and incompressible, more conditions

on the interface should be considered. We will see in this section that those interfacial

conditions are actually extra boundary conditions of two-phase flow modeling. First of all,

mass conservation should also hold on both of the fluids. Thus there should be no mass

jump across the interface, i.e. the velocity field should be continuous across the interface.

Γ

Ω
1

Ω
2

Figure 2.3: Two-phase flow

For example, on the interface Γ in Figure (2.3), the following should hold

[u⃗]|Γ = 0 (2.17)

where [u⃗] denotes the jump of velocity field u⃗ on the interface Γ.

In addition, as two immiscible fluid flows are in contact, the intermolecular attractive

force brings an extra force, named surface tension force, which makes the interface to

contract. So, the following boundary condition should hold on the interface Γ as well

− [−pI + µ(∇u⃗+∇u⃗T )]|Γ · n⃗ = σκn⃗ (2.18)
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which states that on the interface the jump in the normal stress should be balanced by the

surface tension force. Here σ is the surface tension coefficient, which depends on the two

fluids in contact and the temperature. It is assumed to be constant for simplicity. κ is the

curvature of interface Γ and n⃗ is the outward normal vector. Another way to consider this

surface tension force is named the Continuum Surface Force (CSF) model, see [68], [38]. It

includes the surface tension force in the momentum equation as an extra source term by

introducing the Dirac Delta function, namely,

ρ(x⃗)(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗) = ρ(x⃗)g⃗ + f⃗ −∇p+∇ · (µ(x⃗)(∇u⃗+∇u⃗T )) (2.19)

where

f⃗ = σκn⃗δ(Γ, x⃗)

This formulation is physically reasonable. It can be actually derived from conservation of

mass and momentum in the domain by exercising Stokes’ theorem. However, for the CSF

model, the location of interface Γ(t) has to be known at each time step. More details of

localization of the interface and how to handle the surface tension force will be revisited

in Chapter 3.

2.3 Modeling of two-phase problem

2.3.1 Similarity

Similarity is characterized by a set of non-dimensional parameters, in which data are uni-

fied. These parameters are very important in model simplification, because they can iden-

tify which physics effect dominates the problem and which ones are less relevant and
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therefore can be neglected. Non-dimensional parameters are essentially important for de-

signing model tests when full-scale tests can not be performed, such as predicting the flow

properties around an aircraft.

When the governing equations are known, non-dimensional parameters can be deter-

mined directly from them. In our two-phase model, the analysis of surface tension effects

brings additional dimensionless parameters in which surface tension is compared with other

effects such as body forces and viscous stress. Introduce characteristic velocity scale U and

characteristic length scale l, and accordingly the following non-dimensional variables are:

x′ =
x

l
, y′ =

y

l
, t′ =

tU

l
, u⃗′ =

u⃗

U
, p′ =

p

ρU2

Substitute all these variables into the momentum equation (2.19) as well as incompress-

ibility condition,

ρU2

l
(
∂u⃗′

∂t′
+ (u⃗′ · ∇′)u⃗′) = ρg⃗ + f⃗ − ρU2

l
∇′p′ +∇′ · (U

l2
(µ(∇′u⃗′ +∇′u⃗′T )))

∇′ · u⃗′ = 0

Drop the factor ρU2

l and after simplification, we can derive non-dimensional Navier Stokes

equations in the following form:

∂u⃗′

∂t′
+ (u⃗′ · ∇′)u⃗′) =

lg⃗

U2
+

σ

ρU2l
κ′n⃗δ(Γ, x⃗)−∇′p′ +∇′ · ( µ

ρUl
(∇′u⃗′ +∇′u⃗′T )) (2.20)

∇′ · u⃗′ = 0

The inverse of coefficient in front of the viscous term has been given special name, the
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Reynolds number:

Re ≡ ρUl

µ
(2.21)

The Reynolds number is one of the most important non-dimensional parameters. It quanti-

fies the relationship between the inertial and viscous forces. A low Reynolds number, where

viscous force is dominant, characterizes laminar flow with smooth fluid motion, and a high

Reynolds number, where fluids are dominated by inertial force, characterizes turbulent flow

which tend to produce chaotic eddies, vortices, and other flow instabilities.

Another non-dimensional parameters is named the Froude number which is defined to

be:

Fr ≡ U2

lg
(2.22)

It relates the body’s inertia to gravitational forces.

Weber number is defined as the inverse of the coefficient in front of the surface tension

force, which is:

We ≡ ρU2l

σ
(2.23)

It is used to characterize the relation between the inertia and surface tension effects. This

quantity is useful in analyzing thin film flows and the formation of droplets and bubbles.

2.3.2 Statement of problem

Under assumptions of immiscibility and incompressibility, our two-phase flow problem is

fully captured by the following system of equations:
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ρ(x⃗)(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗)−∇ · (µ(x⃗)(∇u⃗+∇u⃗T )) +∇p = ρ(x⃗)g⃗ in Ω× [0, T ] (2.24)

∇ · u⃗ = 0 (2.25)

[u⃗]Γ = 0⃗, −[−pI + µ(x⃗)(∇u⃗+∇u⃗T )]|Γ · n⃗ = σκn⃗ (2.26)

with appropriate initial and boundary conditions. Here the entire computational domain

is Ω = Ω1
∪

Ω2, and the interface is Γ. ρ(x⃗) = ρ1 in Ω1 and ρ2 in Ω2, and µ(x⃗) = µ1 in

Ω1 and µ2 in Ω2. In addition, the interface is captured by Level Set method, where the

interface is transported with the flow. In the following chapter, numerical schemes for the

flow as well as the interface are considered in detail. Both the flows and the interface are

approximated using the Finite Element method.
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Chapter 3

Numerical Treatment

As we have seen in the previous chapter, our problem brought up three main questions: how

to solve flow problems captured by incompressible Navier Stokes equations; how to convect

the interface with capillary force; and how to couple flows and the interface through velocity

and pressure fields. In this chapter, we answer those three questions step by step, namely

solving flow problems using fractional step projection approach with fixed interface, then

advecting the interface with a known velocity field, and finally coupling fluid flows with

the interface through discontinuous densities/viscosities coefficients and capillary forces.

We begin with the discretization of the Navier Stokes equations. Numerical methods

for the solution of incompressible viscous Navier Stokes equations have been studied exten-

sively, and several numerical approaches have been developed even for various formulation

of the problem. Nowadays, there are many numerical approaches to solve this nonlinear

time-dependent partial differential equations. Classical spatial discretization is based on

Finite Difference method, Finite Volume method and Finite Element method. The Finite

Difference method and Finite Volume methods are more popular among engineers due to
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the easy implementation and conservation of physical properties respectively. However,

the Finite Difference method has difficulties when dealing with curved boundaries. More-

over they both do not perform well under stability and convergence analysis. The Finite

Element method outperforms the Finite Difference method as well as the Finite Volume

method, especially when we have complex geometry and/or boundary conditions. Since

Finite Element method has been successfully implemented and validated in numerous lit-

eratures over complex domains with high accuracy and stability, we focus on the Finite

Element method in this dissertation.

Unfortunately, spatial discretization is not the only difficulties for unsteady problems.

A appropriate time discretization technique is an important consideration in addition to

spatial stability. Fractional Step (or Operator Splitting) methods are very popular for

time integration of unsteady problems. There are many forms of operator splitting schemes;

however, they all involve splitting a complex problem into simple ones. In this dissertation,

we present fractional step projection methods, which first originated by Chorin [6] [7] and

Temam [54], and are widely applied for incompressible Navier Stokes equations. The idea

is to compute the velocities by different physical process, which leads to different types

of unsteady partial differential equations, and compute the velocity and pressure fields

separably due to projection method. Details of computation strategy are presented in

section 3.2.

Usually, the first task to solve an unsteady PDE via Finite Element methods is to

discretize the equations in space, which leads to an ODE (Ordinary Differential Equation).

Then use numerical integration techniques for time to complete the discretization of PDE.

Which discretization comes first makes no difference for simple problems. However, as

we have pointed out, all the numerical difficulties, for example, unsteady, nonlinearity,
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and stability etc., we are going to perform the time discretization first using operator

splitting technique. In each subproblem, we follow the typical way, i.e. perform the spatial

discretization before the time discretization. We briefly introduce the ideas of the Finite

Element method first in the following section.

3.1 Finite Element method (FEM)

3.1.1 Fundamentals of FEM

The Finite Element method (FEM) was first introduced to solve complex elasticity and

structural analysis problems in civil and aeronautical engineering, and it has been shown to

be a valuable tool for solving Navier Stokes equations in numerous articles. The standard

Galerkin Finite Element method [47] is based on the weak formulation, and it is a system-

atic approach to discretize the PDEs into algebraic systems. Firstly, multiply the residual

of PDEs by a test function which vanishes on the Dirichlet boundary, if any, and integrate

over the computational domain using integration by parts. Secondly, represent the approx-

imation solution as a linear combination of basis functions defined on a given mesh. Then

plug in the approximate solution and the basis function in the weak formulation. The final

step is to solve the resulting algebraic system for the nodal values of approximate solution.

The Finite Element method encompasses many other methods because it allows an accu-

rate representation of complex geometry. It also passes higher derivatives in the original

PDEs onto derivatives of test functions, thus it reduces the regularities of the solution.
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3.1.1.1 Weighted residual formulation

In the context of weak formulation, we need to define two classes of functions: the test

function and the admissible solutions. Both of test functions and admissible functions are

defined on Sobolev space, i.e. functions themselves and their first derivative are squared

integrable over the computational domain. However, test functions and admissible func-

tions have different properties on the Dirichlet boundary. For a computational domain Ω,

the test functions are defined as follows:

V = {w ∈ H1(Ω)|w = 0 on ΓD} (3.1)

and the admissible solutions are defined on similar space to the test functions, except that

these solutions have to satisfy the Dirichlet boundary conditions. The admissible solutions

are defined as follows:

S = {u ∈ H1(Ω)|u = uD on ΓD} (3.2)

Thus, for non-homogeneous Dirichlet boundary conditions, test functions and admissible

solutions live in different spaces, while for homogeneous Dirichlet boundary conditions,

they all live in:

H1
0 (Ω) ≡ {v ∈ H1(Ω)|v = 0 on ΓD} (3.3)

3.1.1.2 Finite element spatial discretization

Spaces (3.1), (3.2), and (3.3) contain infinitely many functions. In FEM, those spaces

are approximated by corresponding finite dimensional subsets of these spaces. The finite
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element spaces are based on triangulation of the computational domain.

Definition 3.1. The computational domain Ω is subdivided into many subdomains Ωk

called elements. We define Th as triangulation of the computational domain if

Ω̄ =
∪

Ωk∈Th

Ωk

Ωi
∩

Ωj = ∅ if i ̸= j

The nonempty intersection of any two elements must be a common vertex /edge/face of

the mesh only.

The corresponding interpolation spaces for test functions and admissible solutions are

defined on the following spaces:

Vh = {wh ∈ H1(Ω)|wh|K ∈ Pm(k) ∀K ∈ Th and wh = 0 on ΓD} (3.4)

Sh = {uh ∈ H1(Ω)|uh|K ∈ Pm(k) ∀K ∈ Th and uh = uhD on ΓD} (3.5)

where Pm is the finite element interpolating space. In this way, any function can be

uniquely defined by a finite number of degrees of freedom. To summarize, we define Finite

Element as follows:

Definition 3.2. The Finite Element is a triple (K, P, Σ), where

1. K is a closed subset of Ω̄

2. P is the polynomial space for the basis functions
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3. Σ is the set of local degrees of freedom

and the basis functions have the property:

λj(x, y) = δij =


1 i = j

0 i ̸= j

(3.6)

Linear (P1) and quadratic (P2) basis functions in triangular finite element are con-

structed using two-dimensional barycentric coordinates with the following numbering in

each element:

 (x1,y1)  (x2,y2)

 (x3,y3)

P1 Finite Element

 (x1,y1)  (x2,y2)

 (x3,y3)

 (x6,y6)

 (x5,y5)  (x4,y4)

P2 Finite Element

Figure 3.1: Ordering of vertex for P1 and P2 FEM

Denote

det(A1) =


1 x y

1 x2 y2

1 x3 y3

 , det(A2) =


1 x1 y1

1 x y

1 x3 y3

 , det(A3) =


1 x1 y1

1 x2 y2

1 x y


Notice
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
1 x1 y1

1 x2 y2

1 x3 y3

 = 2∆e

where ∆e is the area of each element, and P1 basis functions are constructed as follows:

λ1 = det(A1)
2∆e

λ2 = det(A2)
2∆e

λ3 = det(A3)
2∆e

The P1 basis function can be expressed in the following way:

λ1 = 1
2∆e

(a1 + b1x+ c1y)

λ2 = 1
2∆e

(a2 + b2x+ c2y)

λ3 = 1
2∆e

(a3 + b3x+ c3y)

(3.7)

where

a1 = x2y3 − x3y2, b1 = y2 − y3, c1 = x3 − x2

a2 = x3y1 − x1y3, b2 = y3 − y1, c2 = x1 − x3

a3 = x1y2 − x2y1, b3 = y1 − y2, c3 = x2 − x1

(3.8)

P2 basis functions are constructed by P1 basis functions:
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ψ1 = λ1(2λ1− 1)

ψ2 = λ2(2λ2− 1)

ψ3 = λ3(2λ3− 1)

ψ4 = 4λ2λ3

ψ5 = 4λ1λ3

ψ6 = 4λ1λ2

(3.9)

The P2 basis can be expressed in the following way:

ψ =



1 0 0 0 −1 −1

0 1 0 −1 0 −1

0 0 1 −1 −1 0

0 0 0 4 0 0

0 0 0 0 4 0

0 0 0 0 0 4


︸ ︷︷ ︸



λ21

λ22

λ23

λ2λ3

λ1λ3

λ1λ2


︸ ︷︷ ︸

= A6×6 R

(3.10)

With the help of the basis function, functions in each element can be approximated by:

u(x, y, t) =
3∑
j=1

Ujλj(x, y) (3.11)

or u(x, y, t) =

6∑
j=1

Ujψj(x, y) (3.12)

where λ and ψ are the basis functions for P1 FEM and P2 FEM respectively, the number

of degrees of freedom for P1 FEM is 3, and the number of degrees of freedom for P2 FEM

is 6 in each element.
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The following integral formula will be very useful for numerical implementations of the

Finite Element method.

Proposition 3.3. Let λ1, λ2, and λ3 be the P1 finite element basis functions of element

Ωe with area ∆e, and a, b, c be three nonnegative integers. Then

∫
Ωe

λa1λ
b
2λ

c
3dΩe = 2∆e

a!b!c!

(a+ b+ c+ 2)!
(3.13)

This is an exact integration and can be very useful beyond integrations of P1 basis

functions, as P2 basis functions are constructed by P1 basis functions. The local mass

matrix and stiffness matrix for P1 an P2 FEM can be calculated as following:

Local mass matrix for P1 FEM: M e
i,j =

∫
Ωe
λiλjdΩe

M e
i,j =

△e

12


2 1 1

1 2 1

1 1 2

 (3.14)

Local mass matrix for P2 FEM: M e
i,j =

∫
Ωe
ψiψjdΩe

According to (3.10), M e
i,j =

∫
Ωe
ψiψjdΩe =

∫
Ωe
ψψTdΩe = A

∫
Ωe
RRTdΩeA

T , thus

M e
i,j =

△e

180



6 −1 −1 −4 0 0

−1 6 −1 0 −4 0

−1 −1 6 0 0 −4

−4 0 0 32 16 16

0 −4 0 16 32 16

0 0 −4 16 16 32


(3.15)
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Local stiffness matrix for P1 FEM: Ke
i,j =

∫
Ωe

∇λi · ∇λjdΩe

Ke
i,j =

∫
Ωe

∇λi · ∇λjdΩe =
1

4△e
(bibj + cicj) (3.16)

Local stiffness matrix for P2 FEM: Ke
i,j =

∫
Ωe

∇ψi ·∇ψjdΩe are calculated in the following

manner:

∂ψ

∂x
=

A

2△e



2b1 0 0

0 2b2 0

0 0 2b3

0 b3 b2

b3 0 b1

b2 b1 0




λ1

λ2

λ3

 (3.17)

∂ψ

∂y
=

A

2△e



2c1 0 0

0 2c2 0

0 0 2c3

0 c3 c2

c3 0 c1

c2 c1 0




λ1

λ2

λ3

 (3.18)
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Denote

B =



2b1 0 0

0 2b2 0

0 0 2b3

0 b3 b2

b3 0 b1

b2 b1 0


C =



2c1 0 0

0 2c2 0

0 0 2c3

0 c3 c2

c3 0 c1

c2 c1 0


the stiffness matrix is actually:

Ke
i,j =

∫
Ωe

∇ψi · ∇ψjdΩe

=
1

4△2
e

AB

∫
Ωe


λ1

λ2

λ3


(
λ1 λ2 λ3

)
dΩeB

TAT

+
1

4△2
e

AC

∫
Ωe


λ1

λ2

λ3


(
λ1 λ2 λ3

)
dΩeC

TAT

while the integral has been calculated as the mass matrix for P1 FEM. Finally the local

stiffness matrix for P2 FEM is:

Ke
i,j =

1

48△e
(AB


2 1 1

1 2 1

1 1 2

BTAT +AC


2 1 1

1 2 1

1 1 2

CTAT ) (3.19)

31



3.1.2 Matrix assembly

Now we want to obtain the global matrix by assembling all the local matrices. We consider

assembling the P2 stiffness matrix for illustration and a similar procedure can be applied

to mass matrix as well. By definition, suppose N is the degree of freedom for P2 FEM.

