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ABSTRACT

The purpose of this dissertation is to analyze the 

velocity development of laminar incompressible flow in the 

entrance region of a straight duct with an unchanging 

eccentric annular cross-section. A linearized version 

of the governing equations is solved under the assumptions 

that the velocity is zero on the duct wall and that the 

initial velocity profile is uniform across the cross­

section. The analysis leads to a two-dimensional eigenvalue 

value problem which is then posed in the appropriate 

Hilbert space. Galerkin's method is shown to converge 

for, and then applied to, this eigenvalue problem.

December 1974
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CHAPTER 1

INTRODUCTION

In a straight duct with an arbitrary but unchanging 

cross-section, the laminar flow of an incompressible fluid 

undergoes a velocity development from an initial profile 

at the entrance of the duct to a fully developed profile 

far downstream. The region where this development occurs 

is called the entrance region of the duct. Analytical 

expressions for the fully developed velocity have been 

obtained for ducts of various geometries. However, due 

to the nonlinearity of the governing equations, an 

analytical expression for the velocity in the entrance 

region has never been obtained even for the simplest 

geometries.

In 1964, Sparrow et. al. [1]* proposed a linearized 

version of the momentum equation and then proceeded, after 

making several assumptions, to solve the entrance region 

problem for two ducts: the parallel-plate channel and the 

circular tube. Since their solutions compare favorably 

with experimental results, their linearization procedure 

has been applied to ducts of other shapes. In particular,

^Numbers in brackets refer to references in the 
bibliography.

1



2

Wiginton and Wendt [2] have generalized this procedure 

and have obtained results for the rectangular duct. A 

report by Shah and London [3] contains a summary of 

research in this and other areas.

Using the Sparrow linearization procedure, we 

propose to analyze the velocity development in the 

entrance region of a duct with an eccentric annular 

cross-section. This analysis leads to a two dimensional 

boundary value problem which we solve by the method of 

Galerkin. Since the Sparrow procedure is applicable to 

ducts of various shapes, we now state the problem and 

present part of the analysis for a duct with an arbitrary 

cross-section.

We consider steady state laminar incompressible 

flow in a straight duct with an arbitrary but unchanging 

cross-section. The duct axis is taken to be in the 

direction of the positive z-axis and the duct entrance 

is assumed to lie in the xy-plane (see Fig. 1)*.  The 

equations which govern the fluid motion in the duct are 

the z-direction momentum equation and the continuity 

equation. For this type of flow, they simplify to

*The figures for Chapters 1 and 2 are contained in 
Appendix A.

V • grad w = - — + \>V w (1-1)p 9z

and
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div V = 0 , (1-2)

respectively (see Appendix B). In these equations, 

V = (u,v,w) is the velocity vector,p (x,y,z) is the 

pressure, p is the density, and v is the kinematic viscosity.
2

The symbol V represents the three dimensional Laplacian 

operator in x, y, and z. We now make the following 

assumptions:

2
(i) the term —y is negligible compared to 

9zZ

2 2
d w 9 w

2 + 2 '9x 9yz

(ii) the static pressure p(x,y,z) = p(z) has 

z dependence only.

Equation (1-1) becomes

V • grad w=--^+\)Vw (1-3)
p dz

2
where the symbol V now represents the two dimensional 

Laplacian operator in x and y. At this point of the 

analysis, we replace equation (1-3) with the Sparrow 

linearized version:

Sw 2
e(z)W — = Q(z) + vV w (1-4)

dz
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where W is the average velocity over the cross-section

A, e(z) is a to-be-determined function which weights the 

average velocity W, and Q(z) is another to-be-determined 

function which includes the pressure term and the residual 

of the inertia terms. Integration of equation (1-4) over 

the cross-section A yields

v , 2Q(z) = - — f V w dA .
A A

Thus by Green's theorem,

- - Vc IdS (1-5)

where 0 represents the boundary of the cross-section and 

N represents the outward normal. Since e(z) is unknown, 

we temporarily suppress it by introducing a stretched 

axial coordinate z defined by

dz = e(z) dz . (1-6)

Using equations (1-5) and (1-6) equation (1-4) becomes

W
3z Ac

dw 2— dS = vV w 
9N

d-7)

The problem undertaken in this dissertation is to solve 

equation (1-7) for w(x,y,z), the z component of the 

velocity vector, under the following conditions:



5

(i) the function w(x,y,z) = 0 on the duct wall.

(ii) the initial profile at the duct entrance is 

uniform across the cross-section, i.e., 

w(x,y, 0) = W.

We now introduce the following dimensionless 

variables:

/• X A W(1) <t> = -w

(iv) e
R

N
(v) n

'A

S
(vi) s

A

* z

. ... D w A(vn) R = -----
v

Substitution of these variables into equation (1-7) yields

9<t> . , ,— + di — ds3g yc dn
2

V <}) (1-8)

where the symbol V represents the two dimensional



Laplacian operator in ? and n. We seek a solution to 

equation (1-8) of the form

6

<j>(C,n,8) = 4>e(C,Ti,3) + (1-9)

where ^^(^.t]) is the fully developed velocity and

4>e(5»n>3) is a difference velocity. Substitution of 

equation (1-9) into equation (1-8) yields

[v2<t>
e

3d)
-^ds]

C 9n98

2
+ [V (|)^ - 4 —- ds] = 0 .

f c an
d-io)

The fully developed velocity <J)f (£,n) is a solution of

2 . . dp
v O/S.n) - (1-11)

where

<l>f(^,n) = 0 on C . d-12)

The pressure drop is assumed z-independent. Using 
dz

Green’s theorem and equation (1-11) we obtain
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r 9<{,f r 2 -
L -dr ds =■ /- v ♦ dA 

C 9n A f

- A dz

= 5b
dz

since the pressure p(x,y,z) = p(z) is assumed to be a 

function of z only. This shows that the second term in 

equation (1-10) is zero, i.e.,

Equation (1-10) becomes

V2<|) 
e

2 ,V (ji -6 -----  ds = 0 .
f c 9n

34> 3<f>
—ds = 03 3 q 9n

d-13)

d-14)

Clearly, the difference velocity <|)e(? ,n ,6) is of 

significance only in the entrance region, L.e.,

Lim (f) (C,ri,3) = 0 . (1-15)
g+oo e

With condition (1-15) in mind, we seek a solution to 

equation (1-14) of the form

U,n,3) = I c g. (5,n) exp(-a.B) (1-16)e j=]_ J J J
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where c., g., and a. are to be determined. Substitution of 
J J J

equation (1-16) into equation (1-14) yields equations of 

the form

2 2 , 9giVZg5 + a.g. = —- ds (1-17)
J J J C 9n

for the determination of the g.’s. The g ’s are to 
J J

satisfy the boundary condition

gj (?,n) = 0 on C. (1-18)

The above analysis does not depend on a particular 

cross-sectional geometry. We now consider an eccentric 

annular cross-section (see Fig. 2). We have two 

boundary value problems to solve. One of them is the 

eigenvalue problem

-72g(S,n) + |L I1 ds = Xg(g,n) d-19)
c 9n

where

g(?,r]) =0 on C (1-20)

(see Fig. 3). The other equation to solve is the fully 

developed velocity equation:
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V2<t>f (C,n) - 4>_ ds = 0 (1-21)

where

<t>f(^,Tl) = 0 on C . (1-22)

We do not choose to solve equations (1-19) and 

(1-21) on the annulus. Instead, in Chapter 2 we trans­

form the annulus conformally onto a rectangle and trans­

form the eigenvalue and fully developed velocity equations 

accordingly.

In Chapter 3, we formulate our eigenvalue problem 

in a Hilbert space setting. First, we define the 

appropriate Hilbert spaces and an operator L. The operator 

L is then shown to be symmetric and positive definite. 

Finally, we define the energy space which is the space 

where Galerkin's method converges.

In Chapter 4, we find a linearly independent complete 

sequence for the energy space. We use linear combinations 

of elements of this sequence to approximate solutions of 

equation (2-26).

Chapter 5 contains an explanation of the method of 

Galerkin for eigenvalue problems and the proof of con­

vergence for our particular operator L. The approximate 

eigenvalues of equation (2-26)are found by setting the 

Galerkin determinant equal to zero. In Chapter 6, we 
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obtain expressions for the inner products required in 

the Galerkin determinant.

In Chapter 7, we solve the transformed fully 

developed velocity equation. The method of solution is 

to expand in a Fourier series.

