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Abstract
A face image set is a group of face images from the same person. In set-based face recog-

nition systems, face image sets are employed either in the gallery, probe, or both for com-

parisons. Compared with a single face image, an image set provides more information;

hence, better performance is expected. However, it also brings a lot of challenges and

remains an open problem in real-life scenarios. First, there are large variations within

an image set (e.g., poses, expressions, and occlusions). Second, the number of images

varies for different image sets. Third, there may be outliers in a set due to misdetection or

mistracking. Fourth, the computation and storage costs are very high, especially for large-

scale image sets. The goal of this dissertation is to design effective and efficient algorithms

in template generation and matching that can represent identity information and take ad-

vantage of the within-set variations. The first contribution is a set-based prototype and

metric learning algorithm (SPML) that generates compact templates and robust similar-

ity measurements for set-to-set matching. The second contribution is a confidence-driven

network (CDN) to quantify the confidence level of images in a set and enhance the point-

to-set matching. The third contribution is a confidence prediction network (CPN) that can

serve as an add-on module to enhance the performance of a sample-based face recognition

system for set-based face recognition tasks. The fourth contribution is an attention-based

recursive binary embedding (ARBE) algorithm to extract binary templates for face image

sets. The proposed algorithms achieved significant improvements when compared with

previous advances.
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Chapter 1

Introduction

1.1 Motivation

Face-recognition technology has been adopted in many identification systems to distin-

guish identity in an easier, faster, and more secure manner. To integrate more informa-

tion to enhance the recognition performance, image sets are employed in the set-based

face-recognition system. An image set contains a group of images describing the same

individual. In set-based face recognition systems, there are mainly two tasks: (i) the set-

to-set matching, where comparisons are conducted between two face-image sets, and (ii)

the point-to-set matching, where a single face image and a face image set are compared.

Many of the face data acquired in real-life are face-image sets by nature. For example,

face frames extracted via face tracking from video streams are groups of face images from

the same person. In a multi-camera setting, face images captured by multiple cameras also

form an image set. As a result, many real-life applications can be mapped into the problem
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of set-based matching. When tracking a person across a video camera network, it is typi-

cally a matching between tracking results from different cameras (i.e. set-to-set matching).

When the police locate a missing child, it is usually a matching between an ID photo with

the tracking results from each video camera (i.e. point-to-set matching). Compared with

single-image-based matching, an image set can provide more information. Hence better

recognition performance is expected.

1.2 Challenges

A common approach to compare two face images is first to generate a template (usually a

feature vector) for each image, and second, compute the similarity between the generated

templates. To adapt the same strategy to set-based matching, first templates need to be cre-

ated for face-image sets, and second, the similarity between the generated templates need

to be computed. Except for the common challenges in sample-based face-recognition sys-

tem (e.g., poses and occlusions), the image set settings also bring several new challenges.

1. The within-set variations could be large: Since there are multiple images in an

image set, these images may exhibit differences in poses, expressions, and face

sizes. As a result, the generated template should either be robust to all variations

or represent all variations.

2. The number of images varies: The numbers of images in an image set are usually

different. It requires the capability to process variable numbers of images in template

generation.
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3. Image sets may contain outliers: The outliers in an image set are images that do

not contain faces of the labeled identity. It could be faces from other identities or

non-face images via misdetection or mistracking. Outliers will degrade the matching

performance.

4. The problem complexity is increased: From a single image to an image set, the

computational complexity is increased for template generation, similarity measure-

ments or both. Moreover, most of the datasets for face recognition are organized for

sample-based face recognition. Extra effort is needed to construct protocols for both

training and evaluation.

1.3 Limitations of Previous Work

Existing methods address some of the challenges mentioned in Section 1.2. Besides, they

are limited in at least one of the following aspects.

1. Information redundancy: Existing approaches usually take all images in an image

set to build the representation model. This model contains redundant information

that is duplicated or useless for the recognition. Additionally, this redundancy is

time and storage consuming.

2. Non-compact template: The set representation is not compact enough. Most of the

templates generated for image sets are in high-dimensional feature space or contain

very complex structures.
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3. Neglect the within set variations: Some of the methods treat all the images in

the set equally. Within an image set, different images contain various levels of

discriminative information and thus should contribute differently to the results.

4. Complex model assumptions: Most of the methods rely on strong model assump-

tions (i.e. sub-space model, hull-based model, or statistical model), which do not

necessarily hold. Moreover, the model estimation is computationally expensive, es-

pecially in a high-dimensional feature or sample space.

1.4 Goal and Objectives

The goal of this dissertation is to develop effective and efficient algorithms to achieve

statistically significant improvements in matching for set-based face recognition. In this

dissertation, new algorithms are proposed to address the challenges and limitations high-

lighted in Section 1.2 and 1.3. In particular, the objectives are to:

1. Develop and evaluate an algorithm that generates compact templates and robust sim-

ilarity measurements for set-to-set matching.

2. Develop and evaluate algorithms that generate common templates for point-to-set

matching.

3. Develop and evaluate an add-on module that can enhance the sample-based face-

recognition system for set-to-set and point-to-set matching.

4. Develop and evaluate a compact binary template for face image sets.
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In particular, objective 1 targets on challenge 1-3 and limitation 1-3; objective 2 targets

on challenge 1-2 and limitation 3-4; objective 3 targets on challenge 1-2, 4 and limitation

2-4; objective 4 targets on challenge 1-2 and limitation 2-4.

1.5 Contributions to Date

1.5.1 Objective 1

The set-based prototype and metric-learning framework (SPML) is proposed for set-to-

set matching. In particular, each gallery image set is represented using a reduced-affine

hull spanned by a few learned prototypes. The affine-hull model is employed, which can

(i) preserve all the within set variations (challenge 1 and limitation 3), and (ii) accept

variable numbers of images in a set (challenge 2). Instead of using all the images in a

set, a reduced number of prototypes are learned, which (i) reduces the template size and

information redundancy (limitation 1 and 2), and (ii) is more robust to outliers (challenge

2). To maintain or even improve the recognition performance, a Mahalanobis metric is

learned simultaneously with the prototypes. The optimization problem is formulated using

a single loss function that jointly learns the prototypes and metric to bring similar image

sets closer to each other, while separating dissimilar ones. The principal contribution of

this work is a framework with the following advantages:

1. It uses fewer prototypes to represent each image set in the gallery, reducing the

computational cost and storage requirement.
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2. It increases the robustness of the hull model.

3. It can be used with any hull model and any distance metric learning objective func-

tion.

1.5.2 Objective 2

The confidence driven network (CDN) is proposed to generate templates for point-to-set

matching. The proposed template contains two parts: (i) the regular feature representation,

and (ii) a confidence score to measure the discriminative information level of first part of

the template. The confidence score can help differentiate the contribution of each image

in a set. In other words, the within-set variations are encoded into the confidence scores

(challenge 1 and limitation 3). In the training phase, the confidence score will guide the

feature extraction network to focus less attention on the samples with lower confidence

levels. By doing so, it avoids overfitting on samples that are possibly difficult, or others

that the model is uncertain about its predictions. In the matching phase, the confidence

scores are used to integrate the results from different samples of the same set via simple

weighted average fusion (challenge 2 and limitation 4). The principal contributions of this

work are the following:

1. A weighted-by-confidence point-to-set triplet loss that enables us to adapt a point-

to-point network to a point-to-set network,

2. A single-sample test mechanism to quantify the discriminative level of a sample.
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1.5.3 Objective 3

CDN is extended into a confidence prediction network (CPN), which acts as an add-on

module to adapt a sample-based face recognition (FR) system for set-based FR applica-

tions. CPN can be used to generate confidence scores as attention and aggregate infor-

mation from different images into a single template. As a result, it (i) is free from model

assumptions (limitation 4), and (ii) reduces the template size (limitation 2). Similar to

CDN, the within-set variations are encoded into the confidence scores (challenge 1 and

limitation 3). In particular, the single-sample-test mechanism is extended to generate a

global pseudo-ground-truth for the confidence score such that the confidence scores can

be learned: (i) independently without the access to the template of a sample-based FR

system, and (ii) without set-based restriction in datasets (challenge 4). The proposed CPN

is an add-on module with the following advantages:

1. The training of feature representations and the confidence score are completely in-

dependent which simplify the training process a lot.

2. CPN can work with different face recognition systems and enhance the performance

without changing the systems.

1.5.4 Objective 4

The attention-based recursive binary embedding (ARBE) algorithm is proposed to ex-

tract the binary template for image sets. Specifically, the network contains two parts:

(i) attention-based feature learning, and (ii) recursive binary coding. In the first part,
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following CDN, a real-valued feature representation is learned for each sample with a

corresponding attention score. The attention score describes the contribution of the corre-

sponding sample representation (challenge 1-2, limitation 3-4). In the second part, each bit

is learned recursively. The output of the previous bit is used as meta input when learning

the current bit. The results from different samples are integrated at each bit (limitation 2).

The proposed ARBE results in an increased recognition performance compared to the se-

quential code, while the number of projections is still restricted to a linear relation to code

length. Learning from the recent advances in face recognition and image set classification,

the angular-based similarity and the image set attention schemes are also adapted in the

framework. The contribution is a new binary-embedding framework for a face image set

with the following advantages:

1. It increases the recognition power while maintaining a linear model complexity.

2. It is designed under a standard neural network architecture so that it can be easily

integrated into different network design.

1.6 Dissertation Outline

The rest of the dissertation is organized as follows: the background and related work are

presented in Chapter 2. The proposed methods for each of the objectives are discussed

and evaluated in Chapter 3 to Chapter 6, respectively. Finally, Chapter 7 concludes all the

works and provides directions for future research.
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Chapter 2

Background and Related Work

In this chapter, an overview of essential concepts and existing literature in set-based matching and

other related fields is offered. A general pipeline for the set-based matching can be illustrated in

Figure 2.1.

Figure 2.1: Illustration of a general set-based matching pipeline. Solid lines depict the
feature-level set modeling flow. Dash lines depict the decision-level set modeling flow.

It can be viewed from a fusion perspective. According to the step where the fusion happens, meth-

ods can be grouped into two categories: (i) feature-level set modeling, and (ii) decision-level set
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modeling. In feature-level modeling methods (i.e. following solid arrows in Figure 2.1), the image-

level feature representations are embedded into a single set-based representation. In decision-level

modeling methods, the image-level representations are taken directly into the matcher and return a

single decision. In both categories, there are two key issues to solve: (i) how to model an image

set, and (ii) how to conduct discriminative learning. To this end, a brief introduction to the image

set modeling is introduced and then the discriminant analysis under the corresponding models is

reviewed. Expect for the set-based matching, advances in the field of performance prediction (ob-

jective 2 and 3) and binary templates (objective 4) are also involved in this thesis. Related literature

in these two fields is also discussed in this chapter.

Figure 2.2: Illustration of the taxonomy tree for image set modeling.

2.1 Image Set Modeling

In this section, the collected papers are clustered according to how they model an image set to

structure the existing literature. Specifically, a taxonomy tree is proposed in Figure 2.2. The image

set modeling can be divided into two groups: (i) single model, and (ii) mixture model. In the first

group, algorithms model each image set using a single model, while in the second group they model
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each image set using a mixture of different models. Specifically, in the single model approaches,

four kinds of model are used: (i) subspace model, (ii) statistical model, (iii) hull model, and (iv)

attention-based model. To give a structured description, the collected literature is clustered into the

leaf categories: the subspace model (Table 2.1), the statistical model (Table 2.2), the hull model

(Table 2.3), the attention-based model (Table 2.4), and the mixture model (Table 2.6 and Table 2.5).

Each of the categories will be discussed in depth in the following subsections, including (i) the basic

modeling framework, (ii) variations in different approaches, and (iii) advantages and limitations.

Except for the different set modelings, the paper highlight and fusion level for each algorithm are

also listed. Specifically, the contributions of each algorithm are summarized in the paper highlight

column. In the fusion level column, the feature fusion and decision fusion are distinguished.

Figure 2.3: Illustration of subspace model. Y i and Y j denote two linear subspaces lying
on the Grassmann Manifold G (m, d). D (Y i,Y j) denotes the geodesic distance on the
manifold that is the length of the shortest path on the surface. It is a natural dissimilarity
measurement of the image setX i andXj .
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2.1.1 Subspace Model

An image set X = [x1,x2, ...,xN ] ∈ Rd×N can be modeled using an m dimensional linear sub-

space of Rd. The linear subspace can be specified by Y = [y1,y2, ...,ym] ∈ Rd×m, an orthogonal

matrix contains m base vectors. This linear subspace model can be constructed using singular

value decomposition, where Y contains the eigenvectors corresponding to the m largest eigenval-

ues [22]. All the m dimensional linear subspaces of Rd form a Grassmann manifold G (m, d). As

a result, the subspaces extracted from original image sets can be treated as different points on a

manifold. A straightforward dissimilarity measurement is the geodesic distance on the manifold,

as illustrated in Figure 2.3. However, it suffers in two aspects. First, it is computationally very ex-

pensive. Second, this distance lies on the Grassmann manifold. Discriminant analysis techniques

that developed in Euclidean space cannot be directly used. Instead, different kernel metrics are

developed to embed the Grassmann manifold to a Reproducing Kernel Hilbert Space (RKHS). The

most commonly used ones are the projection kernel and the Binet-Cauchy kernel proposed in [22].

The projection metric is defined as

KP (Y i,Y j) = ‖Y T
i Y j‖F , (2.1)

where ‖·‖F denotes the Frobenius norm. It can help to understand by associating the isometric

embedding [11],

ψP : G (m, d) 7→ Rd×d,Y i 7→ Y T
i Y i. (2.2)

The projection kernel is simply the Euclidean distance in Rd×d. Similarly, the Binet-Cauchy kernel

is defined as

KBC (Y i,Y j) = det
(
Y T
i Y jY

T
j Y i

)
. (2.3)

Using the same embedding, a set of more general kernels is proposed in [27], including the poly-

nomial kernel, RBF kernel, Laplace kernel, binomial kernel and logarithm kernel. The kernels
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Table 2.1: Papers using the subspace model.

Abbr. Paper Highlights Fusion level

PML [38]

Proposes a geometry-aware dimension reduction
directly from the original Grassmann Manifold to a
more discriminative lower dimensional Grassmann
Manifold.

Feature

k.,p/ k.,bc [27]

Introduces a group of positive definite kernels (in-
cluding universal ones) to embed Grassmannians
into Hilbert space via Plücker embedding or pro-
jection embedding.

Decision

GDL/ KGDL [26]

Proposes a sparse coding and dictionary learning
framework on Grassmann manifold via embedding
it into the space of symmetric matrices. Devises a
close form solution for dictionary learning and can
be kernelized.

Feature

GGDA [28]

Proposes a discriminant analysis algorithm that
preserves both manifold structure and local struc-
ture of the data based on graph embedding frame-
work [84].

Feature

GFKS2V [91]
Consider point-to-set matching as heterogeneous
subspaces lying on Grassmann manifold and use
Geodesic Flow Kernel to build the connection.

Decision

mentioned above enable us to leverage the subspace model with the techniques developed in Eu-

clidean spaces (e.g., support vector machines [66]) for a more discriminative classification. In

particular, a kernel-based graph embedding framework is proposed in [28] to preserve the local

structure. The sparse coding framework was developed in [26] with an unsupervised dictionary

learning strategy. It was further extended into a general Riemannian coding framework [24] with

both supervised and unsupervised dictionary learning strategies. Instead of first embedding the

Grassmann manifold into a Hilbert space, the projection metric learning [38] was proposed to con-

duct the dimension reduction directly from a manifold to a lower dimensional manifold to preserve
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essential manifold structures. These discriminant analysis techniques will be discussed in Section

2.2. There are some other algorithms employing multiple linear subspace models in different local

areas [72, 10]. They are grouped in the mixture model and will be discussed in Section 2.1.5.

In summary, the subspace-based approaches assume that an image set lies on a low dimensional

subspace. It can take advantage of the well-developed Riemannian geometry to leverage rich dis-

criminant analysis techniques in the Euclidean space. It provides a loose characterization of the set

variations. On the one hand, this is robust to noise. On the other hand, it discards the variations

in different directions, which may result in losing important local information. Additionally, the

dimension of the linear subspace is crucial for the performance and needs to be tuned.

2.1.2 Statistical Model

Approaches in this category attempt to characterize each image set use either its statistical proper-

ties [24, 39, 25, 66, 71] or the probabilistic distribution [52].

Statistical Property: Using the statistical properties is a straightforward way to structure the

image-set data. The most frequently used are the first order statistic (i.e. mean value) and the

second order statistic (i.e. covariance matrix). The first order statistic lies in the Euclidean space,

and thus the Euclidean distance can be directly used as the dissimilarity measurement. The second

order statistic C of an image setX is defined as

C =
1

N − 1

N∑
i=1

(xi − µ) (xi − µ)T , (2.4)

where µ is the mean vector of all samples in X . The non-singular covariance matrix lies on the

Riemannian manifold spanned by the d× d SPD matrices [56].

There are several well explored metrics in the Riemannian geometry. The first is affine-invariant
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Table 2.2: Papers using the statistical model.

Abbr. Paper Highlights Fusion level

LEML [39]

Employs the covariance model and learns a projec-
tion directly in the tangent space at identity matrix,
which reserves the symmetric property of the orig-
inal SPD tangent map.

Feature

SSCIS [52]

Proposes to cluster the whole training data and
compute the discrete distribution of each class
across different clusters. The modified Bhat-
tacharyya distance between distributions is used to
measure the similarity.

Feature

SPD-ML [25]
Proposes to use orthonormal projection for SPD di-
mension reduction. Feature

CDL [71]
Models each image set using the covariance matrix
and extends LDA and PLS to the Log-Euclidean
distance.

Feature

LERM [37]
Proposes a hierarchical cross domain learning be-
tween point data on Euclidean space and set data
on Riemannian Manifold.

Feature

DCLR [77]
An end-to-end framework for set-based matching
focusing on a covariance based loss. Feature

SPDNet [35]
Proposes the first deep network that takes SPD as
input. Feature
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Figure 2.4: Illustration of Log-Euclidean distance. Ci and Cj denote two covariance ma-
trices on the Riemannian Manifold. I is the identity matrix. The Log-Euclidean distance
is equivalent to first project the SPD matrices on Riemannian Manifold onto a Euclidean
space via logarithm transform.

distance (AID) [58]. The AID between two covariance matrices Ci and Cj is defined as

DA (Ci,Cj) =

√√√√ d∑
t=1

ln2λt(Ci,Cj), (2.5)

where λt(Ci,Cj)(t = 1, ..., d) are obtained from |λCi−Cj | = 0. However, the AID is computa-

tionally very expensive. The Stein metric [62] and Log-Euclidean distance (LED) [3] show several

similarities to the AID while being less expensive to compute. The stain metric on SPD manifolds

is defined as

DS (Ci,Cj) = ln det

(
Ci +Cj

2

)
− 1

2
ln det (CiCj) (2.6)

LED is the most commonly used one, and is defined as

DL (Ci,Cj) = ‖log(Ci)− log(Cj)‖F , (2.7)

where log() is the ordinary matrix logarithm operation and ‖·‖F denotes the Frobenius norm. The

LED metric is illustrated in Figure 2.4. It can be considered as projecting a point Ci on the Rie-

mannian manifold to a Euclidean space using the logarithm map. The projected Euclidean space
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is a tangent space at the point of identity matrix I . The covariance matrix was first proposed

to structure an image set in [71] with the LED. Linear Discriminant Analysis (LDA) and Partial

Least Squares regression (PLS) are extended to the Log-Euclidean distance using kernel trick for

a more discriminative projection. The kernel learning framework [66] and the general Riemannian

coding framework [24] are also applied to the covariance-based image set classification. To re-

duce the computational cost, SPD Manifold learning (SPD-ML) proposes to conduct manifold-to-

manifold dimension reduction with orthogonal projection. Log-Euclidean metric learning (LEML)

[39] achieves the same goal via collaborating metric learning with a tangent map. There are other

algorithms [51, 36] employing multiple statistical properties. They are grouped in the mixture

model and will be discussed in Section 2.1.5.