For 0 ≤ i, j ≤ N − 1, the global stiffness matrix K = (Ki,j)N×N is:

Ki,j =

∫
Ω
∇ψi · ∇ψjdΩ =

∑
Ωe∈Th

∫
Ωe

∇ψi · ∇ψjdΩe (3.20)

The assemble process is to ”glue” the quantity associated with the local index to the global

numbering. We have already calculated the local stiffness matrix as shown in (3.19), so a

standard subroutine to compute the global stiffness matrix is:

Algorithm 1 Standard way of assembly stiffness matrix

1: for t = 0 to Th.nt− 1 do
2: calculate local stiffness matrix Ke

3: for i = 0 to 5 do
4: for j = 0 to 5 do
5: K(V h2(t, i), V h2(t, j)) = K(V h2(t, i), V h2(t, j)) +Ke(i, j)
6: end for
7: end for
8: end for

where Th.nt is the number of elements and V h2(t, i) records the global numbering of the

ith degree of freedom in element t. Notice that the global stiffness matrix K needs O(N2)

storage, and it can be seen in the following chapters that by using operator splitting scheme,

we need to update quite a few matrices due to discontinuous coefficients. Thus the standard

way of assembly may not be very efficient, because the computer will be out of memory

quickly when N is big. The good news is that when we perform FEM discretization, the

matrices obtained are sparse matrices, see [53], [10]. So even the global matrix is N×N , we
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only need to storage the nonzero entries. We can solve this storage problem by storing the

matrix K into a sparse matrix. However, line 5 in Algorithm 1 is quite expensive, because

accessing an element of a sparse matrix requires searching for the index vectors to find the

corresponding nonzero entry. We can solve this problem by recording the index and nonzero

entries using three vectors I(36×Th.nt), J(36×Th.nt), and S(36×Th.nt) in the FOR loop

in line 5 of Algorithm 1 and building the sparse matrix outside the loop, where I and J

record the row and column number of the nonzero entry and S record the nonzero entry, i.e.

Algorithm 2 Assembly stiffness matrix

1: index = 0
2: for t = 0 to Th.nt− 1 do
3: calculate local stiffness matrix Ke

4: for i = 0 to 5 do
5: for j = 0 to 5 do
6: I(index) = V h2(t, i)
7: J(index) = V h2(t, j)
8: S(index) = Ke(i, j)
9: index = index+ 1

10: end for
11: end for
12: end for
13: matrix K
14: K = [I, J, S]

Although this algorithm still needs to loop over all the elements, it is good enough for

us because the computational complexity has been improved from O(N2) to O(NlogN).

Matlab users can still improve the efficiency by vectorization of assembling, during which

the outer large FOR loop in line 2 of Algorithm 2 can be avoided.
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3.2 Numerical solution of the Navier Stokes equations

3.2.1 Choice of interpolation functions

To implement Finite Element discretization, we need to choose proper interpolation func-

tion spaces for velocity and pressure fields, and equal order Finite Element interpolation.

For example, the P1 finite interpolation for both of velocity and pressure fields is the most

tempting one due to its simplicity. However, this is unfortunately not always true, even

when we are using projection method. This problem was first introduced when study-

ing the stability of mixed method of steady Stokes equation, which leads to the theory

called Ladyzhenskaya-Babuska-Brezzi(LBB) compatibility condition [23] [1], [4]. LBB con-

dition states that the interpolation spaces of velocity and pressure fields can not be chosen

arbitrarily. They must satisfy some inf-sup conditions to get a stable finite element approx-

imation. Generally, there are three ways to overcome this numerical difficulties. The first

option is the penalty method [22], [70], [56]. By introducing a parameter associated with

pressure field, it completely replaces the incompressibility condition such that the pressure

field is not a primitive variable in the momentum equation. The penalty method is attrac-

tive because it eliminates the incompressibility from the variational formulation, and thus

it reduces the number of variables. However, like most parametrization techniques, the suc-

cess of the penalty method mainly depends on the choice of the parameters. Another way

to overcome the LBB condition are the stabilization techniques. Inspired from stabilized

formulation, stabilization techniques can be implemented by a modification of the weak

form of the incompressibility condition such that the resulting algebraic system is a positive

definiteness one, which gives sound numerical results. Some of the stabilization techniques,

for instance Galerkin/Least-squares(GLS) [14], only require equal order interpolations for

velocity and pressure fields for the Galerkin formulation to become stable. Among all of
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the three options, finding possible pairs of velocity and pressure fields in stable elements

seems the most tempting way to conquer the LBB condition, because well-chosen velocity

and pressure pairs in stable finite element can eliminate this condition completely. As we

want to use continuous pressure finite element approximation, the elements proposed by

Taylor and Hood [17], and Bercovier-Pironneau [41], are two natural ones. We show in

Figure (3.2) and (3.3) Taylor-Hood and Bercovier-Pironneau triangle elements respectively.

P2−P1 pair velocity P2−P1 pair pressure

Figure 3.2: Taylor-Hood Element

(P1 iso P2)−P1 pair velocity (P1 iso P2)−P1 pair pressure

Figure 3.3: Bercovier-Pironneau Element
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In Taylor-Hood elements, the velocity field is approximated by piecewise quadratic

functions and pressure is approximated by piecewise linear functions. In these elements,

only the base elements are used and in each element, each velocity component is associ-

ated with 6 degrees of freedom and the pressure field has 3 degrees of freedom. Taylor-

Hood elements have been proved to be stable, and they converge at the optimal rate [46].

Bercovier-Pironneau elements follow the similar ideas as Taylor-Hood. The pressure space

is still the same, but each component of velocity is approximated by a linear function in

each of the four subtriangles. Bercovier and Pironneau pointed out this is a stable element

with linear convergency. Both elements can be applied when the triangulation is made

of parallelograms. There are many other stable elements that satisfy LBB conditions, for

example, the Crouzeix-Raviart elements [45] and mini elements proposed by Arnold, Brezzi

and Fortin [12]. Guermond and Quartapelle further studied of velocity and pressure pairs

associated with fractional step project methods. They concluded that in order to obtain

non-oscillatory results, the velocity and pressure pair must satisfy the LBB condition [43],

[44]. We present the Taylor-Hood elements with P2-P1 pair of velocity and pressure fields

for the rest of this dissertation for illustration.

3.2.2 Time discretization: fractional step projection scheme

Before we proceed to solve the Navier Stokes equations, we briefly introduce fractional

step schemes. Fractional step schemes have been thoroughly studied by Marchuk [28] [29]

and Yanenko [66]. Detailed analysis, including the overall accuracy of the scheme, can be

found in specialized textbooks by Marchuk [28] [29], Yanenko [66], Quarteroni and Valli

[61], Glowinski and Le Tallec, et al. [26]. In general, fractional step schemes can be per-

formed either at differential or algebraic level. No matter in which level, however, it follows
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the so-called divide and conquer strategy, meaning decompose system of PDEs into sub-

problems and treat them individually using specialized numerical algorithms, namely:

Definition 3.4. For a initial boundary value problem

∂u

∂t
+ Lu = f in Ω× [0, T ]

u|t=0 = u(0) in Ω

fractional step scheme means

L =

S∑
s=1

Ls

where Ls can represent different physical phenomena, for example, convection, diffusion

reaction etc.

However, one should notice that in case of splitting, the sequential treatment of different

physical processes requires a splitting of boundary conditions as well, so that each individual

problem has reasonable boundary data. For example, we can only impose boundary data

on the inflow part of the boundary for convection problem. Besides, the fractional step

scheme is also sensitive with the source term. Details of those issues will be presented

again in the following section.

In our particular case, two numerical difficulties can not be avoidable in application

of the standard Galerkin Finite Element method. The first one is due to the presence of

fluid nonlinear convection term in the Navier Stokes equations. It has been known that

the standard Galerkin formulation is unstable when the problem is convection dominated

with high Reynolds numbers. We need more stabilization techniques when high Reynolds

number presents. In fact, we can linearize the nonlinear convection term first and convect
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the problem using fixed known transport velocity from previous time step. Alternatively,

we can even treat the convective term completely explicit on the right-hand side. But these

techniques require smaller time step sizes when the nonlinearity effect is strong. Notice

we need higher order time schemes in coupling time integration and spatial representation,

since even an accurate spatial representation can be useless when the time integration can

not propagate the information along the characteristics. In this case, we use a fourth order

Taylor-Galerkin scheme, named TTG-4A method. It is attractive because it is an explicit

scheme, and the scheme itself can treat the nonlinearity without linearization techniques.

Another very important issue in approximation of the Navier Stokes equations are related

to the incompressibility condition of velocity field. Since pressure acts like a Lagrangian

multiplier in the Navier Stokes equations, this leads to a saddle point problem of the re-

sulting variational formulation. In order to solve the resulting algebraic system, a proper

choice of interpolation functions of velocity and pressure field is needed. Besides, velocity

pressure coupling in the Navier Stokes equations should be underlined. One can solve

velocity and pressure simultaneously, but this will come up with large algebraic systems.

It will reduce computational cost significantly if the velocity and pressure approximations

are decoupled. This leads to projection methods. The principle of a projection method

is to compute the velocity and pressure fields separately through the computation of an

intermediate velocity field, and then project the the velocity field onto the subspace of the

solenoidal vector functions. The projection method is based on the following Ladyzhen-

skaya orthogonal decomposition theorem, which is derivation of Helmholtz decomposition

principle.
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Theorem 3.5. Any vector field w⃗ defined in Ω admits the unique orthogonal decompostion

w⃗ = v⃗ +∇ϕ (3.21)

where v⃗ is a solenoidal field with zero normal component on the domain boundary(i.e.

∇ · v⃗ = 0 in Ω, and n⃗ · v⃗ = 0 on Σ where Σ is the boundary of Ω), and ϕ is a scalar

function.

Proof. We begin the proof by checking the existence of the scalar function ϕ. Since w⃗ =

v⃗ +∇ϕ, we have the following Neumann problem


∆ϕ = ∇ · w⃗ in Ω

n⃗ · ∇ϕ = n⃗ · ∇w⃗ on Σ

The solvability of this Neumann problem is satisfied due to divergence theorem, namely,∫
Ω∇ · w⃗dΩ =

∫
Σ n⃗ · w⃗dΣ, so the solution ϕ to this problem exists and is defined up to an

arbitrary constant.

Next we check the orthogonality of the decomposition. Recall the identity ∇ · (v⃗ϕ) =

(∇ · v⃗)ϕ+ v⃗ · ∇ϕ, and the divergence theorem, we have

∫
Ω
v⃗ · ∇ϕdΩ =

∫
Ω
∇ · (v⃗ϕ)dΩ =

∫
Σ
ϕv⃗ · n⃗dΣ = 0

Finally, we use the orthogonality to prove the uniqueness. Suppose w⃗ = v⃗1 + ∇ϕ1 =

v⃗2 +∇ϕ2, then

v⃗1 − v⃗2 +∇(ϕ1 − ϕ2) = 0
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Take the dot product with v⃗1 − v⃗2 and integrate on Ω to get

0 =

∫
Ω
|v⃗1 − v⃗2|2 + (v⃗1 − v⃗2) · ∇(ϕ1 − ϕ2)dΩ =

∫
Ω
|v⃗1 − v⃗2|2dΩ

where the second equality is due to the orthogonality. It follows that v⃗1 = v⃗2, ∇ϕ1 = ∇ϕ2,

and that means ϕ1 = ϕ2 + constant. This completes the proof.

Notice our problem is more complicated due to the presence of an interface. We can

still use the fractional step projection scheme because we capture the interfacial condition

as a boundary condition. However, this involves more careful investigation when we do

splitting. We illustrate three typical forms of fractional step projection methods known

as the Chorin Teman projection method, the three step fractional step projection method

and the Van Kan’s projection scheme. Each of the projection schemes have linerized and

nonlinearized versions due to discontinuous density and viscosity.

3.2.3 Numerical solutions for the subproblems

As mentioned before, splitting the incompressibility condition is tempting. This naturally

leads to the projection scheme, during which we can decompose the complex problem

into at least two simpler ones, i.e. the momentum equation and the pressure Poisson

equation. Regarding the convective term, the fractional step projection method can be

further divided into the two-step method and three-step method. In this dissertation, we

investigate both of them, as well as another two-step method named Van Kan’s projection

scheme, in detail. The good news is as long as supplements of boundary conditions can

be specified for each subproblem, we have specialized numerical algorithms to solve those
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simpler subproblems efficiently. We begin with the analysis of the two-step projection

scheme. The three-step projection scheme and Van Kan’s projection scheme follow similar

ideas and will be included as well.

3.2.3.1 Chorin Teman projection scheme

The Chorin Teman projection scheme consists of solving the convective term and viscous

term together first in the Navier Stokes momentum equation, followed by considering gra-

dient of the pressure term and the incompressibility condition.

Consider the following Navier Stokes equations in domain Ω× [0, T ]:

ρ(x⃗)(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗)−∇ · (µ(x⃗)(∇u⃗+∇u⃗T )) +∇p = ρ(x⃗)g⃗ in Ω× [0, T ] (3.22)

∇ · u⃗ = 0 (3.23)

[u⃗]Γ = 0⃗, −[−pI + µ(x⃗)(∇u⃗+∇u⃗T )]|Γ · n⃗ = σκn⃗ (3.24)

u⃗(x⃗, 0) = u⃗(0)(x⃗) in Ω (3.25)

u⃗(x⃗, t) = b⃗ on Σ (3.26)

where all symbols have been defined in previous chapters with Γ is the interface, Σ is

the boundary of the domain, equation (3.22) is the conservation of momentum, equation

(3.23) is the incompressibility condition, equations (3.24) are interfacial conditions, equa-

tion (3.25) is the initial data, and equation (3.26) is the boundary condition, ρ(x⃗) = ρ1, in

Ω1, ρ(x⃗) = ρ2, in Ω2, µ(x⃗) = µ1, in Ω1, µ(x⃗) = µ2, in Ω2.

The compatibility condition has to be satisfied due to divergence theorem as

0 =

∫
Ω
∇ · u⃗dΩ =

∫
Σ
u⃗ · n⃗dΣ =

∫
Σ
b⃗ · n⃗dΣ (3.27)
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Chorin Teman begins with solving an intermediate velocity field without the incompress-

ibility condition and the pressure term. The first task is to solve the following system:

ρ(x⃗)(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗)−∇ · (µ(x⃗)(∇u⃗+∇u⃗T )) = ρ(x⃗)g⃗ in Ω× [tn, tn+1] (3.28)

[u⃗]Γ = 0⃗, −[µ(x⃗)(∇u⃗+∇u⃗T )]|Γ · n⃗ = σκn⃗ (3.29)

u⃗(x⃗, tn) = u⃗(n)(x⃗) in Ω (3.30)

u⃗ = b⃗ on Σ (3.31)

=⇒ u⃗n+
1
2

Notice we omit the pressure term in the momentum equation and in the interfacial condi-

tion, during which the jump of viscous stress is balanced with the surface tension force. We

only prescribe the Dirichlet boundary condition because we are solving a viscous problem

in this step. This convection diffusion problem remains to be solved with proper treatment

of the discontinuous density and viscosity fields, the nonlinear convective term, and the

surface tension effect. Following Smolianski’s work [52], this convection diffusion equation

can be further split into two separated subproblems: a convection problem and a viscous

diffusion problem; the surface tension effect is only associated with the viscous diffusion

process. Using proper time discretization technique this way, an intermediate velocity field

u⃗n+
1
2 can be found. Next, use the intermediate velocity field as an initial condition, and

decompose it into the sum of a solenoidal velocity field u⃗n+1 and the gradient of unknown

pressure, which leads to the second step of the Chorin Teman projection method:
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∂u⃗

∂t
+

1

ρ(x⃗)
∇p = 0⃗ in Ω× [tn, tn+1] (3.32)

∇ · u⃗ = 0 (3.33)

[u⃗]Γ · n⃗ = 0⃗, [p]|Γ = 0 (3.34)

u⃗(x⃗, tn) = u⃗n+
1
2 in Ω (3.35)

u⃗ · n⃗ = b⃗ · n⃗ on Σ (3.36)

=⇒ u⃗n+1, pn+1

We loop over time to get the approximation of velocity and pressure fields. It should be

pointed out that we can only prescribe boundary condition on the normal component of

velocity, and this is a consequence of the Ladyzhenskaya orthogonal decomposition theorem.

This verifies the physics as we are dealing with an inviscid flow problem in the second step.

