
 
 

i 
 

Fault Detection Using the Phase Spectra from  

 

Spectral Decomposition  
 

 

 

 

 

A Thesis Presented to  

 

the Faculty of the Department of Earth and  

 

Atmospheric Sciences 

 

University of Houston 

 

 

 

In Partial Fulfillment  

 

of the Requirements for the Degree 

 

Master of Science 

 

 

 

 

By  

 

 

Umberto Barbato 

 

 

December, 2012 

 

 



 
 

ii 
 

Fault Detection Using the Phase Spectra from  

 

Spectral Decomposition  

 

 

 

 

 

                                                                   

            
Umberto Barbato 

 

 

APPROVED: 

 

                                                               

  
Dr. John Castagna 

Chairman 

 

                                                                   

 
Dr. Evgeni Chesnokov 

 

                                                                    

 
Dr. Oleg Portniaguine 

 

 

                                                                    

 
Dr. Mark A. Smith  

Dean, College of Natural Sciences and Mathematics 

                  

 

  



 
 

iii 
 

Acknowledgements  

 

Foremost I would like to express my sincere gratitude to my advisor Dr. John 

Castagna; his motivation and immense knowledge guided this research to what it has 

become today. His leadership has (and continues to) shape me into the professional that I 

am today. 

Besides my advisor, I would like to thank my committee: Dr. Oleg Portniaguine 

and Evgeni Chesnokov, for guiding me during this process and providing me continuous 

support through the entirety of it. 

I would also like to thank Carlos Moreno, Gabriel Gil, Charles Puryear, and Stu 

Fagin. They have helped me complete this research by providing council in different 

aspects of it.  

Lastly, I would like to thank my family. My parents Roberto and Mariela Barbato, 

and brother Marco Barbato, for their personal and unconditional support through this 

entire effort.  



 
 

iv 
 

Fault Detection Using the Phase Spectra from  

 

Spectral Decomposition  
 

 

 

 

An Abstract of a Thesis Presented to  

 

the Faculty of the Department of Earth and  

 

Atmospheric Sciences 

 

University of Houston 

 

 

 

 

In Partial Fulfillment  

 

of the Requirements for the Degree 

 

Master of Science 

 

 

 

 

By  

 

 

Umberto Barbato 

 

 

December, 2012 

 

  



 
 

v 
 

Abstract  

Lateral changes in seismic phase can be used to detect small changes in seismic 

arrival time and waveform shape, independent of seismic amplitudes. A method to detect 

subtle seismic discontinuities, as may result from small-throw faults, using spectral 

decomposition phase spectra and a frequency-dependent phase attribute, derived from a 

combination of other structural attributes, is formulated. The application of this method to 

3D synthetic models shows its dependency to signal to noise ratio. The composite 

attribute is later applied to seismic data from the Stratton and Hitts Lake fields. Both 

areas show complex faulting, which is efficaciously detected by the composite attribute. 

This attribute appears to outperform other commonly used attributes, like coherence and 

curvature, in characterizing faults, both vertically and laterally. Finally, the technique is 

validated by observing faults detected at well log scale.   
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Chapter 1 

Introduction 

1.1 Motivation for Present Work 

In this research we will focus on the detection of faults. Fault picking is an 

important step in the process of reservoir characterization because faults are a 

hydrocarbon trapping mechanism. Understanding the fault system allows us to better 

measure our reservoirs statistics and better locate possible prospects. At the same time, 

leaky faults generate a problem of hydrocarbon retention, which is why it is very 

important to properly characterize them.  

When it comes to exploration, one of the longer lasting tasks is interpretation of 

seismic data. Traditionally, interpretation was done by hand, a time consuming process. 

Several techniques have been developed in order to shorten this time, like the use of 

different seismic attributes.  

The use of seismic attributes has a sizeable economic impact by saving time 

during the interpretation and exploration process. According to Randen (2011), “oil 

companies have suggested that for each 6 months saved, 5 % of the total cost of the 

development of the oilfield is saved”. It is also important to take into account that a quick 

and well developed interpretation can better position a company when bidding 

negotiations take place.  
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1.2 Research Objective 

Our main objective is to determine an automated yet effective attribute to 

efficiently delineate faults. The goal of an automated technique is to ease the task of 

picking faulting events by interpreters. 

Another goal of this research is to improve on methods that are already commonly 

used in the industry. This is why the effectiveness of the technique is important. We 

strive for achieving better results than what is already available, while also aiming for 

more accurate responses. 

The effectiveness of the attribute will be measured by how well it locates faulting 

and how it detects vertical and lateral extent of these discontinuities when compared to 

commonly used attributes in the industry.  

The following sections describe the geologic background of the study areas and 

the data used for this study. These areas include two fields: the Stratton Field and the 

Hitts Lake Field. 

 

1.3 Stratton Field Location 

The Stratton Field is part of the Frio Formation, located in the south western part 

of Texas. Figure 1, from Levey (1994), shows the location of the Frio Formation in 

Nueces and Kleberg Counties. It also shows the location of the Stratton Field, at the 

northern section of the Frio Formation. 
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Figure 1. Base map showing the location of the Frio Formation and the Stratton Field (from Levey, 1994). 

 

1.4 Geologic Background 

As Levey (1994) states, “The Oligocene Frio Formation is one of the major 

progradational off-lapping stratigraphic units in the northwest Gulf Coast Basin”. Figure 

2 shows a schematic of the depositional sequences present in the Texas Gulf Coast Basin, 

where the Frio formation is observed. It shows that the depositional style of the Frio 

Formation is characterized by the deposition of sediments that are mostly supplied by the 

Rio Grande Embayment.  
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Figure 2. Schematic showing the depositional cross section of the Frio Formation (from Levey, 1994). 

 The Frio Formation is one of the largest gas plays in the Gulf Coast, as shown in 

figure 3. Over 12 TcF of gas had been produced up to 1991; and according to PESA 

(2001), the Stratton Field proved reserves are approximately 63.8 MMboe (approximately 

0.010 TcF). 
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Figure 3. Stratigraphic columns showing volume of gas in the various formations in South Texas (from Levey, 1994). 