In summary, approaches that rely on the statistical properties do not hold any assumption on

the structure of the image set. As a result, they are more robust to different data distributions and

can be applied to a broader scenario. To get a reliable estimation of statistical property, enough

samples are necessary. As a result, they are more suitable for large-scale image sets.

Probabilistic Distribution: Besides the statistical properties, image sets can also be struc-

tured using their probability density distributions. The distribution-based distances for the general

purpose, like Kullback-Leibler divergence (KLD),

DK (Pi,Pj) =
∑
Pi(x)log

Pi(x)
Pj(x)

, (2.8)

and the Bhattacharyya Distance,

DB (Pi,Pj) = −log
(√∑

Pi(x)Pj(x)
)
, (2.9)

are a nature dissimilarity measurement. These two distances can be applied for any kind of distri-

bution. Specifically for the Gaussian distribution, there is another less trivial approach. According

to the information geometry, a d dimensional Gaussian distribution N (µ,C) can be embedded
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onto a d+ 1 dimensional Riemannian Manifold via the following mapping [36],

N (µ,C) 7→ |Q|−
2

d+1

QQT µµTµ

µT 1

 . (2.10)

where Q is the Cholesky decomposition of C. As a result, the AID (Equation (2.5)) and LED

(Equation (2.7)) can be applied to the embedded Gaussian distribution directly. In the existing lit-

erature, most algorithms assume Gaussian distribution [61, 36] or a mixture of Gaussian [75]. Other

approaches take the histogram across some defined bins as the distribution. The semi-supervised

spectral clustering algorithm [29] proposes to first cluster all the images into a certain number of

clusters. For each image set, the probability of its samples distribution across different clusters is

used as the set model.

In summary, the probabilistic distribution-based approaches hold strong assumptions concern-

ing the distribution of the data, which may not always be true. For the general purpose distribution-

based distance, very limited discriminative analysis techniques are proposed. The embedding ap-

proach for the Gaussian distribution can take advantage of the well-developed Riemannian geom-

etry and is expected to provide more discriminant measurement.

2.1.3 Hull Model

Approaches in this category attempt to represent each image set using an affine hull [8] or other

type of reduced affine hull. The image set X can be represented using a hull spanned by all the

samples, using the general formula

H (X) = {αX|αn ∈R}

=

{
N∑
n=1

αnxn

∣∣∣∣ N∑
n=1

αn = 1, αn ∈R
}
.

(2.11)
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D (Xi,Xj) = min
αi,αj

||Xiαi −Xjαj ||22

s.t.
∑
n

αni = 1,
∑
n

αnj = 1, αni , α
n
j ∈R.

(2.12)

Figure 2.5: Illustration of hull-based model. X i andXj denote two hulls spanned by two
image set X i and Xj respectively. D (X i,Xj) denotes the geometric distance between
two hulls.

A hull contains the linear combinations of all samples inX , with a common restriction (
∑

n αn = 1),

and some defined restrictions (R) on the combination coefficients α = [α1, α2, ..., αNi ]
T . Under

this model, hull-to-hull distance is used as the dissimilar measurements between image sets. It is

defined as the Euclidean distance between the closest points (i.e. Figure 2.5) on the two hulls. It

can be observed that all the samples xni only appear in quadratic terms. The distance in Equation

(2.12) can be kernelized as

D (Xi,Xj) = min
αi,αj

αTi Kiiαi −αTi Kijαj

−αTj KT
ijαj +α

T
j Kjjαj

s.t.
∑
n

αni = 1,
∑
n

αnj = 1, αni , α
n
j ∈R,

(2.13)

where Kij is the kernel matrix corresponding to XT
i Xj . The corresponding point-to-set distance
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between an image setXi and a single image pj is defined as

D
(
Xi,pj

)
= min

αi

||Xiαi − pj ||22

s.t.
∑
n

αni = 1, αni ∈R.
(2.14)

As the hull-to-hull and point-to-hull distance are defined on the closest points, the specific re-

striction R is crucial. An under-restricted hull model is sensitive to outliers, which results in the

overlap of inter-class hulls. However, an over-restricted hull model is less tolerant of within-set

variations, which results in losing local information. To find the balance, different hull models are

designed with different restrictions. The affine hull model and convex hull model are first pro-

posed in [8]. In an affine hull, there is no defined restriction R = (−∞,+∞). In a convex hull,

R = [0, U ], U ≥ 1. Since the convex hull is usually over-restricted and the affine hull model is

sensitive to outliers, they also proposed intermediate models with R = [L,U ], L < 0, U ≥ 1.

The affine hull restriction is employed in [34]. However, additional sparse constraints are added

when searching for the nearest points on affine hulls:

D (Xi,Xj) = min
αi,αj

||Xiαi −Xjαj ||22

+ λ1‖αi‖1 + λ2‖αj‖1

s.t.
∑
n

αni = 1,
∑
n

αnj = 1,

(2.15)

where ‖ · ‖1 denotes the l1 norm. The l1 norm regularization makes distance computation time

consuming. Instead, the regularized affine hull model (RAH) [86] was proposed with l2 constraint.

They also provide a fast-solver for the l2 norm constraint. The RAH is proved to be both effec-

tive and efficient. As a result, it is employed in the supervised set-to-set distance metric learning

(SSDML) [89]. A Gaussian distribution-based constraint is proposed in [76]. When searching

for the closest points on two hulls, it maximizes the probability of both samples belonging to the

corresponding affine hull to restrict the impact of outliers. These algorithms will be discussed in
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Table 2.3: Papers using the hull model.

Abbr. Paper Highlights Fusion Level

ProNN [76]

Models each image set using the affine hull model
with an assumption of Gaussian distribution. It
maximizes the probability that each point belongs
to its corresponding hull.

Decision

ISCRC [90]

Provides a collaborative representation framework
for different hull models with different regulariza-
tion. Includes the correlations between all gallery
image sets.

Decision

CRNP [81]

Uses the same idea as ISCRC, but the reconstruc-
tion error is normalized by the nuclear norm of the
image set and the l2 norm of the combination coef-
ficient.

Decision

SSDML [89]
Models each image set using restricted affine hull
and extends the distance metric learning to the hull
model.

Decision

SRN-ADML [56]

Adds the self regularized constraint on affine hull
bases and the non-negativity constraint on sample
coefficients. An adaptive distance metric learning
strategy is also developed.

Decision

RNP [86]

Models each image set using a restricted affine hull
model by simplifying the sparse regularization. A
fast solver is also provided to speed up the compu-
tation.

Decision

SBDR [82]

Models each image set using a convex hull and
proposes a set-based discriminative ranking model
which optimizes the set-to-set distance and a pro-
jection feature space simultaneously.

Decision

SANS [34]
Models each image set using a restricted affine hull
model and adds sparse constraints when calculating
hull-based distance.

Decision

22



Section 2.2 to present how the discriminant analysis is conducted in the hull model. The set-based

collaborative representation [90, 81] is closely related to the hull-based approaches. When a probe

image set P is presented for classification, it tries to reconstruct it using the whole gallery,

min
αp,αg

||Pαp −Xαg||22

s.t.
∑
n

αnp = 1,
∑
n

αng = 1, αnp , α
n
g ∈R,

(2.16)

where X = [X1,X2, ...XNs ] is the concatenation of the whole gallery image sets, and αg =[
α1
g,α

2
g, ...,α

Ns
g

]
are the corresponding reconstruction coefficients for each gallery image set. It

can employ any constraints R for different hull models. The final distance between a probe sample

P and a gallery image setXi is defined as the corresponding reconstruction error,

D (P , Xi) = ||Pαp −Xiα
i
g||22, (2.17)

or some normalized reconstruction error based on (2.17).

2.1.4 Attention-based Model

Approaches in this category do not have model assumptions on an image set. Samples in the image

set are treated independently, and different attentions are assigned to each sample. The results are

integrated on the feature or decision level with different weights. Therefore, the set weighting or

attention scheme is of paramount importance. Except for strategies like max or min fusion [50],

majority voting [30], Chen et al. [9] proposed a dual regression based approach (DLRC).

In DLRC, the weights are learned to minimize a reconstruction error. Feng et al. [19] extended

DLRC into pairwise linear-regression classification (PLRC). PLRC minimizes the reconstruction

error of both related and unrelated image sets. Using the reconstruction based attention, the match-

ing complexity is very high. Recent set-to-set matching methods [85, 47] employ deep-learning
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Table 2.4: Papers using the attention-based model.

Abbr. Paper Highlights Fusion Level

MMDML [50]

Learns for each class a deep neural network to map
image samples into non-linear space. The set-to-set
distance is the smallest pair-wise sample-to-sample
Euclidean distance.

Decision

TDRM [30]

Proposes to learn a deep reconstruction model for
each class. The probe image set is tested sample by
sample to the class of the smallest reconstruction
error. The final decision is the majority vote for all
samples in the probe.

Decision

MN [83]
Proposes use two attention module to learn the the
“visual” quality and the “content” quality. Feature

SFDL [49]
Proposes a method that can optimize the feature
and dictionary simultaneously. Sample-wise test-
ing results are fused using majority voting.

Decision

DLRC [9]

The attention between different images are ob-
tained by minimum reconstruction error of the
mean difference using the reverse concatenation of
two feature matrix.

Decision

NAN [85]
Proposes to add attention module in deep net to fuse
image set features. Feature

PLRC [19]

Proposes to measure the similarity with both the
minimum reconstruction error of the related class
and the maximum reconstruction error of the unre-
lated classes.

Feature

QAN [47]
Proposes a network to measure the quality of each
image and use the quality score to fuse image set
features

Feature

DMK [63]
Proposes deep matching kernel for point-to-point
local similarity and introduces anchor-based aggre-
gation to integrate local similarity into a global one.

Decision
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architectures to learn the set weighting scheme. Specifically, an image set is embedded into a

single feature representation using the weighted average. Yang et al. [85] introduced the Neural

Aggregation Network, in which the learned features are fed to an attention mechanism which orga-

nizes the input through accessing external memory. These features are then aggregated into a fixed

length feature vector adaptively, through two attention blocks. Liu et al. [47] followed a different

approach and proposed a quality-aware network (QAN) in which the template and image quality

scores are learned jointly by minimizing a weighted triplet loss function. Xei et al. [83] proposed

a multicolumn network (MN) which consists of two attention modules. The first attention module

assesses the “visual” quality level according to the image itself, and the second module assesses the

“content” qualities relative to the other images within the set. However, the training process of the

above methods is quite complicated. First, template embedding and the attention scores are learned

simultaneously. The learning of attention scores sometimes restricts and degrades the learning of

deep feature representations. Second, set-based settings are introduced in every training batch. In

particular, there should be several samples from the same class within a training batch to learn the

attention score effectively. Third, some of the algorithms employed the pair-wised or triplet-based

loss which is tricky to sample and difficult to converge.

2.1.5 Mixture Model

Approaches in this category use a mixture of multiple models to model an image set. This category

can be further divided into two sub-categories: (i) mixture of same local models [73, 12, 10, 75];

(ii) mixture of different global models [51, 36, 65].

Mixture of Same Local Models: Approaches in this group model each image set using a

mixture of the same type of local structures (e.g., mixture of linear subspace, mixture of Gaussian).

The objective is to capture the variations in different local areas of the original image set. It mainly
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Table 2.5: Papers using the local mixture model.

Abbr. Paper Highlights Fusion Level

HERML [36]

Models each image set uses a mixture of the mean,
covariance matrix and Gaussian distribution. Em-
beds the Gaussian distribution and covariance ma-
trix into higher Hilbert space and uses multi-kernel
metric learning to fuse them.

Feature

KSL [65]

Converts existing distance metric from different
image set modeling into kernel matrix and pro-
poses a sparse kernel learning algorithm to auto-
matically learn a sparse combination. For the sub-
space model, the MMD kernel is employed.

Feature

LMKML [51]

Models each image set using multi-order statistics
and embeds them into Hilbert space using concate-
nation. Multi-kernel metric learning is proposed to
fuse the distance calculated for different statistics.

Decision

faces three challenges: (i) how to partition data into local patches; (ii) how to compare between

the local patches; and (iii) how to fuse the result from different local patches. Since all the local

patches use the same type of model, the second challenge can be solved using any single model

approach discussed in Section. 2.1.1, 2.1.2, and 2.1.3. It will not be discussed in this section. In

the manifold-to-manifold distance algorithm, the maximum linear patch (MLP) [73] approach is

proposed. It can search for the maximum local area that the linear constraint holds. The whole

image set is then partitioned to a mixture of local linear subspaces. All the pairwise patch-to-patch

distances are computed. A minimum rule is used to fuse these distances. The MLP is also used

in [75] to initialize the local area for different Gaussian components. Distances between different

components are fused using multi-kernel distance metric learning. Instead of applying MLP in

every image set, MLP is only employed to partition the reference image set [12] into different

local patches. Other image sets are aligned to the reference set patch by patch sequentially. As

a result, the number of patch pairs is reduced from N2 to N , where N is the number of patches
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per set. In [10], a sparse representation-based approach is proposed to extract the m dimensional

local subspaces. For each gallery image set, the single vector sparse representation is applied to

each sample. The vectors corresponding to the m largest reconstruction coefficients are used to

extract a local linear subspace. For a probe image set, subspaces are extracted from all possible

combinations of m samples and only the one with the smallest distance to a gallery patch is kept.

An average fusion rule is conducted across all the gallery patches within an image set.

In summary, algorithms in this group focus more on the local area partitioning. The fusion

rules are usually simple minimum or average rules. Modeling each image set using a mixture of

local models can capture the complex local structures of an image set. This model is more flexible

than using a single global model. It is more suitable for large scale image sets with a complex data

structure. However, this model is more complex and sensitive to the noise with high computational

cost.

Mixture of Different Global Models: Approaches in this group use different models to model

each image set globally. As a result, the only challenge is the fusion of different models. Multi-

kernel distance metric (LMKML) learning is proposed in [51]. In this chapter, the localized multi-

order statistical properties are used to model each image set. As the kernel functions are well-

defined for each statistical property, the LMKML jointly learns a weight and a projection, while

simultaneously integrating each component in the projected space. This LMKML is also used in

hybrid Euclidean and Riemannian metric learning [36] to integrate the mean, covariance matrix,

and Gaussian distribution. Sparse kernel learning (SKL) [12] is another approach to learn a sparse

combination of the selected models.

In summary, using the mixture of different global models can integrate more information. Since

different models have different advantages and limitations, they are mutually complementary. The

mixture model can offer a complete view of the image set, but it is relatively sensitive to noise and
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Table 2.6: Papers using the global mixture model.

Abbr. Paper Highlights Fusion Level

DARG [75]

Models each image set using GMM. Proposes mul-
tiple probabilistic kernels to embed Riemannian
manifold of Gaussian into RKHS. Multi-kernel
metric learning is employed to fuse the different
components of GMM.

Decision

SANS [10]

Models each image set using a mixture of multiple
linear subspaces. The local linear subspaces are ex-
tracted via sparse representation. The probe image
set is assigned to the class with the lowest recon-
struction error.

Feature

MMD [73]

Models each image set using a mixture of mul-
tiple linear subspaces defined on Maximal lin-
ear patches. The manifold-to-manifold distance is
computed via integrating pair-wise subspace dis-
tances. Combines the Euclidean distance and pro-
jection metric into a new dissimilarity measure-
ment.

Decision

SAVOR [12]

Models each image set using a mixture of multi-
ple linear subspaces. To structure the subspaces, it
selects a reference image set and aligns the local
patches to it. The distances between corresponded
subspaces are computed as similarity vectors.

Decision

computationally expensive.

2.2 Discriminant Analysis

In this section, the supervised measurements mentioned in Section 2.1 are summarized, and the

associated discriminant analysis techniques are discuss. Although a variety of models are employed

to provide unsupervised similarity measurements between image sets, it is not guaranteed that they
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will fit properly for all the situation. To this end, discriminant analysis techniques are extended to

these models to train a better similarity measurement for the classification task at hand.

A summary of different attributes for the approaches concerned is provided in Table 2.7. In

most of the discriminant analysis techniques, these approaches are grouped according to the space

where discriminant analysis is conducted (i.e. Euclidean space, Riemannian Manifold, and multi-

modal discriminant analysis).

2.2.1 Euclidean Space

Approaches in this category employ models which lie in Euclidean space. As described in Section

2.1, the similarity measurements for hull model and attention-based approaches are in the Euclidean

space. In the attention-based framework, any sample-based discriminant analysis technique can

be applied directly without large changes. Therefore, only the discriminant analysis techniques

employed in the hull-based model are discussed in this subsection. Specifically, distance metric

learning [89, 56] and discriminative ranking [82] are covered.

The objective of distance metric learning [57] is to learn an accurate distance metric that reflects

what is considered to be “similar” and “dissimilar” for a specific task. It has been extended to the

hull-based distance model [89, 56] by introducing a semi-positive definite Mahalanobis matrixM

into Equation (2.12),

DM (Xi,Xj) = min
αi,αj

(Xiαi −Xjαj)
T M (Xiαi −Xjαj)

s.t.
∑
n

αni = 1,
∑
n

αnj = 1, αni , α
n
j ∈R,

(2.18)
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where R could be any hull-based restriction. If decomposing M into LTL via Cholesky decom-

position, then the Mahalanobis metric becomes

DM (Xi,Xj) = min
αi,αj

||LXiαi −LXjαj ||22

s.t.
∑
n

αni = 1,
∑
n

αnj = 1, αni , α
n
j ∈R.

(2.19)

It is equivalent to first project the all samples into a more discriminative space, and then calcu-

late the hull-based distance. The Mahalanobis matrix M or L can be learned by minimizing an

objective function

min
M
J = L (G,M) +R (M) , (2.20)

where the first term L is a loss function defined to push dissimilar image sets farther apart and

pull similar image sets closer. The second term, R, is the regularization defined to avoid over-

fitting. Equation (2.20) is a joint optimization of the Mahalanobis matrix M and the combination

coefficient α. Similar to the strategy adopted in multivariable optimization problems, they can be

optimized alternatively. In different distance metric learning algorithms, different loss functions

and regularization are defined. Theoretically, this framework can be applied to any hull-based

distance model with any distance metric learning model. In set-to-set distance metric learning

[89], the regularized affine hull model [86] is used. The Mahalanobis matrix is learned such that

the distances between similar image sets are smaller than an upper boundary and the distances

between dissimilar image sets are larger than a lower boundary. In [56], the self-regularization

constrained affine hull model is used with adaptive large-margin distance metric learning.

The objective of discriminative ranking is to learn a desired ranking r̂P of all the gallery image

sets G with respect to a probe image set P , such that any relevant gallery sets should be ranked

before the irrelevant ones. A desired ranking model M is expected to distinguish the optimal

ranking r̂P from any other candidate ranking rP . This ranking has been successfully employed
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Table 2.7: Papers which employed discriminant analysis techniques in Euclidean space.

