A Thesis
Presented to
the Faculty of the
Department of Electrical Engineering
University of Houston

In Partial Fulfillment

of the Requirements for the Degree
Master of Science
in
Electrical Engineering
by
Nabil Kamel Takla
April 1974

ACKJONLEDGEIENTS

I wish to express my thanks to my advisor, Dr. L. .C. Shen, for his advice, guidance and support in this work, and to Dr. H. S. Hayre and Dr. G. W. Batten, Jr. for their comments and assistance.

This work was supported in part by National Science Foundation Grant GK32133.

I would also. like to thank Jack M. Cramer for assistance in editing, proofreading and preparing the manuscript.

NUMERICAL ANALYSIS OF

THE YAGI-UDA ARRAY

An Abstract
Presented to
the Faculty of the
Department of Electrical Engineering University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science
in
Electrical Engineering

by
Nabil Kamel Takla
April 1974

ABMmAR

An imnortant pertomiatce indes of a Yagi-Uda array is." the directivity, fany studis have been made on the subject of optimizdtion fon Yazi-Ula antenn arrays.

Shen [1971] obtained an optimum design for a Yagi array under constraintio on bandwioth, dinectivity or the size of the array. It was shown time the array configuration is determined by any two of these three boing specified. However, due to the nature of the approximation used in Shen's analysis, no information on the input impedance of the Yagi antenna is given.

Recently, Cheng and Chen [1973] developed a method for the maximization of the forward directivity of a Yagi-Uda array oy adjustment of the inter-element spacing. To what extent the bandwidth is affectad when the dimensions of the array are adjusted for maximum directivity remains unanswered.

In this study the work of Shen and of Chen and Cheng is extended. Namely, the behavior of the input impedance of the YagiUda array is investigated as the uperating frequency is varied. The effert on the bandridth of a Yagi-Uda array when its gain is optimized by adjusting the spacing of the directors as proposed b_{j} Cheng and Chen is also investigated. The analysis makes uce of King's three term theory, which converts an integral equation into a.complex matrix equation, winich is solved using a digital computer.

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION 1
II. INTEGRAL EQUATION AND THREE-TERM THEORY 5
III. INPUT IMPEDAINCE 24
IV. OPTIMIZATIOIN OF THE YAGI-UDA ARRAY 47
REFERENCES 69
APPENDIX. 70

CHAPTER I

Introduction

A physical description of the Yagi-Uda array is presented in Section l-1. Previous work is discussed in Section l-2, and the present work in Section l-3.

1-1 Physical Description of the Yagi-Uda Array

The Yagi-Uda array studied in this investigation consists of N thin linear dipole elements, of which No. 1 is parasitic and adjusted in length to function as a reflector, No. 2 is driven by a voltage V_{02}, and Nos. 3 through if are parasitic and adjusted in length to act as directors. The ith element has half-length h_{i} and radius a, and the spacing between the i th element and the j th element is $b_{i, j}$, where

$$
\begin{aligned}
& i=1,2, \ldots, i N \\
& j=1,2, \ldots, i v
\end{aligned}
$$

and $b_{k, k}=a$, where

$$
k=1,2, \ldots, i
$$

Such an array is shown in Fig. 1.1. The driven element is normally tuned to resonance. Element No. 1 is usually longer than the driven element and elements Hos. 3 through in are usually shorter than the driven element.

1-2 Previous Work

An importance performance index of a Yagi-Uda array is the directivity. llany studies have been made on the subject of optimization for Yagi-Uda antenna arrays. Hansen and Woodyard [1938] calculated the optimum phase delays of the currents in the elements to give a maximum directivity for a Yagi array. However, their analysis did not provide any information as to how the prescribed phase shift could be realized. In a study by Ehrenspeck and Poeller [1950], correct dimensions for maximum directivity in a Yagi-Uda array with equally spaced directors of equal length were determined experimentally.

Shen [1971] obtained an optimum design for a Yagi array under constraints on bandwidth, directivity or the size of the array. It was shown that the array configuration is determined by any two of these three being specified. It was also shown that a properly designed Yagi array can be operated in two frequency bands, with the frequency ratio approximately equal to 3.5. However, due to the nature of the approximation used in Shen's analysis, no information on the input impedance of the Yagi antenna is given.

Recently, Cheng and Chen [1973] developed a method for the maximization of the forward directivity of a Yagi-Uda array by adjustment of the inter-element spacing. They made use of the three-term theory developed by King and his associates to
approximate the current in the dipoles. Use was also made of a theory in matrix analysis. By an iteration process, the optimum spacing for maximum directivity is determined. To what extent the bandwidth is affected when the dimensions of the array are adjusted for maximum directivity remains unanswered.

1-3 Present Study

In this study, the work of Shen and the work of Cheng and Chen are extended. Namely, the behavior of the input impedance of the Yagi-Uda array as the operating frequency is varied is investigated. Thus, when a Yagi-Uda array is optinized under any two of the three constraints - bandwidth, directivity, size of array - using the method developed by Shen, information on the input impedance would be available. The effect on the bandwidth of a Yagi-Uda array when its gain is optimized by adjusting the spacing of the directors as proposed by Cheng and Chen is also investigated. The analysis makes use of King's three-term theory. It converts an integral equation into a complex matrix equation, which is solved using a digital computer.

CHAPTER II

Integral Equation and Three-Term Theory

The integral equation for the current on a thin cylindrical perfect conductor is described in Section 2-1. In Section 2-2, the three-term theory is described. In Section 2-3, the far field pattern is calculated.

2-1 Integral Equation

The theory developed is concerned exclusively with thin cylindrical conductors all aligned in the z direction in air, so that it suffices to use only the axial component of the vector potential. Element No. 2 is center driven by a delta-function generator.

The interaction of charges and currents on conductors in space is governed by Maxwell's equations. A convenient way of solving these vector partial differential equations is through the use of scalar and vector potentials, Φ and \bar{A}, respectively.

Since $\nabla \cdot \bar{B}=0$, it follows from an important theory in vector analysis that the vector \bar{B} be the curl of some other vector [Sokolnikoff, 1962, p.423]. So the magnetic field can be expressed in the form

$$
\bar{B}=\nabla \times \bar{A} \quad-\infty-(2.1 a)
$$

Using the above equation and substituting into the llaxwell
equations, one can show that $\nabla \times(\bar{E}+j \omega \bar{A})=0$. Again using another important theory in vector analysis [Sokolnikoff, 1962, p.422], it follows from the above equation that the vector $\bar{E}+j \omega \bar{A}$ be the gradient of some function, so the expression of the electric field is given by

$$
\begin{equation*}
\bar{E}=-\nabla \Phi-j \omega \bar{A} \tag{2.1b}
\end{equation*}
$$

where Φ and \bar{A} are the scalar and vector potentials, respectively. The vector \mathbb{A} is not defined completely by (2.1a); in order to define a vector, both its curl and it divergence must be defined [Mason and Weaver, 1922, p.353] and the normal component must be known over a closed surface or the vector must vanish as $1 / r^{2}$ at infinity [loc: cit.]. The following condition relating \bar{A} and Φ is imposed:

$$
\begin{equation*}
\nabla \cdot \vec{A}=-j\left(\beta_{0}^{2} / \omega\right) \Phi \tag{2.2}
\end{equation*}
$$

which is known as the Lorentz condition. The quantity β_{0} is $\omega \sqrt{\mu \varepsilon}$, where μ and ε are the permeability and permittivity of the medium.

Instead of simply assuming a convenient current along the antenna, a more scientific, albeit more difficult procedure is - to determine the actual distribution of current by setting up and solving the appropriate integral equation. With (2.1) and (2.2), and from the boundary condition $E_{z}(z)=0$. on the surface of a perfectly conducting antenna, the vector potential is seen to satisfy the equation

$$
\begin{equation*}
\left(d^{2} / d z^{2}+\beta_{0}^{2}\right) A_{z}(z)=0 \tag{2.3}
\end{equation*}
$$

which has the general solution

$$
A_{z}(z)=(-j / c)\left(C_{1} \cos \beta_{0} z+C_{2} \sin \beta_{0}|z|\right) \quad---(2.4)
$$

if. the symmetry conditions $I_{z}(-z)=I_{z}(z), A_{z}(-z)=A_{z}(z)$ are imposed. C_{1} and C_{2} are arbitrary constants of integration and $c=1 / \sqrt{\mu \varepsilon}$. The integral equation for the current is

$$
\begin{aligned}
& \left(4 \pi / \mu_{0}\right) A_{z}=\int_{-h}^{h} I_{z}\left(z^{\prime}\right)\left(e^{-j \beta_{0} R}\right) / R d z \\
& \quad=\left(-j 4 \pi / \zeta_{0}\right)\left(C_{1} \cos \beta_{0} z+C_{2} \sin \beta_{0}|z|\right)
\end{aligned}
$$

We have used the free space Green's function $G(\bar{r}, \bar{r})=(1 / 4 \pi)\left(e^{-j \beta R}\right) / R$ where $R=\left|\bar{r}-\bar{r}^{\prime}\right|$. The problem of solving (2.5) for the current is very complicated. This is a linear integral equation of the first kind. It has been carried out approximately in a variety of ways [King, 1956]. The procedure to be followed in obtaining a useful approximate solution of (2.5) is the three-term theory developed by King L1968].

2-2 Three-Term Theory

It was shown by King [1968,p.149] that from the properties of the integral equation that an approximation of the current consists of three terms, of which each represents a different distribution; specifically, let the current distribution (2.5)

$$
\begin{equation*}
I_{z k}\left(z_{k}\right)=A_{k} M_{0 z k}+B_{k} F_{0 z k}+D_{k} H_{0 z k} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& M_{0 z k}=\sin \beta_{0}\left(h_{k}-\left|z_{k}\right|\right) \\
& F_{0 z k}=\cos \beta_{0} z_{k}-\cos \beta_{0} h_{k} \\
& H_{0 z k}=\cos \left(\beta_{0} z_{k} / 2\right)-\cos \left(\beta_{0} h_{k} / 2\right)
\end{align*}
$$

The currents induced by the interaction between charges moving in the more or less widely separated sections of the antenna appear in two parts. One of these, the shifted cosine, is maintained by that part of the interaction which is equivalent to a constant field acting in phase at all points along the antenna. The other part, the shifted cosine with half-angle arguments, is the correction that takes account of the phase lag introduced by the retarded instead of instantaneous interaction.

In a parasitic element, the coefficient A_{k} is zero, but the other two terms remain. When the several antennas in an array are not all equal in length, so that the h_{i} differ, the N simultaneous equations exist:

$$
\begin{align*}
& \sum_{i=1}^{N} f_{h_{i}}^{h_{i}} I_{z i}\left(z_{i}^{\prime}\right) K_{k i d}\left(z_{k}, z_{i}^{\prime}\right) d z_{i}^{\prime}=\left\{j 4 \pi /\left[\zeta_{0} \cos \left(\beta_{0} h_{k}\right)\right]\right\} . \\
& \quad\left(1 / 2 v_{0 k} H_{0 z k}+U_{k} F_{0 z k}\right) \tag{2.8}
\end{align*}
$$

with $k=1,2, \ldots, N$. The kernel has the form

$$
K_{k i d}\left(z_{k}, z_{1}^{\prime}\right)=K_{k i}\left(z_{k}, z_{1}^{\prime}\right)-K_{k i}\left(h_{k}, z_{i}^{\prime}\right)=e^{-j \beta_{0} R_{k i}} / R_{k i}-e^{-j \beta_{0} R_{k i h}} / R_{k i h}
$$

where $R_{k i}=\sqrt{\left(z_{k}-z_{i}^{1}\right)^{2}+b_{k i}^{2}}$

$$
R_{k i h}=\sqrt{\left(h_{h}-2 l_{\mathrm{j}}\right)^{2}+b_{k i}^{2}}
$$

The function U_{k} is

$$
\begin{equation*}
U_{k}=\left[-j \zeta_{0} /(4 \pi)\right]_{i=1}^{N} \sum_{h_{i}}^{\mathcal{L}_{i}} I_{z i}\left(z_{i}^{1}\right) K_{k i}\left(h_{k}, z_{i}^{1}\right) d z_{i}^{1} \tag{2.9}
\end{equation*}
$$

The integral equation for the driven element is

$$
\begin{align*}
& +\sum_{i=1}^{N} \int D_{i} H_{0 z_{i}^{\prime}} K_{2 i d}\left(z_{2}, z_{i}^{\prime}\right) d z_{i}^{\prime} \\
& =\left\{j 4 \pi /\left[\zeta_{0} \cos \left(\beta_{0} h_{2}\right)\right]\right\}\left(1 / 2 V_{02}{ }^{H_{0 z 2}}+U_{2} F_{0 z 2}\right) \tag{2.10}
\end{align*}
$$

and the remaining iN-l integral equations are

$$
\begin{align*}
& A_{2} \underline{f}_{2}^{h_{2}} M_{0 z^{\prime} 2} K_{k 2 d}\left(z_{k}, z_{2}^{\prime}\right) d z_{i}^{\prime}+\sum_{i=1}^{N} \int B_{i} F_{0 z^{\prime} i} K_{k i d}\left(z_{k}, z_{i}^{\prime}\right) d z_{i}^{\prime} \\
& \\
& \tag{2.11}\\
& \quad+\sum_{i=1}^{N} \int D_{i} H_{0 z} i_{i} K_{k i d}\left(z_{k}, z_{i}^{\prime}\right) d z_{i}^{\prime} \\
& =\left\{j 4 \pi /\left[\zeta_{0} \cos \left(\beta_{0} h_{k}\right)\right]\right\}\left(U_{k} F_{0 z k}\right)
\end{align*}
$$

Use is made of the properties of the real and imaginary parts of the kernel as follows:

$$
\mathscr{f}_{h_{k}}^{h_{k}} G_{0 z^{\prime} k} K_{k k d R}\left(z_{k}, z_{k}^{\prime}\right) d z_{k}^{\prime} \simeq G_{0 z k}
$$

where $G_{0 z^{\prime} k}$ stands for $M_{0 z ' k}, F_{0 z^{\prime} k}$, or $H_{0 z \prime k}$ and $K_{k k d R}\left(z_{k}, z_{k}^{\prime}\right)$ is the real part of the kernel. On the other hand,

$$
\int_{-h_{k}}^{h_{k}} G_{0 z_{k}^{\prime}} K_{k k d I}\left(z_{k}, z_{k}^{\prime}\right) d z_{k}^{\prime}=H_{0 z_{k}}
$$

It follows that:

$$
\begin{align*}
& \text {---(2.12a) } \\
& W_{k k U}\left(z_{k}\right) \equiv \int_{h k}^{h k} F_{0 z_{k}} K_{k k d}\left(z_{k}, z_{k}^{\prime}\right) d z_{k}^{\prime} \dot{=} \Psi_{k k d U}^{f} F_{0 z_{k}}+\Psi_{k k d U}^{h}{ }^{\mathrm{I}} 0 z_{k} \tag{2.12b}\\
& W_{k k D}\left(z_{k}\right) \equiv \int_{h_{k}}^{h_{k}} H_{0 z_{k}^{\prime}} K_{k k d}\left(z_{k}, z_{k}^{\prime}\right) d z_{k}^{\prime} \dot{=} \Psi_{k k d D}^{f} F_{0 z_{k}}+\Psi_{k k d D}^{h} H_{0 z_{k}} \tag{2.12c}
\end{align*}
$$

where the $\Psi ' s$ are complex coefficients yet to be determined. $\Psi_{k k d D}^{f} F_{0 \mathrm{zk}}$ is added to provide symmetry.

