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ABSTRACT 

The advancement and development of new technology provide atmospheric scientists and 

modelers to acquire an overwhelming amount of data on meteorology and air quality from 

space, numerical simulations, and in-situ monitoring sites. Integrating these data sources 

provides unique opportunities to enhance understanding of atmospheric processes to better 

simulate and forecast these processes. While global climate models and chemical transport 

models have undergone significant optimizations and improvements over the past decades, they 

are still unable to provide fully reliable biogenic air quality predictions or long-term climate 

forecasting. These limitations can be alleviated and addressed by incorporating in-situ 

measurements and remote sensing products into data assimilation or reanalysis techniques. 

While ground-based remote sensing measurements provide detailed point observations, they 

lack the spatial coverage of remote sensing-derived measurements. Unfortunately, these remote 

sensing measurements experience issues caused by outside factors such as cloud cover 

contamination and false reflectance. Internal issues involve sensor errors that corrupt or lead to 

failed measurements of the data.  

This study utilizes the advanced capability of several deep learning models for the forecasting 

of pollen concentrations by up to 7 days; the imputation of remote sensing measurements 

spatially with partial convolutional neural networks and subsequent revision to incorporate 

spatio-temporal imputation; and long-term forecasting system of the climate index Nino3.4 by 

up to 36 months. 
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CHAPTER 1 

Introduction 

Particulate Matter (PM) is a form of aerosol that can originate from dust transport (Wang et al., 

2008), biomass burning (Uranishi et al., 2019), and emissions from anthropogenic sources 

(Kang et al., 2019) and natural sources (Zhang et al., 2016). A large fraction of secondary 

aerosols is produced from the condensation of precursor gases or nucleation via cloud processes 

(Ervens et al., 2011). Particulate matter (PM), a major air pollutant worldwide (Koulouri et al., 

2008; W. Li et al., 2014; Mukherjee & Agrawal, 2017), and has a significant impact on human 

health often associated with respiratory and cardiovascular diseases and mortalities (Brunekreef 

& Holgate, 2002). Pollen is a form of biological aerosol that also has deleterious effects on 

human health. Allergic rhinitis, for instance, is estimated to affect up to 30% of adults and 40% 

of children globally (Pawankar et al., 2013), and hay fever and allergic asthma as much as 25% 

of the population (Traidl-Hoffmann et al., 2003). In addition to aerosols, the emission of 

greenhouse gases and aerosols affect the atmosphere’s physics and chemistry (Mikhaylov et 

al., 2020; Wu et al., 2018). Based on these impacts on the atmosphere, have led to temperature 

rise; longer, more intense droughts and storms; increased risk of wildfires (Jones et al., 2020); 

and sea-level rise (Vu et al., 2018). All these factors will continue to affect water supply and 

quality (Hashempour et al., 2020), crop and food production (Lal, 2020), and human health 

(Campbell-Lendrum & Prüss-Ustün, 2019). 

As such, it is imperative that proper forecasting models are developed to inform and adopt 

strategies to mitigate the impact on the environment and human health. Many researchers have 
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devoted a great deal of effort to develop systems that improve forecasting capabilities in air 

quality and climate change, they have been limited by the quality and amount of data 

(Ghahremanloo et al., 2020), the performance of chemical transport and numerical prediction 

models (Park et al., 2011; Pouyaei et al., 2020), the complexity of reliably simulating complex 

processes within the climate due to its chaotic yet deterministic fluctuations (Chen et al., 2004; 

Gupta et al., 2020). To address these limitations, incorporating both in-situ measurements and 

remote sensing products into data assimilation techniques (Bocquet et al., 2015; Jung et al., 

2019) would allow the models to reduce their biases. Unfortunately, their accuracies are limited 

to the availability and quality of in-situ and remote sensing data products.  

This dissertation aims to address these limitations of the non-linear processes within the 

atmosphere in air quality forecasts, the remote sensing data limitations, and the complexity of 

long-term climate forecasting by the utilization of Deep Learning (DL) algorithms. DL uses 

neural networks, which were inspired by an understanding of the brain, which can deal with 

nonlinear variables and yield higher accuracy than conventional regression and statistical 

models (Zhang et al., 2016; Gu et al., 2018). Among the various DL algorithms, convolutional 

neural networks (CNNs) (Krizhevsky et al., 2017) have been among the most complicated, as 

well as successful and widely used models (LeCun & Bengio, 1995; Schmidhuber, 2015) for 

various purposes. CNNs use filters to process and convolve data into a more manageable form 

for processing and extract high-level features of the input data (Lawrence et al., 1997).  

The dissertation first utilizes and demonstrates the advanced capabilities of CNN models to 

forecast pollen concentrations, which are known for their strong seasonal variation and 
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difficulty for long-term forecasts. Furthermore, the CNN model is implemented for remote 

sensing processing applications to accurately impute missing data at large spatial distances, 

both spatially and temporally. Finally, multiple deep CNN models are developed and compared 

to provide the optimal ensemble of CNN models to forecast the El Niño-Southern Oscillation 

(ENSO) index by up to 36-months with better accuracy than previous models. 
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CHAPTER 2 

Real-time 7-Day Forecast of Pollen Counts Using a Deep Convolutional 

Neural Network1 

2.1 Introduction 

Pollen has deleterious effects on human health. Allergic rhinitis is estimated to affect up to 30% 

of adults and 40% of children (Pawankar et al., 2013), and hay fever and allergic asthma as 

much as 25% of the population (Traidl-Hoffmann et al., 2003). Effective allergen avoidance 

has shown improvement in allergy symptoms (Pawankar et al., 2013).  For people with allergic 

symptoms, awareness of where and when elevated concentrations of pollen will occur is critical 

for their health (Vogel et al., 2008).  

Annual pollen concentrations vary considerably due to species-specific and weather-related 

factors (Jäger et al., 1989). Several studies examined the relationships between meteorology, 

pollen concentrations, and seasonal pollen trends (García-Mozo et al., 2014; Myszkowska et 

al., 2014; Rojo et al., 2015; Toro et al., 2015). Temperature has the strongest influence and the 

strongest relationship to pollen emissions and concentrations (Bartková-Ščevková, 2003). 

Several studies applied regression analyses and models (Angosto et al., 2005; Fairley & 

Batchelder, 1986; Jeon et al., 2018; Liu et al., 2015; Vogel et al., 2008; de Weger et al., 2014) 

to predict pollen concentrations. Studies have spatially (Levetin & Van de Water, 2003) and 

 

1 Published: Lops, Y., Choi, Y., Eslami, E., & Sayeed, A. (2019). Real-time 7-day forecast of pollen counts using 
a deep convolutional neural network. Neural Computing and Applications, 1-10. 
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temporally (Wozniak et al., 2017; Zhang et al., 2013) modeled and predicted pollen counts with 

satisfactory results. Jeon et al. (2018) developed the Community Multiscale Air Quality 

Modeling System pollen model (CPM) to predict oak pollen concentrations. Evaluations on 

pollen forecasting applications have shown an accuracy of 50% on average (Bastl et al., 2017). 

Although few studies have shown a slight improvement of neural networks over regression 

analyses in air-quality forecasting (Eslami et al., 2019a), few have applied them to forecasting 

pollen counts (Sánchez et al., 2007; Sánchez-Mesa et al., 2002). 

An artificial neural network (ANN) is a layered structure of algorithms. One form of the neural 

network is the multi-layer perceptron (MLP) with the most basic one consisting of an input 

layer (data that feed the neural network); hidden layers (transform the inputs into information 

that the output layer can use); and an output layer (transforms the hidden layer activations into 

a scale we can define) such as classification and regression. Deep neural networks consist of 

multiple hidden layers, each of which contains multiple neurons (mathematically mimic a 

biological neuron using activation functions). These networks were inspired by an 

understanding of the brain, which is an interconnection of billions of neurons. Deep neural 

networks dealing with nonlinear variables yield higher accuracy than conventional neural 

networks and regression models (Zhang et al., 2016; Gu et al., 2018). One of the most 

complicated neural networks is a convolutional neural network (CNN) (Krizhevsky et al., 2012) 

which uses filters to convolve input data into multiple convolutions of input data. The 

motivation for our study is developing a CNN system that forecasts real-time pollen counts with 

greater accuracy and less processing time than current models. 
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2.2 Methods 

2.2.1 Data 

We acquired pollen data from the Houston Department of Health and Human Services 

(HDHHS) archives. The study focused on daily pollen data from 2009 to 2016. The most 

common pollen-producing species were comprised of tree and weed categories. Tree and weed 

pollen were composed of 25 and 14 species, respectively. Pollen concentrations were measured 

south of the Houston downtown area. Meteorological data were gathered at the Moody Tower 

station, 4.5 km east-northeast of the pollen station. Figure 2.1 exhibits a map of the study area 

with the station locations. We obtained meteorological data from the Texas Commission on 

Environmental Quality (TCEQ), which operates the Continuous Ambient Monitoring Sites 

(CAMS) in various metropolitan areas within the state of Texas. We selected data from CAMS 

station 695 (Moody Tower, near Downtown Houston) for its close proximity to the HDHHS 

pollen measurement station. We extracted the data of surrounding stations CAMS001, 

CAMS053, CAMS409, and CAMS416 as input for missing data from CAMS695 station. The 

hourly meteorological data was processed to daily intervals to correspond to the pollen data. 

The data were comprised of mean temperature (Celsius), total precipitation (mm), mean U and 

V wind components, mean wind speed (m/s), friction, and radiation (Langley). Relative 

humidity (%) and pressure (mb) are comprised of daily minimum, mean, and maximum 

measurements.  
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We acquired the leaf area index (LAI) data from the NASA Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument aboard the Terra (EOS AM-1) and Aqua (EOS PM-1) 

satellites. The spectral resolution of the MODIS data was 500 m, and LAI data comprised of 4-

day measurements. LAI measurements were based on a quadrilateral square area that 

encompassed the entire city of Houston (see Figure 2.1). The center point of the area, the 

location of the HDHHS pollen station, had a radius of an estimated 45km to each perpendicular 

side of the measurement area. The total area covered is estimated 2,025 km2. Since the 

variations in mean LAI were minimal, we performed linear interpolation between the 4-day 

measurements to coincide with the daily measurements of the pollen and meteorological data. 

 

Figure 2.1: Map of the study area in Houston. CAMS Station (Blue) is the location of collected meteorology data. 
Pollen Station (Red) is the location of collected pollen concentration data. A grey area (centered on the Pollen 
Station) represents the Leaf Area Index (LAI) process based on MODIS data for pollen flux calculations. 
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2.2.2 Processed Data 

We applied processed data to represent multiple variables representing initial conditions of 

pollen concentrations. The processed data consist of a meteorological adjustment factor (Ke), 

normal pollen distribution (Ce), characteristic concentration (C*), averaged frictional velocity 

(𝑢𝑢∗), and pollen flux (Fp). The meteorological adjustment factor represents the resistance of 

pollen release based on meteorological conditions (Helbig et al., 2004), comprising of three 

meteorological factors (temperature, relative humidity, and wind speed) that affect the pollen 

release from plants. The equation for the adjustment factor is:  

 𝐾𝐾e = 1 −  
3

𝑐𝑐1 𝑇𝑇
𝑇𝑇te

+ 𝑐𝑐2 𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅te

+ 𝑐𝑐3 𝑊𝑊𝑊𝑊
𝑊𝑊𝑊𝑊te

 . (1) 

Tte, RHte, and WSte represent the threshold values for temperature, relative humidity, and wind 

speed, respectively. We calculated the adjustment factor from the threshold values of the most 

common species for the respective groups. Oak pollen comprised over 54% of total tree pollen, 

and ragweed accounted for over 93% of total weed pollen. Thus, oak (Jeon et al., 2018) and 

ragweed (Zink et al., 2012) threshold values of temperature, relative humidity, and wind speed 

are used to represent the respective pollen vegetation. Grass pollen threshold parameters were 

not available; thus, oak pollen parameters were selected because of the seasonal similarity 

between the two pollen categories. C1, C2, and C3 are weighting factors that weigh the influence 

of meteorological resistance. Table T1 lists the threshold values and weighting factors for each 

pollen category. Adjustment factors for each pollen category were computed.   

Normal pollen distribution (Ce) represents the mean normal pollen distribution for each pollen 

vegetation category by imitating the seasonal pollen cycle for each category. Ce is defined as: 
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𝐶𝐶e =  1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

(𝑑𝑑−µ)2

2𝜎𝜎2  , (2) 

Where d is the number of consecutive days in which pollen measurements meet or exceed the 

pollen count, µ is the mean distribution, and σ is the standard deviation for a normal distribution 

graph. Respective statistical variables were not suitable due to strong variance in the pollen in 

the time series. Therefore, we manually selected the µ and σ variables where Ce best represents 

the pollen trend for the years 2009-2012. The µ and σ parameters of tree pollen were 50 and 

15, respectively, and those for both grass and weed were 30 and 10. 

The pollen flux (Fp) is the daily emission flux of pollen particles for each pollen vegetation 

type. The computation of pollen flux is: 

 𝐹𝐹𝑝𝑝 =  𝐶𝐶𝑒𝑒 ∙  𝐶𝐶∗  ∙  𝐾𝐾𝑒𝑒  ∙  𝑢𝑢∗ , (3) 

where Ce represents the normal pollen distribution, Ke the meteorological adjustment factor, 𝑢𝑢∗ 

the averaged frictional velocity, and C* the characteristic concentration. C* is defined as 

follows: 

 𝐶𝐶∗ =  
𝑝𝑝𝑞𝑞

𝐿𝐿𝐿𝐿𝐿𝐿 ∙  ℎ𝑐𝑐
 , (4) 

Where canopy height (hc) is the mean canopy height of the vegetation species, the canopy 

heights for each category were set at 6.38m for the tree (Jeon et al., 2018), 0.1m for grass (Zhang 

et al., 2013), and 1.0m for weed (Liu et al., 2015). The LAI is the computed mean LAI from 

MODIS satellite image data for the respective time period of the area surrounding the pollen 

station (see Figure 2.1). pq is set as ‘Pollen Count +1’. From multiple experiments with the data, 
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we found that the model can be trained more efficiently with values greater than zero. During 

training, zero values may cause the model to ignore the data, reducing the number of training 

sets. We added a value of 1 to the pollen count to reduce zero values within the data, preventing 

the model from becoming a naïve predictor. Naïve predictor ignores the importance of the other 

input variables. Thus the model placed greater weight on and used last day’s pollen count as its 

forecast and artificially produced favorable statistical results. Previous studies (García-Mozo  

et al., 2014; Eslami et al., 2019a; Sánchez et al., 2007) had also observed this phenomenon for 

regression or simple neural network models when they included only pollen grain counts within 

the dataset.  

We normalized all input data to reduce the magnitude between the various input data. This 

prevents one feature from having more influence than another or causing dramatic changes in 

the weight matrix when the CNN model was optimized. 

 

2.2.3 Neural Network System 

Our CNN model used 24 normalized input variables for the prediction of the next 1-7 day counts 

of tree, grass, and weed pollen. Input variables comprised of meteorology (13 variables), LAI, 

fraction of photosynthetically active radiation (FPAR), meteorological adjustment factor, 

normal pollen distribution, and pollen flux for each of the three pollen categories. See Figure 

2.2 for a graphical representation of the pollen forecasting CNN model. 

The model was comprised of five main layers: an input layer, two one-dimensional 

convolutional layers, a fully connected layer, and an output layer. We applied a dropout 
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(Srivastava et al., 2014) layer between the convolutional layers and optimized the system 

parameters for each vegetation category (see Table T2 for parameter details). Optimal system 

parameters were identified using a trial and error method over multiple different parameters 

ranges consisting of Kernel Size (line segment shape at least 1×2 size), Number of Filters, 

Learning Rate, Batch Size, and Training Epochs for each pollen category, then evaluated their 

performance based on 1-day forecast accuracy. Cases with multiple favorable results of 

differing settings underwent a second set of testing runs to evaluate the stability of the models 

to further identify the optimal parameters. 

 

Figure 2.2: Representation of the pollen forecasting convolutional neural network model consisting of an input 
layer, two convolutional layers, a dropout layer in between the convolutional layers, a fully connected layer, and 
an output layer. 

We trained the model with 2009-2015 data with 15-20% of the training set used for cross-

validation purposes for the pollen forecast. The procedure is conducted to avoid overfitting the 

model. Once the training and validation run was complete, the model received the 2016 

normalized data and predicted the next 1 to 7-day pollen for each vegetation category and total 

pollen prediction.  
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The CNN model has been compared to Recurrent Neural Network (RNN) (Barbounis et al., 

2006; Tsoi & Back 1994) and Deep Neural Network (DNN) for the purposes of forecasting 

pollen concentration. We implemented a Gated Recurrent Unit (GRU) neural network as a 

representative and advanced form of an RNN (Chung et al., 2014; Dey & Salemt, 2017; Fu et 

al., 2016), which is a form of neural network generally suited for temporal sequences. The DNN 

model uses multiple layers of artificial neurons with dropout layers in between. All models 

received the same input data with some adjustments to their initial parameters; see Table T3 for 

parameter details.  