Abbr. Gen. Model Constraints Transform Learning Strategy

DMK [63] No Attention Global Non-linear Deep learning

TDRM [30] No Attention Global Non-linear Deep learning

SFDL [49] No Attention Local Linear Dictionary Learning

NAN [85] Yes Attention Global Non-linear Deep learning

QAN [47] Yes Attention Global Non-linear Deep learning

MN [83] Yes Attention Global Non-linear Deep learning

DLRC [9] No Attention Global Linear Dictionary Learning

PLRC [19] No Attention Global Linear Dictionary Learning

RevTr [29] Yes Attention Global Linear Binary Classification

SBDR [82] Yes Hull Local Non-linear Metric Learning

SSDML [89] Yes Hull Global Linear Metric Learning

MMDML [50] No Attention Local Non-linear Metric Learning

SRN-ADML [56] Yes Hull Local Linear Metric Learning
The “Model” column indicates the associated model for each image set, and possible entries are: (i) “Sub-
space”, (ii) “Statistical”, (iii) “Hull”, and (iv) “Attention”. The “Gen.” column indicates whether it can
be extended directly to unseen subjects/objects without retraining. The “Constraints” column records the
type of constraints in the objective function of the respective methods. It is either “Global” or “Local”.The
“Transform” column records whether the learned transform is “Linear” or “Non-linear”.

for sample-based recognition [55]. In addition, it is extended to set-based discriminative ranking

[82], using the hull model. Generally, the optimal ranking can be inferred by

r̂P = argmax〈M , ψ (P ,G, rP )〉, (2.21)

where M is the learned ranking model, and ψ (P ,G, rP ) is the joint feature map defined on the

probe image set P , the whole gallery G, and a candidate ranking rP . There exist different designs

for M and ψ. In the set-based discriminative ranking [82], it is transferred to the distance metric

learning problem. The basic assumption is that a smaller distance corresponds to a higher ranking.

In particular, the model M is a semi-positive definite Mahalanobis matrix, the feature mapping ψ
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is defined as,

ψ (P ,G, rP ) =
∑
i∈S+

P

∑
j∈S−P

si,j

(
φ (P ,Xi)− φ (P ,Xj)

|S+
P | · |S

−
P |

)
, (2.22)

where

sij =


1 Xi ranks beforeXj in rP

−1 Xi ranks afterXj in rP

(2.23)

and

φ
(
P ,Xi(j)

)
= −

(
P −Xi(j)

) (
P −Xi(j)

)T
. (2.24)

Here, S+
P and S−P denote the index set of relevant and irrelevant image sets, respectively. φ

(
P ,Xi(j)

)
is a feature map characterizing the relationship between the probe set P and gallery set Xi(j). As

a result,

〈M , ψ (P ,G, rP )〉 =
∑
i∈S+

P

∑
j∈S−P

si,j

(
DM (P ,Xi)−DM (P ,Xj)

|S+
P | · |S

−
P |

)
, (2.25)

where DM
(
P ,Xi(j)

)
is the Mahalanobis distance defined in Equation (2.18). The modelM can

be obtained using any distance metric learning strategy.

2.2.2 Riemannian Manifold

Approaches in this category employ models which lie in the Grassman Manifold or the SPD Man-

ifold. For both, the Riemannian geometry holds. The Riemannian geometry is well-explored with

different discriminant analysis techniques, including kernel learning [66], dictionary learning [24],

graph embedding framework [28, 71] and distance metric learning [38, 25, 39].

As discussed in Section 2.1.1 and Section 2.1.2, the similarity measurement under the Rieman-

nian geometry is conducted via mapping features into a RKHS with a corresponding kernel matrix
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Table 2.8: Papers which employed discriminant analysis techniques in Riemannian space.

Abbr. Gen. Model Constraints Transform Learning Strategy

SPDNet[35] Yes Statistical Global Non-linear Deep Learning

PML [38] Yes Subspace Global Non-linear Metric Learning

kSLCC [24] No Statistical Local Non-linear Dictionary learning

LEML [39] Yes Statistical Global Non-linear Metric learning

Kploy
log [66] No Subspace Global Non-linear Kernel Learning

GDL [26] No Subspace Global Non-linear Dictionary learning

GGDA [28] Yes Subspace Local Non-linear Graph Embedding

SPD-ML [25] Yes Statistical Local Non-linear Metric Learning

CDL [71] Yes Statistical Global Non-linear Graph Embedding

DCLR [77] Yes Statistical Global Non-linear Deep Learning
The “Model” column indicates the associated model for each image set, and possible entries are: (i) “Sub-
space”, (ii) “Statistical”, (iii) “Hull”, and (iv) “Attention”. The “Gen.” column indicates whether it can be
extended directly to unseen subjects/objects without retraining. The “Constraints” column records the type
of constraints in the objective function of the respective methods. It is either “Global” or “Local”. The
“Transform” column records whether the learned transform is “Linear” or “Non-linear”.

K. Instead of a defined kernel, the joint kernel and classifier learning framework [66] proposes

to learn simultaneously the kernel matrix K and classification model W via minimizing a loss

function

min
W,K
J = L (W,K) + λR (K) , (2.26)

where the first term could be the loss function of any classifier characterized byW . It is designed

for better classification performance. The second term is designed to preserve the Riemannian

structure. A general principle is that the distance in the mapped space should be as close as possible

to the distance in the original manifold. It can be considered as regularization in Equation (2.20).

In Riemannian coding and dictionary learning [24], a general coding framework under the

Riemannian geometry is proposed. Let φ be a mapping to an RKHS induced by the kernel
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K (Xi,Xj) = φ(Xi)
Tφ(Xj). The general coding framework is

min
α
‖φ (P )−

N∑
j=1

αjφ (Dj) ‖22 + λγ (α;φ (P ) , φ (D))

= min
α

[
K (P ,P )− 2αTK (P ,D) +αTK (D,D)α

]
+ λγ (α;K)

s.t. α ∈R,

(2.27)

where the first term is designed to minimize the reconstruction error, α = [α1, α2, ..., αN ] ∈ RN

is the vector of codes and D denotes the dictionary on manifold. The second term γ is a prior

on the codes which can be considered as the regularization in Equation (2.20), and R is a set of

constraints on α. It is a general framework that can be applied to the subspace model and the

SPD model with the corresponding kernels K. Some typical examples of the general framework

include, (i) Kernel Sparse Coding: It can be obtained from Equation (2.27) by defining

γ (α;P ,D) = ‖α‖1, R = U (2.28)

without any constraint; and (ii) Locality-Constrained Linear Coding: It can be obtained with

γ (α;P ,D) =
∑
j

(exp (σ‖P −Dj‖)αj)2 , R =

α|∑
j

αj = 1

 . (2.29)

Beside reconstructing the training samples accurately, the generated codes are also expected to

be discriminative for the classification task. To this end, the supervised training data can be effi-

ciently employed in the framework discussed above. The codes αi, dictionary D, and a classifier

W can be optimized jointly via

min
W,D,αi

Ns∑
i=1

Lφ (D,αi,Xi) + λ

Ns∑
i=1

LW (W, li,αi) , (2.30)

where Lφ denotes the loss defined in Equation (2.27), the first term is the loss across the whole

training set. LW could be the loss function of any classifier. The classification is based on the

codes αi corresponding toXi.
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Although the graph embedding discriminant analysis (GGDA) [28] and covariance discrim-

inant learning (CDL) [71] are designed for Grassman manifold and SPD manifold, respectively,

they can be unified to a kernel based graph embedding discriminant analysis framework. The

graph embedding framework seeks to map the original data X into a more discriminant space

φ(X) and preserve the similarity structure between pairs of image sets. A graph (X,W ) is used

to capture this similarity structure, whereW ∈ RNs×Ns is a symmetric matrix withW (i, j) is the

similarity between Xi and Xj . In GGDA, the local geometry structure is captured using within

class similarity graphWw and between class similarity graphXb. The simplest way is

Ww(i, j) =


1 Xi ∈ Nw(Xj) orXj ∈ Nw(Xi)

0 otherwise

W b(i, j) =


1 Xi ∈ Nb(Xj) orXj ∈ Nb(Xi)

0 otherwise

(2.31)

where Nw(Xi) is the local neighbor set that shares the same label with Xi and Nb(Xi) contains

neighbors that have different labels with Xi. In CDL, only the within class similarity graph is

included and is defined as

Ww(i, j) =


1/mk li = lj = k

0 otherwise

(2.32)

where mk is the number of samples in the kth class. The difference is that in Equation (2.31) the

local neighborhood structure is preserved. It can employ the objective function of any distance

metric learning algorithms with kernel trick. Confining the solution to be linear, it becomes

φ(Xi) = [〈α1,Xi〉 , 〈α2,Xi〉 , ..., 〈αr,Xi〉]T

αr =

Ns∑
j=1

ajrXj

(2.33)
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where r is the dimension of the projected space. Defining

A =



a11 a21 · · · aNs
1

a12 a22 · · · aNs
2

...
...

. . .
...

a1r a2r · · · aNs
r


(2.34)

and

ki = [K(Xi,X1),K(Xi,X2), ...,K(Xi,XNs)]
T , (2.35)

it becomes

φ(Xi) = Aki. (2.36)

It can employ any objective function that involves the similarity matrix to optimize the coefficients

A. In GGDA, A is optimized via maximizing the distance between target similar image sets and

minimizing the distance between dissimilar image sets. In CDL, the objective functions of LDA

and PLS are employed. Because both algorithms are kernel based, any kernel described in Section

2.1.1 and Section 2.1.2 can be employed theoretically.

All the algorithms discussed above first project the data onto a reduced Hilbert space, then con-

duct discriminant analysis. In contrast, the projection metric learning (PML) [38], log-Euclidean

metric learning (LEML) [39], and semi-positive definite metric learning (SPD-ML) [25] seek to

learn a generic mapping directly from manifold to a lower order and more discriminative manifold.

The mapping φ(L, Xi) is parameterized by a full rank matrix L ∈ Rd×r. The distance in the pro-

jected space becomes D (φ(L, Xi), φ(L, Xj)), where the distance function D could be calculated

using any kernel under the Riemannian geometry. To learn a discriminative mapping, the general

objective is to push the similar image sets closer and pull the dissimilar image sets farther apart.

The objective functions can be designed for the problem at hand.
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In PML, it is proposed to map the linear subspace Y i ∈ G (m, d) (Y i is the subspace rep-

resentation of Xi) onto a lower order Grassman manifold LTY i ∈ G (m, r). To ensure that the

projected subspace is on the Grassman manifold, the orthogonal component of LTY i defined by

LTY ′i is used. The distance between two subspaces (Y i,Y j) in the projected space is defined as:

D2 (φ(L,Xi), φ(L,Xj)) = 21/2‖LTY ′iY
′T
i L−LTY ′jY

′T
j L‖2F

= tr
(
QAijA

T
ijQ
)
,

(2.37)

where Q = LLT and Aij = Y ′iY
′T
i − Y ′jY

′T
j . The objective function is designed to maximize

the average between class distance, and meanwhile minimize the average within class distance.

The projection matrixQ and the orthogonal bases Y ′ are updated alternatively.

Similarly, SPD-ML proposes to learn a mapping from the original SPD manifold to a lower

order SPD manifold. In particular, the mapping is defined as

φ(L,Xi) = L
TXiL . (2.38)

SPD-ML uses the AID (Equation (2.5)) and Stein metric (Equation (2.6)) in the projected space.

To learn a discriminative projection, SPD-ML employs the graph embedded framework to maxi-

mize the distances between target imposters (image sets under different labels) and minimize the

distances between target neighbors (image sets sharing the same labels).

LEML also seeks to learn a mapping from the original SPD manifold to a lower order SPD

manifold, but it is based on the log-Euclidean distance. The mapping is defined as:

φ(L,Xi) = L
T log(Xi)L , (2.39)

where log() is the ordinary matrix logarithm operation. The log-Euclidean distance in the projected

space then becomes

DL (φ(L,Xi), φ(L,Xj)) = ‖LT log(Xi)L−LT log(Xj)L‖2F

= tr (Q (log(Xi)− log(Xj)) (log(Xi)− log(Xj)))

(2.40)
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where Q = LLTLLT is a rank-r PSD matrix of size d × d. The distance described in Equation

(2.40) is in the form of a Mahalanobis-like distance. LEML then employ the objective function of

information-theoretic metric learning [13] to learn the SPD matrix Q.

In summary, the discriminant analysis under the Riemannian geometry utilizes either the manifold-

to-manifold embedding or the manifold-to-Hilbert embedding.

2.2.3 Multi-Modal Discriminant Analysis

Approaches in this category conduct discriminant analysis across multiple modalities Xt
i , where

the superscript t indexes different modalities. The multi-modal here indicates same models in

different local areas or different global models, which correspond to the two types of mixture

models discussed in Section 2.1.5. In general, it seeks to learn a discriminative mapping φ (∗) and

sometimes a weight wt to fuse the measurements together.

In particular, DARG [75] employs the mixture Gaussian model and represents each image

set Xi as
{
gti , w

t
i

}Ni

t=1
, where gti denotes the t-th Gaussian component, wti is the weight, and Ni

is the number of Gaussian components for Xi. The weights are estimated when extracting the

GMM model. DARG extends kernel discriminant analysis into a weighted version which can be

formulated using the kernel trick Equation (2.33) and Equation (2.34) by

max
A

|ATBA|
|ATWA|

, (2.41)

where the between class inertiaB and within class inertiaW are defined as

B =

Nc∑
i=1

Ni (µi − µ) (µi − µ)
T ,

W =

Nc∑
i=1

1

wi

Ni∑
t=1

(
kti − µi

) (
kti − µi

)T
,

(2.42)
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and

µi =
1

Niwi

Ni∑
t=1

wtik
t
i , µ =

1

N

Nc∑
i=1

1

wi

Ni∑
t=1

wtik
t
i

wi =

Ni∑
t=1

wti , kti = [K(gti , g1),K(gti , g2), ...,K(gti , gNs)]
T .

(2.43)

LMKML [51] represents each image set using a multi-order statistical model
{
xti
}N
t=1

, where

xti denotes the feature vector from the t-th order statistics, and N is the number of statistics in-

cluded. It extends distance metric learning to kernel discriminant analysis, where the weighted

distance in the projected space is defined as

D(φ(xi), φ(xj))

=

N∑
t=1

wt
(
φ(xti)

) (
φ(xti)− φ(xtj)

)T
M
(
φ(xti)

) (
φ(xti)− φ(xtj)

)
wt
(
φ(xtj)

)
,

(2.44)

where the Mahalanobis matrix M can be decomposed into WW T , and the weighting function

wt
(
φ(xti)

)
is designed as:

wt
(
φ(xti)

)
=

exp(hTt x
t
i + bt)∑N

t=1 exp(h
T
t x

t
i + bt)

. (2.45)

The weighting function ht, bt and Mahalanobis matrixM are optimized via

max
ht,bt,M

∑
(i,j)∈Si

D(φ(xti), φ(xtj))
|Si|

−
∑

(i,j)∈Vi

D(φ(xti), φ(xtj))
|V i|

, (2.46)

where the first term is the average distance between similar image sets, and the second term is

the average distance between dissimilar image sets. Si and V i are the index sets for similar and

dissimilar image sets, respectively, using the same kernel trick as in Eq (2.33).

Similar to LMKML, HERML [36] represents each image set using a hybrid statistical model{
Xt

i

}N
t=1

, where Xt
i denotes the representation from the t-th statistic, and N is the number of

modalities used. Unlike LMKML, which represents each statistic in a Euclidean space, HERML
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represents image sets in a hybrid Euclidean and Riemannian space with corresponding kernels.

The first order statistic lies in the Euclidean space. The second order statistic lies on an SPD

manifold. The Gaussian components are embeded to a higher order SPD manifold. Instead of

using the objective functions in Equation (2.46), it generates the ITML into multi-kernel metric

learning using the same kernel trick as Equation (2.33).

Table 2.9: Papers which employed discriminant analysis techniques across multiple
modalities.

Abbr. Gen. Model Constraints Transform Learning Strategy

DARG [75] Yes Mixture Local Non-linear Kernel Learning

HERML [36] Yes Mixture Global Non-linear Metric Learning

KSL [65] Yes Mixture Global Non-linear Kernel Learning

LMKML [51] Yes Mixture Global Non-linear Metric Learning
The “Model” column indicates the associated model for each image set. The “Gen.” column indicates
whether it can be extended directly to unseen subjects/objects without retraining. The “Constraints” column
records the type of constraints in the objective function of the respective methods. It is either “Global” or
“Local”. The “Transform” column records whether the learned transform is “Linear” or “Non-linear”.

In summary, the multi-modal discriminant analysis mainly relies on the distance metric learn-

ing framework with kernels from different modalities.

2.3 Performance Prediction

In the field of performance prediction, researchers analyze the performance of a specific face recog-

nition system under different circumstances. The performance prediction can be applied in: (i)

multi-model fusion, (ii) quality control in enrollment, and (iii) sample ranking and selection. A

performance prediction system contains mainly three parts: (i) the input, (ii) the output (i.e. dif-

ferent performance measurements), and (iii) the models that capture the mapping from input to
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output. Regarding the input, existing literature extracts input features from (i) image quality fea-

tures, or (ii) similarity score distributions. In the first group, external image quality assessors (IQA)

are used to estimate image quality scores. Aggarwal et al. [2] propose to use image-specific (e.g.,

sharpness and saturation) and face-specific (e.g., poses and expressions) features. Beveridge et al.

[6, 5, 4] useed a large number of subject-related covariates (e.g., ages, races, and genders) and

image-related covariates (e.g., focus and resolution) as input features. Dutta et al. [17] focused

only on poses, noise and blurry and propose a generative model to model the recognition perfor-

mance distribution in a small image quality space. Deshpande et al. [15] extracted focus measure,

brightness, obscured face and studied their influence on the accuracy of face recognition. Then a

deep neural network was trained to build a binary classifier to reject low-quality images for recog-

nition. There were mainly two limitations for the image quality based inputs. First, there are a

lot of quality-related factors can be employed as input features and they are not independent with

each other. Second, to get access to the quality features, external IQAs were employed which also

introduced errors. Algorithms in the second group assumed that the overlapping regions between

genuine and imposter score distributions reflect the recognition performance. Wang et al. [70] used

the similarity score distributions to model the intrinsic and extrinsic factors of the performance of a

face recognition system, while Klare et al. [42] proposed features derived from imposter similarity

score distribution. One of the major limitations of estimating the recognition performance from

similarity distribution is that it requires access to a large amount of data in new circumstances and

cannot reflect the performance variations of each single image.

2.4 Binary Face Embedding

The task of binary face embedding is to represent single or multiple face images using a binary

template. Existing binary encoding algorithms can be grouped into two categories, according to the
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Figure 2.6: Comparison of the sequential code and tree-structure code. Without loss of
generality, features in a two-dimensional real value feature space R2 (the grey parallel-
ogram) are embedded into a four-bit binary code [b1, b2, b3, b4], via multiple projections.
The solid lines on the rhombus denote for the projections, which divide the original feature
space into different regions. Points lie in the same region will share the same binary code.
(L): In the sequence code, each bit of the output is learned from an independent projection.
Using four projections, the real value feature space can be divided into at most 11 classes.
(R): In the tree-structured code, each bit is learned recursively. There are 15 projections,
and the real feature space is divided into 16 classes.

code structure: (i) the sequential code [16, 18], and (ii) the tree-structured code [67], as illustrated in

Figure 2.6. The sequential code is learned via a sequence of projections bit by bit. The projections

for one bit are independent of others. The tree-structured code is learned recursively through a

binary tree, and each node on the tree is a projection. The projection of current bit depends on the

output of the projection on its parent node. The tree-structured code achieves increased recognition

power by dividing the original feature space into more classes. However, the number of projections

to learn is increasing exponentially with the code length.
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To learn a binary template, a straightforward approach is to learn a real-valued feature represen-

tation first. Then, the binary hashing is applied via different learning and quantization techniques.

