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Abstract

This paper derives both open-loop and closed-loop control policies
that steer a finite set of differential-drive robots to desired positions in
a two-dimensional workspace, when all robots receive the same control
inputs but each robot turns at a slightly different rate. In the ab-
sence of perturbation, the open-loop policy achieves zero error in finite
time. In the presence of perturbation, the closed-loop policy is glob-
ally asymptotically stabilizing with state feedback. Both policies were
validated with hardware experiments using up to fifteen robots. These
experimental results suggest that similar policies might be applied to
control micro- and nanoscale robotic systems, which are often subject
to similar constraints.

1 Introduction

There are many breakthrough applications for micro- and nanorobotics,
across a broad set of fields. Large populations (102–108) of micromanip-
ulators could allow targeted drug delivery, enable surgeons to operate at the
cellular level, let engineers develop more complex MEMS assemblies, and let
biologists simultaneously sort all the cells on a Petri dish. These classes of
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tasks require ensemble manipulation—the use of a large population of small
robots to form a coordinated, distributed manipulator.

Ideally, we would design a system that would allow each robot to be
controlled individually. However, next-generation micro- and nanorobotic
systems are likely to have very minimal on-board processing and commu-
nications bandwidth. The lack of significant on-board computation makes
autonomous operation infeasible. Sending individual control signals to each
robot requires communications bandwidth that scales with population sizes.
However, these systems are only useful when their populations are immense,
making the bandwidth for individual unit control impractical. A practical
solution is to control the entire population with a single, shared, global sig-
nal. This implies that all of the robots in the system receive the same control
inputs, yet these robots must accomplish different tasks. The solution re-
quires ensemble control—the use of a single global control input to direct
all of the robots in the population to unique poses.

This paper presents our results on controlling nonholonomic unicycles
with uniform inputs:

1. a finite-step open-loop control policy that sends each robot to a.) ar-
bitrary Cartesian positions or b.) range and bearing locations relative
to targets in R2 (Section 3.5).

2. globally asymptotically stabilizing feedback control policy on the po-
sition of each robot (Section 4.1).

3. an online calibration procedure to learn model parameters (Section
4.4.3).

4. hardware validations of all control policies (Sections 3.6.2, 4.4.4) with
up to n = 15 robots that were 0.1m in diameter.

Taken together, this work is an initial step towards practical control for
large populations of robots. In the next section we describe the advances in
miniature robotics that make control of large robot populations necessary,
and the advances in ensemble control that we have applied to this problem.

1.1 Micro and Nano Multi-Robot Systems

Micro- and nanorobots can be produced in extremely large quantities. Once
a manufacturing process is developed, the marginal cost of producing one ad-
ditional robot is small. Microrobots can be fabricated using microelectrome-
chanical system (MEMS) techniques, e.g. scratch-drive micro robots (Donald
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et al., 2006, 2008, 2013). These robots are 60 by 250 microns in size, and
can be mass-produced with many robots tiled on a single silicon wafer. Per-
haps the best examples of large populations are robotic nanocars—synthetic
molecules with integrated axles, rolling wheels, and light-driven molecular
motors, that are 1.4×1.7 nm in size. These are routinely produced in tremen-
dous quantities—a batch the size of an aspirin tablet contained ≈ 4 × 1019

nanocars (Shirai et al., 2005; Chiang et al., 2011). This dwarfs the total
number of birds on the planet earth—some 3× 1011(Gaston and Blackburn,
1997). Populations of this size approach a continuum of robots. Control-
ling such a massive population highlights the need for novel approaches for
ensemble control, but even populations in the hundreds will not have the
processing or bandwidth for individual control.

Instead, this paper focuses on systems with uniform control inputs,
specifically those that can be modeled as nonholonomic unicycles. Uni-
form control inputs are common to a variety of biological and artificial
robotic systems. Some representative systems are shown in Fig. 1: light-
driven nanocars are uniformly actuated by a certain wavelength of light,
scratch-drive microrobots are uniformly actuated by varying the electric po-
tential across a substrate, multi-robot systems are uniformly controlled by
a broadcast radio signal. Other uniform input examples include the mag-
netic resonant microrobots of Hsi-Wen et al. (2012), the magnetic helical
swimming micro- and nanorobots of both Ghosh and Fischer (2009), Tot-
tori et al. (2012), and Schlüre et al. (2012); the magnetic microparticles of
Diller and Floyd et al. (2011; 2012; 2013), the magnetic milli-scale capsules of
Vartholomeos et al. (2012), and the tumbling magnetic microrobots of (2013)
Biological examples include the electric-field controlled paramecium studied
by Hasegawa et al. (2008), galvanotactic the electrokinetic and optically con-
trolled bacteria demonstrated by Steager et al. (2011), the magnetic-field
controlled bacteria demonstrated by Lanauze et al. (2013) and magnetic-
field steered protozoa demonstrated by Ou et al. (2013). The hardware
implementations in this paper use a standard robot platform with the same
control inputs simultaneously broadcast wirelessly to all robots (McLurkin
et al., 2010).

1.2 Ensemble Control

We limit our work to robots with a differential-drive design, and model their
motion as nonholonomic unicycles. If a system of identical robots of this
type receives the exact same control inputs, their individual positions are
not controllable. The path followed by each robot will be a rigid-body trans-
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Figure 1: Robotic systems with uniform inputs at decreasing length scales.
Top: six differential-drive robots (Becker et al., 2012), three scratch-drive
microrobots (Donald et al., 2008), three light-driven nanocars (Chiang et al.,
2011). Bottom: swarm of r-one robots (Becker and McLurkin, 2013), pho-
tophile kilobot robots (Becker et al., 2013a), and magnetically steered pro-
tozoa (Becker et al., 2013b).

Figure 2: In previous work, we magnetized T. pyriformis protozoa (A),
and steered them by varying an external magnetic field (B). Because every
cell received the same global input signal, rotating the firled casued them
all to swim in circles (C)(Becker et al., 2013b). Motion planning for one
protozoa is trivial, but joint motion planning for many is complex. add
Journal Article
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formation of the path followed by every other robot. In practice, however,
each robot is slightly different, and this inhomogeneity can be exploited in a
systematic way to recover controllability. Inhomogeneities can be found in
the systems of Fig. 1 and in other micro- and nanoscale robotic systems. For
example, small imperfections in their scratch-drive actuators lead to speed
variations between different scratch-drive microrobots. We exploit these
differences to develop two controllers: a feed-forward open loop controller
suitable if properties of the differences are known a priori, and a feedback
controller that uses pose estimates to recover these differences and produce
stable control. Though both controllers can exploit random inhomogeneity,
we explain that robots with uniform inputs should be designed to have large
rotational, but small translational process noise.

Previously, we derived an open-loop approximate steering algorithm for
one nonholonomic unicycle insensitive to model perturbation, e.g. variations
in wheel size, that scales both the forward speed and turning rate by an
unknown but bounded constant (Becker and Bretl, 2012a). Our solution
constructed an infinite, fictitious collection of robots parameterized by the
unknown constant, and our control algorithm steered this entire collection
to a goal position. Following the terminology introduced by (Brockett and
Khaneja, 1999; Khaneja, 2000; Li and Khaneja, 2009; Li, 2011), we called
this fictitious collection of unicycles an ensemble and called our approach
to steering ensemble control. The idea was that if the same control inputs
steered the entire ensemble from start to goal, then surely they would steer
the particular robot of interest from start to goal, regardless of its wheel
size.