Considering for instance the following time discretiation scheme. The second step can

be formulated as a Poisson type equation for pressure pn+1.

u⃗n+1 − u⃗n+
1
2

∆t
= − 1

ρ(x⃗)
∇pn+1 (3.37)

∇ · u⃗n+1 = 0 (3.38)

u⃗n+1 · n⃗ = b⃗ · n⃗ (3.39)

where ∆t = tn+1 − tn is the time step and n = 0, 1, 2, · · · . Applying divergence operator

on both sides of equation (3.37), we have
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∇ · u⃗n+1 −∇ · u⃗n+
1
2

∆t
= −∇ · ( 1

ρ(x⃗)
∇pn+1)

which is

∇ · ( 1

ρ(x⃗)
∇pn+1) =

1

∆t
∇ · u⃗n+

1
2

The boundary condition is obtained by taking the normal component of equation (3.37),

and taking account of boundary condition u⃗n+
1
2 |Σ = b⃗ on the first step and u⃗n+1 · n⃗|Σ = b⃗ ·n⃗

on the second step. Thus, the pressure pn+1 is the solution of the following Poisson-type

Neumann problem:

∇ · ( 1

ρ(x⃗)
∇pn+1) =

1

∆t
∇ · u⃗n+

1
2 (3.40)

∇pn+1 · n⃗|Σ = 0

The solvability condition for this Neumann problem is

0 =

∫
Σ

1

ρ(x⃗)
∇pn+1 · n⃗dΣ =

∫
Ω
∇ · ( 1

ρ(x⃗)
∇pn+1)dΩ =

∫
Ω
∇ · u⃗n+

1
2dΩ

and together with the compatibility condition (3.27), this can be justified as another exer-

cise of divergence theorem

∫
Ω
∇ · u⃗n+

1
2dΩ =

∫
Σ
u⃗n+

1
2 · n⃗dΣ =

∫
Σ
b⃗ · n⃗dΣ = 0

Since the solution of the Neumann problem (3.40) is defined up to an additive constant,

a reference value of pressure must be specified at an arbitrary pressure node. Besides,
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the boundary condition on (3.40) is obtained after time discretization of the original sys-

tem (3.32)-(3.36), so the exact pressure does not necessary satisfy the Neumann boundary

condition; this has been studied by Gresho and Sani [48]. Gresho [15] and Temam [55]

proposed this non-physical homogeneous Neumann boundary condition may result in a

spurious pressure boundary layer of width O(
√
ν∆t), where ν = µ/ρ is the kinematic vis-

cosity. This is one drawback of the projection scheme. Another thing that should catch

our attention is the Laplace operator. We might need to assume higher regularity of the

solution due to this second order operator. In the context of using a Finite Element method

to solve this Neumann problem, the presence of a discontinuous density field need more

investigation compared with single flow problem, where we need to do nothing but con-

structing the lumped mass matrix. Once the pressure pn+1 is obtained, the velocity field

can be given via equation (3.37), namely,

u⃗n+1 = u⃗n+
1
2 − 1

ρ(x⃗)
∆t∇pn+1 (3.41)

We proceed with the Finite Element framework for the two subproblems.

Step 1. Navier Stokes convection diffusion step

The associated spatial discretization for subproblem (3.28) to (3.31) is given as follows:

Find u⃗ ∈ H1(Ω)×H1(Ω) and u⃗ = b⃗ on Σ, such that,

∫
Ω
ρ(ϕ)

∂u⃗

∂t
·w⃗dΩ+

∫
Ω
ρ(ϕ)u⃗·∇u⃗·w⃗dΩ+

∫
Ω
µ(ϕ)(∇u⃗+∇u⃗T ) : ∇w⃗TdΩ =

∫
Ω
ρ(ϕ)g⃗·w⃗dΩ+

∫
Γ
κσn⃗·w⃗

(3.42)

for ∀w⃗ ∈ H1(Ω)×H1(Ω) such that w⃗ = 0⃗ on Σ.

Remark 3.6. The interfacial condition can be expressed as a line integral in Finite Element

framework.
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Remark 3.7. Spatial variables x⃗ in discontinuous coefficients ρ(x⃗) and µ(x⃗) are replaced by

ρ(ϕ) and µ(ϕ) respectively simply because the evaluation of density and viscosity depends on

the interface position Γ. Recall in the Level Set method, we use a signed distance function

ϕ to represent the interface:

Γ = {x⃗|ϕ(x⃗, t) = 0} for ∀t > 0

ϕ is a time-dependent scaler function. We underline the importance of this function. Eval-

uating it at correct time level is crucial for the whole problem, see an important remark in

the work of Groß [16].

The spatial discretization above is actually:

M(t)U ′(t) + (C(U(t), t) +K(t))U(t) = b(t) (3.43)

whereM,C,K are the mass, convection and diffusion part respectively, and the right-hand

side b is the body force. We rule out the surface tension force for the moment for simplicity,

but we will include this term later.

Now we want to solve an ODE system of the following type:

U ′(t) =M−1(t)T (U(t), t) (3.44)

where T (U(t), t) = b(t)− (C(U(t), t) +K(t))U(t).

Based on Groß’s work [16], we proposed the following linearized and non-linearized

schemes:
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Linearized method

Linearized method with Crank-Nicolson method (θ = 0.5) is given as follows:

Un+
1
2 − Un

∆t
= θM−1

n T (Un+
1
2 , tn+

1
2 ) + (1− θ)M−1

n T (Un, tn) (3.45)

MultiplyMn on both sides and recall the notation of T . This leads to the following scheme:

(Mn + θ∆t(Cn +Kn))U
n+ 1

2 = (Mn − (1− θ)∆t(Cn +Kn))U
n + θ∆tbn+

1
2 + (1− θ)∆tbn

(3.46)

Subscripts for the matrix M,C and K denote the dependence of Level Set function at

different time levels. For example, Mn means that using ϕn, namely the Level Set function

from previous time step, to evaluate the mass matrix.

Non-linearized method

Non-linearized method means to evaluate the right-hand side of ODE in different time

levels, which is:

Un+
1
2 − Un

∆t
= θM−1

n+ 1
2

T (Un+
1
2 , tn+

1
2 ) + (1− θ)M−1

n T (Un, tn) (3.47)

Multiply Mn+ 1
2
on both sides and recall the notation of T , it gives:

(Mn+ 1
2
+ θ∆t(Cn+ 1

2
+Kn+ 1

2
))Un+

1
2 =Mn+ 1

2
(Un + (1− θ)∆tM−1

n (bn − (Cn +Kn)U
n)) + θ∆tbn+

1
2
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In other words, we need to solve the following system:

(Mn+ 1
2
+ θ∆t(Cn+ 1

2
+Kn+ 1

2
))Un+

1
2 =Mn+ 1

2
(Un + (1− θ)∆tV n) + θ∆tbn+

1
2 (3.48)

where V n is the solution of the following equation:

MnV
n = bn − (Cn +Kn)U

n (3.49)

Remark 3.8. It should be noticed that if the convection term dominates, some stabi-

lizations are needed for that term. For example, the counter part of θ∆tCnU
n+ 1

2 + (1 −

θ)∆tCnU
n in the linearized version, namely the following term

θ∆t

∫
Ω
ρ(ϕn)u⃗n · ∇u⃗n+

1
2 · w⃗dΩ+ (1− θ)∆t

∫
Ω
ρ(ϕn)u⃗n · ∇u⃗n · w⃗dΩ (3.50)

must be stabilized. The following second-order approximation could be an option for stabi-

lization.

∆t

∫
Ω
ρ(ϕn)u⃗n · ∇u⃗n · w⃗dΩ

+(1− θ)
∆t2

2

∫
Ω
ρ(ϕn)(u⃗n · ∇u⃗n)(u⃗n · ∇w⃗)dΩ

+θ
∆t2

2

∫
Ω
ρ(ϕn)(u⃗n · ∇u⃗n+

1
2 )(u⃗n · ∇w⃗)dΩ

(3.51)

Remark 3.9. If the viscosity µ is small, standard grad-div stabilization technique can be
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used to calibrate the velocity profile in the momentum equation.

The product (∇u⃗+ u⃗T ) : ∇w⃗T in (3.42) is,

(∇u⃗+ u⃗T ) : ∇w⃗T = tr


 2∂u1∂x

∂u1
∂y + ∂u2

∂x

∂u1
∂y + ∂u2

∂x 2∂u2∂y


 ∂w1

∂x
∂w2
∂x

∂w1
∂y

∂w2
∂y




It might be a good idea to see the weak formulation explicitly for each component of velocity

field. To do so, we need to take w⃗ as w⃗ =

 w1

0

, and w⃗ =

 0

w2

 respectively, and

add back the surface tension force. The weak formulation for each component of velocity

field in the linearized version reads:

Find u1
n+ 1

2 ∈ H1(Ω) and u1
n+ 1

2 = b1 on Σ, such that,

∫
Ω
ρ(ϕn)u1

n+ 1
2w1dΩ+ θ∆t

∫
Ω
ρ(ϕn)(un1

∂u
n+ 1

2
1

∂x
+ un2

∂u
n+ 1

2
1

∂y
)w1dΩ

+ θ∆t

∫
Ω
µ(ϕn)(

∂u1
n+ 1

2

∂x

∂w1

∂x
+
∂u1

n+ 1
2

∂y

∂w1

∂y
+
∂u1

n+ 1
2

∂x

∂w1

∂x
+
∂u2

n+ 1
2

∂x

∂w1

∂y
)dΩ

=

∫
Ω
ρ(ϕn)un1 · w1dΩ

− (1− θ)∆t

∫
Ω
ρ(ϕn)(un1

∂un1
∂x

+ un2
∂un1
∂y

)w1dΩ

− (1− θ)∆t

∫
Ω
µ(ϕn)(

∂un1
∂x

∂w1

∂x
+
∂un1
∂y

∂w1

∂y
+
∂un1
∂x

∂w1

∂x
+
∂un2
∂x

∂w1

∂y
)dΩ

+ θ∆t

∫
Ω
ρ(ϕn+1)g1w1dΩ+ (1− θ)∆t

∫
Ω
ρ(ϕn)g1w1dΩ

+∆t

∫
Γ
f1w1dΓ (3.52)

for ∀w1 ∈ H1(Ω) such that w1 = 0 on Σ.
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Find u2
n+ 1

2 ∈ H1(Ω) and u2
n+ 1

2 = b2 on Σ, such that,

∫
Ω
ρ(ϕn)u2

n+ 1
2w2dΩ+ θ∆t

∫
Ω
ρ(ϕn)(un1

∂u
n+ 1

2
2

∂x
+ un2

∂u
n+ 1

2
2

∂y
)w2dΩ

+ θ∆t

∫
Ω
µ(ϕn)(

∂u2
n+ 1

2

∂x

∂w2

∂x
+
∂u2

n+ 1
2

∂y

∂w2

∂y
+
∂u1

n+ 1
2

∂y

∂w2

∂x
+
∂u2

n+ 1
2

∂y

∂w2

∂y
)dΩ

=

∫
Ω
ρ(ϕn)un2 · w2dΩ

− (1− θ)∆t

∫
Ω
ρ(ϕn)(un1

∂un2
∂x

+ un2
∂un2
∂y

)w2dΩ

− (1− θ)∆t

∫
Ω
µ(ϕn)(

∂un2
∂x

∂w2

∂x
+
∂un2
∂y

∂w2

∂y
+
∂un1
∂y

∂w2

∂x
+
∂un2
∂y

∂w2

∂y
)dΩ

+ θ∆t

∫
Ω
ρ(ϕn+1)g2w2dΩ+ (1− θ)∆t

∫
Ω
ρ(ϕn)g2w2dΩ

+∆t

∫
Γ
f2w2dΓ (3.53)

for ∀w2 ∈ H1(Ω) such that w2 = 0 on Σ.

where f⃗ = (f1, f2)
T = κσn⃗. (3.52) and (3.53) use the Level Set function from previous time

step to evaluate the discontinuous coefficients, and this is very important for the linearized

version to obtain correct solutions.

Remark 3.10. We use the Crank-Nicilson scheme for time integration here. In general,

for the one-step θ family scheme, θ ∈ [0, 1]. θ = 0 is the explicit Euler scheme. Notice for

the explicit scheme, u1 and u2 are fully decoupled. They can be solved independently since

the second and third terms on (3.52), and (3.53) disappear completely. The explicit scheme

requires very little time step in order to get stable results, especially when the viscous term

dominates the problem, for example creeping flows. Thus the implicit schemes, namely

θ ∈ (0, 1] are preferred in this step. For θ = 1
2 , it is the Crank-Nicilson scheme, and for

θ = 1, it is the implicit Euler scheme. For θ ≥ 1
2 , the scheme is unconditionally stable.
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But the second and third terms on (3.52), and (3.53) need more attention, because the

velocity field can not be solved separately due to the presence of ∇u⃗T term. One can still

make the velocity field decoupled by simply approximating the ∇u⃗T term fully explicitly,

during which
∂u

n+1
2

1
∂x

∂w1
∂x +

∂u
n+1

2
2
∂x

∂w1
∂y and

∂u
n+1

2
1
∂y

∂w2
∂x +

∂u
n+1

2
2
∂y

∂w2
∂y term are approximated by

∂un1
∂x

∂w1
∂x +

∂un2
∂x

∂w1
∂y and

∂un1
∂y

∂w2
∂x +

∂un2
∂y

∂w2
∂y respectively. Then they moved to the right-hand

side of (3.52), and (3.53). Like the explicit schemes, more time step restrictions should be

considered.

Now construct Finite Element discretizations under LBB condition. In our case, apply

P2 Finite Element approximation for the velocity field and P1 Finite Element approxima-

tion for the pressure in each element:

u1(x, y, t) =

6∑
j=1

U1jψj(x, y) (3.54)

u2(x, y, t) =

6∑
j=1

U2jψj(x, y) (3.55)

p(x, y, t) =
3∑
j=1

Pjλj(x, y) (3.56)

where ψ and λ are P2 and P1 Finite Element basis functions. m and n are degrees of

freedom for the velocity and pressure field, and U1j , U2j , Pj , are nodal values for velocity

and pressure as before. Follow the notations used in (3.4) and (3.5), we denote the Finite

Element approximation for the test function and velocity field as follows:

Vh = {wh ∈ H1(Ω)|wh|K ∈ P2(k) ∀K ∈ Th and wh = 0 on ΣD} (3.57)

Shi = {uhi ∈ H1(Ω)|uhi |K ∈ P2(k) ∀K ∈ Th and uhi = bhi on ΣD} (3.58)
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where i = 1, 2. The resulting Finite Element discretization for this convection diffusion

step comes up with the following algebraic equations after assembling:

[Mn + θ∆tCn + θ∆t(Kn +Kn
11)]U

n+1
1 + θ∆tKn

21U
n+1
2

= [Mn − (1− θ)∆tCn − (1− θ)∆t(Kn +Kn
11)]U

n
1 − (1− θ)∆tKn

21U
n
2

+ θ∆tGn+1
1 + (1− θ)∆tGn1

+∆tI1 (3.59)

[Mn + θ∆tCn + θ∆t(Kn +Kn
22)]U

n+1
2 + θ∆tKn

12U
n+1
1

= [Mn − (1− θ)∆tCn − (1− θ)∆t(Kn +Kn
22)]U

n
2 − (1− θ)∆tKn

12U
n
1

+ θ∆tGn+1
2 + (1− θ)∆tGn2

+∆tI2 (3.60)

From now on we switch to superscript to denote the dependency on ϕ at different time step

for conveniences. The element matrices and arrays need to be calculated are summarized

in the following table:
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Table 3.1: Element matrices and arrays for the first step

M je
∫
Ωe
ρ(ϕj)ψψTdΩe

Cj
e
(u, v)

∫
Ωe
ρ(ϕj)[ψ(ψTu1)

∂ψ
∂x

T
+ ψ(ψTu2)

∂ψ
∂y

T
]dΩe

Kje
∫
Ωe
µ(ϕj)(∂ψ∂x

∂ψ
∂x

T
+ ∂ψ

∂y
∂ψ
∂y

T
)dΩe

Kje

11

∫
Ωe
µ(ϕj)(∂ψ∂x

∂ψ
∂x

T
)dΩe

Kje

21

∫
Ωe
µ(ϕj)(∂ψ∂x

∂ψ
∂y

T
)dΩe

Kje

12

∫
Ωe
µ(ϕj)(∂ψ∂y

∂ψ
∂x

T
)dΩe

Kje

22

∫
Ωe
µ(ϕj)(∂ψ∂y

∂ψ
∂y

T
)dΩe

Gj
e

1

∫
Ωe
ρ(ϕj)g1ψdΩe

Gj
e

2

∫
Ωe
ρ(ϕj)g2ψdΩe

The resulting algebraic system can be solved using standard solvers, for example, GM-

RES and/or UMFPACK are two good alternatives. How to treat the discontinuous coeffi-

cients and approximate the surface tension force as a line integral I are left for discussion

on section (3.3) and (3.4.2). The resulting solution from viscous diffusion step is denoted

as u⃗n+
1
2 , and it is the input for the following pressure projection step.