A review of the classic binary hashing techniques has been offered by Grauman et al. [20]. With

the recent development and achievement of deep learning techniques, the hashing layer is intro-

duced to learn the binary code in an end-to-end manner. Fan et al. [18] proposed adding rounding

errors as regularization to jointly minimize the recognition loss and the rounding loss. Using the

fully connected layers, the projection for each bit of the output code is independent of each other.

Similar to other sequential codes, the recognition power is restricted. Instead of using a one-step

optimization, Yury et al. [67] proposed a two-step approach via CNN and boosted hashing forest.

The CNN learns discriminative real-valued feature vectors, while the boosted hashing forest learns

binary code bit by bit recursively using multiple tree-structured projections. The identification and

verification-based loss functions are designed to enhance the recognition performance. However,

the number of projections to learn is increasing exponentially with the code length, and the random

forest-based structure makes it difficult to optimize jointly with the CNN.

Most of the face hashing algorithms designed for image set follow an integrate-and-hash ap-

proach [16, 45, 59]. The image set is integrated into a single real-valued template on the feature

level, and then the binary hashing is applied on the integrated template. Finally, the Hamming

distance is used for the dissimilarity measurement. In addition to the limitations mentioned for

the sequential code, template aggregation in early stages also results in the loss of discriminative

information. Moreover, the binary templates for face image sets are evaluated only in easy datasets

with easy protocols. In the existing literature, the evaluation is conducted in datasets [16, 45, 59]

with a limited number of subjects, and subjects overlapping between the training and testing phases

(e.g., The Big Bang Theory [45], and Prison Break [16]).
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Chapter 3

Objective 1: Compact Templates and Ro-

bust Similarity Measurements

In this chapter, the objective is to develop an algorithm that generates compact templates and ro-

bust similarity measurements for set-to-set matching. In this work, the hull model is employed,

because it better represents the within set variations. As described in Chapter 2, Section 2.1.3,

previous approaches employ all the images in a set to span a hull. As a result, it contains redun-

dant information and is sensitive to outliers. To address these limitations, the set-based prototype

and metric learning framework (SPML) is proposed to (i) represent each image set with fewer but

more discriminative templates, and (ii) learn a more accurate distance measurement for set-to-set

matching. The objective of the prototype learning component of the framework is to represent the

gallery-image set by using fewer templates while maintaining or improving the recognition perfor-

mance. Each gallery-image set is then modeled as a hull spanned by the prototypes learned. To

accurately reflect the notion of similarity when matching a probe with the learned prototypes, a

Mahalanobis distance metric is jointly learned. To this end, the optimization problem is formulated
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using a single loss function that jointly learns the prototypes and metric learning. Specifically, it

brings similar image sets closer to each other, while pushing dissimilar ones far away, as illustrated

by Figure 3.1. The primary contribution is a method with the following advantages: (i) it uses

fewer prototypes to represent each gallery image set, reducing the computational cost and storage

requirement; (ii) it increases the robustness of the hull model; and (iii) it can be used in conjunction

with any hull model and any distance metric learning objective function.

Figure 3.1: Illustration of set-based prototype and metric learning. (L): The H(X1),
H(X2), and H(X3) denote three gallery sets from three different classes, while H(P )
denotes a probe set. The H(X1) and H(P ) belong to the same class. (R): The H(Z1),
H(Z2), and H(Z3) denote the prototypes learned for the corresponding gallery sets. As
illustrated, there are fewer samples in prototype presentation. After the process of SPML,
distances between similar sets are “smaller”, while the distances between dissimilar sets
are “larger”.

3.1 Method

The proposed SPML is developed based on the regularized affine hall (RAH) [86] model. In

particular, an image set, Xi, can be represented as a regularized affine hull (RAH), spanned by all
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its samples:

H(X) =

{
Xα

∣∣∣∣∣
N∑
n=1

αn = 1, ‖α‖lp < σ

}
, (3.1)

with a regularization on the lp norm of the the combination coefficient ‖α‖lp < σ, where α =

[α1, α2, ..., αN ]
T . The distance between two image setsXi andXj is then defined as the geodesic

distance betweenH(Xi) andH(Xj),

D2(Xi,Xj) = min
αi,αj

[
(Xiαi −Xjαj)

T (Xiαi −Xjαj)
]

s.t. ‖αi‖lp < σ1, ‖αj‖lp < σ2,

Ni∑
n=1

αin = 1,

Nj∑
n=1

αjn = 1.

(3.2)

By relaxing
∑Ni

n=1 α
i
n = 1 and

∑Nj

n=1 α
j
n = 1 to

∑Ni
n=1 α

i
n ≈ 1 and

∑Nj

n=1 α
j
n ≈ 1 and using the

Lagrangian formulation, Equation (6.1.2) with lp = 2 can be integrated as

D2(Xi,Xj)

= min
αi,αj

(
‖u− X̂iαi − X̂jαj‖22 + λ1‖αi‖22 + ‖αj‖22

)
,

(3.3)

where u = [0;1;1], X̂i =
[
Xi;1

T ;0T
]
, X̂j =

[
−Xj ;0

T ;1T
]
, and the column vectors 0 and 1

have the appropriate sizes associated with their corresponding context.

In the proposed prototype representation, each gallery image set,Xi, is then represented as an

regularized affine hall [86] spanned by the prototypes:

H(Zi) =

{
Ziβ

∣∣∣∣∣
K∑
k=1

βk = 1, ‖β‖lp < σ

}
, (3.4)

where Zi =
[
zi1, z

i
2, ...,z

i
K

]
∈ Rd×K denotes for the prototype set containing K prototypes

(K < Ni). To distinguish between the representation coefficients of the original RAH H(Xi),

βi = [βi1, β
i
2, ..., β

i
K ]

T is used to denote the representation coefficients of the prototype RAH

H(Zi).
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Given a gallery G = {(Xi, li )|li ∈ [1, NC ]}, where li is the class label ofXi, the prototypes,

Z, and the Mahalanobis distance metric, M , are optimized by minimizing a loss function across

the whole gallery,

(Z,M) = argmin
Z,M
L (G,Z,M)

= argmin
Z,M

∑
G
Li(Xi,Z,M),

(3.5)

where Z denotes the prototype gallery contains all the corresponding prototype image set Zi, and

M is a semi-positive-definite matrix. The proposed loss function L is a variant of the Large Margin

Nearest Neighbors (LMNN) approach [78], and the loss on each gallery setXi is defined as:

Li(Xi,Z,M) =(1− µ)
∑
Si

D2
M (Xi,Zj)

+µ
∑
Vi

[2D2
M (Xi,Zj)−D2

M (Xi,Zr)]+.

(3.6)

The objective of the first term is to pull target neighbors (i.e. Zj) “closer”, where target neighbors

denote the k-nearest prototype sets to Xi and labeled as li. All the indices of the target neighbors

are contained in Si. The objective of the second term is to push impostors of Xi (i.e. Zr) “far

away”, where V i = {(j, r)|j ∈ Si and lr 6= li}, [x]+ = max(x, 0). The trade-off between the pull

and push terms is determined by µ ∈ [0, 1]. The LMNN function was selected due to its robustness.

Other loss functions could have been selected instead. The distance used in Equation (3.6) is the

Mahalanobis distance between restricted affine hulls, specifically,

D2
M (Xi,Zj) = (Xiα̂i −Zjβ̂j)

TM(Xiα̂i −Zjβ̂j)

(α̂i, β̂j) = arg min
αi,βj

[
(Xiαi −Zjβj)

TM(Xiαi −Zjβj)
]

s.t. ‖αi‖lp < σ1, ‖βj‖lp < σ2,

Ni∑
n=1

αin = 1,

K∑
k=1

βjk = 1.

(3.7)
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However, Mahalanobis distance under other hull models [8, 33] can also be employed instead.

The prototype gallery Z and the Mahalanobis matrix M are optimized via solving Equation

(3.7) in an EM-like manner. Specifically, gradient descent is employed to update Z and M in an

alternating manner.

M Step: In this step, M is updated using gradient descent with the prototype Z fixed. At the

(t+ 1)th iteration, theM is then updated via

M t+1 =M t − ηM
∂Lt

∂M t , (3.8)

where ηM is the learning rate. The partial derivative of L with respect toM is given by:

∂L
∂M

=
∑
G

∂Li
∂M

=
∑
G

(1− µ)∑
Si

Cij + µ
∑
Vi+

(2Cij −Cir)

 , (3.9)

where,

Cij =(Xiα̂i −Zjβ̂j)(Xiα̂i −Zjβ̂j)
T

V i+ =
{
(j, r) | 2D2

M (Xi,Zj)−D2
M (Xi,Zr) > 0

}
.

(3.10)

The representation coefficients (α̂i, β̂j) are calculated from Equation (3.7), and V i+ is a subset of

V i, containing the index pairs (j, r) for which the hinge loss in Li is larger than zero. To ensure

thatM is positive semi-definite, the updatedM is projected onto its nearest positive semi-definite

matrices as described in [32].

Z Step: In (t+ 1)th iteration, each prototype set Zt+1
k ∈ Zt+1 is optimized independently by:

Zt+1
k = Zt

k − ηZ
∂Lt

∂Zk
, (3.11)

where ηZ is the learning rate for Z. The partial derivative of the loss function L with respect to Zk
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is the summation of partial derivative of loss on each gallery set:

∂L
∂Zk

=
∑
G

∂Li
∂Zk

. (3.12)

Since Zk is considered to be a target neighbor for some of the gallery sets Xi, but an impostor

for a different Xi, the corresponding partial derivatives vary. Specifically, when Zk is treated as a

target neighbor (i.e. k ∈ Si and (k, l) ∈ V i+ ), its partial derivative is given by:

∂Li
∂Zk

=− 2(1− µ)
∑
k∈Si

M(Xiα̂i −Zkβ̂k)β̂
T

k

− 4µ
∑

(k,l)∈Vi+

M(Xiα̂i −Zkβ̂k)β̂
T

k .

(3.13)

WhenZk is treated as an impostor that violates the predefined margin (i.e. (j, k) ∈ V i+), its partial

derivative is given by:

∂L
∂Zk

= 2µ
∑

(j,k)∈Vi+

M(Xiα̂i −Zkβ̂k)β̂
T

k . (3.14)

In all other cases,

∂Li
∂Zk

= 0. (3.15)

Update Neighborhood: Once Z orM has been updated, the corresponding distance and neigh-

borhood relationship should be refined. The Mahalanobis metric M can be decomposed via

Cholesky decomposition M = LTL. The distance between Xi and Zj in Equation (3.7) can

be written as:

D2
M (Xi,Zj) =

[
L(Xiα̂i −Zjβ̂j)

]T
L(Xiα̂i −Zjβ̂j)

(α̂i, β̂j) = arg min
αi,βj

‖L(Xiαi −Zjβj)‖22

s.t. ‖αi‖lp < σ1, ‖βj‖lp < σ2.

(3.16)
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It is equivalent to first project Xi and Zj into a new space defined by L, and then calculates the

geodesic distance between the two hulls in the projected space. Using the same trick in Equation

(3.3), Equation (3.16) can be formulated as

D2
M (Xi,Zj)

= min
αi,βj

(
‖u′ − X̂ ′iαi − Ẑ

′
jβj‖22 + λ1‖αi‖22 + λ2‖βj‖22

)
,

(3.17)

where u = [ 0 ; 1 ; 1 ] , X̂
′
i =

[
LXi ; 1

T ; 0T
]
, and

Ẑ
′
j =

[
−LZj ;0

T ;1T
]
. The column vectors 0 and 1 have the appropriate sizes associated with

their corresponding contexts. Equation (3.17) has a closed-form solution. It can also be solved

using the fast solver in [86] to update D2
M (Xi,Zj). Once D2

M (Xi,Z) has been updated, the

neighborhood relationships (Si,V i) can be refined accordingly.

3.2 Implementation Details

Training: The training process is conducted to optimize prototype Z and the Mahalanobis matrix

M . An overview of the training procedure is offered by Algorithm 4.1.

Line 1 (Initialization): The matrix M is initialized using an identity matrix of the corresponding

dimensions. The prototypes can be initialized in many ways, such as clustering or random sampling

in the original image set. The values of the initial learning rates ηM and ηZ are set empirically.

Line 3 (Convergence criteria): In the implementation, the stopping condition is defined as the union

of three criteria: (i) the relative change of L is smaller than a threshold ωL using a window of five

iterations; (ii) both learning rates are smaller than a threshold ωη; or (iii) there are no impostors.

Lines 4-6, 8, 10-12, 14 (Adaptive Learning rate): If the update overshoots (i.e. Lt+1 > Lt), the

learning rate was reduced by a factor of σr to increase the stability of the algorithm. If M and Z
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Algorithm 3.1: Set-based Prototypes and Metric Learning
input : G
output: Z,M

1 InitializeM 0, Z0, ηM , ηZ;
2 (Z,M) =SPML G;
3 while convergence criterion is not met do
4 while Lt+1 > Lt do
5 ηZ = (1− σr)ηZ ;
6 end
7 Update Z (Equation (3.12));
8 ηZ = (1 + σg)ηZ;
9 Update D2

M (X i,Z), Si, and V i (Equation (3.17));
10 while Lt+1 > Lt do
11 ηM = (1− σr)ηM ;
12 end
13 UpdateM (Equation (3.8));
14 ηM = (1 + σg)ηM ;
15 Update D2

M (X i,Z), Si, and V i (Equation (3.17));
16 end

are updated successfully, the corresponding learning rates were increased by a factor σg to speed

up the convergence. The values of σr and σg were set empirically.

Testing: In the testing, a probe image set P was compared with all the prototype sets in the

gallery, and their distances D2
M (P ,Zi), i ∈ [1, N ] were calculated. The probe was classified to

yi = argmin
i
D2
M (P ,Zi), (3.18)

the same subject with its closest prototype gallery set.

Discussion: The testing time complexity of the proposed SPML with its most related hull

based algorithms: SSDML and RNP were compared. The elementary operation of the testing pro-

cess (Equation (3.18)) was calculating the distance between a gallery set and a probe set.

RNP: There were two ways to compute the distance between two sets (Equation (3.3)): (i) a
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closed-form solution, and (ii) a fast solver. For the closed-form solution, the time complexity is

O
(
(Ni +Nq)

3
)
, whereNi andNq denote the number of images in the current gallery set and probe

image set, respectively. For the alternate fast solver, the time complexity is O (dT (Ni +Nq)),

where T is the number of iterations and d is the feature dimensionality.

SSDML: An extra step of mapping features to the learned space was added to RNP. Its time com-

plexity was O
(
d3(Ni +Nq)

)
. The overall time complexity was O

(
(Ni +Nq)

3
)

for the closed-

form solution and O
(
(d3 + dT )(Ni +Nq)

)
for the fast solver.

SPML: The distance between two sets was computed in the same manner with SSDML, by replac-

ing the gallery set with the prototype set. The overall time complexity was reduce toO
(
(K +Nq)

3
)

and O
(
(d3 + dT )(K +Nq)

)
for the closed-form solution and the fast solver, respectively, where

the number of prototypes per set K is smaller than Ni. Based on the analysis above, the test-

ing time was increasing linearly or in a cubic manner with the number of images per gallery set.

Representing the gallery image set using fewer samples will reduce the testing time significantly.

3.3 Experiments

In this section, the proposed SPML was evaluated and compared with state-of-the-art algorithms.

In this section, experiments were designed to evaluate the proposed SPML framework. The state-

of-the-art algorithms from each category were selected as baselines, namely CDL [71], GDL [26],

RNP [86], SSDML[89], ISCRC [90].
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Table 3.1: A summary of the datasets used in the experiments.

Dataset Subjects Image Sets per Subjects in Gallery Probes Images per Sets

ETH-80 8 5 40 41

YTC 47 5 1, 621 13− 349

YTF 59 4 67 48− 2,157
Numbers listed in the table are computed based on the protocol and processing. There are some differences
from the statistics of the original release that are explained in Section 3.3.1.

3.3.1 Datasets

The ETH-80 [44], YouTube Celebrity (YTC) [40] and YouTube Face (YTF) [80] datasets were

selected to assess the performance of the proposed SPML in object categorization and video-based

face identification. The basic information about the employed datasets is summarized in Table 3.1.

ETH-80: This dataset comprises objects from eight categories, where each category contains 10

objects. For each object, 41 images from different views are captured to form an image set. Fol-

lowing [71], the original images are resized to 20×20 and the concatenated pixel values were used

as features. In all the experiments, five objects were randomly sampled from each category to form

the gallery, while the rest were used as probes. The random splitting of gallery and probe were

repeated ten times, and the average performance was reported.

YTC: This dataset contains low resolution video sequences of 47 subjects from YouTube. For each

subject, the number of videos varies from 15 to 106. Following [89], the face area was detected

frame by frame, resized to 30 × 30, and the concatenated pixel values were used as features. For

each video, the number of valid image frames (i.e. a face is detected) varies from 13 to 349. In all

experiments, four videos were randomly sampled from each subject to form the gallery, while the

rest were used as probes. The random splitting of gallery and probe were repeated ten times, and

the average performance was reported.
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YTF: This dataset contains 3,425 videos captured from 1,595 different subjects. The objective was

to simulate a face identification task. However, for most subjects only a single video was avail-

able. As a result, these videos could not be used to evaluate the identification performance. To this

end, a subset of 59 subjects was selected for which five or more videos were available. For each

video, the number of valid image frames (i.e. a face is detected) varied from 48 to 2,157. This

dataset comes with three feature descriptors: Local Binary Patterns (LBP), Center-Symmetric LBP

(CSLBP), and Four-Patch LBP (FPLBP). In all the experiments, four videos are randomly sampled

from each subject to form the gallery, while the rest are used as probes. The random splitting of

gallery and probe are repeated for ten times and report the average performance.

Feature Processing: Principal Component Analysis (PCA) is applied to all the features for two

reasons: (i) to reduce the noise in the features; and (ii) to avoid the over-fitting introduced by high

dimensional features. Except for RNP, all the algorithms evaluated used either a distance metric

learning (i.e. CDL, SSDML, and SPML ) or dictionary learning (i.e. GDL, and ISCRC). Moutafis

et al. [57] illustrated experimentally that distance metric learning algorithms suffer from overfitting

when high-dimensional features were used, because the parameters that needed to learn increased

quadratically with the feature dimensionality. Similar reasons also apply to dictionary learning

algorithms. In particular, the length of the feature vectors is arbitrarily set to 100 as default in the

experiments. A sensitivity analysis on the feature length is presented in Experiment 2. To reduce

large intra-class variations, these PCA reduced features were projected onto an intra-class subspace

following the procedure described in [7].

3.3.2 Baselines

In this section, the algorithms compared in the experiments and their corresponding parameter

settings are discussed. To conduct a fair comparison, all parameters are tuned according to the
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Table 3.2: A summary of the algorithms compared in the experiments.

Algorithm Literature Source Category

CDL [71] Wang et al. CVPR’ 12 Statistical

GDL [26] Harandi et al. ICCV’ 13 Subspace

RNP [86] Yang et al. FG’ 13 Hull

SSDML [89] Zhu et al. ICCV’ 13 Hull

ISCRC [90] Zhu et al. TIFS’ 14 Hull

instructions in the original papers. In particular, the gallery set was split into gallery and validation

via random sampling one image set per subject/object. All the tuning was conducted to achieve the

highest identification rate in the validation set. All the parameters were initialized using the default

values. All the changes are described in the following paragraphs. A summary of the selected

algorithms is provided in Table 3.2. In particular, recently published algorithms from the three

categories discussed in Chapter 2 were selected.