Our new controllers take advantage of this idea in a slightly different way.
Rather than trying to mitigate the effects of bounded model perturbation, we
instead try to exaggerate these effects. We will show that if each robot has a
different wheel size, we can construct open-loop control policies to drive the
robots to desired position or range-and-bearing goal states. Moreover, with
state feedback we can derive a globally asymptotically stabilizing control
policy that steers the position of all robots (independently) between given
start and goal configurations, despite the fact that they all receive the same
control inputs.

Ensemble control has recently been applied to a variety of robotics prob-
lems, enabling feedforward control of planar robot arms subject to parame-
ter variation (Plooij et al., 2013), simultaneous open-loop control of multiple
ball-bearings with unique radii using a plate-ball manipulator (Becker and
Bretl, 2012b), and methods for reducing parametric sensitivity applied to
feedforward trajectory tracking by robotic vehicles (Ansari and Murphey,
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t = 0 min t = 60 min

Figure 3: n differential-drive robots that receive exactly the same input
commands can be steered by our algorithms from any initial position to any
desired set of ending positions if robots turn at different rates. Shown are
12 r-one robots moving from a rectangle to an ‘R’ shape. See Extension 1
for a video of this experiment.

2013). This paper focuses controlling a finite set of robots and provides both
an exact open-loop controller, and an asymptotic feedback controller.

1.3 Open-Loop Control

For a system of n robots modeled as nonholonomic unicycles there are 3n
degrees of freedom: the x, y positions and global headings θ. If the robots
have unique turning rates, we provide a finite-time open-loop algorithm to
control 2n+ 1 degrees of freedom (DOF). This limitation does not exclude
many useful applications, such as navigation, manipulation, or assembly. In
this paper we present two useful ways to allocate these 2n+ 1 DOF:

A.) 2n unique (xi, yi) positions for each robot. The final DOF is the
integrated turning commands and modifies the θi values, the robot headings
in the global reference frame. This behavior is illustrated in Fig. 3.

B.) 2n unique (di, αi) range and bearing to targets for each robot. The
final DOF is the integrated turning commands and modifies the ψi values,
the bearings from the target to the robots. We focus on this second behavior,
which is illustrated in Figs. 4 and 5.

Heading control is necessary for many robotic tasks, including:

1. receiving an object (fertilizing embryos (Shin et al., 2013), polar-body
biopsy, microinjection)

2. redirecting an incoming signal (solar incinerator mirrors)

3. observing an object (collecting, measuring, cameras)

4. emitting an object (ballistics, targeted drug therapy)
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Figure 4: n robots, under the constraint that each robot receives exactly the
same control inputs, can be controlled from any initial configuration to the
perimeter of a star-shaped set as long as each robot has a unique turning
rate. The controller has 2n + 1 degrees of freedom, which can be used to
alter the spacing around the perimeter (middle and right). See Section 3 for
details.

5. manipulating objects (pushing, grasping)

On the nanoscale, heading control is no less necessary. Possible appli-
cations include using molecular robots as nanoscale transporters, to break
chemical bonds, or to build structures by constructing non-covalent bonds.
We derive inspiration from the molecular actuators of Minett et al. (2002),
the molecular elevators of Badj́ıc at al. (2004), and the nanocars of Vives et
al. (2009).

d = .3, α = 0 d = .2, α = π/2 d = .25, α = π d = {.1, .05}, α = {0, π} d = {.3, .1}, α = 0

Figure 5: Differential-drive robots with top-mounted lasers demonstrating
our control technique. The robots receive exactly the same control com-
mands, but each robot has a unique turning rate. By selecting different dis-
tances d and bearings α = {0, π/2, π}, these robots engage, form a perime-
ter, or protect the target. These parameters can be mixed and applied to
multiple targets, or to form concentric rings.

7



1.4 Closed-Loop Control

Open-loop control is rarely satisfactory due to model and process noise.
Even with exact knowledge of the parameters of each robot, errors due to
unmodeled dynamics will integrate over time to ruin the final global configu-
ration. This is particularly troubling for smaller robots, where disturbances
from Brownian motion dominate other noise sources (Einstein, 1956). By
using a closed-loop feedback policy we can guarantee global asymptotic con-
vergence of the ensemble to any given position. We note that, for single
robots, it is possible to build a robust feedback controller that regulates
position and orientation (Lucibello and Oriolo, 2001). It is not obvious that
the same can be done for an infinite collection of robots. Instead, we focus
on regulating the position of every robot in the ensemble, and present sim-
ulation results with populations ranging from 120 to 2,000. We also present
hardware experiments on populations of up to 15 robots.

1.5 Overview

Our paper is organized as follows. We begin in Section 2 with a description
of our problem. In Section 3 we design and evaluate an open-loop controller
that assigns 2n+ 1 DOF for a n robot system. Section 4 derives a globally
asymptotically stable controller. We conclude in Section 5.

Note that preliminary conference versions of Sections 3 and 4 have ap-
peared (Becker et al., 2012; Becker and McLurkin, 2013).

2 Modeling an Ensemble of Unicycle Robots

Consider a collection of n unicycles that each roll without slipping. Follow-
ing the terminology of (Brockett and Khaneja, 1999; Khaneja, 2000; Li and
Khaneja, 2009), we call this collection an ensemble and describe the config-
uration of the ith robot by qi = [xi, yi, θi]

> and its configuration space by
Q = R2 × S1. The global control inputs are the forward speed u ∈ R and
turning rate ω ∈ R. We assume that each robot has a nonzero parameter
vi that scales the linear velocity and a unique nonzero parameter εi that
scales the turning rate (|εi|6= |εj | ∀ i, j). These vi, εi values may arise from
stochastic processes during manufacturing (Donald et al., 2006), or as design
decisions (Peyer et al., 2013). The kinematics of the unicycle are given by

q̇i(t) = viu(t)

cos θi
sin θi

0

+ εiω(t)

0
0
1

 . (1)
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If vi is zero the robot cannot move. Similarly, εi = 0 prevents the robot
from turning. On a collection of differential-drive robots, these parameters
can be mapped to unique wheel sizes and εi = vi.

2.1 Conversion to Discrete-Time

We model our robotic system with a discrete-time model. We can simplify
(1) by splitting each ∆T time step into two stages with piecewise constant
inputs. During the first stage of round k we command the robots to turn in
place φ, and during the second stage command the linear movement u(k).

k =

⌊
t

∆T

⌋
[
u(t), ω(t)

]
=

{[
0, 2

∆T φ
]

t− k∆T < ∆T
2[

2
∆T u(k), 0

]
else

(2)

Because the robots are either turning in place or moving in a straight
line, we can precompute the heading angles and write the kinematics in the
following simple form[

xi(k + 1)
yi(k + 1)

]
=

[
xi(k)
yi(k)

]
+

[
vi cos (θi(0) + εikφ)
vi sin (θi(0) + εikφ)

]
u(k), (3)

for i = 1, 2, . . . , n and k ∈ Z. Eq. (3) is a discrete-time linear time-
varying system. As ∆T → 0, the discrete-time ensemble (3) approaches
the continuous-time model (1). Note that, alternatively, u could be con-
stant and φ(k) the independent variable, but the resulting system would be
nonlinear. This linear formation (3) converts the motion planning problem
for n robots with uniform inputs into a matrix inversion, as shown in the
following section.

3 Open-Loop Ensemble Control

We present two variants of open-loop control: position control and range-
and-bearing control. Figure 3 shows the output of position control. Note
that the robots reach desired final positions, but end with seemingly random
headings. This reflects the 2n+ 1 controllable degrees of freedom: the final
positions are controllable, but the final headings are linked. Figure 4 shows
range-and-bearing control. Note that the robots reach desired range and
bearings, but their ending positions are distributed along the perimeter.
This also reflects the 2n + 1 controllable degrees of freedom: n arbitrary
range and bearings are controllable, but the final spacings are linked.