When $i \neq k$ and $\beta_{0} b>=1$, it can be shown by direct comparison that:

$$
\begin{aligned}
& \int_{h_{i}}^{h_{i}} G_{0 z_{1}} K_{k i d R}\left(z_{k}, z_{i}^{!}\right) d z_{i}^{!} \simeq F_{0 z_{k}} \\
& \underline{h}_{i}^{h_{i}} G_{0 z_{i}^{\prime}} K_{k i d I}\left(z_{k}, z_{i}^{\prime}\right) d z_{i}^{!} \simeq H_{0 z_{k}}
\end{aligned}
$$

where $G_{0 z_{1}^{\prime}}$ stands for $M_{0 z_{1}^{1}}, F_{0 z_{1}}$ or $H_{0 z_{1}}$. It follows that, with $i \neq k$:

$$
\begin{align*}
& W_{k i V}\left(z_{k}\right) \equiv \int_{-h_{i}}^{h_{i}} M_{0 z_{i}^{\prime}} K_{k i d}\left(z_{k}, z_{i}^{\prime}\right) d z_{i}^{!} \dot{=} \Psi_{k i d V}^{f} F_{0 z_{k}}+\Psi_{k i d V^{H}}^{h} 0 z_{k} \tag{2.13a}\\
& W_{k i U}\left(z_{k}\right) \equiv f_{h_{i}}^{h_{i}} F_{0 z_{i}^{\prime}} K_{k i d}\left(z_{k}, z_{i}^{\prime}\right) d z_{i}^{!} \stackrel{\dot{1}}{\underline{f}} \underset{k i d u}{f} F_{0 z_{k}}+\Psi_{k i d U}^{h} H_{z_{k}} \tag{2.13b}\\
& W_{k i D}\left(z_{k}\right) \equiv \int_{h_{i}}^{h_{j}} H_{0 z_{1}^{\prime}} K_{k i d}\left(z_{k}, z_{1}^{\prime}\right) d z_{i}^{\dot{1}} \dot{=} \Psi_{k i d D}^{f}{ }_{0} z_{k}+\Psi_{k i d D}^{h} H_{0 z_{k}} \tag{2.13c}
\end{align*}
$$

where the $\Psi ' s$ are complex coefficients yet to be determined.
With (2.12) and (2.13), (2.10) becomes:

$$
\begin{aligned}
& \mathrm{A}_{2}\left(\Psi_{22 \mathrm{dV}} \mathrm{H}_{0 \mathrm{z} 2}+\Psi_{\left.22 \mathrm{dV}^{\mathrm{H}} \mathrm{H}_{\mathrm{z} 2}\right)}+\sum_{i=1}^{\mathrm{N}} \mathrm{~B}_{i}\left(\Psi_{2}^{f}{ }_{2 \mathrm{dUU}} \mathrm{~F}_{0 \mathrm{z}} .+\Psi_{\left.2 i d U^{\mathrm{H}} \mathrm{H}_{02}\right)}\right)\right. \\
& +\sum_{i=1}^{N} D_{i}\left(\Psi \frac{f}{2} i_{d D} F_{0 z 2}+\Psi_{2 i d D}^{h} H_{0 z 2}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\frac{4 j \pi}{\zeta_{0} \cos \left(\beta_{0} h_{2}\right)}\left(1 / 2 V_{02} \mathrm{H}_{0 z_{2}}+U_{2} F_{0 z 2}\right) \tag{2.14}
\end{equation*}
$$

For (2.11), the N-l equations are:

$$
\begin{align*}
& A_{2}\left(\Psi_{k 2 d V}^{f} F_{0 z_{k}}+\Psi_{k 2 d V^{H}}^{h} z_{k k}\right)+\sum_{i=1}^{N} B_{i}\left(\Psi_{k i d U}^{f} F_{0 z_{k}}+\Psi_{k i d U}^{h} H_{0 z_{k}}\right) \\
& \quad+\sum_{i=1}^{N} D_{i}\left(\Psi_{k i d D}^{f} F_{0 z_{k}}+\Psi_{k i d D}^{h} H_{0 z_{k}}\right) \\
& =\frac{4 j \pi}{\zeta_{0} \cos \left(\beta_{0} h_{k}\right)} U_{k} F_{0 z_{k}} \quad k=1,3,4, \ldots, N \tag{2.15}
\end{align*}
$$

These equations will be satisfied if the coefficients of each of the distribution functions is individually required to vanish; i.e., in (2.11):
and

$$
\begin{align*}
& \sum_{i=1}^{N}\left(B_{i} \Psi \frac{f}{f i d U}+D_{i} \Psi \frac{f}{f} i d D\right) \cos \beta_{0} h_{2}-\frac{4 \pi j}{\zeta_{0}} U_{2}=0 \tag{2.17a}\\
& A_{2} \psi_{22 d V}^{h}+\sum_{i=1}^{N}\left(B_{i} \Psi_{2 i d U}^{h}+D_{i} \Psi_{2 i d D}^{h}\right)=0 \tag{2.17b}
\end{align*}
$$

Similarly, in (2.15), with $k=1,3,4, \ldots, N$:

$$
\begin{align*}
& A_{2} \Psi_{k 2 d V}^{f}+\sum_{i=1}^{N}\left(B_{i} \Psi_{k i d U}^{f}+D_{i} \Psi_{k i d D}^{f}\right) \cos \beta_{0} h_{k}-\frac{j 4 \pi U_{k}}{\zeta_{0}}=0 \quad--(2 \cdot 18 a) \\
& A_{2} \Psi_{k 2 d V}^{h}+\sum_{i=1}^{N}\left(B_{i} \Psi_{k i d U}^{h}+D_{i} \Psi_{k i d D}^{h}\right)=0 \quad--(2.18 b) \tag{2.18b}
\end{align*}
$$

Equations (2.16), (2.17) and (2.18) are (2N+1), and they determine the $2 \mathrm{~N}+1$ constants $\mathrm{A}_{2}, \mathrm{~B}_{\mathrm{i}}$ and $\mathrm{D}_{\mathrm{i}}, i=1,2, \ldots, \mathrm{~N}$. To evaluate the functions U_{k}, define the following integrals:

$$
\begin{align*}
& \Psi_{k i V}\left(h_{k}\right)=\int_{h_{i}}^{h_{i}} M_{0 z_{i}} K_{k i}\left(h_{k}, z_{i}^{!}\right) d z_{i}^{!} \tag{2.19a}\\
& \Psi_{k i U}\left(h_{k}\right)=\mathscr{L}_{h_{i}}^{h_{i}} F_{0 z_{i}} K_{k i}\left(h_{k}, z_{i}^{!}\right) d z_{i}^{!} \tag{2.19b}\\
& \Psi_{k i D}\left(h_{k}\right)=\int_{h_{i}}^{h_{i}} H_{0 z i} K_{k i}\left(h_{k}, z_{1}^{!}\right) d z_{i}^{!} \tag{2.19c}
\end{align*}
$$

where $K_{k i}\left(h_{k}, z_{1}^{1}\right)=\frac{e^{-j \beta_{0} R_{k i h}}}{R_{k i h}}$ and $R_{k i h}^{-}=\sqrt{\left(h_{k}-z_{1}^{\prime}\right)^{2}+b_{i k}^{2}}$.
From (2.9), it follows that:

$$
U_{k}=\frac{-j \zeta_{0}}{4 \pi} \sum_{i=1}^{N} A_{i} \Psi_{k i V}\left(h_{k}\right)+B_{i} \Psi_{k i U}\left(h_{k}\right)+D_{i} \Psi_{k i D}\left(h_{k}\right)---(2.20 a)
$$

$A_{i}=0$ for $i=1,3,4, \ldots, N$

$$
U_{k}=\frac{-j \zeta_{0}}{4 \pi}\left\{A_{2} \Psi_{k 2 V}\left(h_{k}\right)+\sum_{i=1}^{N} B_{i} \Psi_{k i U}\left(h_{k}\right)+D_{i} \Psi_{k i D}\left(h_{k}\right)---(2.20 b)\right.
$$

Equations (2.17) and (2.18) can be combined with the aid of the Kronecker δ defined by:

$$
\delta_{i k}= \begin{cases}0 & i \neq k \\ 1 & i=k\end{cases}
$$

The equations are:

$$
\begin{align*}
& A_{2}\left(1-\delta_{k 2}\right) \Psi_{k 2 d V}^{f}+\sum_{i=1}^{N}\left(B_{i} \Psi_{k i d U}^{f}+D_{i} \Psi_{k i d D}^{f}\right) \cos \beta_{0} h_{k}-\frac{j 4 \pi U_{k}}{\zeta_{0}}=0--(2.21 \\
& A_{2} \Psi_{k 2 d V}^{h}+\sum_{i=1}^{N}\left(B_{i} \Psi_{k i d U}^{h}+D_{i} \Psi_{k i d D}^{h}\right)=0 \tag{2.2lb}
\end{align*}
$$

Substituting (2.20b) in (2.2la), we get:

$$
\begin{align*}
& A_{2}\left(\Psi_{k 2 V}\left(h_{k}\right)-\left(I-\delta_{k 2}\right) \Psi_{k 2 d V}^{f} \cos \beta_{0} h_{k}\right)+\sum_{i \neq 1}^{N} B_{i}\left(\Psi_{k i U}\left(h_{k}\right)-\Psi_{k i d U}^{f} \cos \beta_{0} h_{k}\right) \\
& \quad+\sum_{i=1}^{N} D_{i}\left(\Psi_{k i D}\left(h_{k}\right)-\Psi_{k i d D}^{f} \cos \beta_{0} h_{k}\right)=0 \quad--(2.22) \tag{2.22}
\end{align*}
$$

A simplification seems possible by defining:

$$
\begin{array}{ll}
\Phi_{k 2 V}=\Psi_{k 2 V}\left(h_{k}\right)-\left(1-\delta_{k 2}\right) \Psi_{k 2 d V}^{f} \cos \left(\beta_{0} h_{k}\right) & ---(2.23 a) \\
\Phi_{k i U}=\Psi_{k i U}\left(h_{k}\right)-\Psi_{k i d U}^{f} \cos \left(\beta_{0} h_{k}\right) & --(2.23 b) \\
\Phi_{k i D}=\Psi_{k i D}\left(h_{k}\right)-\Psi_{k i d D}^{f} \cos \left(\beta_{0} h_{k}\right) & ---(2.23 c) \tag{2.23c}
\end{array}
$$

With this notion, (2.22) and (2.21b) give the following set of equations:

$$
\begin{align*}
& \sum_{i=1}^{N} \dot{\Phi}_{k i U^{B}}{ }_{i}+\Phi_{k i D^{D}}^{D_{i}}=-\Phi_{k 2 V^{A}} \\
& \sum_{i=1}^{N} \Psi_{k i d U}^{h} B_{i}+\Psi_{k i d D}^{h} D_{i}=-\Psi_{k 2 d V^{A}}^{h} \tag{2.24b}
\end{align*}
$$

These equations may be expressed in matrix form after the introduction of the following notation:

$$
\Phi_{\mathrm{U}}=\left[\begin{array}{cccc}
\Phi_{11 U} & \Phi_{12 \mathrm{U}} & \cdots & \Phi_{1 N U} \tag{2.25a}\\
\cdot & \cdot & & \cdot \\
\vdots & \cdot & & : \\
\Phi_{\mathrm{N} 1 \mathrm{U}} & \Phi_{\mathrm{N} 2 \mathrm{U}} & & \Phi_{\mathrm{NNU}}
\end{array}\right]
$$

$\Phi_{D}=\left[\begin{array}{cccc}\Phi_{11 D} & \Phi_{12 \mathrm{D}} & \cdots & \Phi_{1 N D} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ \Phi_{\text {N1D }} & \Phi_{\text {NND }} & & \Phi_{\text {IND }}\end{array}\right]$

$$
\left\{\Phi_{2 V}\right\}=\left[\begin{array}{c}
\Phi_{12 V} \tag{2.25f}\\
\vdots \\
\vdots \\
\Phi_{\mathrm{N} 2 \mathrm{~V}}
\end{array}\right] \quad--(2.25 e) \quad\left\{\Psi_{2 \mathrm{dV}}^{\mathrm{h}}\right\}=\left[\begin{array}{c}
\psi_{12 \mathrm{dV}}^{\mathrm{h}} \\
\vdots \\
\Psi_{\mathrm{N} 2 \mathrm{dV}}^{\mathrm{h}}
\end{array}\right]
$$

$$
\{B\}=\left[\begin{array}{l}
B_{1} \tag{2.25h}\\
\vdots \\
\vdots \\
\dot{B}_{1 N}
\end{array}\right] \quad--(2.25 \mathrm{~g}) \quad\{D\}=\left[\begin{array}{l}
D_{I} \\
\vdots \\
\dot{D}_{N}
\end{array}\right]
$$

The matrix form of (2.24) is:

$$
\begin{array}{ll}
{\left[\Phi_{U}\right]\{B\}+\left[\Phi_{D}\right]\{D\}=-\left\{\Phi_{2 V}\right\} A_{2}} & --(2.26 a) \\
{\left[\psi_{d U}^{h}\right]\{B\}+\left[\Psi_{d D}^{h}\right]\{D\}=-\left\{\Psi_{2 d V}^{h}\right\} A_{2}} & --(2.26 b)
\end{array}
$$

It remains to evaluate the Ψ 's which occur in the Φ 's in (2.23). Equations (2.12) and (2.13) approximate each integral by a linear combination of two terms with arbitrary coefficients; these
can be evaluated by equating both sides at two values of z. The values chosen are $z=0$ and $z=h_{k} / 2$. Define the following:

$$
\begin{aligned}
& W_{k i V}(0) \equiv A_{i}^{-1} \int_{h_{i}}^{h_{i}} I_{V i}\left(z_{i}^{\prime}\right) K_{k i d}\left(0, z_{i}^{j}\right) d z_{i}^{1} \\
& \doteq \int_{h_{i}}^{h_{i}} M_{0 z^{\prime}} K_{k i d}\left(0, z_{i}^{\prime}\right) d z_{i}^{\prime} \\
& W_{k i V}\left(h_{k} / 2\right) \equiv A_{i}^{-1} \underline{f}_{h_{i}}^{h_{i}} I_{V i}\left(z_{i}^{\prime}\right) K_{k i d}\left(h_{k} / 2, z_{i}^{\prime}\right) d z_{i}^{\prime} \\
& \doteq \mathcal{L}_{h_{i}}^{h_{i}} M_{0 z_{i}}{ }^{\prime} K_{k i d}\left(h_{k} / 2, z_{i}^{\prime}\right) d z_{i}^{1} \\
& W_{k i U}(0) \equiv B_{i}^{-1} \underline{f}_{h_{i}}^{h_{i}} I_{U i}\left(z_{i}^{\prime}\right) K_{k i d}\left(0, z_{i}^{\prime}\right) \mathrm{d} z_{i}^{\prime} \\
& =\int_{h_{i}}^{h_{i}} F_{0 z^{\prime}} K_{k i d}\left(0, z_{i}^{\prime}\right) d z_{i}^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& \doteq \int_{h_{i}}^{h_{i}} F_{0 z_{i}}{ }^{K_{k i d}}\left(h_{k} / 2, z_{i}^{\prime}\right) d z_{i}^{\prime} \\
& W_{k i D}(0) \equiv D_{i}^{-1} \underline{f}_{h_{i}}^{h_{i}} I_{D i}\left(z_{i}^{\prime}\right) K_{k i d}\left(0, z_{i}^{\prime}\right) d z_{i}^{\prime} \\
& \doteq \int_{-h_{i}}^{h_{i}} H_{0 z^{\prime} i} K_{k i d}\left(0, z_{i}^{\prime}\right) d z_{i}^{\prime} \\
& W_{k i D}\left(h_{k} / 2\right) \equiv D_{i}^{-1} \underline{f}_{h_{i}}^{h_{i}} I_{D i}\left(z_{i}^{\prime}\right) K_{k i d}\left(h_{k} / 2, z_{i}^{1}\right) d z_{i}^{1} \\
& =\int_{h_{i}}^{h_{i}} H_{0 z}{ }^{\prime} K_{k i d}\left(h_{k} / 2, z_{i}^{\prime}\right) d z_{i} \tag{2.27f}
\end{align*}
$$

