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An imvortant periornane: indew of a Yagi-Uda array is-
the directivity. HMany studi.s have been made on the subject
of optimization Tor Yazi-Uda antenno arrays.

Shen [1971] obtained an optimum design for a Yagi array
under constraints on bendwidih, directivity or the size of the
array. It was shown that the array configuration is determined
by any two of these three being specified. However, due to the
nature of the approximation used in Shen's analysis, no infor=-
mation on the input impedance of th. Yagi antenna is given. ’

Recently, Cheng and Chen [1973] developed a method for the
maximization of the forward directivity of a Yagi~Uda érray by

adjustment of the inter-element spacing. To what extent the

bandwidth is affectzd when the dimensions of the array are adjusted
for maximum directivity remains unanswered., ‘

In this study the work 6f Shen and of Chen and Cheng is
extended., Namely, the behavior of the input impedance of the Yagi-

Uda array is investigated as the uperating frequency is varied.

He

n s

(=)

Tue effect on the bandwidth of a Yagi-Uda array when its ga
optimized by adjusting the spacing of the directors as propoused
.by Cheng and Chen is also investigated. The analysis makes uce
of King's three term theory, which converts an integral equation-
into a complex matrix equation, wnhich is solved using a digital

computer,
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CHAPTER T

Introduction

A physical description of the Yagi-Uda array 1is presented
in Section 1-1, Previous work is discussed in Section 1-2, and

the present work in Section 1-3.
1-1 Physical Description of the Yagi-Uda Array

The Yagi-Uda array studied in this investigation consists of
"N thin linear dipole elements, of which No. 1 is parasitic and
adjusted in length to function as a refiector, llo. 2 is driven

by a voltage Vgp, and Hos. 3 through N are parasitic and adjusted
in length to act as directors. The ith element has half-length

: hi.and radius a, and the spacing between the ith element and the

jth element is b; :, where

’j
121,200 ,i
321324004yl

and bk,k=a’ where
k=142 4000 ,il .

Such an array is shown in Fig. l.1l. The dfiven element 1is norﬁally

tuned to resonance. ELlement llo., 1 is usually longer than the |

driven element and elements los. 3 through N are usually shorter

than the driven elenent,
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YAGI-UDA ARRAY - CHAPTER I 3
1-2 Previous Work

An importance performance index of a Yagi-Uda array is the
directivity. !Many studies have been made on the subject of
optimization for Yagi-Uda antenna arrays. Hansen and Woodyard'
[1938] calculated the optimum phase delays of the currents in the
elements to give a maximum directivity for a Yagi array.
.However,‘their aﬁalysis did not provide any information as to
how the prescribed phase shift could be realized. In a study by
Ehrenspeck and Poeller [1950], correct dimensions for maximum
directivity in a Yagi-Uda array with equally spaced directors of
equal length were determined experimentally.

Shen [1971] obtained an optimum design for a Yagi array
under constraints on bandwidth, directivity or the size of the
array. It was shown that the array configuration is determined
by any two of these three being specified. It was also shown
that a properly designed Yagi array can be operaéed in two
‘frequency bands, with the frequency ratio approximately equal
to 3.5, However, due to the nature of the approximation used in
Shen's analysis, no information on the input impedance of the
Yagi antenna 1is given,

Recently, Cheng and Chen [1973] developed a method for the
maximization of the forward directivity of a Yagi-Uda array bj
adjustment of the inter-element spacing. They made use of the

three-term theory developed by King and his associates to
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approximate .the current in the dipoleé. Use was éiso made of a
theory in matrix analysis. By an iteration process, the optimum
spacing for maximum direcfivity is determined. To what extent
the bandwidth is affected when the dimensions of the array are

adjusted for maximum directivity remains unanswered.
1-3 Present Study

In thié study, the work of Shen and the work of Cheng and
Chen are extended, Namely, the behavior of the input impedance
of the Yagi-Uda array as the operating frequency is varied is
investigated. Thus, when a Yagi-Uda array is optimized under any
fwo of the three constrainfs - bandwidth, directivity, size of
array - using the method developed by Shen, information on the
input impedance woﬁld be available. The effect on the bandwidth
of a Yagi-Uda array when its gain is optimized by adjusting the
spaciﬁg of tﬁe directors as proposed by Cheng and Chen is also
investigated. The analysis makes use of King's three-term theory.
It converts an integral equation into a complex matrix equation,

which is solved using a digital computer;



CHAPTER II

Integral Equation and Three-Term Theory

The integral equation for the current on a thin ecylindrical
perfect conductor is described in Section 2-1. In Section 2-2,
the three-term theory is described., In Section 2-3, the far

field pattern is calculated.
2-1 Integral Equation

The theory developed is concerned exclusively with thin
cylindrical conductors all aligned in the z direction in air, so
that it suffices to use only the axial component of the vector
potential. Element HNo. 2 is center driven by a delta-function
generator.

The interaction of charges and currents on conductors in
space is governed by Maxwell's equations. A convenient way of
solving these vector partial differential equations is through
the use of scalar and vector potentials; ¢ and A, respectively.

Since V+B=0, it follows from an important theory in vectof
analysis that the vector B be the curl of some other vector -
[Soko;nikcff, 1362, p.423]. So the magnetic field can be expressed
in the form

B = vxA --=(2.1a)

Using the above equation and substituting into the Maxwell
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equations, one can show that-VXCEijKS=O. Again using another
important theory in vector analysis [Sokolnikoff,‘1962, p.422],
it follows from the above equation that the vector L+jwA be the
gradient of some function, so the expression of the electric
field is given by

E = -Vo-juwh --=(2,1b)
where & and A are the scalar and vector potentials, respectively.
The vector K is not defined completely by (2.la); in order to
définé a vector, both its curl and it divergence nust be defined
[Mason and Weaver, 1922, p.353] and the normal component must be
known over a closed surface or the vector must vanish as 1/r? at
infinity [loé: cit.]. The following condition relating A and ¢
is imposed: -

VeE = ~3j(Bj/w)¢ -—=(2,2)
whiéh is known as the Lorentz condition. The quantity Bj is
w/TE, where U and € are the permeability and permitfivity of the
medium,

Instead of simply assuming a convenient current along the
antenna, a ﬁore sciehtific, albeit more difficult procedure is -
-to determine the actual distribution of current by setting up’
and sol&ing the appropriate integral equation. With (2.1) and
(2.2), and from the boundary condition E,(z)=0 on thé surface of
a perfectly conducting antenna, the veétof potential is seen
to satisfy the equation

(a%/dz? + BIA,(z)=0 ' --=(2.3)

which has the general solution
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A,(z) = (-j/c)(CicosBgz + Cysinpgy|z]) -==(2.4)
if the symmetry conditions I,(-2)=I,(z), A,(~-2)=A,(z) are imposed.
C, and C, are arbitrary constants of integration and c=1/vie.

-
e

The integral equation for the current is

. h -3jBgR
(um/uglA, = [T (2")(e )/R dz
= (-jun/gy)(CycosByz + Czsinsolz[)'- -==(2.5)
. —_— -jBR
We have used the free space Green's function G(r,r')=(1l/4m)(e )/R

where R=|r-r'|. The problem of solving (2.5) for the current is
very complicated. This is a linear integral equation of the

first kind. It has been carried out approximately in a variety
of Qays [King, 1956]. The procedure to be followed in obtaining
a useful approximate solution of (2.5) is the three-term theory

developed by King L1968].
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2-2 Three-Term Theory

It was shown by King [1968,p.

149] that from the properties

of the integral equation that an approximation of the current

consists of three terms, of which

each represents a different

distributiqn; specifically, let the current distribution (2.5)

Iz]g(zk) = A Myt B Fg * DHg ~==(2,6)
where | -
Mozkzsinso(hk-lzkl) --=(2.7a)
F02k=c°sﬂozk - cosByhy ===(2,7b)
Hy=cos(Bgzy /2) = cos(Bghy /2) ' -==(2,7c)

The currents induced by the interaction between charges

moving in the more or less widely
antenna appear in two parts. One
is maintained by that part of the
valent to a constant field acting
the antenna. The other part, the

arguments, is the correction that

separated sections of the

of these, the shifted cosine,
interaction which is equi-

in phase at all points along
shifted cosine with half-angle

takes account of the phase lag

introduced by the retarded instead of instantaneous interaction.

In a parasitic element, the coefficient A is zero, but the

other two terms remain. When the

several antennas in an array

are not all equal in length, so that the hjy differ, the N

simultaneous equations exist:
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N hs

i ’ 3 .
i lfh I,;(2)K;4(2,28)dz! = {juﬂ/[COCOS(BOhk)]}_
(1/2VgxMgzx *+ UxFoazx)  ===(2.8)
with k=1,2,...,0. The kernel has the form
~3BoRys ~3BoRkin
Kiejalziszl) = Kei(zp,zi)-Keylhy,z]) = e /Ryi-e **/Ryin
where Ryj=v(zp-z1)2+bf: Ry s =Y (hy=21)2+b2 s
The function Up is
' N oh,
U =L~ jCo/(Hﬂ)]i llh IZl(z YKy ; (hyy2z! )dz’ —-——(2.9)

The integral equation for the driven.element is

h, N
Ath2 To212K024(2925)d2;5 + §=1f31F0z 1Kp34(2ps24)dz2]

N :
+ I fDiHOz'iKzid(ZZ,Z]!-)dZi

i=1 '
={jun/Lrgcos(Bgyhy) 131(1/2Vy,My,5 *+ UpFp o) --=(2.10)

and the remaining N-1 integral equations are

h . u
2 .
Aodn, MozroKioalms2)92; * T IBiFpp0iKiq(ae2i)dz]

N
i=1 )
={jun/[gycos(Byhy ) THU Ty 1) --=(2,11)
 Use is made of the properties of the real and imaginary parts of

the kernel as follows:

hx - .
Ihx Coz'kKkkar k2K 4%k = Ggax

where GOz'k stands for My, 1y, FOz}k’ or Hy 1y and Kyygr(zp,zg) is

the real part of the kernel, On the other hand,
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K GG Kpgr (2t ) dz s T '
Iy GozkKkkdr(ziozrldzk> Hggy o
It follows that:

= /hx . 2B . h

= hk $ f h
Wz =g FozpKiea (2o 2092k * YigeauTozy * Ykkautloz

M h

- rh !

where the ¥'s are complex coefficients yet to be determined.

f . .
WkdeFOZk is added to provide symmetry.