The neural network models have been compared based on their statistical prediction capability 

in forecasting tree, grass, and weed pollen 1 and 7-days ahead. The CNN model has performed 

consistently better than both the DNN and GRU models in nearly all cases. Furthermore, the 

mean training time of the CNN model was the fastest of the models tested, with the DNN model 

close behind and the GRU model taking about 5 times longer than the CNN model. The GRU 

model was consistently the least accurate in predicting tree and grass pollen for both 1 and 7-

day predictions than the other models. The exception was 7-day prediction of weed pollen, 

where GRU achieved 1% better IOA than the CNN model. The DNN model generally 

performed 4% less accurately than the CNN model in both 1- and 7-day forecasting of all three 

pollen categories. See Table T4 in the Appendix section for details on the performances of each 

model. Thus, this study implemented the CNN model for the purposes of forecasting tree, grass, 

and weed pollen 1-7 days ahead due to the model’s more accurate and stable results and the 

faster performance in training time. 
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2.3 Results and Discussion 

For our evaluation, we used the Pearson correlation coefficient (r), the Index of Agreement 

(IOA) (Willmott et al., 1985), and a categorical statistics evaluation as presented by (Chai et 

al., 2013). The categorical statistics evaluation consists of hit rate (HIT), critical success index 

(CSI), false alarm rate (FAR), equitable threat score (ETS), and proportion of correct (POC). 

We evaluated each pollen category and the days predicting ahead and compared observed to 

predicted pollen concentrations using r and IOA statistical evaluation methods. The evaluation 

of categorical statistics evaluation determined how well the model, compared to the 

observations, captured threshold levels based on the prevalence of allergy symptoms. 

 

2.3.1 Evaluation of the Categorical Statistics 

The evaluation of the categorical statistics was based on four quadrants: 

Na. Predictions above and observations below the threshold 

Nb. Prediction and observation above the threshold 

Nc. Predictions and observations below the threshold 

Nd. Predictions below and observations above the threshold 

From these quadrants, we evaluated the categorical statistics as follows: 

 𝑅𝑅𝐿𝐿𝑇𝑇 =  
𝑁𝑁𝑏𝑏

𝑁𝑁𝑏𝑏 +  𝑁𝑁𝑑𝑑
 (5) 

 𝐶𝐶𝑊𝑊𝐿𝐿 =  
𝑁𝑁𝑏𝑏

𝑁𝑁𝑎𝑎 + 𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑑𝑑
 (6) 
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 𝐹𝐹𝐿𝐿𝑅𝑅 =  
𝑁𝑁𝑎𝑎

𝑁𝑁𝑎𝑎 + 𝑁𝑁𝑏𝑏
 (7) 

 𝐸𝐸𝑇𝑇𝑊𝑊 =  
𝑁𝑁𝑏𝑏 − 𝑁𝑁𝑟𝑟

𝑁𝑁𝑎𝑎 + 𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑑𝑑 − 𝑁𝑁𝑟𝑟
 (8) 

         𝑁𝑁𝑟𝑟 =  
(𝑁𝑁𝑎𝑎 + 𝑁𝑁𝑏𝑏) ∙ (𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑑𝑑)
𝑁𝑁𝑎𝑎 + 𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑑𝑑

 (9) 

 𝑃𝑃𝑃𝑃𝐶𝐶 =  
𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑐𝑐

𝑁𝑁𝑎𝑎 + 𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑑𝑑
 . (10) 

 

HIT is the fraction of observed pollen concentrations above the threshold that are predicted 

correctly by the model (1 is the best). FAR is the fraction of predicted pollen concentrations 

above the threshold that are false (0 is the best).  CSI is the fraction of correctly predicted pollen 

concentrations above the threshold after the removal of correctly predicted pollen 

concentrations below the threshold value (1 is the best). ETS measures the performance skill of 

the model (1 is the best). POC is the fraction of the model forecast that matched the observations 

above and below the threshold (1 is the best). 

For the purpose of the evaluation of the categorical statistics, we defined the threshold levels 

according to the severity of symptoms and most prevalent pollen species for the respective 

pollen categories. Oak (Quercus) pollen will represent the tree pollen evaluation of all tree 

pollen counts (grains m-3). Pollen levels defined by the NAB are based on the percentile ranges 

of the pollen counts measured by all stations certified by the NAB. The NAB defines pollen 

counts between 15 and 89 grains m-3 as moderate. Soldevilla et al. (2007) categorized biological 

air quality (BAQ) into four levels (good, acceptable, poor, and bad) based on the frequency of 
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pollen types and their allergic potential. Poor BAQ is set as a threshold baseline, which refers 

to pollen types with moderate pollen counts but high allergic potential. Pollen counts of 

moderate (51-200 grains m-3) for a specific group of tree species (i.e., Cupressus, Pinus, 

Platanus, Populus, and Quercus) accounted for 81% of the total tree pollen count.  Another 

group of tree species with pollen counts defined as moderate, with 31-50 pollen grains m-3, 

accounted for roughly 9% of the total tree pollen count. As a compromise for the purpose of 

the evaluation, we defined the pollen threshold for the three pollen counts as 50. 

Grass pollen concentrations from 30 grains m-3 day-1 to 80 grains m-3 day-1 substantially 

increased allergic nose and eye symptoms in children. When grass pollen concentrations 

exceeded 70 grains m-3 day-1, the severity of lung dysfunction symptoms increased (Kiotseridis 

et al., 2013). For the evaluation, we defined the grass pollen threshold as 30 because of the 

prevalence of allergy symptoms occurring with grass pollen counts of 30 grains m-3.  

In our evaluation, ragweed (Ambrosia) pollen represents the majority of weed pollen, which 

accounted for about 93% of all weed pollen counts. Ragweed pollen counts as low as 5 grains 

m-3 can cause allergic symptoms (Prank et al., 2013; Banken et al., 1990). Other studies have 

indicated that symptomatic experiences caused by ragweed pollen occur at higher 

concentrations ranging from 20-50 grains m-3 (Emberlin, 1994; Makra et al., 2011; Martin et 

al., 2010). The NAB defines pollen counts between 10 and 49 pollen grains m-3 as moderate. 

Thus, as a large number of studies have indicated that patients experience allergy symptoms in 

conditions within a diverse range, we set the threshold values for ragweed pollen at 20 grains 

m-3 to evaluate the model. 
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To evaluate the categorical statistics of the total pollen count (sum of the tree, grass, and weed 

pollen) for the entire year of 2016, we used both the threshold values of each of the pollen 

categories and the mean threshold of all three categories. Thus, the total pollen model 

performance had four categorical evaluation thresholds (see Table T5). 

The results of the statistical evaluation showed our CNN model (see Table 1) yielded favorable 

to mixed results for the respective pollen categories. The 1 to 7-day predictions of grass pollen 

had the least optimal scores for HIT (0.125-0.313), CSI (0.111-0.294), FAR (0.167-0.500), and 

ETS (0.093-0.271). The grass model, however, had a POC score higher than 0.9 in all 

predictions. An explanation for this score was the abundance of measured and predicted grass 

pollen counts falling below the threshold value. The model did not accurately forecast the few 

cases of threshold exceedances. The ratio of the model over-predicting and correctly forecasting 

pollen count when exceeding the threshold were nearly equal in most cases. This results in 

significantly higher FAR than exhibited by the other pollen categories. The low CSI score 

indicates that the model mostly under-predicted during the threshold exceedances of the grass 

pollen season.  

 

Table 2.1: Statistical evaluation results of the deep convolutional neural network model based on threshold values 
for the respective pollen categories, their season ranges, and forecasting days ahead. 

    Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

T
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Se
as

on
: 

Ja
n.

 1
9 

– 
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HIT 0.667 0.679 0.603 0.667 0.628 0.641 0.615 
CSI 0.634 0.646 0.573 0.634 0.598 0.610 0.585 
FAR 0.071 0.070 0.078 0.071 0.075 0.074 0.077 
ETS 0.318 0.331 0.262 0.318 0.283 0.295 0.272 
POC 0.739 0.748 0.696 0.739 0.713 0.722 0.704 

G r a s s P o           

HIT 0.313 0.250 0.250 0.125 0.125 0.125 0.125 
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CSI 0.294 0.235 0.211 0.111 0.118 0.111 0.118 
FAR 0.167 0.200 0.429 0.500 0.333 0.500 0.333 
ETS 0.283 0.225 0.198 0.102 0.111 0.102 0.111 
POC 0.967 0.964 0.959 0.956 0.959 0.956 0.959 

W
ee

d 
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n 

Th
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sh
ol

d 
= 

20
 

Se
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on
: 

Se
p.

 6
 –

 N
ov

. 1
1 HIT 0.885 0.904 0.904 0.923 0.923 0.923 0.904 

CSI 0.868 0.887 0.887 0.873 0.873 0.873 0.870 
FAR 0.021 0.021 0.021 0.059 0.059 0.059 0.041 
ETS 0.576 0.619 0.619 0.546 0.546 0.546 0.562 
POC 0.896 0.910 0.910 0.896 0.896 0.896 0.896 

 

The model yielded favorable results of weed pollen forecasts in all evaluation categories (0.885- 

0.923 HIT, 0.868-0.887 CSI, 0.021- 0.059 FAR, 0.546-0.619 ETS, and 0.896-0.910 POC).  

Furthermore, our model consistently produced favorable results in predicting 1 to 7 days ahead. 

The predictions of tree pollen counts were satisfactory, with all scores experiencing minimal 

variance at predicting 1 to 7-days ahead (0.603-0.667 HIT, 0. 573-0.646 CSI, 0.071- 0.078 

FAR, 0.272-0.331 ETS, and 0.696-0.748 POC). 

The evaluation of the categorical statistics for total pollen show favorable results of all four 

threshold values (0.628-0.716 HIT, 0.597-0.685 CSI, 0.036-0.082 FAR, 0.383-0.541 ETS, and 

0.773-0.861 POC).  Detailed results appear in Table T5Error! Reference source not found. 

in the Appendix Section of the paper. 

The results indicate that categorical statistics were not able to sufficiently evaluate the overall 

accuracy of the model. Therefore, we determined that the IOA and r would be appropriate for 

an alternative evaluation using statistical analyses. 
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2.3.2 Index of Agreement and the Pearson Correlation Coefficient 

IOA measures the degree of model prediction error and whether our model accurately predicted 

the peaks of pollen concentrations. The r measures the linear correlation between the observed 

and predicted concentrations of our model. We used both methods to evaluate the accuracy of 

our model at predicting 1 to 7 days ahead for the 2016 time series. We ran the model through 

25 iterations to evaluate the consistency and accuracy of our model. See Figure 2.3 for the 

model performance in IOA and r for the 7-day predictions. For one day ahead prediction of tree 

pollen, the model achieved mean IOA and r of 0.88 and 0.85, respectively. The model accuracy 

ranged from 0.84-0.91 IOA and 0.79-0.88 r. The model accuracy decreased slightly to an IOA 

and r of 0.76 and 0.71, respectively, by forecasting the 7thday. Although, the model under-

predicted the concentrations during the peak tree pollen season (see Figure 2.4). One 

explanation for this finding is that most of the training data had peak pollen concentrations 

below 2016 concentrations. To address this issue, the model would need to be trained with more 

consistent pollen and meteorological data. The model would be trained with more samples, 

further optimizing its predictive capabilities. These instances of the model not being able to 

capture tree pollen during the fall and winter seasons are likely outliers which previous years 

did not have the phenomenon. 
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Figure 2.3: Deep convolutional neural network model (CNN) performance in forecasting tree, grass, weed, and 
total pollen 1-7 days ahead for the entire year of 2016. Red (IOA) and blue (Pearson correlation coefficient) lines 
represent the mean performance of the model over multiple runs. Shaded areas represent the maximum and 
minimum performance of the multiple runs for each category.  

The model predictions of next-day grass pollen were the least favorable, with a mean IOA score 

of 0.81 and r of 0.75. The range of accuracy for first-day forecasts was also the largest for grass, 

with an IOA range and r range of 0.73-0.84 and 0.62-0.79, respectively. Grass pollen forecast 

accuracy decreased considerably as forecast time increased. By the 7th day, the accuracy was 

0.56 IOA and 0.51 r. Weed pollen forecast was most favorable, with a mean IOA and r of 0.90 

and 0.88, respectively. The model performed more consistently at predicting weed pollen 

counts. For the 1-day forecasts, IOA score ranged from 0.87-0.93 and r score from 0.87-0.90. 

The accuracy of the model decreased only slightly as forecast time increased. The model over-

predicted the weed pollen concentration for 2016 during the peak weed season.   
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Deep CNN model accuracy substantially declined for the 3-4 day forecasts for the pollen 

categories. Tree and weed pollen forecast showed minor improvements from 2nd to 3rd-day 

forecast, suggesting pollen and weather phenomenon of the current day had a delay to the 

reaction of pollen emissions by plants. A similar phenomenon is observed on an annual 

temporal scale, where stronger precipitation in one year led to stronger pollen production in the 

following or second year (Fairley & Batchelder, 1986).  

 

Figure 2.4: Time series of the deep convolutional neural network (CNN) model forecasting of Weed, Tree, Grass, 
and Total (sum of the tree, grass, and weed pollen) pollen concentrations one day ahead for 2016. Blue indicates 
the observed pollen concentration, and red indicates forecasted pollen concentration. Respective statistical scores 
are based on the entire year of 2016. 

Results reflected the magnitude of variation in pollen concentrations among the categories from 

year to year. The average pollen time series of 2009-2015 correlated with that of 2016 by 0.49 

for grass, 0.76 for the tree, and 0.84 for weed pollen. Grass pollen strongly varied from year to 
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year, but those of weed pollen were more consistent, reinforcing the accuracy of the model with 

regard to the variation among the pollen categories. Hence, the accuracy of the model depends 

on the stability of the pollen seasons. An evaluation of the model on total pollen 1 to 7-day 

forecasts for 2016 produced more stable results. This finding can be explained by the inclusion 

of non- and low-pollen time periods during the year. 

The model prediction accuracy of weed pollen counts was slightly less consistent the farther 

ahead in time the model forecasts. The predictions of counts during the odd days (e.g., 3rd and 

5th days) were consistently better than those of the previous days (e.g., 2nd and 4th days). The 

model results indicate that for 2016, current-day weather had a stronger relationship to the 3rd-

day forecast of pollen concentrations than to the 2nd-day forecast. Comparing yearly to seasonal 

time series for the respective pollen categories, showed on average a 2% decrease in the 

prediction accuracy for IOA and r (see Figure F1 in the Appendix).  

The shortcomings of the predictive capability of the current model could be mitigated by 

implementing certain approaches: (1) Increasing the amount of pollen data concentrations for 

training; (2) reducing the amount of missing pollen data to improve interpolation accuracy of 

missing pollen data; (3) increasing temporal resolution of pollen, allowing the evaluation of 

short-term meteorological effects (e.g., precipitation) on pollen concentrations. Data for 

individual pollen species were not sufficient for the individual pollen species forecast of the 

model. Implementation of more layers (deeper CNN) is dependent on the availability of more 

data. The CNN model's ability to better identify patterns of pollen phenomena was limited to 
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the availability of data. This phenomenon reflects the limitations of CNN as a forecasting 

system model discussed by Eslami et al. (2019a). 

2.4 Conclusion 

Studies have shown that pollen concentrations are related to wind (García-Mozo et al., 2014), 

temperature (Bartková-Ščevková, 2003), precipitation (Fairley & Batchelder, 1986), and 

relative humidity (Martin et al., 2010). Despite the meteorological relationships, pollen 

concentrations vary considerably. This phenomenon reflects the non-linear annual variability 

of phenological pollen data not always amenable to linear regression modeling (García-Mozo 

et al., 2014). Despite the pollen concentration variance, our deep CNN was capable of 

forecasting pollen up to 7 days ahead with sufficient accuracy. On average, our model was able 

to predict weed pollen concentrations of nearly 0.9 IOA for a 1-day forecast and 0.81 mean 

IOA for 7th-day forecast. The first-day forecast of tree pollen attained 0.86 IOA and the 7-day 

forecast 0.78 IOA. Our model produced a satisfactory forecast of grass pollen beyond the next 

day with an accuracy of at least 0.8 IOA, which dropped considerably to 0.56 IOA in the 7-day 

forecast. Variation in the forecasting accuracy among the pollen categories related to the 

variation in their annual pollen seasons. The greater the pollen emissions differed from the 

previous years, the more difficult it was for the model to accurately forecast pollen 

concentrations. The model was able to address some of the variability among the pollen 

concentrations and obtained stronger correlations in the 7-day forecasts than direct correlations 

between 2016 and previous years.   
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Our CNN model predicted real-time concentrations of pollen with favorable statistics and 

generated results within minutes of initiating the model. Therefore, the computational 

efficiency of the deep CNN algorithm could supplement deterministic and regression models 

to more accurately and rapidly forecast pollen concentrations - offering a more reliable warning 

system for populations at high risk of pollen-related allergies. 
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CHAPTER 3 

Application of a Partial Convolutional Neural Network for Estimating 

Geostationary Aerosol Optical Depth Data2 

3.1 Introduction 

Within East Asia, a significant fraction of the primary and secondary sources of aerosols 

originate from dust transport (Wang et al., 2008), biomass burning (Uranishi et al., 2019), and 

emissions from anthropogenic sources (Kang et al., 2019) and natural sources (Zhang et al., 

2016). A large fraction of secondary aerosols is produced from the condensation of precursor 

gases or nucleation via cloud processes (Ervens et al., 2011). Particulate matter (PM), a major 

air pollutant worldwide (Koulouri et al., 2008; W. Li et al., 2014; Mukherjee & Agrawal, 2017), 

comes in two aerodynamic diameters of fine particles: less than 10µm (PM10) and less than 

2.5µm (PM2.5) (USEPA, 2020). As PM is associated with respiratory and cardiovascular 

diseases and mortalities (Brunekreef & Holgate, 2002), acquiring accurate estimates of PM is 

important to assess its impact on human health. Estimates have shown that globally over two 

million deaths resulting from damage to the respiratory system per year are associated with PM 

pollution (Kim et al., 2015; Shah et al., 2013). A common product of satellites for estimating 

PM levels (Ghahremanloo et al., 2021a) is the aerosol optical depth (AOD). Although 

researchers have devoted a great deal of effort to developing systems that improve PM 

 

2 Published: Lops, Y., Pouyaei, A., Choi, Y., Jung, J., Salman, A. K., & Sayeed, A. (2021). Application of a Partial 
Convolutional Neural Network for Estimating Geostationary Aerosol Optical Depth Data. Geophysical Research 
Letters, 48(15), e2021GL093096. 
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forecasting, they have been limited by the quality and amount of data (Ghahremanloo et al., 

2021b) and the performance of chemical transport models (Park et al., 2011; Pouyaei et al., 

2020). To address the limitations of models and improve the accuracy of models for 

atmospheric chemistry and weather forecasting, they have incorporated both in-situ 

measurements and remote sensing products into data assimilation techniques (Bocquet et al., 

2015; Jung et al., 2019), which are limited to the availability and quality of in-situ and remote 

sensing data products. 