Statistical model: Covariance Discriminative Learning (CDL) [71] was selected due to its stable

performance reported in the literature. In particular, it represents each image set using its covari-

ance matrix, and the set-to-set distance is calculated on the Riemannian manifold. Two versions of

implementations based on Linear Discriminant Analysis (LDA) and Partial Least Squares (PLS)

were provided by Wang et al. [74], referred to as CDL-lda and CDL-pls. The parameters for this

method were kept the same as default settings in the code after cross-validation.

Subspace model: Grassmann dictionary learning (GDL) [26] is one of the most recent algorithms

that uses the linear subspace model. In particular, it extends the dictionary learning and sparse

coding into the subspace model. The implementation is provided by Harandi et al. online [23]. In

the experiments, the orthogonal representation of linear subspace is computed using Singular Value

Decomposition. In each experiment, the order of the subspace was kept the same as the number of
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prototypes used. The number of atoms in the dictionary was set to 20, 150, and 232 for ETH-80,

YTC, and YTF, respectively. Numbers were selected based on cross-validation. The rest of the

parameters were kept the same as the default settings after cross-validation.

Hull model: Except for RNP and SSDML (introduced in Chapter 2), the image set based collabo-

rative representation and classification (ISCRC) [90] method was also included. As RNP was used

to model the distance for SSDML, ISCRC, and the proposed SPML, its performance was used as a

baseline in the experiments. The implementations of all above algorithms was provided by Zhu et

al. online [88]. For RNP the regularization parameters λ1 and λ2 are set to 10 based on the result

of cross-validation. A nearest neighbor classifier is used for testing. For SSDML, the numbers of

similar and dissimilar sets were set to be three and 30, accordingly.

SPML: For the proposed algorithm, the default settings were provided here. Each prototype set

was initialized using k-means clustering, while the number of prototypes used was set to 10. As an

LMNN-like objective function was employed, the related parameters were set to follow the origi-

nal implementation of LMNN. The trade-off parameter µ (Equation (3.6)) was set to 0.5 to equally

weight the “pull” and “push” terms. The convergence threshold ωL was set to 0.01. The learning

rates ηM and ηZ were initialized to 0.01. The learning rate threshold ωη was set to 10−7. The num-

ber of neighbors was set to three. The growth and reduction rates σg and σr (see Algorithm 4.1)

were set to 0.05 and 0.5, respectively. Following the settings of RNP, the regularization parameters

λ1 and λ2 (Equation (3.17)) were set to 10.

3.3.3 Experiments and Results

Experiment 1: The objective of this experiment was to compare the classification performance of

SPML with state-of-the-art approaches. The number of prototypes used for gallery sets was set to

10. To reduce the computational cost on YTF the samples per set in the probe were reduced to 100
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Table 3.3: A summary of the results for Experiment 1.

Method
ETH-80 YTC

YTF

LBP FPLBP CSLBP

mean std. mean std. mean std. mean std. mean std.

CDL-lda 82.50 6.22 60.07 4.69 36.27 4.28 31.34 2.49 35.37 4.63

CDL-pls 80.75 8.07 60.14 2.96 37.31 5.04 30.90 3.89 35.22 5.43

GDL 82.50 5.47 64.82 3.09 51.34 5.13 46.57 5.20 50.03 4.81

RNP 78.75 5.51 64.11 2.11 52.24 3.20 53.13 7.10 45.52 4.63

SSDML 83.25 5.71 61.63 2.51 56.42 5.16 52.39 3.43 51.79 4.11

ISCRC 67.50 4.74 47.84 2.71 52.24 4.69 48.21 3.60 39.40 3.80

SPML 85.75 6.43 61.67 3.00 62.39 6.11 50.90 4.40 52.54 2.56

p value 0.1065 0.00260.00260.0026 0.00240.00240.0024 0.3171 0.0024

The values denote the mean (%) and standard deviation (%) of rank-1 identification rate when only 10
prototypes are used. The last row shows the results of the 10-fold cv paired t-test between SPML and the
baseline with the highest performance.

using k-means clustering. For ETH-80 and YTC, the original probe sets were used. An overview

of the results is offered in Table 3.3. As illustrated, SPML appears to outperform all methods for

ETH-80, and two out of three features for YTF. The statistic-based CDL needs enough samples

to estimate the covariance matrix. The subspace-based GDL can embed the information into a

low order subspace. In the order of 10, it seems to perform worse than the proposed SPML. The

RNP learned an unsupervised distance and thus did not fully utilize the labels of the training data.

SSDML learned a distance metric, but the reduction in the number of samples per set appeared to

degrade its performance. ISCRC used dictionary learning to compress the image set. However, the

fitting does not appear to work well. Finally, SPML utilizes the training data more effectively to

compress the input information into fewer prototypes. The inherent ability to perform a reduction

in the number of samples per gallery set gives the edge to SPML over other methods. To verify
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whether the performance differences are statistically significant between SPML and other meth-

ods, a 10-fold cv paired t-test was conducted. In particular, the performance between SPML and

the baseline with the highest performance was compared. Corresponding p values were reported

in Table 3.3. At a significant level of 0.05, SPML achieves significantly better performance for

LBP features in YTF. The performance is comparable with the best baseline in ETH-80, LBP and

CSLBP in YTF. SPML get worse performance in YTC dataset, and fails to improve the baseline

provided by RNP. Further analysis is provided in Experiment 2 and Experiment 6.

Figure 3.2: Average rank-1 identification accuracy obtained using different length of fea-
tures (Experiment 2): (a) results obtained in the ETH-80 dataset; (b) results obtained in
the YTC dataset. Results for the hull-based algorithms are presented using solid lines.
Results for statistics-based algorithms are presented in short dashed lines. Results for the
subspace-based algorithms are presented in long dashed lines. The feature length covers
from 100 to the original length without reduction with a step of 100.

Experiment 2: The objective of this experiment was to assess the impact of the feature length on

the identification performance. An overview of the results was depicted in Figure 3.2. The ETH-80

dataset and YTC dataset were used to assess the performance. The feature length used ranges from

100 to the original length, with a step of 100. In ETH-80, the performance of all algorithms was

decreasing with the increase of the feature length. There were several reasons: (i) longer feature
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contains more noise; (ii) longer feature corresponds to more parameters to learn for each model. It

may under-fit due to lack of training data or over-fit due to the complex model. It was also observed

that the hull-based methods (i.e. solid lines) were more robust to the changes of feature length. The

statistic-based methods (i.e. long dashed lines) suffered the most from high dimensional features.

Similar patterns were observed from the results obtained in YTC. The performance of SPML and

SSDML started to decrease after the feature length of 300. With a feature length of 200 and 300,

SPML achieved comparable performance with the highest one.

Figure 3.3: Average rank-1 identification accuracy obtained using different numbers of
prototypes (Experiment 3): (a) results obtained in the YTC dataset; (b) results obtained in
the YTF dataset using LBP features. Results for the hull-based algorithms are presented
using solid lines. Results for statistics-based algorithms are presented in short dashed
lines. Results for the subspace-based algorithms are presented in long dashed lines.

Experiment 3: The objective of this experiment was to assess the impact of the number of pro-

totypes used on the identification performance. An overview of the results was depicted in Figure

3.3. The results were obtained in YTC and YTF datasets, because they contain more subjects and

provide larger image sets. The number of prototypes used ranged from 10 to 90 with a step of

20. All other settings were kept the same with Experiment 1. In YTF, the LBP feature was used
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because it yielded the best accuracy in Experiment 1 for six out of seven algorithms. Some image

sets contained fewer samples than the target number of prototypes to be learned. In such cases, the

number of prototypes was set to the number of samples in the original set. In general, the SPML

achieved the highest performance using only 10 prototypes. This indicates its effectiveness in com-

pressing the available information using few prototypes. In YTF, the SPML appears to outperform

all other methods in four out of five cases. In YTC, the performance of SPML is on average, when

fewer prototypes are used. Better performance is expected with longer features as illustrated in Ex-

periment 2. The performance of CDL (short dashed lines in Figure 3.3) increased with an increase

of the number of prototypes used, while the performance of all other algorithms is decreased. Since

CDL relies on a statistical model, it needs enough samples to estimate the covariance matrix. The

subspace-based GDL (the long dashed line in Figure 3.3) was not suitable to represent an image

set using a high order subspace. For hull-based SPML, ISCRC, SSDML, and RNP (solid lines in

Figure 3.3), spanning a large amount of vectors caused an overlap of inter-class hulls. It may also

result in over-fitting for SPML when a large number of prototypes was used.

Experiment 4: The objective of this experiment was to assess the impact of different numbers of

subjects in the gallery. The cumulative match characteristic curve (CMC) was employed to assess

the performance. The gallery set was expanded by adding some of the removed subjects which

contained four videos. All these samples were added to the gallery set without matching samples

in the query. This was due to the restriction that three neighbors were needed in the training

process. Therefore, four videos per subject should ensure in the gallery for training. A summary of

the results is depicted in Figure 3.4. The CDL-pls and ISCRC are not applicable for CMC. Their

classification is based on all samples from a certain class instead of a single sample. As indicated,

the performance of all algorithms droped after expanding the gallery set. It increases the possibility

of a wrong match. Note that the proposed SPML could only outperform RNP and SSDML before

rank 3. One of the reason is that only the three nearest neighbors were considered in the objective
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Figure 3.4: The CMC curves obtained with different numbers of subjects in gallery (Ex-
periment 4): (a) results obtained in the default settings of YTF; (b) results obtained with
the expanded gallery set. Results for the hull-based algorithms are presented using solid
lines. Results for statistics-based algorithms are presented in short dashed lines. The clas-
sification of CDL-pls and ISCRC are not applicable for the CMC curves.

functions. As a result, only the first three recalls were optimized. This is one of the limitations

of the proposed algorithm. This limitation can be addressed by embedding other distance metric

learning objective functions without the local neighborhood constraints.

Experiment 5: The objective of this experiment was to assess the impact of different initialization

approaches on the identification accuracy. In particular, Two initialization approaches: (i) k-means

clustering and (ii) random sampling are compared. In particular, for each gallery-probe split, the

algorithm was tested using 30 different random initialization settings. This experiment was con-

ducted using the ETH-80 dataset, setting the number of prototypes to 10 (as in Experiment 1). A

summary of the results is depicted in Figure 3.5. The blue star-symbol denotes the rank-1 identifi-

cation rate obtained using k-means initialization. The red plus-symbol denotes the extreme results

treated as outliers. As indicated, in every split, the performance of random initialization can be

worse or better than k-means initialization. However, in five out of 10 cases the performance of

k-means initialization was better than the average performance of random sampling; and in four
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out of 10 cases they were comparable. This indicates that k-means clustering offers a better initial-

ization for the proposed SPML. This is expected as the random sampling strategy results in loss of

important information.

Figure 3.5: Depicted are boxplots for the rank-1 identification rate obtained in different
splits of gallery-probe settings (Experiment 5). In each split, the accuracy is computed 30
times using different random initialization. The red plus-symbol denotes for the outlier
results in random initialization, and the blue star-symbol denotes the rank-1 identification
rate obtained using k-means initialization.

Experiment 6: The objective of this experiment was to analyze the failure case (i.e. using FPLBP

features in TYF with 10 prototypes) reported in Experiment 1. In particular, the objective value,

training and testing accuracy on each iteration were analyzed. Results are summarized in Figure

3.6 (a). The performance obtained using LBP in YTF dataset is provided in Figure 3.6 (b) for

comparison. As illustrated, in both cases the objective value and training accuracy converged very

fast. For the FPLBP feature, its testing accuracy decreased with the updates. For the LBP feature,
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Figure 3.6: Convergence property of objective value, training and testing accuracy (Exper-
iment 6): (a) results obtained in YTF using FPLBP features; (b) results obtained in YTF
using LBP features. In both figures, the left axis indicates accuracy (training and testing);
the right axis indicates the objective value. All numbers reported are the average values.

its testing accuracy increased slowly with the updates, and finally achieved a 5% improvement.

One possible reason is that the learning process overfits from the first iteration. To verify this

interpretation, the learning rate of both prototype learning and metric learning (i.e. ηM and ηZ)

were decreased to 0.001, while keeping all other settings fixed. The obtained results are depicted

in Figure 3.7. As illustrated, the testing accuracy improved in the first five iterations, and decreased

from the sixth iteration. This observation verified the interpretation that the failure was caused by

overfitting from the first iteration in the failure case (ηM , ηZ = 0.01). This overfitting was caused

by the large initial learning rate. Although the overfitting at the first iteration can be avoided by

decreasing the initial learning rate, it still suffers from overfitting after the convergence (Figure

3.7). The small learning rate will also result in a long convergence time. A practical way to address

this problem is to split a validation set from gallery to cross-validate a proper initial learning rate

and a stop criterion.

Experiment 7: The objective of this experiment was to analyze the contributions of two learning

procedures in SPML: set-based metric learning (SML) and set-based prototype learning (SPL). In
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Figure 3.7: Convergence property of testing accuracy (Experiment 6) obtained using a
reduced learning rate.

SML, the results of k-means initialization were used as fixed prototypes. The Mahalanobis metric

was learned by minimizing Equation 3.12. The updating rules were kept the same as described

in Equation 3.8. In SPL, the Mahalanobis M was fixed as an identity matrix. The prototypes

were learned by minimizing Equation 3.12. The corresponding updating rules were kept the same

as described in Equation 3.8. In particular, the testing accuracy of SPML, SML, and SPL at each

iteration were reported. Corresponding results are summarized in Figure 3.8. Results were obtained

using LBP features in YTF datasets. All the settings were kept the same as Experiment 1. As

illustrated, the SPL converged very fast (only 13 iterations). However, the testing accuracy did

not fit well with the prototype learning procedure. The testing accuracy kept decreasing after the

second iteration. The SML was much more stable than the SPL. The testing accuracy increased

in the first few iterations and then started to decrease. The combined SPML, on the other hand,

kept increasing the testing accuracy on each update. As a result, there was no single step that made
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Figure 3.8: Convergence property of testing accuracy (Experiment 7) obtained using
SPML, SML, and SPL. Results are obtained using LBP features in YTF.

SPML work. Both the prototype learning and metric learning process contributed to performance

of SPML.

Experiment 8: The objective of this experiment was to access the impact of outliers on set-to-

set identification performance. Following [8], three protocols are discussed: (i) outliers in gallery

set, outliers in prob set, and outliers in both. For all the protocols, the 5% of outlier images were

added to corresponding image sets. These outliers were randomly sampled from other classes. This

experiment was conducted on ETH-80 with the number of prototypes set to ten. The results are

illustrated in Table 3.4. It appears that the proposed SPML is more robust to outliers.
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Table 3.4: Summary of results for Experiment 8. The values denote the mean(%) average
performance drop of rank-1 identification compared with clean data.

Method
Performance Change Compared with Clean Data (%)

Outliers in Gallery Outliers in Prob Outliers in Both

CDL-lda −0.79 −3.73 −2.55
CDL-pls −0.56 −1.69 −1.38

GDL −0.32 −1.53 −1.37
RNP −3.48 −5.19 −5.37

SSDML −2.58 −1.73 −1.89
ISCRC 5.24 −10.40 −17.59
SPML 000 -1.37-1.37-1.37 -1.37-1.37-1.37
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Chapter 4

Objective 2: Common Templates for Point-

to-Set Matching

In this chapter, the objective was to develop an algorithm that generated a common template for

point-to-set matching. In particular, the attention-based model were employed to take advantage

of the recent advances in deep learning architectures. As described in Chapter 2, Section 2.1.4,

the key issue in the attention-based module was to quantify the discriminative information level

of each sample in a set. To this end, a confidence-driven network (CDN) was developed to learn

a confidence-based score distribution within an image set. The learned confidence scores can (i)

represent the discriminative information level of each sample in set, and (ii) help improve the

decision aggregation for point-to-set matching. An overview of its key characteristics is illustrated

in Figure 4.1. It comprises two parts: (i) a feature extraction network (FEN), and (ii) a performance

prediction network (PPN). FEN is a distance-based ConvNet architecture, and a pre-trained point-

to-point network can be employed. PPN is a binary classification network. It takes as an input an

intermediate feature representation obtained from FEN and generated a confidence score.
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Figure 4.1: The proposed CDN is trained on triplet batches (I i, Ij, Ik). In particular,
it contains two parts. The first part is a feature extraction network. The second part
is a performance prediction network, which comprises a ground-truth generator and a
performance predictor. The high-level features that contain information about the identity
are leveraged to generate “ground-truth” target estimations for the given batch of triplets
using a single-sample test discussed in Section 4.1.2.1. The middle-level features along
with the generated targets are used to train the performance predictor which generates
confidence scores ĉi for each of the anchors in the set. The network is trained jointly using
the weighted-by-confidence point-to-set triplet loss introduced in Section 4.2.2.

This score indicates the probability that the extracted feature vector will contribute to a correct

decision. To estimate the ground-truth confidence score, single-sample tests were proposed to

generate ground-truth for the confidence score. In the training phase, the confidence score will

guide the feature extraction network to put less “attention” on the samples with low confidence

levels. It helps avoid overfitting on samples that are possibly difficult, or others that the model is

uncertain about its predictions. In the matching phase, the confidence scores were used to fuse

the results from different samples of the same set. In summary, the contributions of the proposed

CDN are the following: (i) a weighted-by-confidence point-to-set triplet loss that enables us to

adapt a point-to-point network to a point-to-set network; and (ii) a single-sample test mechanism

to quantify the discriminative level of a sample.
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4.1 Method

4.1.1 Feature Extraction Network

The objective was to leverage the discriminative power of feature representations in a point-to-

point matching setup and adjust them in a point-to-set matching protocol, by introducing only a

few changes to the original architecture. Thus, the center loss face ResNet [31] developed by Wen

et al. [79] was selected as a base architecture, for its outstanding performance. To adapt FEN to

point-to-set matching, a weighted-by-confidence point-to-set triplet loss was proposed. The triplet

loss [60] was chosen because of its ability to learn discriminative feature representations that can

be generalized to unseen classes. In particular, the training data were split into triplet batches

B = {(Ii, Ij , Ik) |, lj = li = l+, lk 6= l+} , (4.1)

with the restrictions: (i) all the anchor images, Ii, are sampled from an image set; (ii) the neighbors,

Ij , and imposters, Ik, are sampled from the point data; (iii) the anchors and the neighbors are

sampled from the same subject (i.e. lj = li = l+); and (iv) the anchors and the imposter are from

different subjects (i.e. lk 6= l+). The weighted-by-confidence point-to-set triplet loss in a batch

was formulated as follows:

LB =

∑
B ĉi

[
D2 (xxxi,xxxj)−D2 (xxxi,xxxk) + α

]
+∑

B ĉi
, (4.2)

where xxxi, xxxj , xxxk are the feature representations of the anchors, neighbors, and imposters, respec-

tively. The objective of the first term is to the pull the neighbors xxxj “closer”, while the objective of

the second term is to push the imposters xxxk “far away”, by a margin α. The proposed loss LB is the

sum of the losses over all the triplets in the batch, weighted by the corresponding confidence scores

ĉi of the anchors xxxi from an image set. The confidence score ĉi generated by the performance

predictor guides FEN to put less attention on the less informative samples.
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4.1.2 Performance Predictor

The performance predictor is a binary classification network that distinguishes between informative

and non-informative samples. In the implementation, a small ConvNet (just Conv-Pool-FC-FC)

was employed to perform classification and used the softmax output probabilities as confidence

scores. Its input are middle-level features from feature extractor I. The middle-level representation

was used because it preserves more information from the original image, while in the high-level

feature representations only the identity-related information was preserved.