When i#k and Bgb>=1l, it can be shown by direct comparison

that:
PLog  Kesaplzy ,z8)dzls F
~h; ~0z1"kidR k2217925 % gz
fhi G Kpsar(zy,2))dzi= H
Zhy 0z} kidIMk*“i7%%17 Yozk ’

10

--=(2,12a)

---(2,12b)

-""'(2 . 120)

where GOzi stands for MOzi’ fOzi or HOzi‘ It follows that, with

i#k:

f

_ ¢hs h
Wiy (B =T MozgKeia(Prz)d921 = YgavFozk * Yeiaviozyg

hy ' f h
n] . A = F H dl F wot,
Wiy k)‘fhj OziKkid(zk9zl) 21 vkidU 0zk ¥ kldUHOZk

‘= fhi , 2o - h
WeinCz )=t HogtKeia(zyozdddzl = ¥igapFozy * Yijaptlozx
where the ¥'s are complex coefficients yet to be determined.
With (2.12) and (2.13), (2.10) becomes:
N

m h : . h
Ay Paavtlozy * ¥32avlloz) * I By (¥E.  Fouy * ¥2iqutloz2)

i=1
N
+ § p.(vE. . F + yB o HA )
2, Dit¥2ianfoze 2idptozy

"'"-(20 13a)

" ===(2,13b)

-~=(2.13c)
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= bim (1/2 Vgolg,, + UpFgzy) -==(2.14)
ggeos (Bghy)

For (2.11), the N-1 equations are:

N

£ £ h
By (¥oayFozy + Waavtlogy) * E B; (YyidquFozk ¥ ¥kiduHgy?

1
N
£ h
* I DiWiiapFoz * Ykiaptoz
= L"jTT UkFOzk k=1’3,u”coo’N "“"(2.15)

cocos(BOhk)

These equations will be satisfied if the coefficients of
each of the distribution functions is individually required to

vanish; i.e., in (2.11):

Ap=32mVp0 ~-=(2.16)
Co¥z2qycos(Bghy)
and
g (B.v5. ... + Doyl ) ) bod U = 0 (2.17a)
. i¥2iqu * Dj¥3iqplceosBphy - Um) U, = --=(2,17a
i=1 Z,
A ; = (B;¥55qy * Di%iap) = O (2.17b)
2¥22qv * ¥ Pi%2iqu T Pi%aiap’ ¢ ---(2.

Similarly, in (2.,15), with k=1,3,4,...,N:

N

Ay¥Eoay + i_l(BiwiidU + Dy¥EsgpleosBghy - jumly = 0 ~-=(2.18a)
- . C 0
h N h h -
Ag¥icoav * I Bifiay * Pitkiap) = O mm-(2.180)
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Equations (2.16), (2.17) and (2.18) are (2N+1l), and they
determine the 2N+l constants A,, B; and Dj, i=1,2,...,N. To

evaluate the functions Uk; define the following integrals:

wkivchk)=££§ Mg 41 Kyes (hyp28)dzd —--(2.19a)
hj _

Veiu(hi)=dnt FozgKys (hysziddzd —-=(2.19b)

4 Wkib(hk)=£gi HOziKki(hk’Z{)dzi -~=(2,19¢c)

where Kyj(hy,z!) = e~JBORKih  ang Ryip=vhye=21) 7 +bi .
- Riin |
From (2.9), it follows that:

N ’
.Ukz-qj-:;;o 2).:-_1 Ai‘i’kiv(hk) + Bi‘ykiU(hk) + Di\ykiD(hk) -==(2,20a)

Ai=0 fOI’-i=l,3,4,oo.,N
| N
'Uk=:%$ﬂ {ApYyeoy(hy) + I L B; ¥y iulhy) + Dy¥eip(hy) -==(2.20b)
1=
Equations (2.17) and (2.18) can be combined with the aid of the
Kronecker § defined by:
0 i#k
6ix * .
1 1=k
The equations are:

N

£ £ £ , , )
‘ i} 0
o N » " .
Ay¥ogy + I (By¥jqu + Di%igp) = O --=(2.21b)

i=1

-_(2.21
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Substituting (2.20b) in (2.2la), we get:

N
f f y
Az(szv(hk) - (l-akz)wkZdVCOSBohk) + gtlBiCWkiU(hk) - WkidUCOSBOhk)

N
* ﬁ_lDiCWkiD<hk) - vi; pcosghy) = 0 ———(2.22)

A simplificafion seems possible by defining:

°k2V.= YkZV(hk) - (l-ékz)WEZdvcos(Bohk) E ——=(2,23a)
: - . £

- f :
q)kiD = lykiD(hk) - ‘ykidDCOS(Bohk) -==(2.23c)

With this notion, (2.22) and (2.21b) give the following set of

equafions:
N -
T hkavBi ¥ ®kipPi ® -fkavhe -==(2,24a)
-g ¥RiquBs * ¥iapDi = -¥lpavA (2.24Db)
b kiau®i kidpPi = ~Yk2avh2 ~==(2.

These equations may be expressed in matrix form after the intro-
duction of the following notation:

®11u0 ®12U ¢+ %1nU

=l . L] . . f--(2.25a)

2y
n1u ®N2u ®ynu
®11p %12p ** %D
¢D= ‘. . . R —--(2.25b)

®N1p ®N2D ®LND
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h h h
¥114qu Y12qu +++ ¥indu

‘yguz i . . . ~ .""-(2.25(3)
h h h
= Yy1au Yn2au Yiwau -
h h h
- Y114ap ¥i24ap ¢+ Yiwdp T
W}(;.D= R . . . --~'(2.25d)
h h h
- ¥Yy1ap ¥N2dD YNNap -
wh
012V {12dV-
{ogy}= | . ~-=(2.25e)  {¥54y}=| . ~--(2.25¢)
(P2 h
LYN2avd
{B}= [y -""'(2025g) {D}: - ---(2.25h)
BN _DN .

The matrix form of (2.24) is:

© LoyliB} + [epl{D} = -{ogy}A, --=(2.26a)

[vqyl{B} + [¥B,1(D)

h

" It remains to evaluate the ¥'s which occur in the ¢'s in (2.23).
Equations (2.12) and (2.13) approximate each integral by a

linear combination of two terms with arbitrary coefficients; these
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can be evaluated by equating both sides at two values of z. The
values chosen are z=0 and z=hy /2. Define the following:

h'
-1 1

fH

hy

S
“h;

1] 1 - -
MOZ,iKkid(O,zi)dzi | (2.27a)

h.

= A1 1

[hf Mozt 3 Ks g (/2,28 )dzl -==(2.27b)
h,

l

1]
".

11 1Y g1
Ui(zi)}\kid(o ,Zi)d..:l

{le

R
Ihi Foz1iKkiq¢0,2i)dz] “—(2.27¢)

(h /2) = BL1f

Wesu i In, Iy; (20K

kld(h /2 z')dzl

' ' ———
f ] Oz 1KP1d(hk/2’zi)dzi (2,.274d)

[

h,
= n—1, 1 11 1 '
Weip(0) = Dy Ihi In; (210K ¢ 4(0,28)dz!

2 12; Hy 03K 4(0s20d2) --=(2.27e)
. h.
Wesphy/2) = Dzlih; Ip; (21K q(hy/2,21)dz!
. h
ot hy Hy 11 Kq q(he/2,28)dz] -==(2.27f)

Once the W's in (2.27) have been determined for all values
of i and k, the coefficients ¥ may be determined from the

equations (2.12) and (2,13). At z=0 these becomer
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. Wﬂkdvsinsohk + ?ﬁkdv[l-cos(eohk/é)] = W $0) --=(2,28a)
¥i: 4y (l-cosgghy) + Wiidv[l-cos(ﬁohk/Z)] = W;y(0) ik ---(2.28b)
v, y(l-cosgghy) + ¥l sl1-cos(Bghy /2)T = W (0  -==(2.28¢)
v, (1-cosgyhy) + inthl-cos<sohk/é)J = Hyp(0)  ==-(2.284d)

" At z=hy /2, they are

h =
kde81n(B h /2) + Wkkdv[cos(s h /4)-cos(8 h /2)1 Ukkv(hk/Z)

-“-(2.298.)

W{idv[cos(Bohk/Z)-cosBOhk] f W%idv[cos(sohklu)-cos(Bohk/Z)]
= W gy(h/2) ik _ ~--(2.29b)
WﬁidU[cos(Bohk/Z)-cosBOhk] + W?idU[cos(Sohk/u)-cos(sohk/Z)]
= Wiy(he/2) -==(2.29¢)
W{idD[cos(Bohk/é)-cossohk] + WEidDFcos(Bohk/u)—cos(sohk/Z)]
. Wyip(h/2) ~-=(2.29d)

The solutions of these equations for the ¥'s are obtained

directly. They are:
ngdv = Ai‘{Wkkv(O)[cds(sohk/u)-cos(sohk/Z)]

-wkkv(hk/Z)El—COS(Bohk/Z)]} .-‘-(2.30)
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where Ai

and

h
Ykkav

f
Yriav

Yriav

f
Ykidu

Yridu

¥iidD

Yxiap

by

55 (i gey (/25 508 g -y gy (0D 520 (BT /2) )
= AE‘{Wki§(0)[cos(BOhk/u)-cos(Bohk/Z)]
-Wkiv(hk/Z)[l—cos(BOhk/Z)]} i#k
= A7 (W1 y(hy/2) [1-cosBghy ]
=Wy y(0)[cos(Byh, /2)=cosByhy 1} ik
= A3 {Wy3y(0)[eos(Bghy /4)-cos(Bghy /2) ]

-WkiU(hk/Z)[l-COS(BOhk/Z)]}

Ayt {Wy5 y(hy /2) [1-cosBghy ]

—WkiU(O)[cos(BOhk/é)-cos(sohk)]}

= AE‘{wkiD(O)[cos(sohk/u)-cos(sohk/Z)]
~We3p(hy/2) [1-cos(Bghy/2) 1}

= Ay ' {Wy;p(hy/2)[1-cosBghy ]

-WkiD(05[cos(sohk/Z)-COSBohk]}

singyhy [cos(Byhy /4)~cos(Byhy /2)]
-sin(Bphy/2)[1-cos(Bghy /2) ]
[l-cosBOhk][cos(BOhk/u)-cos(Bohk/Z)j

~[cos(30hk/2)-cosBOhk][l-cos(Bohk/Z)]

17

-==(2,31)

---(2.32)

---(2.33)

-==(2.34)

--=(2,35)

--=(2.36)

e=(2.37)

-==(2.38)

---(2039)
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All of the ¥'s have been determined. ‘Thg ¥(h) coefficients are
given in (2.19). The elements of the ¢ matrices are obtained from
(2.23). This completes tﬁe solution for all of the currents in
the elements of the Yagi-Uda array.