In Chapter 8, we give a procedure for finding 

approximations to the dimensionless velocity



CHAPTER 2

THE TRANSFORMATION

In Chapter 1, we stated that we are seeking a 

solution <j> of equation (1-14) of the form

00 2
4> (5,n,3) = Z c.g.(?,n) exp(-a.B) 
e j=l J J J

(see Fig. 2). Since our flow is laminar, our geometry 

is symmetric with respect to the ^g-plane, and the 

effect of gravity is neglected, <|> is symmetric with 

respect to the ^g-plane. These assumptions also imply

dtf’e _
that -----  = 0 on B (see Fig. 3) . Thus we may assume that9r]
the g.(5,r)) are symmetric with respect to the £-axis so 

that we need consider only the lower half of the cross­

section of the duct when solving

2 a<,v gU,n) - ^5- ds = Xg(£,n) (2-1)
c dn

where

g(?,n) = 0 on (3 . (2-2)

11
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By Green’s theorem and the symmetry of g, we have

3 g 2 
— ds = /_ V g dA

0 9n A

= 2/_LV2g dAL
A

= 2$_ _L || ds 
B,C 3n

where A^, B, and C^1 are as indicated in Figure 4. Thus 

we must solve the equation

2 2 -L
-V g(5,n) + 2J_tV g dA = XgU.n) (2-3)

A1"

where

g(C,n) =0 on CL (2-4)

and

3.S= 0 on B . (2-5)
dn

We choose not to solve equation (2-3) on the lower 

half of the eccentric annulus but to transform this 

region onto a rectangle and solve the transformed 

equation. We use a composition of transformations to 

achieve our purpose. The first transformation maps 

the lower half of the eccentric annulus onto the upper 

half of a concentric annulus with center at the origin.
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The second transformation maps the upper half of the 

concentric annulus onto a rectangle. We now present 

the details of these transformations.

Considering Figure 3, we recall that nothing has 

been said about c^ and C2,i.e..about the location of the 

eccentric annulus on the £-axis. We locate the eccentric 

annulus in such a way that the two boundary circles form 

a coaxial system of circles with the £-axis as the line 

of centers and the p-axis as the radial axis. It is 

shown in [5] that such a location is possible and that 

the circles have the following equations:

2 2 C1
C : + n + 2—C + c = 0 (2-6)

1 /A

2 2 c9
C : E, + n +2 + c = 0 (2-7)

2 /K

where c , c , and c are to be determined. We have that 
1 2

2 2
C1 2 2 C1 rl

(? + — r + n = - c =
VK A A

and

2
2 2 2 c2

+ — ) + n = -* -
/A A

2
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Solving the equations

c2 - ci = P

2 2 2
r2 - rl + P 

c = ---------------------
2 2p

2 2 2 2
c2 - r2 C1 - rl

A A

(2-8)

(2-9)

(2-10)

For convenience in this and later chapters, we set

(i) K1 = /c^l + r1

(ii) K2 = /c-l - r^^

(iii) K = Vc- + r 
3 2 2

(iv) = /c2 - r2
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(v) K5 = In
K3+K4 ]

k3 - k4

K, + K9
(vi) K = In [ ]

6 K1 - K2

(vii) K_ = K - K 
/ 6 5

Ki - K2
(viii) K = ------- -

8 K1 + K2

(x) K
10

K11

K9

2 
(Kx - K2)

2K1K2

2 2 2
(Kx - K2) 

2 2
4K1K2

Kj + K;

2K1K2

(xii) K 
12

(xiii) K13

(xiv) K 
14

(xv) K 
±5

k3 - k4
K3 + K4 

2
<K3 " KP

2K3K4

2 2 2(k3 - k4)
2 24K^2

2 2
k3 + k4

2K3K4
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We now show that the bilinear transformation

z + p
W (z) = L + in. = ---------

1 1 1 z - p 
(2-11)

where z = £ + in and p = /c maps and (?n - plane)

onto circles (S^n^-plane) whose centers are at the origin.

Solving equation (2-11) for E, and n yields

2 2
 p[(q - 1) + rij 1

£= <v1)2 + h

and

( 2-12)

n = 2 2-l)z + n^
(2-13)

Substitution of equations (2-12) and (2-13) into 

equations (2-6) and (2-7) yields
pl 2

, 2 2 Ci - Vex - r-i
C (Fn-j -plane): ^+11=  -------=== (2-14)
1 1 1 11 / o 9

ci +VC1 + r!

/2 2
2 2 c9 - x/c9 - rn

c2 <^1T11-Plane): h + T1i = --- ' • (2-15)

Figure 5 shows the location of and C2 in the

plane (C^ and respectively). Thus W-^(z) maps the
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circles and C£ onto circles C| and C2 with centers

at the origin. That W^(z) maps the lower half of the 

eccentric annulus onto the upper half of the concentric 

annulus is seen from the equations

2 2 2
£ + T] - p

2 2
(C-P) + n

(2-16)

-2pn
n.. = ---------7-------- 21 U-P) + T)

(2-17)

which are found by solving equation (2-11) for E, and n .

We now apply the transformation

W (z ) = E, + in = Log W = log |W | + i arg(W1). (2-18)

Since the Log transformation maps circles onto straight 

lines, the upper half of Figure 5 is transformed onto the 

rectangle shown in Figure 6. Hence the transformation

z + p
W (z) = Log - ----- -- (2-19)2 z - p

maps the region shown in Figure 4 onto the region shown 

in Figure 6.

The Jacobian J of the transformation W^(z) is given 

by
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J(^n>Tin) = (5r n
2 2 E2n2

-1
? n

T12 ^2

where,e.g.,^ represents the derivative of E, with 
^2

respect to ^2 [6]. A straight forward, but tedious

calculation shows that

J(C,no) = -o-? (cosh E - cos n ) • (2-20)2 2 KZK 2 2
1 2

Some properties of the Jacobian are presented in

Appendix C. In terms of the coordinates 52 and n2,

equation (2-3) is given by

2
■J^2,n2) 7 S (C2’n2)

2
+ 2 /_ v g dA = XgU q ) .

A^ z 2 22
(2-21)

Conditions (2-4) and (2-5) are given by

g(^2’n2^ = 0 on c2

and

dg(?9,n9) _
------- -—= 0 on B

3n2

respectively (see Fig. 6).

(2-22)

(2-23)
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the transformationWe now make

(2-24)

(2-25)

The transformed region is shown in Figure 7. The

transformed equation is

2
(2-26)3

where

(2-27)on

and

(2-28)on

thatWe note

1
(2-29)

In

dA3 =

g(?3,n3) = 0

A3
- Ag(S3,n3)

C3

53

=3 •

n3 n2

terms of the transformed variables

A3 J^3’n3

2 
"J^3’T13) V S (^3,n3)

= ? - Kc
2 5

and r]^, the

------- —3- = o 
dn3

= %
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equation for the fully developed velocity is given by

2-J(C3>t]3) V (C3,n3)
o —

+ 2 /_ V * dA_ = 0
s £

(2-30)

where

<f>f (53>n3) = 0 on C3 (2-31)

and

3|f(5q,nq) 
--------- -2—— = 0 on B_ .

9n3 3
(2-32)

For convenience in later chapters, we make the following 

notation changes:

(i) g x

(ii) n y 
3

(iii) A3 -> A

(iv) B B

(v) C3 ■* C



CHAPTER 3

A HILBERT SPACE SETTING FOR L(g) = Xg

Let us formulate our eigenvalue problem in a Hilbert 

space setting. Consider the Hilbert space H = {L9(A);( , )} 

of all square integrable real-valued functions defined on 
 — *

A. The usual inner product for L2(A) is defined by

(g,h) = /_ gh dA
A

but for our purposes it is advantageous to consider the

inner product

(g.h) - dA
J A J

A 2
where J = J(x,y) = (cosh(x+K^) - cos y) . We set

K1K2

llgll = /<g,g) and ||g|lT= /(g.g)-• 
J J

LEMMA 3-1: Let q(x,y) be an element of L^^and p(x,y)

be a continuous function defined on A. Then pq is an element

of L2(A).

We, of course, consider functions equivalent if they 
differ only on a set of measure zero. In the sequel we will 
usually require continuous representations from the resulting 
equivalence classes.

21
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PROOF:

Since p(x,y) is continuous on A, there exists a real
n n __

number M such that |p(x,y)| < M. Thus /_ (pq) dA,
A

2 —
which is less than M /_ q dA,is finite since 

A
2 —

J— q dA is finite.
A

THEOREM 3-1: = {L^A) ; ( , ) } is a Hilbert space.

PROOF:

Let g and h be elements of H . By Lemma 3-1, and
2 Zj

-Jl are also in H . This implies that
/J 2

(g.h) = /- dA = /_ -2- dA
J a J a Zj XT

is finite,!.e. , (g,h) is defined. It is easy to see that

(1) (g,h) = (h,g)
J

(2) (g + h,k) = (g,k) + (h,k)
J J *J

(3) (ag,h) = a(g,h)
u J

where g, h, and k are in H^ and a is a real number. Also,

ct2 _
(g>g) T = /- dA > o

J A J

if g + 0 since J(x,y) is positive on A. Thus ( , ) defines

an inner product. We now prove completeness. Let 
00

^•Sk^k-l be a Cauchy sequence in H2. This implies that
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2

11^- W - I- (gm " Sn dA - I |g - g II 

Zl ZJ A . J m n j

converges to zero as m and n approach infinity. Since

Sk
Zl k=l

is Cauchy is there exists a g in so that

I Isn §11 =
J

converges to zero where g = ZJ g’. Since g is an element of 

^2’ ^2 "i"8 comP^ete and hence is a Hilbert space.