Step 2. Navier Stokes pressure projection step

Consider the following system

∂u⃗

∂t
+

1

ρ(x⃗)
∇p = 0⃗ in Ω× [tn, tn+1] (3.61)

∇ · u⃗ = 0

[u⃗]Γ · n⃗ = 0⃗, [p]|Γ = 0

u⃗|t=tn = u⃗n+
1
2

we’ve seen (3.61) result in a Poisson-type equation (3.40). The weak formulation in this

case reads:
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Find pn+1 ∈ H1(Ω), and pn+1(x⃗0) = 0, where x⃗0 is any reference point in the computational

domain, such that,

∆t

∫
Ω

1

ρ(ϕn+1)
∇pn+1 · ∇qdΩ = −

∫
Ω
q(∇ · u⃗n+

1
2 )dΩ (3.62)

for ∀q ∈ H1(Ω). To update un+1
i at tn+1, the following weak formulation holds:

Find un+1
i ∈ H1(Ω), i = 1, 2, such that,

∫
Ω
ρ(ϕn+1)(un+1

i − u
n+ 1

2
i )wdΩ = −∆t

∫
Ω
w
∂pn+1

∂xi
dΩ (3.63)

for ∀w ∈ H1(Ω).

After Finite Element discretization under LBB condition and assembling, the projec-

tion step comes up with the following algebraic systems:

∆tKn+1
p Pn+1 = −b (3.64)

Mn+1Un+1
i =Mn+1U

n+ 1
2

i −∆tPbi (3.65)

where i = 1, 2. Notice all matrices in the projection step utilize the Level Set function

after convection step as an input. The element matrices and arrays need to be calculated

are summarized in the following table:
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Table 3.2: Element matrices and arrays for projection step

Kn+1e
p

∫
Ωe
ρ(ψn+1)(∂ψ∂x

∂ψ
∂x

T
+ ∂ψ

∂y
∂ψ
∂y

T
)dΩe

be
∫
Ωe
ψ(∂ψ

T

∂x u
n+ 1

2
1 + ∂ψT

∂y u
n+ 1

2
2 )dΩe

Pbe1
∫
Ωe
ψ ∂ψ
∂x

T
pn+1dΩe

Pbe2
∫
Ωe
ψ ∂ψ
∂y

T
pn+1dΩe

3.2.3.2 Three-step fractional step projection scheme

The basic idea of three-step fractional step projection scheme is that we solve the convective

effect and the viscous diffusion effect separately. So three consecutive problems will be

solved: convection equation, viscous diffusion equation and pressure Poisson equation. The

numerical solution of previous step serves as the input of the later step. To be specific, we

begin with the analysis of the convection equation.

Step 1. Navier Stokes convection step

In this step, we take care of the convective phenomena only. So we want to solve convection

equations of the following type:

∂ui
∂t

+ u⃗ · ∇ui = 0 in Ω× [tn, tn+1] (3.66)

ui|t=tn = u
(n)
i

where u⃗ = (u1, u1)
T , i = 1, 2, with corresponding boundary conditions. Due to the convec-

tive property of these equations, we can only prescribe boundary conditions on the inflow

part of the boundary. In this case, with the partition of the boundary Σ = Σin
∪

Σout,

where Σin = {x⃗ ∈ Σ|u⃗ · n⃗ < 0} and Σout = {x⃗ ∈ Σ|u⃗ · n⃗ > 0}, n⃗ is the outward normal of

Σ, the Dirichlet boundary condition (3.31) ui = bi, i = 1, 2, can be only prescribed on Σin
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part of the boundary.

The nonlinear term u⃗ · ∇ui in the system again needs more attention. Especially in

the context of Finite Element approach for transient problem, we address here again,

unlike linear spatial operator with constant coefficients, that it is better to perform time

discretization before the spatial discretization. Besides, stability studies associated with

time discretization schemes and linear Finite Elements show that convection problems

require higher order temporal accuracy to get reasonable solutions. We present a two-step

fourth-order method known as TTG-4A scheme.

The following procedures are performed successively:

ũi
n = uni +

1

3
∆t

∂ui
∂t

n

+
1

12
(∆t)2

∂2ui
∂t2

n

(3.67)

u∗i = uni +∆t
∂ui
∂t

n

+
1

2
(∆t)2

∂2ũi
∂t2

n

(3.68)

It is easy to see this scheme is fourth-order accuracy by plugging (3.67) into (3.68), which

is indeed

u∗i = uni +∆t
∂ui
∂t

n

+
1

2
(∆t)2

∂2ui
∂t2

n

+
1

6
(∆t)3

∂3ui
∂t3

n

+
1

24
(∆t)4

∂4ui
∂t4

n

+ [O(∆t)5]

From the governing equation, we have:

∂ui
∂t

= −(u⃗ · ∇)ui (3.69)
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and

∂2ui
∂t2

= − ∂

∂t
[(u⃗ · ∇)ui]

= −∂u⃗
∂t

· ∇ui − (u⃗ · ∇)
∂ui
∂t

= (u⃗ · ∇)u⃗ · ∇ui + (u⃗ · ∇)[(u⃗ · ∇)ui]

(3.70)

Plug (3.69) and (3.70) back into (3.67) and (3.68), which gives:

ũi
n = uni −

1

3
∆t(u⃗n · ∇)uni +

1

12
(∆t)2(u⃗n · ∇)u⃗n · ∇uni +

1

12
(∆t)2(u⃗n · ∇)[(u⃗n · ∇)uni ]

(3.71)

u∗i = uni −∆t(u⃗n · ∇)uni +
1

2
(∆t)2(˜⃗un · ∇)˜⃗un · ∇ ˜⃗uin + 1

2
(∆t)2(˜⃗un · ∇)[(˜⃗un · ∇) ˜⃗uin] (3.72)

Now follow FEM mentioned in section (3.1), the weak formulations for (3.67) and (3.68)

read:

Find ũi
n ∈ H1(Ω) and ũi

n = bi on Σin, i = 1, 2, such that

∫
Ω
ũi
nwdΩ =

∫
Ω
uni wdΩ− 1

3
∆t

∫
Ω
u⃗n · ∇uni wdΩ

+
1

12
(∆t)2

∫
Ω
u⃗n · ∇u⃗n · ∇uni wdΩ

+
1

12
(∆t)2

∫
Σout

(u⃗n · ∇uni )(wu⃗n · n⃗)dΣ

− 1

12
(∆t)2

∫
Ω
(u⃗n · ∇uni )(∇w · u⃗n)dΩ

− 1

12
(∆t)2

∫
Ω
(u⃗n · ∇uni )(w∇ · u⃗n)dΩ (3.73)

for ∀w ∈ H1(Ω) and w = 0 on Σin.
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Find u∗i ∈ H1(Ω) and u∗i = bi on Σin, i = 1, 2, such that

∫
Ω
u∗iwdΩ =

∫
Ω
uni wdΩ−∆t

∫
Ω
u⃗n · ∇uni wdΩ

+
1

2
(∆t)2

∫
Ω

˜⃗un · ∇˜⃗un · ∇ ˜⃗uinwdΩ
+

1

2
(∆t)2

∫
Σout

(˜⃗un · ∇ ˜⃗uin)(w˜⃗un · n⃗)dΣ
− 1

2
(∆t)2

∫
Ω
(˜⃗un · ∇ ˜⃗uin)(∇w · ˜⃗un)dΩ

− 1

2
(∆t)2

∫
Ω
(˜⃗un · ∇ ˜⃗uin)(w∇ · ˜⃗un)dΩ (3.74)

for ∀w ∈ H1(Ω) and w = 0 on Σin.

Remark 3.11. The scheme is explicit, and the nonlinear effect is not a problem due to this

explicit character. Besides, this scheme is efficient since two components of the velocity

field can be sought separately. After Finite Element approximation, we will come up with

two similar algebraic systems with exact same mass matrix for each step. The mass matrix

has been calculated in (3.15), so we do not have to reassemble it over the loop.

Remark 3.12. Courant, Friedrichs, and Lewy [27] pointed out that the time step can not

be chosen arbitrarily for this hyperbolic type of PDE. The scheme is stable if the following

Courant-Friedrichs-Lewy (CFL) condition holds

C =
|u⃗|∆t
h

< Cmax (3.75)

where usually Cmax = 1 for the explicit scheme. Cmax might be larger when the implicit

scheme is applied. The CFL condition determines the interval time length for this Navier

Stokes convection step. Later in the Level Set convection step, this CFL condition still has
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to be satisfied.

Remark 3.13. After a simple algebraic modification of the weak formulation of (3.73), we

have

∫
Ω

ũi
n − uni
∆t

wdΩ = −1

3

∫
Ω
u⃗n · ∇uni wdΩ

+
1

12
(∆t)

∫
Ω
u⃗n · ∇u⃗n · ∇uni wdΩ

+
1

12
(∆t)

∫
Σout

(u⃗n · ∇uni )(wu⃗n · n⃗)dΣ

− 1

12
(∆t)

∫
Ω
(u⃗n · ∇uni )(∇w · u⃗n)dΩ

− 1

12
(∆t)

∫
Ω
(u⃗n · ∇uni )(w∇ · u⃗n)dΩ

It is interesting to see that all terms on the right-hand side have (u⃗n · ∇uni ). They can

be comprehended as the linearization of the nonlinear convection term in the governing

equation with a uniform velocity u⃗n. The surface integral
∫
Σout

(u⃗n · ∇uni )(wu⃗n · n⃗)dΣ is

evaluated only at the outflow part of the boundary, because the test function is zero on the

inflow part of the boundary. This boundary term takes into account the outflow of fluid

momentum along the streamlines of the advection field, and it guarantees good absorbing

properties at outflow boundaries in transient calculations. The weak formulation for the

second step in Tayler Galerkin method can be interpreted in the same fashion.

The resulting Finite Element discretization for this convection step come up with the

following algebraic equations on each element:
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M e(Ũi
n
− Uni ) =

1

3
∆tCe1U

n
i +

1

12
(∆t)2Ce2U

n
i (3.76)

M e(U∗
i − Uni ) = ∆tCe1U

n
i +

1

2
(∆t)2Ce2Ũi

n
(3.77)

where i = 1, 2 and the matrix M e is the standard consistent mass matrix mentioned on

section (3.1) in (3.15). After assembling, the following algebraic systems should be solved

in the convection step:

M(Ũi
n
− Uni ) =

1

3
∆tC1U

n
i +

1

12
(∆t)2C2U

n
i (3.78)

M(U∗
i − Uni ) = ∆tC1U

n
i +

1

2
(∆t)2C2Ũi

n
(3.79)

There is no density term in the convective step of the three-step scheme, so discontin-

uous integrations are not needed for this step.

The resulting solution from convection equation is denoted as u⃗n+1 = u⃗∗, and it is the

initial condition for the following viscous diffusion step.

Step 2. Navier Stokes viscous diffusion step

In this step, we consider the viscous diffusion process as well as the surface tension force

in the following viscous diffusion system:

ρ(x⃗)
∂u⃗

∂t
−∇ · (µ(x⃗)(∇u⃗+∇u⃗T )) = ρ(x⃗)g⃗ in Ω× [tn, tn+1] (3.80)

[u⃗]Γ = 0⃗

−[µ(x⃗)(∇u⃗+∇u⃗T )]|Γ · n⃗ = σκn⃗

u⃗|t=tn = u⃗∗
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with corresponding boundary conditions. Unlike the convection step, we have to specify

boundary conditions on all boundaries Σ of our computational domain. Perform spatial

discretization first. We have the following:

Find u⃗ ∈ H1(Ω)×H1(Ω) and u⃗ = b⃗ on Σ, such that,

∫
Ω
ρ(ϕ)

∂u⃗

∂t
· w⃗dΩ+

∫
Ω
µ(ϕ)(∇u⃗+∇u⃗T ) : ∇w⃗TdΩ =

∫
Ω
ρ(ϕ)g⃗ · w⃗dΩ+

∫
Γ
κσn⃗ · w⃗ (3.81)

for ∀w⃗ ∈ H1(Ω)×H1(Ω) such that w⃗ = 0⃗ on Σ.

Follow the previous work of two-step method, this diffusion equation can be solved in

the linearized and/or non-linearized version in the same fashion without the convection

term.

Step 3. Navier Stokes pressure projection step

Navier Stokes pressure projection step follows exact the same idea as in the second step

of Chorin Teman projection scheme. The intermediate velocity field calculated from the

viscous diffusion step is used as input. A Poisson-type equation is solved, and the velocity

field is recovered by the updated pressure field in the projection step.

3.2.3.3 Van Kan’s projection scheme

For the Van Kan’s projection scheme, we need to insert the old pressure gradient into the

momentum equation and solve the viscous Burgers’ equation directly in the first step. Then

we need to project the resulting velocity field onto the subspace of solenoidal functions to

update the pressure field. We illustrate the linearized version concisely. To be specific, the

following two steps are performed successively,
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Step one of linearized Van Kan scheme

Linearized Van Kan Scheme is similar to linearized semi-discrete/two-step version, whereas

the pressure term evaluated at previous time step should be included on the RHS of (3.46),

namely, the following system has to be solved first:

(Mn + θ∆t(Cn +Kn))U
n+ 1

2 = (Mn − (1− θ)∆t(Cn +Kn))U
n (3.82)

−∆tBTPn

+ θ∆tbn+
1
2 + (1− θ)∆tbn

Notice this step is basically the same as the first step in Chorin Teman scheme. The only

difference is the presence of gradient of pressure term on the right-hand side of the weak

formulation. All other terms are exactly the same as those in the first step of Chorin

Teman scheme. As we shall see in the static bubble test, this presence of gradient pressure

term does not give good behavior when surface tension force is included.

Step two of linearized Van Kan Scheme

The second step of the Van Kan scheme is slightly different from two previous schemes by

introducing pressure difference qn+1 = pn+1−pn
2 . The pressure difference makes this scheme

second order. However, a Poisson-type equation is also obtained. The following two steps

complete Van Kan scheme:

Find qn+1 ∈ H1(Ω), and qn+1(x⃗0) = 0, where x⃗0 is any reference point in the computational

domain, such that,

∆t

∫
Ω

1

ρ(ϕn+1)
∇qn+1 · ∇vdΩ = −

∫
Ω
v(∇ · u⃗n+

1
2 )dΩ (3.83)
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for ∀v ∈ H1(Ω). To update un+1
i at tn+1, the following weak formulation holds:

Find un+1
i ∈ H1(Ω), i = 1, 2, such that,

∫
Ω
ρ(ϕn+1)(un+1

i − u
n+ 1

2
i )wdΩ = −∆t

∫
Ω
w
∂qn+1

∂xi
dΩ (3.84)

for ∀w ∈ H1(Ω).

As we have seen in this section, the Van Kan’s projection scheme follows similar ideas

as the three-step fractional step projection method. But it only consists of two steps: in

the first step a viscous Burgers equation is solved with the presence of old pressure gra-

dient in the momentum equation. In the second step the incompressibility constraint is

considered by projecting the resulting velocity field from the first step on to the subspace

of solenoidal functions, which also leads to a Poisson-type equation. Basically, Van Kan’s

projection scheme combines the convection step and the viscous diffusion step from the

three-step projection method with the presence of the gradient pressure. As a projection

scheme, Van Kan’s scheme also suffers from wrong boundary conditions in the projection

step, and it can give a spurious pressure boundary layer with width O(
√
ν∆t).

3.3 Numerical integration of discontinuous functions

As mentioned in the previous section, evaluating discontinuous densities and viscosities

precisely is one of our major numerical challenges. The densities and viscosities vary across

the interface. Mathematically, discontinuous densities and viscosities can be expressed via

the following Characteristic function:

Introducing a Characteristic function as an indicator of fluid 1 as follows,
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χ1(x⃗) =

 1 x⃗ in Ω1

0 x⃗ in Ω2

(3.85)

the discontinuous densities and viscosities can be expressed as:

ρ(x⃗) = ρ2 + (ρ1 − ρ2)χ1(x⃗) (3.86)

µ(x⃗) = µ2 + (µ1 − µ2)χ1(x⃗) (3.87)

In general, we want to evaluate integrations of the following form:

∫
Ω
χfdΩ (3.88)

where f is an arbitrary smooth function. As we have mentioned in the previous chapters,

how to evaluate this type of integral accurately is essentially important in our two-phase

flow simulation. In addition, the weak formulation of the equations also includes the inte-

gral of the surface tension force over the interface. In FEM, the line integration becomes

∫
Γ
f⃗ · w⃗dΓ =

∫
Ω
δ(Γ)f⃗ · w⃗dΩ (3.89)

This kind of integral involves approximation of the singular function with support on the

interface. Evaluating this type of integral is very important especially when surface tension

presents. Later in the section of approximation of surface tension force, we shall see this

type of integration can be evaluated without approximating the singular function when

a semi-implicit scheme is adopted. Although this involves localizing the zero contours of

the interface, we need to calculate the areas inside the contours anyway in the proposed
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Volume Fraction method. From now on, we only focus on the numerical integration of the

discontinuous type. There are two popular approaches to approximate this type of inte-

gral traditionally. The first one requires to keep the Characteristic function and modify

numerical quadratures accordingly. This method yields an O(h2) error when the interface

is approximated by a straight line in each interfacial triangle, see [57]. The second method

involves expressing the Characteristic function χ as a Heaviside function of the following

type:

χ(x) = H(ϕ(x)) (3.90)

where

H(t) =


0 for t < 0

1
2 for t = 0

1 for t > 0

(3.91)

To regularized this Heaviside function, the following regularized functions are applied:

Hε(t) =


0 for t < −ε

ν(t/ε) for |t| < ε

1 for t > ε

(3.92)

where ν(ξ) is a smooth transition function with ν(−1) = 0 and ν(1) = 1. ν(ξ) = 1
2(1 +

ξ+ 1
πsin(πξ)) is a popular choice. Errors introduced by this approach are also analyzed in

[57].

