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Abstract

The goal of radiation therapy for cancer patients is to kill tumor cells by damaging their

DNA. For the majority of patients, the prescribed dose is divided into several treatment

sessions (fractionated treatment plan) to avoid lethal damage to the surrounding healthy

organs called organs at risk (OARs). In conventional practice, the treatment policy is to

deliver an equal amount of radiation dose to the patient over multiple treatment sessions.

Such an approach neglects different uncertainties associated with tumor dynamics, biological

response to radiation, and organ motion that occur during radiation treatment. In this

dissertation we are proposing methods to tackle the current challenges and shortcomings in

radiotherapy treatment planning.

In the first part of this dissertation, a constrained Partially Observable Markov Decision

Process (POMDP) approach is proposed based on an extended biological model of cell sur-

vival to incorporate the biological response from the patient in the fractionated radiotherapy

plan. A Gompertzian growth function is used to explain dependence of tumor growth rate

on its density and shape. The aim of our model is to maximize the expected biological

equivalent dose (EBED) of tumor, while keeping the OAR survival under control. Because

the condition of a tumor can change and it is not fully observable through CT images dur-

ing the treatment horizon, POMDP enables us to consider the tumor symptoms through

probabilistic belief and partial observation probabilities. We provide a control limit policy

to investigate whether there is an advantage of using POMDP over the conventional plan

in terms of tumor damage and OAR sparing. Numerical results showed potential impact of

the POMDP policies to enhance tumor coverage compared to the conventional plan. The

resulting policies suggested the use of a low dose at earlier sessions, and a higher dose at

later sessions. This result reflects the impact of tumor density and shape on its growth

and biological response. The POMDP policy was not recommended if the tumor was a late

responding tissue and its corresponding OAR was an early responding tissue.

Unlike photon, the proton’s linear energy transfer (LET) increases as it penetrates the
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body. Therefore, proton therapy can be modulated to provide a better biological effective-

ness. In the second part of this dissertation, we develop an LET-based IMPT optimization

model that guarantees homogeneous biological effectiveness on the tumor structure and

minimum damage to the OARs. The outcomes of this model serve as the action set in a

constrained MDP framework developed to provide an optimal decision-making policy for

dynamic and personalized fractionated proton therapy treatment plans. The tumor state

is predicted using a random forest classification model built on radiomics data from CT

images. The proposed model is implemented on the two cases of prostate cancer and pedi-

atric ependymoma and compared to a regular IMPT model as the threshold. The results

demonstrate that the LET-based IMPT model improves biological effectiveness and tumor

control probability (TCP). Randomized MDP policies suggest a smaller dose target for a

high tumor cell count where the tumor growth rate is at its lowest value. But as the tumor

cell count decreases, a larger amount of dose is suggested to destroy faster growing tumor.

Proton’s unique physical characteristics make proton therapy sensitive to organ mo-

tion such that a voxel can receive a nonuniform dose deposition between different fractions.

Therefore, biological effectiveness of the treatment might deviate from the planned effective-

ness. In the last part of this dissertation we develop a model to optimize the fractionation

and IMPT problems at the same time. We use 4DCT data set for planning a 3D delivery

technique to handle complex respiratory motion patterns while avoiding sophisticated 4D

delivery systems. Two models are used to solve this problem; a statistical mean-variance

model, and a robust worst-case model. The worst-case robust model provides a more robust

dose distribution over all structures compared to statistical mean-variance model. Both

models suggest larger amount of radiation dose in the first week of treatment and gradually

decreasing the dose towards the last week. The resulting weekly mean BED is shown to be

almost equal in all treatment weeks, compensating for the increased repair effect resulting

from nonuniform voxel dose between fractions. Because of conservatism of worst-case robust

model, a larger total dose has to be delivered in every treatment week to achieve the same

biological effectiveness as statistical mean-variance model.
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Chapter 1

Introduction

1.1 Background

Tumor is a mass of cells with abnormal growth that do not contribute to the body

functioning. A tumor is cancerous when it has the ability of invading the neighboring tissues

or spreading to other body parts. Cancer is a class of over 100 diseases that affect humans

and is the second leading cause of death worldwide. The American Cancer Society has

estimated that over 1.7 million new cancer cases will be diagnosed in 2018 and the number

of new cases are expected to rise by about 70% over the next two decades (American Cancer

Society Cancer Facts & Figures, 2018).

There is no single cure for cancer, but there are three major treatments for different can-

cer types; surgery, chemotherapy and radiation therapy. The ultimate goal of the treatment

is complete removal of cancer without damaging the healthy organs. For the isolated and

solid tumors that do not metastasize surgery is the primary method of treatment. Since this

is not the case for most of the cancers, surgery is also used for prognosis and staging before

other methods of treatment. Chemotherapy uses specific drugs to affect rapidly dividing

cells which are not limited to cancer cells only. Therefore, it has the potential to harm the

healthy tissue as well. Radiation therapy uses ionizing radiation to kill cells by damaging

the DNA which stops them from growing and dividing. Radiation therapy makes damages

to the healthy tissue too, but the harm is confined to the treatment region in contrast with

chemotherapy. About 60 percent of cancer patients in the US receive curative radiation
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therapy despite many advances in other treatment modalities.

There are two types of radiation therapy based on the source of radiation; external

beam radiation therapy is a type of treatment in which the radiation is directed to the

tumor from outside the patient’s body. In brachytherapy however, a sealed or unsealed

source of radiation is placed in the organ under treatment or very close to it. Many studies

have been dedicated to both brachytherapy (Rivard, Venselaar & Beaulieu, 2009; Ferrer

et al., 2008) and external beam radiation therapy in terms of treatment planning, but the

focus of this study is on external beam radiotherapy planning.

Any method aiming to treat a tumor requires a precise knowledge of the tumor vol-

ume. Therefore, initiating the treatment planning requires digital imaging of the tumor and

internal anatomy of the patient. Several digital imaging modalities such as computed to-

mography (CT), magnet resonance imaging (MRI), or position emission tomography (PET)

can be used to view and locate the tumor. Since it is necessary to differentiate the tumor

from healthy organs, a physician contours the tumor in the digital images. After identifying

the tumor structure, the healthy organs that fall in the treatment site and might be affected

by radiation are defined as organs at risk (OAR), and the rest on healthy organs are defined

as normal tissue.

A radiation oncologist defines the prescription dose based on cancer type and stage as

well as the treatment types the patient is receiving. The radiation dose is measured in gray

(Gy) and mostly varies from 60 to 80 Gy. Also, the radiation oncologist defines the dose-

volume constraint (DVC) for OARs to spare them from lethal damage. For the majority of

patients, the radiation dose required to eradicate the tumor is higher than the tolerance of

OARs. For such cases, the prescribed dose is typically divided into several treatment sessions

called fractionated treatment plan. Fractionation not only results in smaller dose tolerable to

OARs, but also provides the OARs enough time to recover from the sublethal damage. The

ideal process for treatment planning is to examine the patient right before each treatment

session and update tumor contours indicating the shape and size of the tumor, and make an

appropriate decision about radiation dose based on tumor response to treatment. However,
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this process is not practical because updating tumor contours and finding corresponding

optimal radiation dose may not be an option or it can be time consuming and prone to

human errors. In current practice, the treatment policy is to deliver an equal amount

of radiation dose in all treatment sessions for most cancer patients. But there are some

unanswered questions in this point: Is the equal dose per fraction an efficient treatment

plan? Can we apply the same treatment plan to all patients with different characteristics?

What internal and external factors affect the treatment plan quality and efficiency?

1.2 Problem Description

The purpose of this thesis is to address some of the unanswered challenges in radiation

therapy treatment planning aiming to improve the quality of treatment delivered to cancer

patients. The followings are the challenges we try to resolve:

1.2.1 Treatment planning considering biological response of the tumor

There are two types of tissues based on intrinsic response to radiation therapy; the early

responding tissues in which cells divide faster and have higher intrinsic radiosensitivity, and

the late responding tissues with slowly dividing cells and lower intrinsic radiosensitivity.

Aside from tissue type, the biological response of the cancer cells depends on many factors

that affect the cell cycle. The radiosensitivity of the cell is the least when in synthesis

phase (S) and is the most when in mitotic phase (M) as shown in Figure 1.1 (Pawlik &

Keyomarsi, 2004), but there are conditions that make the cell radio-resistant. There is a

restriction checkpoint in the first growth phase (G1) where the cell becomes ready to enter

the synthesis phase. This checkpoint decides whether the DNA is ready to duplicate in the

S phase or it has suffered a lethal damage which results in cell death (Apoptosis). Also,

depending on internal and external conditions this checkpoint might delay the progress of the

cell in the cycle, a condition called the resting phase (G0) in the cell cycle (Bruce Alberts &

Hunt, 2015). A cell becomes radio-resistant when entered in the resting phase (McIlwrath

et al., 1994). The resting phase occurs when DNA needs time to repair from sublethal

damages, or when there is external stress because of overpopulation or lack of sufficient

oxygen source, a condition called hypoxia.
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Figure 1.1: Schema of the cell cycle and cell phases

During several fractions of treatment, tumor cells that were in a relatively radio-resistant

phase during one fraction might cycle into a sensitive phase before the next fraction is given

(Ang, 1998). Therefore, the radiosensetivity of the tumor cells are changing during the

treatment horizon and a monotone treatment plan might not be efficient. Also, it has

become more clear in recent studies that one patient responds to radiation different than

others (Bibault et al., 2013). This dissertation aims to consider the biological response of

the patient body to provide a personalized treatment plan. Therefore, the mechanism of

action of different radiations and their effect on biological response of the patient body must

be considered.

At each treatment fraction, the radiation kills some cells by damaging their DNA, but

causing only sublethal damage to some cells. The cells that are active in their cycle and have

not been damaged divide into more cells. The rest of the cells that are in resting phase and

therefore neither dividing nor radiosensitive, might come out of resting phase as the result of

DNA repair, or extension of blood vessels as source of oxygen (reoxygenation), or relocation

of cells to overcome overpopulation issue (redistribution). These phenomena are known as

four R’s of radiation therapy; repair, repopulation, reoxygenation and redistribution.
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Various ways to include radiobiological aspects in therapy planning have been studied

such as cumulative radiation effect, nominal standard dose, and time-dose factor (Brenner,

2008). These studies use the concepts of tumor control probability (TCP) and normal

tissue complication probability (NTCP) and are based on past clinical data. However,

before focusing on TCP/NTCP concepts, the biological response to radiation has to be

determined. Biological response for both tumor and OAR is demonstrated by cell killing

(Brenner, 2008; Gerweck, Zaidi & Zietman, 1994). The most common tool for quantitative

prediction of biological response is the linear-quadratic model (LQ) (Fowler, 1989; Thames,

1985). In the LQ model the survival of tumor cells is defined as a function of dose and

intrinsic radiosensetivity of the tumor tissue. Biologically effective dose (BED) is a measure

to characterize the radiation effect based on the survival fraction from LQ model. For

fractionated treatment plan, the LQ model is extended to include the four R’s of biological

factors as the time dependent evolution of tumor in response to treatment.

1.2.2 Treatment planning considering biological effectiveness of different

radiations

Low energy photon (x-ray and gamma-ray) is the most commonly used radiation in can-

cer treatment. Intensity modulated radiation therapy (IMRT) is an image-guided technique

that has greatly improved the dose shaping capability of external beam photon therapy

(Bortfeld, 2006). IMRT provides a 3D dose shape conformal to the tumor volume by op-

timizing the intensity of incoming beams of radiation so that the intensity of beams going

through sensitive OAR are kept low while the intensity of beams going to the target increase.

However, the photon beams when entered human body deposit most of their energy in the

beginning of their path, causing more destruction to organs that are close to surface while

delivering less of their energy to the tumor(Figure 1.2).

Heavy ion radiotherapy or particle therapy on the other hand, uses the energy of charged

particles to kill the cancer cells. The dose deposition of charged particles increases as the

beam penetrates deeper in the tissue with a sharp longitudinal dose fall-off at the end

of the particle range called Bragg Peak (Krämer & Scholz, 2006). This feature has made
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charged particles like proton popular in increasing number of radiotherapy facilities recently.

Intensity modulated proton therapy (IMPT) utilizes this feature and builds an optimal

proton dose distribution in which a three-dimensional conformal dose shape is delivered to

the tumor volume with maximal sparing of OARs. The protons are energized to specific

velocities that indicate their stopping points in patient’s body. Protons of different energies

with Bragg peaks at different depths are applied to treat the entire tumor resulting in a total

radiation dosage called the spread-out Bragg peak (SOBP). Therefore, the tissues behind (or

deeper than) the tumor receive almost no radiation from proton therapy, while the tissues

in front of (shallower than) the tumor receive radiation dosage based on the SOBP.

Figure 1.2: Comparison of energy deposition for photon (black line) and proton (red lines) and
proton Bragg Peak (blue line)

As the protons move inside the body, their velocity decreases and their interaction with

molecules increases which results in maximum energy deposition. The deposited energy,

known as linear energy transfer (LET), can be controlled by the physician so that the tumor

receives highest energy while the OARs receive the lowest energy. Therefore, the biological

effectiveness of the proton dose is different than the same photon dose. Relative biological

effectiveness (RBE) is a measure for converting a reference dose into photon dose to yield the

same biological effect. For proton beam, an RBE of 1.1 is used in clinical practice, but in the

distal edge of the SOBP the RBE increases and the range of values goes from 0.7 to 1.6 at
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the middle of the SOBP (Paganetti et al., 2002). Paganetti (2014) explains that this average

value was deduced (a) for the center of the target volume, (b) at 2 Gy, and (c) averaged over

various endpoints and so neglects any dependency of RBE on dose, endpoint or proton beam

properties. Several recent studies have provided IMPT plans based on variable RBE (Chen

et al., 2018; Ödén, Eriksson & Toma-Dasu, 2017; Willers et al., 2018), but such plan can

result in a heterogenous RBE distribution and cause undesired side effects (Ödén, Eriksson

& Toma-Dasu, 2017). However, the variable RBE is calculated based on LET which can

be controlled so that the tumor receives more energy while the OARs receive similar or less

energy. Therefore, considering LET in IMPT planning can account for proton biological

effectiveness while mitigating the risk of heterogenous RBE distribution (Unkelbach et al.,

2016).

1.2.3 Treatment planning considering uncertainties

A radiation treatment normally consists of one planning session and multiple irradiation

sessions. In the planning phase, the patient’s internal organs are visualized using CT im-

ages. The visualized structures are the basis for construction of the treatment plan and the

intention is to deliver this plan in all irradiation sessions. To track the tumor response to

treatment, the ideal process is to examine the patient right before each treatment session and

update tumor contours indicating the shape and size of the tumor so a decision about radia-

tion dose can be made based on how tumor has responded so far to the treatment. However,

observing the tumor and identifying the effect of treatment through digital imaging requires

a major amount of time and money and is not practical since the cancer patient cannot wait

for long before treatment session, and yet it is prone to human error. The linear-quadratic

model assumes tumor response and growth are constant over time; however as explained

earlier, there are experimental evidence suggesting the response of tumor cells to radiation

and their growth rate are significantly affected by cell cycle regulation and the LQ model

is not completely capable of calculating the survival fraction of the tumor in response to

treatment. Therefore, we are facing with uncertainty of tumor biological response during

fractionated radiotherapy plan.
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Proton therapy has unique physical characteristics enabling a 3D dose and energy de-

livery conforming to the target volume with minimal damage to the healthy organs. If the

position or shape of internal structures change during irradiation session due to geometric

uncertainties, the outcome of the delivered proton therapy treatment might be different than

the expected outcome. the International Commission on Radiation Units and Measurements

(ICRU) considers three sources of geometrical uncertainty (Stroom & Heijmen, 2002): pa-

tient set-up variation, machine related errors, and organ motion. Patient set-up errors are

due to variations in the daily positioning of the patient on the treatment couch. Machine

related errors such as beam sizes and gantry angles, are generally considered small due to

modern radiotherapy equipment. Organ motion can happen between fractions (known as

inter-fractional motion) or within a fraction (called intra-fractional motion). Inter-fractional

organ motion can occur due to weight change or variations in rectum or bladder filling, while

intra-fractional organ motion is caused by cardiac action and respiration. Inter-fractional

motions are easier to deal with because they need intervention only at the beginning of each

fraction. But intra-fractional organ motion happen during treatment delivery and change

organ position on a time-scale of seconds to minutes (Bert & Durante, 2011).

Because of proton’s highly conformal dose deposition, the organ motion results in unequal

dose delivered to a specific voxel in different fractions. In proton therapy, some voxels in PTV

might face underdosage in some fractions. Therefore, the biological response to treatment

for the tumor volume can be different from that of the planned treatment (Flampouri et al.,

2006; Nøttrup et al., 2007; Yan & Lockman, 2001). Radiation causes double-strand breaks

(DSB) in the DNA. If the radiation dose is not enough to produce lethal DSB, the DNA can

repair itself by rejoining the pairs of DSB with a constant rate. The LQ model quantifies

both lethal damage and repair effect. According to the LQ model, a reduced radiation dose

can result in a reduced lethal damage and increased repair effect and vice versa. Therefore,

it is important to investigate the effect of respiratory motion on the biological response in a

fractionated treatment plan.
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1.3 Objectives and contributions

Our goal in this thesis is to provide solutions to the above-mentioned challenges under

the following subjects:

1.3.1 Personalized treatment planning considering biological response un-

certainty

This subject attempts to answer if the equal dose fractionation is still optimal under the

presence of tumor size and biological response uncertainty. If we understand better about

patient specific characteristics with regards to radiation treatment, it is possible to deliver a

lesser amount of radiation to achieve the desired treatment goal. Hence, our first goal is to

develop a control limit policy as a general guide to determine if a dynamic treatment plan

will be better choice than the equal-dose treatment scheme based on relative properties of

tumor and OAR.