Once the W's in (2.27) have been determined for all values of i and k, the coefficients ψ may be determined from the equations (2.12) and (2.13). At $z=0$ these become:

$$
\begin{aligned}
& \Psi_{k k d V}^{\mathrm{m}} \sin \beta_{0} h_{k}+\Psi_{k k d V}^{h}\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]=W_{k k}(0) \quad--(2.28 a) \\
& \Psi_{k i d V}^{f}\left(1-\cos \beta_{0} h_{k}\right)+\Psi_{k i d V}^{h}\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]=\Psi_{k i V}(0) i \neq k--(2.28 b) \\
& \Psi_{k i d U}^{f}\left(1-\cos \beta_{0} h_{k}\right)+\Psi_{k i d U}^{h}\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]=W_{k i U}(0) \quad--(2.28 c) \\
& \Psi_{k i d D}^{f}\left(1-\cos \beta_{0} h_{k}\right)+\Psi_{k i d D}^{h}\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]=W_{k i D}(0) \quad--(2.28 d)
\end{aligned}
$$

At $\mathrm{z}=\mathrm{h}_{\mathrm{k}} / 2$, they are

$$
\begin{gather*}
\Psi_{k k d V}^{\mathrm{m}} \sin \left(\beta_{0} h_{k} / 2\right)+\Psi_{k k d V}^{h}\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right]=W_{k k V}\left(h_{k} / 2\right) \\
---(2.29 a) \\
\Psi_{k i d V}^{f}\left[\cos \left(\beta_{0} h_{k} / 2\right)-\cos \beta_{0} h_{k}\right]+\Psi_{k i d V}^{h}\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right] \\
=W_{k i V}\left(h_{k} / 2\right) \quad i \neq k \tag{2.29b}
\end{gather*}
$$

$\Psi_{k i d U}^{f}\left[\cos \left(\beta_{0} h_{k} / 2\right)-\cos \beta_{0} h_{k}\right]+\psi_{k i d U}^{h}\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right]$

$$
=W_{k i U}\left(h_{k} / 2\right)
$$

$$
---(2.29 c)
$$

$$
\Psi_{k i d D}^{f}\left[\cos \left(\beta_{0} h_{k} / 2\right)-\cos \beta_{0} h_{k}\right]+\Psi_{k i d D}^{h}\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right]
$$

$$
\begin{equation*}
=W_{k i D}\left(h_{k} / 2\right) \tag{2.29d}
\end{equation*}
$$

The solutions of these equations for the Ψ 's are obtained directly. They are:

$$
\begin{align*}
\Psi_{k k d V}^{m}= & \Delta_{1}^{-1}\left\{W_{k k V}(0)\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right]\right. \\
& \left.-W_{k k V}\left(h_{k} / 2\right)\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]\right\} \tag{2.30}
\end{align*}
$$

$$
\begin{aligned}
\Psi_{k k d V}^{h}= & \Delta_{1}^{-1}\left\{W_{k k V}\left(h_{k} / 2\right) \sin \beta_{0} h_{k}-W_{k k V}(0) \sin \left(\beta_{0} h_{k} / 2\right)\right\} \\
\Psi_{k i d V}^{f}= & \Delta_{2}^{-1}\left\{W_{k i V}(0)\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right]\right. \\
& \left.-W_{k i V}\left(h_{k} / 2\right)\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]\right\} \quad i \neq k \\
\Psi_{k i d V}^{h}= & \Delta_{2}^{-1}\left\{W_{k i V}\left(h_{k} / 2\right)\left[1-\cos \beta_{0} h_{k}\right]\right. \\
& \left.-W_{k i V}(0)\left[\cos \left(\beta_{0} h_{k} / 2\right)-\cos \beta_{0} h_{k}\right]\right\} \quad i \neq k
\end{aligned}
$$

$$
\psi_{\mathrm{kidU}}^{f}=\Delta_{2}^{-1}\left\{W_{\mathrm{kiU}}(0)\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right]\right.
$$

$$
\left.-W_{k i U}\left(h_{k} / 2\right)\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]\right\}
$$

$$
\Psi_{\mathrm{kidU}}^{\mathrm{h}}=\Delta_{2}^{-1}\left\{\mathrm{~W}_{\mathrm{kiU}}\left(h_{\mathrm{k}} / 2\right)\left[1-\cos \beta_{0} h_{k}\right]\right.
$$

$$
\left.-W_{k i U}(0)\left[\cos \left(\beta_{0} h_{k} / 2\right)-\cos \left(\beta_{0} h_{k}\right)\right]\right\}
$$

$$
\Psi_{\text {kidd }}^{f}=\Delta_{2}^{-1}\left\{W_{k i D}(0)\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right]\right.
$$

$$
\left.-W_{k i D}\left(h_{k} / 2\right)\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]\right\}
$$

$$
\Psi_{\mathrm{kidD}}^{\mathrm{h}}=\Delta_{2}^{-1}\left\{W_{\mathrm{kiD}}\left(\mathrm{~h}_{\mathrm{k}} / 2\right)\left[1-\cos \beta_{0} \mathrm{~h}_{\mathrm{k}}\right]\right.
$$

$$
\begin{equation*}
\left.-W_{k i D}(0)\left[\cos \left(\beta_{0} h_{k} / 2\right)-\cos \beta_{0} h_{k}\right]\right\} \tag{2.37}
\end{equation*}
$$

where $\Delta_{i}=\sin \beta_{0} h_{k}\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right]$ $-\sin \left(\beta_{0} h_{k} / 2\right)\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right]$
and

$$
\begin{align*}
\Delta_{2}= & {\left[1-\cos \beta_{0} h_{k}\right]\left[\cos \left(\beta_{0} h_{k} / 4\right)-\cos \left(\beta_{0} h_{k} / 2\right)\right] } \tag{2.38}\\
& -\left[\cos \left(\beta_{0} h_{k} / 2\right)-\cos \beta_{0} h_{k}\right]\left[1-\cos \left(\beta_{0} h_{k} / 2\right)\right] \tag{2.39}
\end{align*}
$$

All of the $\Psi ' s$ have been determined. The $\Psi(h)$ coefficients are given in (2.19). The elements of the Φ matrices are obtained from (2.23). This completes the solution for all of the currents in the elements of the Yagi-Uda array.

When the driven element (No. 2) in a Yagi-Uda array is a half-wave dipole, as it often is, $\beta_{0} h_{2}=\pi / 2$ and $\cos \beta_{0} h_{2}=0$. Some of the quantities will become indeterminate. Although they will yield definite values in the limiting process, an alternative formulation is preferred in order to avoid computational difficulties. The equations needed are described by King[1968,p.198].

2-3 Radiation Pattern

Once the current distribution on the elements of the YagiUda array is known, the far field pattern can be calculated. The configuration of Fig. (1.1) is used to derive the far fields of the Yagi-Uda array.

The electromagnetic field is

$$
\begin{align*}
& E_{\theta}\left(R_{2}, \theta, \phi\right)=\left(j \zeta_{0} / 2 \pi\right)\left\{A_{2}\left(e^{-j \beta_{0} R_{2}} / R_{2}\right) F_{m}\left(\theta, \beta_{0} h_{2}\right)\right. \\
& \left.\quad+\sum_{i=1}^{N}\left(e^{-j \beta_{0} R_{i}} / R_{i}\right)\left[B_{i} G_{m}\left(\theta, \beta_{0} h_{i}\right)+D_{i} D_{m}\left(\theta, \beta_{0} h_{i}\right)\right]\right\} \tag{2.40}
\end{align*}
$$

where R_{i} is the distance from the point of calculation to the center of the element i and F_{m}, G_{m}, and D_{m} are defined as follows:

$$
\begin{gather*}
F_{m}(x, y)=1 / 2 \int_{-y}^{y \cdot} \sin \left(y-\left|x^{\prime}\right|\right) e^{j x^{\prime} \cos x} \sin x d x^{\prime} \\
=[\cos (y \cos x)-\cos y] / \sin x \tag{2.41}
\end{gather*}
$$

$$
\begin{aligned}
G_{m}(x, y) & =1 / 2 L_{y}^{y}\left(\cos x^{\prime}-\cos y\right) e^{j x^{\prime} \cos x} \sin x d x^{\prime} \\
& =[\sin y \cos (y \cos x) \cos x-\cos y \sin (y \cos x)] /
\end{aligned}
$$

$$
(\sin x \cos x) \quad---(2.42)
$$

$$
\begin{align*}
D_{m}(x, y)= & 1 / 2 \int_{y}^{y}\left(\cos \left(x^{\prime} / 2\right)-\cos (y / 2)\right) e^{j x^{\prime} \cos x} \sin x d x^{\prime} \\
= & \{[2 \cos (y \cos x) \sin (y / 2)-4 \sin (y \cos x) \cos (y / 2) \cos x] / \\
& \left.\left(1-4 \cos ^{2} x\right)-[\sin (y \cos x) \cos (y / 2)] / \cos x\right\} \sin x \tag{2.43}
\end{align*}
$$

Equation (2.40) may be arranged as follows:

$$
E_{\theta N}\left(R_{2}, \theta, \phi\right)=\left(-V_{02} / \Psi\right)\left(e^{-j \beta_{0} R_{2}}\right) / R_{2}\left(f_{V N}(\dot{\theta}, \phi)\right)---(2.44)
$$

Since no ambiguity can arise, the symbol Ψ without subscripts and superscripts is used for $\Psi_{22 d V}^{m}$ as defined in (2.30). The field factor in (2.44) for the N element array is given by:

$$
\begin{aligned}
& f_{V I N}(\theta, \phi)=\left\{F_{m}\left(\theta, \beta_{0} h_{2}\right)+\sum_{i=1}^{N} e^{-j \beta_{0}\left(R_{i}-R_{2}\right)}\left[I_{U i} G_{m}\left(\theta, \beta_{0} h_{i}\right)\right.\right. \\
& \\
& \left.\left.\quad+T_{D i} D_{m}\left(\theta, \beta_{0} h_{i}\right)\right]\right\} \sec \beta_{0} h_{2}
\end{aligned}
$$

In obtaining (2.44) and (2.45) the far field approximation $R_{i} \dot{=} R_{2}$ has been made. The following set of parameters has been introduced:

$$
\mathrm{T}_{\mathrm{Ui}}=\mathrm{B}_{\mathrm{i}} / \mathrm{A}_{2} \quad \mathrm{~T}_{\mathrm{Di}}=\mathrm{D}_{\mathrm{i}} / \mathrm{A}_{2} \quad \text { where } \mathrm{A}_{2} \text { is defined in }(2.16) \quad--(2.46)
$$

The field pattern in the equatorial plane is given by $\left|f_{V N}(\pi / 2, \phi)\right| /\left|f_{V N}(\pi / 2,0)\right|$ as a function of ϕ.

The ratio of the field in the forward direction ($\phi=0$) to the field in the backward direction $(\phi=\pi)$ in the equatorial plane ($\theta=\pi / 2$) is known as the front-to-back ratio. It is given by:

$$
\begin{equation*}
R_{F B}=\left|f_{V N}(\pi / 2,0)\right| /\left|f_{V N V}(\pi / 2, \pi)\right| \tag{2.47}
\end{equation*}
$$

The front-to-back ratio in decibels is:

$$
\begin{equation*}
r_{F B}=20 \log _{I 0}\left(R_{F B}\right) \tag{2.48}
\end{equation*}
$$

Since the total power radiated by an array is given by the

YAGI-UDA ARRAY - CHAPTER II
integral over a great sphere of the normal component of the Poynting vector

$$
\begin{aligned}
& S_{R}=1 / 2\left(E \times H^{*}\right) \\
& \left|S_{R}(R, \theta, \phi)\right|=\left|E_{\theta}(R, \theta, \phi)\right|^{2} / 2 \zeta_{0}
\end{aligned}
$$

the distribution of S_{R} as a function of θ and ϕ is of interest. The total power supplied to the iv element array. is:

$$
\begin{equation*}
\mathrm{P}_{2 \mathrm{~N}}=1 / 2\left|\mathrm{~V}_{02}\right|^{2} \mathrm{G}_{2 \mathrm{~N}} \tag{2.51}
\end{equation*}
$$

where $G_{2 N}$ is the driving point inductance of element 2 when driving the N element parasitic array; but substituting (2.44) and (2.51) in (2.50)

$$
\begin{equation*}
\left|S_{R_{R}}\left(R_{2}, \theta, \phi\right)\right|=\left(P_{2 N} / G_{2 N}\right)\left(1 /|\Psi|^{2}\right)\left(1 / \zeta_{0} R_{2}^{2}\right)\left|f_{V i V}(\theta, \phi)\right|^{2} \tag{2.52}
\end{equation*}
$$

If the ohmic losses in the conductors of the antennas and in the surrounding dielectric medium (air) are neglected, the total power radiated by an array outside a great sphere of radius R_{2} is the same as the total power supplied at the terminals of the driven element 2 ; that is:

$$
\begin{equation*}
\mathrm{P}_{2 \mathrm{~N}}=\int_{0}^{2 \pi} f_{0}^{\pi}\left|\mathrm{S}_{\mathrm{R}}\left(\mathrm{R}_{2}, \theta, \phi\right)\right| \mathrm{R}_{2}^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \tag{2.53}
\end{equation*}
$$

With (2.52) and (2.53), formulas are obtained for $G_{2 N}$. Actually, $G_{2 N}$ is already known from:

$$
I_{22} / V_{02}=G_{2 I V}+j B_{2 J}
$$

when the medium in which the array is immersed is lossless.