THEOREM 3-2: The mapping T: H^ -*• H^ defined by

T(g) = A g

is a Hilbert space isomorphism.

PROOF:

Clearly T defines an isomorphism between H^ and H2. Also,

(Zjg)(ZTh)  
(T(g),T(h)) = /_ ------------------ dA = (g,h) .

J A J

Thus T defines a Hilbert space isomorphism.

Define a subspace M "of H^ as follows: 

element of M if and only if

Let g be an

(i) g, the first partial derivatives of g, and the 
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second partial derivatives of g are continuous 

in the closure of A.

(ii) g = 0 on C and = 0 on Bay

Now define an operator L: M -> by

2 r2 -

2  2 - 1 -
= -J-V g dA + 2 J_V g dA /_ 4 dA

A A A J

= 0

since J_ i dA =
A J

L<g) = -JV g + 2 J_V g dA .
A

Note that L(g) is continuous in the closed region. Our 

problem then is to solve the eigenvalue problem

L(g) = Xg (3-1)

where g is an element of M and M is contained in

THEOREM 3-3: If g is an element of M, then (l,L(g))^ = 0.

PROOF:

For g in M, we have that

1 2 2 - -
(l,L(g))T = J_ 7 (-JV g + 2 J_V g dA) dA

J A J A
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COROLLARY 1: If X, g is a solution of (3-1) for which

X/0, then (l,g)^ = 0.

PROOF:

We have that X(l,g)j = (l,Xg)J = (l,L(g))J = 0.

THEOREM 3-4: Let X,g and p,h be solutions of (3-1) for which

X / ]j. Then

(g.h) = 0.
J

PROOF:

We have that

X(g,h) = (Xg,h)
J J

= (L(g),h)j
(-JV2g + 2 J_V2g dA) h

A
= J-------------------------------------- dA

A J

2 2 - Tn -
= -/_hv g dA + 2 J_V g dA /_ s dA 

A A A J

r 2 -= -f_hV g dA 
A

since (l.h)^ = 0. Similarly,

2 -
P(h,g) = -J_gV h dA

J A

By Green’s Theorem,
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2 2 —
(X - p) (g,h) = /_ (gV h - hV g)dA

J A

ds

B .

= M f| H3. Then 

to solve

L(g) = Xg (3-2)

where g is an element of N and N is contained in . We 

assume from now on that the domain of L is N, i.e., 

L:N -> Note that is a Hilbert space since it is a

closed subspace of a Hilbert space.

We now show that our operator L:N -> H^ is symmetric, 

positive, and positive definite. The definition of these 

properties assumes that the domain of the operator is dense 

in the space. In the next chapter we will construct a set 

which is complete in H^ and whose span is in H; this remark

= (g^ - h

= 0

since

g = 0 = h on C

and

a8-3£=0 = yi-Sl. on
3n Sy 3y

This completes the proof.

Set Hg = {g in H2| (l,g)j = 0} and N

Theorem 3-3 and Corollarv 1 allow us
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implies that N is dense in

THEOREM 3-5: The operator L:N -> H is symmetric, i.e.,

(L(g),h)j = (g,L(h))j

for all g and h in N.

PROOF:

Let g and h be elements of M. The proof of the Theorem 

3-4 shows that

(L(g),h) = -f_ hV2g dA
J A

and

2 —
(g,L(h)) = gV h dA

J A

By Green1s Theorem

7 7 —(L(g),h) - (g,l(h))T =  (gVzh - Mg) dA 
J J A

- #g (S5H " hto> ds

= 0

Hence L is symmetric.
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THEOREM 3-6: The operator L:N ■* is positive, i.e.,

(L(g),g) > 0

for all g in N, g + 0.

PROOF:

Let g be an element of N. By Green’s Theorem

, 2
(L(g) >g) T = gV g dA

J A

= V<B)2+ <>2} dX- ^ds

- s-k <(t5>2 + 4f>2}dS

> 0

9g
since g = 0 on 0 and gn = 0 on B. If (L(g),g)^ = 0,

9g 9g —
then = 0 = on A. This implies that g is a constant 9x 9y re,

function. Since g = 0 on C, g must be the zero function.

Therefore (L(g),g) > 0 if g + 0. The proof is now complete.

THEOREM 3-7: The operator L:N ■* H is positive definite. i.e.,

there exists a positive number y such that

2 2
(L(g),g) > Y | |g| |

J J

for all g in N.
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PROOF:

Let g be an element of N. For every (x,y) in A, we have

g(x,y) = g(x,y) - g(0,y)

x 3g (e: , v) 
o

Using the Cauchy-Schwartz inequality, we obtain

|g(x,y)|2 * * = |Jx H dc| 
o

2
/_ gV g dA

A

x 2 x 2
< j i de / (ff) de 

o o

K . 2- K; // <8> « .

Hence

2 IT

iisii - r i 7
J o o

9 
|g(x,y) |

J(x,y)
dx dy

7T K K_ 9- 2 1
£ / / 7 {k / 7 (^f) --------- dx dy

oo 7 o Min J

Min J

2
2l_
Min J

Min J

71 K-, 2
I / 7 O d? dy

O O

7T K de 2/ / 7 rf) dx dy 
o o

/ {(I5)2 + (Is)2 } dA
a 9x 9y

-K2 ^5_ 

Min J

2L
Min J

(L(g),g)J
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Setting

vfain J

we obtain

2 2
(L(g) ,g) > Y I |g| I

J J

(3-3)

Therefore L is positive definite.

We have previously defined an operator L on a dense 

subspace N (the denseness will be shown in Chapter 4) of a 

Hilbert space and have shown that it is symmetric and 

positive definite. A new inner product ( , ) for N is
E 

defined by setting

(g.h) = (L(g),h)
E J

The completion of N with respect to ( , ) will be denoted 
E

by H and is called the energy space associated with the 
4

operator L. It can be shown that is contained in 

[7]. It is in the energy space where convergence of 

Galerkin's method will be established.



CHAPTER 4

A COMPLETE SEQUENCE FOR THE ENERGY SPACE H4

The purpose of this chapter is to construct a complete 

linearly independent sequence for H^. With this in mind, 

we first construct a complete sequence for H^. It is well 

known that

pl nirx oo
VK7sln K? >„-!

and

Fl [T
{ ~ / cos my }
V 7T , V 7T m=1

are complete orthonormal sequences for L2(0,Ky) and

£2(0,71), respectively. Hence

/ 2 mrx
! = S1" K? ln.

{ —sin cos my } 
Kj m,n=l

is a complete orthonormal sequence for H [8]. Since

31
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H and
2

are isometrically isomorphic via multiplication

by V3(x,y),

y! °o
— /J(x,y) sin — U

r 2 777----- 7 • n7rx t”{ ----- /J(x,y) sin -----  cos my }
/irKy K? m,n=l

is a complete orthonormal sequence for

THEOREM 4-1: The sequence

y
' 2 mrx oo

K J(x,y) sin -g- } y
7 7 n=l

r 2 T/ x . mrx _cot - J(x,y) sin -r— cos my }
/ttKj k7 m,n=l

is complete in

PROOF:

Let g be an element of H . Then g* = is2 Zj
of Let e be a positive number and set e*

an element

2 1.= e Min (y).

Denote the elements of by s^. Since is complete in 

q
H2, there exists an element 2 ck sk "*"n t^ie ^Pan ^2^

such that
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Ils’
q

- 1 
k=i

2
c. /J s. I I < ek k1 'j

We have that

e’ > ||g’ - I 
k=l

r- 2
ckf5 skl IJ

I q 2
J (8- Ck Jsk>

1 2
I (g " J,ck Jsk>

> [Min --------------- dA
J A J

so that
I q 2

[Min (j)] | |g - y c Js | | < e’
J k=l K k J

This implies that

q
I IS - 2 c Js | | < e 

k=l k k J

q
where \ c1 Js is an element of the Span (SQ) . Therefore 

k=l k k J

Sg is complete in

The next theorem shows one way of using to form

a complete sequence for H
3'
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THEOREM 4-2: Let h be an element of a Hilbert space 

{H;( , )} and C the orthogonal complement of h:

C = {g in H|(h,g) = 0} .