 The main trapping mechanisms in the formation are of both structural and 

stratigraphic nature. The main trapping features are combinations of closing faults, 

stratigraphic pinch-outs, and facies changes. 

 The Stratton Field is one of the several fields present in the Frio Formation. It 

extends from the Frio Formation to the top of the Vicksburg Formation. It is 

characterized by listric normal faulting (as seen in figure 2) with a series of antithetic 

faults, which compartmentalize the formation into smaller pockets. These laterally 

constrained beds are approximately from 10-15 feet thick, and as thick as 30 feet.  

 This complex structural setting makes reservoir characterization particularly 

important in order to maximize production in this area. 
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1.5 Stratton Field Data 

The Stratton Field data are summarized in table 1. The location of the wells is 

observed in figure 4. 

Seismic Data Set   

Data Set Bin Size (feet) Area (Square miles) 

Stratton Field 110 * 55 9.18 

Well Data Set   

Number of wells Well Logs  

21 Induction, Caliper, Density, 

Gamma Ray, Neutron 

Porosity, Induction. 

 

 

Table 1. Data for the Stratton Field. 

 

 

Figure 4. Locations of wells in seismic data (from Levey, 1994). 
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1.6      Hitts Lake Field Location 

 

Hitts Lake field is located in the Smith County, in East Texas as shown by Figure 5, 

from Caughey (1977). The Paluxy Formation is one of the productive formations 

encountered in the field. Outcrops of this formation are also observed in figure 5, at the 

western most end. 

 

  

Figure 5. Location of Smith County and outcrops of the Paluxy Formation (modified from Caughey, 1977). 



 
 

8 
 

1.7      Geologic Background 

 

“The Paluxy Formation was deposited in the broadly subsiding East Texas 

embayment, an inlet in the Gulf basin localized by a flexure of the Ouachita foldbelt” as 

stated by Caughey (1977).  As it is observed in the outcrops, the Paluxy Formation thins 

southwards as a consequence of the Central Texas area being a less stable platform.  

The structural framework is related to salt domes and normal faulting. Jackson (1982) 

explains that rifting during the Mesozoic, in combination with subsidence of the East 

Texas Basing, generated normal faulting parallel to the Ouachita Belt. This normal 

faulting formed the grabens observed in the basin. These grabens are defined by the 

Mexia-Talco Fault Zone, shown in figure 6.   

 

 

Figure 6. Mexia-Talco fault zone (from Jackson, 1982). 
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Figure 7 shows a model of the grabens present, as observed in a seismic cross-section. 

 

Figure 7. Graben model (from Jackson, 1982). 

 

Other structures present are salt-related anticlines. Figure 8 shows salt diapirs, 

pillows, and turtle structures related to the Paluxy Formation.  
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Figure 8. Salt-related structures observed in the Paluxy Formation (from Jackson, 1982). 

 

Sourced by Upper Jurassic rocks, the Paluxy Formation has produced over “429 

million barrels of oil and approximately 50 million MCF of natural gas” according to 

Caughey (1977). Figure 9 shows the resources observed in the Paluxy Formation. 

  



 
 

11 
 

 

Figure 9. Map of resources from the Paluxy Formation (modified from Caughey, 1982). 

 

 

1.8      Hitts Lake Field Data 

The Stratton Field data are summarized in table 2. Figure 10 shows the location of the 

wells in the Tortuga Grande Survey. The blue polygon delimits the area where wells that 

penetrate the Hills Lake Field are clustered.  
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Seismic Data Set   

Data Set Bin Size (feet) Area (Square miles) 

Tortuga Grande 110 * 110 26.8 

Well Data Set   

Number of wells Well Logs  

43 Induction, Caliper, Density, 

Gamma Ray, Neutron 

Porosity, Induction. 

 

 

Table 2. Data for the Hitts Lake Field. 

 

 

Figure 10. Location of wells in the Hitts Lake Field.  

1.9 Conclusions 

The Stratton Field, located in Nueces and Kleber Counties, in South Texas, is one 

of the largest gas-bearing formations in the area. It is affected by listric faulting, like the 
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Vicksburg Fault. Listric faulting (and its respective antithetic faults) form compartments 

that become important trap mechanisms for these hydrocarbons.  

The Hitts Lake Field presents a series of grabens generated by normal faults. 

Known as the Mexia-Talco fault zone, these gravity-related features are generated by 

subsidence of the East Texas Basin with respect to the Ouachita Belt, and are located in 

Smith County, East Texas. 

The goal of this thesis is to adequately detect these faults (with different structural 

origins) by applying an automated, yet effective, technique. 
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Chapter 2 

 

Fault Detection Attribute 

 
2.1 Introduction 

Many techniques are applied in order to determine stratigraphic boundaries. Luo 

(1996) explains that seismic edge detection uses different attributes to determine 

boundaries and other discontinuities, like faults or fractures. Some of these include the 

use of geometrical attributes like coherence (as explained by Peyton, 1998), chaos, and 

curvature. These attributes are usually applied to the amplitude data. 

Browaeys (2009) uses the instantaneous phase of the seismic data to determine 

stratigraphic boundaries. The continuous instantaneous phase is related to the continuity 

of the data and jumps on the phase show discontinuities on the subsurface. Because 

signal attenuation only affects the seismic amplitude, the use of the phase component 

allows us to observe events that might be lost in the amplitude spectra. Also, as Browaeys 

states, “phase variations are sharper and faster than amplitude variations”.  

Spectral decomposition allows us to study the seismic response at different 

frequencies, as explained by Puryear et al. (2012). The particular response at each 

frequency helps us determine stratigraphic boundaries, hydrocarbon presence, and 

provides resolution improvement when the data are being processed. Peyton (1998) uses 

the amplitude spectra of spectral decomposition in combination with other attributes, like 

coherence, to detect faults. This has proven to be a very useful technique.  
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However, very little has been done with the phase spectra obtained from spectral 

decomposition. Zhou (2007) uses the phase from spectral decomposition with the local 

structural entropy to enhance subtle discontinuities.  

The use of the frequency-dependant phase spectra of the seismic data can give us 

a better insight when trying to detect discontinuities. It will also allow us to better 

characterize each fault, since faults behave differently at different frequencies. 

