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B ABSTRACT

Free vibration of a thin rectangular plate stiffened by an
arbitrary number of stiffeners parallel to a pair of its edges
and simply supported on all edges, is considered. The equation
of motion for the stiffened plate is derived by considering the
stiffeners as producing external line loadings on the plate.
Dirac delta functions are used to discretely locate these external
loadings at the stiffener locations in the equation of motion.
Solutions of the equation of motion are obtained from a system of
equations of order R x R, where R is equal to the number of
stiffeners. Results for the natural frequencies and associated
mode shapes are given for square plates stiffened by one, two,
three and ten stiffeners and rectangular plates with two stiff-
eners., In each case, various stiffener flexural rigidities and

1inear mass densities were considered.
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CHAPTER 1
INTRODUCTION

There are many applications where a stiffened plate proves to
be the most economical arrangement of the structural material.
Examples of this are found in aircraft and ship design where stiffened
plates are used extensively. The ability to predict the natural
frequencies and mode shapes of these stiffened plates is an important
design aspect. For example in the design of a stiffened panel
against flutter the determination of the natural frequencies of the
stiffened panel is a necessary part of the analysis.

Previous free vibration analyses of a stiffened plate treat the
plate-stiffener combination as an equivalent orthotropic plate [1, 2].]
This procedure requires the determination of four rigidity constants
which are used in the theory of thin orthotropic plates [3, 4].

Once these rigidity constants are known the natural frequencies and
mode shapes are determined from the same mathematical procedure as an
unstiffened piate. However, this type of analysis is limited to
evenly and closely-spaced stiffeners and, therefore, the results are
not applicable to sparsely-spaced stiffened plates.

To the best of the writer's knowledge, only one paper [5] was
found in the literature in which the natural frequencies and mode

shapes of a rectangular plate with sparsely-spaced stiffeners were

1. The number in brackets indicate reference at the end of thesis.



investigated. The stiffened plate analyzed was simply supported

along two edges with the stiffeners being perpendicd1ar to those

two edges. In this method, first the free-vibrations solution is
obtained for a nanel supported simply on two parallel edges and by
stiffeners along the other two edges. Then, a solution is constructed
for a plate stiffened by any number of parallel stiffeners by

imposing the compatibility of deflections and slopes at adjacent
banéls.

An alternate approach to that described in reference [5], which
is employed herein, is to treat the effect of the stiffener as a load
on the plate.” This loading, which is assumed to be a Tine loading
at the Tocation of a stiffener, is introduced in the differential
equation of motion by means of a Dirac delta fdnction.‘ This method
has been successively applied in reference [6] to determine the
“critical buckling Toad of a sparsely-stiffened plate simply supported
along the two of its edges which are perpendicular to the stiffeners.
Another appiication of Dirac delta functions was given in reference
[7]. There, the preload and weight distribution of a cable array
enbedded in a rectangular membrane was discretely loaded by Dirac
delta functions. The resulting equation of motion was solved fer
the vibrational'characteristics of the cable array embedded in the
membrana.

In this thesis, the natural frequencies and associated mode
shapes are determined for a simply supported, thin rectanguiar

nlate reinforced by an arbitrary number of sparsely-spaced



stiffeners ‘parallel to a pair of its edges. The stiffeners are not
necessarily evenly spaced nor do they have identical section
properties. The stiffeners are assumed to conform to Euler-
Bernoulli bending theory.

The differential equation of motion for a stiffened plate is
derived in Chapter II. In Chapter III a closed form solution of the
equation of motion for the natural frequencies and mode shapes 1is
given. Also, the numerical procedures for determining the natural
procedure for a plate with R-stiffeners and the associated deflections
at the stiffener are described. Numerical results for the frequencies
and the associated mode shapes are presented and discussed in
Chapter IV. Finally, conclusions and recommendations are given in

Chapter V.



CHAPTER II
EQUATION OF MOTION FOR A STIFFENED-PLATE

The equation of motion for a thin rectangular plate reinforced

by an arbi

in Figure

trary number of stiffeners parallel to the x-axis (as shown

1) is derived in a manner similar to [8]. The usual

assumptions of thin plate theory are made [4]. The only effect of

the stiffeners on the plate considered is a loading along the Tine

of contact between stiffener and plate in the transverse direction.

This Toading is due to both the bending resistance of the stiffener

as well as its inertia.
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Figure 1.

Geometry and Coordinate System of Stiffened-Plate.



It is noted that Figure 1 shows a rectangular reinforcement, but the
analysis is equally applicable to other reinforcement shapes (e.g. I beams)
which are located symmetrically about the mid-surface of the plate and
whose centroid and shear center coincide. The stiffeners are assumed
to conform to Euler-Berhoulli beam theory. Thus, the force per unit
length on the beam due to the plate is given by

4 02w (2.1)

- W p
P, (x,t) = EI == + —_—
L ax4 atz

The loading on the plate P2 (x,t), is equal in magnitude but opposite

in direction to P] (x,t), as shown in Figure 2.

neutral axis

R P](x) stiffener .
’ e S~ —— m— - - /\
\\\:i:I:I:]::L:[:Iplf r \ neutral axis |,
‘< P -
S~ - - -

T s meneme

Note: Pq(x) = ~P2(x)

Figure 2. Reaction Between Plate and Stiffener.



