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Abstract

Laparoscopic surgery is a popular alternative to open surgery due to the consider-

able reduction of recovery time, pain, scaring, and complications. During laparo-

scopic surgery, operations are performed through small incisions (usually around 1

cm) elsewhere in the body. However, limited access to the operating field, indi-

rect 2D vision of a 3D complex scene, the presence of mirror effect, and operating

rooms originally built for open surgery, conspire to make the surgeon’s work more

difficult and less efficient. We present a new technology, the Smart Trocar, which

can compensate for these drawbacks by providing a global positioning system of the

laparoscopic tools that are inserted into the body. Our system uses a single wireless

camera, which stays outside the body and tracks some features inside the operating

room. With this simple and inexpensive device, we can, at any time, and within

few millimeters accuracy, both recognize and localize the rigid surgical instruments.

Applications of this invention are multiple. For examples, it can be used as a pointer

to localize specific part of the organs during a laparoscopic surgery. It can also be

used to analyze tools paths and to evaluate surgical dexterity of residents in order to

improve their training. We present in this report an analysis of the tool trajectories

that allows us to determine the level of skill of a resident based on his results to few

laparoscopic exercises. Our study proves the correlation between surgical dexterity

and economy of motion.
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Chapter 1

Introduction

1.1 Presentation of laparoscopic surgery

Laparoscopic surgery is a growing market with around 3.5 million operations per

year in the US [47]. The main goal of laparoscopic surgery is to reduce the size of

the opening in the patient’s body in order to help him recover faster. In this kind of

surgery, the surgeon make small incisions on the abdomen, instead of making larger

incisions, as we do for a conventional open surgery. Next, the surgeon places some

plastic pipe (trocar) through those incisions, and uses these trocars as portals for the

surgical tools to gain access to organs. Last, but not least, the surgeon also injects

some gas within the body, to have a better access to the organ and a better view of

the organs and his tools with a small camera called a laparoscope (Figure 1.1).
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Figure 1.1: A laparoscopic procedure

1.2 Advantage for the patient

The main goal of this kind of surgery is to reduce the risks due to the surgery itself,

e.g. :

• With smaller incision, we expect the patient will recover quickly.

• We reduce the risks of complication and infection because the inner organs of

the patient are not directly in contact with the OR environment.

• We reduce the time spent in the hospital.

• We create smaller scars.
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1.3 Challenge for the surgeon

The main drawback of laparoscopic surgery, in addition to the fact that the procedure

is completely different of an open surgery procedure, is the indirect access to the organ

and the lack of depth perception. Gould and Frydman [16] present the result of a

study made on twenty-one surgeons. It indicates that reverse-alignment, a common

problem in laparoscopic procedures because the entry point (the trocar) is a rotation

fixed point, has a great influence on the surgeon’s efficiency. Indeed, this problem is

caused by the creation of a mirror image of the operation field, thus the surgeon has

to mentally focus a lot more in order to have the correct image of what he is operating

on. Even if our tested sample number is too small to represent the average surgeon, it

does at least give us an idea of how far a simple problem of representation can affect

the whole procedure. Other properties inherent to the imaging system, like the lack

of depth perception, can also be a serious impediment to the smooth execution of

the surgery. Unlike during open surgery, during laparoscopy the surgeon has to rely

only on what the laparoscope sees. Of course there is first the problem of watching a

screen, which is already a huge change in the way of operating procedures, but also

the problems of obtaining pertinent depth information based on a 2D endoscopic

image.
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Chapter 2

Background

2.1 Recognition of the laparoscopic tools

In order to be able to recognize the surgical tools, several techniques have been

investigated. The first approach is recognition of features inherent to each kind

of laparoscopic tool, such as color, shape, and/or compactness of the tool. These

kinds of methods do not seem robust (since surgical tools can look very similar), and

are too time-consuming to be used in real time [13][14][18][41]. That is why other

approaches, such as adding a specific marker on the surgical tool, have been studied.

Some studies [44][45][46] suggest the use of ultrasound markers with a specific signal

associated to each tool. Nonetheless, the authors recognize there are many false

detections. We can imagine a similar approach based on colored marker, where we

add a specific color code on the surgical tool, as described in [22][30]. This method

is the one that provides the best robustness.
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2.2 Surgical tools localization

2.2.1 Localization through computer vision

While a lot of efficient methods use a combination of two cameras, here we need

to create a small device, we will focus here on a 3D reconstruction based on the

detection of some points in the image. Yuan [56] explains in his paper how to solve

the exterior orientation calibration problem of a single-camera thanks to algebraic

considerations (detailed in the next part). He assumes that he knows the coordinates

of several feature points of an object, the corresponding coordinates on the image,

and the effective focal length. Thanks to a pinhole model of the camera, he poses

the problem and gives a general solution to it. Moreover he proves the uniqueness

or non-uniqueness depending of the number of points. According to his paper, three

coplanar points are enough to solve the exterior orientation calibration problem;

however three coplanar points will as provide multiple solutions. It takes four or

more coplanar points to give us a unique solution. Four or five non-coplanar feature

points should provide more accuracy and more robust solutions than a coplanar

case, but they do not provide the uniqueness we desire. That means if we want to

assure the uniqueness of the solution, we will have to find more points, which can be

more challenging and less accurate. However these results are based on two major

assuptions :

1. We can determine the focal length of the camera.

2. The camera works like the pinhole model.

5



We know this is not realistic for most of the small cameras. Consequently, we have

to know if we can correct the distortion before doing any other image treatments.

The problem of using computer vision comes from the robotic field and the need

for researchers to create robots that can watch and interpret their environments.

Uchida et al. [51] applied this principle to a robot that should be able to assist the

surgeon. They put some light points on the mobile part and use a camera to track it.

The geometry, such as the angles and distances of the pattern formed by light points,

is presumably known. This knowledge allows us to simplify the equations to get the

result. Nonetheless, the accuracy of the localization system is above 1 millimeter,

and might be worse in real conditions. Moreover, light points could be troublesome

for the surgeon, depending on their position with respect to the surgeon’s eyes.