The absolute directivity of the N element Yagi-Uda array is defined in terms of the power radiated by a fictitious isotropic antenna which maintains the same field in all directions as the Yagi-Uda array does in the direction of its maximum $(\theta=\pi / 2, \phi=0)$.

$$
\begin{aligned}
P_{\text {Niso }} & =4 \pi R_{2}^{2}\left|S_{R}\left(R_{2}, \pi / 2,0\right)\right| \\
& =4 \pi R_{2}^{2}\left(P_{2 i N} / G_{2 i J}\right)\left(1 /|\Psi|^{2}\right)\left(1 / \zeta_{0} R_{2}^{2}\right)\left|f_{V N}(\pi / 2,0)\right|^{2}
\end{aligned}
$$

The ratio $\mathrm{P}_{\text {IViso }} / \mathrm{P}_{2 \text { IV }}$ is the absolute directivity. Thus

$$
\begin{equation*}
D_{N}=\left(4 \pi / \zeta_{0}\right)\left(1 /|\Psi|^{2}\right)\left(1 / G_{2 N}\right)\left|f_{V N T}(\pi / 2,0)\right|^{2} \tag{2.54}
\end{equation*}
$$

but from (2.16), (2.54) becomes.

$$
\begin{gather*}
D_{N}(\pi / 2,0)=\left(4 \pi / \zeta_{0}\right)\left\{\left[\left|A_{2}\right|^{2} \zeta_{0}^{2} * \cos ^{2}\left(\beta_{0} h_{2}\right)\right] / 4 \pi^{2}\right\}\left(1 / G_{2 N}\right)\left|f_{V N S}(\pi / 2,0)\right|^{2} \\
=\left(\zeta_{0} / \pi\right)\left\{\left[\left|A_{2}\right|^{2} * \cos ^{2}\left(\beta_{0} h_{2}\right)\right] / G_{2 N}\right\}\left|f_{V i N}(\pi / 2,0)\right|^{2}---(2.55) \tag{2.55}
\end{gather*}
$$

The quantity

$$
\begin{equation*}
G_{N}(\pi / 2,0)=10 \log _{10} D_{1 \mathrm{~N}}(\pi / 2,0) \tag{2.56}
\end{equation*}
$$

-is the absolute gain in decibels.
If the driven element is or is near a half wavelength long, the more convenient alternative form of the gain is obtained if $F_{m}\left(\theta, \beta_{0} h_{2}\right)$ is replaced by $H_{m}\left(\theta, \beta_{0} h_{2}\right)$ in equations (2.40) and (2.45). Also, $\cos \beta_{0} h_{2}$ is omitted from equation (2.55). $H_{m}(x, y)$ is defined

YAGI-UDA ARRAY - CHAPTER II
as follows:

$$
\begin{aligned}
H_{m}(x, y) & =1 / 2 \int_{-h}^{h}\left(\sin \left(\left|x^{\prime}\right|\right)-\sin y\right) e^{j \beta_{0} x^{\prime} \cos x} \sin x d x \\
& =\frac{[1-\cos y \cos (y \cos x)] \cos x-\sin y \sin (y \cos x)}{\sin x \cos x}---(2.57)
\end{aligned}
$$

CHAPTER III

Input Impedance

The general description of a computer program for the analysis of the Yagi-Uda array is presented in Section 3-1. In Section 3-2, a comparison of the present results with previous results is discussed. Section $3-3$ deals with the relationship of input impedance and frequency. Conclusions are drawn in Section 3-4.

3-1 General Description of Computer Program

The main purpose of this study is to develop a numerical technique for calculating the characteristics of a Yagi-Uda array. In this regard, a general computer program has been written in the FORTRAN IV language to obtain a solution for the matrix equation (2.26).

Equations (2.26a) and (2.26b) involve elements of the $N \times \mathbb{N}$ matrices $\left[\Phi_{U}\right],\left[\Phi_{D}\right]$, $\left[\Psi_{d U}^{h}\right]$ and $\left[\Psi_{d D}^{h}\right]$. These in turn depend on the parameters Ψ introduced in (2.12) and (2.13), and the parameters $\Psi(h)$ defined in (2.19). Since each integral is approximated by a linear combination of two terms with arbitrary coefficients, it can be evaluated by equating both sides in (2.12) and (2.13) at two values of z. The values chosen are $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{h}_{\mathrm{k}} / 2$, in addition to $\mathrm{z}=\mathrm{h}_{\mathrm{k}}$, where both sides must vanish. The integration subroutine used for this purpose is a
subprogram for numerical integration of an arbitrary function by Romberg's method of numerical integration. The required degree of accuracy is achieved by adjusting a convergence test constant. Throughout this study, a convergence test constant of 0.01 and in interval limit of 40 are employed.

Evaluating the ψ and Φ coefficients, the $2 N$ coefficients B_{i} and D_{i} can be determined form equations (2.26); substituting in equations (2.7), the currents in the N elements are determined. These computations are straightforward matrix manipulation. The subroutine for solution of systems of complex simultaneous equations makes use of the Gauss elimination method. Rows are arranged to improve the accuracy of the results.

Finally, the input impedance of the driven elements is obtained from the current at the center of the driven elements in terms of the driving voltage V_{02}. The far field radiation patterns are obtained form numerically computed currents on all elements of the Yagi-Uda antenna array, and the absolute directivity of the array is calculated.

3-2 Comparison With Previous Results

In order to confirm the adequacy of the method of solution described in Section 3-1, a comparison between numerical results from this analysis and the existing data is required; such results are presented in this chapter. The distribution of the current in an array of two full-wave elements in which element 1 is center driven is element 2 is parasitic is studied by King [1968, p.212]. The agreement between the results of this study and those obtained by King is good. The coefficients of the trigonometric components of the current, the admittance, the impedance, the current distribution, the horizontal field pattern, the forward gain, the backward gain, and the front-to-back ratio are all in agreement within 1%.

The input impedance, the far field pattern and the gain for a three element array [King, 1968, p.215] and for an array with four identical directors [King, 1968, p.220] are studied. The results obtained from this analysis are in agreement with those obtained by King within 5%. The difference is due to the fact that a somewhat different procedure was used. The results presented in [King, 1968] are based on the work of Morris[1965], in which the entire procedure carried out in Section 2-3 for arrays with half-wave elements was repeated with the distribution function M_{02} replaced by $\mathrm{S}_{\mathrm{Oz2}_{2}}$. This also involved a simple rearrangement of the integral equation so that when $k=2$, the
right-hand member is $\left(j 4 \pi / \zeta_{0}\right)\left(1 / 2 V_{02} S_{0 z 2}+C_{2} F_{0 z_{2}}\right)$, where $S_{0_{2}}=\sin \beta_{0}\left|z_{2}\right|-\sin \beta_{0} h_{2}$.

3-3 Input Impedance

It was shown by Shen [1971] that a Yagi-Uda array of an infinite number of equally spaced elements can support a traveling wave along the direction of the array when the frequency is within one of the passbands. The existence of the traveling wave on such a structure has been confirmed by recent experiments [Shen et al., 1971]. The phase velocity was found to be smaller than the velocity of light. Shen [1971] assumed that currents on the elements are constant in amplitude with equally progressive phase shifts; i.e., if $I(z)$ denotes the current at $y=0$ (Fig. l.I), then the current at $y=b$ is $e^{j \phi_{I}(z)}, e^{j 2 \phi} I(z)$ at $y=2 b$, and so on. The quantity ϕ is the phase shift between currents in adjacent elements. It is seen that the phase angle along each element is assumed constant." The present analysis confirns the adequacy of this assumption. Typical examples are shown in Table I for comparison.

TABLE I
Phase Delay Versus Director Length

Kh	b / h	ϕ (Shen)	ϕ (Present Study)	H
1.37	1.5	2.18	2.26	16
1.33	1.0	1.45	1.48	20

Note: $a / h=0.01$, first passband K=free space wave number
$\phi=$ average phase delay in radians

Figures (3.1)-(3.4) show the phase angle as a function of the distance from the reflector. The lines drawn through the points. have no physical significance, but serve merely to interrelate the discrete points and thus reveal how nearly constant the phase change from director to director actually is.

Also, Figures (3.5)-(3.8) show that for closely spaced directors (e.g., $b / h=1.0$), the magnitude of $I_{k}(0)$ is almost equal in the directors and much smaller that the current in the driven element, but for larger spacings (e.g., b/h=1.5), the currents are comparable in magnitude with the current in the driven element. Now, since Shen [1971] assumed constant current amplitudes on all elements, the discrepancy between the measured directivity and the theoretical results obtained by him would be expected to be less for longer arrays ($b / h=1.5$). This was already described by Shen in the same paper. Also, as was explained by Shen [1971], the theoretical results obtained by him for the directivity are not necessarily equal to the maximum value and so, for longer arrays, the bandwidth is narrower and therefore the discrepancy between the calculated directivity and the maximum value gradually disappears.

$\left(\mathrm{N}=16, \mathrm{kh}=1.37, \mathrm{~b} / \mathrm{h}=1.5, \mathrm{a} / \mathrm{h}=.01, \mathrm{kh}_{1}=1.67\right)$

ELEMENT NO.
FIG. 3.3
$\left(\mathrm{kh}=1.37, \mathrm{~b} / \mathrm{h}=1.5, \mathrm{ka}=0.0136, \mathrm{kh}_{1}=1.67\right)$

$\left(N=10, \mathrm{~b} / \mathrm{h}=1.0, \mathrm{FIG} / \mathrm{b}^{3}=0.4,01, \mathrm{kh}=1.37\right)$

$\left(\mathrm{kh}=1.37, \mathrm{~b} / \mathrm{h}=1.5, \mathrm{ka}=.0136, \mathrm{kh}_{1}=1.67\right)$

3-4 Conclusions

The input impedance is calculated for different lengths of the director and the driven element. For the four examples shown in Figs. (3.9)-(3.12) it was found that the resistive part of the input impedance is more sensitive to changes in the reflector length and the reactive component of the input impedance is more sensitive to changes in the driven element length.

For the cases shown in Figs. (3.1), (3.4) and (3.13), the phase shift ϕ between currents in adjacent elements is apparently independent of the length of the driven element and the director.

The magnitude of $I_{k}(0)$ takes the form of a standing wave, the pattern of which is not affected by the length of the reflector as shown in Fig. (3.14), or by the length of the driven element as shown in Figs. (3.5)-(3.8). The magnitude is nore affected by changes in the length of the driven element than by the length of the reflector.

In summary, to obtain a desirable input impedance for a Yagi-Uda array, the length of the driven element and the length of the reflector can be changed. The resistive part can be changed effectively by adjusting the reflector length, and the reactive part can be changed by adjusting the length of the driven element. It is observed that for a 10% change of these lengths, the phase shift between currents on adjacent elements

FIG. 3.9
($\mathrm{N}=19, \mathrm{kh}=1.33, \mathrm{~b} / \mathrm{h}=1, \mathrm{a} / \mathrm{b}=.01, \mathrm{kh}_{1}=1.67$)

FIG. 3.10
$\left(\mathrm{N}=16, \mathrm{kh}=1.37, \mathrm{~b} / \mathrm{h}=1.5, \mathrm{a} / \mathrm{h}=.01, \mathrm{kh}_{1}=1.67\right)$

FIG. 3.11
$(\mathrm{N}=7, \mathrm{kh}=1.37, \mathrm{~b} / \mathrm{h}=1.5, \mathrm{ka}=.0136)$

ELEMENT NO.
FIG. 3.13
$\left(k h=1.37, \mathrm{~b} / \mathrm{h}=1.5, \mathrm{ka}=.0136, \mathrm{kh}_{2}=1.43\right)$

and the relative current amplitudes are changed very little($\sim 2 \%$) . Hence, the field pattern and directivity are also insensitive to the change of director and reflector lengths. This is shown in Fig. (3.15).

This observation is useful in application, since in the design of a Yagi array, it is now possible to separate the design - of the radiation pattern from the design of the input admittance. When the array is optimized in its radiation pattern using Shen's method, the input impedance can be optimized using the present method, or simply by trial and error in measurement.

FIG. 3.15
$\left(\mathrm{N}=7, \mathrm{kh}=1.37, \mathrm{~b} / \mathrm{h}=1.5, \mathrm{ka}=.0136, \mathrm{kh}_{2}=1.43,1.50\right.$ \& 1.57

CHAPTER IV

Optimization of the Yagi-Uda Array
\dot{A} method was developed by Cheng and Chen [1973] for the optimization of the forward gain by adjustment of the interelement spacings. This method is described in Section 4-1. In Section 4-2, some numerical results obtained from the present study are discussed. Also discussed in this section is the extent to which the bandwidth is affected when the interelement spacings are adjusted for maximum directivity. In Section 4-3, conclusions are drawn.

4-1 Spacing Perturbation

With a view to adjusting the element spacings in a Yagi-Uda array, we assume that the positions of the kth and the ith elements be displaced by small amounts Δd_{k} and Δd_{i}, respectively.

$$
R_{k i}=\left[\left(z_{k}-z_{i}^{1}\right)^{2}+b_{k i}^{2}\right]^{1 / 2}
$$

If $\left(\Delta d_{k}-\Delta d_{i}\right) \ll b_{k i}$, then

$$
\begin{equation*}
\Delta R_{k i}=b_{k i} / R_{k i}\left(\Delta d_{k}-\Delta d_{i}\right) \tag{4.1}
\end{equation*}
$$

We write the new perturbed matrices:

The coefficients for the current terms will also be changed. We write:

$$
\begin{aligned}
& \{B\}^{\dot{P}}=\{B\}+\{\Delta B\} \\
& \{D\}^{p}=\{D\}+\{\Delta D\}
\end{aligned}
$$

$$
---(4.2 \mathrm{~g})
$$

$$
---(4.2 h)
$$

With this change in the inter-element spacings, a typical term in the integrals contained in (2.10) and (2.11) can be written as

$$
\begin{equation*}
\underline{f}_{h_{i}^{h}}^{i} G_{0 z_{i}} K_{k i}\left(z_{k}, z_{i}^{!}\right) d z_{i} \tag{4.3}
\end{equation*}
$$

where $\mathrm{G}_{0 z_{i}}$, stands for $\mathrm{MOz}_{0}, \mathrm{~F}_{0 z_{i}^{\prime}}$, or $\mathrm{H}_{0 z_{i}^{\prime}}$, and $\mathrm{M}_{\mathrm{O}_{i}^{\prime}}, \mathrm{F}_{0 z_{i}^{\prime}}$, and H_{Oz} ! have been defined in (2.7).

$$
\begin{aligned}
& {\left[\Phi_{U}\right]^{P}=\left[\Phi_{U}\right]+\left[\Delta \Phi_{U}\right]} \\
& ---(4.2 a) \\
& {\left[\Phi_{D}\right]^{P}=\left[\Phi_{D}\right]+\left[\Delta \Phi_{D}\right]} \\
& ---(4.2 b) \\
& {\left[\Psi_{\mathrm{dU}}\right]^{p}=\left[\Psi_{\mathrm{dU}}^{\mathrm{h}}\right]+\left[\Delta \Psi_{\mathrm{dU}}^{\mathrm{h}}\right]} \\
& ---(4.2 c) \\
& {\left[\Psi_{d D}^{h}\right]^{P}=\left[\Psi_{d D}^{h}\right]+\left[\Delta \Psi_{d D}^{h}\right]} \\
& \text { - -- (4.2d) } \\
& \left\{\Phi_{2 \mathrm{~V}}\right\}^{\mathrm{P}}=\left\{\Phi_{2 \mathrm{~V}}\right\}+\left\{\Delta \Phi_{2 \mathrm{~V}}\right\} \\
& ---(4.2 e) \\
& \left\{\Psi_{2 d V}^{h}\right\}^{p}=\left\{\Psi_{2 d V}^{h}\right\}+\left\{\Delta \Psi_{2 d V}^{h}\right\} \\
& ---(4.2 f)
\end{aligned}
$$