The equétions of motion for the plate-stiffener combination can be
written considering the stiffeners as producing external loads on the
plate given by (2.1). Dirac delta functions are used to discretize the
loading on the plate along Tlines of contact between stiffener and plate.
Therefore, the differential equation of motion for a plate with

R-stiffeners parallel to the x-axis is

R
4 2
4 d'w d™w
oo = - ), DY (o), —] sly - ¢;) (2.2)
Z [ 1 dx4 ST dt2 !
i=]
L, 2w
P atl
or,
R -
4 2
4 o 2%
D DN [CIRE I ] - @3
i=]
+ Pn ﬁ .
Btz

It is seen that (2.3) is the familiar equation for free vibration of a
plate except for the additional terms due to the loading imposed by the

stiffeners.



CHAPTER III
FREE VIBRATION OF A RECTANGULAR PLATE WITH R-STIFFENERS

A. Solution of the equation of motion

As in the classical case of uniform plate, assume solutions of

(2.3) of the form
w(x,y,t) = W(x,y) F(t) = W(x,y) o1t (3.2)

where F(t) is a harmonic function of time and Q is the frequency of

F(t). Substitution of (3.2) into (2.3) leads to

R
,
ot Do [ - ) |- )
X

i=1

2,
- pr W=20.

Assume now a product solution for W(x,y)} as follows:

WX, ¥) = Y(y)X(x) = ¥(y) sin X . (3.4)
The form of the solution is motivated by the fact that a plate and
beam both of which are simply supported at x=0,a have mode shapes

which are of the form sin Egﬁ._ Substituting (3.4) into (3.3) yields



(3.5)

R .
4
+ —D‘ E [(EI)'I (maTl) . (95)192] Y 5()’ - C'l) =0.

i=|

—t

A solution of (3.5) is obtained below by Fourier Finite Sine

transforms, subject to the following boundary conditions:

2
W=o, g—% = 0, along x = 0,a
dx
(3.6)
2
W=o0, 9—¥-= 0, along y=0,b
dy
From (3.4) and the second of (3.6), it follows that
Y(o) = o
(3.7)
Y(b) = o
and
(9_21) = 0
dy2 y=0
(3.8)



Note that the first of conditions (3.6) is automatically satisfied by

the choice of X(x). Conditions (3.6) are the boundary conditions of

zero deflection and zero bending moment for a simply supported plate.
Taking the Fourier Finite Sine.transform of both sides of (3.5)

and using boundary conditions (3.7) and (3.8), gives

b R
4
+f {% z: [(51)1. (";—”) - (ps)i 92] Y(y) é(y-ci)}
o

i=1

(3.9)

4 - 2 2 _ 4 27 -
() o - () () o0 [ ]
i 4
nmc.
t 5 E [(El)i (%1) - (ps)iﬂ2 ] ¥(c;) sin b1 =0.

i=1

—

Now solving for ?(n), gives
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(3.11)

Taking the inverse transform of (3.11), gives for the function Y(y):

R o\ 4 2 nmc ;
Z [(51)1.(?) - (py);0 ]Y(ci) sin —1

Y y) = - = E
»D mm 2 nm 2]2 P 92
n=1 (‘a" *\b -
X sin —l"g . (3.12)

Introducing the expression for the natural frequency of a simply

supported uniform plate,

2 A
D = i) m D
Yan _[(mT) * (%) ] B—p— ’ (3.13)

and that for a uniform stiffener,

2
El T
e (i), (%)
1



into (3.13) yields,

R . nmc,
i} E Bmi(g) Y(Ci) sin —¢
—.20 1=
yly) = — E : ' sin 5t
P n=1 mn
(3.14)
where,
pg = mass per unit length of stiffener,
pp = mass per unit area of plate,
2 2
=W -
Amn nn Q. , and
sy 2 2
= (i -
Bmi ( m’i L

Sety = <, in (3.14) where c, is the y coordinate of the
rth stiffener. Substituting and rearranging the following equation

is obtained,
o NTIC

. r
Y(c ) 1 + E J 3.15
b
' pp n=1 Amn ()
o nmnc, . nuc
r-1 . 1 sin r
+ _2—[.3-5- Bm] (Q) sin b —b——
bpp -
n=1 ‘i1 A (2)
nmwc nwc
R () sin 5 sin ——

11



Equation (3.15) can be rewritten as

r-1 R
mn mn - mn _
Y(c )1 + Z;0 (Q)] + E I Y(eg) + E Zip Yleg) = 0
i=1 i=r+l (3.16)
where,
nmwe _onme
" 2 o Bmi (Q) sin — sin —¢—
Liy @) = 55 (3.17)
S A (2)

For a plate with R-stiffeners, the following system of R equations

is obtained by imposing condition (3.16) for each of the stiffeners,

Zmn

B mn mn mn mn
1+ Z13 (2) 221 (R) 23] Q) .. .... Zp3
mn mn mn mn
Z]2 () 1 + 222 (Q) Zss ) .. .... Zpo
mn mnn mn mn
13 (2) I, (@) 1+ Zas @) - . .« . Ipg

\ mn m ..