The study of Navarro et al. [29] compensates for this problem. It also uses the

correlation in time of two consecutive images and motion analysis in the minimally

invasive surgery framework. Among others, the proposed method will provide us

the Euclidean angles of surgical tools and their positions. In order to get precise in-

formation for the localization, they apply determined movements through a robotic

arm with a passive wrist. They choose to select the lines in the images as features

of interest. Their technique might give us the 3D position and orientation of sur-

gical tools, but it needs a robotic assistant, and the localization accuracy is highly

dependent on the wrist motions.

Tsai and Wang [50] propose a solution to the self-localization of a robot that we

can use in our project. Their system consists in three different markers in the room,
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placed around the robot, and recognized and tracked by a single CMOS (Complemen-

tary Metal-Oxide Semiconductor) camera. Thanks to a color analysis (the marker

differ only by the color), they extract the markers from the picture and from these

landmarks to obtain feature points. Then a triangulation method is applied to lo-

calize the robot using the three given feature points. In the end, to minimize the

estimation errors, an extended Kalman filtering is used. Though, having known col-

ored markers placed in the room and minimizing the error by Kalman filtering were a

good ideas, the results obtained by this method are not sufficient for our problem, as

the accuracy is 3.6 centimeters for the shifts and 3.2◦ accuracy for the rotation angle.

Moreover, the context of their study concerns the estimation of three parameters:

x and y shifts and one angle of rotation. Other systems involving 3D sensors were

imagined to get more accurate results on the localization estimation. Estebanez et

al. [15] propose a tracking system composed by two 3D sensors, but this system is

space consuming and not robust to occlusions that can appear during surgery.

Even if the many techniques involving external computer vision have been inves-

tigated, in the specific context of laparoscopic surgery, we already have a camera,

the endoscope, that allows us to use computer vision methods within the patient’s

body. Dutkiewicz et al. [13] explore a technique of estimating tool positions in the

laparoscopic field of view. Thanks to an elaborated image-processing algorithm that

consists of mixing the information given by two different kinds of image analysis,

they attest that it is possible to extract the orientation of each laparoscopic tool

in the laparoscopic images. Their algorithm is first based on a color analysis that

is expected to separate the background from the rest, and second on a shape and
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light distribution analysis that is supposed to give the central line of each object

and eliminate any object that shouldn’t be considered an instrument. However, as

they expressed in [14], this method has major drawbacks: the cumulated rate of false

detections (false negatives and false positives) is about 9% and the obtained rate of

correctly estimated axis and tip of the tool lies below 80%. This implies that the

technique is not accurate enough for practical interventions. Nevertheless, the idea

of using an endoscope to localize the tools is good, in essence because if we need

to know the absolute position of the tool, we also need their relative positions in

reference to the organs.

Using the endoscope field of view in order to localize the surgical tools during

the operation is also the idea of Allan et al. [1]. Indeed, they pretend that it is

possible to accurately estimate five of the six localization parameters, the last one

being the rotation around the tool’s shaft’s axis. Their method consists first in a

probabilistic supervised classification of image pixels, called Random Forest, in order

to determine whether the pixels belong to an instrument or not. Then the classified

image is taken as initialization of an energy minimization algorithm using the level

set technique. To be more precise, this second step initializes the contour with the

result of the previous segmentation and by applying an energy function, considering

pixel similarity between interior and exterior regions. Using a gradient descent, it

tests new sets of the five localization parameters to determine the set that provides

the best match between the obtained model and the new real image. The difference

of depth between two images is estimated by observing the change in radius of each

surgical tool as soon as they are cylindrical and their real radius is known. The results
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given by this technique should have an error of less than 0.2 millimeters. Even though

this method seems to provide idealistic results, it still needs to be improved, as the

processing time is really too high to meet real-time requirements. Furthermore, the

tests were made on laparoscopic images with a single instrument within their field

of view, which is why the accuracy achieved by their algorithm might be lower for

real surgery, as it often involves several tools at the same time.

2.2.2 Localization using ultrasounds devices

Devices using ultrasounds are not often used for what we try to do because they are

rarely accurate enough. Still, some laparoscopic operations are done with the help

of an ultrasound scanner. This imaging modality uses the properties of ultrasounds

to show the differences of density inside the human body. This is a property used in

ultrasound imaging systems. If we put ultrasound transmitter-receivers all over the

surgical field and ultrasound markers on each instrument handles, on the endoscope,

and on each trocar, we should be able to localize the tools. That is the idea developed

by Tatar et al. [44][45][46]. The markers have to be triggered by their specific radio

wave signal, as they include radio frequency receivers that only react to a very

specific signal. Then by computing the time-of-flight of the ultrasound, the position

of the tools should be retrieved. Although, this method has a lot of weaknesses. As

this method involves ultrasounds, that is to say beams that vary according to the

density of the medium they go through, in the reality the extraction of localization

information from the time-of-flight computation will be a real challenge. However,

artifacts caused by multiple reflections of the ultrasounds could corrupt the results
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so the received signal is really noisy. Moreover it requires modifying laparoscopic

tools, trocars, and laparoscopes in order to place the transmitter-receiver devices.

On the other hand, the Smart Trocar only modifies the top of the trocar, which is

not use during laparoscopic surgery.

We found a method [42] that solves the problem of noise by a smart positioning of

the device. Nonetheless, this method gives extremely imprecise results: the accuracy

for the rotation is 6◦, which can imply an uncertainty of more than 1 cm at the tip

of the surgical tool.

2.2.3 Localization using a tracking system

In order to simplify the localization problem, tracking methods are used. Indeed

when it comes to real-time situations, the computation time must be as short as pos-

sible. Video tracking enables us to take into account the time and spatial correlation

that exists between two consecutive images. This information limits the research

area for the segmentation part, and also constraints the parameters of position and

orientation to a limited field because of the spatial correlation. Kalman filtering is

used in most of the publications that involve the tracking of surgical tools [15][41].

Still, according to Yilmaz, Javed, and Shah [54] this filter is used to estimate the

state of a linear system where the state is assumed to be distributed by a Gaus-

sian; however the localization issue is a non-linear system. They refer to the work

of Rosales and Scarloff [36], who improved this filter to make it possible to estimate

3D relative localization from 2D motion. This filter is called the extended Kalman
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filter. It might not be robust to occlusions, unlike particle filters that use genetic

algorithms to solve occlusion problems, but under certain constraints it gives optimal

solutions. It also shows other advantages, like the ability to merge information from

different sources.