Furthermore, we aim to provide a general policy to determine how much dose to deliver

at each decision epoch during the treatment. The decision can be made based on progres-

sion of tumor cells before each treatment. However, evaluation of tumor conditions requires

a treatment planner to examine daily CT images, which can be an expensive process in

practice. Therefore, we propose a Partially Observable Markov Decision Process (POMDP)

framework to make such decisions using partially available information about tumor pro-

gression during the treatment. In this study, we use the extended LQ model to include

the tumor biological response and develop an indefinite time and constrained POMDP to

provide optimal treatment policy where the number of the tumor cells before each decision

epoch is considered uncertain.

Value iteration is an exact algorithm widely used for solving POMDPs, however this

algorithm is not tractable for non-small problems.The structure of our model allows us to use

point-based approximation of value iteration as a solution algorithm to limit the size of the

solution set at each iteration. Furthermore, a pruning algorithm is used for the constrained

POMDP to maintain feasibility of the solution space. We also discus conditions specific

to our model to guarantee monotonicity of value function and existence of threshold-type
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optimal policy over the belief space.

1.3.2 Personalized and LET-based proton therapy treatment planning

considering tumor biological response uncertainty

This subject aims to provide a decision-making policy for a dynamic and personalized

fractionated proton therapy treatment plan that can improve the treatment quality (i.e.

more damage to the tumor for less damage to OARs) by modifying the treatment based

on patient characteristics and tumor response. We combine IMPT optimization into frac-

tionation optimization by defining the set of actions as the dose distributions that provide

optimal solution to the LET-based IMPT model. This way, we provide a comprehensive

decision making policy that assures the highest quality of a personalized treatment in terms

of both fractionation planning and radiation delivery.

Our policy chooses the optimal IMPT plan (action) to be delivered based on the tumor

feedback (state). The IMPT optimization model is developed to include LET in calculation

of biological response and consider potential effect of variable RBE on treatment quality.

This model guarantees homogeneous biological effectiveness instead of common homogeneous

dose distribution over the target volume while minimizing the damage to multiple OARs.

In clinical practice, CT images are obtained at the pre-treatment step for treatment

planning, where a team of physicians contour the tumor and OAR structure in the CT image.

Because this process is time consuming and expensive, it is not always practical to repeat

it every week. However, the CT images contain important information âĂŞ Radiomics,

that include quantitative image features and can offer potential aid in diagnosis, prognosis

and prediction of response to treatment of cancer. The idea behind using radiomics in

cancer treatment planning is that quantitative analysis of a medical images may improve

the efficiency of the planning process while providing better information about the tumor

(Gillies et al., 2016). Our objective is to employ a machine learning model to predict tumor

state using radiomics data obtained from CT images of a certain cancer site. The trained

model then can be applied to weekly CT images during the treatment horizon to predict

the tumor size without contouring.
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1.3.3 Dealing with respiratory motion in a fractionated IMPT treatment

plan

We aim to address the effect of breathing motion on a fractionated proton therapy for

non-small cell lung cancer. We consider the biologically effective dose in IMPT model to

assure maintaining the required biological response at the presence of breathing motion.

A 4DCT dataset is used to account for organ motion during respiratory cycle. Therefore,

our model can handle complex motion patterns and does not require simplifying assumptions

about organs motion. In a 4D radiotherapy, the treatment plan is obtained for each 4DCT

image and the radiation is delivered with a moving pencil beam synchronized with the

breathing motion. However, this delivery method requires a sophisticated delivery system

that is not available in all radiotherapy centers (Li et al., 2011). Also, the interplay effect

caused by the lag between breathing motion and the pencil beam motion can result in

degradation of the treatment quality. We consider a 3D treatment delivery technique so

that this model does not require a 4D delivery system and there is no need of dealing with

interplay effect.

Two methods are used to solve our proposed model; a statistical model that optimizes

the mean and variance of dose delivered to each organ structure, and a robust method that

optimizes the worst possible case of dose deposition to each organ structure. While the first

method provides a realistic solution for this problem, the second model optimizes a lower

bound of treatment quality resulting in a risk-averse treatment plan.

1.4 Organization

This thesis is organized as follows; Chapter 2 is a comprehensive overview of the rel-

evant literature on treatment plan optimization based on biological response uncertainties

associated with radiation therapy. A review of the efforts made to address the biological

response to radiation is provided in Section 2.1. Section 2.2 reviews the studies on differ-

ence between photon and proton beams and proposed methods to address this difference. A

review of some uncertainties of radiation therapy and the methods used to deal with them

is presented in Section 2.3. A literature review POMDP is provided in Section 2.4.
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In Chapter 3, we propose our stochastic approach to incorporate biological response un-

certainties in photon therapy treatment planning optimization. First, a POMDP framework

is developed based on extended LQ model to take into account the biological uncertain-

ties, then theoretical control limits and policy structures are investigated depending on our

model structure. Finally, the suggested policy is presented using a simulation method and

the suggested policy is compared to the traditional treatment scheme.

In Chapter 4, we develop an LET-based IMPT optimization model to incorporate

variable biologically effectiveness of the proton beams. We leverage radiomics data in pre-

dicting tumor state and build a MDP framework to provide a personalized and dynamic

decision-making policy for a fractionated radiotherapy treatment planning. We implement

our approach on two real cancer cases, a prostate cancer and a pediatric ependymoma and

compare the performance of our LET-based IMPT model with the common fixed-RBE IMPT

model.

In Chapter 5, we address the effect of respiratory motion on a fractionated proton

therapy and develop an model to optimize the dose distribution in the IMPT problem and

fraction size in the fractionation problem. We use a 4DCT dataset of a non-small lung

cancer patient to include the entire raspiratory phases in our model. We solve our model

using two different methods and compare their results.

In Chapter 6, we conclude the dissertation with a summary of our contributions and

discuss the future researches that can be pursued.
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Chapter 2

Literature review

2.1 Biologic Response in Fractionation

In considering biological response of tumor in treatment planning, Ribba et al. (2006)

explained that before the synthesis phase in a cell cycle, a checkpoint controls internal

and external conditions for the DNA to replicate. At this check point if local availability

of oxygen is low and/or local density of cells is high, the cell goes into a resting phase

which stops the cell from both repopulating and responding to radiation. Therefore, both

sensitivity to radiation and growth of a cell depends on the cell cycle state when radiotherapy

is happening.

In modification of fractionation pattern, Withers (1985) explained four possibilities: the

increase or decrease of overall treatment time and the increase or decrease in dose per

fraction. The modification of decreasing dose per fraction is called hyperfractionation. On

the other hand, an attractive modification is called hypofractionation in which larger doses

are delivered in a shorter treatment period. These modifications are used to answer the

different tumor responses.

Fowler (1989) was the first one who used the LQ model in a fractionation problem. The

LQ model was proposed to define the survival fraction of tumor based on radiation dose.

Fowler (2001) later included tumor proliferation in the LQ model and claimed that the

main factor in choosing the optimal total dose, fraction size and total treatment time in a

fractionation problem is the proliferation status of the tumor. Several studies have used LQ
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model and its extension in fractionation problem and showed that faster growing tumors

need shorter radiation treatment plans (Saberian, Ghate & Kim, 2015; Yang & Xing, 2005;

Brenner et al., 1995; Bortfeld et al., 2015). The dynamic biologically conformal radiation

therapy (DBCRT) model presented by Kim, Ghate & Phillips (2012) was the only study

that considered uncertainty in LQ model by assuming a probability distribution for tumor

intrinsic radiosensetivity.

Knowing that some tumors possess specific growth curves, some works have considered

several growth models for the tumor. Multiple studies have investigated exponential growth

models (Wheldon & Kirk, 1976; Wheldon, Kirk & Orr, 1977; Armpilia, Dale & Jones, 2004)

while others show efficiency of Gompertzian growth curves (Brunton & Wheldon, 1978;

McAneney & O’Rourke, 2007; Usher, 1980; Bortfeld et al., 2015).

2.2 Radiobiological effectiveness of proton

The popularity of proton therapy has been increasing in recent years because of its

physical properties, but there are still questions about the biological effect of protons. Ex-

perimental evidence has (Courdi et al., 1994) shown that the biological effect caused by

proton beams does not depend on the physical dose only, but also on energy deposition

(Belli et al., 1993; Paganetti et al., 2002). Currently most clinical proton centers use a

constant RBE of 1.1 meaning that protons are 10% more effective than photons. But it has

been shown that the RBE increases with depth in the spread-out Bragg peak (SOBP) and

becomes about 10% higher than mid-SOBP RBE (Paganetti, 2003) and can reach values

of 1.3 to 1.4 at the distal edge (Robertson et al., 1975; Courdi et al., 1994). Therefore, it

is important to account for the RBE variations in proton beams (Kraft, 2000; Paganetti

et al., 1997). Marshall et at (2016) investigated the effect of variable RBE in proton therapy

fractionation by comparing the survival fraction on distal, central and proximal areas of

the SOBP of different fractionation regimens with an interaction period of 24 hours. They

outlined that the strong dependence of RBE on proton LET has a significant effect on treat-

ment efficiency especially in a variable dose fractionation regimen. In general, the RBE of
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protons is calculated based on equivalence of LQ model and for the endpoint and dose and

energy range used clinically, RBE has a linear dependence on the local energy spectrum

which is characterized by linear energy transfer (LET) (Paganetti et al., 2002; Carabe et al.,

2012; Holloway & Dale, 2013).

Currently, the goal of IMPT planning is mostly delivering a homogenous physical dose to

the target area, but the biological effectiveness of such plan is not necessarily homogenous.

Wilkens & Oelfke (2005) incorporated three-dimensional RBE in inverse IMPT planning and

provided more homogenous biological effectiveness based on distribution of the biological

dose (RBE multiplied by the physical dose) in the target. Grassberger et al. (2011) showed

different IMPT techniques yield equivalent dose distribution while resulting in considerably

different LET distributions. Giantsoudi et al. (2013) utilized calculated LET distribution in

a dose-based multi criteria optimization to enhance treatment plan.

2.3 Dealing with uncertainties

There are many biological studies on the other hand that believe the LQ model does

not integrate the complex features of tumor growth. Instead, tumor growth behavior after

radiation strongly depends on a tumor’s response to radiation. Barazzuol et al. (2010)

considered the LQ model in their investigation on the effects of chemotherapy after each

radiation treatment session on glioblastoma cancer and indicated that chemotherapy actually

increased tumor response to radiation. Rockne et al. (2009) have also investigated tumor

response to radiotherapy, extending Swanson's reaction−diffusion model by LQ model in

Gliomas. Kim, Ghate & Phillips (2012) considered the tumor specific constant α in an LQ

model as a random variable dependent on time in order to capture tumor response variation

during treatment sessions.

In photon therapy, the established tool to compensate for geometrical uncertainties is

the planning target volume (PTV). The PTV assumes that the dose distribution is shape

invariant with respect to geometrical uncertainties. In proton therapy, because of the motion

uncertainties, the distal fall-off of protons is rarely used to spare an OAR that is within 12
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cm to the target volume in the direction of the beam. Moreover, the concept of PTV is

not suitable for proton therapy as geometrical uncertainties distort the dose distributions

because of range uncertainties.

Specific incorporation of the temporal domain into treatment planning for radiotherapy

is typically referred to as 4D treatment planning . For photon beam therapy, several studies

have investigated the full 4D treatment plan optimization that takes all phases of the 4DCT

into account (Nohadani, Seco & Bortfeld, 2010; Zhang et al., 2004). Similar methods have

been proposed for the incorporation of range uncertainties by robust treatment planning

for proton beams (Pflugfelder, Wilkens & Oelfke, 2008a; Unkelbach et al., 2009). However,

these studies have not considered the energy deposition and variable RBE of proton in 4D

treatment planning and thus the effect of these uncertainties on biological effectiveness of

proton therapy has not been investigated.

2.4 Partially Observable Markov Decision Process

Partially observable Markov decision processes (POMDPs) are generalization to MDPs

where the state of the system is completely observable. In POMDP instead, a partial

observation of the system results in a probability distribution of the states which is referred

to as belief state. The belief state converts the POMDP into a MDP with continuous state.

Smallwood & Sondik (1973) formulated unconstrained POMDP and provided the properties

and value iteration algorithm, as the first exact algorithm, for deriving optimal policy for a

finite-state infinite-time POMDP.

The value iteration algorithm becomes intractable for non-small problems, therefore

many approximation methods have been studied to overcome this issue (Cassandra, 1998;

Poupart, 2005; Hansen, 1998). Grid-based approximation places a finite grid on the belief

space and values are computed for points in the grid, and interpolation is used to evaluate all

other points in the simplex (Lovejoy, 1987; Hauskrecht, 2000). Point-based algorithms also

have made impressive progress solving POMDPs with hundreds of states (Hsu, Lee & Rong,

2008; Pineau et al., 2003). Although the solution theory and algorithm for unconstrained
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POMDP is widely studied, the constrained POMDP is relatively less considered in the

literature.
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Chapter 3

Personalized treatment planning considering

biological response uncertainty

3.1 Introduction

The goal of radiation therapy for cancer patients is to kill tumor cells by damaging their

DNA. For the majority of patients, the radiation dose required to eradicate the tumor is

higher than the tolerance of the surrounding healthy organs called organs at risk (OARs).

For such cases, the prescribed dose is typically divided into several treatment sessions called

fractionated treatment plan. The ideal process for treatment planning is to examine the

patient right before each treatment session and update tumor contours indicating the shape

and size of the tumor, and make an appropriate decision about radiation dose based on

tumor response to treatment. However, this process is not practical because updating tumor

contours and finding corresponding optimal radiation dose may not be an option or it can

be time consuming and prone to human errors.

In current practice, the treatment policy is to deliver an equal amount of radiation dose

in all treatment sessions for most cancer patients. However, it has become more clear in

recent studies that one patient responds to radiation different than others (Bibault et al.,

2013). Ribba et al. (2006) explained the resting mechanism of cell cycle in response to low

availability of oxygen or high local density of cells. Therefore, the sensitivity to radiation

and the growth of a cell (i.e., tumor proliferation) both are related to the cell cycle phase
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and gene level activities (Scott et al., 2017) as radiation particles travel through the patient

body.

Because the radiotherapy typically takes place over multiple fractions, it is possible to

modify the amount of daily radiation dose if it can result in better treatment outcomes.

Withers (1985) explained four possibilities in modifying the fractionation pattern: the in-

crease or decrease of overall treatment time and the increase or decrease in dose per fraction.

Among these four, hyperfractionation, where the prescribed radiation dose is delivered to

the patient in multiple smaller fractions, is known to be promising to the current treatment

scheme considering the biological characteristics of the tumor. In contrast to Withers's al-

ternative modifications, hypofractionation reduces the treatment time by delivering greater

than conventional doses per fraction. To account for such a change during the course of

treatment, this paper aims to provide a dynamic treatment plan designed specifically for

each patient and each tumor site.

One commonly used mathematical model in fractionated radiotherapy optimization is

linear-quadratic (LQ) model (Douglas & Fowler, 1976) considering the biological effective

dose (BED) measure to characterize the radiation interaction with tumor and surrounding

organs. Fowler (1989) suggested using the LQ model in a fractionation problem, in which

the survival fraction of tumor is defined as a function of the radiation dose. He then in-

cluded tumor proliferation in the LQ model, and claimed the proliferation status of the

tumor to be the primary factor in choosing the optimal total dose, fraction size (i.e. amount

of dose per fraction) and total treatment time in a fractionation problem (Fowler, 2001).

It is shown in several studies that faster growing tumors need to be treated in a shorter

treatment length using a higher amount of radiation dose at each fraction. Saberian, Ghate

& Kim (2015) considered tumor proliferation with a time lag before the proliferation starts

in a fractionation problem, and observed that a shorter treatment course worked better

for a fast proliferating tumor. Bortfeld et al. (2015) incorporated accelerated tumor prolif-

eration in an LQ-based treatment planning problem. Knowing that some tumors possess
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specific growth curves, multiple studies have investigated exponential growth models (Whel-

don & Kirk, 1976; Wheldon, Kirk & Orr, 1977; Armpilia, Dale & Jones, 2004) while others

used Gompertzian growth curves (Brunton & Wheldon, 1978; Usher, 1980; McAneney &

O’Rourke, 2007).