Assume that S U T = {s, } U {t.} is linearly 
k k=l J j=l

independent and complete in H where S is contained in

C and T is contained in H\C. If

g t.
J

is an element of C then g is an element of the

Span (S (J T’) where

T - 
(h,^)

tq+l oo
,j=1

PROOF:

Let

g = I a s + f b t. 
k=l k k j=l J J

be an element of C. We first consider the special 

where only a finite number of the b^ are different 

zero. Then g has the form

case

from
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g =
q

sk j=i J j

and so we must find c.’s such that 
J

£ b. t. = J c. { -—J— - --------------
j=l J J j=l J

  + (c - cp ----------  
(h.tj^)-----------2 1 (h,t2) 

- c 
q-1 q-2

V1 

(h.tq-P

cq-i (h,tq)

By equating coefficients, we obtain

_ C1

1 (h.tj^)
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Solving for the c.’s we obtain

c1 = b1(h,t1)

2
c = c + b9(h,t ) = 2 b.(h,t.) 2122 j=1 J j 

q-1
c = c + b 
q-1 q-2 q-1

(h,t ) = 2 b.(h,t.) 
q-i j-i j j

Also c = -b (h,t ). It is clear that we can find 
q-1 q q

c-i,e,,,c  but we have two equations for finding c 1 q-z q-1

It is easy to see that both equations yield the same value

for c ,. In fact, we have that 
q-i

0 = (h,g)

= 2 ak (h,s ) + 2 b (h,t ) 
k=l k k j=l J J

q
= 2 b (h,t )

j=l J J

which implies that

q-i
2 b (h,t.) = -b (h,t ). 

j=i j J q q
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q
Thus y b t. is in the set Span (T') . 

j=l j J

We now prove the general case by showing that

o° oo r. t • in
I bT = 2 c {----- 3---------------J-------- }

j=l J J j=l J (h,t.) (h,t. )
J J+1

j
where c. = 7 b (h,t ). We have thatJ k=l k k7

||2 b. t - 2 c { --------
j=l J J j=l J (h.t)

_2j_
(h,tj)

00 j - 1 t .
£ ( £ b (h,t )) -----

j=2 k=l k k (h>t )

CO

j=2
b 
j

00 t.
t. - (b.(h,t.)) ----- J—

J j=2 J J (h.tp

= 0

This completes the proof.
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COROLLARY 1: If S U T is a complete orthonormal sequence 

in H, then S U T* is complete in C.

COROLLARY 2: Let

S = { J(x,y) sin } J
V irK? Ky even n

2 _, . . nirx-----  J(x,y) sm -----  cos my
VirKy K? m,n=l

and

1 nirx <n+2) TTX
S = {-----  J(x,y) {n sin -----  - (n + 2) sin -------------}}

5 2K7 K7 K odd n7 7 7

Then S U S is complete in Ho .
4 5 3

PROOF:

Let g be an element of . Since S£ is a complete

orthonormal sequence for H2

[31 \ a /J(x,y) sin — + 

V irKy n=l n Ky

CO co 

2 1 b

m=l n=l 11111
/j(x,y)

nirx 
sin -----  cos my .

k7

Therefore g = I a J(x,y) sin — + 
n=l n Ky

CO

2 
n=l

b J(x,y) mn x '
nirx 

sin -----  cos my
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Thus each element of can be represented as an infinite 

linear combination of elements of S^. The set is 

linearly independent and complete in H^. It is easy to 

see that each element of is orthogonal to the constant 

function one and that

if n is odd. Also if n is odd,

l~2 (n+2)7Tx
— J(x,y) sin

2 r2Ky 
(n+2) j

1 nirx (n+2)7rx
-----  J(x,y) { n sin -----  - (n+2) sin ------------  } .
2K? K? K?

The conclusion now follows from the theorem by setting

H = H2 ,(,)=(,) , h=l, C = H3, S = S4,

T = SXS., and T’ = S .3 x 4 5

COROLLARY 3: The domain of the operator

2 , 2 -L(g) = - JVZg + 2 /_ V g dA
A

is dense in Hg, ie, N = Hg
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PROOF:

It is sufficient to show that S, H S_ is contained in N 4 5
since N is a subspace. Clearly each element of S U S 

4 5
satisfies condition (i) and the first part of

(ii) in the definition of M(see Chapter 3). Let

£ f / 2 T / \ • nTrX

f(x,y) = /----- J(x,y) sin -----
V 7tK7 K?

Then

3f

ay

' 2 9J nirx
----- sin -----  
7tK7 dy k7

Since -5— = 0 on B, — = 0 on B.
3y 9y

Let

2 nirx
g(x,y) = p= J(x,y) sin cos my .

V7rK7 K7

Then

= —- sin { -m J(x,y) sin my + ~ cos my} .
9y k7 3y

Thus = 0 on dy B. Hence each element in J S
5

satisfies

the last part of (ii). Also, each element of S, U S(. is
4 ■>

orthogonal to the constant function equal to 1. Therefore

N is dense in H
3'



41

We are now in a position to construct a complete set 

for The construction is based on the following:

THEOREM 4-3: Let L: N Hg be a symmetric positive
00

definite operator and let {g } be a subset of N.
n n=l

00 00

If {Lg } is complete in H_, then {gf,} is complete
n n=l 3 n-1

in the energy space associated with [9].

For our operator

2 , 2 -
L(g) = -JV g + 2/_ V g dA 

A

it is easy to see that

L(S,) = S o 4

and

L(S7) - s5 

where

n r /K7x2 . nrx ..S = { /----- (—-) sin -----  } II
° V irKy nir K? even n

2_______ i
(")2

7 k7

. nirx “sm ----- cos my }
k7 m,n=l 

and
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,K7x2 . nirxn(—) sin--------
mi K?

, in. , K7 .2 . (n+2)7rx
(n+2) (----- —) sin  ------ -— }

(n+2)7r odd n .

Since J is complete in Theorem 4-3 implies that

Sg (J Sy is complete in We state this result as

THEOREM 4-4: Sg (J Sy is complete in H^.

The next theorem follows from the definition of

Sg U Sy and the linear independence of S-^.

THEOREM 4-5: Sg J Sy is linearly independent.



CHAPTER 5

THE GALERKIN METHOD AND ITS CONVERGENCE

Galerkin's method is a technique for finding 

approximate solutions of certain types of operator 

equations defined on Hilbert spaces. We now present a 

particular formulation of this method and state conditions 

sufficient for convergence. Then we will show that these 

conditions hold for our operator equation.

Let L be a symmetric positive definite linear 

operator defined on a dense subspace N of the Hilbert 

space {Hg;( , ) } of real-valued square integrable 

functions defined on a closed domain A contained in E 2

which are orthogonal to the constant function one.

Consider the eigenvalue operator equation

L(g) = Xg (5-1)

where g must satisfy certain homogeneous boundary

conditions. Select a linearly independent sequence 
00

F = {f.J of functions with the following properties: 
1 i=l

(i) each element of F is in the domain of L .

(ii) each element of F satisfies the same homogeneous

43
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boundary conditions as does g .

(iii) F is complete with respect to the energy

space {H ;( , ) } associated with H
3'

The set F is called a set of coordinate functions for

the eigenvalue problem. We call a function h . of the 
nj

form

h 
nj

the n’th Galerkin approximation of a solution g^ of equation 

(5-1) with respect to the n'th Galerkin approximation X . of 
n nj

the j* th eigenvalue X. if the a., and X are defined as 
J nj

follows: first, we substitute h for g in equation (5-1)

and require that

(5-2)0

have that

nn
f )

i=l m J

(L(h .) 
nj

Xh , 
nj

an.f., 
1J i

{(Ltfp. £m)j
n n

(L(h .) - Xh . ,f ) nj nj nr

(L( Z 
i=l

n
2 an.

i=l
. , f ) - X(f. , f i m -g i m

n
a.,f.) - X 
ij i 1=1

for m = 1, 2,***,n. We
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Thus equation (5-2) yields the homogeneous system

n
I a“ {(f f ) - X(f f ) } - 0 

j_=l. 1 m e 1 m J
(5-3)

(m = 1, 2,•••,n)

of n equations in n unknowns. For it to have a unique 

solution it is necessary and sufficient that the deter­

minant D of the system be equal to zero, where is 

as shown on the next page. Setting Dn = 0 yields a polynomial 

in X, the roots of which we denote by X (j = 1, •••,n). 

Without loss of generality we assume X , < X „<•••< X 

Now to find the aV^ corresponding to X^ , we simply solve 

system (5-3) with X replaced by X ..
nj

We now state a sequence of theorems which lead to 

the convergence of Galerkin’s method. S.G. Mikhlin has 

proved the following theorems:

THEOREM 5-1: Assume that every bounded set in is com­

pact in . Then

(i) there exists a countable number of eigenvalues

of L(g) = Xg: 0 < Xx < X2 £ ••• Xj < ••• ;

Lim X. = =0 .

j-^oo J
00

(ii) the sequence {g } of eigenvectors is
J j=l

complete in both and [7].