Here, we introduce a new Volume Fraction method to calculate discontinuous densi-

ties and viscosities. The idea is that without regularizing the Characteristic function, the

Volume Fraction for indicated fluid is calculated first. Then we evaluate the discontinuous
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integrals using the resulting Volume Fraction function.

3.3.1 Volume Fraction method

Here, we propose the following Volume Fraction method. We use the Characteristic func-

tion as an indicator of fluid one like before:

χ1(x⃗) =

 1 x⃗ in Ω1

0 x⃗ in Ω2

(3.93)

The Volume Fraction on degree of freedom i is defined using the Characteristic function

χ1 as follows:

αi =

∫
area occupied by fluid 1 χ1dΩ∫

area of triangles containing i 1dΩ
(3.94)

←interface

i

Ω
2

Ω
1

1©

2© 3©

4© 5©

6©

Figure 3.4: Volume Fraction method

As shown in figure (3.4), αi is calculated as the fraction of area occupied by fluid one

and the area of six triangles containing i. It is clear that αi ∈ [0, 1]. Recall the area of

an arbitrary triangle with vertices (x1, y1), (x2, y2), (x3, y3) can be evaluated using the
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following determinant:

area of triangle =
1

2

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
. (3.95)

The numerator in (3.94) can be calculated as long as the interface is located. In each

interfacial element, for example in Figure (3.5), interface can be located with the sign of

Level Set function ϕ evaluated on each of degree of freedom. As ϕ|(x3,y3) < 0, ϕ|(x1,y1) > 0,

and ϕ|(x2,y2) > 0, i.e. (x3, y3) ∈ Ω1, and (x1, y1), (x2, y2) ∈ Ω2, the interface can be

approximated with segment connecting points (xa, ya), and (xb, yb). The coordinates of

points (xa, ya), and (xb, yb) are obtained via the following interpolation:

 xa = x1 + (x3 − x1)
ϕ1

(ϕ1−ϕ3)

ya = y1 + (y3 − y1)
ϕ1

(ϕ1−ϕ3)

(3.96)

 xb = x2 + (x3 − x2)
ϕ2

(ϕ2−ϕ3)

yb = y2 + (y3 − y2)
ϕ2

(ϕ2−ϕ3)

(3.97)

(x1,y1) (x2,y2)

(x3,y3)

(x
a
,y

a
)

(x
b
,y

b
)

 Ω
1

Ω
2

Figure 3.5: Interfacial element

Now in each element, define function αh(x⃗) as a linear combination of P1 finite element
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basis functions λk, k = 1, 2, 3, with Volume Fraction as weight, namely,

αeh(x⃗) = λTα (3.98)

where α = (α1, α2, α3)
T is the Volume Fraction, and λ = (λ1, λ2, λ3)

T is the P1 Finite

Element basis function. The discontinuous densities and viscosities are approximated using

αeh(x⃗):

ρeh(x⃗) = αeh(x⃗)ρ1 + (1− αeh(x⃗))ρ2 (3.99)

µeh(x⃗) = αeh(x⃗)µ1 + (1− αeh(x⃗))µ2 (3.100)

Follow the notations in section (3.1), the mass matrix in viscous diffusion step M ie is

calculated in the following way:

M ie =

∫
Ωe

ρ(ϕi)ψψTdΩe

=

∫
Ωe

(αih
e
ρ1 + (1− αih

e
)ρ2)ψψ

TdΩe

= ρ2

∫
Ωe

ψψTdΩe + (ρ1 − ρ2)

∫
Ωe

αih
e
ψψTdΩe

= ρ2

∫
Ωe

ψψTdΩe + (ρ1 − ρ2)

∫
Ωe

(λTα)ψψTdΩe (3.101)

The first integral is the standard mass matrix calculated in (3.15), and the second integral

can be calculated in the similar way as mentioned in section (3.1), which is,

∫
Ωe

(λTα)ψψTdΩe = A

∫
Ωe

(λTα)RRTdΩeA
T (3.102)
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To calculate mass matrix with discontinuous coefficients, we only need to update the Vol-

ume Fractions, namely αs. The integrals are exact integrations given in proposition (3.3).

Besides, other matrices and arrays with discontinuous coefficients can be calculated in the

same manner.

3.3.2 Numerical test cases and error analysis of Volume Fraction method

In the numerical tests, we perform grid convergence experiments to study error behaviors of

Volume Fraction method. Let the computational domain be a unit square Ω = [0, 1]×[0, 1],

with a fixed square interface Ωs. The fixed interface has four corners (2/5, 2/3), (3/5, 2/3),

(2/5, 13/15), and (3/5, 13/15), see Figure (3.6). The area of this fixed square is simply

0.04. Convergence tests are performed on isosceles right triangle meshes with interval size

h. The longest side of each triangle is
√
2h. Refinement is performed such that after re-

finement, the interval size becomes h/2l, for l = 1, 2, 3, · · · , 7, and the longest side of each

triangle after refinement becomes
√
2h/2l.

Ω
s

Ω

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.6: Computational domain for discontinuous integrals
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Four different discontinuous functions are chosen as the integrates. For the first exam-

ple, we take f = 1. We want to integrate a Characteristic function defined as one if it is

located inside the little square Ωs, and zero otherwise, which is:

χ(x⃗) =

 1 x⃗ in Ωs

0 x⃗ in Ω \ Ωs
(3.103)

The integration of χ over Ω is the area of Ωs. The Figure (3.7) shows the loglog plot of

the error over mesh sizes, where error is defined as follows:

error = |
∫
Ω
χdΩ−

∫
Ω
αdΩ|
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Figure 3.7: Error of integration of Characteristic function

An alternative approach to calculate the Volume Fraction is to use L2 projection of the

Characteristic function, namely

(α, λ) = (χ, λ) (3.104)

for all test functions λ. (·, ·) denotes the L2 scaler product. If the Volume Fraction is
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calculated this way, the error above will be zero.

More generally, we want to evaluate the numerical integration of discontinuous func-

tions with the following form:

∫
Ω
χfdΩ

Actually,
∫
Ω χfdΩ =

∫
Ωs
fdΩs. We want to investigate error behaviors over refinement,

and the error is defined as:

error = |
∫
Ω
χfdΩ−

∫
Ω
αfdΩ|

The second and third tests involve integrations of second and third order polynomials,

where f = x2 + y2, and f = x4 + y4 respectively. The exact integration of these kinds of

polynomial can be easily evaluated, and loglog plot of the error over mesh sizes are given

in the following figures:
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Figure 3.8: Error of integration of second order and fourth order discontinuous functions

The slopes in loglog plot in the first three test cases are 1.0249, 1.0275, and 1.0382

respectively. So our scheme is order one.

71



The last numerical test is performed with f = exp(
√
x2 + y2). Since no explicit inte-

gration formula can be found in this case, the following table shows the convergence rate

of our Volume Fraction scheme:

Table 3.3: numerical integration of
∫
Ω χexp(

√
x2 + y2)dΩ

h uh uh − uh/2
uh−uh/2
uh/2−uh/4

log2(
uh−uh/2
uh/2−uh/4

)

1./15 0.176153 0.040182 2.182618142 1.1261

1./30 0.135971 0.01841 2.093949045 1.0662

1./60 0.117561 0.008792 2.047508151 1.0339

1./120 0.108769 0.004294 2.024516737 1.0176

1./240 0.104475 0.002121 2.012333966 1.0089

1./480 0.102354 0.001054 2.003802281 1.0027

1./960 0.1013

With all these tests, we conclude that our Volume Fraction method is first order accu-

racy. We will see it is a stable method when evaluating the discontinuous coefficients in

the rising bubble benchmark problem in Chapter 4.

3.4 Numerical representation of the interface

3.4.1 Approximation of Level Set function

As prescribed in section (2.2.2), we need to solve the following type of PDE for the interface

∂ϕ

∂t
+ u⃗ · ∇ϕ = 0 (3.105)
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with initial data. Boundary conditions are defined only on the inlet of domain. We come up

with a convection equation for the Level Set function. This can be solved using TTG-4A,

which has been studied in the convection step of three-step method. Two different linear

advection equations have been solved using TTG-4A to verify this numerical scheme.

Case One: Linear advection

The computational domain is a rectangle with length Lx = 10, and height Ly = 100.

Initially, a circle is centered at x0 = Lx/2 and y0 = Ly − 2R0, where R0 = 4 is the radius

of the circle. The velocity is taken as u⃗ = (0,−1)T . The analytical solution of this test

case is: ϕ = R0 −
√

(x− x0)2 + (y − y0 − time)2. Figure (3.9) shows the computational

results for the interface ϕ at different times using TTG-4A.
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Figure 3.9: Interface position of linear advection test with mesh size h = 1./20, time step
∆t = 0.25h using TTG-4A. The problem was solved in non-dimensional vari-
ables, see Remark 3.14.

Remark 3.14. The primary goal of this dissertation is to study and develop robust al-

gorithms to solve the two-phase flow problem, so all parameters and computed numerical

quantities including the dimensions, density, viscosity, time, velocity, pressure, force and

interface are dimensionless.

We define relative errors and absolute errors respectively as follows:
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reErr1 =

∫
|ϕ− ϕe|dΩ∫

|ϕ|dΩ

reErr2 =

√∫
|ϕ− ϕe|2dΩ∫

ϕ2dΩ

Err1 =

∫
|ϕ− ϕe|dΩ

Err2 =

√∫
|ϕ− ϕe|2dΩ

The error behaviors versus refinement levels are presented in Figure (3.10).
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Figure 3.10: Errors for 2D linear advection test under grid refinement. The problem was
solved in non-dimensional variables, see Remark 3.14.

Case Two: Zalesak’s rotating disc

The computational domain is a square with Lx = Ly = 1. Initially, a slotted disc is cen-

tered at (x0, y0) = (12Lx,
3
4Ly), with radius R0 =

3
20Lx, and w = 1

3R0. Here, the advection

velocity is taken as u⃗ = (−(y − 1
2Ly), x− 1

2Lx)
T . After one revolution, the disc supposed

to rotate back to its initial position. The followings are grid convergence results obtained

using TTG-4A after one revolution. The red curves are the computed results, and the blue

curves are the initial positions. The problem was solved in non-dimensional variables, see
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Remark 3.14.

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

after one revolution
initial position

Figure 3.11: Mesh 50× 50
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Figure 3.12: Mesh 100× 100
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Figure 3.13: Mesh 150× 150
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Figure 3.14: mesh 200× 200

3.4.2 Approximation of surface tension force

We model the surface tension force mathematically as interfacial boundary conditions. We

assume there is no mass transfer between two fluids, i.e. on the interface Γ:

[u⃗] |Γ = 0⃗,−
[
−pI + 2µ(∇u⃗+∇u⃗T )

]
|Γ · n⃗ = σκn⃗
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where n⃗ is the interface outward normal, σ is the surface tension coefficient, κ is the cur-

vature of the interface, and [·] denotes the jump property across the interface. We rewrite

these boundary conditions as a source term in our two-phase flow problem:

f⃗st = σκn⃗δ(Γ, x⃗)

where the Dirac Delta function δ(Γ, x⃗) is used here to localize the surface tension force

only on the interface between two fluids. As we are using FEM, the surface tension force

arises naturally into the weak formulation. In other words, we need to evaluate this type

of integral in the weak formulation:

∫
Ω
σκn⃗ · w⃗δ(Γ, x⃗)dΩ

where w⃗ is the test function. Existence of the Dirac Delta function requires same regular-

ization techniques mentioned in section Numerical integration of discontinuous functions.

More detailed analysis of this approach can be found in Tornberg’s work, see [59], [57].

Time discretization needs more attention for this force. The most common way is to use

the explicit time integration scheme, where all the quantities are evaluated using the inter-

face from the previous time step. So the following integration is included in the right-hand

side as a source term:

∫
Γn

σκnn⃗n · w⃗dΓ =

∫
Ω
σκnn⃗n · w⃗δ(Γn, x⃗)dΩ (3.106)

Brackbill, Kothe, and Zemach derived the time step criterion for this method in their work

[68], which is
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∆t <

√
ρh3

σ
(3.107)

In addition, the curvature κ needs to be evaluated carefully as well if this approach is

applied. We follow Hysing’s work [19], where a semi-implicit time integration is used. The

time step limitation is circumvented. In addition, we do not need to evaluate the curvature

term at all.

The semi-implicit method is based on the following results from differential geometry:

∆x⃗|Γ = κn⃗

where ∆ is the Laplace-Beltrami operator. This operator is defined to be:

∆f(x⃗) = ∇ · (∇f(x⃗)), x⃗ ∈ Γ

If f is two times differentiable in a neighborhood of Γ, the first derivative is given by:

∇f(x⃗) = ∇f(x⃗)− (n⃗(x⃗) · ∇f(x⃗))n⃗(x⃗), x⃗ ∈ Γ

which is also called tangential gradient of f(x⃗).

Now we can include the surface tension force in our weak formulations. Multiply the

surface tension force with a test function w⃗ chosen from suitable space, and integrate over

Ω, it gives:
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f⃗σ =

∫
Ω
σκn⃗ · w⃗δ(Γ, x⃗)dΩ (3.108)

=

∫
Γ
σκn⃗ · w⃗dΓ

=

∫
Γ
σ(∆x⃗|Γ) · w⃗dΓ

= −
∫
Γ
σ(∇x⃗|Γ) · ∇w⃗dΓ

Bänsch proposed the semi-implicit approach in the context of a Front Tracking method,

see [2]. It reduces the awkward time step restriction. This is done by rewriting the new

interface position as a function of the old position:

(x⃗|Γ)n+1 = (x⃗|Γ)n +∆tu⃗n+1

The integration becomes:

f⃗σ = −
∫
Γn

σ∇x⃗ · ∇w⃗ds−∆t

∫
Γn

σ∇u⃗n+1 · ∇w⃗ds

(3.109)

So we are looking for two integrals for the two components of velocity(σ is constant by

assumption):
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fσ1 = −σ
∫
Γn

∇x · ∇w1ds− σ∆t

∫
Γn

∇un+1
1 · ∇w1ds

(3.110)

fσ2 = −σ
∫
Γn

∇y · ∇w2ds− σ∆t

∫
Γn

∇un+1
2 · ∇w2ds

(3.111)

We propose to do the numerical integration in the following way, so there is no need to

approximate the interfacial normals and the curvatures.

We denote the P2 basis functions as ψi for i = 1, 2, · · · , 6 like before. We can calculate

the tangential derivatives as follows:

∫
Γn

∇x · ∇ψids =
x2 − x1
dl

ψi(x2, y2)− ψi(x1, y1)

dl
dl

=
1

dl
(x2 − x1)(ψi(x2, y2)− ψi(x1, y1))

(3.112)

∫
Γn

∇ψj · ∇ψids =
ψj(x2, y2)− ψj(x1, y1)

dl

ψi(x2, y2)− ψi(x1, y1)

dl
dl

=
1

dl
(ψj(x2, y2)− ψj(x1, y1))(ψi(x2, y2)− ψi(x1, y1))

(3.113)
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where dl =
√

(x2 − x1)2 + (y2 − y1)2, and i, j = 1, 2, · · · , 6.

As we have seen in the semi-implicit discretization (3.109), the tangential derivative

with respect to velocity at time n + 1 is a linear term. It represents a diffusion operator,

which can be assembled as a positive definite contribution to the iteration matrix on the left-

hand side. Instead of approximating the curvatures and the interface normals, tangential

derivatives along the interface are calculated. We investigate more of the surface tension

effect in the static bubble test in Chapter 4.

Another way to circumventing the time limitation (3.107) is through a fully implicit

representation of the interfaces in space. Suppose the Dirac Delta function is constant in

the tangential direction:

f⃗σ =

∫
Ω
σκn⃗ · w⃗δ(Γ, x⃗)dΩ (3.114)

=

∫
Ω
σ(∆x⃗|Γ) · (w⃗δ(Γ, x⃗))dΩ

= −
∫
Ω
σ(∇x⃗|Γ) · ∇(w⃗δ(Γ, x⃗))dΩ

= −
∫
Ω
σ(∇x⃗|Γ) · ∇w⃗δ(Γ, x⃗)dΩ

Apply the semi-implicit time integration again gives:

f⃗σ = −
∫
Ω
σ∇x⃗ · ∇w⃗δ(Γn, x⃗)dΩ−∆t

∫
Ω
σ∇u⃗n+1 · ∇w⃗δ(Γn, x⃗)dΩ (3.115)

Compared with the semi-implicit approach, we still have the Dirac Delta functions in these
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integrals. Some regularization δϵ has to be constructed, so that the surface tension integra-

tion can be implemented fully implicit, and the time step restriction due to the capillary

force can be completely removed.

3.4.3 Interface re-initialization

Initially, the Level Set function ϕ is set to be a signed distance function on the interface Γ.

The evolution of the Level Set function is governed by the advection equation:

∂ϕ

∂t
+ u⃗ · ∇ϕ = 0

where u⃗ is the velocity field of flow determined by solving Navier Stokes equations. The

nice property as a signed distance function is generally lost as time goes on. The Level

Set function might become too flat or too steep, which makes it difficult to determine the

location of the interface. Such oscillations affect the shape of interface as well as the calcu-

lations in the surface tension integral, where localization of interface is needed to calculate

the tangential derivatives. Therefore, the Level Set function must to be re-initialized, at

least after a certain time steps, so that the solution preserves the signed distance property.