When the driven element (No. 2) in a Yagi-Uda array is a
half-wave dipole, as it often is, Bghy,=7/2 and cosByh,=0.
Some of the.quantities will become indeterminate. Although they
will yield definite values in the limiting process, an alter-
native formulation is preferred in order to avoid computational

difficulties. The equations needed are described by King[1968,p.1981].
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2-3 Radiation Pattern

Once the current distribution on the elements of the Yagi-
Uda afray is known, the far field pattern can be calculated.
The configuration of Fig. (l.1l) is used to derive the far fields
of the Yagi-Uda array.

The electromagnetic field is

. =JBgR,
Ey(Ry,0,0)=(320/2m) {AyCe  © 2/R,)F (8,80hy)
N -3BgRj
+I (e /R{)[B;G(8,8gh;)+D;D (08,8000} ===(2.40)
i=1 | :

where R; is the distance from the point of calculation to the

center of the element i and F,, G,, and D are defined as follows:
Fm(x,y)=l/2£§'sin(y-|x'[)ejx'cosxsinx dx!'

=[cos(ycosx)=-cosyl/sinx ’ ---(2.41)'

LIS )
Gm(x,y):l/Z[g (cosx'-cosy)el® COSXs;inx dx!

=[éinycos(ycosx)cosx - cosysin(ycosx) 1/

(sinxcosx) o -—=(2,42)

Dm(x,y)=l/2£§ (cos(x'/2)-qos(y/2))er'cosxsinx dx'
= {[2cos(ycosx)sin(y/2)=Usin(ycosx)cos(y/2)cosx]/

(1-bcos?x)=[sin(ycosx)cos(y/2)]1/cosx}sinx  ===(2.43)

Equation (2,40) may be arranged as follows:
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-3B89k,

Equ(Rps850) =(=Vy,/¥) (e /Ry (£yi(0,6)) ===(2, k)

Since no ambiguity can arise, the symbol ¥ without subscripts and

. . m . . .
superscripts 1is used for ¥oogqy 25 defined in (2.308), The field
factor in (2.44) for the N element array is given by:

N =3jBg(R;=Ry)

+ Tp;DLC6,8ph;) 1¥secByh, -==(2.,45)

In obtaining (2.44) and (2.45) the far field approximation RiéRz
has been made. The following set of parameters has been intro-

duced:
TUi=Bi/A2 TDi=Di/A2 where A, is defined in (2.16) =---(2.46)

The field pattern in the equatorial plane is given by
| £y (m/24¢)| /| Eyyg(n/2,0)| as a function of ¢.
| The ratio of the field in the forward direction (¢$=0) to
the field in the backward direction (¢=ﬁ) in the equatorial plane

(6=n/2) is known as the front-to-back ratio. It is given by:.
RFB=vaN(TT/2,O)I/IfVN(TT/z,TT)I -==(2.47)
The front-to-back ratio in decibels is:
rFB=2010g10(RFB) --=(2,48)

Since the total power radiated by an array is given by the
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integral over a'great sphere of the normal component of the

Poynting vector

Sp=1/2 (ExH*) - —==(2.49)

|SR(R,0,0) | =|Eg(R,6,0)|%/2zg -=-(2,50)

the distribution of Sy as a function of 6 and ¢ is of interest.

The total power supplied to the H element array. is:

where Gy is the driving point inductance of element 2 when
driving the N element parasitic array; but substituting (2.u4u4)

and (2.51) in (2.50)
[SR(Rg 58,59) [=(Pyy/Co) (17 [¥]2)(1/ggRII [£yyq(0,0) |2 =--(2.52)

~If the ohmic losses in the conductors of fhe antennas and
in the surrounding dielectric medium (air) are neglected, the
total power fadiated by an array outside a great sphere of
radius R, is the same as the total power supplied at the terminals

of the driven element 2; that is:

2 :
Pon=/o /ol Sg(Ry 8,6) | R3sin0deds -==(2.53)

With (2.52) and (2.53), formulas are obtained for G,y. Actually,
Gyy is already known from: .
I22/V02=6o1+3Boy

when the medium in which the array is immersed is lossless.
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The absolute directivity‘of the ﬁ element Yagi-Uda_array
is defined in terms of the power radiated by a fictitious iso-
tropic antenna which mainfains'the same field in all directions
as the Yagi-Uda array does in the direction of its maximum

(e=m/2, ¢=0).

P = UrR3|Sp(R,,m/2,0)|

Niso

The ratiq PNiso/PZN is the absolute directivity. Thus

Dy = (um/gg)(1/[¥|2)(1/Gy ) | £y (/2,00 ]2 -—=(2,54)

but from (2.16), (2.54) becomes.

(m/2,0)]?2

DN(W/2,0)=(4ﬂ/c0){[[A2|zcé*cosz(sohz)]/unz}(1/G2N)IfVN

The quantityx
GN(ﬂ/Z,O) = 101logqgDy(n/2,0) --=(2.56)

-is the absolute gain in decibels.

If the driven element is or is near a half wavelength long,
the more convenient alternative form of the gain 1s obtained if
F,(8,85h,) is replaced by Hm(e,sohz) in equations (2.40) and (2.45),

- Also, cosBghyp is omitted from eqdation (2.55). Hp(x,y) is defined
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as follows:
h. jBgx'cosx
Hp(x,y) = 1/2fy (sin(|x'|)-siny)e sinx dx

=[l-cosycos(ycosx) Jcosx = sinysin(ycosx)
S1NXCOSX

-==(2.57)

23



CHAPTER III

.Input Impedance

The general description of a.computer program for the
analysis of the Yagi-Uda array is presented in Section 3-1l. In
Séction 3-2,'a comparison of the present results with previous
results is discussed. Section 3-3 deals with the felationship
of input impedance and frequency. Conclusions Are drawn in

Section 3-4,
3-1 General Description of Computer Program

The main purpose of this study is to develop a numerical
tecﬁnique for calculating the characteristics of a Yagi-Uda
array. In this regard, a general computer program has been )
written in the FORTRAN IV language to obtain a~éolution for the
matrix equation (2.26).

Equations (2.26a) and (2.26b) involve elements of the NxN

matrices [¢y], [@D],_[YEU] and [WgD]. These ip turn depend on

the parameters ¥ introduced in (2.12) and (2.13), and the para-

meters-W(h) defined in (é;lg). Since each integral is approxi-
mated by a linear combination of two terms with arbitrary
coefficients, it can be evaluated by equating both sides in
(2.12) and (2.13) at two valués of z. The values chosen are
z=0 and z=hy /2, in addition to 2z=h), where both sides must

vanish. The integration subroutine used for this purpose is a

24
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subprogram for numerical integration 6f an arbitrary function by
Rombepg'; method of numerical integration. The rquired degree
of accuraéy is achieved by adjusting a convergence test constant.
Throughout this study, a convergence test constant of 0.01 and
in interval ilimit of 40 are employed.

Eyaluating the ¥ and ¢ coefficients, the 2N coefficients
-B; and D; can be determined form equations (2.26); substituting
in equations (2.7), the currents in the N elements are determined.
These computations are straightforward matrix manipulation. The
subroutine fér solution of systems of complex simultaneous
equations makes use of the Gauss elimination method. Rows are
arranged to impréve the accufacy of the results.

Finally, the input impedance of the ariven elements is
obtained from the current at the center of the driven elements
in terms of the driving voltage Vgp. The far field radiation
patterns are obtained form numerically computed currents on
all elemgnts.of the Yagi-Uda antenna array, and the absolute

directivity of the array is calculated.
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3-2  Comparison With Previous Results

In order to confirm the adequacy of the method of solution
deécribed,in Section 3-1l, a comparison betweeﬂ numerical results
from this analysis and the existihg data is required; such results
afeApfesented_in this chapter. The aistribution of the current
in an array of two full-wave elements in which element 1 is
center drivén is element 2 is parasitic is studied by King
[1968, p.212]. The agreement between the results of this study
-and those obtained by King is good. The coefficients of the
trigonometric components of the durrent; the admittance, the
impedance, the current distribution, the horizontal field pat-
tépn, the forward gain, the backward gain, and the front-to-back

~ratio.are all in agreement within 1%.

The input impedance, the far field pattern'and the gain for
a three element array [King, 1968, p.215] and for an array with
four identical directors [King, 1968, p.220] are studied. The
results obtained from this analyéié are in agreement with those
obtained by King within 5%. The difference is due to the facf
that a somewhat different.?rocedure was used. The results :
presented in [King, 1968] are based on the work of Morris[19651],
in which the entire procedure carried out in Section 2-3 for
arrays with half-wave elementé was repeatediwith the distribution
function Mp,, replaced by Sg,,. Thi§ also involved a simple

rearrangement of the integral equation so that when k=2, the
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right-hand member is (jun/cofgl/ZVQZSOZz + C2F022), whepg

80;2=sin80[22|45in80h2.

27
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3-3 Input'Impedance

It was shown by Shen [1971] that a Yagi-Uda array of an
infinite number of equally spaced elements can support a traveling
wave along the direction of the afray when the frequency is
within one of the passbands. The existence of the traveling
wave on such a structure has been confirmed by recent experiments
[Shen et al;, 19711. The phase velocity was found to be smaller
than the velocity of light. Shen [1971] assumed that currents on
the elements are constant in amplitude with equally progressive
phase shiftsy i.e., if I(z) denotes the.current at y=0 (Fig. 1.1),
then the current at y=b is'ej¢I(z), eI201(2) at y=2b, and so on,
The quantity ¢ is the phase shift between currents in adjacent
elements. It is séen that the phase angle along each element
is assumed constant. The present analysis confirms the adequacy

of this assumption. Typical examples are shown in Table I for

comparison.
TABLE I
Phase Delay Versus Director Length
Kh ©  b/h  ¢(Shen) ¢ (Present N
Study)

1.37 1.5 - 2,18 2.26 16
1.33 1.0 1.u45 l.48 20
Note: a/h=0.01, first passband ¢=average phase delay in

K=free space wave number radians
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Figures (3.1)-(3.4) show the phase angle as a.function of
the distance from the reflector. The lines drawn through the
points haverno physical signifiéance, but serve merely to inter-
relate the discrete points and thus reveal how nearly constant
the phése cﬁange from director to director actually is.