Now we can write the kith element of the square deviation matrices and the kith element of the column deviation matrices as follows:

$$
\begin{array}{ll}
{\left[\Delta \Phi_{U}\right]_{k i}=\left(\Delta d_{k}-\Delta d_{i}\right)\left[\Phi_{U}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right)} \\
{\left[\Delta \Phi_{D}\right]_{k i}=\left(\Delta d_{k}-\Delta d_{i}\right)\left[\Phi_{D}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right)} \\
{\left[\Delta \Psi_{d U}^{h}\right]_{k i}=\left(\Delta d_{k}-\Delta d_{i}\right)\left[\Psi_{d U}^{h}\right]_{k i}\left(1-\delta_{k i}\right)} \\
& {\left[\Delta \Psi_{d D}^{h}\right]_{k i}=\left(\Delta d_{k}-\Delta d_{i}\right)\left[\Psi_{d D}^{h}\right]_{k i}\left(1-\delta_{k i}\right)} \\
& \left\{\Delta \Phi_{2 V}\right\}_{k}=\left(\Delta d_{k}-\Delta d_{2}\right)\left\{\Phi_{2 V}^{\prime}\right\}_{k}\left(1-\delta_{k 2}\right) \\
\therefore \quad\left\{\Delta \Psi_{2 d V}^{h}\right\}_{k}=\left(\Delta d_{k}-\Delta d_{2}\right)\left\{\Psi_{2}^{h} d_{k}\right\}_{k}\left(1-\delta_{k 2}\right)
\end{array}
$$

If second order derivatives are neglected, substituting (4.2) into (2.26) yields:

$$
\left[\Phi_{U}\right]\{\Delta B\}+\left[\Phi_{D}\right]\{\Delta D\}=-\left\{\Delta \Phi_{2 V}\right\} A_{2}-\left[\Delta \Phi_{U}\right]\{B\}-\left[\Delta \Phi_{D}\right]\{D\} \quad--(4.10)
$$

and

$$
\begin{equation*}
\left[\Psi_{\mathrm{dU}}^{\mathrm{h}}\right]\{\Delta \mathrm{B}\}+\left[\Psi_{\mathrm{dD}}^{\mathrm{h}}\right]\{\Delta \mathrm{D}\}=-\left\{\Delta \Psi_{2 \mathrm{dV}}^{\mathrm{h}}\right\} A_{2}-\left[\Delta \Psi_{\mathrm{dU}}^{\mathrm{h}}\right]\{\mathrm{B}\}-\left[\Delta \Psi_{\mathrm{dD}}^{\mathrm{h}}\right]\{\mathrm{D}\} \tag{4.11}
\end{equation*}
$$

where A_{2} is defined in (2.16).
In view of (4.9), the kth element of the right hand side of (4.10) can be written as:

$$
\sum_{i=1}^{N}\left[P_{2}\right]_{k i} \Delta d_{i}
$$

The proof is as follows:

$$
\begin{equation*}
\Delta S=\int \Delta=\int_{-h_{i}}^{h_{i}} G_{0 z^{\prime} i} \Delta K_{k i}\left(z_{k}, z_{i}^{\prime}\right) \mathrm{d} z_{i} \tag{4.4}
\end{equation*}
$$

but $\Delta K_{k i}=\Delta e^{-j \beta_{0} R_{k i}} / R_{k i}$.

$$
\begin{align*}
& =\left[R_{k i}\left(-j \beta_{0}\right) e^{-j \beta_{0} R_{k i}}-e^{-j \beta_{0} R_{k i}}\right] / R_{k i}^{2} \Delta R_{k i} \\
& =\left[-e^{-j \beta_{0} R_{k i}}\left(j \beta_{0} R_{k i}+1\right)\right] / R_{k i}^{2} \Delta R_{k i} \tag{4.5}
\end{align*}
$$

If $\beta_{0} R_{k i} \gg 1$.

$$
\begin{equation*}
\Delta K_{k i}=\left[-j \beta_{0} e^{-j \beta_{0} R_{k i}}\right] / R_{k i} \Delta R_{k i} \tag{4.6}
\end{equation*}
$$

Substitution of (4.1) and (4.6) in (4.4) yields

$$
\begin{aligned}
\Delta S & =L_{h}^{h_{i}} G_{0 z} i^{\left[-j \beta_{0} b_{k i}\left(\Delta d_{k}-\Delta d_{i}\right) e^{-j \beta_{0} R_{k i}}\right] / R_{k i}^{2} d z_{i}^{i}} \\
& =-j \beta_{0} b_{k i}\left(\Delta d_{k}-\Delta d_{i}\right) \underline{S}_{h_{i}}^{h_{i}} G_{0 z^{\prime} i}\left[e^{-j \beta_{0} R_{k i}} / R_{k i}\right] d z_{i}^{\prime}---(4.7)
\end{aligned}
$$

Now, if $k \neq i$, using equations (2.10) and (2.11) would imply that they would still apply with $K_{k i d}$ substituted for $K_{k i d}$, where

$$
\begin{equation*}
K_{k i d}^{P_{k i}}=e^{-j \beta_{0} R_{k i}} / R_{k i}^{2}-e^{-j \beta_{0} R_{k i h}} / R_{k i h}^{2} \tag{4.8}
\end{equation*}
$$

Although the kernel is now a different function, use is made of the properties shown in (2.12) and (2.13). Complex matrices $\left[\Phi_{U}^{\prime}\right],\left[\Phi_{D}^{\prime}\right],\left[\Psi_{d U}^{h}\right]$, and $\left[\Psi_{d D}^{h}\right]$ are defined as $\left[\Phi_{U}\right],\left[\Phi_{D}\right],\left[\Psi_{d U}^{h}\right]$, and $\left[\Psi_{\mathrm{dD}}^{\mathrm{h}}\right]$ were defined in Chapter II, except that the integrals W defined in (2.27) and the integrals $\Psi\left(h_{k}\right)$ defined in (2.19) are multiplied by $-j \beta_{0}\left(d_{k}-d_{i}\right)$ and $K_{k i d}$ is substituted for $K_{k i d}$, as was shown in (4.7).

The kith element of $\left\{\Delta \Phi_{2 V}\right\} A_{2}$ is

$$
\left(\Delta \mathrm{d}_{\mathrm{k}}-\Delta \mathrm{d}_{2}\right)\left\{\Phi_{2 \mathrm{v}}\right\}_{\mathrm{k}} A_{2}\left(1-\delta_{\mathrm{k} 2}\right)
$$

The kith element of $\left[\Delta \Phi_{U}\right]\{B\}$ is

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(\Delta d_{k}-\Delta d_{i}\right)\left[\Phi_{U}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) B_{i} \\
& =\Delta d_{k_{i=1}}^{N}\left[\Phi_{U}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) B_{i}-\sum_{i=1}^{N}\left[\Phi_{U}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) B_{k} \Delta d_{i}
\end{aligned}
$$

The kith element of $\left[\Delta \Phi_{D}\right]\{D\}$ is

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(\Delta d_{k}-\Delta d_{i}\right)\left[\Phi_{D}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) D_{i} \\
& =\Delta d_{k_{i}}^{N} \sum_{i=1}^{[}\left[\Phi_{D}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) D_{i}-\sum_{i=1}^{N}\left[\Phi_{D}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) D_{i} \Delta d_{i}
\end{aligned}
$$

The sum of the above three terms yields:

$$
\begin{align*}
& \Delta d_{k}\left[\left\{\Phi_{2 V}^{\prime}\right\}_{k} A_{2}\left(1-\delta_{k 2}\right)+\sum_{i=1}^{N}\left[\Phi_{U}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) B_{i}+\sum_{i=j}^{N}\left[\Phi_{D}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) D_{i}\right] \\
& -\left[\left\{\Phi_{2 V}^{\prime}\right\}_{k} A_{2}\left(1-\delta_{k 2}\right) \Delta d_{2}\right]-\sum_{i=1}^{N}\left[\Phi_{U}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) B_{i} \Delta d_{i} \\
& +\sum_{i=1}^{N}\left[\Phi_{D}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) D_{i} \Delta d_{i} \tag{4.13}
\end{align*}
$$

The following expressions for the elements of $\left[P_{2}\right]$ are derived:

$$
\begin{align*}
{\left[P_{2}\right]_{k i}=} & {\left[\Phi_{U}^{\prime}\right]_{k i}\{B\}_{i}+\left[\Phi_{D}^{\prime}\right]_{k i}\{D\}_{i} \quad i \neq k \quad i \neq 2 } \\
{\left[P_{2}\right]_{k 2}=} & {\left[\Phi_{U}^{\prime}\right]_{k 2}\{B\}_{2}+\left[\Phi_{D}^{\prime}\right]_{k 2}\{D\}_{2}+\left\{\Phi_{2 V}^{\prime}\right\}_{k} A_{2}\left(1-\delta_{k 2}\right) \quad k \neq 2 } \\
{\left[P_{2}\right]_{k k}=} & -\sum_{i=1}^{N}\left[\Phi_{U}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) B_{i}-\sum_{i=1}^{N}\left[\Phi_{D}^{\prime}\right]_{k i}\left(1-\delta_{k i}\right) D_{i} \\
& -\left\{\Phi_{2 V}^{\prime}\right\}_{k} A_{2}\left(1-\delta_{k 2}\right) \tag{4.16}
\end{align*}
$$

And similarly, another $N \times N$ matrix can be defined and equations (4.10) and (4.11) become:

$$
\begin{align*}
& {\left[\Phi_{\mathrm{U}}\right]\{\Delta \mathrm{B}\}+\left[\Phi_{\mathrm{D}}\right]\{\Delta \mathrm{D}\}=\left[\mathrm{P}_{2}\right]\{\Delta \mathrm{d}\}} \tag{4.17}\\
& {\left[\Psi_{\mathrm{dU}}^{\mathrm{h}}\right]\{\Delta \mathrm{B}\}+\left[\Psi_{\mathrm{dD}}^{\mathrm{h}}\right]\{\Delta \mathrm{D}\}=\left[\mathrm{P}_{3}\right]\{\Delta \mathrm{d}\}}
\end{align*}
$$

The perturbed current coefficients $\{B\}^{P}$ and $\{D\} P$ can then be determined from (4.2 g) and (4.2 h).

The preceding formulation is not suitable when $\beta_{0} h_{i}=\pi / 2$ as long as it is less than $5 \pi / 4$. The preceding expressions must be modified in accordance with the procedure in Chapter II. (4.17) and (4.18) become:

$$
\left[\begin{array}{cc}
{\left[\dot{B}_{\mathrm{U}}\right]} & {\left[\Phi_{\mathrm{D}}\right]} \tag{4.19}\\
{\left[\psi_{\mathrm{dU}}^{\mathrm{h}}\right]} & {\left[\Psi_{\mathrm{dD}}^{\mathrm{h}}\right]}
\end{array}\right]\left\{\begin{array}{c}
\{\Delta \mathrm{B}\} \\
\{\Delta \mathrm{D}\}
\end{array}\right\}=\left\{\begin{array}{l}
{\left[\mathrm{P}_{2}\right]} \\
{\left[\mathrm{P}_{3}\right]}
\end{array}\right\}\{\Delta \mathrm{d}\}
$$

From (4.19), $\{\Delta B\}$ and $\{\Delta D\}$ can be found by matrix inversion:

$$
\left\{\begin{array}{c}
\{\Delta \mathrm{B}\} \tag{4.20}\\
\{\Delta \mathrm{D}\}
\end{array}\right\}=\left[\begin{array}{cc}
{\left[\Phi_{\mathrm{U}}\right]} & {\left[\Phi_{\mathrm{D}}\right]} \\
{\left[\psi_{\mathrm{dU}}^{\mathrm{h}}\right]} & {\left[\psi_{\mathrm{dD}}^{\mathrm{h}}\right.}
\end{array}\right]^{-1}\left\{\begin{array}{c}
{\left[\mathrm{P}_{2}\right]} \\
{\left[\mathrm{P}_{3}\right]}
\end{array}\right\}\{\Delta \mathrm{d}\}=\left\{\begin{array}{l}
{\left[\mathrm{Q}_{2}\right]} \\
{\left[Q_{3}\right]}
\end{array}\right\}\{\Delta \mathrm{d}\}
$$

The radiation field of a linear array at a distance R_{0} from a reference origin is:

$$
\begin{equation*}
E(\theta, \phi)=\frac{j \omega \beta_{0}}{4 \pi R_{0}} \sum_{i=1}^{N} e^{j \beta_{0} d_{i} \sin \theta \cos \phi} \sin \delta_{-h}^{h_{i}} I_{i}\left(z_{i}^{\prime}\right) e^{j \beta_{0} z_{i}^{\prime} \cos \theta} d z_{i}^{l} \tag{4.21}
\end{equation*}
$$

Let us consider the term $e^{j \beta_{0} d_{i} \sin \theta \cos \phi h_{i}} \int_{h_{i}} I_{i}\left(z_{i}^{1}\right) e^{j \beta_{0} z_{i} \cos \theta} \cdot d z_{i}$

For small $\Delta d_{i} ; i . e .$, for $\Delta d_{i} / d_{i} \ll 1$

$$
\begin{align*}
& \Delta\left(e^{j \beta_{0} d_{i} \sin \theta \cos \phi h_{i}} \mathcal{C h}_{i}\left(z_{i}^{!}\right) e^{j \beta_{0} z_{i}^{\prime} \cos \theta} d z_{i}^{!}\right) \\
& =\Delta\left(e^{j \beta_{0} d_{i} \sin \theta \cos \phi}\right) \times I+e^{j \beta_{0} d_{i} \sin \theta \cos \phi} \tag{4.22}
\end{align*} \times \Delta I, ~ l
$$

where $I=\int_{h_{i}}^{h_{i}} I_{i}\left(z_{i}^{\prime}\right) e^{j \beta_{0} z_{i}^{1} \cos \theta} d z_{i}^{1}$
but $\Delta\left(e^{j \beta_{0} d_{i} \sin \theta \cos \phi}\right)=j \beta_{0} \sin \theta \cos \phi e^{j \beta_{0} d_{i} \sin \theta \cos \phi} \Delta d_{i}$
and $\Delta I=\int_{-h_{i}}^{h_{i}}\left(\Delta B_{i} F_{0 z_{i}}+\Delta D_{i} H_{0 z_{i}^{\prime}}\right) e^{j \beta_{0} z_{i}^{!} \cos \theta} d z_{i}$

$$
\begin{align*}
\Delta I= & \left(\Delta B_{i} 2 \underline{f}_{h_{i}}^{h_{i}} F_{0 z_{i}^{\prime}} e^{j \beta_{0} z_{i}^{i} \cos \theta} d z_{i}^{!}\right. \\
& +\left(\Delta D_{i}\right) \int_{h_{i}}^{h_{i}} H_{0 z_{i}} e^{j \beta_{0} z_{i}^{!} \cos \theta} d z! \tag{4.24}
\end{align*}
$$

Substituting (4.23) and (4.24) into (4.22), the right hand side of (4.22) can be written as:

$$
\begin{align*}
& \left(\Delta d_{i}\right) e^{j \beta_{0} d_{i} \sin \theta \cos \phi}\left(j \beta_{0} \sin \theta \cos \phi\right)\left[B_{i} \int_{h_{i}}^{h_{i}} F_{z_{i}^{\prime}} e^{j \beta_{0} z_{i}^{!} \cos \theta} d z_{i}^{!}\right. \\
& \left.+D_{i} \int_{h_{i}}^{h_{i}} H_{0 z_{i}} e^{j \beta_{0} z_{i}^{\prime} \cos \theta} d z_{i}^{!}\right]+e^{j \beta_{0} d_{i} \sin \theta \cos \phi}[\\
& \left.\Delta B_{i} \int_{h_{i}}^{h_{i}} F_{0 z} e^{j \beta_{0} z_{i}^{!} \cos \theta} d z_{i}^{\prime}+\Delta D_{i} \int_{h_{i}}^{h_{i}} H_{0 z^{\prime}} e^{j \beta_{0} z_{i}^{\prime} \cos \theta} d z!\right] \tag{4.25}
\end{align*}
$$