Furthermore, the combination of these frequency-dependant phase cubes with other edge-

detecting attributes (like chaos or coherence) can help us enhance the detection of faults.  

 

2.2 Workflow 

The workflow for the proposed attribute consists of several steps. 

Data conditioning might be necessary in order to improve signal to noise ratio. 

Since some of these attributes are very susceptible to noise, the less noisy our data are, 

the more accurate will be the response of these attributes. If the original dataset is very 

noisy, some of the steps of the workflow will highlight this noise (Edge Enhancing 

Attributes calculations), and some will reduce it (principal component analysis). 

The workflow is divided in the following steps: 

 Conditioning the data, 

 Producing frequency dependant phase spectra by applying spectral 

decomposition to the original seismic data, 

 Determining the frequency dependant phase spectra that will better 

achieve the objective of the project, 
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 Calculating various edge enhancing attributes on these various phase 

spectra, 

 Applying principal component analysis, with the previously calculated 

attributes as the input parameters, 

 Applying post-principal component analysis filtering. 

 

2.3   Data Conditioning 

In order to sharpen the effect of the phase spectra, the amplitudes are normalized by 

the following procedure. The envelope of the seismic data is calculated, and the trend of 

the envelope is determined by applying a low pass bandpass filter. The parameters of this 

filter are going to be dependent on the frequency bandwidth of the data, but in order to 

obtain the trend of the seismic data the first 10 Hz tend to be sufficient.  

The next step will be to average each trace with its adjacent traces. This step 

normalizes the amplitudes. 

The last conditioning step is to divide the previous result (normalized average 

amplitudes) by the envelope of the data. This last step will deliver a dataset with 

normalized amplitudes. 

 

2.4 Spectral Decomposition (SD) 

Taner (1979) explains that spectral decomposition is a method that allows us to 

study seismic responses in the frequency domain. The seismic trace’s response is 

decomposed into different frequencies allowing us to analyze it in more detail. 
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Castagna (2003) uses the amplitude spectra of the spectral decomposition process 

to improve resolution, detect hydrocarbons, and better estimate thin beds. Partyka (1999) 

uses the phase spectra to determine geological discontinuities.  

There are different methods of spectral decomposition. Some of them include the 

various Fourier Transforms (FT), Continuous Wavelet Transform (CWT), and Matching 

Pursuit decomposition (MP). Their differences are discussed by Castagna and Sun 

(2003).  

As Puryear et al. (2012) state “the Short Time Fourier Transform (STFT) is based 

on the FT. which is equivalent to the cross-correlation of the seismic trace with a 

sinusoidal basis over a moving time window; the CWT, which is the cross-correlation of 

the seismic trace against a wavelet dictionary; and MP which is the decomposition of the 

seismic trace into basis atoms”.  

A novel method of spectral decomposition is the Constrained Least Squared 

Spectral Analysis (CLSSA). Like the Fourier Transform, it uses a series of sine and 

cosine functions to represent the seismic wavelet, but at the same time allows a priori 

information to be used as a constraint during the windowing process, allowing us to use 

small windows without sacrificing lateral resolution.  

Puryear et al. (2012), show that the Short Time Fourier Transform results in 

frequency smearing, an effect of the introduction of a window in Fourier Theory. When 

introducing the window, the sinusoids are no longer orthogonal, allowing energy to 

“smear”. The CWT provides poor resolution (varies in time and frequency depending on 

the side of the spectrum analyzed). The CLSSA provides excellent time and frequency 

resolution; it avoids the smearing problem by using a priori information to characterize 
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the edges of the window, effectively constraining the mathematical problem (by 

providing boundary conditions) and maintaining orthogonality between the sinusoids. 

Figure 11 shows the performance of the Constrained Least Squared Spectral 

Analysis method next to the FT, CWL, and MP. We can observe that the CLSSA method 

closer approaches the real amplitude spectrum in all cases. 

 

Figure 11. Comparison of results among all three methods (from Puryear et al. 2012). 
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 The phase spectra will be used for the purpose of this study. Tanner (1992) 

emphasizes that discontinuities have sharper appearance on the phase of the seismic data; 

he also explains that the phase is not affected by signal attenuation. 

 It is important to note that the phase should be properly unwrapped. If phase 

unwrapping is not done properly (a mathematically complex process) stepping on the 

phase spectra can be observed. This effect shows small jumps along continuous events 

which might be perceived by the later used attributes as small discontinuities, which may 

translate to false faulting. 

 A helpful technique to avoid this problem is to use the cosine of the phase. The 

cosine of the phase allows us to rid the phase spectra of these jumps. At the same time, 

the cosine of the phase behaves like a short window Automatic Gain Control (AGC), 

which would also increase the noise level in the data. To avoid this final problem, the 

cosine of the phase is modulated by the envelope of the seismic. In the consequent steps, 

the modulated cosine of the phase spectra will be utilized. 

 

2.5 Frequency Analysis 

The frequency analysis consists on determining the best frequencies to use in the 

rest of the workflow. We limit the number of frequencies used because the computation 

of the complete workflow in all the frequency dependant phase spectra is an extremely 

time consuming exercise. Furthermore, the response observed in various frequencies 

might be similar among similar frequencies, so we limit the amount of frequencies used 

in order to be more efficient. 
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We observe the frequency behavior through the complete seismic broadband 

frequency in order to determine the best frequencies to use.  

Frequency selection is going to be objective dependant. Major regional faults can 

be observed in the low frequency content of the spectrum, while smaller, more localized 

faults are better characterized by high frequencies. 

The best way to determine which frequencies to use is to study the frequency 

dependant amplitude sections obtained from spectral decomposition. We observe these 

sections and try to determine which frequencies better characterize our target faults. 

There is no limit on the number of frequency dependant phase spectra to use, but 

as the amount of sections used increases, so does computational time and weight 

(memory availability of a single workstation might become a factor at this point). This is 

one of the main reasons why the frequency analysis has to be carefully done; in order to 

be more efficient (without sacrificing on results quality) during the rest of the exercise. 

Seismic attributes are calculated after producing and electing the various phase spectra 

volumes to be used. 