9



3.1 Position Control

To prove (3) is controllable by (2), we will show the system is uniformly
k-step controllable. This means that the reachable set after k rounds is
the entire state-space (Levine, 1996, chap 25.3). We define the state as the
robot position pi = [xi, yi]

ᵀ, and write (3) in standard notation as

pi(k + 1) = Ai(k)pi(k) +Bi(k)u(k). (4)

Here Ai(k) is the identity matrix for all i, k and u(k) the commanded linear
movement. The matrix Bi(k) encodes all heading information, θi(k), and
has the form

Bi(0) = vi

[
cos(θi(0))
sin(θi(0))

]
Bi(1) = vi

[
cos(θi(0) + εiφ)
sin(θi(0) + εiφ)

]
...

Bi(k) = vi

[
cos (θi(0) + εikφ)
sin (θi(0) + εikφ)

]
,

B(k) =


B1(k)
B2(k)

...
Bn(k)

 .
We then define the controllability matrix Ck as

Ck = [B(0),B(1), . . . ,B(k − 1)] .

The finite ensemble with n robots has 3n degrees of freedom, but we can
control only 2n + 1 of these. We choose to control the x, y positions and
the net turning command kφ. To control each robot’s x, y position requires
Ck to be rank 2n. If the εi values that scale the turning speed are unique,
the functions cos(ε1φ),sin(ε1φ), . . ., cos(εnφ),sin(εnφ) are orthogonal on any
closed interval of length 2π. This means there always exists a sequence of
φ values that make Ck full rank. The parameter φ controls the sampling
frequency, and must be twice the Nyquist frequency(Shannon, 1949), or

φ ≤ π

max
i∈[1,n]

εi
. (5)
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Sampling theory also gives a bound on k, the number of samples needed
(Proakis and Manolakis, 1996, Chapter 5). In order to differentiate two
frequencies ε1 and ε2, we need k ≥ 2π

|ε1−ε2| . The bound on k is then given by
the minimum separation between ε values

k ≥ 2π

min
i 6=j∈[1,n]

|εi − εj |
.

3.2 A k-Step Control Law

We desire the sequence of k control inputs u[0,...,k−1] that will bring the
system to the goal state. If Ck is full rank and k > 2n, the system is
underdetermined, with an infinite number of solutions. We choose from
these solutions by finding the one with minimal control effort. That is,
for any starting state p0 and desired final state pk, the control sequence is
derived by minimizing

∥∥u[0,...,k−1]

∥∥
2

subject to the constraint Cku[0,...,k−1] =
(pk − p0). The solution is

u[0,...,k−1] = C>k (CkC>k )−1(pk − p0). (6)

In practice, the Moore-Penrose pseudoinverse results in better numerical
accuracy than the inverse above (Penrose, 1955). We note that for k = 2n,
C is almost always ill-conditioned, leading to very large control commands.
Best results are obtained for k ≈ 4n, as shown in Section 3.6. When Ck is
full rank, the robots converge exactly.

Our k-step control law allows us to move the robot exactly to n (x, y)
coordinates, leaving us with one additional degree of freedom. This degree
of freedom is determined by the φ values chosen, and an optional turn at
the end. There are several possibilities. We can return the robots to their
original heading, Section 3.4 discusses controlling the robot’s final heading,
and in Section 3.5 we use this degree of freedom to control the distribution
of robots along the perimeter of star-shaped sets.

3.3 Globally Asymptotic Stabilization of An Ensemble of
Unicycles

A single nonholonomic unicycle that rolls without slipping has the continu-
ous time dynamics given in Eq. (1), repeated here for clarity:

q̇i(t) = viu(t)

cos θi
sin θi

0

+ εiω(t)

0
0
1

 .
11



Given qi(0) = [xi(0), yi(0), θi(0)]ᵀ,qgoal ∈ Q, the control problem for

regulating position is to find control inputs linear velocity u(t) and angular
velocity ω(t) such that for any qi(0) and qgoal,

lim
t→∞

∥∥∥∥∥
[
xi(t)
yi(t)

]
−

[
qgoal,1(t)

qgoal,2(t)

]∥∥∥∥∥
2

= 0.

If such inputs always exist, then we say that the system is globally asymp-
totically stabilizable.

We will solve this control problem for n nonholonomic unicycles that
each receive exactly the same control inputs, but each unicycle has a unique,
positive constant εi that scales the turning rate. Our control policy sets the
angular velocity ω(t) to a constant non-zero value, so all the unicycles rotate
in place at different rates due to their unique εi values. The control policy
then sets the linear velocity u(t) to decrease the position error. There exist
configurations at which no u(t) can decrease the position error; however, we
prove that at any such configuration, except the origin, the ensemble can
always rotate in place until there exists some u(t) that will decrease the
position error.

We choose ω(t) = 1 and without loss of generality set θi(0) = 0 so that

ẋi(t) = viu(t) cos(εit)

ẏi(t) = viu(t) sin(εit). (7)

Theorem 1. The ensemble (13) for (vi 6= 0, εi 6= 0, |εi|6= |εj | ∀ i, j) is
globally asymptotically stabilizable.

Proof. We will prove the origin is globally asymptotically stabilizable by
using a control-Lyapunov function (Lyapunov, translated and edited by A.T.
Fuller, 1992). A suitable Lyapunov function is the mean squared distance
of the ensemble from the origin:

V (t,x,y) =

n∑
i=1

1

2nvi

(
x2
i (t) + y2

i (t)
)

(8)

V̇ (t,x,y) =
n∑
i=1

1

nvi
(xi(t)ẋi(t) + yi(t)ẏi(t))

= u(t)

n∑
i=1

1

n
(xi(t) cos(εit) + yi(t) sin(εit))

= u(t)F (t, x, y)
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Here, F (t,x,y) is the summation term which is finite as long as xi(0)
and yi(0) are finite. We note here that V (t,x,y) is positive definite and
radially unbounded, and V (t,x,y) ≡ 0 only at (x,y) = (0,0).

3.3.1 Designing a Control Policy

To make V̇ (t,x,y) negative semi-definite, we choose

u(t) = −F (t,x,y)

For such a u(t),

V̇ (t,x,y) = − (F (t,x,y))2 .

Note here that V̇ (t,x,y) ≤ 0, but there exists a subspace of (x(t),y(t))
such that V̇ (t,x,y) = 0. Because V̇ (t,x,y) is negative semi-definite, we
can only claim stability, not asymptotic stability. To gain a proof of asymp-
totic stability, we will use an approach similar to that of Beauchard et al.
Beauchard et al. (2010) to apply LaSalle’s invariance principle (LaSalle,
1960) to this ensemble. We will proceed by showing the invariant set con-
tains only the origin.

3.3.2 Finding the Invariant Set

Define the set S as all configurations where no u(t) exists that can decrease
the Lyapunov function:

S =
{

x(t),y(t)
∣∣∣V̇ (t,x(t),y(t))) = 0

}
=
{

x(t),y(t)
∣∣∣− (F (t,x(t),y(t)))2 = 0

}
= {x(t),y(t)|F (t,x(t),y(t)) = 0} .

Define the time the ensemble enters S as t0, the orientation of each robot
at t0 as θ0(ε), and t′ = t− t0. We then define all configurations that remain
identically in S as the invariant set Sinv. Any configuration that enters this
set will never modify its position because u(t) = −F (t,x,y) = 0 for any
configuration in Sinv. Therefore we can drop the time-dependence of x(t)
and y(t):

Sinv =

{
x,y

∣∣∣∣∣
n∑
i=1

(
1

n

(
xi cos(εit

′ + θ0i) + yi sin(εit
′ + θ0i)

))
, ∀t′ ≥ 0

}
.