Beyond the tumor growth factor, Brenner et al. (1995) proposed an LQR model consid-

ering four factors to address the biological response of tumor to radiation therapy. These are

known as four R’s of radiation therapy; repair of sublethal damage, repopulation, redistribu-

tion, and re-oxygenation. Yang & Xing (2005) developed a LQR-based radiation treatment

planning model for a fractionation problem to minimize the BED of organs at risk to the

BED of tumor. In the LQR model, the redistribution and reoxygenation effects are cast in

terms of resensitization with an average resensitization time. The surviving fraction SFt of

tumor cells irradiated with an arbitrary fractionation scheme can be expressed as

SFt = exp(

t∑
i=1

(−αdi − βGi(τRp)d2
t +

1

2
σ2Gi(τRs)d

2
t )), (3.1)

where, α and β are linear quadratic constants characterizing the intrinsic radio-sensitivity

of tissue, σ2 is the variance of Gaussian distribution of α, τRp is average repair time, τRs is

average resensitization time, and dt is the dose delivered at each treatment session t (Yang &

Xing, 2005). The Gi(τ) corresponds to the generalized Lea-Catcheside function and is used

to describe the time-dependent effects of repair and resensitization. Yang & Xing (2005)

calculated this function using

G(τ) =
2

D2

∫ T

0
R(u)[

∫ u

0
R(w)exp(

−(u− w)

τ
)dw]du. (3.2)

The biological equivalent dose (Deasy & Fowler, 2005) is calculated based on the total

surviving fraction, TF , resulting from the cell kill effect and the cell growth effect,

BED = − 1

α
ln(TF ). (3.3)
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The LQ model assumes that the growth of tumor and tumor response to radiation remain

constant over time. However, experimental evidences suggest that the response of tumor

cells to radiation and their growth rate are significantly affected by cell cycle regulation, and

may change over time (Barazzuol et al., 2010).

The majority of studies on LQ-based optimization of the fractionated treatment planning

problem have used non-linear programming as a solution method (Bertuzzi et al., 2013; Yang

& Xing, 2005; Saberian, Ghate & Kim, 2015). Since the tumor is evolving based on the

amount of radiation dose delivered, Kim, Ghate & Phillips (2009) utilized a Markov Decision

Process (MDP) technique for fractionated radiotherapy treatment planning. A drawback

of these studies is the assumption that tumor response to radiation can be predicted in

advance without uncertainty. Therefore, we propose a Partially Observable Markov Decision

Process (POMDP) framework to address this issue. POMDP is a tool for sequential decision-

making under uncertainty with respect to both the current state and the future evolution

of the system (Smallwood & Sondik, 1973). This technique deals with the uncertainty of

the tumor state by considering a probabilistic state space called belief space. Smallwood

& Sondik (1973) developed an exact algorithm, the value iteration algorithm, for deriving

optimal policy for a finite-state infinite-time POMDP. However, because the value iteration

algorithm becomes intractable for even small problems, many approximation methods have

been proposed to overcome the issue (Cassandra, 1998; Poupart, 2005; Hansen, 1998; Pineau

et al., 2003). Although the theory and algorithm for unconstrained POMDP is widely

studied, only few studies (Isom, Meyn & Braatz, 2008) have developed algorithms for a

constrained POMDP.

This paper attempts to answer if the equal dose fractionation is still optimal under the

presence of tumor size and biological response uncertainty. If we understand better about

patient specific characteristics with regard to radiation treatment, it is possible to deliver

a lesser amount of radiation to achieve the desired treatment goal. Hence, our first goal

is to develop a control limit policy within POMDP as a general guide to determine if a

dynamic treatment plan will be better choice than the equal-dose treatment scheme based
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on relative properties of tumor and OAR. Furthermore, we aim to provide a general policy

to determine how much dose to deliver at each decision epoch during the treatment. The

decision can be made based on progression of tumor cells before each treatment. However,

evaluation of tumor conditions requires a treatment planner to examine daily CT images,

which can be an expensive process in practice. Therefore, we propose to use POMDP to

make such decisions using partially available information about tumor progression during

the treatment. In this study, we develop an indefinite time and constrained POMDP to

provide optimal treatment policy where the number of the tumor cells before each decision

epoch is considered uncertain. The structure of our model allows us to use point-based

approximation of value iteration as a solution algorithm to limit the size of the solution set

at each iteration. Furthermore, a pruning algorithm is used for the constrained POMDP to

maintain feasibility of the solution space.

The rest of the paper is organized as follows: Section 3.2 gives a brief introduction to

POMDP. Section 3.3.1 provides the POMDP formulation for the fractionated radiotherapy

treatment plan and the control limits and optimal policy structure for this problem are

discussed in Section 3.3.2. The solution method is explained in Section 3.4 and numerical

examples are provided in Section 3.5 followed by the conclusion and future work in section

3.6.

3.2 2. POMDP: A short overview

The POMDP is a sequential decision-making model for an agent who acts in a stochastic

environment with only partial knowledge about the state of its environment available. Table

4.1 lists definitions of parameters and variables that are used to formulate our problem as a

constrained POMDP.

A constrained POMDP can be defined as a tuple {S,A, T ,R,O,Z, C}. At each time

point, the system is in a particular state, s ∈ S. The problem is to select a feasible action

a ∈ A that optimizes the performance of the system for its remaining lifetime. Once the

decision, (a), is made, the system evolves into a next state, s′ ∈ S, and the system produces

an observation, o ∈ O, that is correlated with the state transition. In an indefinite horizon
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Table 3.1: Definition of notations

Notation Description
S Set of possible states
A Set of possible actions
T Transition probability
R The immediate reward function
O Set of possible observations
Z Observation Probability
C The immediate cost function
St State of the system at time t
At Decision made at time t
Ot Observation received at time t
q Constraint upper bound
T Terminal time
Vt Value function for the POMDP policy at time t

POMDP, the process ends when the system enters a terminal state. The transition proba-

bility is defined as T (s′ | s, a) = Pr(St+1 = s′ | St = s, At = a) for a ∈ A and s, s′ ∈ S, and

the observation probability is defined as Z(o | s, a) = P (Ot = o | St = s, At = a) for o ∈ O,

a ∈ A and s ∈ S. The decision in each state results in an immediate reward and cost. The

constrained and indefinite time POMDP problem can be stated as

max E(
N∑
t=1

R(s, a)), (3.4)

s.t.

E(
N∑
t=1

C(s, a)) ≤ q,

a ∈ A.

Note that N is the time when the system enters the terminal state, and q is an input

parameter specified by the agent. Since the current observation does not fully reveal the

current state, the agent considers all previous observations and actions when choosing a

future action to take. All these information is contained in the belief vector, (b), which is

a probability distribution over the state space, s ∈ S. For any possible state s, b(s) is the

probability associated with state s. The set of all possible belief vectors is called the belief

space and it is denoted by B. Given a belief vector b, selected action a, and corresponding
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observation o, the resulting belief vector bao can be computed for the s′ ∈ S component of b

as

b
′
(s

′ | a, o, b) =
Z(o | s′ , a)

∑
s∈S T (s

′ | s, a)b(s)∑
s′∈S Z(o | s′ , a)

∑
s∈S T (s′ | s, a)b(s)

. (3.5)

A POMDP decision policy π(b) is a mapping from belief space B to action set A which

determines an optimal action for each possible belief vector.

The value of a POMDP policy π at time t, known as value function V π
t : B → R, is the

expected remaining reward that can be gained at time t. The value function has two parts:

(i) the immediate reward obtained at time t and (ii) the discounted maximum expected

remaining reward of t + 1 given belief vector bao. Averaging over all possible states and

observations, the following Bellman’s equation is obtained as

Vt(b) = max
a

[
∑
s

b(s)R(s, a) + γ
∑
s

∑
s′

∑
o

b(s)T (s
′ | s, a)Z(o | s′ , a)Vt+1(bao)]. (3.6)

An optimal policy π∗ gives the optimal action that maximizes Vt for each b. Here, V ∗t is the

corresponding value of the optimal policy π∗.

3.3 Methodology
3.3.1 The Fractionation Problem

The state of the system, s ∈ S, is defined as the normalized number of tumor cells, which

is assumed to be partially observable. A healthy state is considered as the terminal state of

the system in our model. The set of possible actions includes: (i) to deliver the conventional

dose regime, d, (ii) to increase the dose by a specific amount, d + ∆1, and (iii) to decrease

the dose, d−∆2. Partial observations about the tumor are to be obtained from weekly CT

images. At the beginning of each treatment week, the physician selects an action to take

(i.e., keep the regime as is, increase, or decrease) for the current week. However, due to

the effect of tumor growth after the treatment session in the previous week, followed by the

weekend break, the observation is made and the belief vector is updated at the beginning of

the next week treatment cycle.
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The goal of treatment planning is then to maximize the BED of the tumor and minimize

the BED of organs at risk, while keeping the tumor survival rate below the OAR survival

rate. We define the reward and cost functions of the POMDP model as follows:

R(s, a) = BEDT (s, a)− λBEDOAR(s, a) (3.7)

and

C(s, a) =
SFT
SFOAR

. (3.8)

Note that indices T and OAR refer to tumor and OAR, respectively, and λ denotes the

weight factor of OAR in Equation 3.7.

The transition probability function, T (s′ | s, a), and observation probability function,

Z(o | s, a), can be obtained from an expert’s opinion. The tumor growth is assumed to

follow a Gompertzian Growth function (Bortfeld et al., 2015) as

φ(x) =
(
Xt/X∞

)(1−exp(pt))
. (3.9)

Here, x is the number of tumor cells, X∞ is the carrying capacity or the maximum number

of tumor cells, and p is a parameter that controls the growth rate.

The BED for action a ∈ A in state s ∈ S with average number of tumor cells xs is

calculated as

BED(s, a) =

t∑
i=1

(
ai +

(Gi(τRp)
(αβ )

− 1

2

σ2

α
Gi(τRs)

)
a2
i

)
− φ(xs)

α
. (3.10)

3.3.2 Structure of Optimal Solution

3.3.2.1 Optimal Control Limits without dose limitation

This section explains how one can use the optimal control limits for dose variation

to determine the values of ∆1 and ∆2 in the action set. Let Dpres be the conventional
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prescription dose for each session, typically, 2Gy. Depending on the response of the patient

to radiation, the treatment planner may increase the dose by a specific amount, incurring

a proportional cost of cr multiplied by the amount of the increase. Similarly, they may

decrease the dose by a certain amount, incurring a proportional cost of cl multiplied by the

amount of the decrease. Henceforth, we use the term pushing-right as increasing the dose

and pushing-left as decreasing the dose. Therefore, the delivered dose would be d+R in the

case of increasing the dose, R ≥ 0, and d− L in the case of decreasing the dose, L ≥ 0.

The four R’s of radiation therapy (Repair, Repopulation, Redistribution, and Reoxygena-

tion) may not have a significant effect overnight on tumor biological response to radiation

due to Equation 3.2 (Yang & Xing, 2005). Hence, we consider a decision horizon of one

week with a constant amount of dose per week. Accordingly, the weekly delivered BED to

the tumor with n days of treatment delivery per week can be written as

BEDT (s, d) = nd+
( GTRp

(αβ )T
− 1

2

σ2

αT
GTRs

)
d2 − φT (xs)

αT
, (3.11)

where, GTRp and GTRs denote the weekly cumulative effect of repair and resensitization of

tumor cells, respectively, and φT (s) is the growth rate of tumor cells with xs as the number

of tumor cells. Let θ be the dose-volume parameter which indicates the ratio of the average

dose received by the OAR volume to the average dose received by the tumor. Then, the

average BED delivered to the OAR can be written as

BEDOAR(d) = nθd+
GOARRp

(αβ )OAR
θ2d2 − φOAR

αOAR
. (3.12)

Similarly, GOARRp is the cumulative effect of OAR cell repair within one week of treatment

with constant dose, and φOAR is the growth rate of OAR cells.

We define the cost (cr) of pushing-right as the excess BED exposed to the OAR when

increasing the dose to d+R,

cr = nθ +
GOARRp

(αβ )OAR
θ2(2d+R). (3.13)
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Similarly, the cost of pushing-left is defined as the loss of BED delivered to tumor cells when

decreasing the dose to d− L,

cl = n+ (
GTRp
(αβ )T

− 1

2

σ2

αT
GTRs)(2d− L). (3.14)

Based on these definitions, a reward function can be defined as

R(s,Dpres +R− L) = n(1− λθ)(Dpres +R− L) +(
GTRp
(αβ )T

− 1

2

σ2

αT
GTRs − λ

GOARRp

(αβ )OAR
θ2

)
(Dpres +R− L)2 −

φT (s)

αT
+ λ

φOAR
αOAR

− crR− clL. (3.15)

It is trivial to see that pushing-right and pushing-left cannot happen at the same time, i.e.,

R · L = 0 at all times.

Theorem 1. Suppose αT is constant and σ = 0. Let A =
GTRp
(α
β

)T
and B =

GOARRp

(α
β

)OAR
θ2

denote rations of cell repair to radio-sensitivity for tumor and OAR, respectively. Then,

Y = B
A is the ratio of OAR cell repair to tumor cell repair corresponding to their α/β ratios.

Denoting H1 = n((1+λ)θ−1)
2D , and H2 = n(λθ−2)

2D , the optimal control limits for radiation

therapy fractionation are as

R∗ =



+∞ if Y < 1
λ+1 and θ ≤ 1

λ+1

0 if Y ≥ 1
λ+1 and θ > 1

λ+1

n
(

1−θ(1+λ)
)

2
(
A−(1+λ)B

) −Dpres otherwise if A− (1 + λ)B > H1

, (3.16)

and

L∗ =


Dpres − n(2−λθ)

2(λB−2A) if Y > 2
λ and λB − 2A > H2

+∞ otherwise
. (3.17)
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Proof. Since the reward function is a quadratic function, it is continuous and twice differ-

entiable, therefore we can analyze its behavior with respect to right- and left pushing. We

can obtain first derivative of the reward function regarding right shift as

∂R
∂R

=
(
1− (λ+ 1)θ

)
n+

(
2
GTRp
(αβ )T

− σ2

αT
GTRs − 2(λ+ 1)

GOARRp

(αβ )OAR
θ2

)
Dpres

+

(
2
GTRp
(αβ )T

− σ2

αT
GTRs − 2(λ+ 1)

GOARRp

(αβ )OAR
θ2

)
R, (3.18)

and the second derivative as

∂2R
∂R2

=

(
2
GTRp
(αβ )T

− σ2

αT
GTRs − 2(λ+ 1)

GOARRp

(αβ )OAR
θ2

)
Dpres. (3.19)

Considering αT to be constant, if ∂2R
∂R2 then the reward function is a convex function

with respect to R and it would be optimal to increase R to infinity. The reward function is

convex with respect to R if

2
GTRp
(αβ )T

− 2(λ+ 1)
GOARRp

(αβ )OAR
θ2 > 0, (3.20)

or equivalently

(α/β)T/(α/β)OAR

GTRp/GOARRp

<
2

2λ+ 1
. (3.21)

If the above inequality doesn't hold, then the reward function is concave on R; therefore, we

can conclude that if ∂Rw∂R is positive on R = 0 it is optimal to increase the dose by R∗ > 0,

otherwise R∗ = 0. For R = 0,

∂R
∂R

= (1− (λ+ 1)θ)n+ (2
GTRp
(αβ )T

− 2(λ+ 1)
GOARRp

(αβ )OAR
θ2)Dpres. (3.22)

Since Y =
(α/β)T/(α/β)OAR
GTRp/G

OAR
Rp

< 2
2λ+1 , therefore 2

GTRp
(α
β

)T
− 2(λ+ 1)

GOARRp

(α
β

)OAR
θ2 would be negative too.

In that case if θ ≥ 1/(λ+ 1) then reward function would be decreasing on R = 0, therefore
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R∗ = 0. If θ < 1/(λ+ 1) then R∗ > 0 only if

(1− (λ+ 1)θ)n+ (2
GTRp
(αβ )T

− 2(λ+ 1)
GOARRp

(αβ )OAR
θ2)Dpres > 0. (3.23)

Defining A =
GTRp
(α
β

)T
and B =

GOARRp

(α
β

)OAR
θ2, we can rewrite Equation 3.23 as A − (1 + λ)B >

n((1 + λ)θ− 1)/2D. Similarly, we can obtain first and second derivative of reward function

with respect to left shift and explain the control limits.

For different patients of the same cancer site, the tumor can possess different charac-

teristics including response to radiation characteristics α/β and repair of sublethal damage

characteristics (Rp). In an ideal condition where the tumor radio-sensitivity is higher than

OAR radio-sensitivity and the tumor cell repair takes longer than OAR cell repair, the

values of Y ratio is less than 1. In other words, smaller values of Y ratio indicate higher

potential for damaging tumor and recovering OAR while larger values of Y ratio indicate

potential of more OAR damaging and less tumor damaging. Theorem 1 explains that the

optimal control limits of dose change during the treatment horizon do not depend on tumor

characteristics alone, but depend highly on Y ratio, dose-volume parameter, and the weight

factor of OAR in Equation 3.15. Given the dose volume parameter, θ, and the weight factor

of OAR, λ, one can use Theorem 1 to find the optimal control limits based on the value

of Y ratio.

3.3.2.2 Optimal Control Limits with dose limitation

In Theorem 1, the optimal right and left control limits are infinity in some conditions

as in Equations 3.16 and 3.17. However, it is not allowed to deliver a radiation dose beyond

a specific limit because it will create undesirable side effects. The physicians usually specify

the bounds for the right- and left-pushing relative to the prescribed dose.

Corollary 1. Let v and u define the maximum acceptable left-pushing and the maxi-

mum acceptable right-pushing, respectively. The optimal control limits for radiation therapy
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fractionation with dose limitation can be presented as follows:

R∗ =



u if Y < 1
λ+1 and θ ≤ 1

λ+1

0 if Y ≥ 1
λ+1 and θ > 1

λ+1

min

{
u,

n
(

1−θ(1+λ)
)

2
(
A−(1+λ)B

) −Dpres

}
otherwise if A− (1 + λ)B > H1

, (3.24)

and

L∗ =


min

{
v,Dpres − n(2−λθ)

2(λB−2A)

}
if Y > 2

λ and λB − 2A > H2

0 otherwise
, (3.25)

where A =
GTRp
(α
β

)T
, B =

GOARRp

(α
β

)OAR
θ2, H1 = n((1+λ)θ−1)

2D , H2 = n(λθ−2)
2D and Y = B

A .