 

2.6 Edge-enhancing Attributes 

Seismic attributes are considered to be any quantifiable characteristic obtained 

from seismic data. Taner (2000) provided a very comprehensive paper which lists and 

explains some of the main seismic attributes used. Several attributes are used specifically 

to improve resolution of seismic data and to enhance discontinuities. According to Taner, 

Instantaneous Phase is an excellent indicator of lateral continuity. 
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Some of the most common attributes used to enhance discontinuities are dip-

guided. This means that the dip and azimuth of the structure are obtained before 

calculating these structural attributes, as Chopra (2008) formulates. Calculating the dip 

uses an automatically picked horizon and determines the surface of reflectors; as the dip 

map changes, discontinuities are measured. This technique is applied in the calculation of 

geometrical attributes, such as coherence. 

 

2.6.1 Coherence 

The coherence cube was introduced by Bahoric and Farmer, and according to 

Chopra (2008), “measures similarity between waveforms or traces”. It uses changes in 

impedance (as a reflection of the local geology) to determine changes in lithology, which 

is done by comparing the response of a seismic trace to the response of the adjacent 

traces. 

Coherence is calculated by cross-correlating a target trace with its adjacent traces. 

If the waveforms are similar, then we observe a coherent event; when they differ, the 

event is incoherent. Incoherent events (like faults) are highlighted.  

This attribute is also affected by dipping beds. Dipping events are incoherent at 

trace level because the traces are different at similar times (this is going to be dependant 

of the window size), therefore deeming continuous but dipping events, incoherent. 

Figure 12 shows the response of the coherence attribute on a seismic section. 

Figure 12 (a) Shows a coherence time slice of the seismic time slice (b). Faults are 

highlighted by black and white arrows on the seismic section, and observed in the 

coherence cube. 
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Figure 12. a) Shows a coherence time slice of seismic section b) (from Chopra, 2008). 

 

2.6.2 Chaos 

Chaos is a measurement of texture. It measures if the seismic signal behaves 

consistently with respect to an azimuth. Areas that do not behave consistently are 

rendered chaotic, and this effect is usually a response to faults, channels, and other types 

of discontinuities. Chaos is also dip-guided (while it doesn’t use the dip component, it 

uses the azimuth component).  

 Each C-matrix contains three eigen vectors with their respective eigen values (λ). 

The largest eigen value (    ) is representative of the dip an azimuth of the event (this 

event is determined by calculating the local dip and azimuth, during the dip guidance 

step). As Randen (2011) explains, the difference between      and the other two eigen 

values (     and     ) shows the level of “chaoticness” in the event.  
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 Figure 13 shows some of the possible scenarios. Figure 13 (a) shows a continuous 

reflector, which will show a large difference between      and the other two eigen 

values (which will be similar to each other). Figures 13 (b) and (c) show faulting 

scenarios, where the values of      and      are going to be larger, and closer to     , 

which would show large magnitudes of gradients with different orientations. 

 

Figure 13. a) A continuous reflector will show               , b) a continuous (but bent) reflector will show 
              , c) a discontinuous reflector will show                (from Randen, 2011).  

  

Figure 14 shows an example of the chaos response applied to a seismic section. 

The Chaos time slice clearly highlights the faults in the section, but at the same time it 

also highlights noisy responses (as it is shown in the southwestern corner of the section). 
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Figure 14. a) Seismic time slice. b) chaos time slice of (a) (from Jansen, 2005). 

 

2.6.3 Most Positive Curvature  

The curvature attribute is a popular attribute to map fractures, as used by Chopra 

(2008). According to Chopra, curvature is defined as “the radius to a circle tangent to a 

curve”. Figure 15 shows graphically the definition of curvature in a two-dimensional 

plane. 
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Figure 15. 2D representation of the definition of curvature (from Chopra, 2008). 

It is clear from the literature that there are different types of curvatures that can be 

calculated. Some of these include Gaussian, both mean curvatures, most positive, most 

negative, along dip, along strike, etc.  

All these various types of curvatures are calculated along a quadratic surface 

fitted to the horizon or event being analyzed. This surface, z(x,y), is mathematically 

expressed by 

                             

 One common type of curvature used for fault detection is most positive curvature. 

It is mathematically defined by 

                    
 

  . 

The responses observed by both, most positive and negative curvatures, allow us 

to determine the geometry of the structure, since the most positive curvature can have 
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negative values and the most negative curvature can have positive values. Figure 16 

shows the possible configurations observed when studying both attributes. 

 

Figure 16. Possible configurations of structures observed by most positive and negative curvature (from Chopra, 
2008). 

 

Figure 17 shows the most positive curvature calculated over a seismic horizon. 



 
 

27 
 

 

Figure 17. Comparison between a) a seismic horizon, b) coherence, c) most positive curvature and d) most negative 
curvature (from Chopra, 2008). 

 

2.6.4 Variance 

Another dip-guided attribute, variance is an attribute similar to semblance. As it is 

defined by Chopra (2008), semblance is “the ratio of the energy of the average trace to 

the average energy of all traces along a specified dip”.  

Figure 22 shows the steps in calculating semblance. Figure 18 (a) Shows the 

traces used to calculate the semblance (this traces are windowed). Figure 18 (b) shows 

the average energy of those traces. Figure 18 (c) replaces the traces in (a) with trace (b).  

Semblance is the ratio of (a) to (c). 
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Figure 18. a) Energy of the traces used is calculated. b) The average trace is also calculated, and positioned to 
replace the original traces used in (a) to obtain (c). The ratio of (a) to (c) is the semblance (From Chopra, 2008). 

 Chopra goes on to explain that variance is simply one minus the semblance. 

 Semblance measures the energy similarity between the used traces and the 

average trace, while variance measures the dissimilarities between them. Figure 19 shows 

an example of the variance response applied to a seismic section. 
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Figure 19. Example of a variance cube (from National Central University, 2005). 

 

2.6.5 Laplacian Operator 

The Laplacian operator is a mathematical operation applied to the seismic trace. 