4.1.2.1 Ground Truth Generator

In order to train the performance predictor in a supervised manner, “ground truth” confidence

scores were necessary. However, such measurements are not available, and need to be generated.

A conceptually straightforward approach was proposed to estimate the “ground truth” targets for

the confidence scores.

The confidence score proposed in this chapter is the likelihood of a correct decision,

ci = P (l̂i = li|xxxi), (4.3)

where xxxi is the anchor feature representation from Feature Extractor II, l̂i is the rank-1 identity label

returned from a distance based ranking, and li is the ground truth identity label. The confidence

score ci, indicates the probability of returning a correct decision (i.e. l̂i = li), based on the given

feature representation xxxi.

To estimate this likelihood ground truth ci, a single-sample test mechanism was proposed,

which was performed during training within a triplet batch. An overview of this mechanism is

provided in Figure 4.2. The input batch comprises B sets of triplets, including:
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Figure 4.2: Single-sample test mechanism to generate ground truth targets for the perfor-
mance predictor. Given high-level batches of triplets, a single sample from the neighbors
or the anchors is put in the gallery along with all the imposters. The rest of the neighbors
and the anchors form the probe. The rank accuracy is computed across 2B iterations.

(i) Anchors A = {(xxxi, l+) | i ∈ [1, B]}, from the set data;

(ii) Neighbors A+ = {(xxxj , l+) | j ∈ [B + 1, 2B]}, from the point data;

(iii) Imposters A− = {(xxxk, lk) | k ∈ [2B + 1, 3B]}, from the point data.

To better distinguish the anchors, the neighbors, and the imposters, their indices were defined

from different ranges within the batch. The neighbors and the anchors were selected from the

same subject l+, whereas the negative samples were selected such that they are from B different

subjects lk. The single sample test was conducted via simulating an identification scenario, with

the following steps.

Step 1: Gallery and Probe Enrollment. The gallery comprises all imposter samples, and one

sample xxxb from the union of the anchors and neighbors. Therefore, the gallery can be formulated

as:

Gb = A− ∪ {(xxxb, l+)} , (4.4)

which contains one sample for every identity in the batch. Then the rest of the samples from the

71



anchor and the neighbor sets serves as a probe which is defined as:

Pb = A ∪A+ − {(xxxb, l+)} , (4.5)

where all probes were from the same identity l+.

Step 2: Single Sample Test. Each probe sample xxxp ∈ Pb was compared with each gallery sample

xxxg by computing their Euclidean distance d(xxxp,xxxg). Then the label for xxxp was assigned to be the

same with the identity in the gallery that has the smallest distance:

l̂bp = lĝ, where ĝ = argmin
g

d(xxxp,xxxg). (4.6)

The decision and the subject ID ground truth l+ are compared, and the rank-1 hit for the sample xxxp

was computed as:

rbp =


1 when l̂bp = l+

0 when l̂bp 6= l+ .

(4.7)

Step 3: Step 1 and Step 2 were repeated 2B times until each element in A ∪ A+ has enrolled in

the gallery only once. The likelihood ground truth for each sample which has served as probe xxxp,

was then computed as the average rank-1 hit rate across all testing iterations:

cp =

∑2B
b=1 r

b
p

2B − 1
, (4.8)

where each sample from the anchors and the neighbors has served as a probe for 2B − 1 times.

Note that, the likelihood “ground truth” is generated for both anchors and neighbors, despite

using only the anchor scores in the weighted triplet loss in Equation (4.2). However, when training

the performance predictor, both the neighbors and the anchors were involved to enlarge the training

data.
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Algorithm 4.2: Confidence-Driven Network
input : Batches of image triplets (Ij, Ii, Ik).
output: Network parameters θc, θp for classification fc and performance prediction

fp, networks respectively.

1 Initialization: step s = 0, θsc , θ
s
p;

2 while (validation loss decreases) do
3 s← s+ 1 (zzzj, zzzi, zzzk)← fI(IIIj, IIIi, IIIk) ; // Feed-forward to compute

middle-level features from Feature Extractor I
4 xs−1 = (xxxs−1j ,xxxs−1i ,xxxs−1k )← fc(zzzj, zzzi, zzzk) ; // Feed-forward to

compute high-level features from Feature Extractor
II

5 cs−1 = (cs−1j , cs−1i )← SST (xs−1); // Single-sample test to

estimate confidence ‘‘ground truth’’
6 θsp = SGD(Lp

(
fp((zj, zi), θ

s−1
p ), cs−1

)
) ; // Update θp

7 ĉsi = fp(zi, θ
s
p) Feed-forward to compute confidence scores ;

8 θsc = SGD(LB (xxxs−1, ĉsi , θs−1c )) ; // Update θc using
Equation (4.2)

9 end

4.2 Implementation Details

4.2.1 Training

During training, the Feature Extractor I remained frozen, whereas Feature Extractor II and PPN

were trained jointly so as to enable information sharing through the weight updates. An overview

is provided in Algorithm 5.1.

Lines 4-5: During training triplets of images were fed to the Feature Extractor I (denoted by fI )

to obtain intermediate features (zzzj , zzzi, zzzk). These were then provided to the Feature Extractor II

which outputs high-level representations xs−1 = (xxxs−1j ,xxxs−1i ,xxxs−1k ) for the neighbors, the anchors

and the imposters, respectively.
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Line 6: The single-sample test (denoted by SST) described in Section 4.1.2.1 is performed using

xs−1 and estimate the ground truth confidence scores cs−1 = (cs−1j , cs−1i ) for both the neighbors

and the anchors.

Line 7: (zzzj , zzzi) is fed to the performance predictor to obtain the predicted confidence score fp(zj , zi).

Then the binary cross-entropy loss denoted byLp was computed and the respective weights θp were

updated using SGD.

Line 8: The anchor middle-level features zi were fed forward through the performance predictor to

obtain the confidence predictions ĉsi .

Line 9: The confidence score predictions ĉsi were utilized along with the high-level features xs−1

to compute the weighted-by-confidence point-to-set triplet loss in Equation (4.2). Using this loss

the weights of the Feature Extractor II were updated and then the process was repeated by fetching

the next batch of samples.

4.2.2 Testing

At test time, the high-level feature representations and confidence scores of the gallery G =

{(xxxm, lm, ĉm) | m ∈ [1, NG ]} were computed, which contains only one image per subject. For a

probe image set, the high-level representation and confidence score for each image

P = {(xxxn, ĉn) | n ∈ [1, NP ]} (4.9)

are computed, where n is the index of the image in the set. P is a set of images belonging to the

same subject and NG , NP are the number of samples in the gallery and the probe, respectively.

Then, for each image in the gallery, xxxm, the distance from the probe image set P was computed as
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follows:

D (xxxm,P ) =

∑NP
n=1 ĉnD (xxxm,xxxn)∑NP

n=1 ĉn
, (4.10)

where D (xxxm,xxxn) corresponds to the Euclidean distance between the single image in the gallery

and the nth image xxxn of the probe set. The final distance is a fusion of point-to-point distances

weighted by the corresponding confidence score ĉn. The point-to-set distance was computed for

every image in the gallery and the one with the minimum distance was selected.

4.3 Experiments

4.3.1 Datasets

The IARPA Janus Benchmark A (IJB-A) [41] and UHDB-31 [43] datasets were selected to evaluate

the performance of CDN for multi-probe face recognition.

IJB-A: The IARPA Janus Benchmark A (IJB-A) [41] dataset comprises 5, 397 still images and

2, 042 videos from 500 subjects. The original protocol was designed for set-to-set face matching.

To simulate a multi-probe face recognition paradigm, the 1 : N protocol was revised. In every

split, one image was randomly sampled for each subject to form the new “search-gallery”. The rest

of the samples were split into sets with three images from the same subject in each to form the new

“search-probe”. This dataset was used to assess the performance of the proposed approach “in the

wild”.

UHDB-31: The UHDB-31 [43] dataset comprises 77 subjects. For each subject, a still image was

captured from 21 poses, under three different illumination conditions. The original protocol was

designed for point-to-point face recognition. To simulate a multi-probe face recognition paradigm,
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the frontal face of each subject is enrolled into the gallery. A set of 3 images from different poses

were sampled and used as a probe. Details about the set sampling rules are provided in Figure 5.4

and Table 6.2. Since the size of this dataset is small, training is not performed, but instead, only

testing was conducted among CDN and the state-of-the-art approaches. This dataset was used to

assess the performance of proposed approach in a “controlled” environment.

Figure 4.3: Using pose 11 as the only image in the gallery, 15 different probe sets are
constructed. For example, the first set contains the poses [1, 4, 7] the second [4, 7, 10] and
so on. In order to ensure that each pose appears the same amount of times in the probe
image set, and since pose 11 dose not appear in probe image sets, some sets are constructed
with just two images (e.g., [5, 8,NaN]).

4.3.2 Baselines

The center loss for face recognition (CLFR) of Wen et al. [79], and the quality aware etwork

(QAN) of Liu et al. [47] were selected as baselines. For CLFR, the model pretrained on the CASIA

WebFace database [87] was used, and fine-tuned on IJB-A. Since CLFR is designed for point-

to-point matching, average fusion at a score level is performed for multi-probe face identification.
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QAN was designed for set-to-set matching. However, it can be easily adapted to point-to-set match-

ing, by applying the quality scores only to the set data. Since the pre-trained model of QAN was

not available, the code provided by the authors1 was used to train QAN from scratch on WebFace,

and then fine-tune it on IJB-A. To conduct a fair comparison, CDN is trained exactly under the

same protocol.

Table 4.1: Summary of rank-1 accuracy (%) results for Experiment 1.

Method IJB-A
UHDB-31

I01 I03 I05

QAN [47] 71.53 ± 2.65 63.25 94.22 89.19

CLFR [79] 83.74 ± 2.72 96.42 98.41 96.38

CDN 84.56 ± 2.78 97.41 99.47 97.18

p value 0.0006 0.00001
For IJB-A, the values denote average and standard deviation rank-1 identification rate over the ten splits. In
UHDB-31, testing is conducted (no training is performed) under three different illumination conditions: I01,
I03, and I05 which correspond to lighting originating from the left, the central and the right side, respectively.
The last row shows the performance difference test results between CDN and CLFR in 10-fold cv paired
t-test on IJB-A, and 3-fold cv paired t-test in UHDB-31.

Experiment 1: The objective of this experiment was to evaluate the identification performance of

CDN against state-of-the-art approaches. For the IJB-A dataset, average results over the ten splits

are reported. For UHDB-31, tests were conducted under three different illuminations independently

(i.e. I01, I03, and I05 which correspond to lighting originating from the left, the central, and the

right side, respectively). The corresponding rank-1 accuracy (%) results are reported in Table 6.1.

CDN achieved higher performance in both datasets. To verify whether the performance differences

are statistically significant, a 10-fold cv paired t-test was conducted on IJB-A, and a 3-fold cv paired

t-test is conducted on UHDB-31. In particular, the performance of CDN and the baseline with

CLFR were compared. Corresponding p−values are reported in Table 3.3. At a significant level of

1https://github.com/sciencefans/Quality-Aware-Network
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0.01, CDN achieves significant better performance The performance in both datasets. One possible

reason for this is that the model used in the original QAN paper is significantly more complicated

and was trained with additional commercial data. To better understand where the performance gain

was originating from, additional experiments and ablation studies were conducted.

Table 4.2: Rank-1 rate for sets comprising different poses.

Set
Rank-1 Rate (%)

QAN [47] CLFR [79] CDN

[1, 4, 7] 75.95 94.81 97.40
[4, 7, 10] 86.25 98.70 98.70
[7, 10, 13] 90.00 98.70 98.70
[10, 13, 16] 91.25 98.70 98.70
[13, 16, 19] 83.75 96.10 97.40

[2, 5, 8] 94.94 97.40 97.40
[5, 8,NaN] 94.94 97.40 97.40
[8,NaN, 14] 95.00 98.70 98.70
[NaN, 14, 17] 95.00 97.40 98.70
[14, 17, 20] 95.00 97.40 98.70

[3, 6, 9] 86.25 88.31 94.81
[6, 9, 12] 91.25 98.70 98.70
[9, 12, 15] 91.25 98.70 98.70
[12, 15, 18] 91.25 98.70 98.70
[15, 18, 21] 85.00 93.51 96.10

Experiment 2: The objective of this experiment was to assess the performance improvement across

sets comprising different poses. The UHDB-31 dataset was used from which sets with three (and

sometimes two) different poses were formed as depicted in Figure 5.4. The obtained results from

the central illumination are provided in Table 6.2. The results for the other two illuminations are
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included in the supplementary material and are consistent with the central ones provided. In all

15 sets, CDN performed better (or equally) than the other methods, and demonstrated superior

performance in sets that comprise large poses.

Table 4.3: Rank-1 rate (%) accuracy results when the set comprises images of the same
pose but different illuminations. For example: [(P1, I01), (P1, I03), (P1, I05)].

Method P1 P4 P7 P10 P13 P16 P19

QAN 22.67 69.23 83.33 89.87 84.81 67.09 16.67

CLFR 58.33 90.67 100.00 100.00 100.00 92.11 73.33

CDN 52.78 88.00 100.00 100.00 100.00 92.11 77.33

P2 P5 P8 P11 P14 P17 P20

QAN 56.41 91.03 96.20 96.20 96.20 89.87 63.29

CLFR 84.00 96.00 98.68 100.00 100.00 96.05 85.53

CDN 84.00 94.67 98.68 100.00 100.00 97.37 86.84

P3 P6 P9 P12 P15 P18 P21

QAN 25.97 64.10 86.08 94.94 88.61 70.51 30.77

CLFR 54.05 85.33 100.00 100.00 98.68 85.33 42.67

CDN 47.30 86.67 100.00 100.00 98.68 89.33 46.67

Experiment 3: The objective of this experiment was to investigate how CDN performs when sets

contain images of varying illumination conditions. Each set was selected such that it contained

three images of the same pose but with one image per illumination. An example for pose 4 is

[(P4, I01), (P4, I03), (P4, I05)]. Rank-1 identification rate for each pose is reported in Table 4.3

for all three methods. CDN achieved higher accuracy in 17/21 cases.

Experiment 4: The objective of this experiment was to assess the impact of the size of the image

set. All three approaches were evaluated when the set comprises three and six images. The obtained

results are reported in Figure 4.4. Most improvements of CDN against the other two approaches are
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observed in sets with large poses. The performance of the proposed approach is consistent across

sets with different poses which is not the case for CLFR and QAN. For a set of six images CDN’s

performance is still superior to the rest of the methods but not as much as with sets of three. A

reason for this is that when sets comprise six images, it’s likely that more informative images will

be included and a weighting scheme is less important in such cases.

Figure 4.4: Impact of image set size on the rank-1 accuracy.

Table 4.4: Ablation studies to assess the impact of: (i) the weighted-by-confidence point-
to-set triplet loss (LB), and (ii) the performance prediction network (PPN).

Module Dataset

FEN LB PPN IJB-A UHDB-31
√

83.74± 2.71 97.07
√ √

83.89± 2.50 97.75
√ √

84.06± 2.57 97.42
√ √ √

84.5684.5684.56± 2.78 98.0298.0298.02

Experiment 5: The objective of this experiment was to verify the contribution of different design

components proposed in CDN framework : (i) the weighted-by-confidence point-to-set triplet loss
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(LB), and (ii) the performance prediction network (PPN). The ablation studies were conducted,

and results are reported in Table 4.4. On the first row, all the proposed components are removed

which results in the CLFR approach trained on the WebFace database [87]. By fine-tuning CLFR

on IJB-A while maintaining the center loss, an average rank-1 accuracy of 83.74% was obtained

over the 10 splits. On the second row, fine-tuning of the feature extraction network on the IJB-A

database was removed. Instead, the performance prediction network which was fine-tuned with

its binary cross-entropy loss was plugged. By doing so, an absolute increase in the performance

of 0.15% was observed. On the third row, only the feature extraction network was fine-tuned on

IJB-A with triplet loss. The rank-1 accuracy of 84.06% was obtained. One the last row, by jointly

fine-tuning both modules, a relative improvement of 0.59% was obtained over FEN. Both modules

contributed to the final improvements.

Figure 4.5: Confidence score estimates of the performance predictor under different poses
when tested on the UHDB-31 database.

Experiment 6: In Figure 4.5 the confidence score predictions of PPN are reported for the UHDB-

31 dataset averaged for each pose along with their standard error. The performance predictor
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Table 4.5: Confidence score estimates of the performance predictor under three different
illuminations when tested on the UHDB-31 database.

Illumination Confidence Score

Left Side 0.10 ± 0.0016

Center 0.14 ± 0.0027

Right Side 0.09 ± 0.0014

provides on average higher confidence to images with near-frontal poses. The standard error for

near-frontal poses (i.e. Pose IDs 10, 11, 12) was at least twice as much compared to the larger

poses (i.e. Pose IDs 1, 2, 3, 19, 20, 21). The reason for this is that there are other factors (such

as skin color or illumination) besides the pose that affects the identification performance. In large

poses, the pose is the main reason for the performance drop and thus, the variation is smaller. Next,

let’s focus on the three different sources of lighting for which the results are provided in Table 4.5.

The performance predictor favors center lighting on average and performs similarly in the other

two illumination conditions. Note that the reason the confidence scores are low is because they are

absolute unnormalized values and that CDN has not been trained on this dataset.

Experiment 7: Looking solely at aggregated pose and illumination results did not provide a full

picture of what the performance predictor was learning. Towards this direction, qualitative results

are proposed in Figures 4.6 and 4.7. From Figure 4.6, it can be observed that: (i) within a subject,

pose and illumination influence the confidence score, (ii) the confidence score is distributed differ-

ently for different subjects. In Figure 4.7 (b,c), it is demonstrated that: (i) for the same subject CDN

assigns significantly less confidence to images with occlusions or blur, and (ii) when both pose and

illumination conditions are kept the same, different subjects can have ×3 higher confidence than

others.
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Figure 4.6: Different images of various subjects are provided with their corresponding
confidence scores. Variations include skin-color, pose, illumination, and other subject-
specific attributes.
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Figure 4.7: Top row (a): Ranking of randomly selected images from low to high con-
fidence from the IJB-A dataset. Bottom row (b): For the same subject CDN puts more
emphasis on samples that do not suffer from occlusions or image blur. Bottom row (c):
For the same pose and the same illumination (left, center, and right, respectively) different
subjects demonstrate ×3.5 higher confidence scores.
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Chapter 5

Objective 3: Enhance Sample-based Face

Recognition System for Set-based Tasks

In this chapter, the proposed confidence-driven network was extended into an add-on module which

can adapt a sample-based face recognition (FR) system for set-based FR applications and enhance

the performance. In particular, the confidence prediction network (CPN) is proposed. Similar to

CDN, CPN follows the attention-based model and utilize CPN to generate confidence scores as at-

tention. As a result, it is (i) free from model assumptions, and (ii) computationally inexpensive. The

batch-based single-sample-test mechanism was extended to generate the global pseudo-ground-

truth for the confidence scores such that the confidence scores can be learned (i) independently

without the access to the template of a sample-based FR system, and (ii) without set-based restric-

tion in the training batch. Compared with CDN, the proposed CPN has the following differences:

(i) the training of feature representations and the confidence score are completely independent

which simplifies the training process a lot, (ii) CPN can work with different face recognition sys-

tems on both feature level and score level, (iii) comprehensive experiments are conducted for both
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point-to-set matching and set-to-set matching, and (iv) different attention mechanisms are com-

pared under the same backbone network with the same amount of training data.