(fi,fi)E - (f1.f2)E -

(t„,f) - A(f f ) (f ,f ) - Mf2,f ) " x(£2’£n\
21g 2 1 j 2 2 g z 2 j z g z n j

n’ UJn 1 E
(f ,f ) - X(f ,f ) x n n e n n j



47

COROLLARY 1: L is completely continuous in

THEOREM 5-2: Assume that L is completely continuous

in Then for each j, X converges to an eigenvalue

Xj of equation (5-1) as n Conversely,every

eigenvalue of equation (5-1) is the limit point of one 
00 

of the Galerkin approximate sequences,i.eof {X .} 
nJ n=i

for some j [10].

N.I. Pol’skii has proved the following:

THEOREM 5-3: Assume that L is completely continuous

in H^. Let {X^} be a Galerkin approximate sequence

00 

of eigenvalues and (h .} the corresponding Galerkin 
nJ n=l

approximate sequence of normalized eigenvectors. Then 
00

[h .} is compact in H. and every limit point of this 
nJ n=l 4

set is an eigenvector of equation (5-1). Conversely, every

eigenvector of equation (5-1) is a limit point of one of the

Galerkin approximate sequences of normalized eigenvectors

[11].

COROLLARY 1: Assume that g. is a limit point of 
oo J

{h .} so that h . converges to g. in H,. Then h n=l V J 4 ”kJ

converges to g. in H ,i.e.,in the mean. 
J

We now consider the case where L is the operator
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2 , 2 -

2 2
|B(g)| < (f |g] ds)

C

L(g) = -JV g + 2 /_V g dA 
A

and where N, ( , ) , H , etc. are defined as in Chapter 3.
J 3

Since we have already shown that this operator L is sym­

metric and positive definite on and that its domain N 

is dense in Hg, the previous theorems show that Galerkin’s 

method will converge if any set bounded in is compact 

in . As an aid in proving this we introduce the Hilbert
J (1) -

space W (A) = W of functions in H-i = L9 (A) having 2 j. z.
generalized first derivatives (see Appendix G for details).

The usual norm for W, ||g|| , is not convenient for our
W

purposes. We use an equivalent norm for W, ||g|| ., defined 
W

by

2 2 *2 *2 -
I |gI I * = IB(g)| + /_ {D g + D g} dA 

w a x y

where B(g) can be any bounded linear functional with 

respect to |[g|| which does not vanish for the constant 
W

function h(x,y) = 1 [2]. We define B(g) = /^gds; note 

that we are using our particular A to define B (g). We

now show that this B(g) satisfies the required conditions.

We have that
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Using the Cauchy-Schwartz inequality, we obtain

2 2
| B (g) [ < 27T J g ds

C

2
<_ 27r / g ds

S

, 2 2 *2 -
< 2iTk{ / {g + D g + D g} dA } 

a x y

2
= 27rk | | SI I

W

where k is some positive real number [7]. Also,

B(h) = / h ds = 2tt + 0 .
C

Thus our B(g) satisfies the required conditions.

THEOREM 5-4: For L(g) =

isometrically isomorphic

2 , 2
-JV g + 2 /_ V g dA , 

A

to a subspace of (A).

H. is 4

PROOF:

For g in N, we have that

9 2 r\cr 9 S)cr 2 —llsll * = 1/ g ds| + - {(j|)z + (|£)2} dA
w c a dx dy

■ /- {(|f)2 + (|S)2} dA

= (L(g) ,g)J

(5-4)
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Let g be an element of H^\N. Then there exists a 
00

sequence {gv} contained in N such that | |g - g| | 0
K k=l k e

as k oo. Since {g. } is Cauchy in H , inequality (5-4) 
k k=l

shows that it is Cauchy in W. Thus there exists a g in

W such that | |g^ - g| | A -> 0 as k We define
W

P: H4 W by

I
g if g is in N

g if g is in H^N .

It is not difficult to prove that P is well defined and 

linear. To see that P is one-to-one, assume that

P(g) = S and P(h) = g. Then there exist {g. J00 and 
k k=l 

00

{h } contained in N such that I I g. - g I I 0 and 
k k=l k E

| |h - h|| 0. Since P(g - h) = 0, | |g - h I | * 0.
K E k k W

Thus g^ - h^ converges to 0 weakly in W and hence in

H . Thus for p in N, (g, - K ,p) -> 0, ie, (g - h,p) = 0.
4 K k E E

Since N is dense in we have that g = h; therefore P

is one-to-one. Thus P is an isomorphism into W. The 

proof that P is an isometry is as follows. Let

P(g) = g and tgi,}00 be a sequence in N which converges 
k k=l

to g in H^. Then
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I Isl I = Lim I Is, I IE k-^oo k E

= Li-m I |gkl I * 
k->oo K w

= I|g|I * .
W

The proof is now complete.

COROLLARY 1: For all g in H.4

The importance of being able to consider as a subspace 

of W is seen in the following theorem:

THEOREM 5-5 (Imbedding Theorem): The injection mapping 

from W into = L2(A)is completely continuous [12].

From a previous remark, the next theorem establishes 

convergence of Galerkin's method for our eigenvalue 

problem.

2 9 -THEOREM 5-6: For L(g) = -JV g + 2 /_ Vzg dA, any set
A

bounded in H^ is compact in H^.

PROOF:

Let G be a bounded set in H^. By Corollary 1 of

Theorem 5-4, G is bounded in W. Hence by the Imbedding 

Theorem, G is compact in Hj. Since H^ and are 



isometrically isomorphic, G is compact in and hence 

in Hg. This completes the proof.
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CHAPTER 6

THE GALERKIN DETERMINANT

We now construct the Galerkin determinant for our 

eigenvalue problem. The set S U S7(see Chapter 4)o •
is linearly independent and complete in H^. Each of 

its elements is in the domain of our operator

9 2 —
L(g) = -J(x,y)V g(x,y) + 2 /_ V g dA

A

and satisfies the required homogeneous boundary conditions. 

We choose this set to be our set of coordinate functions.

For convenience, we set

F - {f.}“ - S, U S7 .
1 i-1 6 7

Since the elements of the Galerkin determinant Dn
(see Chapter 5) are of the form (f.,f.) - X(f.,f.) ,

1 J E 1 J J

it is necessary to evaluate the inner products

(f.,f.) and (f.,f.) for various combinations of
J J 1 J E 

elements of S, J S_.6 7
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The possibilities for the inner product (f^,f^) 

are given by

2 2 « nirx . pttx
_2_ ^2^2 ;K7 r ---------K7 n K7
irKj nr pr A o o (cosh(x+K^) - cos y)

(n,p even)

2 2 
2/2 Ax2 1 K1K2 

ttK nr + q2 A
7 K7

o

. nrx . prx
sin-^- sin\7~ cos qy 

r
o (cosh(x+K^) - cos y)2

dy dx

(n even)

JL. (iSZ)2 
2K? ^pir'

 dy dx

E±2 ( K7..)2 
2K? \p+2)r

sin H2IX sin (P-+_2_)-1T2£
,K7 it k?_________ K7
■'o •'o (cosh(x+K^) - cos y/2

(n even, p odd)

2 2
4 1 1 K1K2

rK? (nr) 2 + m2 (pr)2 + q2 A
K7 Ky



55mrx
sin —7T~ cos my sin
______

cos qy

(cosh(x+K^) - cos

2
(v) 7ZZ

✓ttK7

2 2
1 k1k2

(^Z+m2 A 
K7

dy dx

o o

nirx . dttxsm -rr- cos my sin
7 K7

o 
(cosh(x+K^) - cos y)

. . (p+2)7Tx
sm k cos my sm ------------

  (P+2) (___ ^2 7__________________K7
2Ky (p+2)it o o (cosh(x+K^) - cos y)^

(p odd)

2 2
1 K.Ko 

(iv) --------- -  -------
(2K?)Z A

K7 2 
{n(-2-) mir pTT

2

o o
k7 71 

5Z)2 
mr''

mrx pirxsm „ sm E„■ ■

(p+2) ((^)2

------------------------- L------  dy dx
(cosh(x+K^)- cos y)2

J 2
o o (cosh(x+K^) - cos y)

„ sin HS sin <Pt?hP= 
5/ K7 K7
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K7 2 K7 2
-<n+2) (; v;.-) P(^)

(n+2)7T P7T

sin (n"*"2) ttx s£n pirx
K7,tt K7 K7/ -------------- Z---------------- 1 2 dy dx
° ° (cosh(x+K^) - cos y)

K 2 K? 2+ (n+2) <(S2^> <P+2> <^)

. (n+2)7rx . (p+2)7TX
m sm

9
(cosh(x+Ks) - cos y)

dy dx }

(n, p odd) .