Nevertheless, easier and faster techniques based on computer vision have been

imagined. Several works were based on the possibility offered by the tracking of

a colored marker on the tip of each surgical instrument [22][30] by a simple seg-

mentation. In those papers the tracking is made thanks to a color analysis of each

laparoscopic image due to the fact that the red color is more likely to belong to the

background than to the tools. However, computer vision is not the only method used

to track surgical tools.

2.3 Laparoscopic training

In its 11 years of existence, the Fundamentals of Laparoscopic Surgery (FLS) has

become a standard in the way of teaching laparoscopy [39]. This consists of practicing

a few exercises on an artificial model, inside a box that represents the human body.

The task should test some skills useful for this kind of surgery (make a knot, or cut

on a specific spot). The test is passed if the resident is able to finish the exercise

with no mistakes, in a certain amount of time, according to the Texan Association

of Surgical Skills Laboratories. Nonetheless, it seems this method has two main

drawbacks:
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1. The residents are well trained to do these exercises, and can obtain good results

for FLS tasks, without being ready to practice a real laparoscopic operation

[23][37].

2. The evaluation of the tasks themselves is not accurate enough. The evaluation

of the accuracy (number of mistake) is both subjective (based on the judgement

of the surgeons) and qualitative (pass or fail).

The only objective and quantitative metric currently used is the time of completion,

which is limited as an indicator of dexterity: the fastest surgeons are not always the

best. Indeed, Bann shows in [4] that, after a certain level, the experienced surgeons

progress less in completion time, but are more economical in quantity of motion and

suggest the use of this second metric as a second indicator of dexterity.

Since it is recognized that FLS is an efficient and cost effective way to teach

laparoscopic surgery, a lot of work has been done to try to provide more information

to the residents, and find new indicators to quantitatively evaluate the performances.

Most of this work is using additional systems to obtain the trajectories of the surgical

tools [12][26] or the torque [25]. Nevertheless, there is no consensus about the use of

these new data to improve training of laparoscopic surgery. Besides, those methods

are often invasive and not comfortable for the resident. Bann and McBeth put the

sensors directly on the hand of the practitioner while Lum needed an entirely passive

robot attached to the tool to measure the torque. Finally, some studies show that

the stress is a key factor that can explain decreasing performance when the residents

go from a virtual model to a real Operating Room (OR) [34][35][57]. While taking
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stress into account is a great step, the studies are also limited. The NASA-TLX

group uses a self-evaluation stress system, using a questionnaire, when the group of

Pavlidis uses thermal imaging, that is expensive and takes time to setup.

For all these reasons, it is important to encourage the development of the FLS,

which offers a cheap and efficient way to train residents, but we need to develop

new metrics to objectively quantify the dexterity of the practitioner, and to take

into account the mental workload by measuring the alertness and the stress. To be

useful, our system should not disturb the surgeons, and it has to be easy and fast to

setup.
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Chapter 3

Smart Trocar

As we exposed previously, laparoscopic surgery is a constant challenge even for skilled

surgeons, mainly because of the indirect vision and the resulting lack of depth per-

ception. To compensate for these drawbacks and make laparoscopic surgery safer,

the Smart Trocar should provide the surgeon information about the global position

of the surgical tools, the kind of tools we are using, and their motions along the

surgery.

3.1 The concept

Our device provides useful information for surgical application as long as the accuracy

on the position is less than 1 mm along the three axis (x,y,z) and the accuracy on

the orientation is less than 0.5◦ around those axis. With the need for this high level

of accuracy, we cannot use a direct 3D sensor system like in [15]. For the same
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reason, we cannot use the ultrasonic sensor; all the studies quoted in this thesis show

very complex and expensive processes for a small number of positive results. We

consequently decided to use a system based on computer vision and triangulation.

A stereoscopic vision system is a system using two different cameras separated by a

known distance. By triangulation, we can easily determine the depth of the object

present in the two vision fields of the camera. The reverse principle of stereovision

used the same idea but inversing the camera and the object, i.e. in this case, we have

one single camera and two objects separated by a well known distance. By the same

kind of triangulation, we can determine the distance between the camera and the

two objects. The choice of using one single camera is justified both by consideration

of price and space; we want to create a device as cheap and as small as possible.

We imagined the system on Figure 3.1, consisting of a small camera, fixed on the

top part of the trocar, tracking some markers inside the operating room. By adding

specific markers on the tools, we are able to recognize them, and by adding different

markers on the ceiling at a known position, we are able to know the position of the

camera, and consequently its motion.

The recognition part requires simple image processing algorithms. We put a

circular unicolor/bicolor marker on each laparoscopic tool. With only n colors, we

can create n·(n+1)
2

different markers (e.g. with a palette of only six different colors,

we can create twenty-one different markers, which is usually more than the number

of tools used during an operation). The idea of the algorithm is to first detect the

marker on the tool (using a circular Hough Transform detection), and then identify

the color and associate it to the corresponding tool, thanks to a hue analysis.
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Figure 3.1: Our smart trocar, with the GPS part (left) and the recognition part
(right)

The idea behind the GPS system is a little more complex. Let us assume that

we have painted a cross on the ceiling, and that this cross is captured by the video

stream from the Smart Trocar. We can extract from the video the trajectory of four

points, for example the middle of the end point of the cross. With the following

well-known math, we can deduce the position of the camera from the position of

those four points, and we can also guarantee the uniqueness of the solution. [56]

Our marker is fixed at the position {X-1,X0,X+1} on the ceiling. Its position is

known before the motion, that is to say in the blue coordinate system. In his initial

state, the system can be represented by the following equations, where x and X are

respectively the coordinates of the point in the image and in the real space, col is

the number of columns in the image, θC is the opening angle of the camera, H is

the distance between the trocar and the ceiling, and Lx is the real part of the ceiling
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Figure 3.2: Geometry behind our GPS

viewed by the camera.