13



We can remove θ0 with the following change of coordinates[
x∗

y∗

]
=

[
cos (θ0) sin (θ0)
− sin (θ0) cos (θ0)

] [
x
y

]
,

giving the invariant set

Sinv =

{
x,y

∣∣∣∣∣
n∑
i=1

(
1

n

(
x∗i cos(εit

′) + y∗i sin(εit
′)
))
≡ 0, ∀t′ ≥ 0

}
. (9)

We must show that no configuration except (x,y) ≡ (0, 0) is in Sinv. By
a fundamental theorem of sampling theory, the functions cos(ε1t), sin(ε1t),
. . ., cos(εnt), sin(εnt) are orthogonal on any closed interval of length 2π if
the εi values are unique (Proakis and Manolakis, 1996). Therefore, the only
constant x,y values that satisfy (15) is the origin.

We have shown that V is positive-definite and radially unbounded, V̇
is negative semi-definite, and the only invariant point where V̇ = 0 is the
origin. Therefore, we conclude that under the control policy

u(t) = − 1

n

n∑
i=1

(xi(t) cos(εit) + yi(t) sin(εit)) ,

ω(t) = 1. (10)

the origin of the ensemble (13) is globally asymptotically stable.

3.4 On Controlling Heading

In our previous work with continuum ensembles, we proved the heading of
an infinite ensemble is not fully controllable (Becker and Bretl, 2012a). Even
with a finite ensemble of robots, the set of reachable headings is much smaller
than the set of all headings. We often cannot even achieve exact consensus in
heading mod(2π). However, it is possible to achieve approximate consensus
in heading. Given a µ > 0, there exists a turning command φ such that
|mod(θi, 2π)−mod(θj , 2π)| < µ for all robots i, j in the ensemble.

3.4.1 Exact Heading Consensus—Infinite Ensemble

Consider an infinite ensemble of robots that have a continuum of turning
rates ε ∈ [εmin, εmax], εmin 6= εmax. If these robots are initialized to the same
heading, it is impossible to make the robots agree in heading at any angle
other than the initial heading. Let γ(T ) = 1

2π

∫ T
0 ω(t) dt. Then the heading

of the ensemble parameterized by ε at time T is εγ(T ), and is spread along
a continuum of headings from εminγ(T ) to εmaxγ(T ).
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3.4.2 Exact Heading Consensus—Finite Ensemble

For illustration, consider the hands of a 12-hour clock. The hour and minute
hands overlap 22 times per day, every 12/11 hours (the first crossing is
at ≈1:05:27), but the hour, minute and second hands overlap only twice:
midnight and noon. This overlap occurs once per Least Common Multiple
(LCM) of the periods. The LCM of a set of numbers can be obtained from
their prime factorizations if the set is mutually rational, e.g. the ratio of any
two of the numbers is a rational number (Graham et al., 1990).

Theorem 2. It is not always possible to make a finite ensemble with differ-
ent turning rates exactly agree in heading.

Proof. It is sufficient to provide an example. Consider 3 robots; a, b, c, all
with different turning rates, where

• a turns at unit velocity

• b turns at 2·unit velocity

• c turns at e·unit velocity, the base of the natural logarithm

Initialize the first two unicycles in the same direction and the third offset
by π. If the unicycles are commanded to turn at a fixed turning rate, there
does not exist a time when they align. Here, unicycle heading at time t is
t, t2 and te + π. Unicycles a and b coincide infinitely often at t = k2π for
k ∈ Z. Robots a, c coincide infinitely often when

mod(t, 2π) = mod(te+ π, 2π).

However, the ensemble a, b, and c only coincides when:

mod(k2π, 2π) = mod(k2πe+ π, 2π)

Per modular arithmetic, we divide by the common term 2π:

mod(k, 1) = mod(ke+1/2, 1)⇒ 0 = mod(ke+1/2, 1)

This equality only holds when the quantity ke+1/2 ∈ Z for k ∈ Z. Since e is
an irrational number, this does not occur, because the product of a rational
and an irrational number is always an irrational number.
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3.4.3 Approximate Heading Consensus—Finite Ensemble

If the set of turning rates is not mutually rational, we cannot reach an
exact solution. Instead we search for an approximate solution. Hurwitz’
Theorem (Chandrasekharan, 1968) tells us that an irrational number εi has
an infinity of rational approximations p

q which satisfy |εi − p
q |<

1√
5q2

, where

p, q are integers. In our application, a finite set of robots with unique turning
rates and an error bound µ > 0, Hurwitz’ Theorem implies we can always
find a finite T > 0 such that the robots’ alignment error is less than µ.

The example robots in Section 3.4.2 achieve approximate heading con-
sensus at

µ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

t
2π 1 63 3×103 7×103 2×106 5×106 6×106 2×107

In this one example with n = 3 robots, the required time T for ap-
proximate convergence is approximately proportional to µ−1. Because the
problem of finding the least common multiple for a set of integers is NP-hard
(Majewski and Havas, 1994), we predict the approximate convergence time
increases superlinearly with the number of robots n.

3.5 Range and Bearing Control

We define the bearing from a robot to a fixed target as the counter-clockwise
angle from the robot’s heading to a vector toward the target, as shown in
Fig. 6. Given a desired bearing-angle and a desired target, a finite ensemble
of robots can be controlled to the perimeter of any star-shaped set around
that target, as shown in Fig. 4. The set S is a star-shaped set if there exists
qc in S such that for all q in S the line segment from qc to q is in S. We
require a function that maps a robot’s global heading θi to a position on the
perimeter of the star-shaped set, and that the robots turn at unique rates.

Fig. 4 provides an example: 50 robots with ε values evenly distributed
[1
2 ,

3
2 ] are controlled to the perimeter specified by d(ψ) = 1 + ψ+sin(4ψ)

2π , ψ ∈
[0, 2π], with bearing α = 0. Because the εi values are mutually rational, we
can achieve exact heading consensus (see Section 3.4.2). In this example the
robot’s headings have a period of 196π. By varying the total commanded
turn γ(t) we can modify the distribution of robots along the perimeter.
Shown are γ(T1) = 50π and γ(T2) = 311.

While our approach works on arbitrary curves, we will describe the tech-
nique by controlling the robots to the perimeter of a circle. A circular con-
figuration best addresses our proposed tasks and the procedure is easy to
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Robot coordinate system:

α = bearing, θ = heading
d = 1, α = 0 d = 1, α = π/2
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α = π

d = {1/3, 1/2}
α = {π/2, 0}

d = 1
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Figure 6: Given n robots, where the pose of the ith robot is (xi, yi, θi),
we can specify the desired bearing α and range d for each robot to at most
n targets at positions (xti, yti). Let ψ = atan2(yi − yt,i, xi − xt,i), then the
heading θ = π − α+ ψ.

follow. Given n robots, we can specify the desired bearing α and range
d for each robot to at most n targets. Let the pose of the ith robot be
(xi(k), yi(k), θi(k)).

After k moves under the motion model (3), the robot is at heading
θi(k) = θi(0) + εikφ. Given d, α, and the ith robot’s target at (xt,i, yt,i), the
desired final position is[

xi(k)
yi(k)

]
=

[
xt,i
yt,i

]
−
[
cos(θi(0) + εikφ+ α)
sin(θi(0) + εikφ+ α)

]
d. (11)

This control enables a host of configurations. Several of these are illustrated
and numbered in Fig. 6. They include:

1. Surrounding the Target by choosing a constant d and α = 0, the
robots will finish all on a circle of radius d centered around and aimed
toward the target. This configuration is suitable for monitoring a
target or delivering material.