Given a numerical solution ϕ of the advection equation above, we need to find a solution

of the Eikonal type:

|∇ϕ̃| = 1 (3.116)

subject to the interface condition ϕ̃ = 0 on Γ = {x⃗|ϕ(x⃗, t) = 0}.

Smolianski proposed the use of geometric re-distancing procedures in [52]. Quite a
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number of researchers prefer PDE-based techniques, see [37], [9], [60], [39], [49], [69]. Suss-

man et al. [37] proposed to solve the Eikonal equation by solving the following hyperbolic

PDE to the steady state:

∂ϕ̃

∂t
+ v⃗ · ∇ϕ̃ = sign(ϕ) in Ω× (0, tsteady) (3.117)

ϕ̃|t=0 = ϕ

where the velocity is v⃗ = sign(ϕ) ∇ϕ̃
|∇ϕ̃| . Here sign is the sign function. Given the Level

Set function ϕ obtained from the Level Set convection step initially, a new signed distance

function ϕ̃ with the same zero Level Set as ϕ is convected with nonlinear transport equation

(3.117) to a steady state. It is numerically feasible to solve (3.117) after some time steps

such that the signed distance property around the interface is preserved. A regularization

of the sign function is needed to obtain a stable solution. For example, the sign function

might be replaced by a smooth function Sϵ(ϕ), where

Sϵ(ϕ) =
ϕ√

ϕ2 + ϵ2
, 0 < ϵ ≤ 1

Approximation of the sign function brings more numerical diffusions to the transport equa-

tion (3.117), and Tornberg [57] showed those numerical diffusions result in inaccuracy of

the interface displacement. In addition, the computational cost to solve nonlinear trans-

port equation is very high. Li et al. [13] proposed the distance regularized Level Set

evolution algorithm as an alternative approach to realize the re-initialization, where an

energy-minimizing gradient flow equation of the following type is solved to the steady state:
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∂ϕ̃

∂t
+
∂R

∂ϕ̃
= 0 (3.118)

Here R(ϕ̃) is a suitable energy functional, and ∂R
∂ϕ̃

is the Euler-Lagrange form of the Gâteaux

derivative. For example, if the least squares solution of the Eikonal equation is chosen as

the energy functional,

R(ϕ̃) =
1

2

∫
Ω
(|∇ϕ̃| − 1)2dΩ (3.119)

equation (3.118) boils down to the nonlinear heat equation:

∂ϕ̃

∂t
−∇ ·

[
∇ϕ̃− ∇ϕ̃

|∇ϕ̃|

]
= 0 in Ω× (0, tsteady) (3.120)

ϕ̃|t=0 = ϕ

Li et al. [13] solved this heat equation by using the Finite Difference method. This method

requires severe time step restrictions, and therefore it is still computational expensive. To

preserve the same zero contour as the original Level Set function in Finite Element dis-

cretization by solving the energy minimizing problem, we apply the recent work of Basting

and Kuzmin [21]. The energy functional R(ϕ̃) is modified by adding a penalty term of the

form:

P (ϕ, ϕ̃) =
α

2

∫
Γ(ϕ)

ϕ̃2ds (3.121)

where α is a large positive number used to preserve the shape of the interface. This penalty

term gives rise to the following minimization problem:
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∂R

∂ϕ̃
+
∂p

∂ϕ̃
= 0 (3.122)

It can be solved by the standard Ritz-Galerkin Finite Element approach. With the same

choice of functional R in (3.119), the corresponding variational formulation is given by:

∫
Ω

(
1− 1

|∇ϕ̃|

)
∇ϕ̃ · ∇vdΩ+ α

∫
Γ(ϕ)

ϕ̃vds = 0 (3.123)

for all test functions v. We solve this nonlinear problem using the following fixed point

iteration method.

Given ϕ̃(0) = ϕ, the approximation of correct Level Set function ϕ̃ ≈ ϕ̃(m) is computed

such that

a(ϕ̃(m), v) = b(ϕ̃(m−1), v) ∀v (3.124)

where the bilinear form a(·, ·) and linear functional b(ϕ̃, ·) are defined by:

a(ϕ̃, v) =

∫
Ω
∇ϕ̃ · ∇vdΩ+ α

∫
Γ(ϕ)

ϕ̃vds (3.125)

b(ϕ̃, v) =

∫
Ω

∇ϕ̃
|∇ϕ̃|

· ∇vdΩ

The resulting stiffness matrix is independent of ϕ̃, and it only needs to be assembled just

once outside the iteration loop. Numerical experiments showed a nice signed distance func-

tion can be obtained after only a few iterations, see [21]. The advantage of this method

is clear: no stabilization or regularization methods are needed, and the re-initialization
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approach can preserve the signed distance property in a weak sense.

3.5 Summary of algorithm

Coupling the fluid flows and the modeling of the interface, we summarize our computa-

tional strategy in the following:

Algorithm 3 Coupling fluid flows and interface

1: Initialization of the Level Set function and velocity (initialization of the pressure field
if Van Kan scheme is applied)

2: for t = 1 to n do
3: Level Set convection step
4: Level Set re-initialization step
5: Navier Stokes equations solver
6: end for

Our first remark to Algorithm 3 is: different approaches can be applied for Navier

Stokes equations solver, for example the two-step method, three-step method, and Van

Kan scheme. However, the linearized version and non-linearized version have to be carefully

investigated when one approximates the discontinuous density and viscosity coefficients;

otherwise one will get wrong velocity and pressure field solutions. Another remark is that

one can reverse the coupling of fluid flows and interface simulations by solving the Navier

Stokes equations first and then solving the Level Set convection and re-initialization accord-

ingly. However, this approach is more time consuming compared with the one we proposed

here, since a better approximation of the initial interface is essential for approximation of

the discontinuous density and viscosity coefficients in the Navier Stokes equations. This

issue has also been mentioned in the work of [16].
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Chapter 4

Results

4.1 Advection diffusion equation

Viscous Burgers’ equation has a similar structure to the Navier Stokes equations, because

it has a nonlinear convection term and a diffusion term with a viscous coefficient. This

equation can be considered as a simplified form of the Navier Stokes equations. So we

consider the following system of the two-dimensional Burgers’ equation:


∂u
∂t + u∂u∂x + v ∂u∂y = 1

R(
∂2u
∂x2

+ ∂2u
∂y2

)

∂v
∂t + u ∂v∂x + v ∂v∂y = 1

R(
∂2v
∂x2

+ ∂2v
∂y2

)

in Ω× [0, T ], where Ω = [0, 1]× [0, 1], T > 0. The exact solutions are given by:

u(x, y, t) =
3

4
− 1

4(1 + exp(R/32(−t− 4x+ 4y)))
; (4.1)

v(x, y, t) =
3

4
+

1

4(1 + exp(R/32(−t− 4x+ 4y)))
; (4.2)
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where R is the Reynolds number. The numerical tests were performed with R = 80. Initial

conditions and boundary conditions are obtained from the exact solutions. Three numeri-

cal schemes were performed. The first scheme solved the convection and the diffusion term

together. The second scheme added a stabilization term to the convection and the diffusion

equations. The third scheme solved the convection and diffusion term in two steps. Two

components of the velocity field at t = 1.0 are obtained with the mesh size 0.025 and the

time step ∆t = 0.0001. The numerical solutions at different mesh points along with the

exact solutions are reported in the following tables:

Table 4.1: u1 at t = 1

Mesh points First scheme Second scheme Third scheme Exact solution
(0.1, 0.1) 0.51896 0.518961 0.518962 0.518965
(0.5, 0.1) 0.500425 0.500425 0.500425 0.500375
(0.9, 0.1) 0.500009 0.500009 0.500008 0.500007
(0.3, 0.3) 0.518961 0.518961 0.518962 0.518965
(0.7, 0.3) 0.500425 0.500425 0.500425 0.500375
(0.1, 0.5) 0.704385 0.704384 0.704382 0.7043941
(0.5, 0.5) 0.518961 0.518962 0.518962 0.518965
(0.9, 0.5) 0.500376 0.500376 0.500375 0.500375
(0.1, 0.9) 0.748982 0.748982 0.748982 0.748982
(0.9, 0.9) 0.51896 0.518961 0.518962 0.518965

89



Table 4.2: u2 at t = 1

Mesh points First scheme Second scheme Third scheme exact solution
(0.1, 0.1) 0.98104 0.981039 0.981038 0.981035
(0.5, 0.1) 0.999575 0.999575 0.999575 0.999625
(0.9, 0.1) 0.999991 0.999991 0.999992 0.999993
(0.3, 0.3) 0.981039 0.981039 0.981038 0.981035
(0.7, 0.3) 0.999575 0.999575 0.999575 0.999625
(0.1, 0.5) 0.795615 0.795616 0.795618 0.795606
(0.5, 0.5) 0.981039 0.981038 0.981038 0.981035
(0.9, 0.5) 0.999624 0.999624 0.999625 0.999625
(0.1, 0.9) 0.748982 0.751018 0.751018 0.751018
(0.9, 0.9) 0.751018 0.981039 0.981038 0.981035

4.2 Flow around cylinder

Flow around cylinder is a well-documented benchmark problem for one-phase flow. It has

been used to study the Computational Fluid Dynamics (CFD) algorithms by many re-

searchers, see [31], [34]. It simulates the fluid flow in a pipe around a fixed circular object.

Inflow speeds determine the behavior of the flow. The geometry is set up as follows: a

cylinder centered at (x, y) = (0.2, 0.2) with diameter L = 0.1 is placed in a channel with

length 2.2 and height 0.41, see Figure (4.1).
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Figure 4.1: Flow around cylinder geometry. The problem was solved in non-dimensional
variables, see Remark 3.14.

The fluid is characterized by the stationary Navier Stokes equations with a density

ρ = 1.0 and a viscosity µ = 0.001. The no-slip Dirichlet boundary conditions are imposed

on Γ1, Γ3, and on the cylinder Γ5. Γ4 is the inflow part, where the following parabolic

profile with a maximum inflow velocity Umax = 0.3 is imposed:

(u1, u2) = (
4Umaxy(0.41− y)

0.412
, 0) for all (x, y) ∈ [0]× [0, 0.41]

The Neumann boundary conditions are imposed on the outflow part of the boundary Γ2.

The corresponding Reynolds number is given as follows:

Re =
UmeanL

µ
= 20

Here, Umean = 2
3Umax = 0.2 is the characteristic velocity with the parabolic profile. Our

goal is to build up the two-phase flow solver, which simulates the non-stationary fluid

flows. However, we can still apply this solver to the stationary problem by simulating the
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unsteady problem up to a steady state. The following results are obtained from the steady

state, where the speed difference between two time steps is equal to 1e−06. The speed, the

pressure field, and the streamlines are presented as follows with mesh size hmax = 1./60.

Time steps are chosen as ∆t = 0.2hmax.

IsoValue
-0.0213723
0.0107031
0.0320867
0.0534703
0.0748538
0.0962374
0.117621
0.139005
0.160388
0.181772
0.203155
0.224539
0.245922
0.267306
0.28869
0.310073
0.331457
0.35284
0.374224
0.427683

 speedmin=1.04625e-05, speedmax=0.406183

Figure 4.2: Speed of flow around cylinder at the steady state with Reynolds number 20,
mesh size hmax = 1./60, time step ∆t = 0.2hmax. The problem was solved in
non-dimensional variables, see Remark 3.14.

92



IsoValue
-0.0206505
-0.009452
-0.00198635
0.00547929
0.0129449
0.0204106
0.0278762
0.0353419
0.0428075
0.0502732
0.0577388
0.0652045
0.0726701
0.0801357
0.0876014
0.095067
0.102533
0.109998
0.117464
0.136128

 pmin=-0.0131848, pmax=0.128662

Figure 4.3: Pressure of flow around cylinder at the steady state with Reynolds number 20,
mesh size hmax = 1./60, time step ∆t = 0.2hmax. The problem was solved in
non-dimensional variables, see Remark 3.14.

93



IsoValue
-0.00931131
-0.00795634
-0.00705303
-0.00614972
-0.0052464
-0.00434309
-0.00343978
-0.00253646
-0.00163315
-0.000729835
0.000173479
0.00107679
0.00198011
0.00288342
0.00378673
0.00469005
0.00559336
0.00649667
0.00739999
0.00965827

Figure 4.4: Streamline of flow around cylinder at the steady state with Reynolds number
20, mesh size hmax = 1./60, time step ∆t = 0.2hmax. The problem was solved
in non-dimensional variables, see Remark 3.14.

For Re = 20, the flow turns into a stationary state. The following numbers are crucial

in rigorous numerical analysis. They are:

• The drag coefficient

CD =
2FD

ρU2
meanL

• The lift coefficient

CL =
2FL

ρU2
meanL

• The pressure drop

∆p = p(A)− p(B) with A = (0.15, 0.2) B = (0.25, 0.2)
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For engineers, CFD is mostly applied to obtain the drag and lift coefficients for their further

analysis. Usually the drag and lift forces are obtained from physical experiments first, then

they can be calculated using the formulas mentioned above.

Suppose FD and FL are the drag and the lift forces respectively, they can be defined

on the surface of the cylinder Γ5 as follows:

 FD

FL

 =

∫
Γ5

σn⃗ds

where σ is the stress tensor, namely, σ = −pI + ρµ∇u⃗. We assume n⃗ and τ⃗ are the normal

and the tangential vectors of the surface Γ5, namely, n⃗ =

 nx

ny

 and τ⃗ =

 ny

−nx

. In

order to express those forces as the line integrals on the surface Γ5, the stress tensor can

be written in the following way:

σ = −pI + ρµ(Du⃗t/Dn⃗)n⃗

This leads to the following expressions for FD and FL respectively:

FD =

∫
Γ5

(
∂u⃗τ
∂n⃗

ny − pnx)ds

FL = −
∫
Γ5

(
∂u⃗τ
∂n⃗

nx + pny)ds

Those are still not-so-obvious calculations. We show the detailed calculation of the drag

force FD in the following equations, and the calculation of the lift force can be done in a

similar way. The first term in the integrand of FD can be expressed as:

∂u⃗τ
∂n⃗

ny = (
∂u1
∂x

nxny +
∂u1
∂y

n2y −
∂u2
∂x

n2x −
∂u2
∂y

nxny)ny
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Since we have the zero Dirichlet boundary condition on Γ5, namely, u⃗|Γ5 = 0⃗, it follows

∂u⃗
∂τ⃗ = 0⃗ on Γ5, in particular, ∂u1∂x ny −

∂u1
∂y nx = 0 and ∂u2

∂x ny −
∂u2
∂y nx = 0. Since n2x + n2y = 1

and ∇ · u⃗ = 0, we have

∂u⃗τ
∂n⃗

ny = (
∂u1
∂y

− ∂u2
∂x

)ny =
∂u1
∂y

ny −
∂u2
∂y

nx =
∂u1
∂x

nx +
∂u1
∂y

ny

Finally, the drag force can be explicitly calculated as:

FD =

∫
Γ5

(ρµ(
∂u1
∂x

nx +
∂u1
∂y

ny)− pnx)ds

Similar analysis can be done for the lift force.

Convergence tests were preformed on two mesh sizes: hmax = 1/30, and hmax = 1/60.

The drag coefficient and the lift coefficient are plotted versus time in Figure (4.5) and (4.6).

The reference data can be found in [34].
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Figure 4.5: Evolution of the drag coefficient up to t = 10 with Reynolds number 20 under
grid convergence tests. The problem was solved in non-dimensional variables,
see Remark 3.14.
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Figure 4.6: Evolution of the lift coefficient up to t = 10 with Reynolds number 20 under
grid convergence tests. The problem was solved in non-dimensional variables,
see Remark 3.14.

The pressure drop is ∆p = 0.1176 under both mesh sizes. The drag coefficient, the lift

coefficient, and the pressure drop agree well with the reference data, see [34].

We can increase the Reynolds number to Re = 100 by setting Umax = 1.5. We consider

an unsteady flow instead in this case. Oscillations for the time revolutions of the drag and

the lift can be observed, and this is the famous phenomenon named Vortex Induced Motion

(VIM).
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Figure 4.7: Evolution of the lift coefficient up to t = 10 with Reynolds number 100, mesh
size hmax = 1./60, time step ∆t = 0.2hmax. The problem was solved in non-
dimensional variables, see Remark 3.14.
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Figure 4.8: Evolution of the drag coefficient up to t = 10 with Reynolds number 100,
mesh size hmax = 1./60, time step ∆t = 0.2hmax. The problem was solved in
non-dimensional variables, see Remark 3.14.

The corresponding pressure drop is ∆p = 2.5065.
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4.3 Driven cavity

Another classic benchmark problem for the one-phase incompressible fluid flow is the driven

cavity problem. It models a plane of incompressible fluid flow in a lid-driven cavity. The

computational domain is a unit square.
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Driven cavity: computational domain
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Figure 4.9: Driven cavity configuration. The problem was solved in non-dimensional vari-
ables, see Remark 3.14.