 
While ground-based remote sensing measurements from the Aerosol Robotic Network 

(AERONET) provide detailed point observations (Holben et al., 1998; 2001), the system lacks 

the spatial resolution of remote sensing capabilities. Using reflected and emitted radiation at a 

distance, the process of remote sensing measures the features and characteristics of an area. In 

the past several decades, studies have reported significant advances in measuring and assessing 

surface features (Mulla, 2013) as well as forecasting and managing air quality (Mhawish et al., 

2018). Satellite remote sensing instruments have contributed essential data pertaining to the 

global distribution (Gupta et al., 2006; Martin 2008; Lee et al., 2016), evolution (Zhang et al., 

2012), and transport (Kim et al., 2017; Wu et al., 2018) of atmospheric pollutants. A limitation 

of remote sensing is the impact of cloud cover contamination, false reflectance, and significant 

biases within the data (Choi et al., 2016; Mhawish et al., 2018), which must then be discarded. 

It can also cause sensor errors that corrupt or lead to failed measurements of the data (Rulloni 

et al., 2012; Shen et al., 2015). These limitations of remote sensing can compromise both the 

quality and the scope of data, reducing its ability to estimate and forecast pollutant 
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concentrations, such as not fully describing spatio-temporal variations of aerosols in the 

atmosphere (Park et al., 2011).  

Studies have applied various methods for imputing missing data with remote sensing such as 

local linear histogram‐matching (Scaramuzza & Barsi 2005), geostatistical approaches such as 

Kriging (Zhang et al., 2007; Yu et al., 2011), linear regression models (Rulloni et al., 2012), 

inpainting algorithms (Bertalmio et al., 2000; Bugeau et al., 2010), and deep learning algorithms 

(Li et al., 2017; Zhang et al., 2018). The latter (LeCun et al., 2015) show significant promise in 

addressing the limitations of missing data by modeling high-level abstractions within datasets 

(Bengio, 2009; Deng & Yu, 2014). Among deep learning algorithms, convolutional neural 

networks (CNNs) (Krizhevsky et al., 2017) are among the most successful and widely used 

approaches (LeCun & Bengio, 1995; Schmidhuber, 2015) in forecasting (Eslami et al., 2019a; 

Lops et al., 2019; Sayeed et al., 2020; Zhang et al., 2015), classification (Anthimopoulos et al., 

2016; Q. Li et al., 2014), speech recognition (Mikolov et al., 2011), and imputation (Li et al., 

2017; Zhang et al., 2018). Many models and methods still have difficulties in imputing remote 

sensing data with a significant percentage of missing data or large gaps within datasets (Gerber 

et al., 2018; Srindhuna & Baburaj, 2020; Zhang et al., 2018). To impute remote sensing data 

with a large percentage of missing data, this paper uses a modified convolutional layer within 

a CNN model called partial convolution (Liu et al., 2018). Although convolution models have 

been applied to imputing missing remote sensing data (Li et al., 2017; Zhang et al., 2018), they 

require a temporal dimension within the dataset or imputed images with a low frequency of 

missing data. The partial convolution (Liu et al., 2018) approach aims to address the limitations 
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by accurately imputing images with a significant number of missing data and spatial distances. 

Another benefit of the partial convolutional neural network (partial CNN) is its use of numerical 

model data, despite the low correlation to remote sensing data, as the basis for training the deep 

neural network without significant impact on the accuracy of the model. 

3.2 Methods 

3.2.1 Data Preparation 

The Geostationary Ocean Color Imager (GOCI) is a key instrument aboard the Korean 

Communication, Ocean and Meteorological Satellite 1 (COMS-1). Obtaining the data in eight 

bands of visible and near-infrared spectra, the GOCI instrument measures various atmospheric 

and surface features (e.g., turbidity, chlorophyll, fluorescence signals, and aerosol optical 

thickness) over East Asia (Choi et al., 2012). The system consists of a geostationary satellite 

that provides eight images per day at a temporal resolution of one hour, covering a 2,500km × 

2,500km area at a spatial resolution of 500m (Ryu e. al., 2012). The GOCI Yonsei aerosol 

retrieval (YAER) version 2 (V2) product algorithm retrieves 550 nm AOD at a 6 km × 6 km 

spatial resolution (Choi et al., 2018, 2019). In addition to following a data filtering process to 

exclude GOCI images with no available data from 2014 to 2018, we have filtered each image 

to exclude isolated pixel clusters of three or fewer pixels within a defined filter grid to ensure 

the exclusion of outliers. We acquired missing data masks for the training process of the partial 

CNN model and restricted the size of GOCI images to 384 × 384 pixels to fit the CMAQ AOD 

image dimensions used for training the model.  
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Air quality modeling is commonly carried out by using three-dimensional Eulerian chemical 

transport models. We implemented the United States Environmental Protection Agency (U.S. 

EPA) Community Multiscale Air Quality (CMAQ v5.2) model (Byun & Schere, 2006) to 

estimate and predict the aerosol optical depth (AOD) of a region with no available satellite data. 

We used the configuration and data of the CMAQ model from Jung et al. (2019). We used 

CMAQ model runs and the IMPROVE (Interagency Monitoring of Protected Visual 

Environments) reconstruction method to compute the AOD at 550nm wavelength (Pitchford et 

al., 2007) over East Asia. To ensure a sufficient number of training samples for the partial CNN 

model, we applied the GOCI missing data masks over the CMAQ AOD images through a 

randomization process with image augmentation. The original CMAQ AOD image pixel size 

was 128 × 174, from which we extracted several images with a 128 × 128 resolution and 

upscaled them to 384 × 384 pixels using bi-cubic interpolation during image augmentation of 

the training and validation phase. As increasing the spatial resolution of the domain within the 

CMAQ model significantly increased the processing time, we performed an interpolation 

process. Since bi-cubic interpolation smooths concentration variations, however, it had a 

minimal impact on the overall quality of the image. The augmentation phase ensures that the 

partial convolution is robust at imputing missing data in various images and that the system 

does not produce extreme variations within the missing data imputation process. The original 

domains of GOCI and CMAQ are available in Figure F2 in the supplement to this paper. 

We acquired topology data from the GTOPO30 digital elevation model (DEM), developed by 

the United States Geological Survey (USGS, 2020). We mapped the data, with a spatial 
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resolution of 1km×1km and a coordinate grid of the elevation data, to respective CMAQ and 

GOCI coordinate grids. Having coordinate grids ensures the adaptability of the model to various 

regions and remote sensing input data. Incorporating topology data and global normalization 

within the partial CNN model have shown to slightly improve the performance of the model 

(see Figure F3 in the Appendix); a similar case has been shown within other CNN models 

(Vandal et al., 2017). For the purposes of model comparisons, we focused on the partial CNN 

model without topology datasets. 

 

3.2.2 Neural Network Structure 

We implemented a deep-learning technique called partial convolution (Liu et al., 2018), which 

utilizes a deep convolutional neural network (deep CNN) (Krizhevsky et al., 2017) as a U-net 

architecture (Ronneberger et al., 2015) that replaces conventional convolutional layers with 

partial convolution layers. CNNs process data by convolving the data at each layer, assigning 

weights and biases at various aspects within the data, and differentiating between them. CNN 

models reduce data into a more manageable form for processing (without losing important 

features) and extract high-level features of the input data through the use of kernels during the 

convolving phase (Lawrence et al., 1997). In addition, we integrated elevation data within a 

color channel (layer of the primary color of a digital image) of the masked image to spatially 

impute missing AOD images. Ill-posed problems related to imaging and convolutional 

processes in inverse problems can be alleviated with the addition of proxy datasets (Jin et al., 
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2017; Vandal et al., 2017). We implemented the algorithm in the Keras and TensorFlow 

environments (Chollet, 2015; Chollet, 2018; Abadi et al., 2016). 

 

We trained the partial convolution model on CMAQ AOD images of model runs for 2014-2017 

and extracted missing data masks from the GOCI images. AOD images undergo a normalization 

process based on the defined minimum and maximum values (0 and 12, respectively) for the 

entire dataset. Ensuring proper distribution or regularization of the data improves model 

performance by increasing the cases of rare outliers within the dataset (Sola & Sevilla, 1997; 

Eslami et al., 2019b; Sayeed et al., 2021). To further increase the training samples and enhance 

the robustness of the model, we implemented image augmentation of the AOD images (see 

Table T6). Image augmentation transforms data into modified samples for training, which 

improves the robustness of the deep learning model (Fawzi et al., 2016). In addition, we 

randomly selected the GOCI missing data masks, which underwent simple image augmentation 

before we applied them to a CMAQ AOD image during the augmentation phase. The partial 

convolution model structure consists of 16 total layers comprised of one input layer, seven 

partial convolution encoding layers, seven partial convolution decoding layers, and an output 

layer. Each encoding layer contained a pooling layer, a partial convolution layer with batch 

normalization, and Rectified Linear Unit (ReLU) activation function. Each decoding layer was 

comprised of an upsampling layer concatenated with a respective layer in the encoding layer. 

The upsampled layer was then processed through a partial convolution layer with batch 

normalization and Leaky ReLU activation. Leaky ReLU prevents information loss and allows 
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the negative parts of features within the convolution to activate (Maas et al., 2013; Zhang et al., 

2017). The final decoding layer was then processed through a regular convolutional layer with 

Sigmoid activation, which provided the final output image (see Figure 3.1) for the schematic of 

the system. The loss function used for the model training was the same as that in Liu et al. 

(2018):  

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 𝐿𝐿𝑣𝑣𝑎𝑎𝑡𝑡𝑣𝑣𝑑𝑑 + 6𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑒𝑒 + 0.05𝐿𝐿𝑝𝑝𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡𝑝𝑝𝑎𝑎𝑡𝑡 + 120 �𝐿𝐿𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐿𝐿𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐� + 0.1𝐿𝐿𝑡𝑡𝑣𝑣 (11) 

comprised of pixel hole loss (Lhole), pixel valid loss (Lvalid), perceptual loss (Lperceptual), raw 

style output (Lstyleout), composited output (Lstylecomp), and total variation loss (Ltv). 

 
Figure 3.1: Schematic of the partial CNN model for imputing missing remote sensing data. 

 
The training of the model was comprised of four phases: i) an initialization phase of 5 epochs; 

ii) the first training phase with batch normalization for 15 epochs; iii) the second training phase 

without batch normalization for 10 epochs, and iv) the final training phase with a reduced 

initialized learning rate for 10 epochs. The initialization phase increases the training speed of 

the model. Over several training runs, we observed that the partial CNN model, when 
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initialized, did not improve its loss score over several epochs, increasing the training time with 

a minimal reduction in the loss score. When the model was trained for several epochs and 

reloaded for another training phase, we observed significant improvement in the loss score. 

Thus, we allowed the model to train for 5 epochs as an initialization process. Batch 

normalization performed during the first training phase improved the speed and the accuracy of 

the model training (Bjorck et al., 2018). Checkpoints have been enabled by saving the model 

with the least validation error from each training phase.  

 

3.2.3 Model Comparisons 

We compared the partial convolution model to the Kriging method (Cressie, 1990), which is 

based on Gaussian process regression and the regionalized variable theory. Kriging assumes 

that spatial variation in a phenomenon is statistically homogeneous throughout the surface 

based on available data from nearby locations (Cressie, 1990). The implementation of 

Spatiotemporal Kriging and CoKriging (Kyriakidis & Journel, 1999) were not utilized due to 

significantly increased processing time. In addition, we utilized CMAQ model AOD and 

topology data for CoKriging for the first 3 months within the 2018 GOCI time period. Results 

indicated a significant reduction in imputation accuracy of the CoKriging model (see Figure F4 

in the Appendix). This limitation is significantly impacted by the low correlation (0.52) of 

CMAQ AOD to the respective GOCI AOD values.  

Other models we use to compare our partial CNN model is the Inverse Distance Weighting 

(IDW) (Lu & Wong, 2008), Radial Basis Function (RBF) (Orr, 1996), K-Nearest Neighbor 
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(KNN) (Keller et al., 1985), Navier Stokes (NS) method (Bertalmio et al., 2001), and Fast 

Marching Method (FMM) (Telea, 2004). The inverse distance weighted (IDW) interpolation 

method assumes that pixels close to each other are more likely to have similar values, and the 

local influence of available points on predictions falls off with distance (Fisher et al., 1993). 

RBF is a supervised machine learning (ML) that utilizes linear functions for nonlinear 

optimizations (Orr, 1996). KNN is also a supervised ML algorithm that focuses on K-nearest 

patterns in data space (Kramer, 2013). NS works by utilizing fluid dynamics techniques and 

partial derivatives to estimate the missing data points (Bertalmio et al., 2001). FMM works by 

propagating an image smoothness as a weighted average along the image gradient by gradually 

filling missing data points with known data points (Telea, 2004).   

 

3.2.4 Evaluation 

We evaluated various models based on various datasets and methods. As we trained the partial 

convolution model on CMAQ data, we did not conduct an evaluation of the CMAQ data. We 

evaluated the GOCI images by processing the hourly GOCI images into daily mean GOCI 

images. We observed a significant number of cases with no AOD values during the first and 

last hours (due to high solar zenith angle near sunrise and sunset (Choi et al., 2016)) within the 

eight-hour measurement period; thus, we excluded these images for evaluation purposes. We 

also excluded cases of one hourly GOCI AOD measurement per day from the evaluation. Thus, 

the daily mean GOCI AOD was comprised of 2-6 images per day. The processing time of 

imputing 1581 GOCI images for each of the models is provided in Table T7 (see Appendix). 
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We evaluated and validated both systems based on the daily mean GOCI images compared to 

their respective hourly masked GOCI images to the available daily mean mask within the GOCI 

image. Applying an estimated pixel distance function based on the distance to the nearest 

available data point, we evaluated the imputation bias of the models to the distance of the 

nearest data variable (see Figure F5 in the Appendix). We conducted a secondary evaluation 

based on the imputed GOCI hourly images to the Aerosol Robotic Network (AERONET) data 

for China (Beijing), South Korea (Gangneung, Gwangju, and Seoul), and Japan (Fukuoka, 

Niigata, and Osaka).  We evaluated the model performances in cases in which no GOCI data 

were available at the respective location and measurements at the AERONET station were 

available for 2018.  

 

3.3 Results and Discussion 

3.3.1 Imputation of the GOCI Images 

The results of the GOCI comparison are based on the daily mean GOCI AOD mask and the 

difference to the hourly masks for the respective day. We compiled the image data into a one-

dimensional format for each hourly measurement from the GOCI for 2018 and evaluated each 

hourly dataset based on statistical evaluation methods. The dataset was comprised of 

measurements of the index of agreement (IOA) (Willmott et al., 1985), the correlation 

coefficient (r) (Benesty et al., 2009), the root mean square error, and the mean absolute error 

(Chai & Draxler, 2014). In addition, we evaluated the IOA performance of each model based 

on the percentage of missing data between the daily mean mask and the hourly mask within a 
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GOCI image. The purpose of this evaluation was to identify how each model performed based 

on the relative amount of missing data within an image. The GOCI dataset for 2018 comprised 

of images containing 35.0-99.7% of missing data, with ~45% of the images having 80% or 

more missing pixels within an image (see Figure F6 in Appendix).  

 

Statistical results of the various models and algorithms for the 2018 GOCI cases are shown in 

Figure 3.2. For all 2018 GOCI images, the partial CNN model achieved average performance 

in IOA and r while achieving the second-lowest MAE and RMSE of all the models. IDW, RBF, 

and NS models have similar performance in statistical accuracy. Based on the % of missing 

NaN values within the evaluated pixels, partial CNN begins to outperform when the percent of 

missing data begins to exceed 60% (which accounts for ~90% of GOCI images for 2018). The 

merits and demerits of the models and algorithms based on the results in imputing GOCI AOD 

are provided in Table T8 (see Appendix).  

 

The partial CNN model has been observed to modify the original GOCI AOD pixel values but 

still shows a correlation of 0.970 and an IOA of 0.983 with a trend of reducing the original 

AOD values. Upon further analysis, we found that partial CNN has reduced the bias GOCI 

AOD in relation to AERONET estimated AOD. Based on the available AERONET 

measurements, partial CNN has reduced the GOCI values closer to the AERONET estimated 

AOD (see Figure F7 in Appendix). Line plots indicating the impact of partial CNN’s 



36 

 

modification of GOCI AOD are shown in Figure F8 and the statistical comparisons are shown 

in Table T9 (see appendix). 