5.1 Method

The proposed confidence prediction network consists of two parts, a sample-based FR system,

and a performance prediction network. The sample-based FR system could be any well-trained

FR system. Given two face images as input (It, Ii), the FR system will output a similarity score

sti = ψs (It, Ii). The performance prediction network is learned to pair with the sample-based

FR system. Given one face image, It, as input, the performance predictor will output a confi-

dence score ct which measures the confidence level of the input image under the corresponding

sample-based FR system. In this section, I explained in details how to train a confidence prediction

network, and how it can be used in set-based matching.

5.1.1 Training

In the training process, it is necessary to have access to (i) a sample-based FR system ψs (Ii, It) =

sit which can return the similarity score sit between two images (Ii and It), and (ii) a set of

training images {(It, lt) | t ∈ [1, T ] , lt ∈ [1, NC ]}, where lt denotes identity label and NC is the

total number of classes. The objective is to learn the mapping φ () from a input image It to its

corresponding confidence score ct. In this work, a two-step approach is proposed, (i) generate

pseudo-ground-truth for target confidence score, and (ii) train a regressor to regress from the input

image It to target confidence score ĉt.

Step 1: Pseudo ground truth. A global single-sample-test mechanism is proposed to simulate
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Figure 5.1: Illustration of the training strategy of CPN.

the matching process and generate global pseudo-ground-truth confidence score ĉt for each training

image It. The steps to compute ĉt for input image It is quite straightforward.

(i) The similarity score sti of between It and the rest of images Ii, i 6= t in training dataset is

computed under the samplbe-based FR system via

sit = ψs (It, Ii) . (5.1)

(ii) The ground truth for the pair-wised similarity score between It and the rest of training

images Ii, i 6= t is computed via

ŝit =


0 if li = lt

1 if li 6= lt

. (5.2)

(iii) The ROC curve using predicted scores, sit, and the ground-truth similarity ŝit are computed.

The area under the curve is used as the pseudo ground-truth confidence score for It.

The proposed approach is based on the assumption that the confidence level of a sample under a

specific sample-based FR system can be measured by its performance when it is compared with

other samples. The higher the performance, the more confident the system is about this sample. The
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AUC of the roc curve was selected as the similarity measurement. Because in the proposed single-

sample-test, the pair-wise comparisons were highly imbalanced. There were far more dissimilar

pairs than similar pairs. The only restriction of this approach on the training data was that there

were at least two samples for each class. Compared with the single-sample-test used in CDN, the

global single sample test shared two major differences. First, the test was conducted globally across

the whole training dataset. With more samples included, more robust performance measurements

were expected. Second, the AUC was used as the performance measurement instead of accuracy.

The AUC was more robust under highly imbalanced data compared with the average accuracy.

Figure 5.2: Examples of the pseudo-ground-truth confidence scores. Each row is a face
image set containing seven images from the same person. As observed, images in the set
exhibit large variations (e.g., resolution, poses, makeups, illuminations, etc). The number
under each image is its corresponding pseudo-ground-truth confidence score generated for
ArcFace [14] according to the proposed method described in Sec. 5.1.1.

Step 2: Prediction. Now for each training image It there is a target pseudo-ground-truth-

confidence-score ĉt. The task is to learn a regression φ() from the training image It to the target

confidence score ĉt. In this work, the standard ResNet18 was used to model φ(). Because ĉt can be

considered as the possibility that sample It will return a correct prediction, simple cross-entropy
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loss was used for optimization

L = −ĉt log(φ(It))− (1− ĉt) log(1− φ(It)) (5.3)

A summary of the training training process is provided in Algorithm 5.1.

Algorithm 5.1: CPN: Training
Input : Training Data {(I t, lt)|l ∈ [1, T ]} and sample based FR system ψs().
Output: Parameters θ for performance prediction network φ().

/* Generate Pseudo Ground Truth ĉt */
1 for t← 1 to T do
2 for i← 1 to T and i 6= t do
3 sit ← ψs(I i, I t);
4 if li = lt then
5 ŝit ← 1
6 else
7 ŝit ← 0
8 end
9 end

10 ĉt ← AUC({(sit, ŝit)|i ∈ [1, T ], i 6= t}) ;
11 end
/* Train the predictor φ() */

12 Initialization: step t = 0, θt ;
13 while (validation loss decreases) do
14 t← t+ 1 ;
15 ct ← φ(IIIt, θt−1) ; // Feed-forward of performance predictor
16 θt = SGD(L (ĉt, ct) , θt−1); // L is defined in Equation 5.3
17 end

5.1.2 Set-based Matching

The objective of this subsection is to discuss how to use the learned CPN to enhance the per-

formance of set-based matching. Given two image sets S1 = {Ii}N1
i=1, S2 = {Ij}N2

j=1, and a

sample-based FR system, the task is to measure the similarity s12 between these two image sets.
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Figure 5.3: Illustration of set-based matching with CPN. (a): Feature-level aggregation
when templates from the sample-based FR system is available. (b): Score-level aggrega-
tion when only similarity scores are available for the sample-based FR system.

In this work, two situations were considered, (i) access to the template generated by the sample-

based FR system zi = ψf (Ii), and (ii) access to the similarity scores. As illustrated in Figure 5.3,

the feature-level aggregation and score-level aggregation can be applied, respectively. In the first

situation, the template zi from the sample-based FR system, and the confidence score ci from CPN

were available for each sample in set. Then the set-based template can be aggregate via,

x1 =

∑
i cizi∑
i ci

. (5.4)
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Algorithm 5.2: CPN: Feature-level Aggregation

Input : Testing Image Set: S1 = {I i}N1

i=1 and S2 = {Ij}N2

j=1.
Output: Similarity Score s12 between S1 and S2.

/* Feature Aggregation for S1 */
1 for i← 1 to N1 do
2 zi = ψf (I i);
3 ci = φ(I i);
4 end
5 x1 =

∑
i cizi∑
i ci

;
6 for j← 1 to N2 do
7 zj = ψf (Ij);
8 cj = φ(Ij);
9 end

10 x2 =
∑

j cizj∑
j cj

;

/* Similarity Computation */
11 s12 =

x1x2

‖x1‖‖x2‖

Same steps were applied to obtain x2 for S2. Then the similarity between S1 and S2 was computed

via

s12 =
x1x2

‖ x1 ‖‖ x2 ‖
. (5.5)

A summary of the feature-level aggregation process is provided in Algorithm 5.2.

In the second situation, the following items were computed: (i) the pairwise similarity scores

between the two image sets (i.e. {sij |i ∈ [1, N1], j ∈ [1, N2]}), and (ii) the confidence scores for

each sample in two sets (i.e. {ci|i ∈ [1, N1]} and {cj |j ∈ [1, N2]}). The final confidence score is

computed via ∑
j

∑
i cicjsij∑

j

∑
i cicj

. (5.6)

A summary of the feature-level aggregation process is provided in Algorithm 5.3.
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Algorithm 5.3: CPN: Score-level Aggregation

Input : Testing Image Set: S1 = {I i}N1

i=1 and S2 = {Ij}N2

j=1,
Sample-based FR system ψs().

Output: Similarity Score s12 between S1 and S2.

/* Pair-wise Similarity Scores */
1 for i← 1 to N1 do
2 for j← 1 to N2 do
3 sij = ψs(I i, Ij);
4 end
5 end
/* Confidence Score Computation */

6 for i← 1 to N1 do
7 ci = φ(I i);
8 end
9 for j← 1 to N2 do

10 cj = φ(Ij);
11 end
/* Score-level Aggregation */

12 s12 =
∑

j

∑
i cicjsij∑

j

∑
i cicj

5.2 Experiments

5.2.1 Datasets

In this chapter, all the algorithms were trained on the IMDb dataset [69], and tested in the IARPA

Janus Benchmark-C (IJB-C) [54] for set-to-set matching, and UHDB-31[43] dataset for point-to-

set matching.

IMDb-face: The IMDb-face dataset is a new large-scale noise-controlled dataset, which comprises

about 1.7 million faces from 59 k identities. The face images were collected from the IMDb website

and manually cleaned. The IMDb-face dataset was selected for training because it is a noise-

controlled dataset. Wang et al. [69] claimed that label noise in training has a negative impact on
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the face recognition performance. In the experiments, 20% of the subject were randomly sampled

to form the validation split, the rest of the subjects were used for training.

IJB-C: The IARPA Janus Benchmark C (IJB-C) [41] dataset was selected to evaluate the perfor-

mance of set-to-set matching in the uncontrolled environment. It comprised 31, 334 still images

and 11, 779 videos from 3, 531 subjects. The IJB-C dataset was selected for two reasons. First,

it is the most challenging dataset for set-based face recognition. Second, except for the identity

information, six groups of meta-information (i.e. face size, facial hair, age, indoor/outdoor, skin

tone, gender, and pose) are also provided. The meta-information was employed to further under-

stand the learned confidence scores and performance bias on the current FR system. The original

protocols of IJB-C were designed for set-to-set matching for verification, close-set identification,

and open-set identification.

Figure 5.4: Using pose 11 as the only image in the gallery, 15 different probe sets are
constructed. For example, the first set contains the poses [1, 4, 7], the second [4, 7, 10], and
so on. In order to ensure that each pose appears the same amount of times in the probe
image set, and since pose 11 dose not appear in any probe image sets, some sets were
constructed with just two images (e.g., [5, 8,NaN]).

UHDB-31: The UHDB-31 [43] dataset comprises of 77 subjects. For each subject, a still image
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was captured from 21 poses, under three different illumination conditions. This dataset was used

to assess the performance of the point-to-set matching in a “controlled” environment.

5.2.2 Baselines

The additive angular margin loss for deep face recognition (ArcFace) proposed by Deng et al.

[14] was selected as the backbone network for the sample-based RF system, because it achieves

the state-of-the-art performance in sample-based face-recognition tasks. Two other set-based ap-

proaches, the multicolumn networks (MN) proposed by Xie et al. [83], and the neural aggregation

network (NAN) proposed by Yang et al. [85] were selected. These two algorithms were selected

because: (i) they achieved the state-of-the-art performance in set-based face recognition tasks,

and (ii) similar to CPN, they were also employed to learn the attention distribution and conduct

attention-based set aggregation. For Arcface, the pretrained model provided by the authors was

employed. For MN and NAN, the networks are implemented using Pytorch according to the orig-

inal papers. To conduct a fair comparison, the same backbone network (i.e. ArcFace), training

data (i.e. IMDB) were used for CPN, MN, and NAN. To better align with the ArcFace template,

MN and NAN were trained using the additive angular margin loss function proposed in ArcFace

with the learned attention scores as weights. With these baselines, the objective is to figure out:

(i) whether the confidence score learned from CPN can help improve the performance of ArcFace,

and (ii) how CPN performs compared with other set-based approaches.

5.2.3 Experimental Results

Set-to-Set Matching: The objective of this experiments was to assess the performance of CPN on

the task of set-to-set matching. The performance of Arcface, NAN, MN, and CPN were tested.
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In the 1 : 1 verification task, the true positive rate (TPR) at different false positive rates (FPR)

are reported. A summary of results is presented in Table 5.1. In the 1 : N identification task,

the rank-n identification rate is reported for close-set identification. The true positive identifica-

tion rates (TPIR) with different false positive identification rate (FPIR) are reported for open-set

identification. Corresponding results are summarized in Table 6.1. The proposed CPN achieved

higher performance over the baseline algorithms in all three tasks. To test whether the improve-

ment is statistically significant, DeLong test was conducted to compare the AUCs for verification

and open-set identification, and Wilcoxon signed-rank test for the close-set identification. The

test results indicated that the AUCs of CPN and ArcFace were comparable for the verification

and open-set identification. CPN achieved significantly better ranking performance in the close-

set identification. The DeLong test focused on the AUC, because the AUC of ArcFace is 0.9916

which is already very high. It is difficult to get significant improvements. However, CPN obtained

at least 0.05% improvement on the TPR and TPIR over all different FPRs. Considering the total

number of comparisons (i.e. 15, 658, 489), CPN gave correct predictions on around 7800 more

cases compared with ArcFace.

Point-to-Set Matching: The objective of this experiment was to assess the performance of CPN

on the point-to-set matching. The UHDB-31 dataset was selected for testing. The original proto-

col was designed for point-to-point face recognition. To simulate a point-to-set face recognition

paradigm, the frontal face of each subject was enrolled into the gallery. A set of three images from

different poses were sampled and used as a probe. Details about the set sampling rules are provided

in Figure 5.4. Rank-1 accuracy is reported in Table 5.1. In all 15 sets, CDN performed better (or

equally) than the other methods. Superior performance was obtained in sets that contain poses with

+30◦ in pitch.
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Table 5.3: Rank-1 rate for point-to-set matching

Set
Rank-1 Rate (%)

ArcFace NAN MN CPN

[1, 4, 7] 92.64 91.77 90.91 97.40
[4, 7, 10] 98.27 97.84 98.27 98.70
[7, 10, 13] 98.27 98.27 98.27 98.70
[10, 13, 16] 98.27 98.27 98.27 98.70
[13, 16, 19] 96.54 96.54 96.54 97.40

[2, 5, 8] 97.84 97.84 97.84 97.84

[5, 8,NaN] 97.84 97.84 97.84 97.84

[8,NaN, 14] 98.27 98.27 98.27 98.27

[NaN, 14, 17] 97.40 97.40 97.40 97.40

[14, 17, 20] 97.40 97.40 97.40 97.40

[3, 6, 9] 96.54 94.37 96.10 96.54

[6, 9, 12] 98.70 98.70 98.70 98.70

[9, 12, 15] 98.70 98.70 98.70 98.70

[12, 15, 18] 98.70 98.70 98.70 98.70

[15, 18, 21] 97.84 97.40 97.40 97.84
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Table 5.4: p−value of one-way ANOVA test on IJBC.

Factor Indoor/Outdoor Gender skin Color

p−value 2.77 E − 5 9.66 E − 6 1.43 E − 29

Factor Facial Hair Age

p−value 4.57 E − 15 0.1863

Covariates’ Effects Analysis In this experiments, the correlations between the learned confidence

scores and different covariates were analyzed. The covariates are the factors that have an impact

on face verification performance [48]. In particular, seven covariates (i.e. indoor/outdoor gender,

skin color, facial hair, age, pose, and face size) are provided for each image in the IJB-C dataset as

metadata.

The gender, indoor/outdoor, skin color, facial hair, and age were categorized. For these categorized

factors, one-way analysis of variance (one-way ANOVA) was conducted to each factor indepen-

dently. The objective was to test whether the learned confidence scores for different groups were

significantly different. The corresponding p−values are reported in Table 5.4. As observed, except

for the age, the learned confidence score showed statistically significant difference among different

groups for the selected factors. To better analyze the preference of the confidence score, the mean

and standard error of the learned confidence score with different groups are depicted in Figure 5.5.

As it can be observed, the CPN tended to assign higher confidence scores to outdoor images. This

observation seems to be opposite from the well-known assumption that indoor face recognition

achieves better performance [48]. One of the possible reason could be the data distribution of in-

door and outdoor images in the training dataset. Since a global single sample test was performed

to estimate the confidence score, the global distribution of the two groups in the training data had

an impact on the learned performance.
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Figure 5.5: Depict of the mean and standard error of confidence scores leaned for different
groups. (a): Photo environments. (b): Genders. (c): Skin colors. (d): Facial hairs. In
particular, the skin color is divided into six groups: light pink (L. P.), light yellow (L. Y.),
medium pink/yellow (M. P./Y.), medium yellow/brown (M. Y./B.), medium-dark brown
(M.-D./B), and dark brown (D. B.). The dot is the mean value of the confidence score for
each group, and short line indicates the standard error of the confidence score. If two short
lines have overlaps on the x axis, the confidence score of the two corresponding groups
were not significantly different.
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For gender, CPN seemed to assign higher confidence scores for females compared with males. The

observation aligns with the evaluation of Beveridge et al. [6, 4, 5] that females are easier to be

recognized. However, studies on the impact of gender on face recognition have led to different

conclusions [48]. Skin color was divided into six groups: light pink (L. P.), light yellow (L. Y.),

medium pink/yellow (M. P./Y.), medium yellow/brown (M. Y./B.), medium-dark brown (M.-D./B),

and dark brown (D. B.). From the results, CPN tended to assign higher confidence scores to subjects

with M.-D./B and D. B. skin tone, and lower confidence scores to subjects with M. Y./B. skin

tone. There are several studies analyzing the biases of the face recognition system on skin colors

[1, 21, 48]. However, most of the large-scale training dataset have different populations for different

skin colors. This could be the key reasons for the bias of the face recognition systems. Facial hair is

grouped into no facial hair, mustache, goatee, and beard. People with goatees are more likely to be

assigned a higher confidence score. People with mustaches tend to be assigned a lower confidence

score.

Figure 5.6: Heat maps of the average confidence score distributions regarding poses and
face size. (a): Poses. (b): Face sizes.

Pose (i.e. yew and roll) and face size (i.e. face width and height) are sampled from factors with

continuous values. The distribution of the mean confidence score on different poses and face sizes

are visualized in Figure 5.6 using heat maps. For pose, the heat map is estimated using the local
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linear regression. The yaw and roll were bounded by the minimum and maximum degrees that

appeared in the IJB-C dataset. The distribution of the confidence score was symmetric regarding

yaw at 0◦. The larger the degrees of yaw, the lower the confidence scores assigned. However,

the confidence scores don’t show the same property on the roll. The highest confidence score was

around 15◦. One of the possible reason could be the pose distribution in the training set. In IMDb,

the yaw angle was distributed symmetrically regarding 0◦. The roll distribution was not accessible.

The face size denotes the face size in the original image. In the preprocessing steps, the face areas

were cropped, and aligned to 114× 114 pixel. As a result, the larger the face in the original image,

the higher the resolution after alignment. The heat map of average confidence score with face size

was computed in a similar way to the pose one. In particular, faces with a width or height larger

than 500 pixels were removed. Because the samples were sparsely distributed beyond 500 pixels.

The deep blue area close to the boundaries was unreachable face weights and height ratios. Thus,

the confidence scores were not estimated. Within 500 pixels, the larger the face, the higher the

confidence scores.

Figure 5.7: The patch splits for occlusion in IJB-C dataset. Left: the face area is split into
18 patches. Right: In the example image, eyes are occluded. The corresponding patches
07 and 09 are marked with 1 (pink), the rest of the patches are marked with 0 (green).

To represent the occlusion information, face areas were split into 18 patches as illustrated in Figure
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5.7. The occlusion information was represented using an 18 dimensional binary vector. If one patch

was occluded, the corresponding bit was marked as 1. To analyze if the occlusion on each patch

had a statistical significant impact on the distribution of the confidence score, one-way ANOVA

was conducted on to each patch independently. The corresponding p− values were collected in

Figure 5.8. Occlusions on patches {01, 02, 03, 04, 05, 08, 11, 12, 13, 17} had a significant impact

on the distribution of the confidence scores.

Figure 5.8: p−value of the one-way ANOVA test on patch occlusion. Left to right and up
to down corresponds to patch 01 to 18 in Figure 5.7. Cells filled in grey indicate batches
where occlusions did not have significant impact on the distribution of the confidence
scores.

