© Copyright by

Sanbir S. Kaler 2014

All Rights Reserved

Etching of Si and SiN_x by Beams Emanating from Inductively Coupled CH_3F/O_2 and CH_3F/CO_2 Plasmas

A Thesis

Presented to the Faculty of

the Department of Chemical & Biomelcular Engineering

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

In Chemical Engineering

by Sanbir S. Kaler

August 2014

Etching of Si and SiN_x by Beams Emanating from Inductively Coupled

CH₃F/O₂ and CH₃F/CO₂ Plasmas

Sanbir S. Kaler

Approved:

Co-Chair of the Committee Vincent M. Donnelly, Ph.D Chemical and Biomolecular Engineering Professor

Co-Chair of the Committee Demetre J. Economou, Ph.D Chemical and Biomolecular Engineering Professor

Committee Members:

Gila Stein, Ph.D Chemical and Biomolecular Engineering Assistant Professor

Paul Ruchhoeft, Ph.D Electrical and Computer Engineering Associate Professor

Suresh K. Khator, Ph.D Cullen College of Engineering Associate Dean Michael P. Harold, Ph.D Chemical and Biomolecular Engineering Professor and Department Chairman

Etching of Si and SiN_x by Beams Emanating from Inductively Coupled CH_3F/O_2 and CH_3F/CO_2 Plasmas

An Abstract

Of a

Thesis

Presented to

the Faculty of the Department of Chemical & Biomolecular Engineering

University of Houston

In Partial Fulfillment

Of the Requirement for the Degree

Master of Science

in Chemical Engineering

by

Sanbir S. Kaler

August 2014

Abstract

In advanced microelectronic device fabrications, novel gate electrode designs for field effect transistors (FinFETs) require highly anisotropic and selective silicon nitride (SiN_x) etching over Si and/or SiO₂. SiN_x substrates and p-Si on Ge substrates were etched with CH₃F/O₂ and CH₃F/CO₂ inductively coupled plasma beams. In addition, polymer films deposited on p-Si and SiN_x were characterized and compared via x-ray photoelectron spectroscopy analyses. Optical emission species intensity and species number density of the hydro-fluorocarbon plasma, as a function of % O₂ and CO₂ addition were compared. Etch and deposition rates were measured on either side of abrupt transitions in gas-phase species concentration, detected at ~ 48 % O₂ and ~ 74% CO₂. These transition point compositions correspond to a switch from polymer-coated to polymer-free reactor walls.

Keywords: Silicon-nitride etching, Hydro-fluorocarbon plasmas

Table of Contents

Abstract	vi
Table of Contents	vii
List of Figures	viii
Chapter 1 Introduction	1
1.1 Plasma Etching	1
1.2 Capacitive and Inductive RF discharges	1
1.3 The Importance of Silicon Nitride	2
1.4 Challenges	
1.5 Statement of Purpose	
Chapter 2 Literature Review	4
2.1 Etching	4
2.2 CF ₄ /O ₂ Plasmas and Etching of Si and SiO ₂	4
2.3 Etching of SiN_x in 'Free' F Atom and Fluorocarbon Radical Containing Plas	smas 10
2.4 Selective Etching of Silicon Nitride using Hydro-Fluorocarbon Plasmas	10
2.5 Polymer Films on SiN_x after Etching with Hydro-Fluorocarbon Plasma	16
Chapter 3 Experimental	20
3.1 Apparatus	20
3.2 X-Ray Photoelectron Spectroscopy	22
3.3 Optical Emission Spectroscopy	24
3.4 Mass Spectrometer	24
3.5 Spectroscopic Ellipsometry	24
Chapter 4 Results and Discussions	25
4.1 Selected Optical Emission Measurements	25
4.2 Deposition of Polymer on Si with CH ₃ F/O ₂ and CH ₃ F/CO ₂ Plasma	29
4.3 Etched Si on Ge with CH ₃ F/O ₂ and CH ₃ F/CO ₂ Plasmas	35
4.4 Deposition of Polymer Film on SiN _x	42
4.5 SiN_x Etching with CH ₃ F/O ₂ and CH ₃ F/CO ₂ Plasmas	46
Chapter 5 Summary and Conclusions	50
References	51