Thus each inner product (f^.fj) requires the evaluation 

of an integral of the form

• L> 11 • VII jxsin -7^— cos uy sm cos wyK tt K.-1
I = f 7J------------------------------------------- - dy dx

o o (cosh(x+K^) - cos y)

where t and v are positive integers and u and w are 

nonnegative integers. A closed form expression for I 

is derived in Appendix E.

The possibilities for the inner products (f.,f.)
1 J E
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are given by

<vll) sy (ft>2 sln sln dy dx

(n, p even)

(viii) —jj-i------- 2 f ?/ sin sin COS qy dy
7 (^)2 + q 0 ° 7 7

(n even)

/• x / 2 r P /K7x2 -K7 -TT . nirx . pirx
(ix) /------ {^c“ (—) J J sm —— sm dy dxk yirKy X2K7 Jo Jo K? K?

p+2 , K7 x 2 rK7 r'n‘ . nirx . (p+2) ttx ,- —rr-) I J sin -r- sin ■2Lr—"— dy dx}2K? Xp+2)V V Q K? K7

(n even, p odd)

, x 4 1 fK7 f11 . nirx . pirx , ,
(x) —-------------------- J 'J sm -------  cos my sin cos qy dy dx

"K7 (21)2 + 2 o o K? K7

. . s 2 n_ K7x2 rK7 r71 • n7rx • PKX(xi) {TT- (—) J ' J sm — cos my sm — dy dx
✓ttK7 2K7 p7r o o K? k7

_ (P+2) , K7 x2 
2K? (p+2) it

K
7/ sin cos my sin Ip+2)jix dy dx}

o o Ky K7

(p odd)
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1 K 2(X11) { n P <P^)

sin BI2£ dy dx
K? K?

K 2
n(p+2)

/ 7f sin sin <P+2)1T.X. dy dx
o o K? K7

k2K7 2- (n+2) p(?2)2

sln <n+2) g sin dy dx
o o K? K7

K 2+ (n+2) (p+2) (■^y7)

o

IT
J sin 

o

(n+2)irx . (p+2)-ax ,
------------  sin ----- „ dy dx

K7 K7 }

(n, p odd) .

The integrals in (viii), (ix), and (xi) are always 

zero. The expression in (vii) is zero unless n = p

in which case it is equal to —o . The expression in
Trn^
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(x) is zero unless n = p and m = q in which case it is

equal to
1

(21) 2 + m2
k7

The possible values for the

expression in (xii) are given by the following

THEOREM 6-1: If f. and f. are elements of S_, then
i J 7

8
if n = p - 2

(f-.f.)i J E

if n = p

:<z
8

if n = p + 2

0 otherwise .

We have now determined closed form expressions for all 

of the inner products required in the Galerkin 

determinant.

Once we have chosen n elements from F and have 

evaluated the appropriate inner products, we must 

determine the X*s which satisfy = 0. Solving

D = 0 for X is equivalent to solving the matrix 
n

eigenvalue problem

A x = XB x n (6-1)
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where

(f2,fl) (f2,f2)
IS IS

(f ,f-l) n’ Vg (f ,f )
n n E

and

B = 
n

(fn’fl) * * *

nJ 2j nj

n 1 J
(f ,f ) n n

(f^.f )
1 n J

If X is an eigenvalue of equation (6-1) and x is the 
nj nj

corresponding eigenvector, then

, n n nx . = (a. . , a , • • •, a )
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gives the coefficients for the approximation

n
V n c h = > a..f. .

nj i=l i

Since F is linearly independent and the determinants of

A and B are Gram determinants, A^, and B are nonsingular n n “ n &

[9]. In fact, since the operator

L(g) = -JV2g +

is positive definite, the matrix A^ is positive definite.

This implies that A can be written as

for some nonsingular matrix 0 . Defining p = — , we n A

now write equation (6-1) as

B x = pC 0 x n n n

which we in turn write as

G y = py

where

-1 -T
G = 0 B 0 n n n n 
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and

T
y = C xn

If p is an eigenvalue of equation (6-2) and y . is the 
nj nj

corresponding eigenvector, then

X . -J-
"J "nj

is an eigenvalue of equation (6-1) and

-T
x = C y . 
nj n nj

is the corresponding eigenvector. Thus we have reduced 

the problem of finding the X ^'s which satisfy = 0 

and the corresponding a^’s for h to the problem

of finding the eigenvalues and eigenvectors of the real 

symmetric matrix Gn; techniques for solving this latter 

problem are widely known.

The number n of coordinate functions to use in a 

particular approximation as well as which f to choose 

from Sg and which f^ to choose from is arbitrary. 

The next theorem shows, however, that approximations 

with all the f_- in S, do not contribute to the solution
-1- O

for 4>e> the difference velocity.
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LEMMA 6-1: The coefficients c. for the difference 
J

velocity (J> are given by

" ii i i2 (6-3)

PROOF:

From Chapter 1 and Chapter 2, we have that

00

(i) I (x,y,0) = 2 c.g (x,y) 
e j=l J J

(ii) <j) = <t>(x,y,O) = 1 
o

(iii) tj) (x,y,O) = tj) - c|> (x,y) . 
e of

This implies that

, (<i> - , <J>eg, -
/_ ° f J = /_ 1 dA

A j A J

00

= 2 
k=l

Ck<Svgj)J

= c. ||gj|2

J J J

by Theorem 3-4. We also have that
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J_ —2------ 4—1 = J_ _Q_J_ dA - -^-1 dA
A J A J A J

= (1, g.) - (<!>,,g.)
J f J J

-

by Corollary 1 of Theorem 3-3. Therefore

-(4>f, gj)j

THEOREM 6-2: Let

S3 ’ JA Sk

be a solution of L(g) = Xg where s is in S k o

k. Then the coefficient Cj corresponding to

series expansion of tf) is zero.
e

PROOF:

2
We set Vs, = b, s. . We have that k k k

for every

g in the 
j
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2 2
X(<f> ,g.) = (I ,-JV g. + 2 /_ V g. dA) 

f J J f J A J J

2 00
= (cDf,-JV g. + 2 y aj> J_ s dA) 

f J k=l k k A K J

2
= -Jv g.)

f J J

since J_ s, dA = 0 for every k. By Green's theorem, 
A k

2 , 2 -
g ) = - J_ (|)fV g dA 

£ J a 1 J

2 - d4>f 9Si
= - /_ g^V 4) dA + (g. - <|)f—) ds

A J f S J 3n £ 3n

2
= - /- (j) dA

A J £

dg. 3([)£
since g = 0 = d)^ on C and —L = 0 = t— on B.

i f an 3n

We have that

2 - 2 51-
- /- g.V (J), dA = - /_ JV 4)-^; dA

A J 1 A £ J

= -J & 51 dA

= 0
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since is a constant and /_ ~ dA = (l,g.) = 0. dz A J j j

Therefore ) =0. This completes the proof.
f J J



CHAPTER 7

THE FULLY DEVELOPED VELOCITY

The fully developed velocity <|)^ (in dimensionless 

variables) is a solution of

V2-»,(5,ri) = (7-1)
r dz

where

<f>f(^,n) = 0 on C (7-2)

(see Fig. 2 of Appendix A), 

dimensional form of equation

Heyda [14] has solved the

(7-1). His method of

solution was to write as the integral of the Green’s 

function for the Laplacian operator defined on an 

eccentric annulus. The evaluation of this integral leads 

to a series solution for (f)^. Heyda’s solution is defined 

on the original annulus. In order to have a solution 

defined on the rectangle, we now solve the transformed 

fully developed velocity equation. We use the method

of Fourier to obtain an expression for in terms of

the coordinate functions which were used in Galerkin's method.

67
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In Chapter 2, we saw that the transformed fully 

developed velocity 4>^(x,y) is a solution of the equation

o 9 —
-J(x,y)V g(x,y) + 2 /_V g(x,y) dA = 0 (7-3)

A

where

g(x,y) = 0 on C (7-4)

and

dg(x,y)
----- ;------ = 0 on B . (7-5) dy

2 
Since 2 /_ V g(x,y) dA represents the pressure drop, 

A

, 2
we can assume that J_ V g dA + 0. Under this assumption 

A

equation (7-3) can be written as

2 2v g = 77----7 (7-6)J(x,y)

where

g
g ~ , 2 —/_ V2g dA 

A

The boundary conditions become

g(x,y) = 0 on C (7-7)
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and

dg(x,y)
----- ------- = 0 on B 3y (7-8)

We consider the Hilbert space H 1 {L2(A);( , )}

which was defined in Chapter 3. Since a complete

orthonormal sequence for is given by

a r • nirx-,00, । , 2 .S. = { /----- sm ----- } U { -----  sin
y ttK? K? n=l /ttK?

nirx
-----  cos

K?