Also, Figures (3.5)-(3.8) show that for closély spaced
directors (e.g., b/h=1.0), the magnitude of I, (0) is almost
equal in the directors and much smaller than the current in the
driven element, but for larger spacings (e.g., b/h=1.5), the
Acurrents are comparable in magnitude with the current in the
driven element. Now, since Shen [1971] assuﬁed constant current
amplitudes on all elements, the discrepancy between the measured
Adirectivity and the theoretical results obtained by him would be
eipected to be less for 1onger‘arrays (b/h=1.5). This was
already described by Shen in the same paper. Also, as was ex-
plainea by Shen [1971], the theoretical results obtained by him
for the direcfivity are not necessarily equal to the naxinum
value and so, for longer arrays, the baﬁdﬁidth is narrower and
therefore the discrepancy betwéen the caléulated directivity

and the maximum value gradually disappears.
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3-4 Conclusions

The input impedance is calculated for different lengths of
the director and the driven element. for the four examples shown
in Figs. (3.9)-(3.12) it was found that the resistive part of
the input impedance is more sensitive to changes in the reflector
length and the reactive component of the input imﬁedance is more
'sensitive to changes in the driven element length.

For the cases shown in Figs. (3.1), (3.%) and (3.13), the
phase shift ¢ between currents in adjacent elements is apparently
independent of the length of the driven element and the director.

The magnitude of I, (0) take$ the form of a standing wave,
the pattern of which is not affected by the length of the reflec-
tor as shown in Fig, (3.14), or by the léngth of the driven ele-
ment as shown in Figs. (3.5)-(3.8). The magnitude is nore affected
by changes in the length éf the driven element than by the length
of the reflector.

In summary, to obtain a desirable input impedance for a
Yagi-Uda array, the length of the-driven element and the lengtﬁ
of the reflector can be changed. The resistive part can'be |
changed effectively by adjusting the reflector length, and the
reactive part can be changed by adjustiné the length of the
~driven element. It is'observed.that for a 10% change of these

lengths, the phase shift between currents on adjacént elements
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and fhe relative current amplitudes are chénged very little(=2%).
Hence, the field pattern and directivity are also insensitive to
the change of director and reflector lengths. This is shown in
?ig. (3.15).

This obéervation is useful in applicétion, since in the
design of a Yagi array, it is now possible to separate the design
"of the radiation pattern from the design of the innut admittance.
When the'array is optimized in its radiation pattern using Shen's
method, the input impedance can be optimized using the present

method, or simply by trial and error in measurement,
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CHAPTER IV

Optimization of the Yagi-Uda Array

A method was developed by Cheng ahd Chen ‘[1973] for the
optimization of the forward gain by adjustment of the inter-
element spacings. This method is described in Section u-1.

In Section 4-2, some numerical results obfained from the

present stuéy are discussed. Also discussed in this section

is the extent to which the bandwidth is affected when the inter-
.element'spacings are adjusted for maximum directivity. In

Section 4-3, conclusions are drawn.



YAGI-UDA ARRAY - CHAPTER IV 48
4-1 Spacing Perturbation

With a view to adjusting tﬁe element spacings in a Yagi-Uda
array, we assume that the positions of the kth énd the ith
‘elements be displaced by small amounts Adk and Ad;, respectively.
 Ryg=llzp-z1)? + b2, 1%/2
~If (Adg-Adj)<<byj, then
ARy 3 =by s /Ry s (Ady=Ady) ~ ——=(4.1)

We write the new perturbed matrices:

Coyl? = [oyl+lasyl ——e(l4.2a)
LopIP = Loplelacy] A © a==(l,2b)
[¥hylP = [¥iyl+lavdy] ——=(l,2¢)
[¥3,1P = [¥p+lavh)] o eee(4.2d)
{oy}F = {oyy}+{at,y} —-=(4,2e)
{“’}:Zldv}p = {wgdv}+{Angv} ' ——=(4,2f)

The coefficients for the current terms will also be changed.

We write:
{B}P = {B}+{AB} | —-=(4.2g)
{D}¥ = {D}+{aD} _ —==(Y4.2h)

With this change in the inter-element spacings, a typical term
in the integrals contained in (2.,10) and (2.11) can be written as
hy
| | ] - -
lh- Goz!Kki(zk,zi )dzi (q'.3)
i i
where Gozi stands for MOz!' Fozi' or Hoéi, and MOzT' Fozi’ and

Hy,1 have been defined in (2.7).
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" Now we can write the kith element of the square deviation
matrices and the kith element of the column deviation matrices

as follows:

Lae ly; = (Adp-Ad.)0e)], . (1-6, ) _ -==(4,9a)
Cadply; = (Aq-ad;)0ep ]y (1-6, ) ---(4,9b)
Cavh l, = (A4 -ad)[¥3!l . (1 k;) —ee(4.9C)
[a¥} s = Cad-ad ) [¥RLT; (1-6y ) -e-(99)
{89, }, = (&4 -4d ){¢2V}k(1 akz) --=(4,9e)
i 8D ) = (A4 -Ad) (Y21} (1-5, ) | —mm (4, 9F)

If second order derivatives are neglected, substituting

(4.2) into (2.26) yields:

F¢U]{AB}+[¢D]{AD} = -{A®2V}A2—[A®U]{B}-[AQD]{D} --=(4,10)

. h h
[ ]{AB}+[W D]{AD} = -{AWZdV}AZ-[AWdU]{B}-[AWdD]{D} ——=(l4,11)

where A, is-defined in (2.186).

In view of (4.9), the kth element of the right hand side of
(4,10) can be written as:

N

i=1

The proof is as follows:
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Af=fA:£:§HGOZ;iAKki(zk;zi)dzi : | . mme(l oY)
but AKy: = Ae-jBORki/Rki
SR (ejpgre PORKE | TIP0TKL, e
=[-efj60Rki(j80Rki + 1I/RE; BR g ——-(1.5)

If BoRki>>1,
’ -3B4Ry s
AKki = [-jBoe 0 kl]/Rki ARki _ —e=(4,6)
‘Substitution of (4.1) and (4.6) in (%.4) yields

h -3BgRy

! . )
Af-Ihi Gg,tiL=3Bgby; (Ady-Ad;)e 1/RE; dz!
- w hi -380Ri
- -. . - ' ———
= ]Bobki(Adk Adi)fhi GOz'i[e /Rki]dzi (4,7)

Now, if k # i, using equations (2.10) and (2.11) would imply that

they would sfill apply with KEid substituted for K, ;4, where

o+ =3iBgRyg -3BgRyg

Kﬁid = e l/Rii - e k;h/Rﬁih -==(4,8)
Although the kernel is now a different function, use is made of
the propertiés shown in (2.12) and (2.13). Complex matrices
[ofd, [opl, [¥34], and [¥34] are defined as [&yl, [opl, [¥h;1,
and [WED] were defined in Chapter II, except that the integrals
W defined in (2.27) and the integrals Y¥(hy) defined in (2.19)
are multiplied by -jBg(d,~d;) and KP; 4 is substituted for Kyig,

as was shown in (4.7).



YAGI-UDA ARRAY - CHAPTER IV 51
' The kth element of {AQZV}AZ is
" (Ady-48dy) {83y hAy (1=8;9)

The kth element of [A@U]{B} is

N
i= 1 _
N .
- ' 1 -

The kth element of [A@D]{D} is

N
- 1]
Z (Adk Ad )[@ ski)Di
N
= z '] - 1
Adk 1[®D Ki dki)Dl L l[QDJk (1- ki)DiAdi

The sum of the above three terms yields:

N N
Adk[{¢2V kB (l=85) + T [84],:(1-65)B; + L Lofly 5 (1-6, 0D, ]

i=1 i=}
N
- [{¢2V}kA2(1 §,9)8d,1 - f 1[¢ Uk (1=8y)B; Ad;
N_ . .
+ § ltéﬁlk (1 -Gki)DiAdi ~==(4,13)

The follbwing expressions for the elements of [P2] are derived:

[Pyl = [O040; (BY, + [ef] (D}, i#k i#2  ===(4.1¥)
[P2]k2 = [@6]k2{B}2 + [(D]'D]kz{D}2 + {éév}kAz(l-sz) k#2 -—=(4,15)
. N N .
- L
i=1 i=1
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Ahd-similarly, another NxN matrix can be defined and equations

(4.10) and (4.11) become: -
[e, 1{aB}+lopl{sD} = [P,1{Ad} me=(4.17)
(¥R J(aB}+[¥ 1{aD} = [P,1{ad}
du db 3

The perturbed current coefficients {B}p'and {D}p can then be
determined from (%.2g) and (4.2h).

The preceding formulation is not suitable when sohi=n/2 as
long as it is less than 5w /4. The preceding expressions nust
be modified in accordance with the procedure in Chapter II.

(4.17) and (4,18) become:
[e..] [8-1 - [{aB} [CP,7]
[ N 0 ]{ }={ 2}{Ad} e (4.19)
vl rvhp1d Loy (rpy)

From (4.19), {AB} and {AD} can be found by matrix inversion:

-1
{AB} [6..1 [o.] (p.1 : [qQ,3!

= [ yop ] 27 ad) = 27H{Ad}  ---(4.20)
{aD} [de] [wdD] [P3] [Q3] .

The radiation field of a linear array at a distance Ry from
a reference origin is:

N jBOdisinecos¢ h jBozicose

. i
E(0,p) = wBg g singLy I, (z!)e dz! =-=(4,21)
TRy i=1 - | it *
jBOdisinecos¢'h. jBgzlcos®

. 1.
Let us consider the term e {hiIi(zi)e .dzi
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For small Ad;; i.e., for Ad;/d;<<l

380d151n6cos¢ h. jsozicose
ACe Ih I (z')e dz!)
i
jBgdisin@cos¢ jBgdisingcos¢
=A(e IxI + e xAT —ee(4.22)
hs jBgzlicose
where I=£hiIi(zi)e dz!
]BOd sinfcosé jBOdisinecos¢
but A(e ) = jBgsinbcosde Ad; -==(4.23)
hs jB z! !cos®
and AT = [, 7(8B;jF,,, * 8D;Hgp,1)de dz!
i i i
hs jBgzlcos®
i
AT = (AB lfh FO J!.e dZJ'_
A Ihi jﬁozicose
' - e s
+ ( Di)_hiHozie dz} (4,24)

Substituting (4.23) and (4.24) into (4.22), the right hand side
of (4.22) can be written as:

. - . '
jBodiSln9C08¢ B JBgz;cose

. . . i
(Ad;de (33031necos¢)[Bi£hiFoz£e dz!

h. jsozicose jBOdisinecos¢

i
+ Dy IhiHozie dz!] + e L.