Pujol (2003) defines it by the sum of second spatial derivatives of a vector u.  It is 

described by the equation; 

           
     

    ; 

when applied on a plane, it compares magnitudes of variations along that plane. For this 

study, the variations it will compare will be on the phase of the data; therefore small 

variations, which show semi-orthogonal derivatives, will have high valued responses 

which correspond to faulting. On the other hand large variations show semi-parallel 

derivatives, low valued responses, and correspond to dipping layers. 
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Figure 20 shows how the responses to the Laplacian operator are recorded 

(Randen, 2001). 

 

Figure 20. Vector derivative response. a) shows a semi-parallel response, typical of dipping layers; b) shows a semi-
orthogonal response, typical of faults (from Randen, 2011). 

 

2.7 Principal Component Analysis 

As Guo (2009) states, “Principal Component Analysis finds a new set of 

orthogonal axes that have their origin at the data mean and that are rotated so that the data 

variance is maximized”. Principal Component Analysis allows us to convert variables 

that are possibly correlated into linearly uncorrelated variables. An example is shown in 

figure 21. 
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Figure 21. Example of Principal Component Analysis. Three principal uncorrelated principal components are 
obtained from three possibly correlated spectral components (from Guo, 2009). 

In this case, spectral components are used as input variables. Three principal 

components are determined and orthogonal to each other (uncorrelated). 

The difference between them is generated by data variability as result of having 

the components being uncorrelated. Therefore, most of the non-variant information tends 

to be observed in the first few components. The subsequent components tend to be the 

result of noise (which makes Principal Component Analysis an excellent tool to filter out 

noise in the data).  

For this study, only the first few components are of interest. The invariant 

responses from the attributes are the discontinuities observed by them. The more variant 
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responses (later components) will be noise in the data and less constant features picked 

by the different attributes (which can be dipping layer responses). 

2.8 Conclusions 

The detection of subtle discontinuities has been a topic of discussion since it 

allows us to better characterize them. The use of frequency dependent panels obtained 

from spectral decomposition allows us to observe the response of these discontinuities at 

various frequencies, permitting us to better observe the behavior of these features. 

Furthermore, the use of the phase spectra (instead of the more commonly used amplitude 

spectra) gives us a tool to better observe these subtle changes in the seismic response, 

since they have sharper variations in the phase spectra. By better observing these changes 

in the phase spectra, and by applying the attributes discussed, we will construct a seismic 

cube that will present only our targets: the faults present.  

This cube will show better resolution of these faults, which in turn allows us to 

better characterize the reservoir. 
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Chapter 3 

 

Workflow Applied to Synthetic Models 

 
3.1   Building the Synthetic Models 

Twelve synthetic models representing a different fault in each were built.  

The models were built using the Convolutional Model; we used normal incidence 

P-waves in an isotropic and homogeneous medium. The wavelets used were Ricker 

wavelets with frequencies depending on the corresponding model built. 

Lastly, the models are sampled every 1 ms. 

Models A, B, and C show faults of zero dip, and 10 ms throw. The dominant 

frequencies of these faults are 20, 30, and 40 Hz. They are also oriented in  45°, -45°, and 

45°, respectively. 

Models D, E, and F are similar to A, B, and C. Their main difference is that this 

set of models has a throw of 30 ms. Also; noise of about 5% (absolute) is introduced in 

these 3 models. 

Models G, H, and I, are similar to A, B, and C. Their main difference is that this 

set of models is dipping by 0.65 ms/trace. 

Lastly, models J, K, and L have zero dip and 10 ms throw. Their main difference 

is that they are all oriented in 0°. 

These models will be arranged in a grid and built into a single seismic volume, to 

improve processing time. After gridding, the final grid will count with 204 inlines and 

153 crosslines.  

Figure 22 shows the grid of the models. 
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Figure 22. Grid of models used. 

 

3.2   Application of Workflow to the Synthetic Models 

The previously described workflow will be applied to the synthetic models. The 

following parameters will be used. 

 

3.1.1 Parameterization 

The preconditioning steps are mostly automatically parameterized. The 

frequencies used in the low pass bandpass are [-100, -50, 5, 10] (in Hertz). This will 

allow only the low frequencies from the right tail of the bandpass to be permitted through 
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the normalizing steps. The traces are averaged to their next 21 traces in both x and y 

directions. 

Constrained Least Squared Spectral Analysis will be processed in all these models 

using a 20 ms window. The dominant frequency corresponding phase cubes (in this case 

20, 30, and 40 Hz) will be analyzed.  

To these cubes we will calculate several edge enhancing attributes. These include 

coherence, chaos, variance, most positive curvature, and the Laplacian operator. The 

attributes are applied with a vertical window of 9 samples and a lateral window of 3 

samples. 

The next step will be to apply Principal Component Analysis that will include the 

previously calculated attributes as inputs.  

 

3.3   Results 

The complete workflow is applied to the grid of models. Figures 23, 24, and 25 

show time slices (time = 100 ms) the responses for coherence, most positive curvature, 

and the fault detection composite attribute. 
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Figure 23. Time slice of coherence. 
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Figure 24. Time slice of most positive curvature. 
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Figure 25. Time slice of composite attribute. 

We can observe the difference between some of commonly used techniques (coherence 

and most positive curvature) and the composite attribute. The few artifacts observed in the 

method’s response appear to occur only in the noisy and dipping fault data, so a structural filter 

was applied to the original data set and the workflow re-applied in order to observe the effect of 

noise in the workflow. The new result is shown in figure 26.  
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Figure 26. Time slice of the composite attribute after structural filtering. 

 
 

3.4   Conclusions 

We can observe that the composite attribute is superior to the conventionally used 

attributes when applied to these simple synthetic models.  
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Most positive curvature appears to have the least satisfactory response, picking 

the faults in some cases and not picking it in others (some because of the presence of 

noise and some because of dipping layers effects). 

Coherence does an excellent job at picking the fault but it is highly affected by 

noise, an effect that worsens as higher frequencies are approached, which suggests that it 

would miss small features that would be hidden among high frequency noise. 

The composite attribute appears to have the best response but it is affected by 

noise presence in a similar fashion as is coherence. After structural filtering, some 

absolute noise is removed. Improvement can be observed in the proposed technique after 

noise removal. The faults are picked with the least amount of artifacts. 