(2)

()

fY(clf

Y(cz)

| 4
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or,

[(z(e)l {yr=0 . - - (3.19)

The above system of equations has a non-trivial solution if and only
if the determinant of the matrix of coeffic{ents is equal to zero.
Therefore, the natural frequencies of a plate with R-stiffeners are those

frequencies that satisfy the frequency equation,
det ([Z]) =0 . (3.20)

It should be pointed out that (3.20) does not yield all natural
frequencies, since the trivial solution of (3.18), namely Y(ci)= 0, i=1,
2, ...,R, is not included. This corresponds to the case for which all -
stiffeners 1ie along nodal lines of the unstiffened plate, i.e. their
deflection is zero. The frequencies of such modes are determined from
the classical expression as given previously be equation (3.13).

Hence in order to determine successive natural frequencies of a plate
reinforced by R-stiffeners it is necessary to consider both the
frequencies corresponding to mode shapes with non-zero displacements

and those with zero displacements at the stiffeners.

B.  Numerical Procedure for Determining the Natural Frequencies

Due to the nature of equations (3.17) and (3.18), it is quite tedious

to expand the determinant of (3.20) and obtain an equation of the form

2 + a; 9 t o, Q t - oo = 0 (3.21)
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This is true even in the case of a single stiffener.

In view of the above, the natural frequencies were determined
approximately by the following procedure: First, the frequency is
incremented until two successive values are found for which the
determinant of (3.20) changes sign. This indicates that a root of
(3.20) has been isolated. To expand the determinant for any value of
the frequency the method of pivotal condensation is used. This method
was chosen due to the ease with which it can be programmed. The method
is described in detai{ in reference [10].

Once a root has been isolated by the above search process, the
values of the successive frequencies and the corresponding values of
the determinant are used in a modified false-position method to obtain
the root in question to any desired degree of accuracy. The method of
modified false position is described in detail in [9].

It should be noted that the value of a given root as well as the
number of roots that can be determined depend on the number of terms
in the series which are involved in the elements of the determinant of
(3.20). When N terms of the series are retained the lowest N natural
frequencies are determined. If N + 1 terms are used, the accuracy for
the first N frequencies is improved and a first estimate of the N + 1

frequency is obtained, as in the Rayleigh-Ritz method.
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C. Numerical Solution Procedure for Normal Mndes of Vibration

Consider the set of homogeneoqs algebraic equations (3.18). For
a natural frequency, the coefficient matrix is completely determined.
We need to determine what values of Y(c]), Y(cz), Y(c3), ...Y(cR)
satisfy these equations. We know that the R x R determinant of (3.20)
is, at most, of rank R-1. From matrix theory, if a homogeneous system
of R equations [Z] {Y} = 0 is of rank R-1 and the submatrix obtained

from [Z] by omitting the Kth

row is also of order R-1, then a complete
solution of the given system of equations is
Yi = szi i=1,2, ...R
where 8 is an arbitrary constant, and Zki is a cofactor of [Z].
In the results presented in Chapter IV the arbitrary constants
are selected such that the maximum modal displacement of the plate

is equal to one.



CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

A computer program was writteﬁ to perform the numerical calculations
outlined in Chapter III for determining the natural frequencies and
associated mode shapes for a stiffened plate. This program calculates
only those frequencies and associated mode shapes whose displacement at
the stiffeners are not all zero. This program is included as Appendix A.

The natural frequencies and the associated mode shapes were obtained,
for non-zero displacements at the- stiffeners, for the following cases:

(i) Square plate (a = 48 in., b = 48 in.) with simply supported
edges for one stiffener of various section properties (pS,I)
evenly spaced across the plate in the y-direction and
parallel to the x-axis.

(i1), (iii) and (iv) are identical to (i) but for two, three, and
ten stiffeners, respectively.

(v) Rectangular geometry (a = 48 in., b = 24 in.) with two
stiffeners of various section properties (I,ps) gvenly
spaced across the plate in the y-direction and parallel to

the x-axis.

(vi) Same as (v), except (a = 24 in. and b = 48 in).

For all cases considered above, the thickness of the plate was 0.25 inches
and the sections properties were determined for a rectangular stiffeners
of width % inch.

In the determinant of equation (3.20) each term involves a summation

of infinitely many terms. Table 1 gives the Towest natural



frequencies and percent change (in these frequencies) as more terms are
retained in (3.20) for one, two and three stiffeners. All stiffeners were
considered to have a I = 1.0 in.4 and pg = 0.00157 slugs/in. It is seen
from Table 1 that in all cases the percent change between N = 20 and

N = 30 terms is less than 0.01 percent. Thirty terms (N = 30) were used

throughout this thesis.

Table 1. Fundamental Frequencies as Functions of Number
of Terms in Series of Equation (3.20)

No. of terms 1 stiffener 2 stiffener 3 stiffener
retained

rady | , (rady 1 , q (rad

N Q (S—e—c—) % AR Q (Sec) % AQ Q (Sec) % AQ
1 321.58 368.39 417.98

5 290.56 9.65 362.69 1.54 411.79 1.48

10 289.58 0.33 361.23 0.40 410.63 0.28

20 289.33 | 0.086} 360.79 0.12 410.35 0.08

30 289.31 0.007 | 360.77 0.006 | 410.32 0. 007

Table 2 gives the ordering of the natural frequencies for Case (i).
The associated mode shapes are shown in Figs. 3. 4 and 5 for those
frequencies obtained from Eq. (3.20), i.e. for the non-trivial solution.
The natural frequencies for the modes with zero stiffener displacement
were obtained using Eq. (3.13) for a simply supported square plate. Note
that n (number of half sine waves in y-direction) must be an eveﬁ number

to have zero displacements at the stiffener.
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Table 2. Ordering of Natural Frequencies for a
Plate With One Stiffener

4

Order of I=1.0in. 1=3.75in.% | 1=1001n"%
Natural
Frequencies Q, w (rad/sec) 2,0 (rad/sec) "Q, w (rad/sec)
Ist Q] = 289.5 wyo = 312.1 wyo = 312.1
2nd wyp = 312.1 Q] = 385.9 91 = 418.4
3rd Woo = 499.4 Wyp = 499.4 Woo = 499.4
4th e, = 578.1 92 = 788.0
5th 23 = 625.2

Won = Natural frequencies corresponding to zero stiffener displace-
ment as determined from Eq. (3.13).
Q; = Natural frequencies corresponding to non-zero stiffener

displacement as determined from Eq. (3.20).