 
 

 
Figure 3.2: Statistical comparison of imputed missing GOCI data from the hourly mask to the daily mean mask. 
The left figures indicate the statistical performances of the partial CNN model (P-CNN), Kriging (Kriging), Inverse 
Distance Weighted (IDW), Navier Stokes (NS), Fast Marching Method (FMM), Radial Basis Function (RBF), and 
K-Nearest Neighbor (KNN) methods. Evaluations are based on the index of agreement (IOA), the correlation 
coefficient (r), the mean absolute error (MAE), and the root mean squared error (RMSE). The right figure indicates 
the IOA performance of the models, based on the percentage of missing data split into three categories. The main 
section of the boxplot presents the interquartile range between the 25th and 75th percentiles. The whiskers (vertical 
lines) of the boxplot represent the variability outside the interquartile range. The blue and yellow horizontal lines 
represent the mean and median of the dataset, respectively. 

 
We identified three instances in which the partial CNN model failed to properly impute missing 

data, which can be explained by the distribution of data within an image. If the available data 

were clustered around the side of an image, the model did not impute missing data accurately 

on the opposite end of the image. This issue is consistent within several models that we have 

trained and tested, indicating a limitation of the partial CNN model. These cases are infrequent 
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within the training and validation dataset; hence, in these instances, the partial CNN model is 

undertrained. Once we added sample data to the respective three AOD images in a different 

region within the image, the large biases of the partial CNN model decreased significantly (see 

Figure F6 in the Appendix). Although these sample cases are maintained within the general 

model performance presented in Figure 3.2, we excluded them from the results of the pixel 

distance evaluation (Figure 3.3). 

 

3.3.2 Pixel Distance Evaluation 

We evaluated the GOCI imputation comparison by applying a pixel distance mask relative to 

the closest available data point within the GOCI image. To estimate the pixel distance from the 

nearest available data point, we applied a filter over multiple iterations to each hourly mask. 

We calculated the bias of the imputation methods for each pixel, categorized them based on the 

distance value of the respective pixels from the pixel distance mask (see Figure F6 in the 

Appendix), and sorted the pixels of each imputed AOD within the evaluation mask at 4-pixel 

intervals representing ~24 km distances. At each interval, we plotted the difference between the 

bias of the imputed AOD values to that of the GOCI AOD value in a boxplot. The series of 

boxplots at each pixel interval provides information on the bias range of each model as the 

distance increases. We evaluate partial CNN, IDW, RBF, and NS models due to these models 

being the best performant models within the statistical comparisons. The pixel distance plot 

(see Figure 3.3) shows that the models performed similarly at distances below 16 pixels (~96 

km distance). Compared to the partial CNN model, the other models had a slightly smaller bias-
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variance within the nearest pixels to an available data point. Both systems diverged in their bias 

beyond a 20-pixel distance, with the IDW, NS, and RBF models trending towards a more 

positive mean bias and a slightly larger variance than the partial CNN model with a negative 

mean bias and a slightly lower variance. The partial CNN model achieved the lowest bias-

variance at a 52-pixel distance (~312 km distance) with a relatively high negative mean bias. 

Beyond 52-pixel distance, the bias variances of the partial CNN and IDW models are stable, 

with the partial CNN maintaining a lower overall bias-variance than the other models. We 

observed a slight trend towards a significantly higher mean bias in the NS and RBF models 

throughout distance ranges beyond 100 pixels. These results do not include the three cases of 

the partial CNN (and the respective model outputs) image imputation because of their extreme 

outliers. The graph of pixel distances in Figure F10 in the Appendix displays partial CNN, 

Kriging, FMM, and KNN models. As a reference, distributions of bias counts comparing Partial 

CNN and Kriging, with and without the outliers, appear in Figure F11 in the Appendix. 
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Figure 3.3: Comparison of the bias-variance in the pixel distances of the Partial CNN (PCNN), Inverse Distance 
Weighting (IDW), Navier Stokes (NS), and Radial Basis Function (RBF) models. The distances are split into four 
sections at 52-pixel intervals. The main section of the boxplot presents the interquartile range between the 25th and 
75th percentiles. The horizontal lines represent the mean bias of PCNN (red), IDW (blue), NS (orange), RBF 
(black) models, and the median bias (green for all models) of the imputing missing GOCI data. The whiskers 
(vertical lines) of the boxplot represent the variability outside the interquartile range.  

The negative bias of the partial CNN model can be attributed to the general reduction on the 

AOD value of the original GOCI image by the partial CNN model. In addition, partial CNN 

under-predicts at distances further away from the nearest available data point. The positive bias 

of the other models is explained by the smooth transition between available data points and 

missing data points at extended distances (see Figure F12 in Appendix). The study by Rossi et 
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al. (1994) found that Kriging generally experiences a slight positive bias. Seasonal image 

comparisons exemplify the smoothing effect of the Kriging, IDW, and RBF models. Partial 

CNN also imputes higher AOD values at medium distances but has cases of under-prediction 

at long distances and over ocean bodies (see Figure F13 in Appendix).  

 

3.3.3 AERONET 

When GOCI data were not available at a respective location, the AERONET results (see Table 

T10 in Appendix) were based on the available hourly measurements of the AERONET 

measurements. For the evaluation of AERONET data, the partial CNN performed above 

average based on all the models. At the Beijing AERONET station, all imputation models 

experienced high MAE and RMSE, with the NS and RBF models achieving the least biases. 

Plotting the partial CNN, Kriging, IDW, and RBF imputed GOCI AOD over AERONET AOD, 

we observed that the partial CNN model frequently estimated AOD values with high positive 

and negative deviation (see Figure F14 in Appendix). Within the Beijing station, cases of partial 

CNN over-predicting and Kriging under-predicting have been observed (see Figure F15 in 

Appendix). Partial CNN’s high AOD estimation can be attributed to the combination of the 

initial GOCI values and mask region within an image due to the convolutional process. 

Modifying the initial GOCI AOD values by factors of 4, 2, and ½ provide different patterns in 

the imputation of the partial CNN model (see Figure F16 in Appendix). To further evaluate the 

impact of partial CNN’s imputation based on input image values, we replaced the initial 

normalized GOCI AOD values with consistent numbers. Results indicate the model provided 
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similar patterns in the output image, but the individual values have different intensities (see 

Figure F17 in Appendix). If there are low initial values within a mask, the partial CNN model 

imputed values higher than expected, overcompensating its imputation in the surrounding 

region with cases of significant missing data within an image. Partial CNN’s over-prediction is 

based on the pattern it produces in the original masked image and the magnitude of the values 

within the mask. The statistical bias comparisons of all the models are shown in Table T10 in 

the Appendix section. 

 

3.4 Conclusion 

This research demonstrated the capability of the partial convolutional neural network in the 

application of imputing missing remote sensing data. All models achieved acceptable results 

when imputing images comprised of 60% or fewer missing data. Only partial CNN, IDW, NS, 

and RBF maintained mean IOAs above 0.8 in cases of missing data ranging from 60-80%. 

When missing data exceeded 80% of the image, the mean IOA of the partial CNN model 

remained at ~0.6, with a higher IOA score than the other models. FMM has performed the 

worst, with missing data exceeding 80% within a dataset. From evaluations of the performance 

based on distance, all models showed similar biases within areas closest to the available data 

and diverged once a pixel distance of 32 (corresponding to a distance of ~192km) was exceeded. 

The majority of the models have gravitated to over-predict with higher variance, while the 

partial CNN model has gravitated to under-predict with lower variance in terms of the bias 

distribution at each pixel distance. The results of the performances of the models with data from 
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seven AERONET stations (Beijing, Fukuoka, Gangneung, Gwangju, Niigata, Osaka, and 

Seoul) in East Asia indicated that the partial CNN model outperformed the Kriging, FMM, 

RBF, and KNN models for six stations and outperforming all models or only the Niigata station. 

All models experienced high biases within the Beijing region, occasionally significantly over- 

or under-predicting AOD, causing a significant deviation from the measured AODs. 

The partial CNN model experienced issues with imputing entire images for rare cases of 

minimal available data with abnormally tight clustering. Data clustering also impacted the other 

model imputation by outputting AOD values close to zero (e.g., Kriging); the values, however, 

were not as pronounced as those AOD output bias of the partial CNN model. Such rare cases 

can be avoided by ensuring that the proper distribution of available data throughout an image 

regardless of how few data are available. Overall, the imputation performance of the partial 

CNN model exceeds those of the other models in cases of a high percentage of missing pixels 

and at long distances from known pixels within an image. Models such as IDW, RBF, and NS 

performed well with cases of few missing data and imputing regions close to known pixels. 

Once trained, the partial CNN model imputes large remote sensing datasets in significantly less 

processing time than the other models. For the accurate imputation of such datasets, the 

implementation of partial CNN allows the accurate imputation of remote sensing data with large 

regions of missing data, which will benefit future researchers that conduct other studies such as 

data assimilation for numerical models and analysis of the impact of air quality on human 

health. In addition, the partial CNN system can be expanded to impute variables between 

multiple observation stations over large distances to alleviate the need to use model and 
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reanalysis processes, saving processing time and resources. Future work involves modifying 

the partial CNN model to process both temporal and spatial data within remote sensing datasets 

to further enhance the model’s performance. 
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CHAPTER 4 

Spatio-Temporal Estimation of TROPOMI NO2 Column with Depthwise 

Partial Convolutional Neural Network3 

4.1 Introduction 

Nitrogen oxides (NOX=NO+NO2) are one of the major criteria pollutants (Zhang et al., 2016) 

with significant impact from human activity (Ghahremanloo et al., 2021b). Sources of NOX 

come from anthropogenic and natural sources such as the combustion of fossil fuels (Choi et 

al., 2009), burning of biomass (van der Werf et al., 2006), soil microbial activity (Yienger and 

Levy, 1995), and lightning (Choi et al., 2009). Nitrogen dioxide (NO2) has been associated with 

adverse negative health impacts and effects such as cardiovascular diseases (Liu et al., 2015) 

and respiratory-related ailments (Zhu et al., 2019).  

The concept of remote sensing is to measure the features and characteristics of an area with the 

utilization of reflected and emitted radiation at a distance. Satellite remote sensing instruments 

have contributed essential data pertaining to the global distribution (Gupta et al., 2006; Martin 

2008; Lee et al., 2016), evolution (Zhang et al., 2012), and transport (Kim et al., 2017; Pouyaei 

et al., 2020, 2021; Wu et al., 2018) of atmospheric pollutants. Unfortunately, remote sensing 

has limitations such as low spatial and temporal resolutions (Ghahremanloo et al., 2021c) and 

measurements issues caused by the impact of cloud cover contamination, false reflectance, 

 

3 Submitted to Neural Computing and Applications journal 
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significant biases within the data (Choi et al., 2016; Mhawish et al., 2018). Furthermore, the 

system can also experience sensor errors that corrupt or lead to failed measurements of the data 

(Rulloni et al., 2012; Shen et al., 2015).  

Several methods have been applied to non-temporally impute missing data within remote 

sensing images, such as geostatistical approaches (Zhang et al., 2007; Yu et al., 2011), linear 

regression models (Rulloni et al., 2012), inpainting algorithms (Bertalmio et al., 2000; Bugeau 

et al., 2010), and deep learning algorithms (Ghahremanloo et al., 2021c; Li et al., 2017; Lops 

et al., 2021). Deep learning algorithms (LeCun et al., 2015) have shown significant promise in 

addressing the limitations of missing data by modeling high-level abstractions within datasets 

(Bengio, 2009; Deng & Yu, 2014). Among various deep learning algorithms, convolutional 

neural networks (CNNs) (Krizhevsky et al., 2017) have been among the most successful and 

widely used approaches (LeCun & Bengio, 1995; Schmidhuber, 2015) for various purposes 

such as forecasting (Lops et al., 2019; Sayeed et al., 2020, 2021; Yeo et al., 2021; Zhang et al., 

2015), classification (Anthimopoulos et al., 2016; Lee et al., 2017; Li et al., 2014), speech 

recognition (Mikolov et al., 2011; Park et al., 2017), and imputation (Li et al., 2017; Zhang et 

al., 2018; Lops et al., 2021). Many models and methods still have difficulties in imputing remote 

sensing data with a significant percentage of missing data or large gaps within datasets (Gerber 

et al., 2018; Srindhuna & Baburaj, 2020; Zhang et al., 2018). Advanced methods of imputation 

utilize temporal dimensionality to enhance the accuracy of the imputation process (Bae et al., 

2018; Carvalho et al., 2016; Gerber et al., 2018).  
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Although convolution models have been applied to imputing missing remote sensing data with 

a temporal dimension within the dataset (Zhang et al., 2018), they require data with a low 

frequency of missing pixels. This paper expands the application of the Partial Convolutional 

Neural Network (PCNN) (Liu et al., 2018) in imputing missing remote sensing data (Lops et 

al., 2021) by the addition of temporal dimensionality within the model. The PCNN model has 

been shown to perform well in imputing images with a significant amount of missing data and 

spatial distances, which will be further enhanced with the addition of the temporal dimension 

of the model input. The temporal component of the PCNN is applied through the 

implementation of depthwise convolutions (Chollet, 2017), in which the convolution process is 

independently performed for each channel. The Depthwise Partial Convolutional Neural 

Network (DW-PCNN) aims to address the limitations of the regular PCNN model (Lops et al., 

2021) by incorporating the temporal component for imputation, improving the sharpness of the 

imputed image, and enhancing the accuracy over the regular PCNN. 

4.2 Methods 

4.2.1 Data Preparation 

The TROPOspheric Monitoring Instrument (TROPOMI) is a key instrument aboard the 

Copernicus Sentinel-5 Precursor (S5P) satellite. The instrument obtains key atmospheric 

constituents such as ozone (O3), NO2, formaldehyde (CH2O), and aerosol data through ten 

spectra bands of ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave infrared 

(SWIR) (Veefkind et al., 2012). The system is a near-polar, sun-synchronous orbit that provides 

daily global coverage at high spatial resolution (7 km×3.5 km at nadir) (Guanter et al., 2015; 
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Ludewig, 2021). We performed an initial data filtering process to exclude pixels failing the 

initial Quality Assurance (QA) value threshold (i.e., QA<0.5) that present an error flag or solar 

zenith angle exceeding 70°, cloud cover, and air mass factor below 0.1 (Vigouroux et al., 2020). 

In addition, we have filtered each image to exclude isolated pixel clusters of four or fewer pixels 

within a defined filter grid to ensure the exclusion of outliers.  

We implemented the United States Environmental Protection Agency (U.S. EPA) Community 

Multiscale Air Quality (CMAQ v5.2) model (Byun & Schere, 2006). The model’s domain has 

a 12 km grid horizontal spacing with 27 vertical layers reaching 100 hPa to estimate and predict 

the tropospheric column density of NO2 (TCDNO2) over the Contiguous United States 

(CONUS). The system uses CB6 and AERO6 chemical mechanisms for the gas-phase and 

aerosol chemical processes. The model received the 2017 U.S. EPA National Emission 

Inventory (NEI) (Eyth et al., 2016; Eyth and Vukovich, 2016) with parameterized lightning-

induced emission, biogenic emission computed by using the Biogenic Emission Inventory 

System (BEIS), and biomass burning emission adopted from the Fire Inventory from National 

Center for Atmospheric Research (FINN) version 1.5 (Wiedinmyer et al., 2014, 2011, 2006). 

The CMAQ model received simulated meteorological variables from the Weather Research and 

Forecasting (WRF) model version 4.0 with the National Centers for Environmental Prediction 

(NCEP). For initial and boundary conditions, the North Americans Regional Reanalysis 

(NARR) data was utilized. Furthermore, we incorporated indirect soil moisture and the 

temperature nudging technique (Pleim and Gilliam, 2009; Pleim and Xiu, 2003), as well as a 

Four-Dimensional Data Assimilation (FDDA) option for the temperature, the water vapor 
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mixing ratio, and wind components (Hogrefe et al., 2015) to enhance the model performance 

in simulating meteorological fields. The simulations were performed for the months February-

June for 2019 and 2020. 

The simulated NO2 column by CMAQ acts as the basis for preparing training data for the PCNN 

model. This process is conducted to ensure the data for training contains images without any 

missing data. The original CMAQ output image pixel size was 299×459, from which we 

extracted ten images with a 256×256 resolution. We applied several image augmentation 

processes to ensure enough training samples for the partial CNN model were available. The 

first image augmentation step is applying a random noise function with Gaussian smoothing on 

CMAQ images to replicate the pixel variations observed in TROPOMI images. The second 

phase of the process is the application of basic image augmentation to the updated CMAQ 

image through the random selection of rotation, flipping, or combination. The final 

augmentation phase involved the random selection, rotation, flipping, and application of 

TROPOMI masks to the updated CMAQ images. The augmentation phase ensures that the 

partial convolution is robust at imputing missing data in various images and that the system 

does not produce extreme variations within the missing data imputation process.  

The domains of TROPOMI and CMAQ within the CONUS are shown in Figure 4.1. 
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Figure 4.1: Map of the Contiguous United States (CONUS) with domains of the CMAQ model (Green) and 
TROPOMI measurement (Blue) datasets used for the study. 

 

4.2.2 DW-PCNN Structure 

We utilized a deep convolutional neural network (deep CNN) (Krizhevsky et al., 2017) U-net 

architecture (Ronneberger et al., 2015) that replaces conventional convolutional layers with 

partial convolution layers (Liu et al., 2018). CNNs process data by convolving the data at each 

layer over multiple image channels, assigning weights and biases at various aspects within the 

data, and differentiating between them. The benefits of CNN models are their capability to 

reduce data into a more manageable form for processing (without losing key features) and 

extract high-level features of the input data through the use of kernels during the convolving 

phase (Lawrence et al., 1997).  