3 1
h. ]Boz cos?f h. ]BOZiCOSG

i i
AB, IhiFOZ' dz} + AD; fhiHOZ'e dz!] -==(4,25)

A simplification seems possible by defining:
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h. jB,zlcoso - .
u{2)¢o) = Bo g tr e 01 Tsinedal == (4.26)
2 W | :
h; jB .z ! coso
3 i ]
Mi de) = B0 g, g e 0 sinedz} ——=(4.27)
2 i i

Thus, the radiation field of a spacing-perturbed linear

array at a distance Ry from a reference origin is:

. N jBOdisinecos¢
E'(6,0) = EC(0,9) + j60 I e {jBOsinecos¢(Adi)x
R, i=1
0

(2) (3) (2) (3)
[Mi (e)Bi + (G)Di]+[Mi (e)ABi + Mi (G)ADiJ}

---(u.28)
where E(6,4) is the radiation field of the unperturbed array.
It is convenient to define an N element column matrix {ﬁ}

with the kth element:

) jB,d, sinfcosy (5 3
Dé = _%Eg{jsosinecos¢e 0"k ' [Mﬁ )(O)Bk + né )(O)DR]
0
N jByd;singcos¢ 2
s e 710,055 + 157 TQ315500) == (4.29)
where [Qz]ik.and [Q3]ik denote the ikth elements of [Q2] and LQ3],

respectively.

With (4.29), we can write (4.28) as:

E'(8,0) = EC8,0)+{01{ad} = EC8,¢)+{Ad}{D}  ==-(4.30)
where the superscript T denotes transposition.
Now we consider the problem of gain optimization by spacing

perturbation. The gain of an array in the direction (g;,¢y) is:

G(Byspg) = E(80s90)E"(8g400) | | ==m(4.31)
’ 60Fip
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where P, is the time averagéd input power. With spacing pertur-

bation, E becomes E', P; ., becomes P!, and the perturbed gain

1
becomes:
' Er#( )
G'(8,40,) = E (90’¢o) 992%
0 5opr!
in
E'E'#* = (E+AE)(E+AE)*

(E+AE) (E*+AE%*)

EE*+E*AE+EAE®*+AEAE®*

i

EE*+2Re (EAE#*) +AEAE®

From (4.30),

CE'E'® = EE* + 2Re(E{ad}T{D%}) + {Ad}T{D%}{ﬁET{Ad} ~-=(14.33)
We define: '

ReE{D%} ~==(l4,34)

and - [Cq1]

{D* )T oo (4.35)

Equation (4.33) now becomes:
E'E'% = EE* + Z{Ad}T{Bl} + {Ad}T[ClJ{Ad} -==(4,36)

The NxN squére matrix [C1] is positive semi-definite, and since
-{Ad} is a real matrix, [Cy] in the last term of of (4.33) can’

be replaced by [ReCy]. P! in the equation above is

- oo - T R
P! =1/2Re[V§,IP(0)1 = P, + {Ad}"{B,} e (14.37)
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where

Pip = 1/2V02Re[A2M022(0) + BZFDZZ(O) + DZHOZZ(O)] ---(4,38)
and the kth element of the column.matrix {By}'is
{BZ}k =-1/2V02Re{[Q2]2kFOZ (0) + [Q3]2kHOZ (0)} -—e(l4,39)
2 2

For a lossless array, the input power equals the total power

radiated, and Pl can be written in an alternative form:

Pi, = 1/60{1/(4n)f§"d¢fg|5'(e,¢)|2sineded¢ ——=(l,40)

Using (4.30), (4.40) can be expressed as

where the radiated power of the unperturbed array

CPi = 1/(240m)s3"dagsg|EC8,9) | 2sinodeds —m=(.12)
{B3} = 1/(240m)s3"ds/ B, }sinededs == (b, 43)

and |
[c,1 = 1/¢2u0msF"ds/gLC, Isinodods SRS

‘{By} and [C;] have been previously defined, respectively, in
(4.34) and (4.35), and [Cy] is a positive definite Hermitian

matrix.
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The objective of gain oﬁtimization by spacing perturbation
is to find the small changes in the element spacings such that
the array gain in a given direction is increased and to repeat
the process until further increases in gain are negligible.

Hence, it is essential that
AG(Bg,6q) = G'(B,05) = G(8j,0q) . ===(l,45)

be positive, Substitution of (4,31)=-(4.41) in (4.45) yields

86C8,400) =1 (81T (B}+(aa) [ReC, 1MAQ) = (4, 46)
60 Py +2{Ad}1{B,y}+{Ad) [ReC,1{Ad)
where
{B} = 2{B1}-60G(8y,d4){By}- —em (4, 47)

Note that the negative sign in (4;47) for {B} in the numerator
of ¢(60,¢0) in (4.46) implies that the array gain will decrease
for an improper choice of {Ad}.

In order to be certain that G(8p,¢y) will be positive,
we make use of a known relation in the theory of matrices.
Applied to the preseﬁt problem, the relation asserts that if

-[ReC,] is positive definite, then
‘T -1 T T .
({B}"[ReCy] '{B})({Ad} [ReCy1{Ad}) > ({ad}"{B]) -———(l4,43)
In (4.48), the equality sign holds when

{Ad} = a[ReCp17*{B} -~ .:" : —ae(l,43)
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where a is a positive constant. Hence, if the spacing changes

in {Ad} are chosen such that

{8d} = alReC,11(2{B;}-60G{B,}) ~ ===(4.50)
then

86 = 1t a(2{B }-60G{By ) T[ReC, 1~ 1(2{B} }-60G{B,})
+{8d}[ReC;1{ad} 1/[ P; +2{ad}" (B3}

+{aa}T[ReC,1{ad} 1> 0
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4-2" Numerical Results

In this section we present some of the examples that were
used By Cheng [1973] to illustrate the effectiveness of in-
creasing the directivity of the Yagi-Uda array by spacing per-

turbation.
Example 1

Six element Yagi array'with a half-wave feeder (2h,=.51),
-one reflector (2h;=.51)), four directors (2h3=2hy,=2hg=2hg=.43}),
a=0.003369A. In the initial array, b21;0.25k, bgo=by 3=bgy=bgr=0.311.
The direétor spacings are to be adjusted for gain maximization
with the reflector spacing being fixed. The initial array is
~ found to have a 9.06 dB'gain [D.K. Cheng, 1973]. The present
numerical calculation yields a 10.93 dB gain. The normalized
radiation pafterns.are shown in Fig. 4.1, which agrees well with
the patterns of Fig. 2 of [Cheng, 1973]. It is seen that the
pattern for the optimum array has ﬁot only narrower main bean
but also lower sidelobes. The optimized array 1s unequally spaced
and was found to have 10.72 dB gain by Cheng [1973] and 12.49 dB
gain by the present study. The increase of the array gain is
1.66 dB according to Cheng and 1.66 dB according to the present
study. As was mentioned in Section 3-2, thé difference is due to

a somewhat different procedure. The results are summarized in

-

Table I.
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Example 2.

Six element Yagi-Uda array with a half-wave feeder (2h,=.5}),
one reflector (2h;=.51}), four directors (2hy=2h,=2hg=2hg=.1431),
a=0.003369A. In the initial array, b1=.28X, b3,=b,3=br,=bges=.31A.
All element spacings are to be adjusted for gain optimization.

The reflector spaﬁing bpq in the initial array is arbitrarily
chosen tO'bé 0.28X and all other element spacings are given as
0.31X. The gain of the initial array was found to be 8.77 dB by
"Cheng and Chen and was found to be 10.8§ dB by the present study.
The gain of the optimized array was found to be 10,74 dB by Cheng
and Chen and 12,51 dB by the present study. The increase of the
array gain is 1.97 dB according to Cheng and Chen and 1.63 dB
according to the pfesent study. Again the difference is somewhat
due to a different procedure, as was explained in Section 3-2,

The results ére summarized in Table II.
Example 3

Ten element Yagi-Uda array with a half-wave feeder (2h,=.51),
ohe reflector (2h;=.51}), éight directors (2h;=.43X,i=3,4,...,10),
a=0.003369A. In the initial array, b21=.25A, b3y=by37...3bygg=.31A.
The director spacings are to be adjusted for gain maximization.

The gain of the initial array was found to be 10.32 dB by Cheng and
Chen and 12.3 dB by the present study. The gain of the optimized

array was found as 12,1 dB by Cheng and Chen and 13.9 dB by the ﬁresent
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study. The. increase in the array gain is 1.18 dB'according to
.Cheng and 1.6 dB according to the present study. The results

are spmmarized in Table III.