The statement of the problem is presented in Figure (4.9). The upper side of the cavity

moves at a unit speed, and other sides are fixed. These settings lead to the following

boundary conditions: zero Dirichlet boundary conditions are imposed on the left, the right

and the bottom of the cavity; u1 = 1, and u2 = 0 are imposed on the top of cavity. There

is a discontinuity on the top two corners of the cavity. We assumed those two points belong

to the leaky cavity in all the simulations; however, one can also assume they are in the

fixed vertical walls as an alternative approach. In other words, the Dirichlet boundary
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conditions are prescribed everywhere on the boundaries for the velocity field. Since the

pressure field is only known up to a constant as mentioned in previous chapters, a reference

value p = 0 is imposed on the left bottom corner of the computational domain.

Firstly, one-phase fluid flow with a density ρ = 1.0 and a viscosity µ = 0.01 was sim-

ulated with the mesh size h = 1./40 and the time step ∆t = 1./4h. Simulations were

ran up to a relative steady state, where the speed difference between two time steps was

less than 1e− 03. The three-step method, the two-step method, and the Van Kan scheme

were implemented. The discontinuity of the velocity field on the upper two corners of the

domain introduces a singularity in the pressure field precisely on those corners, see Figure

(4.10) to (4.12).
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Figure 4.10: Pressure at the steady state from three-step method with mesh size h = 1./40
and time step ∆t = 1./4h using ρ = 1.0, µ = 0.01. The problem was solved
in non-dimensional variables, see Remark 3.14.
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Figure 4.11: Pressure at the steady state from two-step method with mesh size h = 1./40
and time step ∆t = 1./4h using ρ = 1.0, µ = 0.01. The problem was solved
in non-dimensional variables, see Remark 3.14.
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Figure 4.12: Pressure at the steady state from Van Kan method with mesh size h = 1./40
and time step ∆t = 1./4h using ρ = 1.0, µ = 0.01. The problem was solved
in non-dimensional variables, see Remark 3.14.

Figure (4.13) shows the velocity profile at the horizontal and the vertical center line

respectively. The streamlines are reported in Figure (4.14) to (4.16).
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Figure 4.13: Velocity profiles at the horizontal and vertical center lines at the steady state
with mesh size h = 1./40 and time step ∆t = 1./4h using ρ = 1.0, µ = 0.01.
The problem was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.14: Streamline at the steady state from three-step method with mesh size h =
1./40 and time step ∆t = 1./4h using ρ = 1.0, µ = 0.01. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.15: Streamline at the steady state from two-step method with mesh size h = 1./40
and time step ∆t = 1./4h using ρ = 1.0, µ = 0.01. The problem was solved
in non-dimensional variables, see Remark 3.14.
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Figure 4.16: Streamline at the steady state from Van Kan scheme with mesh size h = 1./40
and time step ∆t = 1./4h using ρ = 1.0, µ = 0.01. The problem was solved
in non-dimensional variables, see Remark 3.14.

Next, we want to simulate a two-phase flow problem with different densities. The first

fluid flows into the cavity with a density ρ1 = 0.1. The density of the second flow is

ρ2 = 1.0. The second fluid initially stays in a circle centered on (0.5, 0.5) with radius 0.25.

The viscosities are the same for both fluid flows, and they are set to be µ1 = µ2 = 0.01.

Our goal of this benchmark is to test the Volume Fraction method mentioned in Chapter

3. Mesh sizes were the same as those used in the one-phase driven cavity test, and all

three methods for fluid flows were applied. Results are only computed up to t = 5 for

illustration. The pressure field is presented in Figure (4.17) to (4.19) for all schemes.
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Figure 4.17: Pressure at t = 5 from three-step method with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = 0.1, ρ2 = 1.0, µ1 = µ2 = 0.01. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.18: Pressure at t = 5 from two-step method with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = 0.1, ρ2 = 1.0, µ1 = µ2 = 0.01. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.19: Pressure at t = 5 from Van Kan method with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = 0.1, ρ2 = 1.0, µ1 = µ2 = 0.01. The problem was
solved in non-dimensional variables, see Remark 3.14.

We can also observe the pressure singularities at the upper corners of our computational

domain. The three-step method and the two-step method give a similar velocity profile,

even though they solve the convection term in a different way. The Van Kan scheme give

a flatter velocity at the horizontal center line. The velocity profile and the streamlines are

reported in Figure (4.20) to (4.23).
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Figure 4.20: Velocity profiles at the horizontal and vertical center lines at t = 5 with
mesh size h = 1./40 and time step ∆t = 1./4h using ρ1 = 0.1, ρ2 = 1.0,
µ1 = µ2 = 0.01. The problem was solved in non-dimensional variables, see
Remark 3.14.
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Figure 4.21: Streamline at t = 5 from three-step method with mesh size h = 1./40 and
time step ∆t = 1./4h using ρ1 = 0.1, ρ2 = 1.0, µ1 = µ2 = 0.01. The problem
was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.22: Streamline at t = 5 from two-step method with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = 0.1, ρ2 = 1.0, µ1 = µ2 = 0.01. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.23: Streamline at t = 5 from Van Kan scheme with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = 0.1, ρ2 = 1.0, µ1 = µ2 = 0.01. The problem was
solved in non-dimensional variables, see Remark 3.14.

Simulating a two-phase flow problem with different viscosities is a much more chal-

lenging work, even though the fluid flows have same densities. We consider a fluid flow

with lower viscosity flows into the driven cavity in this case. No ∇u⃗T term presents in the

weak formulations of the previous two cases, because the flows have same viscosities. This

term cannot be avoided in this scenario. We can also apply the Volume Fraction method

to evaluate the different viscosities. Numerical results are presented in Figure (4.24) to

Figure (4.30) for the pressure field, the velocity profile at the horizontal and the vertical

center line, and the streamlines.
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Figure 4.24: Pressure at t = 5 from three-step method with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = ρ2 = 1.0, µ1 = 0.01, µ2 = 10.0. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.25: Pressure at t = 5 from two-step method with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = ρ2 = 1.0, µ1 = 0.01, µ2 = 10.0. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.26: Pressure at t = 5 from Van Kan method with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = ρ2 = 1.0, µ1 = 0.01, µ2 = 10.0. The problem was
solved in non-dimensional variables, see Remark 3.14.

111



0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

ve
lo

ci
ty

 

 
Three−step method
Two−step method
Van Kan scheme

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

y

ve
lo

ci
ty

 

 

Three−step method
Two−step method
Van Kan scheme

Figure 4.27: Velocity profiles at the horizontal and vertical center lines at t = 5 with mesh
size h = 1./40 and time step ∆t = 1./4h using ρ1 = ρ2 = 1.0, µ1 = 0.01, µ2 =
10.0. The problem was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.28: Streamline at t = 5 from three-step method with mesh size h = 1./40 and
time step ∆t = 1./4h using ρ1 = ρ2 = 1.0, µ1 = 0.01, µ2 = 10.0. The problem
was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.29: Streamline at t = 5 from two-step method with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = ρ2 = 1.0, µ1 = 0.01, µ2 = 10.0. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.30: Streamline at t = 5 from Van Kan scheme with mesh size h = 1./40 and time
step ∆t = 1./4h using ρ1 = ρ2 = 1.0, µ1 = 0.01, µ2 = 10.0. The problem was
solved in non-dimensional variables, see Remark 3.14.

Results coincide for the three-step method and the two-step method since there is no

pressure associated with the convection and the diffusion process. All three methods give

more singularities of the pressure profile, especially on the upper right corner in the cavity

due to the large ratio of viscosities (µ2/µ1 = 1000).

4.4 Static bubble

This test case models a circular bubble in a perfect equilibrium state. According to the

Laplace-Young law, the pressure differential is proportional to the surface tension coeffi-

cient, and it is inversely proportional to the radius of the bubble, namely, pin−pout = σ/R.

Since everything is stationary, the correct solution for the velocity field should be zero.

However, some spurious velocity currents will be generated due to certain imbalances in

the numerical schemes. Lafaurie et al. [67] proposed the amplitude of this spurious velocity

current is proportional to σ/µ, which is equivalent to having an approximately constant
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capillary number Ca = Uµ/σ.

The computational domain is a unit square. A bubble with radius R = 0.25 is centered

at (0.5, 0.5) initially. The density and viscosity ratios are equal to 1, namely ρ1 = ρ2 = 104,

and µ1 = µ2 = 1. The no-slip Dirichlet homogeneous boundary conditions are imposed

everywhere on the boundaries for the velocity field. The reference pressure pout = 0 is set

at the upper right corner of our computational domain. The gravity is neglected. The

surface tension coefficient may be varied. We set this parameter to be 1, which gives the

Laplace number La = 2Rσρ/µ2 = 5 × 103. The P2-P1 Finite Element was used for the

discretization of the velocity and the pressure. The simulations were performed until t = 3

with a fixed time step ∆t = 0.01. The three-step method, the two-step method, and the

Van Kan scheme were implemented for the fluid flows. Only the linearized version of these

schemes were applied, because the flows have same densities and viscosities.

The convergence results for the non-dimensional velocity in two different norms are

listed in Table 4.3 and 4.4. The l∞ norm is defined asmax|u⃗µ/σ|, and the l1 norm is defined

as 1/N
∑N

i=1 |u⃗iµ/σ|, where N is the number of degrees of freedom for the velocity field.

The two-step method and the three-step method give more accuracy in l∞ norm. Again,

the two-step method and the three-step method are essentially the same in evaluating the

surface tension forces. The presence of the pressure term in the first step of the Van Kan

scheme makes the splitting of the surface tension forces more complicated, thus it requires

a more careful choice of the time step. However, all three methods give same results in l1

norm.
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Table 4.3: Errors in the l∞ norm for the non-dimensional velocity

h Three-step method Two-step method Van Kan scheme

1./20 3.51 · 10−2 3.52 · 10−2 3.52 · 10−2

1./40 2.22 · 10−2 2.23 · 10−2 2.23 · 10−2

1./80 1.35 · 10−2 1.35 · 10−2 1.37 · 10−2

Table 4.4: Errors in the l1 norm for the non-dimensional velocity

h Three-step method Two-step method Van Kan scheme

1./20 1.5 · 10−3 1.5 · 10−3 1.5 · 10−3

1./40 5.0 · 10−4 5.0 · 10−4 5.0 · 10−4

1./80 1.0 · 10−4 1.0 · 10−4 1.0 · 10−4

Figure (4.31) and Figure (4.32) show the loglog plot of the errors in l∞ and l1 norms.
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Figure 4.31: Comparison of three-step method, two-step method and Van Kan scheme for
l∞ error of dimensionless velocity at t = 3. The problem was solved in non-
dimensional variables, see Remark 3.14.
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Figure 4.32: Comparison of three-step method, two-step method and Van Kan scheme for
l1 error of dimensionless velocity at t = 3. The problem was solved in non-
dimensional variables, see Remark 3.14.

Agreement of the three-step method and the two-step method is further verified by

the pressure behavior in the following figures. Figure (4.33) to (4.35) show the pressure

cut-lines at y = 0.5 using three methods with different mesh sizes.
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Figure 4.33: Pressure cut-line at y = 0.5 using three-step method under grid refinement
at t = 3. The problem was solved in non-dimensional variables, see Remark
3.14.
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Figure 4.34: Pressure cut-line at y = 0.5 using two-step method under grid refinement at
t = 3. The problem was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.35: Pressure cut-line at y = 0.5 using Van Kan scheme under grid refinement at
t = 3. The problem was solved in non-dimensional variables, see Remark 3.14.

Spikes near the edge of the interface are noticed, and this is because we use the contin-

uous approximations for the pressure field in all methods. However, the Van Kan scheme

is unstable with a finer mesh. We can overcome this problem by using a smaller time

step. We will see this in the following oscillating bubble benchmark problem. Results from

the two-step method and the three-step method justify the splitting of the surface tension
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effect.

The agreement of the Laplace-Young law is further presented in the following absolute

and relative errors of the pressure for the two-step method and the three-step method.

Table 4.5: Absolute errors |pin − pout − σ/R| in the Laplace-Young law

h Three-step method Two-step method

1./20 3.45 · 10−1 3.62 · 10−1

1./40 1.04 · 10−1 1.02 · 10−1

1./80 4.27 · 10−2 4.10 · 10−2

Table 4.6: Relative errors |pin−pout−σ/R|
σ/R in the Laplace-Young law

h Three-step method Two-step method

1./20 9.13 · 10−2 9.08 · 10−2

1./40 2.61 · 10−2 2.53 · 10−2

1./80 1.07 · 10−2 1.03 · 10−2

The pressure results might not be ideal, but Smolianski’s presented similar results in

his work, see [52]. In addition, Figure (4.33) to (4.35) show the surface tension forces are

coupled correctly with the fluid flows.

4.5 Oscillating bubble

In this oscillating bubble test, the previous test configuration is made a little more difficult.

Initially, the original circular bubble is perturbed to be an elliptic bubble by scaling the

semi-axes a factor 1.25 in the x-direction and 0.8 in the y-direction. The elliptic bubble is

also centered in the unit square. The bubble consists of the same fluid as in the surrounding
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unit square. The fluid has a density 104, a viscosity 1, and the surface tension coefficient is

set to be 0.1. We simulated the behaviors of the elliptic bubble up to time=1000. At the

final time, the bubble is expected to have reached an equilibrium state, where the bubble

has a stable circular shape. The grid refinements were applied both in space and in the

time scale. Although the surface tension effect was implemented using the semi-implicit

approach, the theoretical capillary time step restriction
√
ρh3/σ was used for the stability

concerns. The three-step method, the two-step method, and the Van Kan scheme were

implemented with the P2-P1 Finite Element pair for the velocity and the pressure field.

Table 4.7 presents the time step sizes with different spatial refinement levels.

Table 4.7: mesh sizes of grid refinement level oscillating bubble

h 1./20 1./40 1./80

∆t 1.4 0.5 0.17

Figure (4.36) to (4.38) show results from the three-step method at six different times

t = 0, 90, 180, 260, 330, and 1000 using the mesh sizes mentioned in Table 4.7.
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Figure 4.36: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using three-step
method with mesh size h = 1./20 and time step ∆t = 1.4. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.37: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using three-step
method with mesh size h = 1./40 and time step ∆t = 0.5. The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.38: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using three-step
method with mesh size h = 1./80 and time step ∆t = 0.17. The problem was
solved in non-dimensional variables, see Remark 3.14.

Evolutions of the bubble using the two-step method and the Van Kan scheme are pre-

sented in Figure (4.39) to (4.44). All three methods give reasonable results under these

grid refinements.
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Figure 4.39: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using two-step method
with mesh size h = 1./20 and time step ∆t = 1.4. The problem was solved in
non-dimensional variables, see Remark 3.14.
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Figure 4.40: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using two-step method
with mesh size h = 1./40 and time step ∆t = 0.5. The problem was solved in
non-dimensional variables, see Remark 3.14.
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Figure 4.41: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using two-step method
with mesh size h = 1./80 and time step ∆t = 0.17. The problem was solved
in non-dimensional variables, see Remark 3.14.
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Figure 4.42: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using Van Kan scheme
with mesh size h = 1./20 and time step ∆t = 1.4. The problem was solved in
non-dimensional variables, see Remark 3.14.
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Figure 4.43: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using Van Kan scheme
with mesh size h = 1./40 and time step ∆t = 0.5. The problem was solved in
non-dimensional variables, see Remark 3.14.
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Figure 4.44: Oscillating bubble at t = 0, 90, 180, 260, 330, and 1000 using Van Kan scheme
with mesh size h = 1./80 and time step ∆t = 0.17. The problem was solved
in non-dimensional variables, see Remark 3.14.

4.6 Rising bubble

Our final test is the simulation of a single bubble. The bubble rises through the surrounding

fluid due to the buoyancy effect. Initially, there is a circular bubble centered at (0.5, 0.5)

with radius R0 = 0.25 in the container. The container is a rectangle with width 1 and

height 2, see Figure (4.45).
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Figure 4.45: Initial configuration of rising bubble test. The problem was solved in non-
dimensional variables, see Remark 3.14.

The bubble has a density ρ2 = 100 and a viscosity µ2 = 1. The surrounding fluid has

a density of ρ1 = 1000, and viscosity µ1 = 10. The no-slip boundary conditions, namely
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u⃗ = 0⃗, are imposed on the top and the bottom of the boundaries. The vertical walls are

the symmetry boundaries, where the free-flip boundary conditions are imposed, namely,

u⃗ · n⃗ = 0, τ⃗ ·(∇u⃗+∇u⃗T ) · n⃗ = 0 (here τ⃗ is the tangential vector). The gravitational constant

is set to be g = −0.98. The surface tension coefficient is set to be σ = 24.5. The problem

is characterized by the following Reynolds (Re) and Eötvös (Eo) numbers:

Re =
ρ1
√
g(2R0)

3/2

µ1
, Eo =

4ρ1gR
2
0

σ

The density ratio ρ1/ρ2 and the viscosity ratio µ1/µ2 are two additional dimensionless

numbers to fully characterize this test problem. All physical parameters and the dimen-

sionless numbers defining the test case are summarized in Table (4.8). The problem was

solved in non-dimensional variables.