Lx = tan(
θC
2

) ·H

x · Lx = col ·X

Now we can also express the image coordinate x′ for the new real position X ′ of

the trocar. The system of equations below enables us to achieve this goal. So on the

X axis we will have:

X ′ = cos(θ) · (−(H + dZ) · tan(θ) +X + dX)

Z ′x = sin(θ) · (−(H + dZ) · tan(θ) +X + dX)

L′x = tan(
θC
2

) · ( H

cos(θ)
+ Z ′x)
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x′ · L′x = col ·X ′

On the Y axis we will face a similar problem, and for a motion described by a

translation dZ on the Z axis, a second translation dY on the Y axis, and a rotation

φ around the X axis, we will have the following system of equations (on the Y axis):

Y ′ = cos(φ) · (−(H + dZ) · tan(φ) + Y + dY )

Z ′y = sin(φ) · (−(H + dZ) · tan(φ) + Y + dY )

L′y = tan(
φC

2
) · ( H

cos(φ)
+ Z ′y)

y′ · L′y = raw · Y ′

This is an ideal case that is far from the reality. We have to keep in mind that

the laparoscopic tools and the surgeon himself will be in the field of the camera.

To be sure to always have the coordinate of 4 points in the image, we add other

cross markers, of different colors, separated by a well-known distance. Now, we have

to add a color recognition part on our algorithm to identify which cross the points

belong to.

Our system provides us the position and orientation of the camera, which is

attached to the trocar. Since we know the exact position of the camera (including

the rotation angle along z-axis) and since we know the geometry of our Smart Trocar,

it is easy to obtain the position of the entire trocar. To completely solve our system

and determine the position of the tool, we have to solve the additional unknown:

1. How much of the tool is inserted inside the trocar?
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2. The inclination of the tool might not be exactly along the axis of the trocar.

3. The rotation of the tool on its axis.

In order to localize the tip of the instrument, we need to know how deep the tool

is inserted, i.e. how close the marker is from the camera. By determining the size of

the marker, we can know how deep the surgical tool is inserted.

The second unknown is due to the inclination of the tool inside the trocar: indeed,

even if the diameter of the trocar is designed to fit exactly with the one of the surgical

tools (in this case, the inclination of the tool is the one of the trocar), it can happen

that the surgeon changes the surgical tool without changing the trocar. That is why

the diameter of the trocar can be a few millimeters bigger than the diameter of the

tool and allow the tool to move along the transversal directions. If we name ∆D

the difference of diameter between the trocar and the surgical instrument, and L the

length of the trocar, the angle α of the tool, in reference to the trocar axis is:

tan(α) =
2 ·∆D
L

When ∆D = 3 mm and L = 150 cm, we obtain an angle α = 2.2◦. Even if this

case is uncommon, it cannot be neglected and we now need to think of a way to know

the inclination of the tool, in reference to the trocar axis. This can be solved again

thanks to the circular marker mounted on the tool (see Figure 3.3). Since we know

the exact position of the trocar axis and of the camera, we are able to determine

where the center of the marker should be, if α was equal to zero. So, the angle α

only depends on the position of the center of the marker and its radius, that we can

both measure on the image.
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The last unknown is the rotation of the tool on itself, which is simply the rotation

of the tool marker. It can be measured thanks to the two colors on the pattern.

Figure 3.3: Localization of the tool in the trocar system

3.2 Our bill of specification

We want to meet the following requirements:

• Shift accuracy : 1mm

• Angular accuracy: 0.5◦

• GPS robust to partial occlusion of the field of view of the camera

• GPS robust to lightness change
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• Wide angles tolerated : more than 40◦ between the two extreme positions

• Real time

• No additional work for the surgeon

• Safe and non-invasive for the patient

• Compatible with the existing technology (no need a new trocar)

• Easy and fast to mount

• Cheap

• Small

• Wireless transmission of the signal

• Enough battery to support one operation

3.3 Technical development

In this project, we focus on the localization of the trocar. The algorithm is divided

into two main parts; the first one uses image processing tools to recognize the feature

points in the image, and the second one solves the estimation pose problem, based

on these points.
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3.3.1 Feature detections

A preliminary step is to correct distortion; indeed, we need to know the exact position

of the feature points, and we assume a pinhole model. The camera we use causes a

radial distortion. As we always use the same camera, we can determine its parameters

once, and implement the corresponding transformation [6][10].

Now, for the detection of the feature points, the most natural approach was

to detect the crosses. Different methods close to the machine-learning field were

investigated and quickly abandoned because of the low quality of their results on our

images e.g. the unsupervised learning methods like k-means clustering, or pattern

recognition. As we want to detect a known shape, one of the first approaches we

imagined was to use a generalized Hough transform [3]. Indeed, this method is

robust to noise, lightness change, and partial occlusion of the field of view. But this

method also requires a very high computational time for determing general shape.

We might reduce the computational time by choosing a simpler marker (a circle or

a line instead of a cross) or by indicating where we guess the cross should be (using

the time correlation of the images). Still, if we want to create a real-time system, it

would be better to use something else.

We looked for another shape-detection method that seemed interesting because it

is robust to affine deformations and to the blur. Suk and Flusser [43] claim that there

is a kind of feature that is insensitive to a centrosymmetric and energy-preserving

PSF type of blur and to affine deformations. This is good but not good enough, since

this implies conditions of focus we are not sure to provide. For the triangulation part,
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our camera must not have autofocus (otherwise, we change our optical system in an

unknown way). But the trocar will still have a little motion on the z axis, thus we

need a method that can deal with these little blurred images. Vu and Manjunath

[52] present an interesting method using prior shape knowledge to localize an object

even in case of partial occlusion. This method might provide some results for blurred

images, but the publication does not give enough data for this kind of noise. Besides,

the algorithm seems very slow.

Since it was difficult to find an accurate and fast shape detector, we decided to

detect our feature using a corner detector algorithm. The extraction of the corner is

made by the Matlab corner detector, using the Minimum Eigenvalues Method [38].