Fault orientation, dip, and throw do not appear to be significant to the detection of 

the faults. The presence of noise appears to be the dominating factor. 

This leads us to conclude that, while the proposed technique appears to be 

superior to the generally used attributes, it is also highly affected by the presence of 

noise. 
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Chapter 4 

 

Composite Attribute Applied to Stratton Field Data 

 
4.1   Application of Composite Attribute to Stratton Field Data 

The composite attribute is applied to the Stratton Field seismic dataset. The focus 

study area lies inside inlines 1-155 and crosslines 1-230. The interest area also lies 

between 1300 and 4300 ms, where the Vicksburg listric fault is observed in the crossline 

direction. We can also observe its small antithetic faults which compartmentalize the 

onlapping section, as discussed in chapter 1. Figure 27 shows a cross section of inline 

142, where we can clearly observe the listric fault. 
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Figure 27. Inline 142 showing listric and antithetic faulting. 

The objective of this project is to map all present faults. Based on this objective 

we inspect the amplitude spectrum of the data (observed in figure 28) and determine the 

frequencies to be used for the rest of the study. The frequency dependent amplitudes are 

then compared to determine if the chosen frequencies are the best characterizer of the 

geological features targeted to be mapped. The chosen frequencies are 20, 30, 50, a.70 Hz 



 
 

43 
 

 

Figure 28. Average amplitude spectrum of seismic traces from the interest area. 

 

4.1.1 Parameterization 

Similar to the synthetic models, the preconditioning steps are mostly 

automatically parameterized. The frequencies used in the low pass bandpass are also [-

100, -50, 5, 10] (in Hertz). The traces are averaged to their next 201 traces in both x and y 

directions. 

Constrained Least Squared Spectral Analysis will be processed in Stratton Field 

seismic dataset using a 20 ms window.  

We will apply several edge enhancing attributes to the selected frequency 

dependant phase spectra. These include coherence, chaos, variance, most positive 

curvature, and the Laplacian operator. The attributes are applied with a vertical window 

of 9 samples and a lateral window of 3 samples. The data is sampled at 0.5 ms (therefore 

the vertical window is 4.5 ms long). 
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The next step will be to apply principal component analysis that will include the 

previously calculated attributes as inputs.  

  

4.2   Results 

The results and original data were loaded into Petrel once the workflow was 

completed. Figure 29 shows the seismic response, instantaneous phase response, and the 

workflow applied to inline 142. More results, and the discussion of these, will be shown 

in the next chapter. 
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Figure 29. a) Original seismic, b) 
instantaneous phase, c) proposed 

workflow. 
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4.3      Application of composite attribute to Hitts Lake Field Data 

 

The proposed workflow is applied to the Hitts Lake Field seismic dataset. The 

focus study area lies inside inlines 1001-1120 and crosslines 3003-3174. The interest area 

also lies between 500 and 3000 ms, where large normal faults generate grabens (Mexia-

Talco Fault Zone), as discussed in chapter 1. Figure 30 shows a cross section of inline 

1072, where we can clearly observe the graben. 

Figure 30. Inline 1072 showing normal faulting that forms a graben. 

The objective of this project is to map all present faults. Based on this objective we 

inspect the amplitude spectrum of the data (observed in figure 31) and determine the 

frequencies to be used for the rest of the study. The frequency dependent amplitudes are 

then compared to determine if the chosen frequencies are the best characterizer of the 

geological features targeted to be mapped. The chosen frequencies are 35 and 40 Hz. 
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Figure 31. Average amplitude spectrum of seismic traces from the interest area. 

 

4.3.1 Parameterization 

Similar to the synthetic models, the preconditioning steps are mostly 

automatically parameterized. The frequencies used in the low pass bandpass are also [-

100, -50, 5, 10] (in Hertz). The traces are averaged to their next 21 traces in both x and y 

directions. 

Constrained Least Squared Spectral Analysis will be processed in Stratton Field 

seismic dataset using a 20 ms window.  

We will calculate several edge enhancing attributes to the selected frequency 

dependant phase spectra. These include Coherence, Chaos, Variance, Most Positive 

Curvature, and the Laplacian Operator. The attributes are applied with a vertical window 
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of 9 samples and a lateral window of 3 samples. The data is sampled at 2 ms (therefore 

the vertical window is 18 ms long). 

The next step will be to apply principal component analysis that will include the 

previously calculated attributes as inputs.  

  

4.4   Results  

The results and original data were loaded into Petrel once the workflow was 

completed. Figure 32 shows the seismic response, instantaneous phase response, and the 

workflow applied on inline 1072. More results, and the discussion of these, will be shown 

in the next chapter. 
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Figure 32. a) Original seismic, b) 
instantaneous phase, c) 

proposed workflow. 
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Chapter 5 

 

Discussion of Results 

 
5.1 Observations 

 

 

Figure 33 displays the results for the proposed workflow in the Stratton Field data at 

time 2200 ms, which is observed in figures 34a, 34b, and 34c. This image serves to guide 

us with respect of the listric fault investigated, as the vertical displays are of inline 142, 

and time slices at 2200 ms. 

 

Figure 33. Cross-section of inline 142 as time slice 2200 ms cuts through it. 
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Figure 34. Time slice at 2200 ms a) extracted from seismic, b) extracted from the composite attribute, c) overlay of 
composite attribute over original seismic. 

 

Excellent correlation is observed between the final results and the original seismic. 

All faults appear to be detected by applying this methodology.  

Similar results can be observed in cross-sectional view, as displayed in figures 35a, 

35b, and 35c. These cross-sectional panels are approximately 900 ms long. 
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Figure 35.  Inline 142 a) original seismic input, b) composite attribute, c) overlay of composite attribute 
over original seismic. 
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This result shows how well the attribute operates. Several faults are detected with 

high level of precision and detail. The purple oval shows how the composite attribute 

detects the listric fault. This will be important later as we will observe the responses for 

the commonly used attributes in the industry for the same event. 

The green oval shows a fairly chaotic area where we can observe smaller antithetic 

faults that compartmentalize the on lapping sand. These sand compartments become 

important reservoirs in the area. The composite attribute clearly shows the response of 

faulting in the area, which would be of great importance when deciding where to locate 

future prospects. The green oval will also be observed in the commonly used attributes.  