2. Aligning Around the Target by choosing a constant d and α = π/2,
the robots will form up tangent to a circle of radius d. By proper
choice of φ and k, these robots can be distributed along the perimeter
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to form a barrier around the target. This may also be a starting point
for caging manipulation (Fink et al., 2007).

3. Defending the Target by choosing a constant d and α = π, the
robots will form up in a circle of radius d pointing away from the
target.

4. Mixing Configurations up to n targets may be specified for the n
robots, and each robot can be given particular values of (d, α). This
may be used to surround multiple targets, form multiple layers around
certain targets, or track multiple targets.

The final degree of freedom: there are 2n + 1 controllable degrees of
freedom in this system. Of these 2n are allocated to range and bearing (or
x, y positions), leaving one input that is the integral of all turning commands.
This input can be used to return the robots to their initial headings, or to
permute their final spacing along the target set. Section 3.6.1 describes how
permuting the final spacing can be used to search for collision-free paths.
Spacing constraints are similar to the constraints on heading in Section 3.4.
By similar reasoning, if the ε values are unique it is possible to move the
robots to approximately the same position or approximately evenly space
them. If the ε values are mutually rational, the robots can be moved to
exactly the same position or be evenly distributed, as shown in Fig. 4. Even
so, the set of reachable perimeter spacings is much smaller than the set of
all spacings.

3.6 Open-Loop Control Results

3.6.1 Open-Loop Simulations

Each simulation starts with the ensemble of n robots initialized evenly
spread with x = 0 and y ∈ [−1, 1]. The target is at (2,0), the commanded
turn at each step φ = π/4, and the desired range and bearing to the target
is (d, α) = (1, 0). This setup with solutions for k = 70 and 500 is shown in
Fig. 7.

Path Length Simulation: We examine the dependence of overall path
length on the number of robots n and the number of moves k. This allows
us to predict the number of moves necessary to move an ensemble of robots
from start to goal configurations with a near-optimal path length. We desire
short paths because under open-loop control, the true state diverges from the
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Figure 7: Simulation set up. n robots are initialized evenly spread between
y = [−1, 1], goal is at (2,0), nominal turn φ = π/4, desired range and bearing
to the target is (d, α) = (1, 0), vi = 1, and εi = 1

2 + i
n . Shown above are

results for n = 10 robots with 70 and 500 moves.

predicted state due to process noise. This noise is a function of the input
commands, distance travelled, and modeling errors (Zhou and Chirikjian,
2003). To minimize state error we want to create short paths with few
turns.

We investigated path length as a function of number of moves k for
k = [1, 500], and ran simulations for n = {2, 5, 10, 20, 35, 50, 75, 100}. By
assigning a turning cost of 1/10 for each turn of φ = π/4, which approxi-
mates the total distance moved for a similar turn on our hardware robots,
we calculated the path length as

path length = k
1

10
+

k∑
i=1

|u(i)| .

To facilitate comparison, we compare using the nondimensionalized quantity

normalized path length = 1
n

n∑
i=1

path length
distance(roboti,goal)

. (12)

The results of these tests are shown in Fig. 8a. Note that when the number
of moves is less than 2n, the matrix C is not invertible. The normalized
path lengths decrease from k = 2n to about k = 4n as C becomes well
conditioned, then increase with k as the cost of turning dominates.
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Figure 8: (a) Semi-log plot of normalized path length (12) as a function
of the number of moves allowed for control law (6). Results are shown for
different numbers of robots n. The same initial and target distributions
are used for each test, as shown in Fig. 7. All solutions bring the robots
exactly to the goal position. The paths decrease in normalized path length
until ≈ 4n as C becomes well conditioned, then increase again as the cost
of turning dominates. (b) Probability of a collision as a function of (robot
diameter/mean distance to goal) for different numbers of robots, n. The
setup in Fig. 7 is used. The probability of collision increases nonlinearly
with number of robots and robot radius.
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Probability of Collision Simulation: Using the same initial setup, we
examined the probability of collision as a function of (robot diameter/mean
distance to goal) and the number of robots. We ran simulations for n =
{2, 5, 10, 20} robots with radius values ranging from 0.001 to 0.1 units. For
each radius and number of robots, we ran 100 tests by varying the turning
φ values and number of moves k. In these tests, we checked the generated
path for inter-robot collision.

Probability of collision =
tests with collision

100

The results of these tests are shown in Fig. 8b. The probability of colli-
sion increases nonlinearly with number of robots and robot radius. The
probability that at any time, n randomly distributed robots collide grows
quadratically in n. These results indicate that collisions provide a hard-limit
on open-loop control for high robot densities. One method to mitigate this
is to wrap (6) in a loop and check for collisions along the path. If collisions
are found, new values for the turn command φ and the number of moves m
are tried until a collision-free path is discovered or the maximum number of
trials is reached. We provide code implementing this scheme in Matlab as
a free download (Becker, 2012a).

3.6.2 Open-Loop Hardware Experiments

Our differential robots (McLurkin et al., 2010) have two direct-drive wheels,
and a ball caster in the back, as shown in Fig. 9. These robots are circular
and can turn in place. Each robot is given a unique internal parameter
εi that scales turning rate, εi ∈ [1

2 ,
3
2 ]. AprilTag fiducials(Olson, 2011) are

mounted on the top of each robot and used to track robot pose. Each robot
carries a laser-pointer to easily visualize the heading. We calibrated one
robot using the UMBmark routine (Borenstein and Feng, 1996), then stored
a unique turning rate ε on each robot.

For our experiments we used three r-one robots. These robots were
commanded to engage a target located at (1.2,1.2) m with a desired bearing
of α = π and d = 0.3 m. Turning rates are evenly distributed in [1

2 ,
3
2 ], and

the initial robot positions are distributed on x = [0, 0.2] m. The results of
10 hardware experiments are shown in Fig. 10. The final positions had an
average distance error of 4.4 cm with standard deviation 2.8 cm and average
heading error of 0.13 radians with standard deviation 0.20 radians. These
small errors appear to be due to wheel slip and are within our calibration
accuracy.
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(a) robots with lasers illuminated by CO2 fog
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(b) robots in dark, surrounding a flask

Figure 9: The r-one robots used for hardware verification. Each robot car-
ries a laser-pointer for visualizing heading. Top-mounted AprilTag fiducials
(Olson, 2011) are used for ground truth measurements. Broadcast radio
commands are sent simultaneously to all robots.
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Figure 10: Hardware experiment with three robots commanded to engage
a target (desired bearing α = π and d = 0.3 m). The target is represented
by the disc centered around an ‘x’ at (1.2,1.2) m. Turning rates were evenly
distributed in [1

2 ,
3
2 ], and initial robot positions distributed on x = [0, 0.2] m.

Shown are commanded robot paths, expected final positions, and final po-
sitions for 10 hardware experiments.
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4 Closed-Loop Ensemble Control

There are several limitations to open-loop control. Pose error increases with
path length, and the path length for our control law increases with the
number of robots (Fig. 8a). This restricts our open-loop control solution to
systems with excellent odometry or small populations of robots.

Another problem is due to robot collisions. Collisions disturb robot
trajectories and may prevent robots from reaching their goal positions. The
control law (6) does not account for collisions. The probability of collision
increases quadratically with the number of robots.

Both problems could be alleviated by a closed-loop controller. Using
global positioning sensing and a feedback control law, robots can be driven
toward goal positions while rejecting disturbances. This section describes
a control policy that globally asymptotically stabilizes an ensemble of uni-
cycles controlled by uniform control inputs. Code for simulations and for
generating the figures in this section is available online (Becker, 2012b).