This method is fast and accurate; the position of the detected corners was detected,

on average, with an error of less than 2 pixels. To make this method more robust

to change of light and light contrast, we pre-treated the image with an histogram

equalizer. The advantage of this method is that it provides accurate results; the

drawback is it detects false positive (e.g. corners that are not on the crosses). We

can see the results provided by the algorithm on figure 3.4 (in red, the corner we

want to remove, in blue, the corner we want to keep). The corners selection can

be done easily if we know the approximate position of the cross, using the following

criteria:

1. When a corner is detected twice (this is due to the thickness of the black edge)

we remove the internal one (the closest to the center of the cross).

2. When the distance of the corner to the center is not inside a certain range, this
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is an internal corner, or it is outside the cross mask and we remove it.

Figure 3.4: Corner detection and selection

But to apply this simple method, we need to know the position of the approximate

position of the cross, and its center. This can be done in a very fast way, without

using the complex shape detector we detailed before. To do this, we will use the

difference of intensity between the cross and the background. Indeed, the crosses are

on a white background and can be easily detected. Even if this method seems very

fast and efficient, it has two main drawbacks:

1. The position of the crosses may not be accurate.
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2. We will have some false positive (all visible objects with a low intensity, e.g.

surgeons, tools).

Nonetheless, when we have detected our possible crosses, we can define criteria to

eliminate the false positive: e.g., since we know the approximate height of the ceiling,

we can define a specific range for the surface and diameter; every object outside these

ranges is eliminated. This method has shown good results and that is the one we

chose.

At that point of the algorithm, we have been able to detect the external corners

of the crosses, within the accuracy offered by Matlab corner detector function. The

features we decided to use in our algorithm are not those points, but rather the

middle of the ends of the cross. This can be done by taking the middle of the

segment between two corners. This choice of features can be understood in terms of

accuracy; i.e. taking the middle of those two points may be more accurate than the

corners themselves. Now, in order to identify which feature we have detected, we

have to know which cross it belongs to, and on which position on the cross it occurs

(left, right, up, or down). The first problem can be solved by detecting the color of

the cross, and the second by knowing both the position of the point in reference to

the center of the cross, and the rotation of the poster inside the image.

For the color detection, Coughlan et al. [8][9] presented a method for the recog-

nition of a colored circular object in an image using color gradients. In our case,

the pattern had already been detected and the only thing that can trouble our color

recognition is change of light. This method should be independent of light change.
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One other proposed method is the one of Kloss et al. [21]. It uses a learning algo-

rithm that is a color contrast fusion algorithm. But this algorithm does not meet

our main requirement i.e. the robustness to light change. Toti et al. [49] also present

colored markers analysis based on HSV image. The idea of using HSV image is good

because the color information is in the hue values, whereas the lightness acts mainly

on the value. Then, they check for each detected object, which colors are present or

not. This is exactly what we want to do and we use this publication to write our

color detection code; for every cross, we look at the hue of every pixel and identify

the two dominant colors. Because our crosses are made with at most two colors

among those 6 (red, green, blue, yellow, cyan, magenta) which have distinguished

hues values, the recognition of the cross is always possible.

Now that we have detected on which cross is our feature, we have to know if the

feature is on the left, right, top, or bottom of the cross, which is trivial if we know

the inclination of the poster in the image. This inclination is known for every frame;

it simply corresponds to the rotation of the trocar within its axis, which should not

change a lot between two frames. Besides, this angle can be computed using the

crosses. Since we have the poster map, and the position and color of the crosses,

with only two points (e.g. the center of two crosses) we are able to find the angle

we are looking for. This redundant information can also be used as a way to check

if the color has been correctly detected.
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Figure 3.5: Algorithm of features detection and localization

3.3.2 Pose estimation problem

Thanks to the first part, we are now able to detect the coordinates of some points,

with accuracy around one pixel, and its corresponding coordinate in real space, even

with bad lighting and partial occlusion. We select four of these points to run our

algorithm (as long as one cross is visible, the algorithm detects at least four points).

Since the equations developed in the previous part gives the image coordinate if we

have the camera coordinate, we can run a simulation that provides for every rotation
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and translation possible of the camera, the expected position of the points in the

image. In order to find the set of points that fits best with the one we measured, we

define an error function and find its minimum. Our error function is the quadratic

error along x (respectively along y) of the distance between the points measured in

the image and the result of the simulation.

εx =
4∑

i=1

(xmesured
i − xsimu

i )2

Figure 3.6: The algorithm of localization

The first results with only one degree of displacement were very encouraging.

However, there was a problem as soon as we tried to estimate the parameters for a

motion with more than one degree of freedom. Indeed, there were too many chances

to find a local minimum instead of the global minimum of the error function (see
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Figure 3.7: Error function to minimize : left, with no motion restriction; right, with
motion restriction

Figure 3.7 left). The paper of Yuan [56] gave us the answer: in order to solve

the exterior calibration problem of a single camera we needed to use four collinear

points to solve the system with existence and uniqueness of the solution. At this

point we entered into a dynamic problem and not a static one. Indeed, at the

end what we wanted was to analyze videos. In a video, two successive images are

linked, which means that we can use the parameters found in the images n-1 to

compute the parameters of image n. By implementing that and putting a limitation

on the movement of the trocar between two images, we achieve to finally have a

unique minimum (see Figure 3.7 right). This implies a limitation on the surgeons’

movements between two images of 0.5 cm for the translations and 4◦ for the rotations.

Because the camera takes 30 images per second and the movement of a surgeon is

not supposed to be very fast, we should never reach this limitation.
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3.3.3 An alternative solution: pose estimation without poster

We imagine another approach to obtain the motion of the trocar that has been

developed as an alternative to the first one for two reasons:

1. we needed a fast and efficient algorithm to obtain the tool trajectories, and

2. we wanted to stop the use of the poster on the ceiling, which can be a constraint

for a bigger development of the Smart Trocar.