Proof. The proof follows as of Theorem 1 except for the case when R∗ = ∞ and L∗ = ∞

at Y < 2
2λ+1 where the reward function is convex with respect to right shift (R). In this

case if ∂R
∂R > 0 then the reward function is increasing on R and therefore, the optimal

limit is equal to the dose increase limit, R∗ = u. One simple way of having ∂R
∂R > 0 is

when all the components of ∂R
∂R are positive. This happens when 1 − (λ + 1)θ > 0 and

GTRp
(α
β

)T
− (λ + 1)

GOARRp

(α
β

)OAR
θ2 > 0. Therefore, when θ < 1

λ+1 and Y =
(α/β)T/(α/β)OAR
GTRp/G

OAR
Rp

< 1
λ+1 , the

reward is an increasing function of R and R∗ = u.

When 1
λ+1 <

2
2λ+1 , one component of ∂R∂R is negative, but

∂R
∂R
|R=0= (1− (λ+ 1)θ)n+ (2

GTRp
(αβ )T

− 2(λ+ 1)
GOARRp

(αβ )OAR
θ2)Dpres. (3.26)

Therefore, if 2
GTRp
(α
β

)T
− 2(λ+ 1)

GOARRp

(α
β

)OAR
θ2 < ((λ+1)θ−1)n

2Dpres then, ∂R∂R > 0 and R∗ = u. Otherwise,

reward will be decreasing function of R at R=0 and will not improve with positive R and

R∗ = 0.

For θ > 1
λ+1 and Y < 1

λ+1 , one component of ∂R
∂R is negative and the same condition

as in above applies. For θ > 1
λ+1 and Y > 1

λ+1 , two components of ∂R
∂R are negative and
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∂R
∂R |R=0< 0, therefore it will not be beneficial to increase R and R∗ = 0. Similar approach

will conclude in conditions on left shift (L).

Considering upper limits on right- and left-pushing, the maximum dose change is optimal

only when Y ratio and θ dose-volume parameter are small. When the optimal right-pushing

is positive, the exact R∗ can be obtained by maximizing the reward function 3.15.

3.3.2.3 Optimal Policy Structure

In this section, we investigate the structure of the optimal policy based on the POMDP

model explained in sections 3.3.1. Lovejoy (1987) provided sufficient conditions for the

optimal value function to be monotone on the belief space using partial orders.

Definition 1. (Monotone likelihood ratio (MLR) ordering) (Krishnamurthy, 2016) Let

X denote a finite completely ordered set with n elements. The set Π(X ),

Π(X ) =

{
π ∈ Rn; πi ≥ 0 all i;

n∑
i=1

πi = 1

}
,

has the MLR property when for π, π′ ∈ Π(X ) , π dominates π′ with respect to the MLR

order denoted as π ≥r π′ if

πiπ
′
i′ ≥ πi′π′i.

Definition 2. (Totally positive of order two (TP2)) (Karlin, 1964) A function K(x, y)

of two real variables ranging over linearly ordered sets X and Y respectively, is said to be

totally positive of order two if K(x1, y1)K(x2, y2) ≥ K(x1, y2)K(x2, y1) for x1 ≥ x2 and

y1 ≥ y2.

Proposition 1. The reward function R in Equation 3.15 has an increasing order on

that state set i.e. R(s, a) ≥ R(s′, a) if s > s′.

Proof. The first derivative of reward function with respect to number of tumor cells is

∂R
∂x

=
∂(−φ(x)/αT )

∂x
=
bX∞/x

αT
, (3.27)
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which has always a positive value. Since the state is defined based on number of tumor cells,

we can conclude that reward is increasing over the state set.

Corollary 2. If proposition 1 holds, and

i. The transition matrix is TP2 for each action a ∈ A,

ii. Z(j) ≥r Z(j
′
) for j ≥ j′ in S, where Z(j) is the jth column of the observation matrix,

then b ≥r b
′ implies V ∗t (b) ≥ V ∗t (b

′
) (Lovejoy, 1987); In other words, the value function

monotonically increasing in belief space and therefore, there exist two thresholds b∗1 and b∗2

such that

a∗ =


d− L if b ≤r b∗1

d− L if b∗1 ≤r b ≤r b∗2

d− L if b ≥r b∗2

. (3.28)

3.4 Solution Method

We use the value iteration algorithm to solve the POMDP model 3.6. The value iteration

algorithm starts with an initial value function and iteratively updates the estimate of the

value function. In a finite POMDP problem the V ∗t will be piecewise linear and convex

(PWLC) in the belief space (Smallwood & Sondik, 1973), while it can be approximated well

by a PWLC function in an infinite POMDP problem (Spaan & Vlassis, 2005). The value

function Vt at time t can be represented by a finite set of vectors {µkt }, k = 1, 2, . . . , |Vt|,

αkt ∈ <|S|. Each vector defines a hyperplane over the belief space and is associated with an

action that is optimal under that hyperplane (Sondik, 1971). Given a set of vectors {µkt }
|V µt |
k=1

for policy µ, the value of a belief vector b is calculated by

V µ
t (b) = max

{µkt }

(∑
s

b(s) µkt (s)
)
. (3.29)

Given Vt as the solution set at the current stage, the size of solution set at the next stage

|Vt−1| will grow exponentially, being |A||Vt||O| (Spaan & Vlassis, 2005). In addition, POMDP
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models can become intractable because the optimal action must be calculated for all belief

vectors in belief space B. A point-based approximation of a value function involves comput-

ing an approximate solution for a finite set of belief vectors. For most POMDP problems,

it is unlikely to reach all points in the belief space. Therefore, it is reasonable to update the

value function for only reachable belief vectors (Vlassis, Spaan et al., 2004). In this study,

the states are defined as the number of tumor cells in an increasing order, therefore we can

assume that the reachable belief vectors must have a certain type of structure, i.e. monotone

or concave. We define a finite set of belief vectors B = {b0, b1, . . . , bq} by randomly sampling

belief vectors following this structure.

the point-based approximation of the value iteration algorithm starts with an initial

vector for each selected belief point, and performs the value backup only for the selected

belief points. For updating the value function with the current solution set Vt+1 = {µk′t+1},

k′ = 1, 2, . . . , |Vt+1| we define the intermediate set Γa,o as

Γa,o ← αa,oi (s) =∑
s

∑
s′

∑
o

T (s
′ | s, a)Z(o | s′ , a)µk

′
t+1(s

′
), ∀µk′t+1 ∈ Vt+1, ∀a ∈ A,∀o ∈ O. (3.30)

Then, we construct for each action in each belief point

Vt ← µk
′
t+1 = R(., a) + γ

∑
o

argmax
µ∈Γa,o

(µ · b), ∀a ∈ A, ∀b ∈ B, k = 1, 2, . . . . (3.31)

For a constrained POMDP, the solution set Vt consists of pairs of µ for the reward

and cost functions (µkRt , µ
k
Ct) ∈ Vt where µ

k
Rt and µ

k
Ct are associated with reward and cost

functions, respectively. The point-based algorithm is applied to both {µkRt} and {µ
k
Ct}. The

pairs that fail to satisfy condition µkCt · b ≤ q are eliminated from the solution set. Therefore,

the size of solution set will remain equal to or smaller than |B| in all iterations and the

optimal solution will be obtained from Equation 3.29.
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3.5 Numerical Examples

Experiments are made to compare the performance of two treatment planning schedules:

the proposed dynamic treatment plan and the conventional treatment plan. For the dynamic

treatment planning, we will illustrate how to use the POMDP policy considering tumor

progression to determine optimal radiation dose per fraction at each decision epoch for the

treatment. Two types of tissues are considered with regard to the response to radiation:

early responding tissues having a faster proliferation rate, shorter repair time, and higher

sensitivity to radiation, while late responding tissues having the opposite characteristics.

3.5.1 Performance metrics

Biological Equivalent Dose is used as the primary performance measure for the com-

parison purposes. Other commonly used measures to investigate effectiveness of a cancer

treatment plan include tumor control probability (TCP) and normal tissue complication

probability (NTCP). Hence, TCP and NTCP are also used as secondary performance mea-

sures. The TCP (Brenner, 1993) defines probability of killing tumor cells,

TCP = exp(x0SF ). (3.32)

The NTCP (Semenenko & Li, 2008) defines the probability of damage incurred to normal

tissue surrounding the tumor and is calculated by

NTCP =
1√
2π

∫ t

−∞
e−

x2

2 dx, t =
MD − TD50

mTD50
. (3.33)

Here, MD is the mean organ dose, TD50 is the uniform dose given to the entire organ volume

that results in a 50% complication risk, and m is a measure of the slope of the sigmoid curve

represented by the integral of the normal distribution.
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3.5.2 Control limits

Table 2 provides a summary of the input parameters that several studies (Yang & Xing,

2005; Saberian, Ghate & Kim, 2015) have suggested for early responding and late respond-

ing tissues of tumor and OAR. Considering these input parameters and control limit rules

Table 3.2: Radiotherapy model input parameters

Early Responding Late Responding

Tumor OAR Tumor OAR
α/β [1, 4]Gy 3Gy [4, 10]Gy 10Gy

Repair time 30 minutes 30 minutes 1.9 hours 4 hours

obtained in Corollary 1, we attempt to answer the question "Is it beneficial to alter the

conventional treatment plan?" If so, how much change of dose should be considered in the

dynamic treatment plan. Four cases are examined to answer this question.

Case 1: Early responding tumor with early responding OAR

The upper and lower bounds of Y ratio (see Section ??) for dose-volume parameter

θ ∈ [0, 1] are presented in Figure 3.2.

Figure 3.1: Control limit policy for early responding tumor and early responding OAR

The figure shows the control limit boundaries when equal weights are assigned to both

the OAR and the tumor (i.e., λ = 1). Depending on the area in which Y ratio and θ

fall, one can choose between the conventional planning scheme and the dynamic POMDP
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planning. If they belong to Area I, it is recommended to use the dynamic POMDP planning

with an increased dosage to Dpres+u. In Area II, if A − (1 + λ)B > H1 with H1 =

n((1+λ)θ−1)(2Dpres) , then a POMDP plan with increased dosage to Dpres+R, 0 < R ≤ u,

is recommended. If Y ratio and θ belong to Area III, the conventional plan is recommended

over a POMDP plan. Similarly, recommended decisions can be derived if the importance

factor of the OAR is smaller than that of the tumor, i.e., λ < 1.

Case 2: Early responding tumor with late responding OAR

Figure 3.2 shows the upper and lower bounds of Y ratio corresponding to different values

of dose-volume parameter θ ∈ [0, 1].

Figure 3.2: Control limit policy for early responding tumor and late responding OAR

Assuming λ = 1, the recommended planning scheme is: (1) the POMDP policy consid-

ering Dpres+u when Y ratio and θ belong to Area I; and (2) the POMDP policy considering

Dpres+R, 0 < R ≤ u, in Area II if A− (1 + λ)B > H1 with H1 = n((1 + λ)θ − 1)(2Dpres).

This result is reasonable since when the radio-sensitivity of tumor is high and the radio-

sensitivity of OAR is low. This enables us to increase the damage to the tumor while lowering

damage to the OAR. Therefore, a higher amount of dose can be delivered.

Case 3: Late responding tumor with early responding OAR
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Assuming λ = 1, the recommended planning scheme is: (1) the POMDP policy con-

sidering Dpres+u when Y ratio and θ belong to Area I; (2) the POMDP policy consid-

ering Dpres+R, 0 < R ≤ u in Area II and Area III if A − (1 + λ)B > H1, with

H1 = n((1+λ)θ−1)(2Dpres); (3) the conventional plan in Area IV ; and (4) the POMDP pol-

icy consideringDpres−L, 0 < L ≤ v in Area V if λB−2A > H2, withH2 = n(λθ−2)(2Dpres)

(Figure 3.3). This means when the radio-sensitivity of tumor is low and the radio-sensitivity

of OAR is high, the optimal right shift is positive only if the dose-volume parameter, , is

smaller.

Figure 3.3: Control limit policy for late responding tumor and early responding OAR

Case 4: Late responding tumor with late responding OAR

Assuming λ = 1, the recommended planning scheme is: (1) the POMDP policy consid-

ering Dpres+u in Area I; (2) the POMDP policy considering Dpres+R, 0 < R ≤ u in Area

II if A− (1 + λ)B > H1, with H1 = n((1 + λ)θ− 1)(2Dpres); (3) The conventional plan in

Area III; (Figure 3.4).

3.5.3 Optimal policy

In this section, we discuss numerical results based on given transition and observation

probabilities as provided in Tables 3.3 and 3.4.
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Table 3.3: Transition probability matrix

Table 3.4: Observation probability matrix
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Figure 3.4: Control limit policy for late responding tumor and late responding OAR

The input parameters used in this section are presented in Table 3 (Bortfeld et al., 2015;

Rew & Wilson, 2000; Yang & Xing, 2005). Using the these input parameters, we imple-

mented a point-based value iteration algorithm on the belief space. The belief vectors in

the proposed POMDP are subsets of the belief space. The elements of the vector are the

probabilities of corresponding states. In our study, the probabilities in any vector can have

three patterns: (1) monotonically increasing (e.g., [0.0, 0.2, 0.3, 0.5]), (2) monotonically

decreasing, and (3) concave (e.g., [0.0 0.3 0.5 0.2]). Based on this structure, a point-based

approximation of value iteration is used to solve the POMDP model. The solution consists

of a set of {µkR} which provides the optimal action using Equation 3.28. Since the belief vec-

tors evolve with actions and observations, we present the policies by simulating observation

scenarios. In this regard, a probability distribution over the observations set, O, evolves at

each decision epoch based on the history of actions and observation using Bayesian updates.

Then, the observation scenarios are generated at each decision epoch based on the distribu-

tion over observations set at that epoch. The simulation is implemented 1,000 times for a

treatment horizon of 8 weeks, and the optimal actions in all simulations over the treatment

horizon are used to obtain the probability distributions over the set of actions for each week.

Table 3.6 presents the probability distribution of optimal actions for different tumor-OAR

combinations and different OAR weight factors, λ, with an initial belief state representing
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Table 3.5: Radiotherapy model input parameters

a worst degree of cancer. The possible actions include to deliver the prescribed dose, to

change the prescribed dose by 0.2 Gy, or to terminate the treatment because it reached the

terminal state.

Case 1: Early responding tumor with early responding OAR

For an early responding tumor and an early responding OAR, the optimal policy is

to deliver a 2 Gy dose per fraction for all scenarios in the first five weeks. On week six,

depending on the observation received from the tumor, 2 Gy dose was recommended in

71% of scenarios and 2.2 Gy dose was recommended in 23% of scenarios. Starting from

week seven, 2.2 Gy dose was suggested for all scenarios except for the cases that reached

the terminal state. As the treatment progresses, a trend of having a higher probability of

entering the terminal phase was observed.

Case 2: Early responding tumor with late responding OAR

In this case, the optimal policy recommended a more aggressive treatment plan compared

to Case 1. The 2 Gy dose was suggested for all scenarios for the first four weeks, but on
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Table 3.6: Probability of optimal action with initial belief vector [0, 0.01, 0.05, 0.14, 0.8]
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week five 2.2 Gy dose was suggested for 62% of scenarios and for the rest of treatment 2.2

Gy dose was suggested for all scenarios that did not reached the terminal state. Compared

to Case 1, more scenarios reached the terminal phase to terminate the treatment towards

the end of the treatment.

Case 3: Late responding tumor with early responding OAR

In the case, the OAR has higher sensitivity to radiotherapy than the tumor and a dose

of 2 Gy was recommended for all scenarios in all treatment weeks. In this case, lower

probability of termination can be observed compared to Cases 1 and 2, i.e. less scenarios

reach the terminal state.

Case 4: Late responding tumor with late responding OAR

When the tumor and OAR both have low sensitivity to radiotherapy, increasing the dose

from 2 Gy to 2.2 Gy was suggested on weeks seven (30%) and week eight (100%). How-

ever, the probability of treatment termination in this case is nearly zero during eight weeks

of treatment, implying that more treatment sessions are required to reach the terminal state.

The effect of OAR weight factor

The importance factor of the organ as OAR in Equation 3.15 and the planner’s preference

on the OAR sparing relative to the tumor can influence the POMDP policy. Figure 2 shows

the comparison of different OAR weight factors for the case of an early responding tumor

and OAR. When the OAR weight factor is equal to that of tumor (λ = 1), it is recommended

to administer a 2 Gy dose regime for the first five weeks; and increase the dose to 2.2 Gy for

23% of the scenarios on week six and continue with 2.2 Gy for all scenarios on weeks seven

and eight (Figure 2(a)). When the OAR weight factor is less than that of tumor (λ < 1), a

more aggressive plan was recommended, suggesting to increase the dose to 2.2 Gy for 29%

of scenarios on week five and continue with high dose on the next weeks (Figure 3.5(b)).

In addition, the termination probability of the latter was slightly improved in Figure 3.5(b)

compared to Figure 3.5(a).