The passband of the array was defined by Shen [1972] as the
frequency band in which the directivity varies within 3 dB of the
maximum value. Using-this definition; a comparison of the band-
width as Wéll as the array gain is described in Table IV, froﬁ
which it can be seen that the bandwidth is sacrificed when the
~array gain is optimized. A more interesting result is shown in
Figures 4.2 and 4.3, where the array gain is plotted versus
frequency for both the initial and optimized arrays of Cheng
[1973]., It was found that if the array's forward gain is maxi-
mized by frequency perturbation before it is maximized by
changing the inter-element spacings, then the gain increase
described by Cheng [1973] is not asrmucﬁ. This is shown in-

Table V.
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TABLE I
Galn Optlmlzatlon for Six-Element Yagi-Uda Array
"(Perturbation of Dlrector Spacings)

65

‘Array

GALNCddB)

bypy/X bgop/A b43/k bsu/k bgg/A Cheng Present
Study

Initial

0,250 0.310 0.310 0,310 0;310 9.06 10.93

Optimized 0.250 0.336 0.398 0,310 0O.u407 10,72 12.49

TABLE II

Gain Optlmlzatlon for Six-Element Yagl-Uda Array
(Perturbation of All Element Spac1né

AL

N CdB)
Array bs1/X b3p/A byz/A bgy/) bgg/x Cheng  Present
Study
Initial 0.280 0.310 0,310 0.310 0.310 8,77 10,88

Optimized 0,250 0.352 0,355 .0.354 0.373 10.74 12,51




TABLE III '

Gain Optimization for Ten-Element Yagi-Uda Array :

(Perturbation of Director Spacings)

byy/X Dbgo/A

GALNU CddB)

A Study
Initial 0.250 0,330 0.330 0,330 0,330 0.330 0,330 0.330 0,330 10.92 12.3
Optimized 0.250 0,319

0.357 0.326 0.400 0.343 0.320 0.355 0.397 12.1 13.9

99

AT ¥ILAVHD - AVYYYV VAN-ISVA



YAGI-UDA ARRAY - CHAPTER IV

67

TABLE IV
: . Gain Bandwidth %
Lxample 2
Initial array 10.88 12.9
Optimized array 12,51 11.6
Example 3
Initial array 12.3 13.0
Optimized array 13.90 10.8
- TABLE V
GAILIJ I § CREASTE
Example
Cheng Present If Maximized by
Study Frequency Adjustment
2 1.97dB 1.63dB .55dB
3 1.184dB 1.6 4B .50dB
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L3 .Conclusions

The procuedure used by Cheng and Chen to calculate the for-
ward gain of the Yagi-Uda array is soméwhat different than the
procedure used in the present study. This was described in
Cﬁapter III. These differences are snall, and either procedure
gave satisfactory results. In both, the effects of a finite
element radius and the mutual coupling between array elements
are taken into consideration; also, in bothhthé three-term theory
with complex coefficients is used to approximate the current dis-
tribution in the elements and to convert the integral equations
into simultaneous algebraic equafions. The examples used by
Cheng and Chen to illustrate the gain increase by adjusting inter-
element spacings were verified using the method developed in the
present study, and they are in agreement within 1/2 dB (comparing
the absolute gain increase of the initial Yégi—Uda array) .

The convergent iterative technique developed by Cheng and
Chen yieids the optimum spacings for maximum array gain without
the need for a haphazard trial and error approach or for inter;
preting a vast data collection. |

On the other hand, it was found out that shoula the array
gain be optimized by adjusting the frequency, the net gain in-
crease is less than the typical gain increases which are attain-

able with Cheng and Chen's techniques as described in their paper.
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699

350
355

SUBROUTINE YAGI(NyNDyAyHL sSX3AS24XySOUM,SM,yZN2,GAIN)
EXTERNAL WVKNI WVKNIL,WVKN2,WVKNI2,WVKN3,HWVKNI3

EXTERNAL WUKN1,WUKNI1l,WUKN2,WUKNI2,WUKN3,WUKNI3 :
EXTERNAL WDKN1,WDKNI1,WDKN2,WDKNI2,WDKN3,WDKNI3 71
COMPLEX WV1(20,20),WV2{20+20)+WV3(20,20)

COMPLEX WU1{20,20)4AU2(20,20),WU3(20,20)

COMPLEX WD1(20,20) +WD2(20,20),WD31(22,2))

COMPLEX EPSHDD(20420)4+EPSHDU(20,20),EPSFDU(2C420)EPSFDD(22,2D)

COMPLEX PHIU(20,20),PHID(20,20)°

COMPLEX PHIV{20)

COMPLEX EPSHV(10)

COMPLEX SOUM{ND,NO),SM(ND),X(NO)

COMPLEX AS2,Y

COMPLEX TD(20),TU(20)

COMPLEX YN2,CURNT,FLD,yXNORM

COMPLEX ZN2

DIMENSION DELTA1(20),DELTA2(20)

DIMENSION A(N),HL(N)

DIMENSION PHIVR{20),PHIVI{20),EPSHVR{2D),EPSHVI(20)
DIMENSION WVR1(20,20) yWVI1(20,20),WVR2(22420)4WVI2(20,20)
DIMENSIDN WUR1(20420)4WUIL(204520)4WUR2(20,20)4WUI2(20,20)
DIMENSION WDR1{20920),WDI1(20,22),WDR2{20,20),WDI12(20,20)
DIMENSION WVR3(20,20),WVI3(20,20)

DIMENSION WUR3(20,20),WUI3(20,20)

DIMENSION WDR3(20,20),4DI3(20,20)
COMMON/BS/B(20,20)/HS/H(2D)
FM(R,Q)=(CDS{Q*C0S({R))I=C0S{Q))/SIN(R)
GMIR,Q)=({SIN(Q)*COS(Q*COS(R)I*COS(R)-COS{QI*SIN(Q*CIS(R)))
1/SIN(R)/COS{R)
DM{R,Q)=({{2.0%COS(Q*COSIR))I*SIN{Q/2.0)~4.0%¥SIN(Q*COS(R)}I*C0OS(Q/2.0
2)%
1COS{R))/(1.0-4.0%COS{R)*COS(R))I-SIN{Q*COS(R)I*COS(Q/2.0)/CIS(R))*
2SIN(R) '

TPI=6.283185307156

DO 699 K=1,N

H{K)=H1(K)

CONTINUE

DO 355 K=1,N

DO 355 I=1,N

IF (1.EQ.K) GO TO 350

B(KyI)=A(K)-A(I)

B{KyI)=ABS{B(K,I))

GO TD 355

B(KyI)=SX

CONTINUE

DO 20 K=1,N

DO 20 I=1,N

WVRI(K,I)=SIQD(=HII)yHII)sWVKN19DeJs3eD1yKyI)
WVIL({KyI)=STQD(=H{I)yH{I) s WVKNI14J4032.014K,1)
HVRZ(K;I)=SIQD('H(I)QH(I)oWVKNZ,O-0,0-Ovi,I)
WVI2(KeI)=STIQD(=H(I)yH(I)sWVKNIZ24240,0e21,Ky1)
WVR3(K,yI)=SIQD{-H(I)sH{TI)yWVKN3,34D92.01,Ky1l)
AVI3(KyI)=SIQAD(~-H(I)yH{I)yWVKNI340.090.014K,1I)
WURL(KyI)=SIQD(=H(I)yH{I),WUKN1yDeDs00lyKy1)
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60
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WUILIK,I)=SIQD{(—=H{I) H{I)sWUKNIL19DeD9DaD14K,1I)
HUR21K,I)=SIQD(-H(I):H(I’vNUKNZ,O.O!O-Dl,KQI’
WUIZ2(K,1)=SIQDI-H{I)sH(I)y WUKNIZ29Je04s0e014K,1)
WURZ (K I)=SIQD(=H(I)sH(I) s WUKN332.0350.01,4K,1)

WUIB(KyI)=SIQD(=H(I)sH{I) s WUKNI3y0e0,40.01,+K,1)

WORLI{K,yI}=SIQDU(-H{I)gH{I)sWDKNL19Ded9DedlyK,yI)
WDI1(K,I)=SIQD{(-H(I)4H(I)yWDKNI134DJ4D04D31,Ks1)
HDRZ(K’I,=SIQD(-H(I)’H(I)’HDKNZ'O.D,0.0I'K'I)
WDIZ2{K4I)=STIQD(-H(I)yH(I)sWDKNI2y0.0,0.014K4s1)
WDR3(K,I)=SIQD(-H(I) H(I)sWDKN342e05J.014Ky1I)
WDI3(K,I1)=SIQD(-H(I)yH(I) yWDKNI340e0+0.014KyI)
WVI{K,I)=CMPLX(WVRI(K,sI)WVI1{K,y1))
WV2(KeI)=CMPLXIWVR2(K,I) WVI2(K,1))
WV3(KeI)=CMPLX{HWVR3{KsI)4WVI3(K,1))
WUL{KsI)=CMPLX(WURLI{(K,»I) s WUIL(K,I))
WU2{KsI)=CMPLX{WUR2(KsI)} yWUI2(K,1))

WUB(Ky T)=CMPLX{WURZ{K, 1) s WUI3(K,I))
WD1(KeI)=CMPLXI{WDRIIK,sI)}),WDI1(K,I))
WD2IKyI)=CMPLX{WDR2(KsI)4WDI2(K,1))

WD3{Ke I)=CMPLX{WDR3(KsI)sWDI3(K,yI))

CONTINUE

DO 60 K=14N

DELTAL(K)=SIN(H(K))*(CIS(H(K)}/4.0)-C0S(H(K)/2.0))
DELTAL(K)=DELTAL(K)-SIN(H{(K)/2.0)*{1.0~-COS(H(K)/2.0))

72

DELTAZ2(K)=(1.0~-COS{H{K)})*(COS(H(K)/4.0)-CDS(H(K)/2.0))
DELTA2(K)=DELTA2{(K)=(COS(H(K)/2.0)=-C0S(H{K)))*(1.0-COS(H(K)/2.0))

DO 80 K=1,N
DO 80 I=1,N

EPSHDD(K, 1)=WD2{K, 1) %¥({1.0-COS(HI{K)))
EPSHDD(K, I )=EPSHDD(K, I)=WDLI{K,I)%(CISIH(K)/2.0)=20S{H{K)))

EPSHDD(K, 1) =EPSHDD(K,I)/DELTA2(K)
EPSHDU(Ky I)=WU2(K,I)*{1.0-COS(H(K)))

EPSHDU(K, I)=EPSHDU(Ky I)-WULIK,I)*(CIS{H(K)/2.0)~COSTH(K)))

EPSHDU(K,I)=EPSHDU(K,1)/DELTA2({K)

EPSFDU(Ky 1) =WUL(K,I)*(COS{H(K)/4.0)-COS(H(K)/2.0}}
EPSFDU(K,y I)=EPSFDU(K,y I})=WU2(K,I)*(1.0-CIS(H(K)}/2.0))

EPSFDU(K,I)=EPSFDU(K,I)/DELTA2(K)

EPSFDD(Ky I)=WD1{K, I)*(COS(H(K)/4.0)=COS(H{K)/2.0)})
EPSFDD(KyI)=EPSFDD(KyI)-WD2(KyI)*(1e03-COS(H(K)/2.0))

EPSFDD(K,I)=EPSFDD(K,I)/DELTA2(K)

PHIU(K, I)=WU3(KyI)-EPSFDU(K,I)%CIS(H(K))
PHID(K,I)=WD3(K,I)~-EPSFDOD(K,I)*¥COS(H(K))
CONTINUE .