Single-channel images are defined as gray scale images made of one of the primary colors (Red, 

Green, and Blue color spaces) from the three channels. Most common digital images use three 
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channels to collectively form a colored image. The partial CNN (PCNN) model can process 

one or three channels from an image at the specific instance which the image represents; hence 

no temporal dimension is considered. The utilization of Recurrent Neural Networks (RNNs) 

was considered, but due to the size and complexity of the partial CNN model, the utilization of 

RNNs would have significantly increased the training time of the model without sufficient 

improvements (Lops et al., 2020). Thus, the temporal dimensionality of the PCNN model is 

applied through the inclusion of gray-scale images of the TROPOMI images for each channel 

within the digital image format.  

The original partial convolution padding process is designed to gradually reduce the 

significance of the missing data mask at each encoding phase of the PCNN model. Compared 

to regular convolutions, the partial convolution process allows the convolution to only depend 

on the valid pixels, and the normalization is adjusted to the fraction of missing data. During this 

convolution process, the convolution padding of the mask is applied in unison across all 

channels. Unfortunately, utilizing different masks for each channel with the conventional 

convolution kernel causes the convolution kernel to process all the channels at once as one 

unified mask. This process does not reduce the significance of the mask at a gradual pace but 

at a much faster rate than expected and losing the individual feature of the mask, thus reduce 

the potential performance of the model. To address this limitation, we replaced the conventional 

2D convolution layer (within the partial convolution) with depthwise convolutions (Chollet, 

2017) within the encoding phase of the PCNN model (see Figure 4.2). A comparison of the 

regular convolution padding and depthwise padding can be found in Figure F18. The decoding 
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phase of the U-net architecture is unchanged since the mask significance is already removed at 

the final encoding process of the model. We implemented the algorithm in the Keras and 

TensorFlow environments (Chollet, 2015; Chollet, 2018; Abadi et al., 2016). 

The PCNN model was trained on CMAQ TCDNO2 images of model runs for 2018-2019 and 

extracted missing data masks from the TROPOMI images. CMAQ TROPOMI images 

underwent a partial normalization process by dividing the entire dataset by a set value of 1x1017 

based on slightly above the maximum TCDNO2 value within the TROPOMI 2019 dataset. This 

ensures proper distribution or regularization of the data to improve model performance by 

reducing the significance of rare outliers within the dataset (Sola & Sevilla, 1997; Eslami et al., 

2019; Sayeed et al., 2021). To further increase the training samples and enhance the robustness 

of the model, we implemented two phases of image augmentation (transforms data into 

modified samples) (Fawzi et al., 2016) of the CMAQ images for training (see Table T11). The 

first phase involves applying a modified form of white noise within the CMAQ images to better 

represent the pixel variations of the original TROPOMI images (see Figure F19). The second 

phase involved basic rotation and flipping of the image as well as adding a randomized linear 

function to add a positive or negative value shift of the image. TROPOMI TCDNO2 missing 

data masks also underwent basic augmentation (randomized flipping and rotation) and overlaid 

for each CMAQ image. 

The partial convolution model structure consists of 16 total layers comprised of one input layer, 

seven depthwise partial convolution encoding layers, seven partial convolution decoding layers, 

and an output layer. Each encoding layer contained a pooling layer, a depthwise partial 
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convolution layer with batch normalization. Each decoding layer was comprised of an 

upsampling layer concatenated with a respective layer in the encoding layer. The upsampled 

layer was then processed through a partial convolution layer with batch normalization. Each 

encoding and decoding layer used the Leaky Rectified Linear Unit (ReLU) activation function 

(negative slope coefficient = 0.5) due to the input data containing both negative and positive 

values. Leaky ReLU prevents information loss and allows the negative parts of features within 

the convolution to activate (Maas et al., 2013; Zhang et al., 2017). The final decoding layer was 

then processed through a regular convolutional layer with the hyperbolic tangent (tanh) 

activation function, which provided the final output image (see Figure 2) for the schematic of 

the system. The loss function used for the model training was the same as that in Liu et al. 

(2018):  

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 𝐿𝐿𝑣𝑣𝑎𝑎𝑡𝑡𝑣𝑣𝑑𝑑 + 6𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑒𝑒 + 0.05𝐿𝐿𝑝𝑝𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡𝑝𝑝𝑎𝑎𝑡𝑡 + 120 �𝐿𝐿𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐿𝐿𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐� + 0.1𝐿𝐿𝑡𝑡𝑣𝑣 (12) 

which comprises pixel hole loss (Lhole), pixel valid loss (Lvalid), perceptual loss (Lperceptual), raw 

style output (Lstyleout), composited output (Lstylecomp), and total variation loss (Ltv). 
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Figure 4.2: Schematic structure of the Depthwise Partial CNN (DW-PCNN) model for imputing missing remote 
sensing data. 

The training of the models was comprised of three phases: i) the first training phase with batch 

normalization for 400 epochs with a learning rate of 0.001; ii) the second training phase without 

batch normalization for 800 epochs with a learning rate of 0.001, and iii) the final training phase 

with a reduced initialized learning rate of 0.0001 for 800 epochs. Batch normalization is 

performed during the first training phase to improve the initial speed of the model training by 

more effectively reducing the loss (Bjorck et al., 2018). The second and third phases exclude 

batch normalization to better optimize loss and reduce the potential bias of the model for 

imputation. Based on internal tests, the three-phase training has led to an improvement in loss 

optimization and a reduction in overall training time. The optimizer used for the model is the 

adaptive moment estimation (Adam) (Kingma & Ba 2014) stochastic gradient descent method, 

which adaptively estimates the first and second-order moments. Checkpoints have been enabled 

by saving the model with the least validation error from each training phase.  
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4.2.3 Model Comparisons 

For comparing the performance of DW-PCNN, we use non-temporal based imputation methods 

such as Inverse Distance Weighting (IDW) (Lu & Wong, 2008) and regular PCNN without 

depthwise convolutions. The IDW interpolation method assumes that pixels close to each other 

are more likely to have similar values and the local influence of available points on predictions 

falls off with distance (Fisher et al., 1993). These two models were the best performants in a 

previous study for non-temporal imputation of Geostationary Ocean Color Imager (GOCI) 

Aerosol Optical Depth (AOD) images (Lops et al., 2021). Implementing Spatio-Temporal 

Kriging (ST-Kriging) method (Kyriakidis & Journel, 1999) as a direct comparison to the DW-

PCNN was not possible due to the size of the datasets leading to significant processing time 

and requiring more memory than the High-Performance Computing system could allocate. We 

utilized IDW for weekly mean TROPOMI images to fill in any remaining missing data and 

integrated this result with CoKriging (Kyriakidis & Journel, 1999). The IDW-CoKriging 

coupled system utilizes IDW imputed weekly mean (as a substitute to the temporal mean of the 

dataset) and fed to the CoKriging process as a co-variable. CoKriging takes advantage of the 

covariance of the potential relationship of regionalized variables (weekly mean within filled 

missing datasets by IDW) during the imputation process. Kriging is based on Gaussian process 

regression and assumes that spatial variation in a phenomenon is statistically homogeneous 

throughout the surface based on available data from nearby locations (Cressie, 1990). Both 

Kriging and IDW (weighting power = 5) models were based on the gstat package (Pebesma, 

2004). 
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4.2.4 Evaluation 

We evaluated the various models based on various datasets and methods. Since we trained the 

PCNN model on CMAQ data, we did not conduct an evaluation based on the CMAQ data. All 

daily images had measurements of TCDNO2 values within the 2019 and 2020 study periods. 

We evaluated the imputation models based on TROPOMI NO2 images by processing the daily 

TROPOMI images into the weekly moving average of TROPOMI images. A strong temporal 

correlation (0.96 r for 2019 and 2020) was observed in the weekly averages between daily 

variations (see Figure F20); thus, we performed a weekly shift format (0.69 and 0.68 r for 2019 

and 2020, respectively) as input for the spatio-temporal imputation models. The evaluation of 

TROPOMI TCDNO2 is conducted by applying TROPOMI TCDNO2 daily missing masks on 

the weekly mean TCDNO2 images. The models are then tasked to accurately impute the 

TCDNO2 images. In addition, we apply an estimated pixel distance function based on the 

distance to the nearest available data point within each image mask. This process is performed 

to evaluate the imputation bias of the models to the distance of the nearest data variable (see 

Figure F21). 

4.3 Results and Discussion 

4.3.1 Imputation of the TROPOMI Images 

The results of the TROPOMI NO2 are based on the weekly mean mask and the difference to 

the daily masks for the respective day. We compiled the image data into a one-dimensional 

format for each daily measurement from the TROPOMI measurements for 2019 and 2020 

separately and evaluated each daily dataset based on statistical evaluation methods. The dataset 
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was comprised of measurements of the index of agreement (IOA) (Willmott et al., 1985), the 

correlation coefficient (r) (Benesty et al., 2009), the root mean square error (RMSE), and the 

mean absolute error (MAE) (Chai & Draxler, 2014). In addition, we evaluated the IOA 

performance of each model based on the percentage of missing data within the TROPOMI 

TCDNO2 image. The purpose of this evaluation was to identify how each model performed 

based on the relative amount of missing data within an image. The TROPOMI dataset for 2019 

comprised of images containing 1-20% of missing data with ~17% of images for 2019 and 30% 

of images for 2020 having 10% or more missing pixels within an image (see Figure F22).  

 

Statistical results of the various models and algorithms for the TROPOMI 2019 cases are shown 

in Figure 4.3 and TROPOMI 2020 cases are shown in Figure 4.4. For both 2019 and 2020 

TROPOMI TCDNO2 images, the DW-PCNN model achieved the best overall performance in 

IOA (0.81 for 2019 and 0.82 for 2020) and r (0.74 for both 2019 and 2020) of all the models. 

The default PCNN model with spatio-temporal data achieved the lowest MAE (5.77×1014 

molecules/cm2) and RMSE (8.45×1014 molecules/cm2) statistical results for 2019, while DW-

PCNN had the lowest MAE (4.55×1014 molecules/cm2) and RMSE (6.21×1014 molecules/cm2) 

scores for 2020. For 2019, there was minimal difference between IDW and the coupled IDW-

CoKriging imputation model for overall statistical comparisons (0.15% and 0.04% for IOA and 

r, respectively). Due to the reduced processing resources required, we focused on the IDW 

model for 2020 comparisons. Based on the percentage of missing values within the evaluated 

pixels, the DW-PCNN model outperformed all models. For 2019, DW-PCNN outperformed 
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the other methods 6-34% with images with more than 10% missing data, 10-14% with images 

between 5% and 10% missing data, and 4-7% with images with less than 5% missing data. For 

2020, DW-PCNN outperformed the other methods 8%-11% with images with more than 10% 

missing data, 4-11% with images between 5% and 10% missing data, and 2-11% with images 

with less than 5% missing data. In contrast, the IDW-CoKriging model and default PCNN 

models had mixed results with no clear indicator of which model is better overall (see Table 

T12). Furthermore, both DW-PCNN and default PCNN with spatio-temporal data were able to 

impute a TROPOMI image with over 95% missing data significantly better than the over 

models (see Figure F23). The merits and demerits of the models and algorithms based on the 

results in imputing TROPOMI NO2 are provided in Table T13.  

 

 

Figure 4.3: Statistical comparison of imputed missing TROPOMI 2019 data from the daily mask to the weekly 
mean mask. The left figures indicate the statistical performances of Inverse Distance Weighting (IDW), IDW with 
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CoKriging (IDW CoKrig), Depwthwise Partial CNN (DW-PCNN), default Partial CNN without spatio-temporal 
data (Base-PCNN), and PCNN with spatio-temporal data (Base-PCNN (ST). Evaluations are based on the index 
of agreement (IOA), the correlation coefficient (r), the mean absolute error (MAE), and the root mean squared 
error (RMSE). The right figure indicates the IOA performance of the models, based on the percentage of missing 
data split into three categories. The main section of the boxplot presents the interquartile range between the 25th 
and 75th percentiles. The whiskers (vertical lines) of the boxplot represent the variability outside the interquartile 
range. The blue and yellow horizontal lines represent the mean and median of the dataset, respectively. 

 

 

Figure 4.4: Statistical comparison of imputed missing TROPOMI 2020 data from the daily mask to the weekly 
mean mask. The left figures indicate the statistical performances of Inverse Distance Weighting (IDW), 
Depwthwise Partial CNN (DW-PCNN), default Partial CNN without spatio-temporal data (Base-PCNN), and 
PCNN with spatio-temporal data (Base-PCNN (ST). IDW with CoKriging has been excluded due to the minimal 
overall performance compared to default IDW. Evaluations are based on the index of agreement (IOA), the 
correlation coefficient (r), the mean absolute error (MAE), and the root mean squared error (RMSE). The right 
figure indicates the IOA performance of the models, based on the percentage of missing data split into three 
categories. The main section of the boxplot presents the interquartile range between the 25th and 75th percentiles. 
The whiskers (vertical lines) of the boxplot represent the variability outside the interquartile range. The blue and 
yellow horizontal lines represent the mean and median of the dataset, respectively. 
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4.3.2 Pixel Distance Evaluation 

We evaluated the TROPOMI imputation comparison by applying a pixel distance mask relative 

to the closest available data point within the TROPOMI image. To estimate the pixel distance 

from the nearest available data point, we applied a Euclidean process for each daily mask and 

rounded to the nearest integer to represent the pixel distance. We calculated the bias of the 

imputation methods for each pixel, categorized them based on the distance value of the 

respective pixels from the pixel distance mask (see Figure F21), and sorted the pixels of each 

imputed TCDNO2 within the evaluation mask at 4pixel intervals representing ~28km x 14km 

distances. At each interval, we plotted the difference between the biases of the imputed 

TCDNO2 values to that of the TROPOMI TCDNO2 value as a boxplot. The series of boxplots 

at each pixel interval provides information on the bias range of each model as the distance 

increases. We evaluate DW PCNN, IDW CoKriging, IDW, PCNN, and PCNN with spatio-

temporal data (ST) models. The pixel distance plot (see Figure 4.5 and Figure 4.6) shows that 

the PCNN models had similar variance and range of biases throughout the pixel distance range. 

The default PCNN without spatio-temporal data (PCNN) had a slight negative bias, while the 

DW-PCNN and PCNN (ST) had a slight positive bias. We used IDW CoKriging (IDW CoKrig) 

in the comparison due to the slightly lower overall bias over the default IDW model. IDW 

CoKriging had an overall negative bias, with some fluctuations, but the variance and range of 

the bias narrowed down more significantly than the PCNN models as the distance increased. 
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Figure 4.5: Comparison of the bias-variance in the pixel distances of TROPOMI 2019 NO2 of the Depthwise 
Partial CNN (DW PCNN), coupled Inverse Distance Weighting with CoKriging (IDW CoKrig), default Partial 
CNN without spatio-temporal data as input (PCNN), and default Partial CNN with spatio-temporal data as input 
(PCNN (ST)). The distances are split into four sections at 52-pixel intervals. The main section of the boxplot 
presents the interquartile range between the 25th and 75th percentiles. The horizontal lines represent the mean bias 
of DW PCNN (red), IDW CoKrig (blue), PCNN (brown), PCNN (ST) (black) models, and the median bias (green 
for all models) of the imputing missing TROPOMI data. The whiskers (vertical lines) of the boxplot represent the 
variability outside the interquartile range.  

For TROPOMI 2020, the biases of the model imputations were significantly lower than the 

2019 biases over distance. PCNN (ST) had the largest bias within near pixel distances of 

measured TROPOMI data but decreased as the pixel distance increased with a slight positive 

bias compared to the PCNN and DW PCNN models. In contrast to the other models, PCNN 
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experienced an increase in overall bias and range as the pixel distance increased beyond the 24-

pixel (~168km) distance threshold. IDW also achieved relative stable biases over the distance 

ranges. Despite the slightly larger bias range in relation to DW PCNN and PCNN (ST), IDW 

had the most consistent mean bias without a positive or negative trend compared to all the 

models. DW PCNN had the narrowest bias range of the models across all the pixel distances 

for the 2020 TROPOMI dataset. 
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Figure 4.6: Comparison of the bias-variance in the pixel distances of TROPOMI 2020 NO2 of the Depthwise 
Partial CNN (DW PCNN), coupled Inverse Distance Weighting (IDW), default Partial CNN without spatio-
temporal data as input (PCNN), and default Partial CNN with spatio-temporal data as input (PCNN (ST)). The 
distances are split into four sections at 52-pixel intervals. The main section of the boxplot presents the interquartile 
range between the 25th and 75th percentiles. The horizontal lines represent the mean bias of DW PCNN (red), IDW 
(blue), PCNN (brown), PCNN (ST) (black) models, and the median bias (green for all models) of the imputing 
missing TROPOMI data. The whiskers (vertical lines) of the boxplot represent the variability outside the 
interquartile range.  

4.4 Conclusion 

This research demonstrated the improved capability of the depthwise partial convolutional 

neural network in the application of spatio-temporal imputation of missing remote sensing data. 

Both 2019 and 2020 TROPOMI TCDNO2 imputation results demonstrated DW-PCNN as the 
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best performing model to impute TROPOMI TCDNO2. The addition of spatio-temporal data 

for the PCNN model has shown significant improvements over the regular PCNN model 

(without temporal data) with datasets containing large percentages of missing data and at 

extended distances. Despite the improvements of adding temporal dimensionality within the 

input for the PCNN model, the mask padding of the regular convolution process does show 

limitations and has still led to some biases. The implementation of depthwise convolutions, 

where masks at each image channel are padded separately, has shown further improvement and 

demonstrates the importance of maintaining the individual channel masks and gradual feature 

reduction over the conventional method. Furthermore, DW PCNN was the only model to 

maintain a mean IOA above 0.8 for all statistical comparisons for both TROPOMI 2019 and 

2020 TCDNO2 datasets. The current limitation of DW-PCNN is the constrained number of 

channels (only three channels) the model can process, thus limiting the temporal samples and 

the addition of co-variables that can facilitate the imputation performance. 