Table 4.8: Physical parameters and dimensionless numbers of rising bubble test

ρ1 ρ2 µ1 µ2 g σ ρ1/ρ2 µ1/µ2 Re Eo
1000 100 10 1 -0.98 24.5 10 10 35 10

The time evolutions of the bubble were tracked up to t = 3.0. The picture norms and

the numerical quantities are measured. With all these physical parameters settings, the

bubble shape can be predicted as a function of the Reynolds and Eötvös numbers using

the experimental results from Clift, Grace, and Weber [63]. Although the experimental

results were obtained in a three-dimensional regime, they provide a guideline for the two-

dimensional case. According to their studies, the bubble will end up with a ellipsoidal

shape, where the surface tension forces are strong enough to hold the bubble so that it will

not break up. The picture norm is a first vital way to verify if our numerical schemes are

reliable or not. However, the benchmark quantities are even more important in a rigorous
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analysis. The following quantities are introduced as the measurements of accuracy for our

numerical simulations.

Center of Mass:

The first quantity is the center of mass. Evolutions of the bubble can be tracked using the

positions of various points. It is common to track the centroid or center of mass, see [25],

[35], [33], [42]. The center of mass is defined as follows:

yc =

∫
Ω2
ydΩ∫

Ω2
1dΩ

(4.3)

Here, Ω2 denotes the region that the bubble occupies. We only track the vertical component

due to the buoyancy force. The denominator denotes the area that the bubble occupies.

This quantity can be easily extended into a three-dimensional parameter by carrying out

the integrations in volume. Other points can also be used as the benchmark references,

for example, Chen et al. suggested to use the absolute top or bottom of a bubble as a

reference value, see [25].

Rise velocity:

The second quantity is the rise velocity or the mean velocity. This quantity is a particularly

interesting one, since it measures the performance of the interface-tracking algorithm and

the quality of the overall solution. The mean bubble velocity is defined as follows:

u2c =

∫
Ω2
u2dΩ∫

Ω2
1dΩ

(4.4)

Here, Ω2 also denotes the region that the bubble occupies, and u2 is the vertical component

of the velocity field. The vertical component of the velocity field at the center of the bubble

u2c(x⃗c) could be an alternative to evaluate the mean velocity. In addition, the terminal
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velocities at the end of the time span could be meaningful information, see [51].

Circularity:

The last quantity is the circularity. The ”degree of circularity” in two dimensions, intro-

duced by Wadell [62], can be defined as follows:

c =
Pa
Pb

=
perimeter of area-equivalent circle

perimeter of bubble
=
πda
Pb

(4.5)

Here, Pb denotes the perimeter or the circumference of a circle with diameter da which has

an area equal to that of a bubble with a perimeter Pb. For a perfectly circular bubble,

the circularity will be equal to unity and decrease as the bubble is deformed. We need

some numerical approximations for the interfacial locations to calculate the perimeter of

the bubble.

Initial benchmark studies attributed to the work of three research groups:

Group and Affiliation Code/Method

1. University of Dortmund, Institute of Math. TP2D

by S. Turek, D. Kuzmin, S. Hysing FEM-Level set

2. EPFL Lausanne, Institute of Analysis and Scientific computing FREELIFE

by E. Burman, N. Parolini FEM-Level set

3. University of Magdeburg, Institute of Analysis and Numerical Math. MooNMD

by L. Tobiska, S. Ganesan FEM-ALE

The computational strategies and the convergence results obtained by these solvers

are reviewed by Hysing in [20]. We only refer to their results as the reference data. We

implemented the three-step method, the two-step method, and the Van Kan scheme as the
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time integration techniques. The spatial discretizations were based on the P2-P1 Finite

Element approach. We did not include any artificial stabilizations for the convective term

in the momentum equations. The new Volume Fraction method was applied in order to

evaluate the discontinuous coefficients. The linearized and non-linearized time integration

techniques for the corresponding subproblems were investigated. Structured meshes with

size h = 1./20, h = 1./40, and h = 1./80 were used for the convergence studies. The time

step was taken with ∆t = 1./16h. The mesh statistics are listed in Table (4.9). NOE

refers to the number of elements. DOFU refers to the number of degrees of freedom for

the velocity, and DFFP denotes the number of degrees of freedom for the pressure.

Table 4.9: Mesh statistics

mesh size NOE DOFU DOFP

1./20 1600 3321 861

1./40 6400 13041 3321

1./80 25600 51681 13041

The following results show the grid convergence tests from all schemes for the bubble

shapes at time t = 3.0. At the final time, all methods confirm the reference data with mesh

size h = 1./40, and h = 1./80. Mass is not conserved in the coarser mesh h = 1./20.
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Figure 4.46: Bubble shapes under convergence tests from linearized three-step method with
∆t = 1./16h at t = 3.0 (reference solutions are obtained from TP2D code).
The problem was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.47: Bubble shapes under convergence tests from linearized two-step method with
∆t = 1./16h at t = 3.0 (reference solutions are obtained from TP2D code).
The problem was solved in non-dimensional variables, see Remark 3.14.

129



x

y
t=3.0

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
h=1./20
reference

x

y

t=3.0

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
h=1./40
reference

x

y

t=3.0

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
h=1./80
reference

Figure 4.48: Bubble shapes under convergence tests from linearized Van Kan method with
∆t = 1./16h at t = 3.0 (reference solutions are obtained from TP2D code).
The problem was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.49: Bubble shapes under convergence tests from non-linearized three-step method
with ∆t = 1./16h at t = 3.0 (reference solutions are obtained from TP2D
code). The problem was solved in non-dimensional variables, see Remark
3.14.
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The time evolutions of the interface shapes at different times for all schemes are listed

in Figure (4.50) to (4.57). All numerical schemes are stable in these picture norms.
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Figure 4.50: Bubble shapes under convergence tests from linearized three-step method with
∆t = 1./16h at t = 1.0, 1.5, 1.75. The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.51: Bubble shapes under convergence tests from linearized three-step method with
∆t = 1./16h at t = 2.0, 2.5, 3.0. The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.52: Bubble shapes under convergence tests from linearized two-step method with
∆t = 1./16h at t = 1.0, 1.5, 1.75. The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.53: Bubble shapes under convergence tests from linearized two-step method with
∆t = 1./16h at t = 2.0, 2.5, 3.0. The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.54: Bubble shapes under convergence tests from linearized Van Kan method with
∆t = 1./16h at t = 1.0, 1.5, 1.75. The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.55: Bubble shapes under convergence tests from linearized Van Kan method with
∆t = 1./16h at t = 2.0, 2.5, 3.0. The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.56: Bubble shapes under convergence tests from non-linearized three-step method
with ∆t = 1./16h at t = 1.0, 1.5, 1.75. The problem was solved in non-
dimensional variables, see Remark 3.14.
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Figure 4.57: Bubble shapes under convergence tests from non-linearized three-step method
with ∆t = 1./16h at t = 2.0, 2.5, 3.0. The problem was solved in non-
dimensional variables, see Remark 3.14.
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It is more interesting to validate our numerical schemes through the numerical quanti-

ties. The center of mass, the rise velocity and the circularity from all schemes are listed in

Figure (4.58) to (4.69).
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Figure 4.58: Center of mass from linearized three-step method under grid refinement with
∆t = 1./16h (reference solutions are obtained from TP2D code). The problem
was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.59: Center of mass from linearized two-step method under grid refinement with
∆t = 1./16h (reference solutions are obtained from TP2D code). The problem
was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.60: Center of mass from linearized Van Kan method under grid refinement with
∆t = 1./16h (reference solutions are obtained from TP2D code). The problem
was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.61: Center of mass from non-linearized three-step method under grid refinement
with ∆t = 1./16h (reference solutions are obtained from TP2D code). The
problem was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.62: Rise velocity from linearized three-step method under grid refinement with
∆t = 1./16h (reference solutions are obtained from TP2D code). The problem
was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.63: Rise velocity from linearized two-step method under grid refinement with
∆t = 1./16h (reference solutions are obtained from TP2D code). The problem
was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.64: Rise velocity from linearized Van Kan method under grid refinement with
∆t = 1./16h (reference solutions are obtained from TP2D code). The problem
was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.65: Rise velocity from non-linearized three-step method under grid refinement
with ∆t = 1./16h (reference solutions are obtained from TP2D code). The
problem was solved in non-dimensional variables, see Remark 3.14.
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Figure 4.66: Circularity from linearized three-step method under grid refinement with ∆t =
1./16h (reference solutions are obtained from TP2D code). The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.67: Circularity from linearized two-step method under grid refinement with ∆t =
1./16h (reference solutions are obtained from TP2D code). The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.68: Circularity from linearized Van Kan method under grid refinement with ∆t =
1./16h (reference solutions are obtained from TP2D code). The problem was
solved in non-dimensional variables, see Remark 3.14.
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Figure 4.69: Circularity from non-linearized three-step method under grid refinement with
∆t = 1./16h (reference solutions are obtained from TP2D code). The problem
was solved in non-dimensional variables, see Remark 3.14.

The center of mass and the rise velocity converge nicely for all schemes. Besides, the

center of mass and the rise velocity at time t = 3.0 are useful parameters to further quantify

the accuracy of our numerical schemes. These results are listed in Table (4.10) to (4.13).

All results converge to the reference data in a good rate. The linearized three-step method
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is more accurate in the center of mass towards the end of the simulation, and the linearized

two-step method is more precise in the rise velocity.

Table 4.10: Linearized three-step method

1/h 20 40 80 reference

center of mass 1.0745 1.0776 1.0801 1.0818

rise velocity 0.1938 0.1947 0.1958 0.1970

Table 4.11: Linearized two-step method

1/h 20 40 80 reference

center of mass 1.0738 1.0785 1.0798 1.0818

rise velocity 0.1934 0.1951 0.1961 0.1970

Table 4.12: Linearized Van Kan method

1/h 20 40 80 reference

center of mass 1.0736 1.0783 1.0786 1.0818

rise velocity 0.1918 0.1927 0.1934 0.1970

Table 4.13: Non-linearized three-step method

1/h 20 40 80 reference

center of mass 1.0725 1.0776 1.0791 1.0818

rise velocity 0.1923 0.1946 0.1953 0.1970

The circularity is a challenging parameter due to the calculations of the perimeter of the

bubble at different time. We used a linear approximation to capture the bubble locations.
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At t = 1.75, the results from the coarser mesh with mesh size h = 1./20 lose certain

masses, and this is why we can observe some deviations from the reference data between

time t = 1.5 to t = 2.0. For the finer mesh sizes h = 1./40 and h = 1./80, the results

match the reference data.

Results from COMSOL Multiphysics

Finding a reference data for the two-phase problem is not an easy task, so we complete the

benchmark test using a standard commercial software named COMSOL Multiphysics to

further verify our reference data. Our rising bubble test can be implemented utilizing the

Chemical engineering module in COMSOL. In COMSOL, the Level Set method transport

equation is solved using some stabilization techniques. Re-initialization is carried out at

the same time by introducing the re-initialization parameters on the right-hand side of the

transport equation. The discontinuous coefficients, the interface normals, and the surface

tension forces are approximated using the resulting Level Set function. The Lagrange P2-

P1 FEM pairs were used to approximate the velocity and the pressure field. Figure (4.70)

compares the interface shape at the final time t = 3 from COMSOL with our reference

data. The experiment was performed using mesh size h = 1./40, in 13722 elements with

90037 degrees of freedom.
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Figure 4.70: Babble shape at t = 3.0 with ∆t = 1./16h from COMSOL Multiphysics
(reference solutions are obtained from TP2D code). The problem was solved
in non-dimensional variables, see Remark 3.14.

The time evolutions of the interface shapes at different time are listed in Figure (4.71)

and (4.72). The center of mass and the rise velocity are reported in Figure (4.73) and

Figure (4.74). These two quantities also match the reference data.
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Figure 4.71: Time evolutions of interface shapes with ∆t = 1./16h at t = 1.0, 1.5, 1.75
from COMSOL Multiphysics. The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.72: Time evolutions of interface shapes with ∆t = 1./16h at t = 2.0, 2.5, 3.0
from COMSOL Multiphysics. The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.73: Center of mass from COMSOL Multiphysics with ∆t = 1./16h (reference
solutions are obtained from TP2D code). The problem was solved in non-dimensional
variables, see Remark 3.14.
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Figure 4.74: Rise velocity from COMSOL Multiphysics with ∆t = 1./16h (reference solu-
tions are obtained from TP2D code). The problem was solved in non-dimensional variables,
see Remark 3.14.

The center of mass and the rise velocity at the final time t = 3.0 are 1.0757 and 0.1962

respectively, and they also coincide with the reference data.
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Chapter 5

Conclusions

In this dissertation, the numerical schemes to simulate the immiscible two-phase fluid flows

have been discussed. Four solvers based on the operating splitting schemes coupled with

the Level Set method for the interface modeling have been tested and calibrated. The

velocity and the pressure were approximated using the P2-P1 Finite Elements. The P1

Finite Element basis functions were used in the Level Set transport equation.

A Volume Fraction method has been developed in order to evaluate the discontinuous

coefficients. Compared with the traditional regularization techniques, this new method

does not require the approximations of the Dirac Delta functions. The corresponding

integrals, for example, the mass matrix can be computed exactly due to the presence

of the P1 basis functions in the Volume Fraction method. The performance for the new

method was tested in form of the error analysis of integrations for a Characteristic function,

a second order, a fourth order, and a exponential function.

The surface tension force has been implemented in a semi-implicit way, where larger

time steps can be taken compared with the explicit methods. In addition, numerical
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approximations of the interface normals, the curvature, as well as the Dirac Delta functions

are not necessary by taking advantage of the tangential derivatives. A recently developed

minimization-based re-initialization approach has been adopted into the two-phase flow

solvers, where the standard FEM is implemented again to solve the resulting elliptic PDEs.

Thus the zero Level Set has been strictly preserved by doing so.

The solvers have been validated in several benchmark problems. The idea is, starting

with convection diffusion problem with one-phase flow, we gradually add back the gradient

of pressure and divergence free terms. After solvers worked for the one-phase Navier Stokes

equations, the surface tension effect and the re-initialization step have been implemented.

The two-phase flow solvers have been built taking into account the discontinuous coeffi-

cients. Picture norms and the numerical quantities have been checked in each benchmark

problem. The solvers have been validated finally using a two-phase rising bubble bench-

mark problem. The solutions have been compared with the results from other research

groups. The results from COMSOL Multiphysics have been included to verify our refer-

ence data. This standard commercial tool further validated our solvers in simulating the

two-phase flow problem.
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[53] S.Pissanetsky. Sparse Matrix Technology. Academic Press, 1984.

[54] R. Temam. Surl’s approximation de la solutions des equations de Navier-Stokes par
la methoded des pas fractionnaires. Arch. Ration. Mech. Anal, 33(2):377–385, 1969.

[55] R. Temam. Remark on the pressure boundary condition for the projection method.
Theory of Computational Fluid Dynamics., 3(3):181–184, 1991.

158



[56] R. Temam. Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea
Publishing, Proveidence, RI. Corrected reprint fo the 1984 edition, 2004.

[57] Anna-Karin Tornberg. Interface tracking methods with application to multiphase
flows. PhD thesis, Royal Institute of Technology, Department of Numerical Analysis
and Computing Science, 2000.

[58] S. O. Unverdi, G. Tryggvason. A front-tracking method for viscous, incompressible,
multi-fluid flows. Journal of Computational Physics, 100(1):25–37, 1992.

[59] B. Engquist, A.-K. Tornberg, R. Tsai. Discretization of Dirac Delta functions in Level
Set methods. Journal of Computational Physics, 207(1):28 – 51, 2005.

[60] S. Hysing, S. Turek. The Eikonal equation: numerical efficiency vs. algorithmic com-
plexity on quadrilateral grids. In Proceedings of Algoritmy, Conference on Scientific
Computing, pages 22–31, 2005.

[61] A. Quarteroni, A. Valli. Numerical Approximation of Partial Differential Equations.
Springer-Verlag, Berlin, 1994.

[62] H. Wadell. Sphericity and roundness of rock particles. Journal of Geology, 41(3):310–
331, 1933.

[63] R. Clift, J. R. Grace, M. E. Weber. Bubbles, Drops and Particles. Academic Press:
New York, 1978.

[64] F. H. Harlow, J. E. Welch. Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with a free surface. Physics of Fluids, 8(12):2182–2189, 1965.

[65] F. H. Harlow, J. E. Welch. SLIC (Simple Line Interface Calculation), volume 59 of
Lecture Notes in Physics. Springer, New York, 1976.

[66] N. N. Yanenko. The Method of Fractional Steps. The Solution of Problems of Mathe-
matical Physics in Several Variables. Springer-Verlag, Berlin, 1971.

[67] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti. Modelling merging and
fragmentation in multiphase flows with SURFER. Journal of Computational Physics,
113(1):134–147, 1994.

[68] J.U. Brackbill, D.B. Kothe, C. Zemach. A continuum method for modeling surface
tension. Journal of Computational Physics, 100(2):335–354, 1992.

[69] Y. Tsai, L. Cheng, S. Osher, H. Zhao. Fast sweeping algorithms for a class of Hamilton-
Jacobi equations. SIAM Journal on Numerical Analysis, 41(2):673–694, 2003.

[70] J. C. Heinrich, R.S. Marshall, O.C. Zienkiewicz. Penalty Function Solution of Cou-
pled Convective and Conductive Heat Transfer. Numerical Methods in Laminar and
Turbulent Flows, Pentech Press, 1978.

159