Table 3 gives the ordering of the natural frequencies for two
stiffeners, Case (ii). The associated mode shapes are shown in ngs. :
6, 7 and 8 for those frequencies obtained from equation (3.20). The
natural frequencies for the modes with zero displacements at the stiffen-
ers were obtained using Eq. (3.13). Note that n must be a multiple of

three to have zero displacements at both stiffeners.
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Table 3. Ordering of Natural Frequencies for a
Plate With Two Stiffeners

order of | I=1.0in%| 1=2.5m%|1=3.75 in.*|1=5.0n."
Natural

Frequencies | 2, w (rad/sec)|q,y(rad/sec) |q,,(rad/sec) Q.0 (rad/sec)
Tst Q] = 361.0 Q] = 517.0 Q] = 600.5 wiz © 624.5
2nd 92 = 440.2 92 = 548.9 92 = 603.5 Q] = 641.0
3rd wy3 = 624.3 wy3 = 624.3 wog = 624.5 92 = 664.7
4th Wog = 811.5 Wy = 811.5 Wo3 = 811.5 wog = 811.5
5th 93 = 893.2 93 = 924.5

mn

Natural frequencies corresponding to zero displacement at the
stiffeners as determined from equation (3.13).

Natural frequencies corresponding to non-zero displacements
at the stiffeners as determined from equation (3.20).

Table 4 gives the ordering of the natural frequencies for three

stiffeners, Case (iii).

9 and 10 for those frequencies obtained from Eq. (3.20).

The associated mode shapes are shown in Figs.

The natural

frequencies for the modes with zero displacements at the stiffeners were

obtained from Eq. (3.13).

zero displacements at the stiffeners.

Note that n must be a multiple of four to give
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Table 4. Ordering of Natural Frequencies for a
Plate With Three Stiffeners.

Order of | I=1.01n." 1=25in% | 1=5.0in"
Natural
Frequencies 9 (rad/sec) e (rad/sec) o (rad/sec)
Ist Q] = 401.7 Q] = 584.7 g = 773.5
2nd 92 = 465.3 92 = 753.4 : 92 =794.2
3rd 93 = 641.3 93 = 880.9

Wen = Natural frequencies associated with zero-displacements at
' the 3 stiffeners as determined from equation (3.13).
Q. = ith Natural frequency associated with non-zero displacements

at the 3 stiffeners as determined from equation (3.20).

Since, the main interest in this study lies in the effect of the
stiffeners on the free-vibration characteristics of the stiffened plate,
the familiar modes corresponding to zero deflection at the stiffeners
are not presented.

The following two observations can be made in general by
studying the results in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11,
18 and 19 ° for the natural frequencies and associated mode shapes
given in each of these figures. First, for the section properties
considerad, the effect of increasing the section properties of the
stiffener (stiffeners) is to increase the natural frequencies of the
stiffened plate. It should be noted that this result is not, in general
true. In fact, if the mass per unit length (ps) of the stiffener were
to increase faster than its bending stiffness, the natural frequencies

decrease., Secondly, the figures for each of the cases considered (with
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the exception of Figs. 6 and 7 for I = 5.0 1n.4) show
that as the section properties are increased the mode shapes become
more distorted and the modal displacements at the stiffeners are
reduced. These results are as one would expect since the effect of
a stiffener is equivalent to a line Toading on the plate in a
direction opposite to the displacement of the plate.

In Fig. 6 and 7 the mode shapes for the case I = 5.0 in.4,
p = 0.001807 slugs/in. for the 1st and 2nd lowest frequency, respec-
tively, indicate mode shapes which appear to be inconsistant with the
others shown in each of these figures. It is shown in Fig. 16 by
comparison with finite-element analysis that the modal shape given
in Fig. 6 is indeed the correct mode shape for the 1st natural
frequency associated with non-zero displacement at the two stiffeners.
Although not shown in a figure, the mode shapes shown in Fig. 7 for
I =5.0 in.4 was also verified.

Figure 11 shows a comparison betweenithe lowest natural frequency
and mode shape for a square plate with ten stiffeners determined by
the method of this thesis and that of orthotropic plate theory. In
this case the distance between the stiffeners is 4.36 inches. The
natural frequency and mode shape obtained by these two methods show
excellent agreement. The natural frequencies differ by only 2.58
percent.