A simplification seems possible by defining:

$$
\begin{align*}
& M_{i}^{(2)}(\theta)=\frac{\beta_{0}}{2} \int_{h_{i}}^{h_{i}} F_{0 z_{i}} e^{j \beta_{0} z_{i}^{\prime} \cos \theta} \sin \theta d z_{i}^{\prime} \\
& M_{i}^{(3)}(\theta)=\frac{\beta_{0}}{2} \int_{h_{i}}^{h_{i}} H_{0 z_{i}} e^{j \beta_{0} z_{i}^{\prime} \cos \theta} \sin \theta d z_{i}^{\prime} \tag{4.27}
\end{align*}
$$

$$
\because--(4.26)
$$

Thus, the radiation field of a spacing-perturbed linear array at a distance R_{0} from a reference origin is:

$$
\begin{aligned}
E^{\prime}(\theta, \phi) \cong & E(\theta, \phi)+\frac{j 60}{R_{0}} \sum_{i=1}^{N} e^{j \beta_{0} d_{i} \sin \theta \cos \phi}\left\{j \beta_{0} \sin \theta \cos \phi\left(\Delta d_{i}\right) \times\right. \\
& {\left.\left[M_{i}^{(2)}(\theta) B_{i}+M_{i}^{(3)}(\theta) D_{i}\right]+\left[M_{i}^{(2)}(\theta) \Delta B_{i}+M_{i}^{(3)}(\theta) \Delta D_{i}\right]\right\} } \\
& --(4.28)
\end{aligned}
$$

where $E(\theta, \phi)$ is the radiation field of the unperturbed array. It is convenient to define an N element column matrix $\left\{D^{\prime}\right\}$ with the fth element:

$$
\begin{align*}
D_{k}^{\prime}= & \frac{j 60}{R_{0}}\left\{j \beta_{0} \sin \theta \cos \phi e^{j \beta_{0} d_{k} \sin \theta \cos \phi}\left[M_{k}^{(2)}(0) B_{k}+M_{k}^{(3)}(0) D_{\dot{k}}\right]\right. \\
& \left.+\sum_{i=1}^{N} e^{j \beta_{0} d_{i} \sin \theta \cos \phi}\left(M_{i}^{(2)}\left[Q_{2}\right]_{i k}+M_{i}^{(3)}\left[Q_{3}\right]_{i k}\right)\right\} \tag{4.29}
\end{align*}
$$

where $\left[Q_{2}\right]_{i k}$ and $\left[Q_{3}\right]_{i k}$ denote the ikth elements of $\left[Q_{2}\right]$ and $\left[Q_{3}\right]$, respectively.

With (4.29), we can write (4.28) as:

$$
\begin{equation*}
E^{\prime}(\theta, \phi)=E(\theta, \phi)+\left\{D^{\prime}\right\}^{T}\{\Delta d\}=E(\theta, \phi)+\{\Delta d\}^{T}\left\{D^{\prime}\right\} \tag{4.30}
\end{equation*}
$$

where the superscript T denotes transposition.
Now we consider the problem of gain optimization by spacing perturbation. The gain of an array in the direction (θ_{0}, ϕ_{0}) is:

$$
\begin{equation*}
G\left(\theta_{0}, \phi_{0}\right)=\frac{E\left(\theta_{0}, \phi_{0}\right) E^{*}\left(\theta_{0}, \phi_{0}\right)}{60 P_{\text {in }}} \tag{4.31}
\end{equation*}
$$

where $P_{\text {in }}$ is the time averaged input power. With spacing perturbation, E becomes $E^{\prime}, P_{\text {in }}$ becomes P in and the perturbed gain becomes:

$$
\begin{aligned}
G^{\prime}\left(\theta_{0}, \phi_{0}\right) & =\frac{E^{\prime}\left(\theta_{0}, \phi_{0}\right) E^{\prime} *\left(\theta_{0}, \phi_{0}\right)}{60 P i_{i n}^{\prime}} \\
E^{\prime} E^{\prime} * & =(E+\Delta E)(E+\Delta E) * \\
& =(E+\Delta E)(E *+\Delta E *) \\
& =E E *+E * \Delta E+E \Delta E *+\Delta E \Delta E * \\
& =E E *+2 \operatorname{Re}(E \Delta E *)+\Delta E \Delta E *
\end{aligned}
$$

From (4.30),

$$
E^{\prime} E^{*} *=E E *+2 \operatorname{Re}\left(E\{\Delta d\}^{T}\left\{D^{\prime} *\right\}\right)+\{\Delta d\}^{T}\left\{D^{\prime} *\right\}\left\{D^{\prime}\right\}^{T}\{\Delta d\}--(4.33)
$$

We define:
and $\left[C_{1}\right]=\left\{D^{\prime *}\right\}\left\{D^{\prime}\right\}^{T}$
Equation (4.33) now becomes:

$$
\begin{equation*}
E^{\prime} E^{\prime} *=E E^{*}+2\{\Delta d\}^{T}\left\{B_{1}\right\}+\{\Delta d\}^{T}\left[C_{1}\right]\{\Delta d\} \tag{4.36}
\end{equation*}
$$

The $N \times N$ square matrix $\left[C_{1}\right]$ is positive semi-definite, and since . $\{\Delta d\}$ is a real matrix, $\left[C_{1}\right]$ in the last term of of (4.33) can be replaced by $\left[R e C_{1}\right]$. Pin in the equation above is

$$
\begin{equation*}
P_{\text {in }}^{\prime}=I / 2 \operatorname{Re}\left[V_{0}^{*} I_{2} P_{2}^{P}(0)\right]=P_{i n}+\{\Delta d\}^{T}\left\{B_{2}\right\} \tag{4.37}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{\text {in }}=1 / 2 \mathrm{~V}_{02} \operatorname{Re}\left[\mathrm{~A}_{2} \mathrm{MO}_{2}(0)+\mathrm{B}_{2} \mathrm{~F}_{0 z_{2}}(0)+\mathrm{D}_{2} \mathrm{H}_{0 z_{2}}(0)\right] \tag{4.38}
\end{equation*}
$$

and the k th element of the column matrix $\left\{B_{2}\right\}$ is

$$
\begin{equation*}
\left\{\mathrm{B}_{2}\right\}_{k}=1 / 2 \mathrm{~V}_{02} \operatorname{Re}\left\{\left[\mathrm{Q}_{2}\right]_{2 \mathrm{k}} \mathrm{~F}_{0 \dot{z}_{2}}(0) \pm\left[\mathrm{Q}_{3}\right]_{2 \mathrm{k}^{H} \mathrm{H}_{2}}(0)\right\} \tag{4.39}
\end{equation*}
$$

For a lossless array, the input power equals the total power radiated, and $P{ }_{1}$ incan be written in an alternative form:

$$
\mathrm{P}_{\text {in }}=1 / 60\left\{1 /(4 \pi) \int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi}\left|E^{\prime}(\theta, \phi)\right|^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \quad--(4.40)\right.
$$

Using (4.30), (4.40) can be expressed as

$$
\begin{equation*}
P_{\text {in }}=P_{\text {in }}+2\{\Delta d\}^{T}\left\{B_{3}\right\}+\{\Delta d\}^{T}\left[\operatorname{ReC}_{2}\right]\{\Delta d\} \tag{4.41}
\end{equation*}
$$

where the radiated power of the unperturbed array

$$
\begin{align*}
& P_{\text {in }}=1 /(240 \pi) \int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi}|E(\theta, \phi)|^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \tag{4.42}\\
& \left\{\mathrm{~B}_{3}\right\}=1 /(240 \pi) \int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi}\left\{\mathrm{B}_{1}\right\} \sin \theta \mathrm{d} \theta \mathrm{~d} \phi
\end{align*}
$$

$$
---(4.43)
$$

and

$$
\begin{equation*}
\left[c_{2}\right]=1 /(240 \pi) \cdot \int_{0}^{2 \pi} d \phi \int_{0}^{\pi}\left[c_{1}\right] \sin \theta d \theta d \phi \tag{4.44}
\end{equation*}
$$

$\cdot\left\{B_{1}\right\}$ and $\left[C_{1}\right]$ have been previously defined, respectively, in (4.34) and (4.35), and $\left[C_{2}\right]$ is a positive definite Hermitian matrix.

The objective of gain optimization by spacing perturbation is to find the small changes in the element spacings such that the array gain in a given direction is increased and to repeat the process until further increases in gain are negligible. Hence, it is essential that

$$
\begin{equation*}
\Delta G\left(\theta_{0}, \phi_{0}\right)=G^{\prime}\left(\theta_{0}, \phi_{0}\right)-G\left(\theta_{0}, \phi_{0}\right) \tag{4.45}
\end{equation*}
$$

be positive. Substitution of (4.31)-(4.41) in (4.45) yields

$$
\begin{equation*}
\Delta G\left(\theta_{0}, \phi_{0}\right)=\frac{1}{60} \frac{\{\Delta d\}^{T}\{B\}+\{\Delta d\}^{T}\left[\operatorname{Rec}_{1}\right]\{\Delta d\}}{P_{i n}+2\{\Delta d\}^{T}\left\{B_{3}\right\}+\{\Delta d\}^{T}\left[\operatorname{ReC}_{2}\right]\{\Delta d\}} \tag{4.46}
\end{equation*}
$$

where

$$
\{B\}=2\left\{B_{1}\right\}-60 G\left(\theta_{0}, \phi_{0}\right)\left\{B_{2}\right\} .
$$

$$
--(4.47)
$$

Note that the negative sign in (4.47) for $\{B\}$ in the numerator of $G\left(\theta_{0}, \phi_{0}\right)$ in (4.46) implies that the array gain will decrease for an improper choice of $\{\Delta d\}$.

In order to be certain that $G\left(\theta_{0}, \phi_{0}\right)$ will be positive, we make use of a known relation in the theory of matrices. Applied to the present problem, the relation asserts that if - $\left[\mathrm{ReC}_{2}\right]$ is positive definite, then

$$
\begin{equation*}
\left(\{B\}^{T}\left[\operatorname{ReC} C_{2}\right]^{-1}\{B\}\right)\left(\{\Delta d\}^{T}\left[\operatorname{ReC}_{2}\right]\{\Delta d\}\right) \geq\left(\{\Delta d\}^{T}\{B\}\right) \tag{4.48}
\end{equation*}
$$

In (4.48), the equality sign holds when

$$
\begin{equation*}
\{\Delta \mathrm{d}\}=\alpha\left[\operatorname{ReC}_{2}\right]^{-1}\{B\} \tag{4.49}
\end{equation*}
$$

where α is a positive constant. Hence, if the spacing changes in $\{\Delta d\}$ are chosen such that

$$
\begin{equation*}
\{\Delta \mathrm{d}\}=\alpha\left[\operatorname{ReC}_{2}\right]^{-1}\left(2\left\{\mathrm{~B}_{1}\right\}-60 G\left\{B_{2}\right\}\right) \tag{4.50}
\end{equation*}
$$

then

$$
\begin{aligned}
\Delta G= & \frac{1}{60}\left[\alpha\left(2\left\{B_{1}\right\}-60 G\left\{B_{2}\right\}\right)^{T}\left[\operatorname{ReC}_{2}\right]^{-1}\left(2\left\{B_{1}\right\}-60 G\left\{B_{2}\right\}\right)\right. \\
& \left.+\{\Delta d\}^{T}\left[\operatorname{ReC}_{1}\right]\{\Delta d\}\right] /\left[P_{i n}+2\{\Delta d\}^{T}\left\{B_{3}\right\}\right. \\
& \left.+\{\Delta d\}^{T}\left[\operatorname{ReC}_{2}\right]\{\Delta d\}\right]>0
\end{aligned}
$$

4-2 Numerical Results

In this section we present some of the examples that were used by Cheng [1973] to illustrate the effectiveness of increasing the directivity of the Yagi-Uda array by spacing perturbation.

Example 1

Six element Yagi array with a half-wave feeder ($2 h_{2}=.5 \lambda$), one reflector $\left(2 h_{1}=.5 l \lambda\right)$, four directors $\left(2 h_{3}=2 h_{4}=2 h_{5}=2 h_{6}=.43 \lambda\right)$, $\mathrm{a}=0.003369 \lambda$. In the initial array, $\mathrm{b}_{21}=0.25 \lambda, \mathrm{~b}_{32}=\mathrm{b}_{43}=\mathrm{b}_{54}=\mathrm{b}_{65}=0.31 \lambda$. The director spacings are to be adjusted for gain maximization with the reflector spacing being fixed. The initial array is found to have a 9.06 dB gain [D.K. Cheng, 1973]. The present numerical calculation yields a 10.93 dB gain. The normalized radiation patterns are shown in Fig. 4.1 , which agrees well with the patterns of Fig. 2 of [Cheng, 1973]. It is seen that the pattern for the optimum array has not only narrower main bean but also lower sidelobes. The optimized array is unequally spaced and was found to have 10.72 dB gain by Cheng [1973] and 12.49 dB gain by the present study. The increase of the array gain is 1.66 dB according to Cheng and 1.66 dB according to the present study. As was mentioned in Section 3-2, the difference is due to a somewhat different procedure. The results are summarized in Table I.

Example 2

Six element Yagi-Uda array with a half-wave feeder ($2 \mathrm{~h}_{2}=.5 \lambda$), one reflector $\left(2 h_{1}=.5 l \lambda\right)$, four directors $\left(2 h_{3}=2 h_{4}=2 h_{5}=2 h_{6}=.43 \lambda\right)$, $a=0.003369 \lambda$. In the initial array, $b_{21}=.28 \lambda, b_{32}=b_{43}=b_{54}=b_{65}=.31 \lambda$. All element spacings are to be adjusted for gain optimization. The reflector spacing b_{21} in the initial array is arbitrarily chosen to be 0.28λ and all other element spacings are given as 0.31d. The gain of the initial array was found to be 8.77 dB by Cheng and Chen and was found to be 10.88 dB by the present study. The gain of the optimized array was found to be 10.74 dB by Cheng and Chen and 22.51 dB by the present study. The increase of the array gain is 1.97 dB according to Cheng and Chen and 1.63 dB according to the present study. Again the difference is somewhat due to a different procedure, as was explained in Section 3-2. The results are summarized in Table II.

Example 3

Ten element Yagi-Uda array with a half-wave feeder ($2 h_{2}=.5 \lambda$), one reflector $\left(2 h_{1}=.51 \lambda\right)$, eight directors $\left(2 h_{i}=.43 \lambda, i=3,4, \ldots, 10\right)$, $a=0.003369 \lambda$. In the initial array, $b_{21}=.25 \lambda, b_{32}=b_{43}=\ldots=b_{109}=.31 \lambda$. The director spacings are to be adjusted for gain maximization. The gain of the initial array was found to be 10.92 dB by Cheng and Chen and 22.3 dB by the present study. The gain of the optimized array was found as 12.1 dB by Cheng and Chen and 13.9 dB by the present
study. The increase in the array gain is 1.18 dB according to Cheng and 1.6 dB according to the present study. The results are summarized in Table III.