DO 210 K=1,N

IF (K.EQ.2) GO TO 2190
PHIV(K)=WV1(K,2)*{COS(H(K)/4.0)-COS(H(K)/2.0))
PHIV(K)=PHIV(K)-WV2(K,2)%*(1.0-COS(H{(K)/2.0))
PHIV(K)=PHIV(K)*COS(H(K))/DELTA2(K)
PHIVIK)=PHIV{K)-WV3(K,2)

PHIV(K)}=-PHIV(K)

CONTINUE

PHIV(2)=WV3(2,2)

DO 400 K=1,N

IF (K.EQ.2) GO TO 4030

'18/47/00
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115
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130
39

52

65

30

113

111
126

73
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EPSHV(K)=WV2(K,2)*(1.0-C0S{H(K)))
EPSHV(K)=EPSHV(K)=WV1(Ky2)*(COS(H(K)/2.0)-COS(H(K)})
EPSHV(K)=EPSHV(K)/DELTAZ2(K)

CONTINUE

"EPSHV{2)=WV2(2,2)%SIN(H(2))-WV1(2,2)*SIN{H(2)}/2. 0)

EPSHV(2)=EPSHV(2)/DELTAL(2)

NO=2#N .

Y=CMPLX(G.0,1.0])

AS2=DELTAL(2)%Y/60.0 :
AS2=AS2/{WVL1(242)%{(COS(H(2)/442)=COS{H{2)/2.0))-HV2(2,2)%(1.0-C35(

1H(2)/72.0)))

AS2=AS2/C0S(H(2))

DO 69 K=1,N
PHIVI{K)=PHIV(K)*AS2
PHIV(K)==PHIV(K)
EPSHV{K)=EPSHV(K)}*AS2
EPSHVIK)}=-EPSHVI(K)
CONTINUE

DD 78 K=1,4NDO

DO 78 I=1,N

IF (K.GT.N) GO TO 115
SOUM{I,K)=PHIU(I,K)
60 10 78
SOUM(I 4K} =PHID(I,K=N)
CONTINUE

DO 39 K=1,4NO

KL=N+1

DO 39 I=KL4sNO

"IF {(K.GT.N) GO TO 130

SOUM{I,K)}=EPSHDU(I-N,K)
50 10 39
SOUM(I,K)=EPSHDD{I-N,K~- N)
CONT INUE

DO 52 K=1,N

"SM(K)=PHIV(K)

DO 65 K=KL,NO

SM{K)=EPSHV(K=N)

CALL EQSOL{SDUM,SM,X,NJ)

YN2= ASZ*SIN(H(Z))+X(2)*(1.0—CDS(H(2)))+X(N+2)*(1 0-COS(H(2)/2.3))
IN2=1.0/YN2

WRITE (6,430) ZIN2

FORMAT (5X18H INPUT IMPEDENCE=F1J0.4+3X,F1J.4)

DO 126 K=1,4N ’

IF (K.EQ.2) GO TO 125

DO 113 L=1,10

RATIO=(FLOAT({L)-1.0)/10.0

CURNT=X{K)*(COS(H{(K)*RATIO)-COS(H{K) ) I+XIN+K)*(COS(H(K)*RATIO/2.D)

1-COS(H(K)/2.01})

ANGLE=360.0/TPI*ATAN2(AIMAG(CURNT) ,REAL{CURNT))
AMAG=CABS ( CURNT )

WRITE (6,111) K,CURNT,AMAG,ANGLE

FORMAT ([11,2X5E12.6,3XE12.693X,E124643X4E12.6)
CONT INUE

DO 139 L=1,10



_ 74 -
[v 6 LEVEL 19 YAGI DATE = 74098 18747730

RATID=(FLOAT(L)-1.0)/10.0 :
CURNT=AS2*(SIN(H{2))-SIN{ABS(RATIO®H(2))))
CURNT=CURNT+X (2)*(COS{H(2)*RATIO)-COS(H(2)))
. CURNT=CURNT+X(N+2)*(COS(H(2)%RATIO/2.0)~COS(H(2)/2.3))
. ANGLE=360. O/TPI*ATAVZ(AIMAG(CURNT),REAL(CURNT))
AMAG=CABS (CURNT)
139 WRITE (6,111) L,CURNT,AMAG,ANGLE
DO 152 K=1,N
TU(K }=X{K)/AS2
TD(K) =X (N+K) /AS2
152 CONTINUE
DO 626 KHI=1,19
FLD=FM(TPI/4.0,H(2))
DO 639 I=1,N
PHI=(FLOAT(KHI)=1.0)*TP1/36.0
IF (I.EQ.2) GO TO 713
FLD=FLD+(COS((2.0-FLOAT(I))*B(2,1)*COS{PHI)/ABS(2.0-FLOAT(I)))
1 =Y*SIN((2.0~FLOAT(I))%B(2,1)%COS(PHI)/ABS{2.0-FLOAT(I))
LOTUCI)*GM(TPI /4.0, H(I) )+ TD(I)¥DMITPI/4.0,H(T)))
726 GO TO 739
713 FLD=FLD+TU(2)*GM(TPI/4.0,H{2))+TD(2)%DM(TPI/4.3,H(2))
739 CONTINUE
639 CONTINUE
FLD=FLD/COS(H(2)) S
IF (KHI.NE.1) GO TO 652
XNORM=FLD -
RESIS=REAL{YN2)
RESIS=ABS(RESIS)
GAIN=60.0%COS(H(2) ) *CABS(AS2)
GAIN=GAIN*GAIN/RESIS
GAIN=GAIN/30.0
GAIN=GAIN*CABS({XNORM) *CABS ( XNORM)
GAIN=10.0*%ALOGLO(GAIN)
652 FLD=FLD/XNDRM
E=CABS(FLD)
FLDDB=20.0%ALOG10(E)
ANGLE=360.0/TPI*ATAN2 (AIMAG(FLD),REALIFLD))
626 WRITE (6,181) KHI,FLDDB :
181 FORMAT (I14,5X,F10.4)
WRITE (64187) GAIN
187 FORMAT (11H GAIN= E13.4)
559 CONTINUE :
sToP '
END

))*




T W T

.00 01/05 14 19- SU836(0) 75

0101: FUMCTION SIQD(A,B, FCN EPS,ETA,KM, IM)
C " ROMBERG INTEGRATION FOR REAL FUNCTION WITH REAL ARGUMENT

0102: DIMENS'ON Q(41) '
0103: -(8 -A)/2. '
0104+ =H# (FCN(A,KM, IM)+FCN(B, Kw IM))
0105: NX 2
0106 DO 12 N=1,40

01 0107: SUM=0. :

01 0110: DO 2 I=1,NX,2

02 011i: | CFCNXTI=FCN(A+FLOATCT) #H, KM, IM)

g2 0112: 2 SUM=SUM+FCNXI

01  0113: T=T/2.,+H#SUM

01 0114: Q(N)=(T+H=SUM) /1,5

01 0115: IF(N-2) 10,3,3

01 0116 3 F=4.

01 0117: I=N

01 0120: ] DO 4 J=2,N

02 0121: I=1-1

02 0122: F=F«4,

02 0123: 4 Q(I)=Q(I+1)+(QCI+1)~-QCI))/(F-1.)

01 0124: IF(N=-3)9,6,6

01 0125: 6 X2=ABS(G(1)-QX2)+ABS(QAX2-0X1)

01 0126: TABS2=ABS(Q(1))

01° 0127: 20 IF(TABS2)71,81,71

01 0130: 71 IF(X2/TARS2-ETA)11,11,81

01 0131: 81 IF(X2-FPS)11,11,9

01 0132: 9 0X1=QX2

01 0133: 10 Qx2=Q(1)

61 0134: H=H/2.

01 0135: 12 NX=NX#2
0136 WRITE(5,100)A,B
0137: 100 FORMAT(47H ACCURACY LESS THAN SPECIFIED VALUES--S1UD--A,B
0140: 11 SI1GD=Q<(1)
0141: RETURN

0142« END
NG 002537 .... THE SYMBOL 'J' OCCURS ONLY ONCE IN THE PROGRAM,

NG 002537 .... THE SYMBOL '#00020' OCCURS ONLY ONCE IN THE PROGRAM.



N et

.00 01/05-14:19~SUB37(0)

0101: SUBROUTINE EQSOL(A,B,XsN)
0102: COMPLEX A(N,N),B(N),X(N),TEMP,FACTCR,SUM
0103: 30 FORMAT (2F10.6)
0104: 25 NM1i=N-1
0105: DO 610 K=1,NM1
01 0106: KP1=K+1
01 0107: L=K .
01 0110: Do 400 I=xP1l,N . .
02 ©0111: ~ 400 IF (CABS(A(I,K)).GT.CABS(A(L.K))) L=1
01 0112: IF (L.EQ.XK) GO TO %00
01 0113: DO 410 J=K.N
02 0114: TEMP=A(K,J)
02 0115: ACK,J)=A(L,J)
02 0116: 410 A(L,J)=TEMP
01 0117: TEMP=B(K)
01 0120: : B(K)=B(L)
01 0121: B(L)Y= TEMP
01 o0122: 500 DO 610 1=KP1,N
02 0123: " FACTOR=A(I,K)/A(K,K)
02 0124: DO 600 "J=KP1,N
03 0125: 600 A(1,J)=Aa(1,J)-FACTOR=A(K,J)
02 0126: 610 B(I)=B(I1)-FACTOR*B(K)
0127: X(N) =B (N)Y/A(N,N)
0130: I=NM1
0131: 710 IP1=1+1
0132: SUM=(0.5,0.0)
0133: DO 700 J=1P1,N
01 0134: 700 SUM=SUM+A(T,J)y#X(J)
0135: XCI)=(B(I)=SUM)/ACT, D)
0136: I=1-1 -
0137: IF (1.GE.1) GO TO 710
0140: DO 901 1=1,N
01 - 0141; U=CABS (X (1))
01 0142: P=180.0/3.14159265ATAN2 (AIMAG(X (1)) ,REAL(X(I)))
01 0143: 901 WRITE (6,900) I,X(I),U,P
0144: 900 FORMAT (1HO0, 15,4E12, 6)
0145: RE TURN ‘
0146 - END