CO

my}
m,n=l

the function g(x,y) can be represented in the form

g(x,y) = I 
n=l

a sinn
nirx

K 
7

CO CO

n=l m=l
b mn

. mrx 
sm -----  cos my (7-9)

Since each element of S^ satisfies conditions (7-7) 

and (7-8), so does g(x,y). Substituting equation (7-9) 

into equation (7-6) yields
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CO

- z 
n=l

a n
sin nirx

K7

00 co 2 o
- 2 I {(21) +mz} 

n=l m=l Kj
b mn

. nirx 2sm cos my = ----------
K7 J(x,y)

Since the elements of S are orthonormal, it follows

that

a 
n

2 2
-4K7K1K2 ,K,.n 

n27T3A

nirx
sin "Ry 
------n dy dx 

o o (cosh(x+K^) - cos y)z

-8K K2K2
7 12________
7 27r{(n7r)z + (mK )Z}A

nirx
K sm cos my

f 1 f - ------------------ 2 dy dx .
° ° (cosh(x+K^) - cos y)

Closed form expressions for the integrals contained 

in (i) and (ii) are derived in Appendix F. Using these 

results, the Fourier series solution of equation (7-6) 

can be written in closed form.



CHAPTER 8

APPROXIMATIONS OF THE VELOCITY <j)(^,n,B)

The purpose of this chapter is to outline a procedure 

for finding approximations to the z-component

of the velocity in dimensionless form. Recall that in 

Chapter 2, we made the following notation changes:

(i) x

(ii) n3 ■  y*

(iii) A3 -> A

(iv) Bg -> B

*The figures for Chapter 8 are contained in Appendix A.

(V) Cg ■*  C .

We now revert to the original notation so that (C .Pg) 

again refers to a point on the rectangle (see Fig. 7).

The first step in our procedure is the selection of 

the eccentric annulus parameters: r^, r^, and p. The 

symbol r represents the radius of the inner circle, r9
1

71



72

represents the radius of the outer circle and p represents 

the eccentricity, i.e. ,the distance between the centers. 

Once rp and p are chosen, we calculate the following 

additional parameters;

(i) The area A of the original annulus:

2 2
A = 7r(r2 - ri) .

(ii) The location of the annulus on the £-axis: 

Cl’ C2 (see Equations (2-8) and (2-9) and 

Fig. 2).

(iii) The parameters related to the Jacobian:

K ,•••, (see Chapter 2).

(iv) The parameters related to the rectangle:

K ,•••, K? (see Chapter 2) .

(v) The parameters related to the (f^.f^,)

inner products and the coefficients of the 

fully developed velocity: K^,*ee,

(see Chapter 2, Appendix E, and Appendix F).
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(vi) The parameter p defined in the transformation 

W^(z) (see Equation (2-11)).

(vii) The minimum and maximum values of the Jacobian 

defined on the rectangle: Min(J), Max(J) (see 

Chapter 2 and Fig. 7).

(viii) A positive definite bound y for our operator 

L(g) (see Equation (3-3)).

In terms of the coordinates n3 and 8, the

velocity <j> is given by

KC,n_,B) = <i) (^,n0,e) + ^(C>n )
3 e ** 3 *33

(see Equation (1-19)). The fully developed velocity 

<f>f(?3,Tl3) is given by

± x ? . pirx , V V n • P7TX<l>,a_,n_) = I a sm —- + I y b sm — cos
f 3 3 p=l P K? p=1 q=1 pq k?

(see Equation (7-9)). We approximate it by truncating this 

series when the coefficients a , b become smaller than
P PQ

some preassigned value. We now approximate the difference 

velocity <i>e:
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(see Equation

use in our approximation of

(J S to use

The approximation

n
(j =

i=l

(see Chapter 5) .

we first

for i, j = 1, (see Chapter 6 andn.

form the matricesAppendix

A 
n

h 
nj

n
a. .f 

xj i

We must determine the approximation 
n

a. ’ s for i=l
ij

n, of g 's to 
j

(f ,f ) 
n n E

(f ,fn)2 2je

to approximate the g^1s (see Chapter 4).

hn^ of gj is given by

select n coordinate functions from F = S
6

X . to X. and the 
nJ J

(f >
1 2 E

calculate the inner products (f.,f.) and
1 J J

(fvf )
1 n e1 1 E

(fi.fJ
1 J E

E). We then

(f .f,)n 1 E

(1-16)). First, we select the number, say

(fn.f,)
z 1 E

. Then we 
e

2 c,g.(^n)exp(-X.B) 
j=l J J 3 3 j

00

<l> (£o,nQ,B) =

e 3 3

!,•••, n)

n. To do this
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and

find aNext, we

and form the matrix

6). then find the eigenvalues(see Chapter We

ofeigenvectors
nj

It follows that

X
nj

A 
n

G 
n

B 
n

-1 
C
n

T
C C n n

-T
B C 
n n

Cholesky decomposition of A 
n

p . and the 
nj

(fn,f )1 n<fl’f9)
2 J

n n jn 1 J

1_
“ P .

nj

(f2 2'j

!’ 1J

2-1'j

G (j = I,-.-, n). 
n

and
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-T n n
C y„. = (a , •••,a ) (j = !,•••,n) . n nj ij nj

To complete our approximation of a , we need approximations
*e

for the c.’s. We find these by using the formula

c, “ . . . .2

wherein we replace <t>
f

with its truncated series

approximation and with h (see Equation (6-3)).

point, we have our approximation of <]) in

coordinates ? , n , and 3,i.e.,we have 
3 3

Since we want <t>(C,n»3) , we make the following

substitutions:

At this 

terms of the

(£+P)2 + n2
S = % ln E 2------- 2] - K5

3 a-p)2 + nz

- 2p n
(ii) = arctan [-9------- 5------- r ]

3 c + nz - p2

(see Chapter 2). Recall from Chapter 1 that
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3(z ) =
7k R

We want the dimensionless variable g to be a function of 

z,i<e.,we want g(z) = —— . It is shown in [2] that
Vk R

z / e(B) dg 
g(z) = —— = -o--------------

/k R Vk R

where
3 2 <5,n,B)-| dA 
z A___________ d p

e(B) = 3<f)_ - 2 .
/ <$>(?,n,3)—7 dA 

A 9g

Using g = g(z) in cf>(^,T],3), we have the desired 

approximation to the velocity.



APPENDIX A

FIGURES

78



79

FIGURE 1
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- -TT 2 2» - i <r2 - rT) = 1

FIGURE 2
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FIGURE 3
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FIGURE 4
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FIGURE 5
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n2

FIGURE 6
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FIGURE 7



APPENDIX B

SIMPLIFICATION OF THE GOVERNING EQUATIONS

The equations governing laminar flow along the axis 

of a duct (see Fig. 1) are the continuity equation

3p -
—- + div(V) = 0 (B-l)

and the z-direction momentum equation

Dw 
ps = f 

z
_ 92 + 1_

3z 9Z
[u(2 | div V)]

3
3x

r /9w du [p(3x + 9z)]

, 9 3v 9w.1+ 7" [p(— + 7-)]3y 3z 3y
(B-2)

where

(i) V = (u,v,w) represents the velocity

(ii) t represents time

(iii) p(x,y,z,t) represents the density
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(iv) p(x,y,z,t) represents the viscosity

(v) p(x,y,z,t) represents the pressure

(vi) f = (fx»fy’fz) represents the external body

force

represents the substantial derivative [4] .

We are considering Newtonian fluid under incompressible 

steady state laminar conditions. We assume that there 

are no external body forces present. The effect of 

these assumptions on equations (B-l) and (B-2) will 

now be determined. The assumptions of incompressible 

flow and Newtonian fluid mean that p and p are constants, 

respectively. The continuity equation now simplifies to

div V = 0 (B-3)

and the z-direction momentum equation to

Dw  cPM - £z (B-4)

The substantial derivative of w, is given by

Dw 9w 9w dw 9w
Dt 9t U9x Vdy + W3z

Since body forces are neglected , f = 0 . The assumption 
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of steady state flow means that the flow in independent 

of time. The z-direction momentum equation now simplifies 

to

V • grad w = - — + vV^w (B-5)
p 3z

where

Pv = —
P

is the kinematic viscosity.



APPENDIX C

PROPERTIES OF THE JACOBIAN

We now establish several properties of the 

Jacobian

A 2
J(x,y) = o "n (cosh(x+K ) - cos y)

K1K2 5

THEOREM C-l: For a fixed x in [O.K?], J(x,y) is 

increasing on [O,tt] and for a fixed y in J(x,y)

is increasing on [0,K^].

PROOF:

Let x be an element of [O.K?]. Then

3J = 2A 
dy „2„2 (cosh(x+K^) - cos y) sin y

Since x is nonnegative and K is positive, cosh(x+K^)

is positive so that (cosh(x+K^) - cos y) is positive.

On (0,7r), sin y is positive and for y = O,tt, sin y = 0.