While the bias-distance comparison has shown PCNN ST perform as well as DW PCNN, the 

statistical comparisons have shown PCNN ST have a lower correlation in reconstructing 

TROPOMI TCDNO2 than the default PCNN model. This can be explained by the output of the 

PCNN ST model having much smoother transitions than the PCNN or DW PCNN models and 

slight under-prediction of high TCDNO2 concentrations and over-prediction of low TCDNO2 

column concentrations. This phenomenon may minimally impact the bias evaluation but does 

impact the correlation and IOA scores.  
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For a spatial imputation algorithm without temporal dimensionality, IDW performed 

consistently compared to the PCNN and PCNN ST models. While IDW was not able to surpass 

the PCNN models in different metrics, it also did not perform the worst in the respective 

metrics. The major limitation of IDW is the computation cost of such large datasets, especially 

when required to take all available samples within the TROPOMI image. As such, IDW and 

other interpolation-based algorithms (e.g., Kriging) require exponentially more computation 

power and resources as the dataset size increases spatially and with the addition of temporal 

dimensionality. For smaller dataset sizes, these algorithms do demonstrate competitive 

performance to the PCNN model (refer to Lops et al., 2021). As datasets increase in size, 

dimensionality, and missing data, the benefits of deep learning algorithms for imputation 

purposes also increase. 

Once trained, the DW PCNN model imputes large remote sensing datasets in significantly less 

processing time than the interpolation-based algorithms and performs much better than the 

default PCNN models with and without temporal dimensionality of datasets. For the accurate 

imputation of such datasets, the implementation of DW PCNN allows the accurate imputation 

of remote sensing data with large regions of missing data, which will benefit future researchers 

that conduct other studies such as data assimilation for numerical models, emission studies, and 

human health impact analyses from air pollution. To further enhance the imputation accuracy 

of the DW PCNN model, the expansion of the number of image channels the PCNN can receive 

needs to be increased. Furthermore, with the increase in input channels, the addition of more 
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temporal information and co-variables as input will allow the model to further improve the 

imputation capability over previous iterations and other algorithms. 
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CHAPTER 5 

Development of Deep Convolutional Neural Network Ensemble Models for 

36-Month ENSO Forecasts4 

5.1 Introduction 

Climate change persists to be a growing problem as greenhouse gases (GHGs) and aerosols 

continue to flood the atmosphere and affect its physics and chemistry (Mikhaylov et al., 2020; 

Wu et al., 2018). These changes in the atmosphere have led to temperature rise; longer, more 

intense droughts and storms; increased risk of wildfires (Jones et al., 2020); and sea-level rise 

(Vu et al., 2018). All these factors will continue to affect water supply and quality (Hashempour 

et al., 2020), crop and food production (Lal, 2020), human health (Campbell-Lendrum & Prüss-

Ustün, 2019), shelter, wildlife, and much more.  

The state of El Niño-Southern Oscillation (ENSO) is based on the sea surface temperature 

(SST) patterns and interannual fluctuation over the equatorial Pacific Ocean. ENSO has been 

shown to have impacts and global teleconnections on regional temperature, precipitation, and 

mid-tropospheric atmospheric circulation (Diaz et al., 2001) and has been used as a predictor 

for regional weather (Trenberth & Stepaniak, 2001). Nino3.4 is the most used index to represent 

the state of ENSO that covers the equatorial region 5°N – 5°S, and 170°W – 120°W (Bunge & 

Clarke, 2009). As such, dynamical and statistical models have been developed over the past 

 

4 Under preparation for submission 
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decades to predict seasonal ENSO but are not able to reliably predict ENSO due to its chaotic 

yet deterministic fluctuations (Chen et al., 2004; Gupta et al., 2020). As scientists attempt to 

find the solution to climate change, many are turning to deep learning (DL) for insight into how 

to predict and mitigate climate change. Artificial neural networks (ANNs) constitute one 

application of DL to climate modeling, and they allow the creation of climate simulations to 

reveal inter-variable relationships within the atmosphere (Labe & Barnes, 2021; Tzuc et al., 

2020). They also allow pertinent simulations of atmospheric physics and chemistry (Lauret et 

al., 2016). 

Deep neural networks (DNNs) are one of the common applications of DL to climate science. 

DL algorithms (LeCun et al., 2015) have already shown significant promise in various 

applications by modeling high-level abstractions within datasets (Bengio, 2009; Deng & Yu, 

2014). DNNs can be utilized for highly accurate climate forecasting, which allows for improved 

climate adaptation and mitigation. DNNs have been utilized to parameterize individual 

variables and “subgrid processes” to demonstrate their discrete impacts on the model 

(O’Gorman & Dwyer, 2018; Yuval & O’Gorman, 2020). Convolutional Neural Networks 

(CNN) (Krizhevsky et al., 2017) have been among the most successful and widely used neural 

networks thus far (LeCun & Bengio, 1995; Schmidhuber, 2015) for various purposes such as 

air quality and meteorological forecasting (Ghahremanloo et al., 2021; Lops et al., 2019; Sayeed 

et al., 2020, 2021; Yeo et al., 2021; Zhang et al., 2015), classification (Anthimopoulos et al., 

2016; Lee et al., 2017; Li et al., 2014), speech recognition (Mikolov et al., 2011; Park et al., 

2017), and imputation of temporal and spatial datasets (Ghahremanloo et al., 2021; Li et al., 
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2017; Zhang et al., 2018; Lops et al., 2021). CNNs have also been utilized to forecast climate 

(Fedotova & Luferov, 2019; Ham et al., 2019; He et al., 2019; Mu et al., 2019) and other types 

of networks for climate forecasting include physics-informed neural networks (PINNs) (de 

Wolff et al., 2021), and very simple neural networks (Mooers et al., 2021) among others. 

Furthermore, other applications of DL to climate modeling can be seen in the incorporation of 

DL into numerical modeling technology (Partee et al., 2021) and the utilization of the DL 

platform Tensorflow to model climate via multiple linear regression analysis (Kim, 2019).  

 

5.2 Methods 

5.2.1 Climate Data 

In relation to climate data, it is observed and understood that climate and their respective indices 

have teleconnections on the regional climates and other climate indices (Diaz et al., 2001; Yuan 

et al., 2018). Hence, the constraints of featuring only time-series data would limit the capability 

of the model to identify the spatial and temporal teleconnections within climatic data. The 

implementation of 2D-CNNs for forecasting allows the utilization of climate model and 

reanalysis datasets with both spatial and temporal dimensions – thus including the potential 

teleconnections of climate. For the study, 2D-CNN is utilized for climate forecasting due to the 

convolution kernels being able to extract spatial- and temporal features from the datasets and 

provide a more generalized model capability for long-term forecasts. The integration of diverse 

climatological data from model and reanalysis datasets offers enhancements in data dimensions 
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and allows the expansion of forecasting of climate indices (e.g., Nino3.4) by up to 36 months 

with sufficient accuracy. 

 

5.2.2 Data Preparation and Processing 

Datasets used for training and evaluating the 2D-CNN model are from the Coupled Model 

Intercomparison Project (CMIP5), ECMWF Reanalysis v5 (ERA5), Global Ocean Data 

Assimilation System (GODAS), and Simple Ocean Data Assimilation (SODA) to forecast 

Nino3.4 temperature anomalies, which represents the El Niño-Southern Oscillation (ENSO) 

index. For the model forecasting, we utilized 9 ocean and atmospheric parameters for the 

forecasting of Nino3.4. For ocean parameters, we used Sea Surface Temperature (SST), Mean 

Potential Temperature (MPT) within the 300-meter depth, Meridional (OV) and Zonal (OU) 

Current velocities. We computed the monthly SST anomaly (SSTA) and MPT anomaly 

(MPTA) based on subtracting the long-term climatology (between 1900 and 2000 time-period) 

to the monthly SST and MPT values. For atmospheric parameters, we used Precipitation (PR), 

Pressure at Sea Level (PSL), Surface Temperature (ST), and Meridional (AV) and Zonal (AU) 

velocities of wind. CMIP5 datasets contained both atmospheric and ocean variables, while the 

respective reanalysis datasets had to be merged from different sources. For ocean parameters 

of reanalysis data (SST, MPT, OV, and OU), we used SODA and GODAS, while atmospheric 

parameters (PR, PSL, ST, AV, and AU) of reanalysis data was acquired from ERA5. Due to 

the different sources, the reanalysis datasets were temporally aligned, processed, and merged 

for SODA and GODAS periods.  
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The datasets for all parameters were spatially constrained with 60° N and 55° S. The calculation 

of Nino3.4 from SSTA are based on the mean of the constrained region within 5° N – 5° S, and 

170° W – 120° W (Chen et al., 2004; Gupta et al., 2020). To validate the anomaly calculation, 

we compared the National Oceanic and Atmospheric Administration’s (NOAA) Nino3.4 index 

(NOAA, 2021) to NOAA Extended Reconstructed Sea Surface Temperature V5 

(https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html) in (which the SSTA calculation was 

tested) with a correlation of 0.996 (see Figure F24). We then compared the calculated NOAA 

SSTA to the GODAS SSTA (see Figure F25) to validate the reanalysis data processing for 

SSTA. Due to the large datasets, we constrained the data size by applying down-sampling. The 

down-sampling process utilized bi-cubic and inter-area interpolation of the spatial datasets to 

spatial dimensions of 32 by 96 pixels in the latitude and longitude dimensions, respectively. 

The model receives twelve months of input for each parameter (for a total of 108 samples) to 

forecast 1-36 lead months in Nino3.4. Thus, each sample the model receives is comprised of 

32×96×108 (331,776 values total) to forecast up to 36 months. Normalization was based on 

defined min and max variables for each input parameter (see Table T14). This ensures proper 

distribution or regularization of the data to improve model performance by reducing the 

significance of rare outliers within the dataset (Sola & Sevilla, 1997; Eslami et al., 2019; Lops 

et al., 2021; Sayeed et al., 2021). 
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5.2.3 Coupled Model Intercomparison Project 

Coupled Model Intercomparison Project phase5 (CMIP5) is comprised of more than 20 

modeling groups to develop and study community-based coupled atmosphere-ocean general 

circulation models (AOGCMs). The goal of these simulations was to help improve our 

understanding of climate change and variability (Taylor et al., 2021). We acquired CMIP5 

datasets from the Earth System Grid Federation (ESGF) managed by the Department of Energy 

Lawrence Livermore National Laboratory (LLNL) (data available at https://esgf-

node.llnl.gov/search/cmip5/).  

Table T15 lists the CMIP5 IDs, modeling groups and model time-period. We only extracted the 

first ensemble member (the first realization, initialization, and set of perturbed physics, which 

is denoted “r1i1p1”) from each historical experiment from the CMIP5 model outputs (Peng et 

al., 2020). The outputs were split between the ocean and atmospheric domains, which have been 

merged for the data processing for the forecasting CNN model. 

 

5.2.4 ECMWF Reanalysis v5 

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) 

atmospheric variables were used as input for the Deep CNN model. ERA5 is the 5th generation 

climate reanalysis dataset from ECMWF and provides a detailed record of the global 

atmosphere, oceans, and land surface. ERA5 reanalysis is based on the Integrated Forecasting 

System (IFS) Cy41r2 with 4DVar data assimilation. The ERA5 datasets have an hourly monthly 

average temporal resolution and spatial resolution of ~31km. The vertical resolution of the 
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dataset is comprised of 137 hybrid sigma-pressure vertical levels, with the top-level located at 

0.01 hPa (~80km altitude). At the time of writing, the datasets from January 1979 to the present 

(September 2021) have been made available to the public. The reanalysis is expected to cover 

the time period from January 1950 to the present (Hersbach et al., 2020; Hoffmann et al., 2019; 

Urraca et al., 2018). 

5.2.5 Global Ocean Data Assimilation System 

The Global Ocean Data Assimilation System (GODAS) was implemented and is managed by 

the National Centers for Environmental Prediction (NCEP). The reanalysis datasets have a 

spatial resolution of 0.3 degrees latitude and 1-degree longitude for the entire quasi-global 

domain (75°S–65°N) configuration of the Geophysical Fluid Dynamics Laboratory’s (GFDL) 

Modular Ocean Model version 3 (MOM.v3). GODAS receives temperature observations from 

Expendable Bathythermographs (XBTs) (Ishii & Kimoto, 2009), Tropical Atmosphere Ocean 

(TAO) array in the tropical Pacific (McPhaden, 1995), Triangle Trans-Ocean Buoy Network 

(TRITON) in the tropical Indian Ocean (Hase et al., 2008), Prediction and Research Moored 

Array in the Tropical Atlantic (PIRATA) (Servain et al., 1998), and Argo profiling floats 

(Gould et al., 2004) for ocean data assimilation (Huang et al., 2008). GODAS provides pentad 

and monthly ocean analyses and data products from 1979 to the present. The data is hosted and 

maintained by the NOAA’s Climate Prediction Center (Huang et al., 2010) (available at 

http://www.cpc.ncep.noaa.gov/products/GODAS).    
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5.2.6 Simple Ocean Data Assimilation 

The Simple Ocean Data Assimilation (SODA) is a reanalysis dataset consisting of gridded 

variables for the global ocean since the beginning of the 20th century. The reanalysis datasets 

have a spatial resolution of 0.25 degrees latitude and 0.4 degrees longitude with 40 vertical 

levels (Carton & Giese, 2008). SODA 2.2.4 datasets were acquired, which is based on the 

Parallel Ocean Program numerics (Smith et al., 1992) with data assimilation (Giese & Ray, 

2011). SODA 2.2.4 provides monthly ocean analyses and data products from 1871 to 2010. The 

data is hosted and maintained by the Asia-Pacific Data-Research Center (APDRC) (available 

at http://apdrc.soest.hawaii.edu/datadoc/soda_2.2.4.php) 

 

5.2.7 Neural Network Structure  

We utilized a deep convolutional neural network (deep CNN) (Krizhevsky et al., 2017) with 

fully connected layers for the forecasting of the NINO3.4 climate anomaly. CNNs process data 

by convolving the data at each layer over multiple image channels, assigning weights and biases 

at various aspects within the data, and differentiating between them. The benefits of CNN 

models are their ability to reduce data into a more manageable form for processing (without 

losing important features) and extract high-level features of the input data with kernels during 

the convolving phase (Lawrence et al., 1997). The utilization of Recurrent Neural Networks 

(RNNs) would have potentially increased the training time of the model without sufficient 

improvements (Lops et al., 2020). Thus, due to the size and complexity of the Deep CNN 

forecasting model, we did not utilize RNNs for the performance comparisons. The implemented 
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algorithms for CNN models were run on the Keras and TensorFlow 2 environments (Chollet, 

2015; Chollet, 2018; Abadi et al., 2016). 

The structure of the CNN models comprised of three 2D-Convolutions with kernel sizes of 4×6, 

strides 2×3, and padding set to ‘same’ and one flattening layer with a dropout of 10%. The 

flattening layer is connected to a dense layer with 128 neurons and dropout of 10%. The final 

layer is the output layer with 36 neurons. Both dense models have the Leaky-ReLU activation 

function. Leaky ReLU, with a negative slope coefficient of 0.5, prevents information loss and 

allows the model to predict negative features and values (Maas et al., 2013; Zhang et al., 2017) 

that represent the ENSO index.  We tested multiple models with swish (Ramachandran et al., 

2017) and ReLU (Xu et al., 2015) activation functions, a combination of the number of filters 

(8/8/8 or 8/16/32) for the 2D-convolution layers and the inclusion of max-pooling layers (Nagi 

et al., 2011) for each of the first two 2D-convolution layers. The schematic of the model is 

shown in Figure 5.1.  

 

Figure 5.1: Basic schematic of the CNN models for forecasting Nino3.4. Differences between models are whether 
max pooling is enabled, the number of filters (8/8/8 or 8/16/32), and the activation functions (Swish or ReLU) for 
the convolution layers. 
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We utilized the Index of Agreement (IOA) (Willmott et al., 1985) as the loss function for the 

models. Utilizing IOA as the loss function has been shown to improve model performance for 

varying long-term forecasting applications (Sayeed et al., 2020; 2021). The mathematical 

expression of the IOA loss function is as follows: 

 IOA =  1 −  
∑(Oi  −  Pi)2

∑(abs(Oi  −  O�) + abs(Pi  −  O�))2
 (12) 

where Oi represents the observation values and Pi represents the predicted values. O� represents 

the mean of observed values for the entire observation sample. 

The Deep CNN forecasting model underwent two training phases. The first phase involved 

training the models on CMIP5 images comprising of Ocean and Atmospheric components with 

validation checkpoint enabled (saving the model with the lower validation error at each 

iteration) at 100 epochs. During this phase, we split the training and validation datasets at an 

80%/20% distribution. The second phase involved utilizing transfer learning (Torrey & Shavlik, 

2010) to retrain the model with SODA ocean and ERA5 atmospheric variables without 

checkpoint or validation process enabled. The models were retrained on SODA datasets 

(1980/01-2008/09) for 50 epochs and tested on GODAS from Oct. 2008 (based on 1st month 

lead time) to Sept. 2021 (based on 36th month lead time).  