4.1 Globally Asymptotic Stabilization of An Ensemble of
Unicycles

A single nonholonomic unicycle that rolls without slipping has the continu-
ous time dynamics given in Eq. (1), repeated here for clarity:

q̇i(t) = viu(t)

cos θi
sin θi

0

+ εiω(t)

0
0
1

 .
Given qi(0) = [xi(0), yi(0), θi(0)]ᵀ,qgoal ∈ Q, the control problem for

regulating position is to find control inputs linear velocity u(t) and angular
velocity ω(t) such that for any qi(0) and qgoal,

lim
t→∞

∥∥∥∥∥
[
xi(t)
yi(t)

]
−

[
qgoal,1(t)

qgoal,2(t)

]∥∥∥∥∥
2

= 0.

If such inputs always exist, then we say that the system is globally asymp-
totically stabilizable.

We will solve this control problem for n nonholonomic unicycles that
each receive exactly the same control inputs, but each unicycle has a unique,
positive constant εi that scales the turning rate. Our control policy sets the
angular velocity ω(t) to a constant non-zero value, so all the unicycles rotate
in place at different rates due to their unique εi values. The control policy
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then sets the linear velocity u(t) to decrease the position error. There exist
configurations at which no u(t) can decrease the position error; however, we
prove that at any such configuration, except the origin, the ensemble can
always rotate in place until there exists some u(t) that will decrease the
position error.

We choose ω(t) = 1 and without loss of generality set θi(0) = 0 so that

ẋi(t) = viu(t) cos(εit)

ẏi(t) = viu(t) sin(εit). (13)

Theorem 3. The ensemble (13) for (vi 6= 0, εi 6= 0, |εi|6= |εj | ∀ i, j) is
globally asymptotically stabilizable.

Proof. We will prove the origin is globally asymptotically stabilizable by
using a control-Lyapunov function (Lyapunov, translated and edited by A.T.
Fuller, 1992). A suitable Lyapunov function is the mean squared distance
of the ensemble from the origin:

V (t,x,y) =
n∑
i=1

1

2nvi

(
x2
i (t) + y2

i (t)
)

(14)

V̇ (t,x,y) =
n∑
i=1

1

nvi
(xi(t)ẋi(t) + yi(t)ẏi(t))

= u(t)
n∑
i=1

1

n
(xi(t) cos(εit) + yi(t) sin(εit))

= u(t)F (t, x, y)

Here, F (t,x,y) is the summation term which is finite as long as xi(0)
and yi(0) are finite. We note here that V (t,x,y) is positive definite and
radially unbounded, and V (t,x,y) ≡ 0 only at (x,y) = (0,0).

4.1.1 Designing a Control Policy

To make V̇ (t,x,y) negative semi-definite, we choose

u(t) = −F (t,x,y)

For such a u(t),

V̇ (t,x,y) = − (F (t,x,y))2 .
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Note here that V̇ (t,x,y) ≤ 0, but there exists a subspace of (x(t),y(t))
such that V̇ (t,x,y) = 0. Because V̇ (t,x,y) is negative semi-definite, we
can only claim stability, not asymptotic stability. To gain a proof of asymp-
totic stability, we will use an approach similar to that of Beauchard et al.
Beauchard et al. (2010) to apply LaSalle’s invariance principle (LaSalle,
1960) to this ensemble. We will proceed by showing the invariant set con-
tains only the origin.

4.1.2 Finding the Invariant Set

Define the set S as all configurations where no u(t) exists that can decrease
the Lyapunov function:

S =
{

x(t),y(t)
∣∣∣V̇ (t,x(t),y(t))) = 0

}
=
{

x(t),y(t)
∣∣∣− (F (t,x(t),y(t)))2 = 0

}
= {x(t),y(t)|F (t,x(t),y(t)) = 0} .

Define the time the ensemble enters S as t0, the orientation of each robot
at t0 as θ0(ε), and t′ = t− t0. We then define all configurations that remain
identically in S as the invariant set Sinv. Any configuration that enters this
set will never modify its position because u(t) = −F (t,x,y) = 0 for any
configuration in Sinv. Therefore we can drop the time-dependence of x(t)
and y(t):

Sinv =

{
x,y

∣∣∣∣∣
n∑
i=1

(
1

n

(
xi cos(εit

′ + θ0i) + yi sin(εit
′ + θ0i)

))
, ∀t′ ≥ 0

}
.

We can remove θ0 with the following change of coordinates[
x∗

y∗

]
=

[
cos (θ0) sin (θ0)
− sin (θ0) cos (θ0)

] [
x
y

]
,

giving the invariant set

Sinv =

{
x,y

∣∣∣∣∣
n∑
i=1

(
1

n

(
x∗i cos(εit

′) + y∗i sin(εit
′)
))
≡ 0, ∀t′ ≥ 0

}
. (15)

We must show that no configuration except (x,y) ≡ (0, 0) is in Sinv. By
a fundamental theorem of sampling theory, the functions cos(ε1t), sin(ε1t),
. . ., cos(εnt), sin(εnt) are orthogonal on any closed interval of length 2π if
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the εi values are unique (Proakis and Manolakis, 1996). Therefore, the only
constant x,y values that satisfy (15) is the origin.

We have shown that V is positive-definite and radially unbounded, V̇
is negative semi-definite, and the only invariant point where V̇ = 0 is the
origin. Therefore, we conclude that under the control policy

u(t) = − 1

n

n∑
i=1

(xi(t) cos(εit) + yi(t) sin(εit)) ,

ω(t) = 1. (16)

the origin of the ensemble (13) is globally asymptotically stable.

4.2 Closed-Loop Implementation

In this section, we explain extensions of our control policy to unidirectional
and discrete-time ensembles, and we apply a standard noise model to our
ensemble. These extensions are useful for implementation of our policy.

4.2.1 Extension to Unidirectional Vehicles

Some systems, including the nanocar and scratch-drive microrobot, have
unidirectional constraints on their inputs—they can only generate a positive
linear velocity and can only turn in one direction. Our control law already
uses unidirectional input for u2. This can be extended to robots with min-
imum turning radius, e.g. (Donald et al., 2006, 2008), by redefining the
robot center as the center of rotation. To handle linear velocity constraints,
we modify (16) to be non-negative by setting u1(t) = max(0,−F (t)). In
simulation and hardware experiments, the resulting unidirectional control
policy converges about half as fast as the original control policy. Extending
the global asymptotic stability result to unidirectional inputs is a promising
avenue for future work.

4.2.2 Extension to Discrete-Time

The analysis in Section 4.1 used continuous time. Many real-life appli-
cations, including the micro- and nanorobots we discussed above, involve
robots controlled and measured in discrete time.

To simplify implementation, we again use the discrete-time model (2)
from Section 2.1, splitting each ∆T time step into two stages with piecewise
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constant inputs. During the first stage of round k we command the robots to
turn in place φ, and during the second stage command the linear movement

u(k) = − 1

n

n∑
i=1

(xi(k) cos(θi(k)) + yi(k) sin(θi(k))) (17)

As long as φ meets the constraints on the sampling frequency given by
(5), our globally asymptotically stable control results follow.

The control policy (17) is easy to implement, never increases the summed
distance of the ensemble from the goal, and is robust to standard models of
noise.