The passband of the array was defined by Shen [1972] as the frequency band in which the directivity varies within 3 dB of the maximum value. Using this definition, a comparison of the bandwidth as well as the array gain is described in Table IV, from which it can be seen that the bandwidth is sacrificed when the array gain is optimized. A more interesting result is shown in Figures 4.2 and 4.3, where the array gain is plotted versus frequency for both the initial and optimized arrays of Cheng [1973]. It was found that if the array's forward gain is maximized by frequency perturbation before it is maximized by changing the inter-element spacings, then the gain increase described by Cheng [1973] is not as much. This is shown in Table V.

FIG. 4.1
O
N
(Cheng and Chen)

TABLE I
Gain Optimization for Six-Element Yagi-Uda Array (Perturbation of Director SDacings)

'Array	$\mathrm{b}_{21} / \lambda$	$\mathrm{b}_{32} / \lambda$	b_{43} / λ	$\mathrm{b}_{54} / \lambda$	$\mathrm{b}_{65} / \lambda$	$\frac{\mathrm{G} A \mathrm{~A}}{\text { Cheng }}$	$\begin{gathered} \text { (d B) } \\ \text { Present } \\ \text { Study } \end{gathered}$
Initial	0.250	0.310	0.310	0.310	0.310	9.06	10.93
Optimized	0.250	0.336	0.398	0.310	0.407	10.72	12.49

TABLE II
Gain Optimization for Six-Element Yagi-Uda Array (Perturbation of All Element Spacings)

Array	$\mathrm{b}_{21} / \lambda$	$\mathrm{b}_{32} / \lambda$	$\mathrm{b}_{43} / \lambda$	$\mathrm{b}_{54} / \lambda$	$\mathrm{b}_{65} / \lambda$	$\frac{G A(1)}{\text { Cheng }}$	Present Study
Initial	0.280	0.310	0.310	0.310	0.310	8.77	10.88
Optimized	0.250	0.352	0.355	0.354	0.373	10.74	12.51

TABLE III
Gain Optimization for Ten-Element Yagi-Uda Array
(Perturbation of Director Spacings)

Array	$\mathrm{b}_{21} / \lambda$	$\mathrm{b}_{32} / \lambda$	$\mathrm{b}_{43} / \lambda$	$\mathrm{b}_{54} / \lambda$	$\mathrm{b}_{65} / \lambda$	$\mathrm{b}_{76} / \lambda$	$\mathrm{b}_{87} / \lambda$	$\mathrm{b}_{98} / \lambda$	$\mathrm{b}_{109} / \lambda$	$\begin{aligned} & \text { GAI } \\ & \text { Cheng } \end{aligned}$	(dB) Present Study
Initial	0.250	0.330	0.330	0.330	0.330	0.330	0. 330	0.330	0.330	10.92	12.3
Optimized	0.250	0.319	0.357	0.326	0.400	0.343	0.320	0.355	0.397	12.1	13.9

TABLE IV

	TABLE IV	Gain
Example 2		Bandwidth $\%$
Initial array	10.88	
Optimized array	12.51	12.9
Example 3		11.6
Initial array	12.3	
Optimized array	13.90	13.0

Example	GA I in I if CREAS E		
	Cheng	Present Study	If Maximized by Frequency Adjustment
2	1.97 dB	1.63 dB	.55 dB
3	1.18 dB	1.6 dB	.50 dB

4-3 Conclusions

The procuedure used by Cheng and Chen to calculate the forward gain of the Yagi-Uda array is somewhat different than the procedure used in the present study. This was described in Chapter III. These differences are small, and either procedure gave satisfactory results. In both, the effects of a finite element radius and the mutual coupling between array elements are taken into consideration; also, in both the three-term theory with complex coefficients is used to approximate the current distribution in the elements and to convert the integral equations into simultaneous algebraic equations. The examples used by Cheng and Chen to illustrate the gain increase by adjusting interelement spacings were verified using the method developed in the present study, and they are in agreement within $1 / 2 \mathrm{~dB}$ (comparing the absolute gain increase of the initial Yagi-Uda array).

The convergent iterative technique developed by Cheng and Chen yieids the optimum spacings for maximum array gain without the need for a haphazard trial and error approach or for interpreting a vast data collection.

On the other hand, it was found out that should the array gain be optimized by adjusting the frequency, the net gain increase is less than the typical gain increases which are attainable with Cheng and Chen's techniques as described in their paper.

REFEREITCES

D. K. Cheng and C. A. Chen, "Optimum Element Spacing for YagiUda Arrays", IEEE Transactions, Antennas Propagation, Vol. AP-21, No. 5, pp. 615-623, Sep 1973
H. W. Ehrenspeck and H. Poehler, "A New Method for Obtaining Maximum Gain for Yagi Antennas", IRE Transactions, Antennas Propagation, Vol. AP-7, pp. 379-3 $\overline{86}$, Oct 1959
W. W. Hansen and J. R. Woodyard, "A New Principle in Directional Antenna Design", Proceedings IRE, Vol. 26, pp. 333-345, Mar 1938
R. W. P. King, R. B. Mack and S. S. Sandler; Arrays of Cylindrical Dipoles, Cambridge University Press, Iew York, 1968
M. Mason and W. Heaver, The Electromagnetic Field, Dover PubIications, New York, 1923
L. C. Shen, "Characteristics of Propagating Vaves on Yagi-Uda Structures", IEEE Transactions, Microwave Theory and Technology, Vol. MTI-19, pp. 536-542, Jun 1971
I. S. Sokolnikoff and E. S. Sokolnikoff, Higher Mathematics for Engineers and Physicists, McGraw-Hill, iNew York, 1941

APPENDIX

SUBROUTINE YAGI(N,ND,A,H1,SX,AS2,X,SOUM,SM,ZN2,GAIN)
EXTERNAL WVKN1,WVKNI1,WVKN2,WVKNI 2,WVKN3,WVKNI 3
EXTERNAL WUKN1,WUKNI1,WUKN2,WUKNI2,WUKN3,WUKNI 3
EXTERNAL WDKN1, WDKNI 1,WDKN2, WDKNI 2 , WDKN3, WDKNI 3
COMPLEX WV1 $(20,20)$, WV2 $(20,20)$, WV3 $(20,20)$
COMPLEX WU1 $(20,20)$, NU2 $(20,20)$, WU3 $(20,20)$
COMPLEX WD1 $(20,20)$, WD2 $(20,20)$, WD3 $(20,20)$
COMPLEX EPSHDD $(20,20)$, EPSHDU($20,201, E P S F D U(20,20), E P S F D D(20,20)$ COMPLEX PHIU(20,20), PHID 20,20$)$
COMPLEX PHIV(20)
COMPLEX EPSHV(10)
COMPLEX SOUM(NO,NO), SM(NO), X(NO)
COMPLEX AS2,Y
COMPLEX TD(20),TU(20)
COMPLEX YN2, CURVT,FLD, XVORM
COMPLEX ZNZ
DIMENSION DELTAI(20),DELTA2(20)
DIMENSIDN A(N),HI(N)
DIMENSION PHIVR(20), PHIVI(20), EPSHVR(20), EPSHVI(20)
DIMENSION WVR1(20,20), WVI1 20,20$), \operatorname{WVR} 2(2), 20), \operatorname{WVI} 2(20,20)$
DIMENSIDN WUR1 $(20,20)$, WUI $1(20,20), \operatorname{WUR} 2(20,20)$, WUI $2(20,20)$
DIMENSION $\operatorname{WDR} 1(20,20), W \operatorname{WI}(20,20), \operatorname{WDR} 2(20,20), W D I 2(20,20)$
DIMENSION WVR3(20,20), WVI $3(20,20)$
DIMENSIDV WUR $3(20,20)$, WUI $3(20,20)$
DIMENSION WDR3 20,20$)$, NDI $3(20,20)$
COMMON/BS/B(20,20)/HS/H(2J)
$F M(R, Q)=(\operatorname{CDS}(Q * \operatorname{COS}(R))-\operatorname{COS}(Q)) / \operatorname{SIN}(R)$
$G M(R, Q)=(\operatorname{SIN}(Q) * \operatorname{COS}(Q * \operatorname{CoS}(R)) * \operatorname{COS}(R)-\operatorname{COS}(Q) * S I N(Q * C J S(R)))$
1/SIN(R)/COS(R)
DM(R,Q)=(12.0*CDS(Q*COS(R))*SIN(2/2.0)-4.0*SIN(Q*COS(R))*COS(Q/2.0 2) *

1COS(R))/(1.0-4.0*COS(R)*COS(R))-SIN(Q*CDS(R))*COS(Q/2.0)/COS(R))* $2 S I N(R)$
TPI $=6.283185307156$
DO $699 \mathrm{~K}=1$, N
$H(K)=H 1(K)$
699 CONTINUE
DO $355 \mathrm{~K}=1, \mathrm{~N}$
DO $355 \mathrm{I}=1, \mathrm{~N}$
IF (I.EQ.K) GO TO 350
$B(K, I)=A(K)-A(I)$
$B(K, I)=A B S(B(K, I))$
GO TO 355
$350 \mathrm{~B}(\mathrm{~K}, \mathrm{I})=\mathrm{SX}$
355 CONTINUE
DO $20 \mathrm{~K}=1, \mathrm{~N}$
DO $20 \mathrm{I}=1, \mathrm{~N}$
WVRI (K,I) =SIQD(-H(I), H(I),WVKN1, $3.0 .0 .01, K, I)$
WVII(K,I) $=$ SI QD(-H(I), H(I), WVKNI $1,0.0,0.01, K, I)$
WVR2(K,I) $=$ SIQD(-H(I),H(I), WVKN2,0.0,0.01, K,I)
WVI2(K,I) =SIQD(-H(I), H(I), WVKNI2, $0.0,0.01, K, I)$
WVR3(K,I) $=$ SI QD(-H(I),H(I),WVKN3,3.J, J. J1,K,I)
WVI $3(K, I)=S I 2 D(-H(I), H(I), W V K N I 3,0.0,0.01, K, I)$
WURI $(K, I)=S I Q D(-H(I), H(I), W U K N 1,0.0,0.01, K, I)$

WUII(K,I) =SIQD(-H(I),H(I), WUKNI 1,0.0,0.01, K, I)
WUR2(K,I) =SIQD(-H(I),H(I),WUKN2,0.0,0.01,K,I)
WUI2(K,I) $=\operatorname{SIQD}(-H(I), H(I), W U K N I 2,3.0,0.01, K, I)$
WUR3(K,I) $=$ SIQD(-H(I),H(I), WUKN3,0.0,0.01,K,I)
'WUI3(K,I) $=$ SIQD(-H(I), H(I), WUKNI 3, O.0.0.01, K, I)
WDRI (K,I) $=$ SIQD(-H(I),H(I),WDKN1, J.0, $3.01, K, I)$
WDII(K,I) =SIQD(-H(I),H(I), WDKNII, J.0,0.J1,K,I)
WOR2(K,I)=SIQD(-H(I),H(I),WDKN2,0.0,0.01,K,I)
WDI2(K,I) =SIQD(-H(I),H(I),WDKNI2,0.0,0.01,K,I)
WDR3(K,I) $\operatorname{SSIQD}(-H(I), H(I), W D K N 3,3.0,0.01, K, I)$
WDI3(K,I) =SIQD(-H(I),H(I),WDKNI 3,0.0,0.01,K,I)
WVI $(K, I)=\operatorname{CMPLX}(W V R I(K, I), W V I I(X, I))$
WV2 $(K, I)=\operatorname{CMPLX}(W V R 2(K, I), W V I 2(K, I))$
WV3($K, I)=C M P L X(W V R 3(K, I), W V I 3(K, I))$
WUl $(K, I)=\operatorname{CMPLX}(W U R I(K, I), W U I 1(K, I))$
WU2 $(K, I)=\operatorname{CMPLX}(\operatorname{WUR} 2(K, I)$, WUI $2(K, I))$
WU3(K,I) $=$ CMPLX(WUR3(K,I), WUI 3(K,I) $)$
WD1 $(K, I)=\operatorname{CMPLX}(W \operatorname{DR1}(K, I)$, WDII $(K, I))$
WD2 $(K, I)=C M P L X(W D R 2(K, I), W D I 2(K, I))$
WD3(K,I) $=$ CMPLX(WDR3(K,I), WDI 3(K,I) $)$
CONTINUE
DO $60 \mathrm{~K}=1, \mathrm{~N}$
DELTAl(K) $=\operatorname{SIV}(H(K)) *(\operatorname{CJS}(H(K) / 4.0)-\operatorname{COS}(H(K) / 2.0))$
DELTA1 $(K)=$ DELTAI $(K)-S I N(H(K) / 2.0) *(1.0-C O S(H(K) / 2.0))$
DELTA2 $(K)=(1.0-\operatorname{COS}(H(K))) *(\operatorname{Cos}(H(K) / 4.0)-\operatorname{COS}(H(K) / 2.0))$
60 DELTA2(K)=DELTA2(K)-(COS(H(K)/2.0)-こOS(H(K)))*(1.0-COS(H(K)/2.0))
DO $80 \mathrm{~K}=1, \mathrm{~N}$
DO $80 \mathrm{I}=\mathrm{I}, \mathrm{N}$
$\operatorname{EPSHDD}(K, I)=\operatorname{WD} 2(K, I) *(1.0-\operatorname{COS}(H(K)))$
$\operatorname{EPSHDD}(K, I)=\operatorname{EPSHDD}(K, I)-W D I(K, I) *(C J S(H(K) / 2.0)-5 O S(H(K)))$
$\operatorname{EPSHDD}(K, I)=E P S H D D(K, I) / D E L T A Z(K)$
EPSHDU(K,I) $=$ WU2 $(K, I) *(1.0-\operatorname{COS}(H(K)))$
EPSHOU(K,I)=EPSHOU(<, I)-WU1(K,I)*(CJS(H(K)/2.0)-EOS(H(K)))
EPSHDU($K, I)=E P S H D U(K, I) / D E L T A 2(K)$
EPSFDU(K,I)=WU1(K,I)*(COS(H(K)/4.0)-COS(H(K)/2.0))
$\operatorname{EPSFDU}(K, I)=E \operatorname{PSFDU}(K, I)-W U 2(K, I) *(1.0-C J S(H(K) / 2.0))$
EPSFDU(K,I) $=$ EPSFDU(K,I)/DELTA2(K)
$\operatorname{EPSFDD}(K, I)=W D 1(K, I) *(\operatorname{COS}(H(K) / 4.0)-\operatorname{COS}(H(K) / 2.0))$
$\operatorname{EPSFDD}(K, I)=E \operatorname{PSFDD}(K, I)-W D 2(K, I) *(1.0-\operatorname{COS}(H(K) / 2.0))$
$\operatorname{EPSFDD}(K, I)=E P S F D D(K, I) / D E L T A Z(K)$
PHIU(K, I) $=$ WU3(K,I)-EPSFDU(K,I)*CJS(H(K))
$\operatorname{PHID}(K, I)=W D 3(K, I)-E P S F D D(K, I) * \operatorname{COS}(H(K))$
80 CONTINUE
DO $210 \mathrm{~K}=1, \mathrm{~N}$
IF (.K.EQ.2) GO TO 210
PHIV(K)=WVI $(K, 2) *(\operatorname{COS}(H(K) / 4.0)-\operatorname{COS}(H(K) / 2.0))$
PHIV(K)=PHIV(K)-WV2(K,2)*(1.0-COS(H(K)/2.0))
$\operatorname{PHIV}(K)=\operatorname{PHIV}(K) * \operatorname{COS}(H(K)) / D E L T A 2(K)$
PHIV(K) $=$ PHIV(K)-WV3(K,2)
$\operatorname{PHIV}(K)=-\operatorname{PHIV}(K)$
210 CONTINUE
PHIV(2)=WV3(2,2)
DO $400 \mathrm{~K}=1, \mathrm{~N}$
IF (K.EQ.2) GO TO 400

```
    EPSHV(K)=WV2(K,2)*(1.0-5OS(H(K)))
    EPSHV(K)=EPSHV(K)-WV1(K,2)*(COS(H(K)/2.0)-COS(H(K)))
    EPSHV (K)=EPSHV(K)/DELTA2 (K)
400 CDNTINUE
    -EPSHV(2)=WV2(2,2)*SIV(H(2))-WV1(2,2)*SIN(H(2)/2.0)
    EPSHV(2)=EPSHV(2)/DELTA1(2)
    NO=2*N
    Y=CMPLX(0.0,1.0)
    AS2=DELTA1(2)*Y/60.0
    AS2=AS2/(WV1(2,2)*(COS(H(2)/4.0)-COS(H(2)/2.0))-WV2(2,2)*(1.0-5JS(
    1H(2)/2.0))1
        AS2=AS2/CDS(H(2))
        DO 69 K=L,N
        PHIV(K)=PHIV(K)*AS2
        PHIV(K)=-PHIV(K)
        EPSHV (K)=EPSHV (K)*AS2
        EPSHV(K)=-EPSHV(K)
    69 CONTINUE
    DO 78 K=1,NO
    DO 78 I=1,N
    IF (K.GT.N) GO TO 115
    SOUM(I,K)=PHIU(I,K)
    GOTO 78
115 SOUM(I,K)=PHID(I,K-N)
    78 CONTINUE
        DO 39 K=1,NO
        KL=N+1
        DO 39 I =KL,NO
    IF (K.GT.N) GO TO 130
    SOUM(I,K)=EPSHDU(I-V,K)
    GO TO 39
130 SOUM (I,K)=EPSHDD(I -N,K-N)
    39 CONT INUE
    DO 52 K=1,N
    52\cdotSM(K)=PHIV(K)
    DO 65 K=KL,NO
    65SM(K)=EPSHV (K-N)
    SALL EQSOL(SOUM,SM,X,NJ)
    YN2=AS2*SIN(H(2))+X(2)*{1.0-COS(H(2)))+X(N+2)*(1.0-COS(H(2)/2.J))
        ZN2=1.0/YN2
        WRITE (6.30) ZN2
    30 FORMAT {5X18H INPUT IMPEDENCE=F10.4,3X,F1).4)
    DO 126 K=1,N
    IF (K.EQ.2) GO TO 126
    DO 113 L=1,10
    RATIO=(FLOAT(L)-1.0)/10.0
    CURNT = X (K)*(COS(H(K)*RATIO)-COS(H(K)))*X(V+K)*(COS(H(K)*RATIO/2.0)
    1-COS(H(K)/2.01)
    ANGLE=360.0/TPI*ATAN2(AIMAG(CURNT),REAL(CURNT))
    AMAG=CABS (CURNT)
113 WRITE (6,111) K,CURNT,AMAG,ANGLE
111 FORMAT (I 11,2X,E12.6,3XE12.6,3X,E12.6.3X,E12.6)
126 CONTINUE
    DO 139 L=1,10
```