Figure 18 shows the natural frequencies and associated mode shapes
for the rectangu]aé plate (a = 48 in., b = 24.) of Case (v). In this
case, the two stiffeners are closer together in the y-direction than

they were for Case (ii) above. It is noticed that the relatively
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large change in section properties (I = 1.0 in.4 toI =10.0 in.4)
of Fig. 7 causes very Tittle distortion of the mode shape compared
to the distortion indicated in Fig. 6 for a smaller change in the

4 to I =5.0 1n.4). This indicates that the

properties (I = 1.0 in.
rectangular stiffened plate is acting in a manner closer to that of
an orthotropic plate.

Since no experimental results for the natural frequencies and
associated mode shapes for a stiffened plate are available, the
results of this study were compared to those obtained by means of a
finite-element program (Strudl). This was done for one and two
stiffeners. Figure 12 shows a finite-element model used for a plate
with one stiffener. In this model, 72 plate bending elements and
6 beam elements were used. Figure 15 shows an 84 element model for
a plate with two stiffeners. In this model 72 plate bending and
12 beam elements were used.

It should be noted that the plate bending element used in the
above finite-element model is an incompatible finite-element. An
element of this type does not converge from the high side as compat-

ible elements do, as the mesh is refined. Instead, as the mesh is

refined, this element converges from the low side.

Figure 13 shows a comparison of the lowest frequency and associ-
ated mode shane for a plate with one stiffener obtained from the
finite-element program (Strudl) to that given in Fig. 3 for
I =1.0 in.4. The natural frequencies and mode shapes cbtained by

tha two methods are in excellent agreement. The natural freguencies
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differ by only 0.9 percent.

Figure 14 gives a similar comparison for the 2nd lowest natural
frequency of a plate stiffened with one stiffener. The mode shapes
shown for both solution techniques show good agreement, but the
natural frequencies differ by 4.7 percent.

The author belijeves that a reduction in the mesh size for the
finite-element model would bring the results for the second natural
frequencies and associated mode shapes obtained by two methods into
better agreement.

The results for two of the cases plotted in Fig. 6, namely,
I=1.01in.% o = 0.001057 slugs/in.; I = 5.0 in., o = 0.001807
slugs/in., are compared with the solution obtained from the finite-
element program Strudl (for the model of Fig. 15) in Fig. 16. The
natural frequencies and mode shapes given by both solution techniques
for I =1.0 in.4 show excellent agreement. The natural frequencies
differing by only 0.58 percent. The mode shapes for I = 5.0 in.4
also show good agreement, but the natural frequencies differ by
6.05 percent.

Figure 17 makes the same comparison as Fig. 16 except it is for
the third lowest natural frequency. Again, the natural frequency

and mode shape taken from Fig. 7 show excellent agreement with that

predicted by the finite-element solution.



24

— ol . o S T -
‘—:‘r-.:r- Legend
"
Tl B stiffener location

o —— unstiffened 1
S oI=1.0 1'"-4, p = 0.001057 slugs/in.|
P Al=3.75 , o = 0.001643
e AIl=10.0 | p=0.002275

max

> >

- - ROy

Natural Frequency

m=1 .
-0.5 . N =30 ) ——wyy T 124.5 rad/sec !

a = 48 in. - '

b = 48 in. 0 =289.3 |

h = 0.25 in. a9 =387 |

E = 27 X 10° psi A =484
-].0 - ’ ’ - s . - - - . --«TN :

.0 025 05 075 1.0

. o<

Fig. 3. Lowest (first) natural frequencies and mode shapes
(at x/a = 0.5) for a square plate with one stiffener.
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Fig. 4. Second lowest natural frequencies and mode shapes
(at x/a - 0.25) for a square plate with one stiffener.
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Fig. 5 Third lowest natural frequencies and mode shapes
(at x/a = 0.5) for a square plate with one stiffener.
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Fig. 6. Lowest (first) natural frequencies and mode shapes
(at x/a = 0.5) for a square plate with two stiffeners.
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Second Towest natural frequencies and mode shapes
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Fig. 8. Third Towest natural frequencies and mode shapes
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Fig. 9. Lowest (first) natural frequencies and mode shapes
(at x/a = 0.5) for a sqnare plate with three stiffeners.
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Fig. 10. Second Towest natural frequency and mode shapes
(at x/a = 0.5) for a square plate with three stiffeners.
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Fig. 11. Lowest (first) natural frequency and mode shapes
(at x/a = 0.5) for a square plate with ten stiffeners.
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Fig. 12. Finite-element model for a square plate
with one stiffener.
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Fig. 13. Comparison of Towest (first) natural frequency and
mode shapef of Fig. 3 with finite-element solution. '
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Legend
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Fig. 14. Comparison of second lowest natural frequency and
- mode shape of Fig. 4 with finite-element solution.
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Fig. 16. Comparison of lowest (first) natural frequencies and
mode shapes Fig. 6 with finite-element solutions.
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. Legend
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Fig. 18. Lowest (first) natural frequencies and mode shapes
(at x/a = 0.5) for a rectangular plate (a = 48 in., b = 24 in.)
with two stiffeners.
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Fig. 19. Lowest (first) natural frequencies and mode shapes
(at x/a = 0.5) for a rectangular plate (a = 24 in., b = 48 in.)
with finite-element solution.



CHAPTER V
CONCLUSION AND RECOMMENDATIONS

From the results and comparisons presented in Chapter IV it is

concluded that the method developed in this thesis is a very straight

forward and accurate method of determfning the natural frequencies
and associated mode shapes for a plate with an arbitrary number of
stiffeners. In particular for plates which are sparsely stiffened,
and therefore, can not be treated by orthotropic plate theory, it
establishes a very inexpensive ana]ysis tool. Less than two cpu
seconds were used in obtaining the first three natura1_frequencfes

and mode shapes given for each stiffened plate presented in cases

(i), (ii) and (ii1).