4.2.3 Applying a Standard Noise Model

To model process noise, we apply the noise model by Thrun et al. (Thrun
et al., 2005, Chap. 5.4.2). This model defines each discrete-time motion as
a rotation, a translation, and a second rotation. It uses the four parameters
α1, α2, α3, and α4 to weight the correlation of noise between rotation and
translation actions. If the desired rotation, translation, and second rotation
are given by [δrot1, δtrans, δrot2], then the actual actions, after noise is applied,
are given by

δ̂rot1 = δrot1 − sample(α1δ
2
rot1 + α2δ

2
trans)

δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans), (18)

where sample(σ2) generates a random sample from the zero-centered normal
distribution with variance σ2. We use this noise model for all discrete-time
simulations.

4.3 Closed-Loop Simulation Results

Here, we present our simulation methodology and results for both continuous-
and discrete-time simulations.

4.3.1 Continuous Time

We implemented a ensemble with control policy (16) in Matlab to simulate
n = {50, 100, 500, 1000, 2000} robots in continuous time for two different test
cases. For these tests vi = εi = 1

2 + 1
n i.
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Figure 11: Continuous time simulations of n robots, with ε ∈ [0.5, 1.5]
using control policy (16) and u2(t) = cos(

√
t). Simulations were run with

increasing numbers of robots. Simulations with n ≥ 500 achieved the same
error, as shown in the top plots. State trajectories of the ensemble are shown
in the bottom plots. Lines show the path followed for five particular values
of ε. Thick black lines show the entire ensemble at instants of time. (a)
robots initialized to (1, 1) and steered to (0, 0). (b) robots initially evenly
distributed about the unit circle and steered to (0, 0)

Point to Point Robots are initialized to [xi, yi, θi] = [1, 1, 0] and steered
to the origin. Results are shown in Fig. 11a.

Path to Point Robots are initialized to θi = 2π i
n , [xi, yi] = [cos(θi, sin(θi)],

a circle of radius 1, and steered to the origin. Results are shown in Fig. 11b.
From these simulations, we see that under our control policy, the error

converges asymptotically to zero. Additionally, the Lyapunov function evo-
lution and state trajectories for n = 1000 and 2000 are identical, suggesting
that this level of discretization accurately represents continuum ensemble
(n =∞) kinematics.
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Figure 12: Convergence of the position error for discrete-time, finite col-
lections of 120 robots simulated under a standard noise model (18). In (a)
the wheel sizes ε ∈ [0.5, 1.5], while in (b) and (c), all ε are set to 1. (a) and
(b) show different levels of noise parametrized by α; all α are equal, while
(c) shows that focusing the noise in the rotation (α1) improves convergence
with identical robots.

4.3.2 Discrete Time

We simulated a discrete-time collection of 120 robots under various levels
of process noise parameters with both differing and identical values of ε.
Sample trajectories are shown in Fig. 13. We explored three different cases:

Different ε Values Simulating with differing ε, we found that with no
process noise, the position error of our robot collection converged to zero
error. When the noise model (18) was applied, the error converged to a non-
zero value for small values of process noise, and diverged for large values, as
shown in Fig. 12a.

Identical Robots When all 120 robots are identical, the smallest position
error is achieved within a specific intermediate range of process noise values.
Large α values caused the error to diverge, while small α values led to very
slow convergence. This result is shown in Fig. 12b.

Effect of Rotational Noise Again with identical robots, we held the
translational and cross-term noise at 0.01, a value which converged quickly
in the previous simulation, and varied the rotational noise, α1. Convergence
rate increased with α1, up to a limit of approximately α1 = 1. This result
is shown in Fig. 12c.

These results show that process noise is necessary for a finite collection
of identical robots to be controllable. We believe this is a subset of a larger
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120 unicycles

ϵ=0.5 ϵ=1.5

Figure 13: Simulation results from applying the control policy from (17) for
120 robots with unicycle kinematics. Wheel size (ε) was evenly distributed
from 0.5 to 1.5. The plot shows the the starting ‘+’ and ending ‘◦’ positions
along with 8 selected state trajectories (see also Extension 1).

class of problems for which noise is beneficial, or even necessary, for stability
and control. In particular, these results suggest that identical robots with
uniform inputs should be designed with large rotational, but small transla-
tional and cross-term noise.

4.3.3 Convergence Time as a Function of Population Size

Using the same discrete-time model as Section 4.3.2, n=1 to 1000 robots
were simulated under control law (17). The n robots were initialized evenly
spread between x = 0, y = [−50, 50], goal positions were equally spaced
about a radius 50 circle centered at (100,0). Three scenarios were simulated,
the first two with different wheel sizes: εi = 1

2 + i
n , and the third with

identical wheel sizes. The first test was noiseless (α1,2,3,4 = 0), while the
second and third tests had noise values α1 = 0.1, α2,3,4 = 0.001. The systems
were simulated until the error was below 10. The resulting normalized path
lengths and total number of steps are shown in Fig. 14. The number of steps
required grows roughly linearly in the number of robots n, having coefficients
[13, 17, 25]. The normalized path length is shown with a linear fit in

√
n,

having coefficients [3.1, 3.4, 3.5].
As with the open-loop controller simulations in Section 3.6, the nor-

malized path length required grows sublinearly in the number of robots n,
but the number of steps required grows linearly with n. The closed-loop
controller requires more steps than the open-loop controller and ends with
nonzero error. This inefficiency is caused because the closed-loop controller
greedily follows the gradient, rather than solving for an optimal sequence.
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Figure 14: Simulation results for convergence to a desired position as a
function of population size under closed-loop control law (17). Inset to (a)
shows starting and goal configurations. 50 trials were run for each config-
uration. A trend line connects the mean values and error bars show ±1
standard deviation.

Figure 14b shows the ramifications of uniform inputs compared to individ-
ually communicating with addressable robots. The path length is roughly
3.5
√
n longer than an addressable scheme. The total number of input com-

mands is also greater. Uniform inputs requires ≈20n broadcast communi-
cation messages, compared to exactly 2n messages with addressable robots.

4.4 Closed-Loop Hardware Experiments

Here, we describe our hardware system and explain our experimental pro-
cedures and results.

4.4.1 Differential-Drive Robots

Our differential robots have two large direct-drive wheels in the back, and
a free-wheeling ball caster in the front, as shown in Fig. 1. In the ex-
periments shown in this paper, we use wheels with diameters in the set
{102, 108, 127, 152}mm. Trials with approximately identical-size wheels all
used 102±0.5 mm wheels.

4.4.2 System Overview

Our robots are commanded to either move linearly or turn in place in units
of encoder ticks. These commands are broadcast over 900MHz radio using
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an AeroComm 4490 card.
Four to five tracking dots are fixed to the top of each robot. Position

and orientation data for each vehicle are uniquely measured by an 18-camera
NaturalPoint OptiTrack system with reported sub-millimeter accuracy. A
Matlab program computes the control policy (17) and sends the global
control signal.

This setup is intended to serve as a scale model for micro and nanorobotic
systems with uniform inputs, but care must be taken with broadcast radio
messages. For instance, during a practice hardware test we noticed excep-
tionally fast convergence, and traced this to poor placement of the trans-
mitting antenna. Due to interference, robots would occasionally not receive
turn-in-place commands. This effectively introduced large process noise on
the rotation and led to fast convergence, similar to that shown in Fig. 12c.

4.4.3 Online Calibration

Changing the wheel size of a differential-drive robot scales both the linear
and angular turning rate, i.e. vi = εi. Surprisingly, calibration is not neces-
sary for successful implementation of the controller. To see why, first note
that the control policies (16) and (17) do not require vi or εi values. These
control policies greedily follow the gradient, so as long as the vi and εi val-
ues have the correct signs, the control law will decrease the position error.
However, in practice the policy

u(k) = − 1

n

n∑
i=1

1

εi
(xi(k) cos(θi(t)) + yk(t) sin(θi(k)))

with the correct εi values results in faster convergence. In our hardware
experiments, for every translation command u(k), we record beginning and
ending positions to calculate di, the distance traveled, and update each εi
value according to the following rule

εi(k + 1) = εi(k) +K
|u(k)|
M

(
di
|u(k)|

− εi(k)

)
. (19)

K is the weighting we give new measurements of εi, and M is the maximum
possible distance we may command the robot to move. For the experiments
shown here K = 0.1 and M = 0.7.