 

5.3 Results and Discussion 

For the evaluation of the model’s forecasting capability, we used the Pearson correlation 

coefficient (r) (Benesty et al., 2009) and IOA (Willmott et al., 1985) to directly compare the 
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predicted Nino3.4 to the observed Nino3.4 during the testing time period. We tested multiple 

Deep CNN models to identify optimal parameters for the model to forecast the Nino3.4 index 

by up to 36 months. Model hyper-parameters (Bergstra & Bengio, 2012) variables consisted of 

Swish and ReLU activation functions, the inclusion or exclusion of max-pooling layers, and the 

number of filters arrangement for the convolution layers at 8/8/8 or 8/16/32. Initial testing on 

the performance of the models was not impacted by the increase in neurons for the first dense 

layer; thus we set the number of neurons to 128 for the first dense layer. Each model received 

the same datasets for initial training on CMIP5 and transfer learning utilization on SODA ocean 

reanalysis with ERA5 reanalysis atmospheric datasets. Results show that some models diverge 

in performance for different months within the 36-month period of predicting Nino3.4.  

Models were identified and labeled by their model parameters. ‘C’ designates the convolution 

layers with the number referring to the number of filters within the convolution layer. The filters 

are unchanged for the models, which are 4×6 with strides 2×3. ‘m’ designates a max-pooling 

layer between the convolution layers and Swish (ReLU) are the activation functions used for 

the convolution layers. Thus, a model with designation C8m8m8|Swish has three convolution 

layers with 8 filters and swish activation function, and max pooling layers between the 

convolution layers. 

The models are evaluated based on their 6th, 12th, 18th, 24th, 30th, and 36th-month forecasting 

score for IOA and r. Due to the divergence of the model performances, to identify the model 

with the overall best performance, we utilize a cumulative score of the evaluation months for 

IOA and r (see Figure 5.2). The highest cumulative IOA score was achieved by the model 



77 

 

C8m16m32|Swish with a cumulative IOA score of 3.742, while the model C8/8/8|Swish 

achieved the highest cumulative r score (see Figure 5.3). Both models achieved the highest IOA 

and r scores overall. For 6 and 12-month forecasting accuracy, the model C8m16m32|Swish 

achieved the highest scores for IOA and r. The model achieved 0.83 and 0.68 IOA for 6 and 

12-month forecast, respectively, while the model achieved 0.72 and 0.52 r for 6 and 12-month 

forecasts, respectively. Both C8/8/8|Swish and C8/16/32|Swish models achieved very similar 

performance for forecasting 18 months ahead. Both models achieved an IOA of 0.63 and the 

C8/8/8|Swish model achieved an r of 0.59 while the C8/16/32|Swish achieved an r of 0.58. The 

C8m8m8|Relu model achieved the highest IOA and r (0.67 and 0.47, respectively) of all the 

models for 24-month forecasting. For both 30 and 36 month forecasts, C8/8/8|Swish model 

achieved the highest r of all the models (0.46 and 0.48, respectively). In terms of 30-month 

forecast, the C8m16m32|Swish model had the highest IOA (0.63) while the C8/8/8|Swish 

model achieved the highest IOA of 0.61 for the 36-month forecast. See Table T16 for the 

statistical scores for each model and respective lead months at 6-month intervals. 
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Figure 5.2: Statistical comparisons (IOA and r) of the Deep CNN models based on the lead forecasting months at 
6-month intervals. The ensemble is the combined mean output of C8/8/8|Swish and C8m16m32|Swish models. 
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Figure 5.3: Cumulative scores of Index of Agreement (a) and correlation (b) for the different models based on 
the forecasting lead month at 6 month intervals. 

Based on these results, we combined the outputs of the C8/8/8|Swish and C8m16m32|Swish 

models as an ensemble model output. The ensemble model achieved a 4% and 7% improvement 

in cumulative IOA and r score, respectively, over the C8/8/8|Swish model. With an r of 0.52 

for 36-month forecast, the ensemble output provides a moderate correlation performance on 

predicting the Nino3.4 index. 
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5.4 Conclusion 

ENSO has been shown to have impacts on regional weather and global teleconnections within 

regional climates. As GHGs and aerosols continue to be emitted into the atmosphere, climate 

change will persist in being a growing problem due to shifts in local climates and the intensity 

of climate extremes within regions. These factors will impact human health, water availability, 

food production, wildlife, and coastal regions from sea level rise. Is it a growing concern to 

develop dynamical and statistical models to forecast climate over extended periods for better 

adaption and mitigation strategies from adverse weather and climate. Due to ENSO’s global 

teleconnection and impact on regional climates, scientists have worked on forecasting ENSO, 

but it has proven difficult due to its chaotic yet deterministic fluctuations (Chen et al., 2004; 

Gupta et al., 2020). DL has shown promise in identifying non-linear relationships within input 

datasets for long-term forecasting of air quality and weather forecasting (Ghahremanloo et al., 

2021; Lops et al., 2019; Sayeed et al., 2020, 2021; Yeo et al., 2021; Zhang et al., 2015). In this 

research, we utilize different deep 2D-CNN systems to forecast Nino3.4 SST anomalies by up 

to 36 months with moderate performance. While the deep 2D-CNN models had different 

performances based on the 6-month interval lead time, we identified two models with the best 

overall cumulative IOA and r scores. Creating an ensemble forecast by merging the output of 

the two models, we have shown the system’s exceptional forecasting accuracy and capability 

to forecast 36 months ahead with a moderate score of 0.52 r where 0.5 is often forecasting 

threshold of a model for sufficient forecasting capability (Ham et al., 2029).  
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While forecasting ENSO (i.e., Nino3.4) remains difficult and predictions remain uncertain, this 

study demonstrates the potential of DL has shown promise to extend moderately accurate 

forecasts within (or even beyond) 36 month lead times. Through further optimizations of the 

model parameters, selection and preparation of input variables, and extension of a historical 

time period for training the models, there is potential to improve the forecasting capability of 

the system. Through combination and optimization of model outputs into an ensemble system, 

the accuracies can be further improved by each model overcoming the shortfalls of the other 

models in their forecasting. 
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CHAPTER 6 

Conclusion 

In this study, deep 1D- and 2D-convolutional neural networks (CNN) and U-net-based 2D-

convolutions were used for various atmospheric applications in long-term air quality and 

climate forecasting, and imputation of remote sensing datasets over East Asia, the Contiguous 

United States, and globally.  

The first task utilized a deep 1D-CNN neural network to forecast pollen concentrations from 

three different groups of plants: Tree, Grass, and Weed pollen. The Deep CNN algorithm 

obtained a relatively high index of agreement (IOA) and Pearson correlation coefficient (r) of 

up to 0.90 and 0.88, respectively. Categorical statistic evaluations based on defined threshold 

levels also show satisfactory results for the model forecasting capability. The model achieved 

a Critical Success Index as high as 0.887 for weed pollen, 0.646 for tree pollen, and 0.294 for 

grass pollen. Forecasts of grass pollen exhibit the largest decrease in accuracy because of the 

strong variance in annual pollen concentrations. Forecasts of weed pollen exhibit the greatest 

consistency, with the model achieving a 7-day forecast correlation and index of agreement of 

0.82 and 0.77, respectively, during the peak season. This correlates with the consistency of 

annual and seasonal trends of weed pollen within the study area. Compared to the conventional 

modeling approaches, the deep convolutional neural network shows a promising ability to 

predict pollen for multiple days to allow individuals with allergies to take proper precautions 

during high pollen days. 
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The second task utilized advanced U-net-based convolutional neural network architecture to 

spatially impute missing remote sensing Aerosol Optical Depth (AOD) from the Geostationary 

Ocean Color Imager (GOCI). The model utilized partial convolutions, which allows the 

convolution to only depend on the valid pixels and the normalization is adjusted to the fraction 

of missing data. The model has been trained with Community Multiscale Air Quality (CMAQ) 

simulated AOD data with masks extracted from the GOCI datasets. The partial CNN model has 

outperformed various models and algorithms for imputing GOCI images with a significant 

amount of missing data and distance to the nearest known pixel within the GOCI image. Once 

trained, the model required significantly less processing time and fewer resources than the other 

models and methods. The model allows the accurate imputation of remote sensing images 

within significant amounts of missing data. One limitation of the model was the lack of temporal 

dimensionality in the imputation process; hence the third task was implemented to address the 

limitation of the model. 

The third task expanded the partial CNN model’s capability to integrate temporal 

dimensionality within the datasets. The model structure was similar to the previous model in 

the second task but utilizes depthwise convolutions over the conventional convolutions to 

partially convolve the different masks independently. This change allowed the model to impute 

TROPOspheric Monitoring Instrument (TROPOMI) tropospheric total column NO2 at much 

better quality than the default partial CNN model with the same spatio-temporal datasets. 

Another feature of the task was the expansion of the image augmentation process on CMAQ 

data to simulate the pixel variances of the TROPOMI datasets. The combination of depthwise 
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convolutions and image augmentation allowed the model to exceed the performances of the 

default partial CNN models by up to 11% and 15% in IOA and r, respectively. The model was 

also capable of imputing images with over 95% of missing pixels with sufficient accuracy, 

where the other algorithms and partial CNN models were not capable of such a difficult feat.  

The fourth task utilized the knowledge of the previous tasks to develop a deep 2D-CNN model 

to forecast ENSO by up to 36 months in advance. The model incorporated various model 

simulation outputs from the Coupled Model Intercomparison Project phase5 (CMIP5) with 

various input variables reflecting the state of the climate. The variables used for the model 

forecasting were Sea Surface Temperature (SST) and Mean Potential Temperature anomalies, 

ocean current velocities, atmospheric precipitation, surface pressure, surface temperature, and 

atmospheric wind velocities near the surface to predict Nino3.4. Multiple models were designed 

and compared in their performance for forecasting Nino3.4 by up to 36 months. Two models 

were identified to have the best overall performance n IOA and r for forecasting Nino3.4 from 

1-36 month lead times. The ensemble, which involved merging the output of the models, 

provided 4-7% better performance than the two best individual models. The ensemble output 

addressed the limitation of the individual models in specific lead months and was able to 

achieve a correlation of 0.52 for the 36-month forecast, indicating a moderate forecasting 

capability. 
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APPENDIX 

A: Tables 

Table T1: Parameters of temperature (Tte), relative humidity (RHte), and wind speed (WSte) thresholds for 
computing the meteorological adjustment factor (ke). Thresholds are based on the tree, grass, and weed pollen 
categories. Weighting factors (c1, c2, c3) are applied to their respective meteorological thresholds. 

Parameters Vegetation 
Tree Grass Weed 

Tte 8 8 19.85 
WSte 2.5 2.5 2.9 
RHte 90 90 60 
c1, c2, c3 0.5, 1.0, 2.0 0.5, 1.0, 2.0 0.5, 1.0, 2.0 

 
 
Table T2: Parameters of the deep convolutional neural network for each vegetation pollen category. 

Parameters Vegetation 
Tree Grass Weed 

Testing Size 15% 20% 20% 
Batch Size 100 100 100 
Drop Out 0.4 0.1 0.2 
Number of Filters 16 16 64 
Hidden Units 32 64 128 
Kernel Size 8 12 2 
Learning Rate 0.001 0.02 0.01 
Training Epochs 1000 600 500 

 
 

Table T3: Parameters comparison and changes of the CNN, GRU, and DNN models. ‘/’ designates the parameter 
differences between tree, grass, and weed pollen respectively. ‘+’ designates the different layers with number of 
hidden units for each layer. 

Parameters Model Parameters 
CNN GRU DNN 

Drop Out 0.4/0.1/0.2 None 0.2 
Hidden Units 32/64/128 64+32 192+128+64 
Training Epochs 1000/600/500 200 1000/600/500 
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Table T4: Statistical performance comparison using Index of Agreement (IOA) and Pearson correlation 
coefficient (r) of the CNN, GRU, and DNN models in forecasting 1- and 7-day tree, grass, and weed pollen. 

Model Evaluation Performance for 1Day Forecast Performance for 7Day Forecast 
Tree Grass Weed Tree Grass Weed 

CNN IOA 0.88 0.81 0.90 0.76 0.56 0.80 
r 0.85 0.75 0.88 0.71 0.51 0.85 

GRU IOA 0.81 0.77 0.80 0.64 0.45 0.81 
r 0.73 0.68 0.85 0.69 0.48 0.80 

DNN IOA 0.88 0.81 0.79 0.72 0.54 0.78 
r 0.80 0.73 0.85 0.67 0.46 0.84 

 
 

Table T5: Statistical evaluation results for the total pollen generated by the deep convolutional neural network 
model for the entire year of 2016. Results are based on the threshold values of respective pollen categories and the 
mean of the pollen thresholds and forecasting days ahead. 

    Day1 Day2 Day3 Day4 Day5 Day6 Day7 

T
ot

al
 P

ol
le

n 
T

hr
es

ho
ld

 =
 2

0 HIT 0.631 0.646 0.646 0.651 0.641 0.656 0.626 
CSI 0.600 0.612 0.615 0.620 0.613 0.627 0.598 
FAR 0.075 0.080 0.074 0.073 0.067 0.066 0.069 
ETS 0.389 0.399 0.404 0.409 0.404 0.420 0.389 
POC 0.776 0.781 0.784 0.787 0.784 0.792 0.776 

T
ot

al
 P

ol
le

n 
T

hr
es

ho
ld

 =
 3

0 HIT 0.679 0.691 0.722 0.716 0.673 0.673 0.685 
CSI 0.659 0.671 0.688 0.682 0.641 0.637 0.661 
FAR 0.043 0.043 0.064 0.065 0.068 0.076 0.051 
ETS 0.509 0.523 0.538 0.531 0.484 0.478 0.510 
POC 0.844 0.850 0.855 0.852 0.833 0.831 0.844 

T
ot

al
 P

ol
le

n 
T

hr
es

ho
ld

 =
 3

3 
(M

ea
n)

 

HIT 0.684 0.696 0.709 0.709 0.684 0.684 0.684 
CSI 0.667 0.675 0.685 0.671 0.642 0.657 0.663 
FAR 0.036 0.043 0.058 0.052 0.062 0.068 0.044 
ETS 0.525 0.532 0.541 0.526 0.492 0.506 0.518 
POC 0.852 0.855 0.858 0.852 0.839 0.844 0.850 

T
ot

al
 P

ol
le

n 
T

hr
es

ho
ld

 =
 5

0 HIT 0.662 0.676 0.649 0.662 0.662 0.689 0.628 
CSI 0.641 0.654 0.627 0.641 0.636 0.667 0.608 
FAR 0.049 0.048 0.050 0.049 0.058 0.047 0.051 
ETS 0.506 0.521 0.492 0.506 0.500 0.535 0.471 
POC 0.850 0.855 0.844 0.850 0.847 0.861 0.836 
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Table T6: Image augmentation settings used for the training of the partial CNN model. 

Parameter Setting Description 
Rotation 10 Range for random rotations in degrees 

Width Shift 0.1 Fraction of total width 
Height Shift 0.1 Fraction of total height 

Shear 0.05 Shear Intensity 
Zoom 0.05 Fraction of random zoom 

Horizontal Flip True Random horizontal flip 
Vertical Flip True Random vertical flip 

Fill mode Reflect Fills empty spaces after augmentation 
Upscaling Bi-cubic Uses bicubic interpolation for upscaling 

 
Table T7: Estimated imputation time to impute GOCI AOD dataset of various models and the platforms used to 
process the respective models. 

Model Hardware Details Training 
Time 

Imputation Time 
(1581 Images) Total Time 

Kriging 
24 processors per node 
Intel(R) Xeon(R) Silver 
4214 CPU @ 2.20GHz 

- 
~ 7 hours 

(~15.94 seconds 
per image) 

~ 7 hours 

Partial CNN 

16 processors per node 
Intel(R) Xeon(R) CPU E5-

2603 v4 @ 1.70GHz 
Tesla K40c GPU 

~ 7.9 hours 
~ 1 minute 

(~0.04 seconds 
per image) 

~ 7.9 hours 

Inverse 
Distance 

Weighting 

96 processors per node 
(Intel(R) Xeon(R) Platinum 
8160 @ 2.1GHz processors 

(system managed by 
TACC) 

- 
~ 35 hours 

(~79.70 seconds 
per image) 

~ 35 hours 

Navier Stokes 
24 processors per node 
Intel(R) Xeon(R) Silver 
4214 CPU @ 2.20GHz 

- 
~ 0.34 hours 

(~0.77 seconds 
per image) 

~ 0.34 
hours 

Fast 
Marching 
Method 

24 processors per node 
Intel(R) Xeon(R) Silver 
4214 CPU @ 2.20GHz 

- 
~ 0.19 hours 

(~0.43 seconds 
per image) 

~ 0.19 
hours 

Radial basis 
Function 

20 processors per node 
Intel(R) Xeon(R) CPU E5-

2580 @ 2.50GHz 
- 

~168.3 hours 

(~383.23 seconds 
per image) 

~168.3 
hours 

K-Nearest 
Neighbor 

20 processors per node 
Intel(R) Xeon(R) CPU E5-

2680 @ 2.50GHz 
- 

~280.1 hours 

(~637.80 seconds 
per image) 

~280.1 
hours 
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Table T8: Table summarizing the merits and demerits of the models utilized for imputing GOCI datasets. 