ING 002534 .,.. THE SYMBOL '#00030' OCCURS ONLY IMN A DATA DECLARATION

ING 002537 .... THE SYMBOL '#00025"' OCCURS ONLY ONCF IN THE PROGRAM.
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19 WVKNI - DATE = 73319 1€/727/748

FUNCTION WVKNL{Z,K,I)
COMMCN/BS/B(242) JHS/H(2)

REAL KERNDR

FWV1=SIN(H{I)})=ABS(Z))
D1=SCRT(Z*Z+B(KyI)%B(K,1))
D2=SQRT({Z—H{K) )% (Z—H(K) ) +B(K,T)¥B(Ks 1))
KERNCR=COS(D1)/D1-C0OS(D2)/D2
WVKN1=FWV1#KERNDR

RETURN

END

19 - WVKNI1 DATE = 73319 16727748

FUNCTION WVKNI1{(Z,K,I)

REAL KERNDI

COMMON/BS/B(2,42)/HS/H(2)
D1=SQRT(Z*Z+BI(K, [)*B(K,1))
D2=SCRT((Z-H(K))*(Z~- H(K))+B(K 1)*¥B(K, 1))
FWV1=SIN(H{I)-ABS(Z))

KERNDI SIN(D2)/D2-SIN(D1)/D1
WVKNI1=FWV1%*KERNCI

RETURN

ENC

1% WVKN2 DATE = 73319 16/27/48
|
FUNCTION WVKN2(Z,KyeI1)
REAL KERNDR _

COMMON/BS/B(2,2) /HS/H(2)

FWV1=SIN(H(I)-ABS(Z))

D1=SQRT((H(K) /2.0-Z) % (H(K)/2.0-Z)+B(K, I)*B(K 1))
D2=SCRT((Z=HI{K) ) *(Z~H(K))+B(K,I)*B(K,I))
KERNDR=COS{D1)/D1-COS(D2)/C2

WVKN2=FhV1%KERNDR

RETURN

ENC



V G LEVEL

19 WVKNIZ2 7 CATE = 73319

FUNCTION WVKNI2(Z,K,I)

REAL KERNDI

COMMCN/BS/B(2,2)/HS/H(2)

FWV1=SIN(H(I)-ABS(Z))
D1=SQRT((H(K)/2.0-Z)*(H(K)/2,0-Z)+B(K,1)*B(K,I))
D2=SCRT((Z-H(K))I*{Z-H(K)})+B(K,I)*B(K, 1))

. KERNDI=SIN(D2)/D2- SIN(Dl)/Dl

G LEVEL

WVKNIZ2=FWV1*KERNDI
RETURN
END

FUNCTION WVKN3(Z,K,1) _
COMMCN/BS/B(2,2)/HS/H(2) ]

REAL KERNDR _ Fe

FWV1=SIN(H(I)=ABS(Z))
D1=SCRT({HIK)=Z)*¥(H{K)=Z)+B(K,1)%¥B(K,1))
KERNDR=C0S(D1)/D1

WVKN2=F KV 1*¥KERNDR

RETURN

ENC

{;19 WVKNI3 DATE = 73319

!FUNCTION WVKNI3(Z,K,1)

COMNON/BS/B(2,2) /HS/H(2)

REAL KERNDI

FWV1=SIN(H(I)=ABS(Z)) .
iDI=SQRT ((H(K)=Z)*(H(K)=Z)+B(K,I)*B (K, 1))
'KERNCI=SIN(D1)/D1

WVKNI3=KERNDI*FwV1l

RETURN

ENC

78

16727748

16/27/48

e
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/ G LEVEL

15 " WUKN2 _ CATE = 73319

FUNCTION WUKN2(Z,K, 1)
COMMCN/BS/B(242) /HS/H(2)
“REAL KERNDR

“-FWV1=C0S(Z)-COS(H(K))

/ G LEVEL

"D1=SCRT((HIK)/2.0-2Z)*{H(K)/2.0~ Z)+9(K'I)*B(K,I))
D2=SQRT{(Z-H(K) ) *x(Z-H(K) )+B(K,1)*B(K, 1))
KERNDR=COS(D1}/D1-C0S(D2) /D2

WUKN2=FWV1*KERNDR

RETURN

END

19 WUKNI1 DATE = 73319

FUNCTION WUKNIL(Z+KsI)
COMMCN/BS/B(242)/HS/H(2)

REAL KERNDI

D1=SQRT(Z*Z+B(K,I)*B(K,1))

. D2=SCRT{{Z-H(K))I*(Z=H(K))}+B(K,1)*B(K, 1))
KERNDI=SIN(D2)/D2-SIN(D1)/C1

CFWV1=C0S{Z)-COS(H{K))

/ 6 LEVEL |

WUKNI1=FWV1*KERNCI
RETURN
END

15 4 WUKN1 DATE = 73319
1

| FUNCTION WUKNL(Z,K,1)

COMMON/BS/B(2,2) /HS/H(2)

REAL KERNDR

FWV1=COS(Z)-COS(H(K))

D1=SCRT(Z*Z+B(K, [)*¥B(K,1)) '
D2=SQRT((Z-H(K))*(Z-H(K) )+B(KsI}*¥B(Ks1))
KERNDR=COS(D1)/D1-C0S(D2) /D2
WUKN1=FWV1%*KERNDR

RETURN i

END

79

16727748

1€/27/48

16/27/48
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V G LEVEL
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19 WUKNI3’ DATE = 73319

FUNCTION WUKNI3(Z,KyI)

COMMON/BS/B(2,2) /HS/H(2)

REAL KERNDI

“FWV1=COS(Z)-CCS{H(K))
D1=SQRT((H(K)=Z)*{H(K)=Z)+B(K,I)*B(K,1))
KERNCI=SIN(D1)/D1

WUKNI3=FWV1%*KERNDI

RETURN

END

19 WUKN3 DATE = 73319

FUNCTION WUKN3(Z,K,1)
REAL KERNDR

COVMCN/BS/B(2,2)/HS/H{2)
FWV1=COS(Z)-CCS{H(K)) .
D1=SQRT((H(K)=Z)*(H(K)=Z)+B(K,I)%B(K,I))
KERNCR=C0S(D1)/D1
WUKN3=FWV1*KERNDR
RETURN
END

|
!
!

ho19 : WUKNI2 DATE = 73319

4

t

: FUNCTION WUKNI2(Z 4K, 1)

, COMMCN/BS/B(242) /HS/H{2)

"REAL KERNDI

FWV1=C0S(Z)-CCS(H(K)})
D1=SORT((H(K)/2.0-2)%(H{K)/2.0-2)+B(K,1)*B(K,1))
D2=SQRT{(Z-H(K) ) *(Z-H(K) ) +B(K,I)*B(K,1))
KERNCI=SIN(D2)/D2-SIN(D1)/D1

WUKNI2=FWV1*KERNDI

RETURN

ENC

80

16/27/48

16/27/48

16/27/48



/ 6 LEVEL 19 WDKN1 - CATE = 733169 16727748

FUNCTION WDKN1{(Z,K,I[)
_CUNMON/BS/B(Z,Z)/HS/H(2)

REAL KERNDR
Fwv1=C0S(2/2.0)-COS(H(K)/2.0)
D1=SQRTIZ*2+B{K,y1)1*¥B(K,1)) .
D2=SCRT((Z-HIK))*(Z-H({K))+B(K,I)*B(K, 1))
KERNDR=CQS(D1)/D1-C0OS{D2)/C2
WDKN1=FWV1*KERNDR

RETURN

END

vV G LEVEL 19 WDOKNI1 CATE = 73319 16/27/48

FUNCTION WDKNI1(Z,K,1)
COMMCN/BS/B(2,2)/HS/H(2)
REAL KERNDI
1=SQRT{Z*Z+B (K, [)*B(K,I))
2=SQRT U (Z=H{K) ) *(Z=H(K) ) 4B (K, 1)1 ¥B (K, 1))
FWV1=C0$(2/2.0)-COS(H(K)/2.0)
© KERNDI=S.N(D2)/D2-SIN(D1)/D1
WCKNI1=FWV1*KERNDI
RETURN
END

V G LEVEL 19 ‘ WDKN2 CATE = 73319 16/27/48

FbNCTION WOKN2(Z+K,y1)

CONMCN/BS/B(Z,Z)/HS/H(Z)

REAL KERNDR

FWV1=C0S(2/2.C)-COS(H(K)/2.0)
D1=SCRT((H(K)/2.0-2)%(HI(K)/2.0=2)+B(K, I)*B(K 1))
D2=SCRT((Z-H(K)}*(Z~H(K))+B(K,[)*B(K,I1))
KERNCR=C0S(C1)/D1-C0S(D2)/D2

WCKN2=FWV1*KERNDOR .

RETULRN

END



82
G LEVEL 19 WDKNIZ DATE = 73319 16/27/48

FUNCTION WDKNI2(Z,K,1)

COMMON/BS/B(2,2) /HS/H(2)

REAL KERNDI

FWV1=C0S(2/2.0)- COS(H(K)/Z 0)

D1=SQRT((H(K) /2.0-Z)*(H(K)/2.0-Z)+B{K,y[)*B(K,1))
D2=SQRT((Z-H(K) ) *(Z-H(K) )+B(K,I)%*B(K,I))
KERNCI=SIN(D2)/D2-SIN(D1)/D1

"WOKNI2=FWV1%KERNCI

RETURN

END

G LEVEL 19 WDKN3 DATE = 73319 16727748

FUNCTIGN WDKN3(Z,K,1I)

REAL KERNDR

COMMCN/BS/B(2,23/HS/HI2)
FWv1=C0S(Z2/2.C)-COS(H(K)/2.0)
DI=SQRT{(H{K)=Z)*{H{(K)~- Z)+B(KyI)*B(K 1))
KERNCR=C0OS(D1)/D1

WDKN3=FKV1*KERNDR

RETURN

ENC

Vv G LEVEL 16 WOKNI3 CATE = 73319 16/27/48

FUNCTION WDKNI3(Z,K,I)
COMMCN/BS/B(242)/HS/H(2)

REAL KERNDI
FWV1=CO0S(Z/2.C)=-COS{HIK)/2.0)
D1=SCRTU(HIK)=Z)%(H(K)=-Z)+Bt %, I)*B(K, 1))
KERNDI=SIN(D1)/D1

WOKNI3=FWVI*KERNDI

RETURN

ENC