In conclusion, it is recommended to extend the work presented

in this thesis in the following ways:

(1) The torsjonal resistance of the stiffeners be incorporated
into the analysis.

(2) Consider stiffeners whose neutral-axis are not necessariiy
located at the mid surface of the plate.

(3) Consider arbitrarily spaced stiffeners parallel to both the
Xx-axis and y-axis. :

{4) The natural freguencies and associated mode shapes given by

the methods of this thesis be used in a modal analysis to
ohtain the response to an arbitrary forcing function normal
to stiffened plate's mid surface.

Also, experimental determination of the natural frequencies and

mode shapes of a sparsely stiffened plate would be most useful to

the analyst.
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F=NUVBER CF HALF SINE WAVES IN X-DIRECTION.

R=RNUMBER OF TERNS TO G2 USED IMN INVERTING THE FINITE SINE
P=LENGTH OF PLATE IN X-DIRZCTION.

E=LENGTH CF PLATE IN Y-DIRECTIONS.

C=DISTANCE IN VY-DIRECTICN TO STIFFNER.
GHG=MASS/LENGTH. .

AU=MASE/AREA. . . .
X1=MCMENT OF INTERIA OF ThE BEAM.

T=YCUNCGS MCCULLUS .

C=FLEXURAL KRIGIDITY OF PLATE.,
"FEPLATE THICKNESS.

IMFULICIT. REALFB(A-H,C~-2Z)
REAL Mo N '
CIMENSICN FRFC(QQ)oFﬂECptgg)oSUW(QO)'DFN(40)¢SUMX(40);Y(40)O
1CK(20),C (20, O),AFQCC(ZO)'YD(ZO!ZO)V\MAT(ZOQQOO)
READ{S .5 )M,h AyBs HHC, XU E 9 XL sH,C1
5 FOCRMAT{(BF10.0)}
FEARL{S 6 INN s HUODEJNSTIF,CELFRQ,DELY L XFREQC, START
6 FOKMAT{ 4F10.0)
WRITE(S )
304 FORMAT( *STIFFENED FLATE INFQ:I*»////7)
WHRITE(S JA» D s Clabh s M RHG)NWUILXT L e H
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PHU{MASS/AREA)Y coscovmosoe=" 1 513.6,/
"’X(‘«(M lh.f’lu\)..n....— vyE1326,7
'E_(Y(‘Ul cS Hf.}lle()u-.Jo.l ’E 3;6;/
TH(PLATE THIZXNESS)eeseoe=pE13:6,/)

o«ovoocvnquva-v
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HMUEMNXKEMARXRKO=OR
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1
1
1
1
1
1
1
1
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T VONOINSPWN-

L CLLATE NATURAL FREQUENCIES OF BEAMS AND SQUARE RESUBLTS,
CCCI=M%x3,1415G2L54/2

C

FRECE=(CCCII*2ANSCRT{EF*XI/RHD)
FREQE=FREQ3*%*2

CALCURLATE NATURAL FREQUENCIES GOF PLATE AND SQUARE RESULTS.

EBY/E ) X2

CCC2=( 2. £9
2:%(100-409))
7/

C=Ex*xh*x%3
CCC3=Dsot

~\»-
~ o~
P

1=N
po £0 I=1,
FREG (T
FREQP(
50 CCNTINUE

*¥%2%CCC21*LCCC3

1SODLATE RCCYS CF FREQUENCY %ITH N-STIFFMERSS

 FEAD(S,
2t0 FORYMAT(
WRITE(S
WRITE(E ' :
TY « OF STIFFMNERS= -¢12) . - -
T ~DISTANCE TO STIFFNERZ® .
(& YaK =1, MNETIF) : ' .
')—-.Fla.b) . .

FORMA

FCFMA
L wWHITF (6
FOIMATY (
IF(PODELEQ
CALU.FRECN
YUY NEYIF L, VA
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WEITE(O.084)VALUE

884 FCENAT(SX y*VALUE=? ,E12,.6)
IF(K.E0.1)G0 T¢ 100
IF(VALUE*VALUEL1)70.7C+100

VALUE OF EXPANDED DERERNMINANT IS MEGATIVE OF ZERO.
70 CCNTINUE

VV=DABS({VALUE-VALLEL)
IF{VV.CTe5:.3G0 TG 97 : ‘

CALL'ROCTS(VALUE,VALUEI;FREOC.DELFRO-FAC.CCCO,NSTIF»L;C(-
1IFRECP s FREGH,, IFKEQs XFRECy CMAT )

100 IF(NSTIF.EQ.1) VALUEI=VALUE

GO TO %01
97 WRITE{6, S5 )FREQC o

95 FORMAT(SX, "*5%PCLE CF FREQ. EO.(APPRDX.)***z',E13.6)
IF{NSTIFLEQaL Y VALUEL =VALUE L.

501 CCONTINUE ,
WRITE(6,557)

997 FCRMAT { SX, "NATURAL FREQUENCY OF STIFFENED PLATE:*,//)

D0 $98 I=1,IFREQ
WRITE(6,S9G )1 XFRECQ(1)
999 FORMAT (10X, *MNATURAL FREQUENCY{*,I1,%)=",E13.5})
@98 CONTINUE
RETUKN
END

SUBFCUTINE EXFANDS DETERMINANT «

SUBROUTINE OETEXP(C.NSTIF,VALUE)
IMPLICIYT REALZB{A-H,0~-2Z)