RATIO=(FLOAT(L)-1.0)/10.0
CURNT $=A S 2 *(S I N(H 12))-S I V(A B S(R A T I O * H(2))))$
CURNT $=$ CURNT $+x(2) *(\operatorname{COS}(H(2) * R A T I O)-C O S(H(2)))$
CURNT $=$ CURNT $+X(N+2) *(C O S(H(2) * R A T 10 / 2.0)-C O S(H(2) / 2.3))$
ANGLE=360.0/TPI*ATAV2(AIMAG(CURNT),REAL(CURNT))
$A M A G=C A B S(C U R N T)$
139 WRITE (6,111) L,CURNT, AMAG,ANGLE
DO $152 \mathrm{~K}=1, \mathrm{~N}$
$T U(K)=X(K) / A S 2$
$T D(K)=X(N+K) / A S 2$
152 CONTINUE
DO $626 \mathrm{KHI}=1,19$
FLD $=$ FM(TPI/4.0, H(2))
DO $639 \mathrm{I}=1, \mathrm{~N}$
PHI $=($ FLOAT $(K H I)-1.0) * T P I / 36.0$
IF (I.EQ.2) GO TO.713
FLD=FLD+(COS ($2.0-F L O A T(I)) * B(2, I) * C J S(P H I) / A B S(2.0-F L D A T(I)))$
$1 \quad-Y * S I N((2.0-F L O A T(I)) * B(2, I) * C O S(P H I) / A B S(2.0-F L O A T(I))) *$
1(TU(I)*GM(TPI/4.0.H(I))+TD(I)*DM(TPI/4.0.H(I)))
726 GO TO 739
$713 \mathrm{FLD}=\mathrm{FLD}+\mathrm{TU}(2) * G M(T \mathrm{PI} / 4 \cdot 0, \mathrm{H}(2))+\mathrm{TD}(2) * \mathrm{DM}(\mathrm{TPI} / 4.2, \mathrm{H}(2))$
739 CONTINUE
639 CONT INUE
$F L D=F L D / C O S(H(2))$
IF (KHI.NE.1) GO TO 652
XNORM=FLD
RESIS=REAL (YN2)
RESIS=ABS(RESIS)
GAIN $=60.0 * \operatorname{COS}(H(2)) *=A B S(A S 2)$
GAIN=GAIN*GAIN/RESIS
GAIN=GAIN/30.0
GAIN=GAIN*こABS(XNORM)*こABS(XNORM)
GAIN=10.0*ALOGIO(GAI.V)
652 FLD=FLD/XNDRM
$E=C A B S(F L D)$
$F L D D B=20.0 * A L O G 10(E)$ ANGLE $=360.0 / T P I * \operatorname{ATAV} 2(A I M A G(F L D), R E A L(F L D))$
626 WRITE $(6,181) \mathrm{KHI}, F L D D B$
181 FORMAT (I $14,5 \mathrm{X}, \mathrm{F} 10.4$)
WRITE $(6,187)$ GAIN
187 FORMAT (11H GAIN=E13.4)
559 CONTINUE
STOP
END

```
01/05-14:19-SUB37(0)
0101: SUBROUTINE EQSOL(A,B,X,N)
    0102: COMPLEX A(N,N),B(N),X(N),TEMP,FACTOR,SUM
    0103: 30 FORMAT (2F10.6)
    0104: }25\mathrm{ NM1=N-1
    0105: DO 610 K=1,NM1
    01 0106:
    01 0107:
    01 0110:
    02 0111:
    01 0112:
    01 0113:
    02 0114:
    02 0115:
    02 0116:
    01 0117:
    01 0120:
    01 0121:
    01 0122:
    02 0123:
    02 0124:
    03 0125:
    0126:
        0127:
        0130:
        0131:
        0132:
        0133:
    01 0134:
        0135:
        0136:
        0137:
        0140:
    01.0141:
    01. 0142:
    01 0143
    0144: 900 FORMAT (1H0,15,4E12.6)
    0145: RETURN
    0146: END
```

ING 002534 THE SYMBOL ${ }^{\prime} \# 00030^{\prime}$ OCCURS ONLY IN A DATA DECLARATION
ING $002537 \ldots$ THE SYMBOL ' $\# 00025^{\prime}$ OCCURS ONLY ONCE IN THE PROGRAM.

WVKN1.
DATE $=73319$
FUNCTION hVKNI(Z,K,I)
CONMCN/BS/B(2,2)/HS/H(2)
REAL KERNDR
FWVI=SIN(H(I)-ABS(Z))
D $1=$ SGRT(Z*Z $+B(K, I) * B(K, I))$
$D 2=S Q R T((Z-H(K)) *(Z-H(K))+B(K, I) * B(K, I))$
KERNCR=COS(D1)/D1-COS(D2)/D2
WVKN1=FWVl*KERNDR
RETURN
END

G LEVEL 19 WVKNII \quad DATE $=73319$ /27/48
FUNCTION WVKNII(Z,K,I)
REAL KERNDI
CONMON/BS/B(2,2)/HS/H(2)
$\mathrm{DI}=\operatorname{SQRT}(Z * Z+B(K, I) * B(K, I))$
$D 2=S G R T((Z-H(K)) *(Z-H(K))+B(K, I) * B(K, I))$
FWVI=SIN(H(I)-ABS(Z))
KERNDI=SIN(D2)/D2-SIN(D1)/D1
WVKNII=FWVI*KERNCI
RETURN
END

FUNCTION WVKNI2(Z,K,I)
REAL KERNDI
CONNCN/BS/B(2,2)/HS/H(2)
FWVI=SIN(H(I)-ABS(Z))
D $1=\operatorname{SQRT}((H(K) / 2.0-Z) *(H(K) / 2,0-Z)+B(K, I) * B(K, I))$
$D 2=S \operatorname{GRT}((Z-H(K)) *(Z-H(K))+B(K, I) * B(K, I))$
KERNDI=SIN(D2)/D2-SIN(D1)/D1
WVKNI2=FWV1*KERNDI
RETURN
END

FUNCTION WVKN3(Z,K,I)
CONMCN/BS/B(2,2)/HS/H(2)
REAL KERNDR
FWVI=SIN(H(I)-ABS(Z))
D $1=S \operatorname{GRT}((H(K)-Z) *(H(K)-Z)+B(K, I) * B(K, I))$
KERNDR=COS(DI)/DI
WVKN3=FWVI*KERNDR
RETURN

END

FUNCTION WUKN2(Z,K,I)
CONMCN/BS/B(2,2)/HS/H(2).
-REAL KERNDR
\because FWVI $=\operatorname{COS}(Z)-\operatorname{COS}(H(K))$
$\therefore D 1=S G R T((H(K) / 2.0-Z) *(H(K) / 2.0-Z)+B(K, I) * B(K, I))$
D2 $=\operatorname{SQRT}((Z-H(K)) *(Z-H(K))+B(K, I) * B(K, I))$
KERNDR $=\operatorname{COS}(D 1) / D 1-\operatorname{COS}(D 2) / D 2$
WUKN2=FWV1*KERNUR
RETURN
END

G LEVEL 19
FUNCTION WUKNII (Z, K, I)
CONMCN/BS/B(2,2)/HS/H(2)
REAL KERNDI
$\mathrm{Dl}=\operatorname{SQRT}(Z * Z+B(K, I) * B(K, I))$
$D 2=S \operatorname{GRT}((Z-H(K)) *(Z-H(K))+B(K, I) * B(K, I))$
KERNDI = SIN(D2)/D2-SIN(D1)/C1
$\operatorname{FWVI=\operatorname {Cos}(Z)-\operatorname {COS}(H(K))}$
WUKNII = FWVI*KERNCI
RETURN
END

```
G LEVEL:19 WUKN1
    FUNCTION WUKNI(Z,K,I)
    CONMON/BS/B(2,2)/HS/H(2)
    REAL KERNDR
    FWVI=COS(Z)-COS(H(K))
    Ol=SGRT(Z*Z+B(K,I)*B(K,I))
    D2=SGRT((Z-H(K))*(Z-H(K))+B(K,I)*B(K,I))
    KERNDR=COS(D1)/D1-COS(D2)/D2
    WUKN1=FWV1*KERNDR
    RETURN
    END
```

DATE $=73319$
16/27/48

WUKNI 3°
DATE $=73319$
FUNCTION hUKNI $3(Z, K, I)$
COMMON/BS/B(2,2)/HS/H(2)
REAL KERNDI
FWVI $=\operatorname{COS}(2)-\operatorname{Cos}(H(K))$
Dl=SQRT($H(K)-Z) *(H(K)-Z)+B(K, I) * B(K, I))$
KERNCI = SIN(DI)/DI
WUKNI3=FWV1*KERNDI
RETURN
END

FUNCTION WUKN3(Z,K,I)
REAL KERNDR
CONMCN/BS/B(2,2)/HS/H(2)
FWVI $=\operatorname{COS}(Z)-\operatorname{CCS}(H(K))$
Dl=SQRT($(H(K)-Z) *(H(K)-Z)+B(K, I) * B(K, I))$
KERNCR=COS(D1)/D1
WUKN3=FWV1*KERNDR
RETURN
END

FUNCTION WDKN1(Z,K,I)
COMMCN/BS/B(2,2)/HS/H(2)
REAL KERNDR
FWV1 $=\cos (Z / 2.0)-\cos (H(K) / 2.0)$
D $1=$ SQRT $(Z * Z+B(K, I) * B(K, I))$
$D 2=\operatorname{SCRT}((Z-H(K)) *(Z-H(K))+B(K, I) * B(K, I))$
KERNDR $=\operatorname{COS}(D 1) / D 1-\operatorname{COS}(D 2) / C 2$
WOKNL=FhVI*KERNDR
RETURN
END

FUNCTION WDKNII(Z,K,I)
CONMCN/BS/B(2,2)/HS/H(2)
REAL KERNDI
D $1=S \operatorname{SRT}(Z * Z+B(K, I) * B(K, I))$
D2 $=$ SQRT ($(Z-H(K)) *(Z-H(K))+B(K, I) * B(K, I))$
FWVI $=\operatorname{COS}(Z / 2.0)-\operatorname{COS}(H(K) / 2.0)$
KERNDI = S.N(D2)/D2-SIN(D1)/D1
WCKNII=FWVI*KERNDI
RETURN
END

```
G LEVEL 19
FUNCTION WDKNI2(Z,K,I)
COMMON/BS/B(2,2)/HS/H(2)
REAL KERNDI
FWVI \(=\operatorname{COS}(Z / 2.0)-\operatorname{Cos}(H(K) / 2.0)\)
D \(1=\operatorname{SGRT}((H(K) / 2 \cdot 0-Z) *(H(K) / 2.0-Z)+B(K, I) * B(K, I))\)
\(D 2=S Q R T((Z-H(K)) *(Z-H(K))+B(K, I) * B(K, I))\)
KERNCI=SIN(D2)/D2-SIN(D1)/D1
WDKNI2=FWVI*KERNCI
RETURN
END
```

WDKN3
DATE $=73319$
$16 / 27 / 48$
FUNCTICN WDKN3(Z,K,I)
REAL KERNDR
CONMCN/BS/B(2,2:/HS/H(2)
FWVI=COS(Z/2.C)-COS(H(K)/2.0)
$\mathrm{D} 1=\operatorname{SQRT}((H(K)-Z) *(H(K)-Z)+B(K, I) * B(K, I))$
KERNDR=COS(Dl)/DI
WDKN3=FWVI*KERNDR
RETURN
END

FUNCTION WDKNI3(Z,K,I)
CONMCN/BS/B(2,2)/HS/H(2)
REAL KERNDI
FWVI $=\cos (Z / 2 . C)-\cos (H(K) / 2 . G)$
$D 1=S \operatorname{CRT}((H(K)-Z) *(H(K)-Z)+B(5, I) * B(K, I))$
KERNDI=SIN(DI)/DI
WDKNI $3=$ FWVI*KERNDI
RETURN
ENC