4.4.4 Experiments

We conducted a series of experiments to show that our control policy con-
verges in a real system. We show results for unique wheel sizes with online
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Figure 15: Four differential-drive robots with wheel diameters in the set
{102, 108, 127, 152} mm (left) and robots with 102 mm wheels (right). Each
robot receives the same broadcast control signal, but the different wheel
sizes scale the commanded linear and angular velocities. Robots courtesy of
College of Engineering Control Systems Laboratory (Block, 2012).

Figure 16: Photographs from hardware experiment steering four differential-
drive robots with different wheel sizes. The robots are initialized in a straight
line and all receive the same control input from a wireless signal. A motion
capture system is used for feedback to steer the four robots to the colored
targets. In the third frame a disturbance is injected by moving a single robot
away from its target.

calibration, for unique wheel sizes without online calibration, and for ap-
proximately identical wheels. We conclude with a study on convergence
time and steady-state error as a function of the number of robots.

Unique Wheel Sizes with Online Calibration: Initially, each of the
robots in Fig. 15 was assumed to have εi = 1, and the actual values of εi were
learned through online calibration. The robots were successfully commanded
from a horizontal line, to a box formation, to a vertical line, and finally to a
tight box formation. Figure 16 shows frames from a video of this experiment.
The results in Fig. 17 show convergence both in position and in εi values.
Online calibration requires persistent excitation, so convergence slows as the
robots approach their targets.
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Unique Wheel Sizes without Calibration: It is not necessary to know
or to learn the εi values. For this entire experiment εi was set to 1. The
four robots in Fig. 15 were successfully commanded from a horizontal line
to a box formation, and then to a vertical line. For each formation, error
converged to less than half a meter, as shown in Fig. 18.

Approximately Identical Wheel Sizes: Even with approximately iden-
tical ε values, a collection of robots is still controllable due to process
noise. The robots in Fig. 15 were fitted with approximately identical wheels.
Fig. 19 shows successful convergence results of four robots with approx-
imately identical wheel sizes commanded to the same formations as the
previous experiment.

Convergence for varying numbers of robots: Our control law extends
to large numbers of robots, but convergence time increases with population
size. Figure 21 plots mean error as a function of time for n=1, 2, 5, 12, and
15 differential-drive robots with approximately identical wheel sizes being
directed to goal positions in a regular 0.2×0.2 m grid. As shown in Fig. 20,
all robots were initialized in a clump 1 meter away from the grid positions
in an enclosed 2×1.5 m workspace. Heading error was artificially increased
by each robot adding independent and identical turning error uniformly
randomly distributed on [−π/4, π/4]. Robots were controlled until they
achieved a steady-state error. The steady-state errors were [3, 14, 12, 24,
34] mm. In each case the position error exponentially decreases with time,
but steady-state error and convergence time increase with the number of
robots. The time to converge within distances ≥ 0.2 m of the targets is
roughly linear in the number of robots n, with approximate rates of 1.8n
to converge within 0.2 m and 0.34n to converge within 0.5 m. For tighter
convergence the convergence time grows superlinearly, with approximate
rates of 0.3n2 to converge within 0.1 m and 0.6n2 to converge within 0.05
m. See Extension 1 for a video of 12 r-one robots converging from one
formation to a second formation.

4.4.5 Applications Enabled by Position Control

The ability to control position enables many tasks. For example, robot ag-
gregation collects all the robots to one position; this primitive operation
could be useful for alignment of micro- and nanorobots. To achieve aggre-
gation, at each control step the goal position of each robot is set to the mean
position of the ensemble.
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Figure 17: Hardware experiment with unique wheel sizes and online cali-
bration. The top plot shows ε values estimated by online calibration. The
bottom plot shows the summed distance error as the robots were steered
through the sequence of formations shown.
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Initial configuration Goal positions

Figure 20: Measuring time for n differential-drive robots to converge to goal
positions. Here n = 15. The workspace is 2×1.5 m, the robots are 0.1 m in
diameter, and the goal positions are a regular 0.2×0.2 m grid.
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Figure 21: Hardware experiment with robots shown in Fig. 20. The goal for
this experiment is to control all the robots to position them into a uniform
grid. Mean error as a function of time for 1, 2, 5, 12, and 15 robots being
directed to goal positions in a regular 0.2×0.2 m grid. All robots were
initialized in a clump 1 meter away from the grid positions in an enclosed
2×1.5 m workspace. Robots were controlled until they reached a steady-
state error.
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Other tasks include forming subgroups, path- and trajectory-following,
dispersion, pursuit/avoidance, manipulation, and assembly. Each can be
implemented by a suitable selection of time-varying target locations in (17).
See (Onyuksel, 2012, Chap. 3.6) for an implementation of trajectory track-
ing.

Obstacle and collision avoidance can be accomplished by adding a poten-
tial field term to the control policy (16) as in (Choset et al., 2005, Chap. 4).
See (Onyuksel, 2012, Chap. 3.5) for an implementation of this obstacle avoid-
ance method.

5 Conclusion

In this paper we investigated ensembles of nonholonomic unicycles that share
a uniform control input. We first examined open-loop position and heading
control of an ensemble of nonholonomic unicycles. We provided a control
policy to steer n robots with unique turning rates to desired range and
bearing values in a finite number of steps. This control policy was validated
in simulation and in hardware experiments.

Open-loop control is rarely satisfactory due to model and process noise.
Through Lyapunov analysis, we derived a globally asymptotic stabilizing
controller for an ensemble of unicycles in continuous and in discrete time. In
simulation, we showed that a discrete-time ensemble of unicycles converges
asymptotically and rejects disturbances from a standard noise model. In
hardware experiments, we demonstrated online calibration which learned
the unknown parameter for each robot. These experiments led to surprising
results that 1) our controller still works when all wheel sizes are incorrectly
specified and 2) for certain levels of process noise our controller works even
when all wheel sizes are the same.

This work shows that an ensemble of unicycles with uniform inputs to all
robots can be regulated to arbitrary positions and reject disturbances from
a standard noise model. The analysis suggests that micro- and nanorobots
with uniform inputs should be designed with large rotational, but small
translational process noise.

With both open- and closed-loop control, convergence time grows as a
function of the number of robots. This growth makes these methods most
suitable for 10s of robots. Future work should investigate how to efficiently
control 100s to 1000s of nonholonomic unicycles simultaneously, and develop
a theory of ensemble manipulation.

Finally, many micro and nanoscale robot systems have uniform inputs,
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but other motion constraints. In particular, many systems such as helical
swimmers (Zhang et al., 2009b,c,a) and magnetized Tetrahymena pyriformis
cells (Ou et al., 2013) move in the same direction with different speeds. See
(Becker et al., 2013b) for an example of how control methods in this paper
can be modified for these classes of systems.
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Appendix A: Index to Multimedia Extensions

The multimedia extension to this article is listed in Table 1, and is available
at: http://www.ijrr.org.

Extension Type Description

1 Video Hardware experiment with 12 differential-drive robots,
all commanded by the same broadcast control signal.
Robots move from a rectangular configuration to form
the letter ‘R’. Next, 120 simulated robots move from
“ROBOTICS” to form “IJRR” despite IID perturba-
tion.

Table 1: Multimedia Extensions
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