The effect of the initial belief vector
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(a) OAR weight (λ) = 1

(b) OAR weight (λ) = 0.1

Figure 3.5: Probability of optimal action for an early responding tumor, early responding AOR
for 8 weeks, with same initial belief vector; white bar: dose = 1.8 Gy, dotted bar: dose
= 2 Gy, dashed bar: dose = 2.2 Gy, grey bar: Termination

Depending on the initial state of the tumor and the initial belief vector, the POMDP

policy can recommend different actions. Figure 3 compares how different initial belief vectors

influence optimal actions to take over the course of treatment. Two different examples of a

belief vector are presented for an early responding tumor and early responding OAR for 8

weeks. Figure 3.6(a) is associated with a belief vector corresponding to a case with a high

number of tumor cells, while Figure 3.6(b) is for the case with a low number of tumor cells.

When the belief vector corresponds to a high tumor cell count (Figure 3.6(a)), the

POMDP policy is to start the treatment with 2 Gy dose and continue for five weeks, and
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then increase the dose to 2.2 Gy for 23% of scenarios on week six and continue with high

dose for all scenarios on weeks seven and eight. When the initial belief vector shows a low

tumor cell count (Figure 3.6(b)), the optimal policy is to start with a reduced dose (i.e.,

1.8 Gy) in the first week, then increase it to 2 Gy for weeks two to five for all scenarios

and increase it to high dose (i.e., 2.2 Gy) starting from week six. In this case, the terminal

state was reached for more scenarios starting from week four. For example, Figure 3.6(b)

shows that 30% of the scenarios entered the terminal state on week four and treatment was

terminated, while in Figure 3(a) only 1% of scenarios declared terminal state.

3.5.4 Comparison to the conventional scheme

We now compare the optimal POMDP treatment plan with the conventional one. Figure

4.9 presents the expected BED for tumor and OAR for the two plans when starting from

the same belief vector. The solid black and solid grey lines represent the expected reward

for POMDP optimal plan and the conventional plan, respectively. On week six, the tumor

expected BED (EBED) starts to decrease in the conventional plan, while it starts increasing

for the POMDP optimal plan. This increase of tumor EBED on the POMDP plan is

due to the increase of dose on week six, which also results in a slight increase of OAR

EBED. However, because the reward calculated from Equation 3.7 is significantly improved

compared to the conventional plan, the POMDP optimal plan is preferred.

Similarly, we compare the tumor control probability (TCP) and normal tissue compli-

cation probability (NTCP) for the two above mentioned scenarios. Figure 3.8 presents the

results of this comparison.

The optimal scheme results in a significant improvement in cumulative TCP with a slight

increase in cumulative NTCP. In other words, while keeping the damage to normal tissue

under control, the optimal scheme has a significantly better performance in killing tumor

cells.
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(a) Initial belief P1

(b) Initial belief P2

Figure 3.6: Probability of optimal action for an early responding tumor and early responding
OAR for 8 weeks with OAR weight factor (λ) = 1; white bar: dose = 1.8 Gy, dotted
bar: dose = 2 Gy, dashed bar: dose = 2.2 Gy, and grey bar: Termination. P1 =
[0, 0.01, 0.05, 0.14, 0.8], P2 = [0, 0.49, 0.27, 0.13, 0.11].

3.6 Conclusion

The tumor dynamics during the treatment horizon is uncertain because it depends on

cell cycle regulations and the gene level activities within the cells. To incorporate this into an

optimization model in a fractionated radiotherapy, we have utilized an extended biological

model of cell survival for the tumor and OAR to include the four R’s of radiation therapy.

45



Figure 3.7: Comparison between POMDP and conventional treatment plans.

We have used a Gompertzian growth model for the tumor to explain the dependency of

tumor growth rate on the gene level factors. First, we developed a control limit policy

based on patient-specific tumor and OAR characteristics with respect to radiation treatment

to determine whether a dynamic treatment plan can improve the treatment quality (i.e.,

tumor damage and OAR sparing) compared to the conventional one. Next, we developed

a constrained POMDP framework based on the extended biological model to provide a

decision-making policy that maximizes the expected biological equivalent dose (EBED) of

tumor while keeping the OAR survival under control. POMDP enables us to incorporate the

feedback from the patient into the treatment planning and provide a personalized dynamic

treatment policy. Because observing the tumor condition during the treatment horizon is

not practical, POMDP offers the probabilistic belief and partial observation probabilities to

account for the uncertainty associated with a tumor’s condition. Numerical results showed

that using a dynamic treatment plan instead of the conventional one can result in higher

tumor damage with slight increase in the OAR damage. However, when the tumor tissue was

late responding (lower sensitivity to radiotherapy) and the OAR tissue is early responding

(higher sensitivity to radiotherapy) the conventional treatment plan was recommended as a

conservative plan.
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(a) TCP

(b) NTCP

Figure 3.8: (a) Cumulative TCP during treatment weeks for optimal scheme (solid line) and con-
ventional scheme (dashed line). (b) Cumulative NTCP during treatment weeks for
optimal scheme (solid line) and conventional scheme (dashed line).

The optimal POMDP policies provided a trade-off between the tumor damage and OAR

sparing depending on their tissue types, i.e., early responding tissues or late responding
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tissues. The POMDP policy recommended optimal actions based on the updated belief

vector at each decision epoch. Due to the Gompertzian tumor growth model, lesser number

of tumor cells in the later weeks of treatment cause in an increase in the tumor growth rate.

Therefore, the dose increase was recommended at the later weeks of treatment to increase

the tumor damage and shorten the treatment length. This approach will be beneficial in

OAR recovery as well, because the treatment ends shortly after the dose increase.

Comparing with the conventional treatment plan, we demonstrated that the POMDP

policy results in significant improvement in expected biological equivalent dose (EBED) of

tumor while causing only a slight increase in EBED of OAR. Therefore, the total expected

reward of POMDP policy is significantly higher than that of conventional treatment plan.

Similarly, the POMDP policy resulted in a significant improvement in TCP compared to

the conventional plan, while increasing the NTCP for a small amount.

As a future work, one can incorporate reinforcement learning methods in POMDP to

minimize the human error in identifying the patient feedbacks and utilizing them in the

estimation of probabilistic tumor state, i.e., belief vector. In addition, image recognition

methods can be used to estimate the exact tumor state and improve the precision of the

decision process.
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Chapter 4

Personalized and LET-based proton therapy

treatment planning considering tumor biological

response uncertainty and radiomics

4.1 Introduction

Radiation therapy uses high-energy particles such as photons or protons to destroy cancer

cells (Baskar et al., 2012) and is a local treatment that only affects the organs located in the

radiation field, commonly called organs at risk (OAR) (Cao et al., 2014; Bai et al., 2019).

The aim of the treatment planning for radiation therapy is to reduce the OAR damage while

killing the tumor cells.

Proton beams have interesting characteristics that make them popular in recent studies

and clinical trials. The dose deposition of a proton beam increases as the beam penetrates

deeper in the tissue with a sharp longitudinal dose fall-off at the end of the particle range

called a Bragg Peak (Krämer & Scholz, 2006). Intensity modulated proton therapy (IMPT)

takes advantage of this property to deliver a proton dose conformal to the tumor volume

while delivering minimal dose to the OAR.

The biological effectiveness of the proton dose is higher than that of the same photon dose

because the linear energy transfer (LET) of a proton particle is lower than that of a photon

particle. In the current IMPT treatment planning, it is assumed that protons are 10% more
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efficient than the proton particles, but this fixed value neglects any dependency of biological

effectiveness on the amount of radiation dose and the endpoint of proton beam (Paganetti,

2014). Relative biological effectiveness (RBE) is a measure for converting a reference dose

into the photon dose to yield the same biological effect. Several recent studies have provided

IMPT plans based on variable RBE (Chen et al., 2018; Willers et al., 2018), but such

plans can result in a heterogenous RBE distribution and cause undesired side effects (Ödén,

Eriksson & Toma-Dasu, 2017). However, the proton LET can be controlled and optimized

in an IMPT plan to account for proton biological effectiveness while mitigating the risk of

having a heterogenous RBE distribution (Unkelbach et al., 2016).

The total prescribed radiation dose is usually delivered in a fractionated treatment plan

that divides the prescribed radiation dose into several fractions to reduce the damage to

OARs and provide enough time for them to recover from incurred damages. The conven-

tional fractionated plan divides the prescribed dose equally in all treatment sessions. The

effectiveness of this plan needs to be investigated because the biological response of each pa-

tient during the weeks of treatment can be different (Bibault et al., 2013; Ribba et al., 2006).

Marshall et al. (2016) investigated the effect of variable RBE in a fractionated proton ther-

apy plan and outlined that the strong dependence of RBE on proton LET has a significant

effect on treatment efficiency, especially, in a variable dose fractionation regimen. Several

clinical studies have investigated that shortening clinical fractionation schedules through

hypofractionation might be beneficial due to unique characteristics of protons (Habl et al.,

2014; Newhauser et al., 2015; Wang et al., 2013). Giantsoudi et al. (2013) utilized LET

distribution in a dose-based multi-criteria optimization problem to enhance the fractionated

treatment plan.

The biological effectiveness of a radiotherapy treatment plan is commonly character-

ized by the standard linear-quadratic (LQ) model (Douglas & Fowler, 1976). The extended

LQ model, known as LQR (Brenner et al., 1995), was introduced to incorporate the time-

dependent impact of four R’s in radiation therapy, including: repair of sublethal damage,
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repopulation, reoxygenation and redistribution. The survival fraction in LQR model is cal-

culated by

S(D) = exp(−αD −G(τRp)D
2 +

1

2
σ2G(τRp)D

2), (4.1)

where D is the dose per fraction, α and β are radio-sensitivity parameters, σ2 is the variance

of Gaussian distribution of α, τRp is an average repair time, τRs is an average resensitization

time which includes both reoxygenation and redistribution effects, and G(τ) is an expression

for a generalized Lea-Catchside time factor (Sachs & Hlatky, 1990) that has the form

G(τ) =
2

D2

∫ T

0
R(u)[

∫ u

0
R(w)exp(

−(u− w)

τ
)dw]du (4.2)

and can be calculated for any fractionation plan (Brenner, 2008).

The instantaneous tumor growth rate increases when the number of remaining tumor

cells decreases (Brunton & Wheldon, 1978; Ribba et al., 2006; Usher, 1980). Therefore,

the tumor growth rate, Φ(.), is assumed to follow a Gompertzian growth function (Bortfeld

et al., 2015) as

Φ(x) = b ln (
X∞
x

), (4.3)

where x is the number of tumor cells, X∞ is the carrying capacity or the maximum number

of tumor cells, and b is a parameter that controls the rate of growth. The biologically

equivalent dose (BED) is derived based on the survival fraction obtained from the LQ model

and includes the biological effectiveness factors of the radiation dose (i.e. LET and variable

RBE) on the organ;

BED = − ln (S)

α
. (4.4)

The tumor growth rate and biological response are assumed to be constant in the LQ

model. However, these factors are shown to be significantly affected by cell cycle regulation,
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and may change over time (Barazzuol et al., 2010; Ribba et al., 2006). The tumor specifi-

cations including density and size can be incorporated in treatment planning using Markov

Decision Process (MDP). MDP is a stochastic dynamic programming technique commonly

used for sequential decision-making. In the MDP framework, the system is in a particular

state at each time point and a feasible action is selected to optimize the performance of

the system for its remaining lifetime. Once the decision is made, the system evolves into a

next state with a transition probability. The solution to an MDP is a policy. A stationary

Markovian policy does not depend on time and the history of states and action in its choice

of action. A deterministic policy prescribes a specific action in a state, while a randomized

policy provides a probability distribution over the set of actions in a state.

To incorporate MDP framework in the problem of frationated radiotherapy planning,

the tumor specifications (i.e., state) should be observed or predicted. In clinical practice, a

team of physicians contour the tumor and OAR structures on the CT image. Because the

contouring process is time consuming and expensive, repeating it frequently to observe tumor

specifications is not practical. However, the CT images contain important information âĂŞ

Radiomics, that can offer potential aid in diagnosis, prognosis and prediction of response

to treatment of cancer (Gillies, Kinahan & Hricak, 2015; Lambin et al., 2012). Radiomics

include quantitative image features based on image texture and intensity, and tumor shape

and volume, and can be used in cancer treatment planning to improve the efficiency of the

planning process while providing better information about the tumor (Gillies, Kinahan &

Hricak, 2015).

Upon availability of pre-treatment CT images from a sufficient number of patients with

the same cancer type, machine learning methods can be used to train a multinomial clas-

sification model that can predict tumor specifications using the radiomics data (Parmar

et al., 2015; Lambin et al., 2012). The random forest method (Liaw, Wiener et al., 2002)

is a supervised learning algorithm that can be used for both regression and classification

in machine learning problems. This method selects random samples from a training set

repeatedly (bagging) with replacement, and builds several trees from those samples. The
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final output is obtained by aggregating over all the trees. Random forest is beneficial for

relatively small to very large data sets.

This study aims to provide a decision-making policy for a dynamic and personalized

fractionated proton therapy treatment plan. Such policy chooses the optimal IMPT plan

and dose (action) to be delivered based on the tumor cell count (state). The tumor state

at each decision epoch is predicted by applying a trained random forest classifier to the

radiomics data from the new CT image. A constrained Markov Decision Process (MDP)

framework is used to obtain the dynamic decision-making policy that deals with uncertainty

of tumor response and growth rate and maximizes the biological effect to the tumor while

controlling the total amount of dose delivered to the OAR. The MDP action set is obtained by

optimizing the proposed LET-based IMPT model for different prescribed doses per fraction.

Such a model incorporates the extended LQR model to account for the time dependent

factors affecting the biological response, including repair and growth of cells. The LET-

based IMPT model ensures the homogeneity of BED distribution over the tumor volume in

all potential IMPT plans. This model may enable us to increase the tumor dose level without

adding more damage to the OARs and, consequently, decrease the treatment duration. The

results are provided and compared with that of a fixed RBE IMPT plan for two clinical

cases of prostate cancer and pediatric ependymoma.

4.2 Methodology

The radio-sensitivity parameters α and β for protons depend not only on the tissue

type, but also on the energy of irradiated particle deposited in the tissue which is referred

to as LET. In-vitro studies on cell cultures have shown that αp is a linear function of the

dose-averaged LET (LETd) and βp is a constant (Wedenberg, Lind & Hårdemark, 2013),

αp
αx

= 1 + h
LETd
(α/β)x

(4.5)
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and

βp
βx
≈ 1, (4.6)

where, h is a free parameter of the expression. The value of parameter h that best fitted the

experimental αpαx data was found to be 0.434 ± 0.7 Gy mm/keV mm/keV (Paganetti, 2014).

This linear regression works fine in the LET region below 30 keV/µm, which is sufficient for

the range of proton energy used in IMPT. This model provides the required dependency of

biological response on LET. However, the LET is not constant along the central axis of a

proton beam. In IMPT treatment planning, for a set of J beam spots irradiating the patient,

Dij denotes the dose deposition in voxel i per unit fluence of beamlet j = 1, 2, . . . , J . the

total dose delivered to voxel i = 1, 2, . . . , I is

Di =
J∑
j=1

Dijwj , (4.7)

where, wj is the weight of beamlet j. Accordingly, the energy deposition (LET) in voxel i

by beamlet j is denoted by Lij . The dose-averaged LET is calculated as

LETd =

∑J
j=1 LijDijwj∑J
j=1Dijwj

(4.8)

and, LETd = 0 for Di = 0. The BED for proton over n equal fractions is defined as (Jones

& Dale, 2000)

BEDp = nDp
αp
αx

+ n

βp
βx
αp
αx

D2. (4.9)

Thus, proton BED for voxel i over n equal fractions can be obtained by by replacing Equa-

tions (4.5, 4.6, 4.7, 4.8) in Equation 4.9 as

BEDi
p(wj) = n

J∑
j=1

Dijwj +
nh

(α/β)x

J∑
j=1

LijDijwj + n
(
∑J

j=1Dijwj)
2

(α/β)x
. (4.10)
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The objective function for IMPT planning problem in this paper is to minimize deviation

from prescribed BED on target while minimizing extra BED on the OAR and maintaining

minimum and maximum dose constraints in the target. This objective function is shown

in Equation (4.11) and results in a homogeneous BED and dose distribution in the target

structure,

min
w

∑
i∈ITarget

|BEDi
p(wj)−BEDi

pres|+
∑

i∈IOAR

BEDi
p(wj). (4.11)

To develop an MDP framework for optimizing the fractionated proton therapy treatment

plan, we assume that the physician makes a decision on the amount of radiation dose to

be delivered at the beginning of each treatment week. This decision is based on the tumor

conditions such as cell count, volume or density. We incorporate tumor condition in the

MDP framework as the MDP state, s ∈ S, which is defined as the number of tumor cells.

A healthy state is considered as the terminal state of the system in our model. The set of

MDP actions, A, in this model includes possible radiation doses: (i) the conventional regime

dose, d, (ii) the dose increased by a specific amount, d+ ∆1, and (iii) the dose decrease by

a specific amount, d − ∆2. Definitions of parameters and variables used to formulate a

constrained MDP are listed in Table 4.1.