The exact knowledge of the position of the point in the real space (i.e. the

knowledge of the poster) was crucial in our algorithm, and it seems impossible to use

the same kind of approach to solve our pose problem. Nonetheless, we know that

the motion of the trocar is mainly a rotation, along x and y (if z is the direction to

the ceiling). Besides, there are markers on the ceiling that we are able to identify

and track, even if we do not know their coordinates (air vent, light). If we are able

to determine the motion, on the video, of a fixed object in the operating room, we

will deduce the motion of the camera, thus, the motion of the trocar. In order to do

this, we need to be able to detect accurately some feature points in the image, and

then to recognize those points from a frame to the next one and match those points

to determine its motion of the camera. We also have to be sure that the object

that carries those points are fixed in the operating room (so the motion of those

points corresponds to the motion of the camera); otherwise, we need to suppress the

outliers (feature point detected on a moving object, e.g. the surgeon). To be sure

that the detected points will be on the background (ceiling, air vent), we ask the
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user to define a region of interest to localize the background and we track features

inside this region.

To identify the feature points, we need a fast and robust algorithm that can detect

enough points in the image: the first we imagine is the one we presented in the first

part, to detect the corners. The literature also suggests other detectors such as Self-

Invariant Feature Transform (SIFT)[24], Speeded Up Robust Features (SURF) [5], or

Harris detector [17]. We found some studies that compared those different algorithms

[2][27]. Those studies suggested that the most adapted algorithm depends of our

input images, and to provides the biggest number of features and correct matching.

A good feature is repeatable, i.e. we can detect it on different images, even under

different viewing conditions. It is distinctive enough from its neighborhood to be

recognized, and small enough to be accurately localized. In our case, under bad light

condition, SURF was barely able to detect 10 points. Harris was on the average less

good than Minimum Eigenvalue (fewer points, and poor robustness to small-scale

change). SIFT was the most time consuming which may be a problem for real-time

applications.

Now that we have detected the feature points, we have to do the matching.

There are two main approaches characterized by two algorithms: the use of a feature

vector or directly looking for the best geometric transform. The SURF descriptor

attributes a vector to each feature that characterizes its immediate neighborhood.

These descriptors are used to pair points between images and find the best match.

The other method, illustrated by the Kanade-Lucas-Tomasi (KLT) features a tracker

algorithm, which tries to find the best geometric transformation. In our case, the
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second approach seems to be the most adapted for two reasons: first, the descriptor

of SURF might not be very robust since we are looking at a very homogeneous

and periodic surface with few elements to distinguish a specific point. Second, the

geometric transformation should be exactly the same for all the detected points (since

the only motion is the motion of the camera), so the algorithm should be able to find

them. We have to note that the algorithm uses only the best matches to determine

the geometric transformation between two frames; consequently, it is robust to few

outliers.

Figure 3.8: Algorithm of tracking

The advantage on this method based on a KLT tracker instead of a pose estima-

tion problem is that it is based on well-known fully automatic algorithms, and does

not need any marker. In addtion, the KLT method is cost effective. This tracker is
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efficient for small displacement, so we need to analyze around 30 frames per second,

which is too much if we want algorithms that work in real time. Besides, our method

only gives us the displacement into the image plane, which can be related to the dis-

placement into the (x,y) plane, but cannot give the depth information. Some papers

show that we can obtain the depth with these kind of methods, and this might be a

future development [38][48].
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Chapter 4

Results and Validation

4.1 Verification

The navigation system has been tested in an old operating room at the Houston

Methodist Hospital, where we mounted the poster with the markers on the ceiling.

Working in an operating room allows us to test our devices in realistic conditions,

in terms of lightness, objects on the ceiling, and geometry of the room. Our camera

is mounted on a home-made wood-platform which is possible to move along the six

degrees of freedom (see Figure 4.1). The goal is to be able to move the camera in a

measurable way between two shots. To do so, two laser pointers with measurement

abilities are fixed on the platform too. These lasers give us an accurate measurement

between the laser and the walls of the operating room. Thanks to this system, it is

easy for us to measure (by using simple trigonometry and geometry of the room) the

translation and the rotation that we apply to the platform between two shots. As
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we are looking for high accuracy results, this is very important for us to validate the

results that we find with our algorithm.

Figure 4.1: Validation with a professional camera

We first tested our algorithm with a professional camera, i.e. a camera without

autofocus, a small opening angle, no obstructions, and no distortions on the images.

Once our prototype was set up, we started to take pictures of the ceiling with a

measured movement between each one. The fact that the camera was moving made

the position of the crosses from the pattern moves from one picture to the next

one. Our algorithm detects this movement and measures it to then reconstructs

the rotation and translation associated to it. As we explained in the previous part,

the motion between two frames should be small enough to allow our algorithm to

converge; this is not a problem in the final application, since we are working on

video. We tested our algorithm on different kinds of movements, such as rotations

and translations, as it can experience during a real use of a trocar, allowing a motion

of 6 mm and 4◦ between two frames. Repeating this experience a couple of times,

we obtain an average error of 0.1◦ for the rotation and 0.5mm for the translation.
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Now that we proved that our algorithm is working on fixed images, we also wanted

to show its reliability on movies, because these are the data that we record from the

camera once installed on the trocar during a real procedure. The goal is to keep this

excellent level of accuracy in general conditions with a wireless camera. Also, the fact

that we now work on a movie and not anymore on unrelated images brings us a new

problem: the validation part here is more difficult and the movement between two

frames is less controlled. To measure it, we use a similar system as previously, but

additional lasers are placed on the trocar in such a way that they are visible in the

field of view of the camera, which allows us to track the laser beam frame after frame

to measure the motion of the trocar [49]. Working in a dynamic situation allows us

to use the position of the trocar in the previous frame to estimate the position of the

next one. Now, we can reduce the area of research to an interval centered on this

position, which reduce drastically the computation time and allows us to approach

real time condition. As we said before, thanks to the work of Yuan [56], we know

that our algorithm will converge to the unique solution, if we stay under the range

of 4◦ for the rotation and 5mm for the translation.

We repeat this experience in a different room, with different lightness and partial

obstruction of the field of view of the camera, to obtain the final conclusion:

• Accuracy : the average accuracy on the rotation angle is 0.2◦ and 0.4 mm.

• Tolerated motion between frames : 4◦ of rotation and 5 mm of translation.

• Range: the total rotation tested is from -20◦ to 20◦.

• OR geometry : the distance from the trocar to the ceiling varies from 110 cm
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Figure 4.2: Validation with a regular Smart Trocar and two laser beam

to 170 cm with no significant influence on the accuracy.