DIMENSICN A(2C,20) 3B {20+20),C{20,20)
DC 150 I=1,NSTIF
00 180 J=1,NSTIF
ALLydI=CLId)
150 CONTINUE

KRNNN=NSTIF~1
FACX=1.
BNN=NSTIF-1
NNN1=NST IF-2
DG 139 LL=1,NNNN
- JACX=CA8S(FACX)

T IF(TACY LT, 1.0C-40) GC TO S10
IF{TACX.GT+1e0C 40} GC TO 510
GO T3 5¢0

510 FACX=A(1.,1)3FACY
1=1
D0 20 J

=1 NNN '
A(Y,U)=

ACloJ)I/7A02,1

' 520 CCNTINUE

. 140 cckTINqé . T T S

S00 CONTINUE
' FACX=FACX/(A{1,1)%¥%NNNL)
WRITF(€,301)FACX

30) FCRMAT(SX,E13.6)

O 140 J=1,NNN - N BRI .
DC 140 I=1.NNN .

E(I.J)=A(l.1)#A(1fl.J+l)—A(10J+})*A(I+l.l)
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FORMAT (
CONTINUE

ANN=NNN=1 ‘ : !
NNNT=NNN1-1 -

139 CONTINUE
VALUE CF DETERMINANT.
VALUE=FACX*A{1s1)

RETULRN
_ END

CALCULATES THE MODE SHAPE QOF A BEAM WITH N-STIFFNERS.

TR e e e . . - . P

'SUBROUTINE YYMCDE(XFREQ »FREQP,FREQB,RHOXU.B
1CK Ly IFREGsYD)

IMPLICIT REAL*8(A-H,QO
DIMENSICON FRECP{(93),E
DIMENSICN YMODE(40)

~-Z
C(

FAC=2,04%RHD/7{(B*xXU)
CCC4=3,141592€54/8
00
200
1
2

1800 K=1,IFREQ

WRITE (8» 200 )XFREQ(K)

cFORMAT(IHY W/ /777 /7777
10X,
10X

BEA=FREGB-XFREQ(K) %*%2

21 I=%.,L

ED{ I VY=FREGP{I)-XFREQ{K)**2

31 COMTINUE

DO

CALCULATICN COF MCDE SHAPE.

.

o |l

-t O

0o 1,24

*DELY

v ol o o L

we ol s M

Ol mQO Il v

OO0
o i

II=1,NSTIF
1101 J=1,»L

218]
D0

YMODECI)=YY+BNkDSIN{(JIFCCCL*CK{KT) IXDSIN(I*CCCa*Y{I})XYD(Ks1I1

. 18C0J)
YY=YMOCE(I)

C
1101 CCNTINUE

YMODE(Y)=—1.0%¥FAC*YMODE(TI)
YABS=CABS(YMODE(T1))
IF(YABS.GT-.YRBIC)YBIG=YAHS

1100 CONTINUE
‘DO 1120 1=1,24
YNORM=YMODE(I}/¥YBIG
S WRITE(E.201)Y({ 1)y YNORM
201 CFORMAT(1CX»?Y(*sEL13:645°*)=2,E13.6)

+NSTIFLDELY,

46

) ) e
991 +CK{20):YD(20,20},XFREC{20},Y {40}

*NATURAL FREQUENCY=',E13.6:///,
»*MODE SHAPE Y-~DIRECTION:?

/)




a7

1120 CONTYIMNUL

C .
1800 CONTINUE
RETLR

SL“FUUTihE FOOQTS{VALUEZVALUEL sFREQC ,CELFRQFAC,CCCAINSTIF Ly CKo
IFRECP, FIRECB s IFREQeXFREG»CMAT) . .
IMPLICIY REALXE(A~H,C~ Z)

CIVENSICN BC(99)4Z{20:s20) ,FREOP(99]),C(20,20)+CK{(20)»
IXFREQ(20) «CMAT(20,40C)

9]

JCOUNT =0
FRECCI=FFEQC~-CELFRG

Q0 CCNTINUE

FREQI=(FRECC1*VALUE~FREQCHVALUE 1} /{ VALUE~VALUEL)

(ol eXa NN o]

D0 20 1=1,L
FC{I}=FREQP(I-FREC1**2
30 CONTINUE
FRE

8}

GR-FREQ1**2

NSTLIF
yINSTIF

ne
cC

.