Table 4.1: Definition of notations

Notation Description
S Set of possible tumor states
A Set of possible radiation doses
T Transition probability
R The immediate reward function
C The immediate cost function
St State of the tumor at time t
At Decision made at time t
q Constraint upper bound
T End of treatment
Vt Value function for the MDP policy at time t

The optimal solution of Equation (4.11), w∗, represents an optimal IMPT plan for a given

prescription dose per fraction. The average BED, BED, over the volume of a structure for
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any w∗ during n days of treatment delivery with the same amount of radiation dose, D, can

be calculated as

BED(s = x, a = D) =
1

|I|
∑
i

[
n

J∑
j=1

Dijw
∗
j +

nh

(α/β)x

J∑
j=1

LijDijw
∗
j +

n(
GRp
(αβ )x

− 1

2

σ2

αx
GRs)(

J∑
j=1

Dijw
∗
j )

2]− φ(x)

αx
. (4.12)

Then, the objective of fractionated treatment plan is to maximize the target BED and

minimize the OAR the BED by defining the MDP reward function as

R(s, a) = BEDITarget(s, a)− λ.BEDIOAR(s, a), (4.13)

where, λ is the OAR weight factor. To avoid delivering extra radiation dose to the OAR, a

constraint is imposed to control the total BED delivered to the OAR as

C(s, a) = BEDOAR(s, a) ≤ q. (4.14)

Determination of the transition probability function, T (s′ | s, a) = P (St+1 = s′ |St = s,At =

a), is beyond the scope of this paper and can be obtained from an expert’s opinion.

The constrained MDP problem can be stated as

max E(
T∑
t=1

γR(s, a)), (4.15)

s.t.

E

[
T∑
t=1

γC(s, a)

]
≤ q,

a ∈ A,

where, γ ∈ [0, 1] is the discount factor. We denote b(s) as the initial probability that the

current state is s ∈ S. Defining y(s, a) as the total expected discounted number of times

action a ∈ A is executed in state s ∈ S, a randomized stationary policy for a constrained
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MDP can be obtained from the following LP model (Altman, 1999; Ross, 1989)

max
∑
s∈S

∑
a∈A
R(s, a)y(s, a), (4.16)

s.t.∑
s∈S

∑
a∈A
C(s, a)y(s, a) ≤ q,∑

s∈S

∑
a∈A

(δ(s, s′)− γT (s′|s, a))y(s, a) = b(s′), s′ ∈ S,∑
s∈S

∑
a∈A

y(s, a) = 1, s ∈ S

y(s, a) ≥ 0, s ∈ S, a ∈ A.

The function δ(s, s′) is one if s = s′ and is 0 otherwise. Let y∗(s, a) > 0, a ∈ A. Then

π∗(s, a) = y∗(s, a)/
∑

a∈A y
∗(s, a).

An in-house program is developed Matlab R2018b (The Mathworks, Natick, MA) to

extract radiomics data from the several CT images of the same cancer site. The radiomics

data include the number of tumor voxels and other quantitative features of the CT images.

The number of tumor voxels might not be the exact representation of the tumor cell count,

but it can be used as an approximation of it. Therefore, each cancer case is labeled as

belonging to one of the tumor states depending on its number of tumor voxels. The rest

of the radiomics data are used as features of the cancer cases. The features data are pre-

processed and scaled to avoid dominating feature values.

In machine learning, classification is a supervised learning algorithm that analyzes a

labeled training data set and infers a function that can be used for predicting the labels of

test data sets. The whole extracted radiomics data are randomly divided into a training set

and a test set. The training feature set and labels are fed to a random forest trainer to build

a classification model using 10 fold cross validation. The trained model is then applied to

the test set to evaluate the accuracy. For each decision epoch, the trained random forest

model can be used to predict the tumor state from a new raw CT image of the patient with

the same type of cancer and the MDP framework can choose the optimal radiation dose and
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IMPT plan for that epoch. The flowchart of the proposed framework is provided in Figure

4.1.

Figure 4.1: personalized LET-based IMPT and fractionation optimization framework

4.3 Numerical Results

In this section, we first present an example of using radiomics in tumor state prediction

using random forest method. We then present the numerical results of our proposed LET-

based fractionation model for two cancer cases: pediatric head and neck cancer and prostate

cancer. The dose and LET deposition matrices and organ structure data are obtained from

a cancer center in Houston, TX. The outcomes of our proposed LET-based IMPT model

are compared to the benchmark model that optimizes the proton dose distribution based on

constant RBE of 1.1. The dose-volume histogram (DVH) of the two models are compared

for physical dose, RBE×Dose, and BED. For further evaluation of the treatment plan,

tumor control probability (TCP) and normal tissue complication probability (NTCP) are

calculated based on equivalent uniform dose (EUD) using the following equations (Gay &
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Niemierko, 2007; Lyman, 1985; Warkentin et al., 2004)

TCP =
1

1 +
(
D50
EUD

)4γ50 (4.17)

and

NTCP = P =
1

1 +
(
D50
EUD

)4γ50 , (4.18)

where EUD =
(∑

i viD
1/u
i

)u is the equivalent uniform dose, D50 and γ50 describe the dose

and normalized slope at the 50% of the dose-response, Di is the dose received by the partial

volume vi, and u is a parameter of dose-volume relationship. Table 4.2 provides the dose-

response parameters for the PTV and OARs (Levegrün et al., 2002). All experiments were

performed on a Linux computer with an Intel Quad 3.0 GHz processor and 396 GB RAM.

The NLP model was solved using CONOPT3 version 3.15N and the LP model was solved

using CPLEX version 12.6.0.0.

Table 4.2: Dose-response parameters

Cancer case Organ D50 γ50 u

Prostate

PTV 76.5 Gy 2.9 1
Rectum 75 Gy 2.9 0.12
Bladder 72 Gy 2.9 0.5

Pediatric ependymoma

PTV 64 Gy 3 1
Brain 60 Gy 3 0.2
Brainstem 65 Gy 3 0.14

4.3.1 Tumor state prediction using radiomics

The data for this section are obtained from a Medical Image Computing and Computer

Assisted Intervention (MICCAI) grand challenge. The University of Texas MD Anderson

Cancer Center (MDACC) provided a dataset of CT images of 315 patients with a total 995

head and neck cancer volumes. This dataset is used for training a classifier model that

can predict the tumor state from any CT image of the same cancer type. Therefore, the
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specifications of the treatment delivered to the patients will not have an impact on the model

training. A total 89 radiomics features as well as the number of tumor voxels were obtained

using an in-house program. The tumor voxels were categorized into four states based on the

frequency of voxel count to maintain relevantly balanced class definition Figure 4.2.

Figure 4.2: Voxel count frequency and tumor state

The whole data set was randomly divided into a training set (85%) and a test set (15%).

A random forest model was trained to make a prediction on both the training set and the

test set. A confusion matrix was used to show the prediction performance of the random

forest model. A confusion matrix is a table that visualizes the percentage of predicted class

versus actual class in the classification problems. Figure 4.3 presents the confusion matrices

resulting from random forest on the training set and the test set. It can be observed that

using radiomics data and machine learning methods, the tumor state can be predicted with

a high accuracy for head and neck cancer. For the cases where the prediction accuracy is not

good enough, radiomics can still be used to provide the confusion matrix as an observation

probability function in a partially observable MDP.
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(a) On the training set

(b) On the test set

Figure 4.3: Performance of the random forest model predicting tumor state using radiomics data.

4.3.2 Case study 1: Prostate cancer

Table 4.3 presents the treatment requirements and radiobiological characteristics of the

structures for a prostate cancer IMPT plan. In this case, tumor and OARs have α/β

of 3 Gy−1 so they are early responding tissues, i.e. they show an increased response to

radiotherapy, repair the sub-lethal damage in a shorter period of time and grow faster.
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Table 4.3: PTV and OAR characteristics for prostate cancer

Structure Structure description Dose constraint α/β τRp
PTV Target Prescription: 70 Gy 3 Gy−1 30 minutes

Rectum OAR Upper limit: 65 Gy 3 Gy−1 30 minutes
Bladder OAR Upper limit: 65 Gy 3 Gy−1 30 minutes

The prescribed total dose of 76 Gy is usually delivered in 38 fractions with a fraction size

of 2 Gy. We investigate the possibility of altering this amount at the beginning of each week

of treatment. As alternative actions, we consider changing this amount by ±0.2 Gy. The

LET-based IMPT model was used to optimize the dose and energy distribution for three

target doses 1.8, 2 and 2.2 Gy. The resulting physical dose and RBE×Dose distributions

for the three target doses are provided in Figures 4.4, 4.5 and 4.6. The outcomes of the

LET-based IMPT model are compared to those of a fixed-RBE IMPT model.

The figures show that the plan resulting from the LET-based IMPT model provides a

more homogeneous RBE×Dose to the PTV with a similar RBE×Dose distribution over the

OARs as the fixed-RBE IMPT model.

Figure 4.7 shows the comparison of BED distribution over structure for the three de-

fined doses. The LET-based IMPT model provides a significant improvement on the tumor

DVH. The three optimized IMPT models are considered as the possible actions in the MDP

framework.

To evaluate the quality of the LET-based IMPT plan, we compute TCP and NTCP

resulting from the optimal plan assuming the same plan will be used over 35 treatment

fractions and compared it to that of the fixed-RBE IMPT plan. The TCP and NTCP

measures for the tumor and OARs resulting from each model are presented in Table 4.4. It

can be observed that with similar NTCP for OARs, the tumor TCP has been significantly

improved with the LET-based IMPT model.

Table 4.4: Prostate tumor TCP and NTCP of OARs in Fixed-RBE IMPT and LET-based IMPT
models

TCP Rectum NTCP Bladder NTCP
Fixed-RBE IMPT 0.62 1.2E-3 1.5E-3
LET-based IMPT 0.67 3.6E-3 6.4E-3
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(a) Physical dose

(b) Variable RBE×dose

Figure 4.4: Dose-volume histogram for (a) physical dose and (b) variable RBE×dose for target
dose 1.8 Gy and target BED 2.88 Gy. Solid line: benchmark model, dashed line:
LET-based IMPT model. Blue line: target volume, red line: rectum and black line:
bladder.
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(a) Physical dose

(b) Variable RBE×dose

Figure 4.5: Dose-volume histogram for (a) physical dose and (b) variable RBE×dose for target
dose 2.0 Gy and target BED 3.35 Gy. Solid line: benchmark model, dashed line:
LET-based IMPT model. Blue line: target volume, red line: rectum and black line:
bladder.
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(a) Physical dose

(b) Variable RBE×dose

Figure 4.6: Dose-volume histogram for (a) physical dose and (b) variable RBE×dose for target dose
2.2 Gy and target BED 3.8 Gy. Solid line: benchmark model, dashed line: LET-based
IMPT model. Blue line: target volume, red line: rectum and black line: bladder.
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(a) Target dose 1.8 Gy and target BED 2.88 Gy

(b) Target dose 2.0 Gy and target BED 3.35 Gy

(c) Target dose 2.2 Gy and target BED 3.8 Gy

Figure 4.7: BED-volume histogram for (a) target dose 1.8 Gy and target BED 2.88 Gy, (b) target
dose 2.0 Gy and target BED 3.35 Gy, and (c) target dose 2.2 Gy and target BED 3.8
Gy. Solid line: benchmark model, dashed line: LET-based IMPT model. Blue line:
target volume, red line: rectum and black line: bladder.

66



The average BED delivered to tumor and OAR structures was calculated using Equation

(4.12) and the MDP was solved using Equation (4.16). The optimal randomized MDP policy

for fractionated treatment planning suggested to use a(3) for states one, two and three, but

for state four which has the highest tumor cell count, a(1) was suggested in 79% of the

cases. The reason for such results is that tumor growth rate is high when the tumor cell

count is low, and vice versa. Therefore, in state four, the tumor growth rate is at its lowest

and a lower dose can be delivered to the tumor. But in other states, the tumor growth rate

increased and a higher dose was required to destroy the tumor.

Figure 4.8: MDP randomized policy for fractionated treatment planning of prostate cancer

4.3.3 Case study 2: Pediatric ependymoma

In this section, the proposed model is applied on a pediatric ependymoma case with plan

requirements and radiobiological characteristics as shown in Table 4. The tumor structure

in this case has a relatively high α/β, causing the tumor to be less sensitive to radiotherapy

compared to OARs. In other words, the tumor structure is late responding and has a longer

average repair time and slower growth rate.

In a conventional fractionated plan, a prescribed dose of 54 Gy is delivered to the patient

over 30 fractions with a fraction size of 1.8 Gy. Target doses 1.6 and 2.0 Gy are considered
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Table 4.5: PTV and OAR characteristics for prostate cancer

Structure Structure description Dose constraint α/β τRp
PTV Target Prescription: 54 Gy 10 Gy−1 1.9 hours
Brain OAR Upper limit: 54 Gy 3 Gy−1 30 minutes

Brainstem OAR Upper limit: 54 Gy 3 Gy−1 30 minutes

as the potential alterations to the conventional plan. This case is different from the case

before because the radio-sensitivity of OARs is greater than that of tumor. This means OAR

has greater biological response than tumor for the same amount of dose. As shown below,

brainstem receives less physical dose than tumor in Figure 4.9(a), but more RBE×Dose in

Figure 4.9(b).

Similar results are shown in Figures 4.10 and 4.11 for target dose 1.8 and 2.0 Gy. The

distribution of dose and RBE×Dose over tumor structure is improved significantly by our

proposed LET-based IMPT model. Also, RBE×Dose distribution over brainstem has in-

creased slightly in the new model. Figure 4.12 shows that brainstem BED is significantly

exceeding tumor BED but given their radiobiological differences such result is inevitable.

As in Figure 4.12 for a slight increase of brainstem BED, LET-based IMPT improves tumor

BED.

Table 4.6 presents tumor TCP and OAR NTCP in our proposed model and the thresh-

old model. TCP is significantly increased with LET-based IMPT while NTCP of brain is

remaining similar and NTCP of brainstem slightly decreasing.

Table 4.6: Pediatric ependymoma tumor TCP and NTCP of OARs in Fixed-RBE IMPT and
LET-based IMPT models

TCP Rectum NTCP Bladder NTCP
Fixed-RBE IMPT 0.45 1.2E-3 1.5E-3
LET-based IMPT 0.72 3.6E-3 6.4E-3

Because OARs have greater radio-sensitivity compared to tumor, randomized MDP pol-

icy was obtained for two different weight of OAR, i.e. λ = 1 and λ = 0.7. If the decision-

maker decides that OAR must have a weight factor equal to tumor, the optimal treatment

policy suggests a(1) in states two, three and four, but a(2) in 82% of the cases only for

state one to meet the total prescription amount of dose (Figure 4.13). However, if a smaller
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(a) Physical dose

(b) Variable RBE×dose

Figure 4.9: Dose-volume histogram for (a) physical dose and (b) variable RBE×dose for target
dose 1.6 Gy and target BED 1.86 Gy. Solid line: benchmark model, dashed line:
LET-based IMPT model. Blue line: target volume, red line: brainstem and black line:
brain.

weight factor is considered for OARs, the optimal policy suggests a(1) for 82% of the cases

and a(3) for 18% of the cases in state 4. As the tumor cell count decreases in states three to

one, the suggested action eventually switched to a(3) to destroy the late responding tumor

(Figure 4.14).

4.4 Conclusion

The goal of this paper was to improve the conventional fractionated proton therapy

treatment plan by considering the variable biological effectiveness of proton beam and the
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(a) Physical dose

(b) Variable RBE×dose

Figure 4.10: Dose-volume histogram for (a) physical dose and (b) variable RBE×dose for target
dose 1.8 Gy and target BED 2.12 Gy. Solid line: benchmark model, dashed line:
LET-based IMPT model. Blue line: target volume, red line: brainstem and black
line: brain.

uncertain biological response of the tumor to the radiation. An LET-based model was

proposed for the problem of IMPT plan optimization. In this model, the BED was calculated

based on tumor biological factors and proton LET. Because the tumor growth rate decreases

when the number of tumor cells increases, we used a Gompertzian growth function for

tumor. An MDP framework was utilized for the problem of fractionated treatment plan.

The outcome of this framework was a randomized decision policy that can provide the

optimal action for a given tumor state. The set of actions in this problem was obtained by

solving the LET-based model for three amounts of target dose per fraction. The state of
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(a) Physical dose

(b) Variable RBE×dose

Figure 4.11: Dose-volume histogram for (a) physical dose and (b) variable RBE×dose for target
dose 2.0 Gy and target BED 2.4 Gy. Solid line: benchmark model, dashed line:
LET-based IMPT model. Blue line: target volume, red line: brainstem and black
line: brain.

tumor was defined as the number of tumor cells. Tumor state at each point of time can

be predicted from a new CT image by a random forest classifier that is trained based on

radiomics data.

The proposed models were applied to two cases of prostate cancer and pediatric ependy-

moma. Optimal fractionated treatment policy and optimal IMPT plan were provided for

each case. In the prostate cancer case, tumor and OARs had early responding tissue type.