Table 5.5: Correlation analysis between confidence scores and similarity scores

Confidence Scores Sample 1 Sample 2

Correlation Coefficients 0.0349 0.0370

p−value 9.51 E − 44 3.69 E − 39

Correlations with Similarity Scores: To understand the correlations between the learned confi-

dence scores and the original similarity scores from ArcFace, a correlation analysis was conducted.

The correlation coefficients and corresponding p−values are summarized in Table 5.5. Since a
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comparison corresponds to one similarity score and two confidence scores, the correlation analysis

was conducted on each of them independently. The correlation coefficients were small, which in-

dicates that the correlation between the learned confidence scores and the similarity scores is very

weak. The value of similarity scores cannot represent the confidence level of a specific prediction,

and cannot be used to replace the confidence scores.

Figure 5.9: Ranking face images of the same subject according to the confidence score.
Each row contains ten images randomly sampled from the same subject. From left to right,
the corresponding confidence score gets higher and higher. As expected, images with high
confidence scores had higher resolution, more frontal poses, and without any occlusions.

Visualization: In Figure 5.9, the within subject images are visualized and ranked by the learned

confidence score. Ten images were randomly sampled from the same subject in IJB-C, and then

ranked according to the learned confidence score.
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Chapter 6

Objective 4: Binary Templates for Face

Image Sets

In this chapter, the objective was to generate fixed length binary templates for face image sets.

In the coding theory, the variable-length code is typically used for lossless data compression. To

compare the similarity of variable length codes, the codes were first uncompressed, and then the

similarity was computed in the original feature space. This work did not employ variable length

codes. The proposed binary templates were compared directly in the binary feature space. In par-

ticular, the attention-based recursive-binary embedding (ARBE) algorithm was proposed to extract

binary templates for image sets. Specifically, the network contains two parts, (i) attention-based

feature learning, and (ii) recursive binary coding, as illustrated in Figure 6.1. In the first part,

a real-valued feature representation was learned for each sample with a corresponding attention

score. The attention score described the contribution of the corresponding sample representations.

In the second part, each bit was learned recursively. The output of the previous bit was used as meta

input when learning the current bit. The results from different samples were integrated at each bit.
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Figure 6.1: Illustration of the network architecture. The first part of the network generated
a real-valued feature representation and a within-set attention score for each sample in
an image set. The second part embedded the real-valued features into a compact binary
template in a recursive manner.

The proposed ARBE increased recognition performance compared to the sequential code, while

the number of projections was still restricted to a linear relation to code length. Learning from the

recent advances in face recognition and image set classification, the angular-based similarity [46]

and the image set attention schemes [47, 85] were also adapted in the proposed framework. The

primary contribution is a new binary embedding framework for a face image set with the following

advantages: (i) ABRE increased the recognition power while maintaining a linear model complex-

ity, and (ii) ABRE was designed under a standard neural network architecture so that it was easily

integrated into different network designs.
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6.1 Methods

6.1.1 Attention-based Feature Extraction

Given an image set IIIj =
{

IIIij |i ∈ [1, N ]
}

with N images, the objective of is to extract a high-

level feature representation xxxij for each single image IIIij with a corresponding attention score aij .

Similar with the idea described in [47, 85], the first CNN block ϕr () extracts mid-level feature

representations. The second CNN block ϕx () on the top branch extracts high-level representations.

The third CNN block on the bottom branch ϕa () generates the attention scores. The attention score

aij indicates the contribution of its corresponding image within the set. However, the set pooling

is not used to integrate the sample representations into a single real-valued template. Samples are

integrated at the loss level using the attention scores. This part of the network is pretrained using a

weighted angular-softmax loss [46]. The loss on a training batch {(XXXj , yj) |j ∈ [1,K]} is defined

as

Lf = − 1

K

∑
j

log

(
eφ(XXXj ,aaaj ,wwwyj )

eφ(XXXj ,aaaj ,wwwyj ) + e
∑

c6=yj
φ(XXXj ,aaaj ,wwwc)

)

φ (XXXj , aaaj ,wwwc) =

N∑
i=1

ai‖xxxij‖ cos (kθi,c) ,

(6.1)

which can be viewed as a soft-max loss on top of an weighted angular linear layer φ (·). The an-

gular linear layer is parameterized using WWW = [www1,www2,www3, ...,wwwC ]
T , where C is the total number

of classes in training data, and ‖wwwc‖ = 1. In particular, θj,c is the angle between the feature rep-

resentation xxxij with the projection vector from the cth classes wwwc, and k is a scaling integer. The

cosine similarity cos (kθi,c) can be easily represented using expressions only containing XXXj and wwwc

by simply using the multi-angle formula. In Equation (6.1.1), the losses from different samples

xxxij within set XXXj are simply integrated on the loss level using the attention scores aij with the re-

striction that aij ∈ [0, 1] and
∑N

i=1 a
i
j = 1. Ground-truth for the attention scores is not provided,
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so ϕa is optimized jointly with ϕr and ϕx by minimizing Equation (6.1.1) using only the identity

information in the pre-training step.

6.1.2 Recursive Binary Encoding

After the attention-based feature extraction, a real-valued feature matrix XXXj =
[
xxx1j ,xxx

2
j , ...,xxx

N
j

]
, and

a corresponding attention vector aaaj =
[
a1j , a

2
j , ..., a

N
j

]
are obtained. The objective is to generate a

single binary template bbbj =
[
b1j , b

2
j , ..., b

L
j

]
from the high-level feature representation XXXj , where L

is the code length. As illustrated in Figure 6.1, the first bit is learned via:

b̂1j =

N∑
i=1

aijϕ
1
1

(
xxxij
)
,

b1j = sgn
(
b̂1

)
.

(6.2)

In particular, the CNN block ϕ1
1 () maps the input feature vector from RD to R1. The attention

scores ai are used to integrate all samples within an image set into one single score. The final

binary output b1j ∈ {0, 1} is obtained after applying the sign function sgn (). The lth bit blj id

learned recursively via:

b̂lj =

N∑
i=1

aiϕ
l
2

(
b̂l−1j , ϕl1

(
xxxij
))
,

blj = sgn
(
b̂lj

)
.

(6.3)

The input feature vectors are first embedded and integrated into a single score the same way as

the first bit b1j . Then, the output is concatenated with the previous bit b̂l−1j as meta input. A second

CNN block ϕl2 () is applied on the meta input. Then, the output is rounded via the sign function.

To optimize the parameters from the CNN blocks
{
ϕ1
1, ϕ

l
1, ϕ

l
2

}L
l=2

, an angular linear layer is added
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after the binary embedding and the angular-softmax loss function is defined as,

Lb = −
1

K

∑
j

log

(
eφ(bbbj ,wwwyj )

eφ(bbbj ,wwwyj ) + e
∑

c6=yj
φ(bbbj ,wwwc)

)

φ (bbbj ,wwwc) = ‖bbbj‖ cos (kθj,c)

(6.4)

on a training batch {(bbbj , yj) |j ∈ [1,K]}, where yj is the class label for template bbbj . Similar with

Equation (6.1.1), θj,c is the angle between the template bbbj and projection from the cth class wwwc.

The cos (kθj,c) can be represented using expressions containing bbbj and wwwc only via the multi-

angle formula. Since the sign function is not differentiable, bbbj is replaced with tanh
(

b̂bbj
)

. To

eliminate the rounding error, a standard deviation term [18] is added to encourage the model to

output binarized value:

Lb̂ = Lb + λ
∑
j

σ
(

b̂bbj
)
, (6.5)

where σ () denotes the standard deviation function, and λ ∈ [0, 1] is a trade-off coefficient.

6.2 Implementation Details

Network Architecture: The backbone network (i.e. ϕr and ϕx) employed for ARBE is a 64-

layer ResNet as described by Liu et al. [46]. The detailed architectures of the backbone network

and attention block are depicted in Figure 6.2. The attention block used a fully connected layer

to embed the mid-level feature representation into the attention score. Instead of generating the

attention scores from the high-level feature representation [85], the output of the second ResNet

block was selected, with the hypothesis tested in [47] that only identity-related information was

preserved in high-level feature representation. For the recursive binary embedding layers, the first

level projections
{
ϕl1
}L
l=1

are 256×1 fully connected layers. The second level projections
{
ϕl2
}L
l=2

are 2× 1 fully connected layers.
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Figure 6.2: Depiction of network architectures, where Conv(k × k, n, s) denotes a 2d
convolutional layer, using n k × k kernels with stripe s, and activated via PRelu. (a): The
backbone network. (b): The attention block. The pools is two cascaded 2d max-pooling
layers. The input of ϕa is the output from ϕr
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Algorithm 6.1: Attention-based Recursive Binary Embedding
input : Training batches {(IIIj, yj) |j ∈ [1, K]}
output: Network parameters in ϕr, ϕx, ϕa, and

{
ϕ1
1, ϕ

l
1, ϕ

l
2

}L
l=2

1 Initialize ϕr, ϕx, ϕa;
2 while Lf does not converge do
3 Update ϕr and ϕx
4 end
5 while Lf does not converge do
6 Update ϕa
7 end
8 Initialize

{
ϕ1
1, ϕ

l
1, ϕ

l
2

}L
l=2

;
9 while Lb does not converge do

10 Update
{
ϕ1
1, ϕ

l
1, ϕ

l
2

}L
l=2

11 end

Training: The objective of the training stage was to optimize all the parameters from all the CNN

blocks from the attention-based feature extraction network {ϕr, ϕa, ϕx}, and the recursive binary

embedding network
{
ϕ1
1, ϕ

l
1, ϕ

l
2

}L
l=2

. The training steps are summarized in Algorithm 6.1. In

particular, the feature extraction network {ϕr, ϕx}, the attention block{ϕa}, and the recursive em-

bedding layers
{
ϕ1
1, ϕ

l
1, ϕ

l
2

}L
l=2

were optimized one by one independently. In particular, {ϕr, ϕx}

was learned by minimizing Equation (6.1.1), with each sample assigned the same attention score

ϕa

(
xij

)
= 1/N . Then, ϕa was optimized via minimizing Equation (6.1.1), with the learned

{ϕr, ϕx}. Finally,
{
ϕ1
1, ϕ

l
1, ϕ

l
2

}L
l=2

is optimized via minimizing Equation (3.5).

Testing: In the testing phase, the major task was to measure the similarity between two binary

templates bbbj and bbbt. The angular similarity is defined as follows:

S (bbbj ,bbbt) =
bbbjbbbTt∑L

l=1(b
l
j + blj)

. (6.6)
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6.3 Experiments

In this section, the datasets and baseline algorithms used in the experiments and the corresponding

results are discussed.

6.3.1 Datasets

The CASIA WebFace Database (Webface) [87] is used for training. The Webface dataset comprises

494, 414 face images from 10, 575 subjects. Since this dataset does not provide an image set

protocol, for each subject, eight images are randomly sampled as an image set to train the attention

branch ϕa.

The IARPA Janus Benchmark A datasets (IJB-A)[41] is selected to assess the performance of

the proposed ARBE on set-based face verification and identification. The IJB-A dataset comprises

5, 397 still images and 2, 042 videos from 500 subjects. The IJB-A is provided with a template

setting, where each template contains various numbers of images from the same subjects. IJB-A

also provides 10 training and testing splits. In this chapter, the training sets are not used. All

the algorithms trained on Webface are tested directly to assess the generalization property across

datasets. In particular, the original protocols of IJB-A are employed. There are two tasks: (i) 1:1

verification , and (ii) 1:N identification. In the first task, a list of pairs of templates is given, and

the task is to distinguish whether each pair of templates describes the same subject or not. In the

second task, there is a list of gallery templates and a list of probe templates. The task is to recall

one or multiple templates from the gallery that are most similar to each of the probe templates.
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6.3.2 Baseline Algorithms

To assess the performance of the proposed ARBE algorithm for set-based face verification, closed

set identification and open set identification, the PAM [53], NAN [85], and DR-GAN [64] were

selected as a baseline. They are state-of-the-art algorithms in set-based face recognition. Since

the above methods generate real signatures in different dimensions, they were also compared to

the state-of-the-art face retrieval algorithms, LSFS [68] and Face-int32 [18], where the binary tem-

plates were generated. In particular, the results from PAM, DR-GAN, and LSFS were copied from

the original papers, because the results were reported for the same dataset using the same protocol.

Although the performance on IJB-A was also reported in the original paper of NAN, the attention

block was fine-tuned on IJB-A dataset. To conduct a fair comparison, NAN was implemented as

described in the original paper, but used a different backbone network and a different loss function.

Specifically, the backbone network and loss function are kept the same with the proposed ARBE.

The Face-int32 was implemented using the same backbone network and primary loss. All algo-

rithms were trained on Webface and tested on IJB-A with face detected with MTCNN1 and aligned

as Liu et al. [46] described.

6.3.3 Experimental Results

Experiment 1: The objective of this experiment was to assess the performance of ARBE at a code

length of 256 against state-of-the-art approaches for three tasks, (i) verification, (ii) open set iden-

tification, and (iii) closed set identification. Theoretically, a 256 dimensional binary template can

represent at most 1.1579209×1077 subjects. For verification, the true accept rates (TAR) when the

false accept rate (FAR) is equal to 0.01 and 0.1 was reported. Similarly, the true positive identifi-

cation rates (TPIR) when the false positive identification rate (FPIR) for the open set identification

1https://github.com/pangyupo/mxnet mtcnn face detection
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is equal to 0.01 and 0.1 were reported for open set identification. The closed set identification

was conducted by removing the subjects that only appear in the probe templates. The correspond-

ing rank-1 and rank-5 identification rates were reported. A summary of the results is provided in

Table 6.1. The proposed ARBE achieves the best performance in all seven metrics compared to

two other binary templates. ARBE achieved higher or comparable performance compared to the

real-valued templates. To better understanding the contribution of each design component in the

whole framework, additional ablation studies were performed.

Experiment 2: The objective of this experiment was to verify the contribution of different design

components in ARBE framework from three aspects, (i) code structure, (iii) fusion stage, and (iv)

similarity. Results are summarized in Table 6.2. In particular, in the last row, results of the proposed

design is reported. On the first row, the proposed recursive embedding is compared with sequential

embedding regarding different code structures. The sequential embedding was implemented using

a fully connected layer (i.e. linear projections). The proposed recursive coding structure performs

better than the sequential structure. On the second row, the results are fusion strategies on different

stages. “Early” denotes fusion at real-valued feature level, like NAN [85] and QAN [47]. Then, the

recursive embedding was learned from the fused real-valued template. The label “Late” denotes the

proposed loss-level fusion. The results indicate that the latter was better. The third row represents

results obtained by replacing angular similarity with Hamming distance. The performance drops

significantly when using Hamming distance. On average, the impact of similarity measurements

had the largest impact, and the fusion stage had the smallest impact.

Experiment 3: The objective of this experiment is to assess the performance of ARBE for different

code lengths. The CMC curves for different code lengths (i.e. 256, 128, 64, and 32) are presented

in Figure 6.3. The performance dropped when decreasing the code length. The 256-bit templates

achieved comparable performance with the 512-bit templates, and this performance reached the
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upper bound.

Figure 6.3: CMC curves for different code lengths.
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Chapter 7

Conclusion and Future Work

This dissertation is focused on the problem of set-based face recognition. The primary contribution

was achieved by advancing set-based face recognition with more compact templates and more

effective matching algorithms. The problem and existing literature were analyzed and discussed

to identify the challenges and limitations that restrict performance. In this dissertation, a series

of algorithms were proposed to address the challenges and overcome limitations in set-based face

recognition.

The SPML was first proposed to generate the gallery template with a reduced number of pro-

totypes and learn a distance metric for similarity measurements. As demonstrated, the proposed

approach can fully utilized the training data to compress the gallery image set while learning a dis-

tance metric tailored to set-to-set matching. The experimental results indicated that SPML can use

a few prototypes to represent each gallery image set. Hence, it reduced the storage requirements

and testing time cost while improving the identification accuracy. The corresponding sensitivity

analyses indicated that SPML is robust to the number of prototypes used, the presence of outliers

in the gallery and probe, as well as the prototype initialization strategy. The idea of a joint prototype
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and distance metric learning for set-to-set identification can be employed in conjunction with other

hull models and distance metric learning objective functions. Ablation studies on prototype learn-

ing and metric learning show that these two processes work together to improve the performance

of SPML. A failure case was also investigated and an over-fitting issue was observed. Despite its

many advantages, the current form of SPML can be further improved in the following aspects (i)

address the over-fitting issue using regularization, (ii) extend it to unseen subjects, (iii) leverage

prototype and metric learning in a different way, and (iv) embed different objective functions into

this framework.

To design an algorithm with better generalization properties and take advantage of recent ad-

vances in deep learning, CDN is proposed. CDN learns a deep feature representation and a con-

fidence score for each image in an image set. The confidence scores are the quantification of the

confidence level of each image in an image set that dominates the contribution of each image to

the final decision. As demonstrated, CDN improved the rank-1 identification rate for multi-probe

face identification in the selected datasets. CDN exhibited superior performance when image sets

contained large pose variations, whereas the improvements were not significant for image sets

containing larger numbers of images. Several visual properties of the original image (e.g., pose, il-

lumination, and skin color) were identified to affect the confidence score. However, the framework

was not flexible enough with the existing sample-based FR system, joint retraining of the feature

representation and confidence score are required. Moreover, the training process of CDN requires

meticulous sampling for image sets and triplets. CDN can work for both verification and identifi-

cation tasks. But the matching process is computationally expensive when extended to set-to-set

matching.

CPN was then proposed to extend CDN into a plug-and-play module, which is more flexi-

ble with sample-based face recognition systems. CPN can be added to any sample-based face
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recognition system to enhance its performance for set-based tasks without retraining the original

face recognition system. Similar to CDN, it can also quantify the confidence level for each im-

age in a set. Using the generated confidence score, it aggregates the feature representations of

the original images into a single template. The training and matching processes are simplified.

As demonstrated, CPN improves the state-of-the-art sample-based face recognition system in the

task of set-based verification, open-set identification, and close-set identification in the selected

datasets. CPN exhibits superior performance when image sets contain pose variations. Statistical

tests are provided to analyze the correlations between the learned confidence scores and six visual

attributes. It can be observed that the learned confidence scores show significant bias towards facial

resolution, poses, gender, skin color, lighting condition, and occlusions. These biases are related to

both the training data distribution and the performance bias of the backbone template. Despite its

many advantages, the current form of CPN can be further improved in many aspects. First, current

regression from the input image to the output performance measurements is not accurate enough.

New regression models can be employed to provide better performance predictions. Second, there

are many other performance measurements. Which one is more appropriate to be used to represent

the confidence level? Third, current confidence scores represent the confidence level of a single

sample. Is it possible to predict the confidence level of a comparison, based on both of the images

to be compared?

In the end, the ARBE framework is proposed to generate a fixed-length binary template for

a face image set. It combines the attention-based set aggregation used in CDN and CPN with

recursive binary coding. With the same coding length, ARBE can enhance the discriminative in-

formation while restricting the number of projections used. As demonstrated, the proposed ARBE

could achieve better performance on set-based face verification, open and closed set face identifica-

tion compared with the state-of-the-art binary templates. The performance of ARBE is also better
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or comparable with selected real-valued templates, while the template size is much smaller. Abla-

tion studies have demonstrated that the proposed recursive coding structure, the angular similarity,

and the bit-level fusion all contribute to the final improvements. Despite its many advantages, the

proposed ARBE is just a first exploring of binary template for face image sets. This problem can

be further analyzed in the following aspects: (i) the code structure for fast retrieval, (ii) the rela-

tionship between code length and maximum number of subjects to represent in practice, and (iii)

cryptography-friendly binary template for matching.
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