Figure 36 serves to guide us with respect to the graben investigated. The vertical 

display shows inline 1072 and the horizontal display shows time slice 1486 ms. 

Figure 37 displays the result for the composite attribute in the Hitts Field Lake data at 

time 1486 ms, which are observed in figures 37a, 37b, and 37c.  
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Figure 36. Cross-section of inline 1072 as time slice 1486 ms cuts through it. 
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Figure 37. Time slice 1486 ms, a) extracted from seismic, b) extracted from composite 
attribute, c) overlay of composite attribute over original seismic. 
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The results observed are excellent. The main faults are clearly detected by the 

attribute. It is important to note that the overlay image is limited by the level of opacity 

that can be applied to clean the background. In this case, the process of removing the 

background for the overlay also removed some of the faults that in base map do not 

appear obvious, but are clearly observed in the attribute’s base map. Similar results are 

observed in vertical cross-section (figure 38). 
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Figure 38. Inline 1072, a) Original seismic input, b) composite attribute, c) overly of composite attribute over 
original seismic. 
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      Vertical displays show how the attribute detects the normal faults that build the 

graben (which is the objective of the project) as well as other faults observed in the area. 

The lateral extent of these faults is observed in base map (figure 37) which allows the 

user of the attribute to simply map the fault plane of the faults that encompass the graben, 

as well as the lateral extent of this structural feature. 

 

5.2   Comparison between Proposed Workflow and Industry Standards 

The previously observed results show the composite attribute when compared to the 

seismic section. We will now observe how it compares to some of the most commonly 

used attributes in the industry; in this case, coherence and most positive curvature. 

Figures 39a and 39b show coherence and most positive curvature (respectively) in 

time slice, at 2200 ms. Figures 39c and 39d show the composite attribute overlaying the 

previous images. This example corresponds to the Stratton Field dataset. 
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Figure 39. Time slice at 2000 ms, a) extracted from coherence, b) extracted from most positive curvature, c) 
composite attribute over coherence, and d) composite attribute over most positive curvature.   
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When comparing figures 34 to 37 we can observe that while both coherence and most 

positive curvature perform positively, the proposed workflow shows superior results. 

Both coherence and most positive curvature detect the largest, regional faults; but fail to 

detect fault in dipping environments (towards the south-eastern area of the time slice). It 

is also noticeable that the proposed attribute shows better connectivity as well as a better 

fault character. 

The difference between the attributes is most noticeable in cross section. Figures 40a-

d show coherence and most positive curvature extracted on inline 142. They also show 

the composite attribute overlaying the previous. 
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Figure 40.  Inline 142, a) coherence, b) most positive curvature, c) composite attribute over coherence, and d) 
composite attribute over most positive curvature. 

 

Figure 40 shows better fault connectivity and extension, as well as detection. The 

purple oval shows how coherence does not pick the listric fault, and most positive 

curvature appears like it does, but it is not well characterized. The composite attribute 

shows the best result in this aspect. 

The green oval shows the compartmentalized area. The response in both attributes is 

poor; and as they approach the bright reflectors, the response worsens. The composite 

attribute shows better fault characterization in this area, and it is not affected by the 
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brightness of the amplitudes of the seismic data (this is because the attribute is based on 

the phase spectra). Fault connectivity in this attribute shows how the separate 

compartments are divided, which is very important when designing the drilling plan. 

Figures 41a-d show coherence and most positive curvature at time slice 1486 ms. 

They also show the composite attribute overlaying them. This next example corresponds 

to the Hitts Lake Field Data. 

 

  

Figure 41. Time slice 1486 ms, a) coherence, b) most positive curvature, c) composite attribute over coherence, 
and d) composite attribute over most positive curvature. 
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The north eastern 2 main faults observed in the base maps (that form the graben) are 

mapped to their complete lateral extent by the composite attribute. The coherence 

attribute detects the faults well but it loses the western most one. Most positive curvature 

detects these two faults on their entirety, but appears to be affected by parallel responses 

which are probably related to acquisition footprint. The composite attribute detects both 

faults to their complete lateral extent and at the same time discriminates signal from 

acquisition footprint. This image also shows the overlay problem observed in figure 41. 

Vertical cross-sections comparing both attributes to the composite attribute are 

presented in figures 42a-d. These figures correspond to inline 1072. 

 
Figure 42.  Inline 1072, a) coherence, b) composite attribute over coherence, c) most positive curvature, d) 

composite attribute over most positive curvature. 

 

 The cross-sections show the effectiveness of the attribute. It detects the faults 

observed in the area. When compared to both coherence and most positive curvature, it 

can be noted that coherence also detects the faults (green ovals) but it also highlights non-

dipping events which are not real seismic discontinuities. These are omitted by the 
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composite attribute. The right most fault related to the graben is not detected by 

coherence (right green oval) but it is detected by the attribute. 

 

5.3   Validation of Results 

Two different techniques are used in order to validate results. The first is co-rendering 

the seismic volume with the composite attribute volume. The second is interpreting faults 

in the well logs and matching the well log interpretation to the fault detection volume. 

 

5.3.1 Co-rendering 

The first volume co-rendering shows the seismic progression from inline 142 to inline 

117, at 5 inlines intervals; this is contrasted with a static time slice of the composite 

attribute at time 2200 ms. Figure 43 shows how the major faults (including the listric 

fault) are detected by the attribute. Figure 44 shows the same progression with the 

composite attribute instead of the original seismic. It can be determined how the attribute 

also detects the new major faults towards the north east part of the section, which further 

compartmentalize the on-lapping sand. 
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Figure 43. Co-rendering of seismic (inlines) vs. composite attribute (time slices).  

From a) to f) goes from inline 142 to 117, in intervals of 5 inlines. 
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Figure 44. Co-rendering of composite attribute (inlines) vs. composite attribute (time slices).  

From a) to f) goes from inline 142 to 117, in intervals of 5 inlines. 
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5.3.2 Well Log Analysis 

Location of faults can be determined in wells by correlating different wells to each 

other. Correlation of packages with the same signature in different logs represents the 

same formation and faults are observed in wells when these packages either repeat or are 

missing.  