• Lightness : the prototype has been tested with less lightness than usually in an

OR: the camera compensates this lack of light and the accuracy is the same.

• Obstruction: the navigation system stays in the range of error fixed as long

as two crosses are visible, i.e. when the features are separated of 13 cm or

more one to the other, along x and along y. This correspond to an allowed

obstruction of 80% of the field of view.

• Computational time: the total computational time is around 5 frames per

second. Most of the time is needed to localize the feature in the image. This

time can be reduced by introducing parallel programing and using a compiled

programming language like C++ instead of Matlab.
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4.2 Application to the analyze of tool path

4.2.1 Set up of the experience with the surgeons

As we have shown in part 2, laparoscopic training can be improved by providing real

feedback to the residents. One of the most promising way to do this is to analyze

the trajectories of the surgical tools and to compare them with the ideally expected

motion. As we concluded in part 2, the system used to record the trajectories has

to be cost effective, fast, easy to use, and should not constrain the surgeons in their

motions or disturb them in any way. The Smart Trocar is the perfect answer to these

constraints and can be used to record the tools trajectories of surgeons for training

purposes. Since the literature also shows strong importance of mental engagement

in the success or failure of the laparoscopic exercises, it would be interesting to also

access some cognitive metric.

Taking into account all these parameters, we imagine an experience that aims to

determine how the tools trajectories evolve with experience and dexterity, and how

can we characterize and measure those differences, in order to objectively evaluate

the ability of the practitioner and provide participants a feedback to help improve

their performances. In order to do this, we asked volunteers to do different exercises

on a Fundamental of Laparoscopic Surgery (FLS) model while we were recording

the tools trajectories. In this work, we also aimed to analyze the importance of

brain activity during the surgical tasks. We wanted to assess at what extent the

ElectroEncephaloGram (EEG) signals reflect the trend of tasks, and if it can be cor-

related with performance and tools trajectories. The EEG signal was recorded with
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the Neurosky Mindwave commercial system (single dry electrode on the frontal area)

and the eSense meter for attention and meditation were used to monitor alertness

level. Attention and meditation are two functions of time, that can vary from 1 to

100.

We divided our subjects in two groups: beginners and surgeons. The beginners

never practiced FLS exercises before. The surgeons were comprised of two popula-

tions: senior surgeons (considered as professionals) and surgical residents (considered

as intermediates). Surgeons are considered experts in laparoscopic surgery, and have

experience with FLS box. Thanks to their collaboration, we analyzed eight surgeons

(three skilled surgeons and five residents) and ten beginners. To compensate those

small samples, we asked everyone to do the exercises twice. All the subjects use the

same FLS box, and practice in the same experimental conditions: we record the tool

trajectories, the time, the EEG and the number of errors. In this thesis, we present

the results we obtained analyzing the EEG of the participants when the subjects

realized a specific FLS task that consist of a precise circular cutting of a piece of

gauze (Figure 4.4). According to the FLS program, the proficiency levels is reached

when the surgeons are able to realize the task two consecutive times in less than 98

seconds each. An error (cut outside the two circles) is not allowed. We provide the

results of the participants in the following tables.
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4.2.2 Preliminary results

The analysis of those trajectories can provide an objective and quantitative tool to

evaluate dexterity of a practitioner. Following the work exposed in [4][12][26], we

imagine different metrics to analyze the trajectories, based on the observed trajec-

tories, and the EEG (the exact definition of these metrics is provided later):

• Length of the trajectories (mm).

• Average radius of curvature.

• Velocity.

• Area covered by the trajectory.

• Proportion of high frequency in the spectrum (measure of shiver).

• Average distance to the center of motion.

• Completion time.

• Correlation between attention and meditation (EEG).

We show on Figure 4.7 the results with the most significant metrics. We also ran

some t-test to determine if the difference between the group was significant or not.

The choice of a t-test is justified both by the small amount of data and by the non-

Gaussian aspect of these distributions. Even if these results are very encouraging

and confirm our literature review, they are preliminary; we only used 31 trajectories,
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obtained on 17 people (beginners and experts). Nonetheless, we can imagine that a

combination of these metrics is able to accurately evaluate the dexterity of a resident.

Definition of the metrics: Let’s name T the trajectory, curv(t) the radius of

curvature at the point t, med the meditation, att the attention, and t the time.

Area = (maxTx −minTx) · (maxTy −minTy)

Energy =|| 1

N
· T (f)HF ||

Curvature = µmax(curv(t), th)

Symilarity(Att,Med) =
∫
t
| (med(t)− µmed)− (att(t)− µatt) | dt
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Figure 4.3: Completion time and mistakes for all the participants
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Figure 4.4: Left: FLS box with Smart Trocar; right : one of our exercises: cut
between the lines

Figure 4.5: Example of trajectories, for the different populations

Figure 4.6: Attention and meditation, provided by the Neurosky system
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Figure 4.7: Different metrics and t-tests
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Chapter 5

Perceptive

5.1 Operating room awareness

Operating room awareness is one of the main goals we want to achieve and many

systems have been developed for this purpose. Most of them deal with the recog-

nition of surgical procedures. Padoy et al. [33] presented a method to identify the

phase of a surgical operation based on the synchronization of signals recorded dur-

ing the operation. This technique is very simple because it only needs to recognize

some key events in the surgical procedure to recognize the step the surgeon is at.