DO

=ZZ+BNEDSTIN(JI*CCCAFICK{TIT Y P #DSIN(I=CCCAHCK I Y /B0 Y)Y
i) -
IV=FACHZ(1,.,11)

PUT TN A FORM FOR THE EXPANSIGN OF THE DETERMINANT.

ann

=1 ,NSTIF
I)=1e0+2(151)

B6 I=1.NSTIF
DO =6 J=1NSTIF
IF({I.£E0.3)G0 TO £3

C(I’JJ-Z(IIJ)

53 CCRTINUEZE

56 CONTINUE

CALL SUBRCUTINE TC EXPANC THE DETERMINANT.

nnon

IF(NSTIF.EO.1) GC TO €9
CALL DETEXP(CLNSTIF. VALUER)
GC TO 401
89 VALLEX=C(1l,1)
401 CCNTINUE

WRITE(6,800)VALLEX
400 FORMAT (SX, '"VALUEX=',E13.6)
VVWV=CABS(VALUEX)

ICOUNT=TCCUNT $1
WHITE(E,2G69)Y1COUNT
299 FORMAT{SX . P ICCUNT=',12)
IF(ICOUNT..GT.10)GD TG 79
IF(VVVeLT.«00000013GC TO 79

IF(VALUEI*VALUEX)75. 75,77
75 ' FRECC=FREO1

VALUE=VALUEX
VALUFT=VALUEL 2.0



[aXe}

T7

no

79

annn

(o}

109
100

. 101

249

GO 10 9¢

FREQCI=FREQI

VALUEL=VALUEX

VALUE=VALUE /2.0
GO Y0 90

ITi
00 150
DO 150

CMAT(IFREQ.I11)

«ITI)=C
ﬁRITF(G ”Og)lFREQ
12:5Ke 12 PCHMAT=*,E13.0)

FORMAT (SX ,
CONTINUE

XFRECO(IFREG)=FREQ}
WRITE(S, 72Z0)FREQ> , VALUEX
FORMAT(SX, 'ROCT FREQUENCY=*,E13.6,/5,5X%,
*VALUE CF EXPa CET+=',E13.06)
RETURN
ENC . A . ..

SULEROQUTINE VECTOR{NSTIF,CMATIFREQ,YD)

IMELICIT BEAL%B(A-H,L—2)
DIMENSICON C(20, ?0),B(”Dde)yYO(ZO.ZO)-CHAT(20.400)

CO 105 KK=1,IFRFQ
WRITE(S6,300)KK

DO
Do

I+

»J1)=CHAT (KK IT)
E{E+r209)C(LI1,451)
TI3X,'C=*,E13,.€¢)

DO 110 K=1,NSTIF
TI=NSTIF+K

0O 101 I=1,.NSTIF

DO 100 JU=1.NSTIF

IF(I«EQ.NSTIFICO TC 1¢CO
JF(J.EQ-K)GO YO 109
IF(ISKIFLEQ.1)GO TO 120

E{I,J)=C{I,J)
GC Y0 100

CONTINUE
E(l+J=13¥=C(1,4)
GO 1C 100
ISKIp=]
CCNTINUE
ISKIP=0
COWIINUFE
IF{NSTIF.NEL1) GO TU 249
YO{KK,X)=1.0
GG 10 2%
IF(NSTIFLEQ.2)1G0 YO 2<9Q
TRNM=NSTIF-)

~—

48



oo,

1F (MODE.EQ.1)YGC TO 2C20
CALL VECTOR(NSTIF CMAT,IFKEQ,YD)

c .
2020 CALL YYMORCIXFREQ L,FRECP,FRECB,RHO, XU, B, NSTIF.DELY,

C

annon

1CK L IFREQ, YD) . .
2030 CONTINUE ]
STOP
END
SUBEOQUTINE FRECN( FREQB, FREQP + START, DELFRQ,, NNy BoRIIO, XU, CKy

no

[sTaKe}

ano

L

30

S

50
49

PUT IN FOFRM FOR THE EXPANSICN CF THE DETERMINANT.

.53

56

C

90

89,

JLeNSTIFSVALUEX s VALUE, IFREQ+NFREQ.CUHAT)

INFLICIY AGALF8(A-H,C~2)
DIMENSICN TRSCP{99),BC199)+Z(20,20):C{20,20)rCK{20) XFREQ{20),
1CHMAT{20,400}

T FAC=2.0F%RHO/({B*XU)
CCCA=2,141€C2€634/8
IFREC=0

‘DO S01 K=1,NN
FREQC=K¥DELFRQ+START
ER=EREQB~FREQCH%2

DEC 20 Y=1,L
EC(I)=FREQP{I )~ FREGC*??
COUNWTINUE

DO
0o

(AN D

CONTIMUE
(1, JI)=FACKZ{TI,11)

CONTINUE ,

CONTINULE H

NSTIF
1.0+2(T,1)

Mot 3
vt
e

ALL SUBRCUTINE TG EXPAND DETERMINANT.

IF(NSTIF.NELL) GO TO SO .. e s e
. VALUE=C(1,1) P T e T
GO T80 89 - ’ L o
IF(K.EQ.1) GO TO 88 Jo . A : o
VALUE L =VALUE . T Sy oo :
COMYINUE . : : A

S CALL” oa1cxp(c.N571F vatug) oo T

'ccnwxwuﬁg_



N 0no

CALLS SUBFCUTINE YO EXFAND DETERMINANT.,

CALL DETLXP (8 NNN,VALLE)
COFACTCRS (F DL?FRMINANY.
YO(KK  KY=(~-1, O)*FIJVVALU_
GO TO 251
50 YO{KKE,.K K)=(=1.0)%%1J2C(1, J-X)
51 CGNTINUE

WRITE(E,
FCRMAY (5
FORMATY (1)

NN

301K WYDIKK,K)
Xp'HDLAL VLCTO FOR® » 12,
OXs 'Yt 12,0 )= vE13.56)

wWw
o0
~ QO

CCMYINUE
CONTYINUE
RETURN
ENEC

e
QO
uoe

NATURAL

%0

FREQUENCY:1, /)’