But in the pediatric ependymoma example, tumor was late responding, and OARs were
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(a) Target dose 1.6 Gy and target BED 1.86 Gy

(b) Target dose 1.8 Gy and target BED 2.12 Gy

(c) Target dose 2.0 Gy and target BED 2.4 Gy

Figure 4.12: BED-volume histogram for (a) target dose 1.6 Gy and target BED 1.86 Gy, (b) target
dose 1.8 Gy and target BED 2.12 Gy, and (c) target dose 2.0 Gy and target BED 2.4
Gy. Solid line: benchmark model, dashed line: LET-based IMPT model. Blue line:
target volume, red line: brainstem and black line: brain.
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Figure 4.13: MDP randomized policy for fractionated treatment planning with λ = 0.7 for all
OARs

Figure 4.14: MDP randomized policy for fractionated treatment planning with λ = 1 for all OARs

early responding. Dose-volume histogram of physical dose, RBE×dose and biological equiv-

alent dose compared the quality of IMPT plans obtained from our proposed model and a

fixed-RBE threshold model. TCP and NTCP were used as additional quality measures to

assess the proposed model. The LET-based IMPT model outperformed the threshold model

in general, providing significantly increases TCP with similar NTCP.

Randomized MDP policies were provided for both cases. In the prostate cancer example,
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smaller dose target was suggested for higher number of tumor cells because the tumor growth

is at its lowest rate. But as the tumor cell count decreases, tumor growth rate increases and

bigger dose target was suggested to destroy the tumor. For the pediatric ependymoma due

to high radio-sensitivity of OARs and low radio-sensitivity of tumor, different OAR weight

factors were used to investigate the impact of decision-maker preferences on treatment policy.

It was observed that when larger weight factor is considered for OAR, the optimal policy acts

conservative and suggests small dose per fraction but for smaller weight factors the optimal

policy acts aggressive and suggests large dose per fraction specially when then number of

tumor cells is smaller.

The random forest classifier showed a great accuracy in predicting the tumor state.

However, even if a machine learning model did not provide high accuracy in predicting the

tumor state based on the radiomics data, the resulting confusion matrix can be used as

a partial observation in a POMDP framework, which is an extended form of MDP with

partially observable states. Therefore, the radiomics data can provide possibility of tracking

tumor condition in a personalized treatment planning regimen.
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Chapter 5

Addressing respiratory motion in IMPT in a

fractionated treatment planning problem

5.1 Introduction

Proton radiotherapy is one of the most advanced and increasingly popular treatment

methods for various cancer types, offering significant clinical advantages over photon therapy.

Proton particles have a finite range and increase their energy deposition as they move closer

to the end of their range, resulting in a dose peak which is referred to as Bragg peak (Wilson,

1946). Such properties of proton particles allow for a radiation dose to better conform to the

tumor shape and more effectively spare organs-at-risk (OARs) compared to the conventional

photon therapy. In particular, in intensity modulated proton therapy (IMPT), the intensity

of the proton beamlets can be individually modified to create an interval of the Bragg peaks,

referred to as the spread-out Bragg peaks (SOBPs), which further improves sparing of OARs.

A proton therapy treatment is usually delivered via fractionated treatment plan i.e., the

prescribed radiation dose is delivered over several fractions instead of a one-time treatment

delivery. Fractionation helps reduce overall damage to OARs and provides enough time

for them to recover from the damage. The quality of a fractionated radiotherapy plan

depends on the resulting biological response from the tumor or OARs and is characterized

by cell killing (Brenner, 2008; Gerweck, Zaidi & Zietman, 1994). The most common tool for
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quantitative prediction of biological response is the linear-quadratic (LQ) model (Fowler,

1989; Thames, 1985). The conventional fractionation scheme divides the prescribed dose

equally through all treatment fractions, but taking the biological response into account can

improve the quality of a fractionated plan.

In the planning phase of an IMPT treatment, the patient’s internal organs are visualized

via CT images, which are then used for construction of the treatment plan to be delivered

in all irradiation fractions. However, if the position or shape of the organ structures change

during the session due to a geometric uncertainty, the outcome of the delivered treatment

might be different from the expected outcome. The International Commission on Radiation

Units and Measurements (ICRU) considers three sources of geometric uncertainty (Stroom &

Heijmen, 2002): patient set-up variation, machine related errors, and organ motion. Patient

set-up errors are due to variations in the daily positioning of the patient on the treatment

couch; machine related errors, such as beam sizes and gantry angles, are generally considered

negligible thanks to advancements in modern radiotherapy equipments; and organ motion

can happen both between fractions (known as inter-fractional motion) and within a fraction

(called intra-fractional motion). An inter-fractional organ motion can occur due to weight

change or variations in organ size, while an intra-fractional organ motion is caused by cardiac

action and respiration. Inter-fractional motions are easier to deal with because they need

intervention only at the beginning of each fraction. On the other hand, intra-fractional

organ motion happens during treatment delivery and changes organ position on a time-scale

of seconds to minutes (Bert & Durante, 2011).

Several studies have proposed robust optimization techniques for treatment planning for

IMRT and IMPT to address such geometric uncertainties. Bortfeld et al. (2002) simulated

organ motion assuming a sinusoidal motion function and investigated the overall effect of

respiratory motion on IMRT treatment quality based on mean and variance of dose on

organs’ volume. Later, Bortfeld et al. (2008) used a set of probability density functions over

a set of pre-defined breathing phases to represent respiratory motion and provided a robust

formulation of the IMRT treatment planning problem. ? simulated cardiac motion by
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constructing an average scan using all the phases of 4DCT datasets and developed a heart-

sparing robust optimization approach for breast cancer IMRT treatment planning problem.

Proton therapy is particularly sensitive to geometric uncertainties because the created SOBP

might move over the tumor and its neighboring OAR structures, which can lead to dose hot

spots in OAR and cold spots in target volume. In IMPT, the proton range and setup

uncertainties are addressed by generating various scenarios. Unkelbach, Chan & Bortfeld

(2007) used a probabilistic and a robust approach to deal with range uncertainty in the IMPT

treatment planning problem. They optimized the expected value of objective function in

the first approach and worst-case dose distribution in the second approach. They showed

that both of the approaches provide promising outcomes. Pflugfelder, Wilkens & Oelfke

(2008b) developed a worst-case optimization model accounting for both range and setup

uncertainties in the IMPT treatment planning problem. Fredriksson, Forsgren & Hårdemark

(2011) used a minmax optimization method to avoid the unnecessary conservatism of the

worst-case method by only considering realizable scenarios. Chen et al. (2012) prespecified

different scenarios of range and patient setup uncertainties and constructed a database of

IMPT plans each optimizing different treatment objectives. By doing so, they explored

the trade-off between treatment robustness and plan quality. The above-mentioned studies

assumed scenarios of one or two dimensional organ movement with a specific distance (e.g.

5mm) to estimate geometric uncertainties in treatment planning problems. However, such

assumptions are not based on the actual respiration-induced organ motion. Therefore, the

resulting estimation cannot adequately account for organ deformation and complex motion

patterns during breathing.

Four-dimensional CT imaging (4DCT) is widely used to address the respiration-induced

organ motion (Rietzel et al., 2005; Underberg et al., 2004). A 4DCT is a sequence of three-

dimensional CT (3DCT) images obtained over different respiration phases, which captures

the changes in patient anatomy over time. Because 4DCT does not describe the tissue

movements from a phase to the next, deformable registration tools have been developed

(Hawkes et al., 2005; Lu et al., 2004) to match each point in one of the 3DCT scans with
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the corresponding point in the 3DCT scan of another breathing phase. For photon beam

therapy, several studies have developed four-dimensional treatment planning models that

consider all phases of the 4DCT (?Nohadani, Seco & Bortfeld, 2010; Trofimov et al., 2005;

Zhang et al., 2004). However, the 4DCTs have not been used in IMPT treatment planning

yet.

The respiratory motion also affects the quality of fractionated treatment plan as it causes

unequal dose delivery to a specific voxel across different fractions of proton therapy, i.e., some

voxels in the PTV might face underdosage in some fractions. As a result, the biological

response to treatment for the tumor volume can be different from that of the planned

treatment (Flampouri et al., 2006; Nøttrup et al., 2007; Yan & Lockman, 2001). Radiation

causes double-strand breaks (DSB) in the DNA. If the radiation dose is not sufficient to

kill the cell, the DNA can repair itself by rejoining the pairs of DSB with a constant rate.

Therefore, it is important to investigate the effect of respiratory motion on the biological

response in a fractionated treatment plan.

In this study, we aim to address the negative impacts of breathing motion on a fraction-

ated proton therapy for non-small cell lung cancer. We incorporate the biologically effective

dose in the development of an IMPT treatment planning optimization model that combines

several fractions into treatment epochs and corrects the dose per fraction during each epoch

to maintain the required biological response in the face of breathing motion. The model

incorporates a 4DCT dataset to account for organ motion over different respiratory phases

to efficiently handle complex motion patterns without simplifying assumptions on the organ

motion. We propose two different versions of this approach; (1) a mean-variance model that

optimizes the mean and variance of dose delivered to each organ structure, and (2) a robust

method that optimizes the worst possible case of dose deposition to each organ structure.

While the first method provides a realistic solution for this problem, the second model opti-

mizes the of treatment quality resulting in a risk-averse treatment plan. We also investigate

the impact of the number of epochs and the length of epochs on the BED delivered by the

treatment plan in all fractions.
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5.2 Methodology

Let R = {1, ,m} denote the set of respiration phases obtained from the 4DCT dataset. In

a fractionated treatment plan, the amount of radiation dose received by voxel v in respiratory

phase r ∈ R and fraction k ∈ {1, 2, , n} is calculated by

D(v, r, k) =
∑
b∈B

d(v, b, r)w(b, k), (5.1)

where d(v, b, r) is the dose deposited to voxel v from unit intensity of beamlet b in respiratory

phase r, and w(b, k) is the intensity of beamlet b ∈ B, B = {1, , l}, in fraction k. The linear-

quadratic model measures biological effectiveness of a given radiation dose, D, by calculating

the surviving fraction, S, of cells as (Oliver, 1964)

S = exp (−αD − βGD2). (5.2)

Here, α and β are intrinsic radiobiological parameters of the organ of interest, and G is

the generalized Lea-Catchside time factor (Brenner, 2008) accounting for fractionation ef-

fects given a constant repair rate, λ. For irradiation with n equal dose and short fractions

separated by a time T , the time factor, G, is calculated by

G = [2θ/(1− θ)][n− (1− θn)/(1− θ)], (5.3)

where θ = exp (−λT ) (Thames, 1985). According to Thames (1985), biologically equivalent

dose (BED) is then defined based on logarithm of the surviving fraction, S, from Equation

(5.2):

BED = D +
G

α/β
D2. (5.4)

The physical dose and BED received by a voxel in each fraction might be different from the

planned dose and BED due to organ motion. Therefore, a modification to the conventional

fractionated treatment plan is necessary. The fractionated radiotherapy treatment typically
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takes place every week and daily modification and optimization of a treatment plan is time

consuming and not cost effective. Instead, we consider a modification of treatment plan

periodically when it is needed. We divide the entire n treatment fractions into Q "epochs"

with the equal number of fractions, t, in each epoch, i.e., n = tQ, and epoch q includes

fractions k = t(q − 1) + 1 to k = tq (Figure 5.1).

Figure 5.1: Example of dividing the treatment fractions into epochs

Denoting the repair time-factor at the end of first epoch by G1, the repair time factor

at the end of epoch q ∈ {1, , Q} is approximated as follows (derivation is provided in the

appendix)

Gq ≈ G1

(
1 +

q − 1

1− 1/t(1− θ)
)
. (5.5)

Proof. Assume fractionated treatment plan is split in Q epochs each having t fractions.

Denote Gq as the repair time-factor at the end of epoch q ∈ {1, , Q} and G1 as repair-time

factor at the end of epoch 1. According to Equation 5.3

G1 = [2θ(1− θ)][t− (1− θt)(1− θ)]

and

Gq = [2θ(1− θ)][tq − (1− θtq)(1− θ)].

Therefore, the ratio of GqG1 is

Gq
G1

=
(q(1− θ)− (1− θtq)t)
((1− θ)− (1− θt)t)

.
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Because θ = exp(−λT ) is always less than 1 (θ = 2.5E− 3 for a late responding tumor, and

θ = 0.6 for an early responding tumor) θtq and θt (t ≥ 5) become very small and can be

considered zero. Therefor the ratio of GqG1 can be approximated by

Gq
G1
≈
q(1− θ)− 1

t

(1− θ)− 1
t

=
q − 1

t(1−θ)

1− 1
t(1−θ)

.

So, the repair time factor at epoch q, Gq, is approximately calculated by

Gq ≈ G1

(
1 +

q − 1

1− 1
t(1−θ)

)
.

The amount of dose per fraction is equal in all t fractions of epoch q, but it can be

modified at the beginning of each epoch. Denote by Dq(v) the amount of radiation dose

received by voxel v using the dose intensity distributions W (q) in each fraction of epoch q.

The total physical dose received by voxel v in epoch q is tDq(v) and the corresponding BED

is

BED(v) =

Q∑
q=1

(
tDq(v) +

Gq
α/β

t(Dq(v))2
)
. (5.6)

The treatment planning goal is to find an optimal dose intensity distributions, W ∗(q),

for each epoch q that minimizes f(W (q)) while including the effect of motion uncertainty

in fractionated treatment planning, where

f(W (q)) =
∑
v∈T
|BED(v)−BEDpresc|+∑

v∈T
|Dq(v)−Dpresc|+

∑
v∈OAR

|Dq(v)−Dmax|+ (5.7)

and [x]+ = max{x, 0}, Dmax is the maximum amount of dose that OAR voxels can tolerate,

and Dpresc and BEDpresc are the prescribed radiation dose and its corresponding BED,

respectively. A mean-variance model and a worst-case robust model are used to solve this
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problem.

5.2.1 Mean-variance model

Assume that the dose delivered to voxel v in fraction k, D(v, k), is a random variable

from an unknown probability distribution. Let p(r) denote the proportion of time spent

in respiratory phase r during radiation delivery, where 0 ≤ p(r) ≤ 1 and
∑m

r=1 p(r) = 1.

Assuming the same dose distribution, wq(b), in all fractions of epoch q, the mean dose

delivered to voxel v in each fraction of epoch q is

E(Dq(v)) =
∑
b∈B

(∑
r∈R

p(r)d(v, b, r)
)
× wq(b) (5.8)

and the variance of dose delivered to voxel v in each fraction of epoch k is

V ar(Dq(v)) =
∑
r∈R

p(r)
(∑
b∈B

[
d(v, b, r)wq(b)

]
− E(D(v, k))

)2
. (5.9)

Therefore, the mean dose and variance of dose delivered to voxel v over t fractions of epoch

q are t.E(Dq(v)) and t.V ar(Dq(v)), respectively. Using Equations (5.8) and (5.9), Equation

(5.6) can be rewritten as

BED(v) =

Q∑
q=1

(
tE(Dq(v)) +

Gq
α/β

t(E(Dq(v)))2
)
, (5.10)

and the objective function for the optimization model can be written as

f(W (q)) =
∑
v∈T
|BED(v)−BEDpresc|+

∑
v∈T
|Dq(v)−Dpresc|

+
∑

v∈OAR
|Dq(v)−Dmax|+ +

∑
v∈T

V ar(Dq(v)) +
∑

v∈OAR
V ar(Dq(v)). (5.11)

In this study, we assume equal proportion of time spent in each respiratory phase to avoid

computational burden in the inverse treatment planning based on 4DCT data (Nohadani,
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Seco & Bortfeld, 2010; Suh, Murray & Keall, 2014). However, upon availability of experi-

mental data obtained by measuring the time spent in each phase at the time of acquiring

4DCT images, an uncertainty set can be generated for p(r) using the method provided by

Bortfeld et al. (2008).

5.2.2 Worst-case robust model

As the patient breathes during the treatment delivery, we assume all of the respiratory

phases will be visited. The mean-variance model described in Section (5.2.1) might not be

ideal for such decision-makers. The worst-case robust model creates an unrealistic scenario

that assumes the tumor receives the minimum dose from all respiratory phases and the

OARs receive the maximum dose from all respiratory phases. In other words, the worst-case

dose, Dwc(v, k), for a voxel v in fraction k is defined by

Dwc(v, k) =


minr{

∑
bD(v, r, k)× w(b, k)} if v ∈ T

maxr{
∑

bD(v, r, k)× w(b, k)} if v 6∈ T
(5.12)

This model does not depend on the probability of each respiratory phase, p(r), as it

focuses on the worst case, i.e., the lower bound of the treatment quality (Pflugfelder, Wilkens

& Oelfke, 2008b). This lower bound is obtained by minimizing

f(W (q)) =
∑
v∈T
|BEDwc(v)−BEDpresc|+∑

v∈T
|Dwc

q (v)−Dpresc|+
∑

v∈OAR
|Dwc

q (v)−Dmax|+, (5.13)

where, Dwc
q (v) is the amount of radiation dose received by voxel v in one fraction of epoch q

based on the worst-case scenario and BEDwc(v) is the total BED received by voxel v based

on the worst-case scenario.
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5.3 Numerical Examples

5.3.1 Patient Data

4DCT images of a stage IIIB non-small cell lung cancer patient were obtained from the

Cancer Imaging Archive (TCIA) (Balik et al., 2013; Clark et al., 2013; Hugo et al., 2016;

Roman et al., 2012). According to TCIA, 4DCT images were acquired using a 16-slice helical

CT scanner as respiration-correlated CTs with 10 breathing phases (0 to 90%, phase-based

binning) and 3mm slice thickness. The total prescribed dose was 70 Gy delivered through

35 fractions with 2 Gy radiation per fraction. The dose deposition matrices are obtained

based on three gantry angles 0◦, 180◦, and 270◦ from 4DCT images using MatRad (Wieser

et al., 2017). The dose deposition matrices obtained for each phase were registered to the

T50 CT image (end of exhale phase), which is considered the reference CT. The registration

is performed using OpenREGGUI (Di Perri et al., 2017; Lin et al., 2017; Veiga et al., 2017)

based on Demons algorithm (Thirion, 1996).