Doryab et al. [11] use the same kind of device and go one step further by creating

a recommender learning system that uses the recorded parameter to tell the doctors

and nurses what they should do according to the ongoing step of the surgery. This

system is based on a reinforcement learning algorithm with a patient safety-based

calculation of the utilities. A similar application can be done with the Smart Trocar.
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Since our technology can record the type of instrument used during the operation

[49], it can draw a timeline of the surgical operation, and track some key events such

as the use of a specific instrument that allows us to determine the current step of the

operation, prepare the next one, and help to improve operating room management

by informing the coordinator of the operating room system when an operation is

nearly complete. Since the different steps of a laparoscopic operation are relatively

systematic and predictable, a change on the timeline provided by the Smart Tro-

car allows the operating room coordinator to know quickly that there is an issue

in the corresponding operating room (see Figure 5.1). In this example, the Smart

Trocar shows irregularities in the procedure due to a disfunctionement of the clip

applier. At the end, the Smart Trocar can automatically generate notifications of

when an operation starts and ends, send advance warnings when the operation will

be done, detect singularities during the operation, detect when a particular stage of

the surgery takes longer than usual, and improve readiness of the staff by providing

information on the next step while automatically provide summarized reports. This

application is priceless for a management hospital team, when we know that mini-

mally invasive surgery procedures are a growing market that already represents 3.5

million procedures per year in the USA, that operating room time costs about $100

a minute in North America, and that current reports show operating room efficiency

is not better than 70% in ideal cases [47].
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Figure 5.1: Output of the Smart Trocar system (black) compared to an ideal version
procedure (red)

To summarize, the Smart Trocar delivers the following services:

• Recognition of specific types of instrument (see Figure 5.1).

• Accurately detects duration and port used for the insertion or removal of in-

struments.

• Reconstructs the motion of these instruments in space and time.

• Provides a time series of events during the surgery from first to last use of

laparoscopic instruments.

• Provides retrospective analyses of cases to allow identification of step(s) of the

operation that may be improved to safely increase efficiency.

• Allows the generation of statistical models of standardized, large volume pro-

cedures to provide a real-time notification of step(s) or parts of the operation
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that fall outside of expected ranges, thus improving safety and efficiency

From this information, we can generate various intelligent feedback mechanisms

such as:

• Automatically generate notifications regarding when an operation starts and

ends.

• For large volume surgeries such as gastric bypass or cholecystectomy:

– Send an advanced notification about when the surgery will be completed.

– Detect singularities in the surgery.

– Detect when events are not done in order.

– Detect when a particular stage of the operation takes longer than usual.

– Improve readiness of the staff team by providing details on the next step

of the procedure.

– Automatically generates reports of the operation.

48



5.2 Augmented reality

5.2.1 Three-dimensional reconstruction of the organs and

the tools

The Smart Trocar gives us the position and orientation of the surgical tools inside

the body. If we combine it with a 3D endoscope, and if we are able to register

these 3D maps, we can obtain a 3D reconstruction of both the tools and the organs.

We can then localize the tool in reference to a specific organ, even when they are

outside the field of view of the endoscope (since we have their position thanks to our

’GPS’ system), and we can compensate the lack of depth perception characteristic of

minimally invasive surgery. The registration between the coordinate system of the

Smart Trocar and the one of the endoscope can be done if we are able to associate

three of the points from one system to the other. Since the Smart Trocar is, in

essence, able to localize the tip of a surgical tool, in space, we can use a tool such

as a pointer to obtain the coordinate of the points we need in order to solve the

registration problem.

5.2.2 Registration of preoperative and intraoperative im-

ages: add the Finite Element (FE) model

Preoperative surgical planning coupled with accurate image-guided surgical therapy

for liver resection would be a valuable tool for increasing the possibility of favorable

outcomes for patients. Surgical planning is based on preoperative scans, segmented
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and digitalized in order to obtain an accurate 3D model of the organ with sub-

surfacique data. We identify on these scans the important parts such as tumors, blood

vessels, etc. We use this segmentation to generate a biomechanical finite element

model that contains valuable information for the surgeon. During the operation we

have intraoperative data: e.g. a surface acquired as a point cloud representation using

tracked surface, or/and subsurface, acquired through intraoperative ultrasound. This

information is less accurate than the preoperative data, and a lot of work has been

done in order to fit the finite element model (preoperative) and the actual position

of the organ(intraoperative). (Image 5.2 from [53])

Figure 5.2: Registration principle in image guided surgery

The Smart Trocar can help to semi-automatically register the preoperative and
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intraoperative data. Indeed, some markers on the preoperative data, such as a lig-

aments, can be localized on the endoscopic view by using the known coordinates

surgical tool’s tip. As we can see on figure 5.3, if we use tool 1 as a pointer (touching

the feature on the liver), and if the field of view of tool 2 (endoscope) is centered on

the same point, we are able to measure the distance O2 and the position of the tip

of tool 1, thanks to our knowledge of the inclination and length of the tools, and the

distance m1 and m2. By using the Smart Trocar, surgical tools with an appropri-

ate setup can be used as laparoscopic navigation pointer: palpate and locate blood

vessels, tumors, and organs, even when they are not visible on the intraoperative

surfacique data.

Figure 5.3: Geometry of our problem: how to register the 3D surface of the liver
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5.2.3 Analysis of the trajectories to prevent dangerous events

Not only can the Smart Trocar be used as a ’GPS’ to track the surgical tools, and

as a pointer to localize important organic structures, but it can also analyze the

trajectories of the surgical tools. We previously showed that it can analyze the

trajectories to determine the dexterity of the surgeon, but we can also analyze the

trajectories in real-time, to track some specific events, and help surgeons to achieve

their task by:

• Showing the best trajectory to reach the target avoiding important dangerous

strucures.

• Sending a reminder when dangerous/unexpected situation are detected, such

as:

– Entrance in a no fly zone.

– Retractor/Grasper that has not moved for a while and may compress

tissues.

– High velocity or unusual trajectories.
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Conclusions

At the end of the day, the Smart Trocar project tackles the issues of context-aware

systems for operating rooms. Our goal is to compensate the laparoscopy drawbacks

by building a new channel of information designed to help the surgeon. There are

many projects that try to address the problems caused by indirect vision and limited

access to the operating field during laparoscopic surgeries. Most of them see the

localization of surgical instruments as an important tool to overcome the difficulties

encountered by the surgeon during procedures. But most of the systems that have

been designed until now suffer from big disadvantages, either because they are too

sensitive to noise, not accurate enough, too space consuming, or too expensive. Our

system, on the other hand, is simple, cheap, and accurate enough for surgical needs.

Moreover, it is non-invasive, and can be mounted on classic trocars. Not only can our

technology be used to assess surgical dexterity and improve surgical training, but it

can also improve operating room management by providing a timeline of events. On

top of this, we imagine that our Smart Trocar will allow us to use surgical tools as a

pointer to localize important features, and improve safety and efficiency of minimally

invasive surgery.
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