T
Therefore — is positive on (O.ir) which implies that 

3y

J(x>y) is increasing on [O.tt] for a fixed x. Let y be

89
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an element of [0,n]. Then

7^- = (cosh(x+K ) - cos y) sinh(x+Kt-) •
dX 5 3K1K2

Since sinh(x+K^) is positive on [0,K^], we have that

— is positive on [0,K7]. Hence J(x,y) is increasing 
9x z

on [0,Ky] for a fixed y. The proof is now complete.

COROLLARY 1: We have the following:

9J(x,0) _ _
(i)  ------- = 0 for x in [0,K?] .dy •

(ii) 9j(x„>21 = o for x in [O K J .

rl^r2 ~ *-rl + p]2)

9y /

COROLLARY 2: We have the following:

(i) The minimum of J(x,y) on the rectangle is

2 2 2 9
7r(r2 - rT) ([r2 - p] - rp

J (0,0) = ----- -----------------  2------- 2--------- •r=([r2 + P]2 - r=)

(ii) The maximum of J(x,y) on the rectangle is

J(K7,tt)
2 2 2

71 <r2 " rl^r2 " Erl ~ p] )



APPENDIX D

CALCULATIONS OF IMPORTANT INTEGRALS

The purpose of this appendix is to evaluate the 

following integrals:

/-•x t  f7r cos(ry)(i) l-l J A
-^(coshCx+K^) - cos y)

STTX
v exp (-rx) sin [cosh(x+Kt-) + r sinh(x+K[.) ]

(ii) I = J 7 -----------------------Ldx
2 o sinhJ(x+K5)

K-, exp(-rx) cos ^5^- [cosh(x+Kc) + r sinh(x+KR)] 
(in) i, = J 7-----------------------f1------------------ - ------------------------- — ax

0 ° sinli (x+K_)
D

where r and s are integers. We have that

it exp(iry)
I = Re J ------------------------------------2 dy

-it (cosh(x+K^) - cos y)

For convenience we set

Zq = exp(x+K^)
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and

= exp(-(x+K5)) .

If we make the substitution z = exp(iy), then becomes

I = 4 Re {-i $ f(z) dz} (0-1)
1 C

where

zr+1
f(z) - ----- —-9---------  2

(z-z0)2(z-z1)2

and

C: |z| = 1

is the unit circle. Since x is nonnegative and is 

positive, the Residue Theorem implies that

$ f(z) dz = 2iri Res(z,) (0-2)
C 1

where

Res(z-|) = Lim —Kz-z,) f(z)} .
1 z^Z1 dz 1

It is not difficult to show that



93

(r-l)z<r 1) - (r+l)z<r X)
Res (z,)-------------- 2-------------;------- 2--------

1 (z - z,)3
o 1

(D-3)

Substitution of equation (D-3) into equation (D-2) and 

(D-2) into equation (D-l) yields, after some manipulation.

 2tt exp(-r(x+Kg)) {cosh(x+K5) + r sinh(x+Kg)} 

sinh^ (x+K^)

We now evaluate I2. Consider the following functions:

£(x) =-%
exp(-rx) sin 

sinh^x+Kp

(ii) g(x) = - exp(-rx) sin coth (x+K^)

/•••s-izx S 7T . * S 7TX _ - । tz \(111) h(x) = - rrr- exp(-rx) cos -----  coth (x+K5) .

A straight forward calculation shows that

I = [f(x) + g(x) + h(x)J 
z o

- % (r2 + (J^)2} I 
K7

(D-5)

where
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I = / 7 exp(-rx) sin ~~ coth(x+K ) dx . 
o 5

Using the well-known fact that for x + K > 0,

00

coth(x+Kt-) =1 + 2 J exp(-2j(x+K )
5 j-1 5

we obtain

I = / 7 exp(-rx) sin dx 
o

<» K7
+ 2 exp(-2jK ) / exp(-(r+2j)x) sin dx

j=l 5 o K?

(D-6)

K7
Evaluation of [f(x) + g(x) + h(x)] and equation (D-6)

o

leads to, after considerable simplification, the following 

expression for

(D-7)
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We now evaluate X3- Consider the following functions:

exp(-rx) cos
(i) f(x) - % ------------ -------------2-

sinh (x+K^)

(ii) g(x) = - y exp(-rx) cos coth(x+K ) 
K-7 D

(iii) h(x) = — exp(-rx) sin coth(x+Kc) .
K7 k7 5

It is not difficult to show that

I = [f(x) + g(x) + h(x)] 7 
o

9 S TT ^7
- % {r + (—) }/ exp(-rx)

7 o
cos -----  coth(x+Kl.) dx .

K-, j

Calculations similar to those made in the last paragraph

then show that

s k8 ri3 - «-DS K1() (^_) - K14)

r S KR r
(-2-) K

2
-{r +

(D-8)



APPENDIX E

THE (f.,f^) INNER PRODUCTS FOR THE GALERKIN DETERMINANT
1 J J

The inner products needed for the Galerkin

determinant require evaluation of an integral of the 

form
^212. V7TX

sm k cos uy sin cos wy
I = ----------------------1-------------------------------------------- 1—--------- dy dx

o o (cosh(x+K^) - cos y)z 

where t and v are positive integers and u and w are 

nonnegative integers. Using equation (D-4) and the 

trigonometric identities

(i) cos uy cos wy = %(cos(u-w)y + cos(u+w)y)

tTTX . V7TX , , (t-v)TTX (t+v) 7TX
(ii) sm -----  sin -----  = %(cos ------------  - cos -------------) ,

K7 K7 K7 5

we can show that

1 = \ (h - T2 + T3 - I4)

where I
1’

I„, and I, are of the form 3 4
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K exp(-rx) cos ^^{coshCx+K-) + r sinh(x+Kc)l
I' = exp(-rK )/ 7 --------------------a- Z-------------  dx-

5 o sinh3(x+K^)

Using the equation (D-8) , I' simplifies to

s r
I' - -%((-!) KioK8 )

- 5 V9 - ^2k13i

The values of r and s for Ip I2, I3, and are given 

by

(i) 1^: r = u - w; s = t - v

(ii) r = u - w; s = t + v

(iii) r = u + w; s = t - v

(iv) 1^: r = u + w; s = t + v .



APPENDIX F

THE COEFFICIENTS OF THE FULLY DEVELOPED VELOCITY

The coefficients and b in the Fourier series n mn
expansion of the fully developed velocity require

evaluation of integrals of the form

. mrx
,k7 ,tt sin t? cos my

I = J 'J ------------------------------------y dy dx
o o (cosh(x+K^) - cos y)

where n is a positive integer and m is a nonnegative 

integer. We established in Appendix D that

cos my
/ ------------------------------------ o dy

o (cosh(x+K^) - cos y)^

tt cos my
= ------------------------------------ 2 dy

-it (cosh(x+K^) - cos y)

tt exp(-m(x+K^)){cosh(x+K^) + m sinh(x+K^)} 

sinh^(x+K^)

Using another result from Appendix D, we obtain
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(cosh(x+K^) - cos y)^
K?

I = it exp(-mK5)/ ' 
o

nux
exp(-mx) sin jr {cosh(x+K^)-Hn sinh(x+K )}

7 dx

2
{m2 + (mi) 

K-,

2
} i

m+2j n ni+2j
K12 -(-1) K8

(m+2j)2 + (22L) 2 
K7



APPENDIX G

THE HILBERT SPACE (A)

Consider ^(A) where A is a compact domain in E . 

We say that an element g(x,y) of L2(A) vanishes in a 

boundary layer if there exists a positive number 6 such 

that for all (x,y) in the set

A = {(x,y) in A | dist [(x,y), Bdy(A)] < 6} , 
6

g(x,y) = 0. Define M^(A) to be the set of all 

differentiable functions in L2(A) which vanish

continuously 

in a

boundary layer. For g in M^(A),

D g = x& dx

exists.
*

D of D x x

Since M^(A) is dense in L^(A), 

exists [7,13]. We call the operator

the adjoint
-D* the 

x
operation of generalized differentiation with respect to

x. If h is an element of the domain of D , we call
. x"k

-D h the generalized first derivative of h with respect

to x. If h has continuous derivatives in A, then
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-D*h = 
x 9x

i.e.,the generalized derivative coincides with the ordinary 

derivative. Similar remarks can be made with x replaced 

with y.

Consider the set W (A) = W of all elements of

L2(A) which have generalized first derivatives. An inner 

product on W is defined by

(g,h) = /_ gh dA + f_ D*g D h dA
W a A x x

** —
+ /_ D K D h dA 

A y y

and the corresponding norm by

9 2 _ *9 —
I I g II = /- g dA + /_ D g dA 

W A A x

, *2 —+ f D g dA .
a y

With these definitions, W becomes a Hilbert space [7].
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