Methods Features Merits Demerits 
Inverse 
distance 
weighting 
(IDW) 

Inversed distance 
weighted-average 
within the search 
radius 

• Good accuracy 
• Low bias at small 

distances 

• No temporal variable 
• Overall prediction close to 

the mean value 
• Easily influenced by outliers 

Kriging Utilizing semi-
variance for the 
spatial distribution 

• Good overall 
performance 

• No temporal variable 
• Overall prediction close to 

the mean value 
• Bad accuracy for distant 

pixels 
K-Nearest 
Neighbor 
(KNN) 

Nearest neighbor 
within the search 
radius 

• Low bias at small 
distances  

 

• No temporal variable 
• Low spatial variation  

Radial Basis 
Function 
(RBF) 

Generates 
functions based on 
the spatial 
distribution 

• Good overall 
performance 

• No temporal variable 
• Computation time is 

proportional to the amount of 
missing data 

• Bad accuracy for distant 
pixels  

• Requires extensive testing for 
optimal parameters 

Navier Stokes 
Method (NS) 

Utilizes 
techniques from 
computational 
fluid dynamics 

• Computationally 
efficient  

• Good accuracy to 
performance  

• No temporal variable 
• Original input data is slightly 

modified 
• Bad accuracy for distant 

pixels 
Fast Marching 
Method 
(FMM) 

Heuristic 
operation of 
gradually filling 
missing pixels 
from known 
pixels 

• Computationally 
efficient 

• No temporal variable 
• Low accuracy with more 

missing data 
• Original input data is slightly 

modified 
• Bad accuracy for distant 

pixels 
Partial 
Convolutional 
Neural 
Network 
(PCNN) 

Partially 
convolves data to 
reduce the 
significance of the 
mask  

• Good accuracy to 
performance 

• Optimal for a high 
percentage of missing 
data 

• Low bias at large 
distances 

• No temporal variable 
• Original input data is slightly 

modified 
• Requires prior training 
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Table T9: Statistical results of daily mean GOCI AOD and GOCI AOD modification of Partial CNN (PCNN) 
data to the AERONET measurements of seven stations in East Asia in 2018. 

AERONET 
Station 

Index of 
Agreement (IOA) 

Pearson 
Correlation (r) 

Mean Absolute 
Error (MAE) 

Root Mean Square 
Error (RMSE) 

GOCI PCNN GOCI PCNN GOCI PCNN GOCI PCNN 
Beijing 0.942 0.948 0.966 0.973 0.096 0.076 0.130 0.112 

Fukuoka 0.749 0.775 0.846 0.874 0.112 0.078 0.143 0.109 
Gangneung 0.806 0.871 0.874 0.922 0.100 0.075 0.150 0.113 
Gwangju 0.696 0.560 0.810 0.737 0.132 0.128 0.189 0.203 
Niigata 0.694 0.804 0.725 0.859 0.157 0.090 0.228 0.136 
Osaka 0.372 0.619 0.526 0.764 0.188 0.104 0.249 0.141 
Seoul 0.870 0.881 0.923 0.937 0.104 0.085 0.142 0.122 

 
 
Table T10: MEA and RMSE results of the models in imputing GOCI AOD to the AERONET measurements of 
seven stations in East Asia in 2018. 

 AERONET 
Station Kriging PCNN IDW NS FMM RBF KNN 

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r (
M

A
E)

 Beijing 0.140 0.123 0.118 0.109 0.115 0.111 0.114 
Fukuoka 0.074 0.070 0.074 0.070 0.069 0.084 0.092 

Gangneung 0.099 0.087 0.090 0.098 0.108 0.110 0.106 
Gwangju 0.099 0.085 0.075 0.084 0.085 0.085 0.087 
Niigata 0.087 0.073 0.084 0.086 0.093 0.104 0.126 
Osaka 0.096 0.091 0.098 0.104 0.098 0.118 0.127 
Seoul 0.124 0.121 0.111 0.109 0.119 0.108 0.114 

R
oo

t M
ea

n 
Sq

ua
re

 E
rr

or
 

(R
M

SE
) 

Beijing 0.252 0.241 0.232 0.213 0.220 0.194 0.214 
Fukuoka 0.111 0.107 0.108 0.100 0.098 0.125 0.133 

Gangneung 0.158 0.166 0.154 0.165 0.179 0.189 0.180 
Gwangju 0.138 0.116 0.103 0.120 0.118 0.113 0.121 
Niigata 0.129 0.104 0.125 0.127 0.148 0.142 0.189 
Osaka 0.167 0.139 0.147 0.152 0.140 0.171 0.177 
Seoul 0.211 0.198 0.187 0.183 0.189 0.173 0.184 

 
 
Table T11: Image augmentation settings used for the training of the partial CNN model. 

Parameter Setting Description 

Random Noise Mean=0, Deviation=1-2% of 
max NO2 variable per image 

Applies random noise mask based on set 
deviation range with a 0 mean distribution 

Horizontal Flip True Random horizontal flip 

Vertical Flip True Random vertical flip 
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Rotation 90-degree steps Rotates images at 90-degree intervals 

 
 
Table T12: Table showing the statistical evaluation results of imputing TROPOMI images by the Inverse 
Distance Weighting (IDW), coupled IDW with CoKriging (IDW CoKriging), regular Partial Convolutional 
Neural Network (Base PCNN), Base PCNN with Spatio- and temporal-datasets (ST), and Depthwise PCNN 
(DW-PCNN) models. The evaluations are based on the Index of Agreement (IOA), correlation (r), Mean 
Absolute Error (MAE), and Root Mean Squared Error (RMSE). 

Models 
2019 2020 

IOA r MAE RMSE IOA r MAE RMSE 
IDW 0.77 0.68 6.23×1014 9.15×1014 0.77 0.68 5.02×1014 6.98×1014 
IDW 

CoKriging 0.77 0.68 6.13×1014 9.00×1014 - - - - 

Base PCNN 0.76 0.64 6.40×1014 9.76×1014 0.79 0.68 4.89×1014 7.02×1014 
Base PCNN 

(ST) 0.76 0.66 5.77×1014 8.45×1014 0.74 0.65 4.85×1014 6.65×1014 

DW-PCNN 0.81 0.74 6.05×1014 8.64×1014 0.82 0.74 4.55×1014 6.21×1014 
 
 
Table T13: Table summarizing the merits and demerits of the models utilized for imputing GOCI datasets. 

Methods Features Merits Demerits 

Inverse 
distance 
weighting 
(IDW) 

Inversed distance 
weighted-average 
within the search 
radius 

• Good accuracy 
• Optimal for a low 

percentage of missing 
data 

• Low bias at small 
distances 

• No temporal variable 
• Overall prediction close to 

the mean value 
• Easily influenced by 

outliers 

IDW - 
CoKriging 

Utilizing weekly 
mean imputed 
images as an 
additional variable 
for Kriging 
imputation 

• Good accuracy 
• Optimal for a low 

percentage of missing 
data 

• Low bias at small 
distances 

• Incorporates semi-
temporal variable 

• No direct temporal 
variable 

• Overall prediction is the 
same as IDW 

• Increased computation and 
processing time  

Partial 
Convolutional 
Neural 
Network 
(PCNN) 

Partially 
convolves data to 
reduce the 
significance of the 
mask  

• Optimal for a low 
percentage of missing 
data 

• Low bias at large 
distances 

• No temporal variable 
• Original input data is 

modified 
• Requires prior training 
• Distortions with images 

with high % missing data 
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Partial 
Convolutional 
Neural 
Network with 
Spatio-
Temporal Data 
(PCNN-ST) 

Partially 
convolves data to 
reduce the 
significance of the 
mask. Receives 
different images 
for each channel 

• Good accuracy to 
performance 

• Optimal for a high 
percentage of missing 
data 

• Low bias at large 
distances 

• Original input data is 
modified 

• Requires prior training 
• Significant smoothing in 

the output and slight over-
prediction 

• Mask features are not 
properly padded during 
the encoding phases 

Depthwise 
Partial 
Convolutional 
Neural 
Network (DW-
PCNN) 

Partially 
convolves data to 
reduce the 
significance of the 
mask with 
depthwise 
convolutions 

• Very good accuracy to 
performance 

• Optimal for all cases 
• Low bias at large 

distances 
• Mask features are 

maintained for each 
channel 

• Original input data is 
slightly modified 

• Requires prior training 
• Requires longer training 

than regular PCNN 
models 

 
 
Table T14: List of defined maximum and minimum variables for the data normalization process of the input 
data. 

Parameter SSTA & 
MPTA 

UO & 
VO PR PSL TS UA & 

VA 

Max 10 2.5 0.007 10500 320 14 

Min -13 -2 -0.00004 97000 220 -12 

 
Table T15: List of CMIP5 model IDs used for training the Deep CNN models for forecasting Nino3.4. 

CMIP ID Modeling Group Model Time 
Period 

CanESM2 Canadian Centre for Climate Modelling and Analysis 1850/01-2005/12 

CMCC_CM 
Centro Euro-Mediterraneo per I Cambiamenti Climatici, 

1850/01-2005/12 

CMCC_CMS 1850/01-2005/12 

HadGEM2-AO National Institute of Meteorological Research & Korea 
Meteorological Administration 1860/01-2005/12 

HadGEM2-CC Met Office Hadley Centre 1859/12-2005/11 
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HadGEM2-ES 1859/12-2005/12 

IPSL-CM5A-
MR Institut Pierre-Simon Laplace 1850/01-2005/12 

MIROC5 
Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and Japan 
Agency for Marine-Earth Science and Technology 

1850/01-1999/12 

 
 

Table T16: Table showing the statistical scores, Index of Agreement (IOA) and Correlation Coefficient (r), of the 
Deep CNN models in forecasting Nino3.4 SST anomaly between 6 and 36 months at 6-month intervals. The 
ensemble is the merging of the ‘C8/8/8 Swish’ and ‘C8m16m32 Swish’ model outputs. ‘C’ designates the 
convolution layers with the number referring to the number of filters within the convolution layer. ‘m’ designates 
a max-pooling layer between the convolution layers and Swish (ReLU) are the activation functions used for the 
convolution layers. 
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IO
A

) 6 Month 0.76 0.72 0.75 0.83 0.73 0.63 0.78 0.69 0.81 

12 Month 0.62 0.54 0.59 0.68 0.37 0.54 0.67 0.51 0.67 

18 Month 0.63 0.28 0.63 0.55 0.36 0.48 0.54 0.40 0.61 

24 Month 0.49 0.41 0.54 0.50 0.36 0.67 0.52 0.46 0.51 

30 Month 0.60 0.42 0.49 0.63 0.44 0.56 0.44 0.49 0.65 

36 Month 0.61 0.54 0.44 0.55 0.51 0.46 0.49 0.14 0.60 

Cum. Score 3.70 2.91 3.45 3.74 2.77 3.34 3.43 2.70 3.85 

C
or

re
la

tio
n 

C
oe

ff
ic

ie
nt

 (r
) 6 Month 0.69 0.62 0.68 0.72 0.65 0.43 0.71 0.50 0.75 

12 Month 0.46 0.42 0.45 0.52 0.09 0.45 0.51 0.45 0.58 
18 Month 0.59 -0.05 0.58 0.41 0.13 0.40 0.28 0.15 0.56 
24 Month 0.34 0.11 0.37 0.28 0.08 0.47 0.31 0.19 0.34 
30 Month 0.46 0.34 0.33 0.42 0.16 0.32 0.16 0.35 0.48 
36 Month 0.48 0.38 0.19 0.40 0.27 0.10 0.37 -0.41 0.52 

Cum. Score 3.02 1.83 2.61 2.75 1.38 2.17 2.33 1.23 3.23 
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B: Figures 

 
Figure F1: Season time series of the deep convolutional neural network (CNN) model forecasting of Weed, Tree, 
and Grass pollen concentrations one day ahead for 2016. The time series of total pollen is for the entire year of 
2016. Blue indicates the observed pollen concentration, and red indicates forecasted pollen concentration. 
Respective statistical scores are based on the respective seasons during the year 2016. 

 

 
Figure F2: Map of East Asia with the domains for the CMAQ model (blue) used for training the partial CNN 
model and GOCI images (red) for evaluations of both the partial CNN model and the Kriging method. Black dots 
indicate the locations and city names of the AERONET stations used to evaluate the imputation accuracy of GOCI 
images. 
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Figure F3: Boxplots showing the performance of various Partial CNN models based on including or excluding 
globally defined normalization (Norm) and/or topology layer (Topo) within a color channel of the masked image. 
As a reference, the Kriging model and convolutional neural network (2D-CNN) are shown. 

 

 
Figure F4: Boxplot indicating the statistical performance comparison of Co-Kriging, ordinary Kriging, and Partial 
CNN (P-CNN) models. 
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Figure F5: Demonstration of the method for evaluating the pixel distance. Hourly and daily mask differences are 
used for evaluating the performance of the models for imputing missing GOCI data. Pixel distances are estimated 
based on the distance from the available hourly mask.  Displaying imputation performance, the evaluation mask 
is overlaid on the pixel distance from the hourly mask, which represents the pixels. 

 

 
Figure F6: Histograms showing the distribution from 100 to 200 or more pixel distances (left) and percent of 
missing data (right) within the GOCI image. 
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Figure F7: Scatterplot of Partial CNN's (PCNN) modification of measured GOCI AOD. The line of best fit (red) 
achieved a coefficient of determination (R2) of 0.941. 
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Figure F8: Line plots of daily mean GOCI AOD (blue) and Partial CNN modification of GOCI AOD (red) to the 
seven AERONET station AOD estimations (grey) for 2018. 
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Figure F9: Demonstration of the partial CNN model unable to properly estimate the GOCI image (top). This 
phenomenon is due to the clustering of available data (black) on one side of the image. A modified mask 
demonstrates the application of sample data (red) to the image for imputation. The partial CNN model bias issue 
has been partially resolved. For optimal performance, available data need to be distributed throughout the image. 
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Figure F10: Results of the bias-variance among pixel distances of the Partial CNN (PCNN), Kriging, Fast 
Marching Method (FMM), and K-Nearest Neighbor (KNN) models. The distances are split into four sections at 
52-pixel intervals. The main section of the boxplot presents the interquartile range between the 25th and 75th 
percentiles. The horizontal lines represent the mean bias of PCNN (red), IDW (blue), NS (orange), RBF (black) 
models, and the median bias (green for all models) of the imputing missing GOCI data. The whiskers (vertical 
lines) of the boxplot represent the variability outside the interquartile range. 
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Figure F11: Histograms of the partial CNN and Kriging methods at distances of 50 pixels or less and over 50 
pixels. Histograms in the left column include the three cases of high bias estimation from the partial CNN model. 
Histograms in the right column exclude the three cases of high bias from the partial CNN model.  

 

 
Figure F12: Distance AOD imputation comparison of the imputation models in estimating the daily mean GOCI 
image based on the GOCI hour mask of the respective day.  
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Figure F13: Images of seasonal means of GOCI AOD, Partial CNN (PCNN), Kriging, Inverse Distance Weighting 
(IDW), and Radial Basis Function (RBF). The seasons are divided into Winter (DJF), Spring (MAM), Summer 
(JJA), and Fall (SON). 
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Figure F14: Line plots of imputed Kriging AOD (blue), Partial CNN AOD (red), Inverse Distance Weighting 
(green), and Radial Basis Function (black) to the seven AERONET station AOD estimations (grey) for 2018 where 
GOCI AOD measurements were not available. 
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Figure F15: Sample cases of the bias of the partial CNN model in significantly overestimating AOD levels at the 
Beijing AERONET station.  
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Figure F16: Partial CNN imputation impact based on initial values within the GOCI mask of the Beijing station 
region. Imputed results are normalized within a range of 0-1 and do not directly represent AOD. Values are based 
on the modified AOD values across the mask region prior to imputation. 

 

 
Figure F17: Partial CNN imputation impact based on initial values within the GOCI mask of the Beijing station 
region. Imputed results are normalized within a range of 0-1 and do not directly represent AOD. Values are based 
on a consistent value across the mask region prior to imputation. 



105 

 

 
 

 
Figure F18: Mask padding comparison of the regular convolution (a) and depthwise convolution (b) padding. The 
columns represent one gray scale image within the three color channels (Red, Green, Blue) within a digital image. 
The regular convolution padding convolves the different masks as one unified mask after the first encoding layer. 
The depthwise convolution maintains the different mask features due to the padding occurring for each channel 
individually. 
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Figure F19: Sample of image augmentation process on CMAQ images performed for the training of the DW-
PCNN model. The first phase of augmentation adds random positive and negative features (Positive & Negative 
Mask) to simulate the pixel variations within the TROPOMI remote sensing images. Basic image augmentation 
parameters (such as flip and rotate) to the image are then applied with a randomly selected mask extracted from 
TROPOMI 2019 datasets. The mask is then applied to the augmented image and used as input for the model to 
impute. 
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Figure F20: Boxplot showing the correlation coefficient between pixels within the TROPOMI tropospheric 
column NO2 images with a daily shift, the weekly average with weekly shift, and the weekly average with a daily 
shift. The main section of the boxplot presents the interquartile range between the 25th and 75th percentiles. The 
whiskers (vertical lines) of the boxplot represent the variability outside the interquartile range.  
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Figure F21: Demonstration of the method for evaluating the pixel distance. Daily and weekly mask differences 
are used for evaluating the performance of the models for imputing missing TROPOMI data. Pixel distances are 
estimated based on the euclidean distance from the available daily mask. For evaluating imputation performance, 
the evaluation mask is overlaid on the pixel distance from the hourly mask, which represents the pixel distances. 

 

 
Figure F22: Histograms showing the distribution of percent of missing data within the TROPOMI images for 
2019 (left) and 2020 (right). 
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Figure F23: Sample cases of models imputing weekly averaged images with daily masks applied from TROPOMI 
2019.   
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Figure F24: Timeseries comparing the NOAA Nino3.4 index (NOAA Nino3.4) to the calculated Sea Surface 
Temperature (SST) Anomaly from the NOAA Extended Reconstructed Sea Surface Temperature V5 (ERSSTv5) 
spatial SST dataset (Calculated SSTA). The El Nino and La Nina phenomena are shaded in red and blue, 
respectively.  

 

 
Figure F25: Spatial comparisons of NOAA spatial Sea Surface Temperature Anomaly (SSTA) and computed 
spatial SSTA from GODAS spatial datasets. 
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