5.3.2 Numerical Results

Both mean-variance and worst-case models were implemented on a Linux computer

with an Intel Quad-core 3.0 GHz processor and 352 GB RAM and the optimization models

were solved using CPLEX version 12.6.0.0. Given that a fractionated treatment is usually

delivered to the patient on five weekdays, we define the epochs as weeks with five fractions

in each epoch. The dose-volume histogram (DVH) is used to evaluate the treatment plan

provided by each model. The tumor is located on the left lung, and therefore the left lung

and heart are considered OARs. The dose limitations for the OARs indicate that total

prescription dose (i.e., 2 Gy per fraction) can be received by less than 30% of the heart

volume, while less than 35% of lung volume can receive more than 20 Gy (i.e., 0.57 Gy per

fractionw) (Emami et al., 1991).

Figure 5.2 shows a set of ten DVHs for each of the PTV and OARs where each DVH
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line corresponds to a respiratory phase resulting from the mean-variance optimization model

(Section 5.2.1). The figure shows that the dose received by the left lung in all respiratory

phases form a narrow cloud of DVH, but a relatively high variance is observed on the heart.

This variance is clearly a consequence of cardiac motion, which is not necessarily consistent

with the patientâĂŹs respiratory patterns. The DVHs for the PTV also show some variance

on less than 40% of its volume.

(a) PTV

(b) Left lung (c) Heart

Figure 5.2: Dose-volume histogram from mean-variance optimization model for (a) PTV, (b) left
lung, and (c) heart

Figure 5.3 shows the cloud of DVHs resulting from the worst-case method. The re-

sults show tighter dose bounds for all structures. Comparing with the results from the

mean-variance model, the worst-case model provides better dose fall-off for the PTV, while

increasing the dose delivered to the left lung. The worst-case model also improves on the

DVHs for the heart.
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(a) PTV

(b) Left lung (c) Heart

Figure 5.3: Dose-volume histogram from worst-case robust model optimization for (a) PTV, (b)
left lung, and (c) heart

For a detailed comparison between the two models, Table 5.1 shows the mean and stan-

dard deviation of different metrics for the structures over all respiratory phases in the first

week of treatment. The comparison is made between mean-variance model, worst-case

model, and a benchmark model that optimizes treatment based on the end of exhale CT

image only. In a DVH graph, the dose received by more than x% of a volume is known as

Dx%, and the percentage of the volume that receives at least y Gy amount of dose is known

as VyGy. Table 5.1 provides D90%, D50% and D10% for all structures, minimum dose and

V2Gy for the PTV, maximum dose and V0.57Gy for the left lung, and maximum dose and

V1Gy for the heart. The average D10% and D90% from mean-variance model to the PTV

varies from 2.23 Gy to 2.08 Gy and the standard deviation is significantly low. The worst-

case model provides a range of 2.33 Gy to 2.62 Gy for average D90% and D10% with higher
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standard deviations compared to the mean-variance model. The minimum dose received on

average by the PTV is 2 Gy and 2.15 Gy with the mean-variance model and the worst-case

model, respectively. The average max dose that the worst-case model delivers to the left

lung is 1.52 Gy with 0.06 standard deviation, while with the mean-variance model, the max

dose is on average 1.77 Gy with 0.03 standard deviation. Similarly, the maximum max dose

delivered to the heart by the mean-variance and the worst-case models was 1.65 Gy and 0.9

Gy, respectively. Both models deliver more than 2 Gy dose to 100% of the PTV. The left

lung V0.57Gy was 41% and 35% with the mean-variance model and the worst-case model,

respectively. Similarly, the heart V1Gy was 9% and 2% with the mean-variance model and

the worst-case model, respectively. Although the worst-case model results in lower dose to

the OARs and higher dose to the PTV compared to the mean-variance model, the mean-

variance model provides lower variance overall. Both models outperform the benchmark

model.

Table 5.1: Comparison of mean and standard deviation of DVH metrics

Organ Criterion Mean-variance Worst-case Benchmark

PTV

D 90% [Gy] 2.08 ± 0.01 2.33 ± 0.01 1.4 ± 0.14
D 50% [Gy] 2.17 ± 0.01 2.48 ± 0.01 1.9 ± 0.06
D 10% [Gy] 2.23 ± 0.01 2.62 ± 0.01 2.6 ± 0.27
Min dose [Gy] 2 ± 0.01 2.15 ± 0.01 1.19 ± 0.11
V 2Gy [%] 100 ± 0.0 100 ± 0.0 47 ± 0.08

Left Lung

D 90% [Gy] 0.03 ± 0.0 0.02 ± 0.0 0.02 ± 0.04
D 50% [Gy] 0.48 ± 0.01 0.37 ± 0.02 0.4 ± 0.03
D 10% [Gy] 1.12 ± 0.02 0.86 ± 0.02 1.13 ± 0.05
Max dose [Gy] 1.77 ± 0.03 1.52 ± 0.06 1.85 ± 0.09
V 0.57Gy [%] 41 ± 0.3 35 ± 1.5 46 ± 1.8

Heart

D 90% [Gy] 0.02 ± 0.01 0.009 ± 0.0 0.02 ± 0.01
D 50% [Gy] 0.21 ± 0.01 0.11 ± 0.01 0.18 ± 0.03
D 10% [Gy] 1.01 ± 0.04 0.56 ± 0.04 1.14 ± 0.18
Max dose [Gy] 1.65 ± 0.12 0.9 ± 0.15 1.78 ± 0.18
V 1Gy [%] 9 ± 2 2 ± 0.3 13 ± 3.5

In order to demonstrate the effect of breathing motion on fractionated treatment plan,

Figures 5.4 and 5.5 show the average D50% physical dose and the resulting BED delivered
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in fractions of each epoch to the PTV. The mean dose and BED here are obtained by av-

eraging over all respiratory phases. The figures recommend to start from a larger amount

of radiation dose in the first week of treatment and gradually decrease it to the prescribed

dose. This pattern is a result of breathing motion as the larger amount of radiation dose

at the beginning compensates for BED inhomogeneities from breathing motion and main-

tains the BED approximately equal during the course of treatment. Although the proposed

fractionation plan proposed by the mean-variance model is more aggressive compared to the

benchmark model, the resulting BED is consistently close the desired BED. However, the

BED resulting from the benchmark model is always under the desired BED.

Figure 5.4: Average physical dose versus average BED delivered in fractions of each epoch to the
50% of the PTV in mean-variance model

The worst-case robust model recommends a larger amount of dose in each fraction com-

pared to the mean-variance model (Figure 5.6 versus Figure 5.4). Consequently, BED de-

livered to 50% and 90% of the PTV by this model is slightly greater than that from the

mean-variance model. The reason is that the worst-case model optimizes the treatment plan

based on the worst-case (i.e., minimum) dose over all possible respiratory phases.
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Figure 5.5: Average physical dose versus average BED delivered in fractions of each epoch to the
90% of the PTV in mean-variance model

Figure 5.6: Average physical dose versus average BED delivered in fractions of each epoch to the
50% of the PTV in worst-case robust model

5.3.2.1 The impact of epoch frequency and length

In this study, we propose to combine several fractions into several epochs and apply

possible modifications to the treatment plan in each epoch. Therefore, we investigate the

effect of the number and length of epochs (i.e., the frequency of plan modification) on the

treatment plan quality.
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Figure 5.7: Average physical dose versus average BED delivered in fractions of each epoch to the
90% of the PTV in worst-case robust model

We selected the mean-variance model to implement for the following cases: 1) (Q, t) =

(2, 18), i.e. two epochs each with 18 treatment fractions, 2) (Q, t) = (5, 7), 3) (Q, t) = (7, 5),

and 4) (Q, t) = (9, 4). When Q = 2 and 9, the first epoch has less fractions than other

epochs so that the total number of treatment fractions remains is 35. The average daily

physical dose and BED resulting from the optimized treatment plan for these seven cases

are presented in Figure 5.8.

When Q = 2, the average daily physical dose has changed once from 2.1 Gy in the first

epoch to 2 Gy in the second epoch, but the average daily BED starts from 2.15 Gy in the

first session and increases to 2.44 Gy in the last session. When Q = 9, fractionated plan

is optimized more frequently and the physical dose is adjusted for shorter epochs to yield

the desired BED. As a result, the average daily physical dose starts from 2.36 Gy in the

first epoch and decreases to 1.85 Gy in the last epoch. In this case the average daily BED

changes between 2.3 Gy and 2.45 Gy in the first 7 epochs, but drops to 2.2 Gy in the last

epoch. The variation of average physical dose and BED for cases 2 to 6 is between these

two extreme cases.
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(a) Physical Dose

(b) BED

Figure 5.8: Comparison of effect of different epoch number and length on (a) daily average physical
dose, (b) daily average BED
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Figure 5.8(a) shows that as the frequency of treatment plan modification increase, treat-

ment starts with a higher physical dose in the first session and ends with a lower physical dose

in the last session. Figure 5.8(b) shows that as the frequency of treatment plan modification

decreases, the average daily BED in the earlier fractions decreases, often not satisfying the

required biological effectiveness. While the treatment plan with Q = 2 is not desired be-

cause of the wide range of average daily BED and lower average BED in the first epoch, the

treatment plan with Q = 9 might not be practical as it can be time consuming. Therefore,

the treatment plan with Q = 5 can provide a compromise: consistency in terms of both

physical dose and BED while not requiring too many plan corrections.

5.4 Conclusion

The goal of this study was to optimize the fractionated proton therapy treatment plan

for non-small cell lung cancer while taking into account the effect of respiratory motion. To

this aim a fractionated IMPT optimization framework was developed to provide optimal

solution for both IMPT and fractionation planning of the treatment and was solved using

a mean-variance model and a worst-case robust model. The proposed framework combined

several fractions into epochs and modified the physical radiation dose to maintain the total

required BED at the presence of breathing motion. A 4DCT dataset was used to handle

complex motion patterns.

Both mean-variance and worst-case robust models improved the IMPT plan compared

to the benchmark model in terms of standard deviation of dose over all respiratory phases

and variation of dose to different PTV volumes (Table 5.1). Because the worst-case model

used worst-case dose scenario as described in Section 5.2.2, the average dose delivered to

the PTV in all phases of respiration was greater than that of the mean-variance model and

the average dose deilvered to the OARs was lower than that of the mean-variance model.

However, the mean-variance model provided a lower standard deviation of dose over the

respiratory phases. Based on the position of the tumor with respect to surrounding OARs

and the radiobiological characteristics of the tumor and OARs, one can decide whether the
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tumor can receive higher dose and tolerate the higher standard deviation through the worst-

case IMPT plan or the mean-variance model with higher standard deviation is more suitable

for a patient. Both models suggested to start from higher radiation dose in the first week

of treatment and gradually decrease it in subsequent weeks to address the increased repair

effect resulting from nonuniform voxel dose between fractions. The average BED resulting

from this fractionation pattern was shown to be almost equal in all treatment weeks. A

comparison between optimized treatment plans with different length of epochs showed that

less frequent dose modification (i.e. fewer epochs each with more fractions) results in lower

BED in the first fractions while more frequent dose modification (i.e. more epochs each

with fewer fractions) results in higher physical dose in the beginning and lower amount of

physical dose in the end of the treatment.

The current assumption in 4D planning of radiation therapy is that equal proportion of

time is spent in each respiratory phase. This assumption can be investigated by measuring

the average time spent in each respiratory phase at the time of acquiring 4DCTs. In addi-

tion, this study assumed a fixed relative biological effectiveness (RBE) for proton. While

this assumption provides a good estimation of the treatment quality in terms of biological

effectiveness, investigating the effect of variable RBE can provide a more accurate estimation

in this regard.

93



Chapter 6

Summary

6.1 Conclusion

In this dissertation we aimed to address the unanswered questions about biological ef-

fectiveness of fractionated raditherapy treatment plan.

In Chapter 3 we utilized an extended biological model of cell survival for the tumor and

OAR to include the four R’s of radiation therapy and used a Gompertzian growth model for

the tumor to explain the dependency of tumor growth rate on the gene level factors. First,

we developed a control limit policy based on patient-specific tumor and OAR characteristics

with respect to radiation treatment to determine whether a dynamic treatment plan can

improve the treatment quality (i.e., tumor damage and OAR sparing) compared to the

conventional one. Next, we developed a constrained POMDP framework based on the

extended biological model to provide a decision-making policy that maximizes the expected

biological equivalent dose (EBED) of tumor while keeping the OAR survival under control.

Numerical results showed that using a dynamic treatment plan instead of the conventional

one can result in higher tumor damage with slight increase in the OAR damage. However,

when the tumor tissue was late responding (lower sensitivity to radiotherapy) and the OAR

tissue is early responding (higher sensitivity to radiotherapy) the conventional treatment

plan was recommended as a conservative plan. The POMDP policy recommended optimal

actions based on the updated belief vector at each decision epoch. Due to the Gompertzian

tumor growth model, lesser number of tumor cells in the later weeks of treatment cause in
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an increase in the tumor growth rate. Therefore, the dose increase was recommended at the

later weeks of treatment to increase the tumor damage and shorten the treatment length.

In Chapter 4, we provided decision policies for dynamic and personalized fractionated

proton therapy treatment plans. A constrained MDP model was used to obtain such policy

which deals with uncertainty of tumor response and growth rate. The state in our suggested

MDP model was defined as tumor cell count estimated by applying random forest classifica-

tion method on radiomics data of CT images. The actions in the MDP model were obtained

from optimal LET-based IMPT plans. The extended LQR model was to include four R’s

of radiation therapy in treatment planning. To explain the tumor growth dynamics, Gom-

pertzian growth function was incorporated in the LQR model. A LET-based IMPT model

was developed to ensure the homogeneity of BED distribution over the tumor volume.

The proposed model was applied to two cases of prostate cancer and pediatric ependy-

moma. Optimal fractionated treatment policy and optimal IMPT plan were provided for

each case. In the prostate cancer case, tumor and OARs had early responding tissue type.

But in the pediatric ependymoma example, tumor was late responding, and OARs were

early responding. Different dose targets were defined as alterations to the conventional

treatment plan. The LET-based IMPT model outperformed the threshold model in general,

providing significantly increases TCP with similar NTCP. Randomized MDP policies were

provided for both cases. In the prostate cancer example, smaller dose target was suggested

for high tumor cell count where the tumor growth is at its lowest rate. But as the tumor

cell count decreases, tumor growth rate increases and bigger dose target was suggested to

destroy tumor. For the pediatric ependymoma due to high radio-sensitivity of OARs and

low radio-sensitivity of tumor, different OAR weight factors were used to investigate the

impact of decision-maker preferences on treatment policy.

The goal of Chapter 5 was to investigate the effect of intra-fractional organ motion on

a fractionated proton therapy for non-small cell lung cancer. The biologically effective dose

was included in the IMPT model to maintain the total required biological response at the

presence of breathing motion. A 4DCT dataset was used to handle complex motion patterns.
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The aim of this study was to avoid sophisticated 4D delivery systems and interplay effect

by using 4DCT dataset to plan a 3D delivery technique. A statistical model and a worst-

case robust model were used to approach this problem from different angles. The statistical

model focused on mean and variance of dose delivered to each organ structure, and the

robust model focused on the worst possible case of dose deposition to each organ structure.

The proposed models were implemented on a 4DCT dataset from a non-small cell lung

cancer patient. The dose distribution over PTV structure from worst-case robust model

was better than that of statistical mean-variance model in terms of both DVH bound and

dose homogeneity. Both models suggested to start from a larger amount of radiation dose

in the first week of treatment and gradually decreasing it on next weeks. This pattern of

fraction size aims to compensate for the increased repair effect resulting from nonuniform

voxel dose between fractions. As an evidence, the weekly mean BED resulting from this

fractionation pattern was shown to be almost equal in all treatment weeks. However, because

of conservatism of worst-case robust model, a larger total dose has to be delivered in every

treatment week to achieve the same biological effectiveness.

The methods used in this study serve different points of view. However, the statistical

mean-variance model can provide more accurate and practical solution. The current assump-

tion in 4D planning of radiation therapy is that equal proportion of time is spent in each

respiratory phase. This assumption can be investigated by measuring the average time spent

in each respiratory phase at the time of acquiring 4DCTs. In addition, this study assumed

a fixed relative biological effectiveness (RBE) for proton. While this assumption provides a

good estimation of the treatment quality in terms of biological effectiveness, investigating

the effect of variable RBE can provide a more accurate estimation in this regard.
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6.2 Outcomes

Journal Publication

• Nasrin Nouri and Gino J. Lim, "Personalized treatment planning considering biological

response uncertainty: A Partially Observable Markov Decision Process Approach".

• Nasrin Nouri, Gino J. Lim and Wenhua Cao, "Personalized and LET-based proton

therapy treatment planning considering tumor biological response uncertainty".

• Nasrin Nouri, Gino J. Lim and Taewoo Lee, "Dealing with respiratory motion in a

fractionated IMPT treatment plan".

Conference Presentation

• Nasrin Nouri, Gino J. Lim, "Optimal Radiotherapy Treatment Policy Based on Tumor

Biological Response," INFORMS Annual Meeting. Nashville, TN, November 2016.
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