The location of these faults in the well are called fault cuts and the interpretation of 

these is important because they allow us find faults that might be below seismic 

resolution. 

Figure 45 presents a base map showing the area of the Hitts Lake Field, as well as the 

direction of a cross section across wells perpendicular to the direction of the fault.  

 

  

Figure 45. Base Map of Hitts Lake Field. 
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Figure 46 shows the cross section. The formations are correlated based on their SP 

and Resistivity logs.  
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Figure 47 shows a zoomed in section of the previous cross section. This zoomed in 

section includes wells Hitts Lake 118 and HLU 130. Two fault cuts are observed in these 

wells. The correlations of common events are done using the SP and resistivity logs. 

Once this events are correlated, two events are observable on the well HLU 130; the 

repeated section (with respect to the well Hitts Lake 118) at the top of the well, and the 

missing section at the bottom of it. These exhibit the presence of faults in the wells.  

 

 

  

  

Figure 47. Cross section between wells Hitts Lake 118 and HLU 130. Missing and repeated sections are observed 
and fault cuts are located. 
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The interpreted fault from fault cuts over the seismic and composite attribute are 

shown in figures 48a and 48b. Figures 49a and 49b show the same images without the 

wells over the seismic to more clearly observe the interpreted fault over the attribute. 

 

  

Figure 48. Interpreted fault over a) seismic and b) composite attribute.  
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Figure 49. Interpreted fault over a) seismic and b) composite attribute (wells not shown). 
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It can be observed that the interpreted fault, which appears to be below seismic 

resolution but observed in the well, is detected by the composite attribute. This is possible 

by the response of select frequencies. 

 

5.4     Fault Density and Orientation Analysis 

An advantage of producing an effective 3-dimensional fault attribute is that it allows 

the user to study fault density and orientation relationships. This is useful information 

when characterizing a reservoir in which faulting can have a significant impact. At the 

same time, studying fault orientation variations can allow the user some insight regarding 

the fracture system present in the area. 

Figures 50a-d show fault density and orientation of the studied area in the Stratton 

Field, as well as the composite attribute overlaid over them. 
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Figure 50. Time slice at 2200 ms showing a) fault density, b) composite attribute over fault density, c) fault 

orientation, and d) composite attribute over fault orientation. 
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Areas of high fault density present several faults. Similarly, the general direction 

of the faults goes from SW to NE, which is the main orientation observed in the fault 

orientation time slice. It can be noted that fault density corresponds to the information 

observed by the attribute. 

Figures 51a-c show the composite attribute with rose diagrams. The rose diagrams 

are computed within the circle shown. 
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Figure 51. Time slice at 2200 ms showing rose diagrams on the composite attribute. 
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Figure 51a shows agreement between the orientation of the rose diagram and the 

fault’s orientation. Similarly in figure 51b. 

Figure 51c shows a major spike in the N-S direction which could be an artifact 

generated by acquisition footprint. The next principal orientation is close to perpendicular 

to the orientation of main faulting in the area, which is an indication of possible 

fracturing. 

Figures 52a-d show fault density and orientation of the studied area in the Hitts 

Lake Field. They also show the composite attribute overlaying them.   
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Figure 52. Time slice at 1486 ms showing a) fault density, b) composite attribute over fault density, c) fault 
orientation, and d) composite attribute over fault orientation. 

 
It can be observed that the areas with higher fault density are those with the main NE-

SW oriented faults. This response is also observed at the edge of the area of the survey 

with data. Where the data end, there is a discontinuity which is detected by the attribute 

as faulting. 

Figures 53a-c show the composite attribute with rose diagrams. The rose diagrams are 

computed within the circle shown.  
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Figure 53. Time slice at 1486 ms showing rose diagrams. 
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Figure 53a shows the main fault orientation coincides with the rose diagram, 

highlighting the direction of the principal stress within the calculated area. It doesn’t 

follow the direction of the main fault because the rose diagram is centered where there is 

a slight change of fault direction. 

Figure 53b shows less variation in the amplitude of the rose diagram, indicating a 

chaotic area of stress (potential fracturing). 

Figure 53c clearly shows that the main fault direction varies with the main direction 

of the rose diagram, which is an indication of fracturing (the average of all the fault 

angles within the area differs in orientation with respect to the main fault orientation). 

 

5.5   Conclusions 

The primary objective of these projects is achieved. We are able to characterize the 

listric fault for Stratton Field and the graben for Hitts Lake Field. Both major features are 

clearly detected by the composite attribute in the complete seismic section. Another 

important point was to observe how the attribute behaves with respect to other attributes. 

The composite attribute showed excellent results when compared to other commonly 

used attributes for the same purpose. It has better fault connectivity and character than 

coherence and curvature appear to show. This is clearly observed in vertical section.  

The validation process was successful. The attribute detects faults observed at well 

logging scale with precision and the co-rendering process shows that fault planes are not 

lost as we move laterally in the composite attribute volume.  

Finally, the composite attribute allows us to make inferences regarding the fracture 

regime in the study area.  
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Chapter 6 

    Conclusions 

 
6.1  Conclusions 

 

We can conclude that the composite attribute performs efficaciously. The 

case studies show that the attribute effectively picks complicated faulting and it 

appears to be an improvement over commonly used attributes.  

 The composite attribute is compared to these attributes and it appears to 

outperform them. Common attributes (like coherence and curvature) do an 

excellent job when determining fault extent, but their windowing effect is 

noticeable in vertical section. The composite attribute has excellent vertical 

resolution. The use of the phase spectra from spectral decomposition allows us to 

observe smaller changes in the behavior of faults, which is later translated in 

better fault characterization both laterally and vertically. 

 The validation tests were successful as well. The composite attribute is 

able to detect faults at well log scale. It is also able to maintain lateral fault 

connectivity, not disrupting fault planes, as it is shown in the co-rendering 

example. 

 Both, the models and the field tests, show that the attribute is highly 

affected by the presence of noise. Data conditioning can improve signal to noise 

ratio, and therefore the attribute’s response. 
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