List of Figures

Fig. 1	F atom concentration in CF_4/O_2 plasma of the feed determined by gas-phase titration ¹¹
Fig. 2	Comparison of results via computer simulations of CF_4/O_2 plasmas with that of Smolinsky and Flamm's experimental data ¹³
Fig. 3	Normalized etch rate of Si and F emission from CF_4/O_2 plasma ¹¹ 8
Fig. 4	Relative etch rates of Si and SiO2 (solid lines, points) as well as relative F atom concentration (dashed lines) ¹⁴
Fig. 5	SiN_x etch rate and F radical emission intensity are shown at $C_4F_8(10 \text{ sccm}) + Ar$ (150 sccm) with added feed gas CH_3F , CH_2F_2 , and CHF_3^{31}
Fig. 6	SiO_2 and SiN_x etch rates vs. added H_2 in C_4F_8 + Ar plasma ³¹
Fig. 7	Si_3N_4 and SiO_2 etch rates versus O_2 % increase in fluorocarbon gases ³² 13
Fig. 8	Normalized optical emission intensities for Ar (750.4 nm), F (703.4 nm), CF
	(240nm), CF ₂ (252 nm) and H (656.5 nm) versus O_2 % increase in fluorocarbon gases ³²
Fig. 9	Normalized H emission intensity and Si_3N_4 etch rate versus O_2 % increase in
	fluorocarbon gases ³²
Fig. 10	Polymer thickness formed on etched surfaces in hydro-fluorocarbon lplasma ³² . 16
Fig. 11	XPS spectra after etching Si_3N_4 and SiO_2 with CH_3F/O_2 plasma ³² 17
Fig. 12	Si_3N_4 etch rate and hydro-fluorocarbon film thickness versus H_2 flow rate
	addition to $CH_2F_2 + Ar^{33}$
Fig. 13	Etch rates of SiO ₂ , Si ₃ N ₄ , SiCH, and Si in multiple fluorocarbon plasmas as a
	function of self-biased voltage. CF_x film thicknesses were measured ³⁵
Fig. 14	Schematic of compact, inductively coupled plasma source
Fig. 15	Top view schematic of the overall system consisting of a plasma chamber,
	load lock chamber, ICP plasma reactor, mass spectrometer, and XPS 21
Fig. 16	Normalized number densities for (nH/nAr)/80.36, (nF/nAr)/2.89 and
	(nO/nAr)/24.58, and normalized intensity ratios for HF+/Ar, as a function of CO_2
	or O ₂ addition ⁴²
Fig. 17	Normalized intensity ratios of CH/Xe, CF/Xe, C/Xe, and OH/Xe emission as
	function of CO_2 or O_2 addition ⁴²

Fig. 16 Normalized number densities for $(h_{C0}/n_{Xe})/64.55$ and $(h_{C0}/n_{Xr})/24.55$ as a
function of CO_2 or O_2 addition ⁴²
Fig. 19 Mass spectrometry spectra displays nearly complete dissociation of CH ₃ F into
stable products
Fig. 20 Film deposition rates on p-Si for CH ₃ F/O ₂ and CH ₃ F/CO ₂ plasmas at 300 W, 10
mTorr, and no boundary bias ⁴²
Fig. 21 The C (1s) spectra of deposited film on p-Si as a function of a.) CH_3F/O_2 and b.)
CH_3F/CO_2 plasma ⁴²
Fig. 22 The Si (2p) spectra of deposited film on p-Si as a function of a.) CH_3F/O_2 and b.)
CH ₃ F/CO ₂ plasma ⁴²
Fig. 23 The O (1s) spectra of deposited film on p-Si as a function of a.) CH_3F/O_2 and b.)
CH ₃ F/CO ₂ plasma ⁴²
Fig. 24 The F (1s) spectra of deposited film on p-Si as a function of a.) CH_3F/O_2 and b.)
CH_3F/CO_2 plasma ⁴²
Fig. 25 Relative abundance of species at thermodynamic equilibrium in CH_3F/O_2 (hole
symbol) and CH ₃ F/CO ₂ (solid symbol) plasmas at 10 mTorr and a temperature of
373 K. Overlapping plots convey no difference in trends ⁴²
Fig. 26 Si thickness remaining on Ge after exposing to CH_3F/O_2 (solid circles) and
Fig. 26 Si thickness remaining on Ge after exposing to CH_3F/O_2 (solid circles) and CH_3F/CO_2 (open circles) plasmas at 300 W and 10 mTorr without boundary
Fig. 26 Si thickness remaining on Ge after exposing to CH ₃ F/O ₂ (solid circles) and CH ₃ F/CO ₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary
 Fig. 26 Si thickness remaining on Ge after exposing to CH₃F/O₂ (solid circles) and CH₃F/CO₂ (open circles) plasmas at 300 W and 10 mTorr without boundary

Chapter 1 Introduction

1.1 Plasma Etching

Integrated circuitry functionality has improved dramatically over the past 40 years. This is reflected in Moore's law, which notes the number of transistors on integrated circuits has doubled every two and a half years during this period¹. The smallest feature size for the first commercially available microprocessor in 1971 (Intel 4004) was 10 μ m². In September of 2013, Intel announced feature size available 3D Si Fin field-effect transistors (FETS), or "FinFETs" with 22 nm fin widths³. They project these dimensions will shrink to 10 nm sized IC as early as 2015³.

Spawned by the need to reduce toxic waste in wet etching processes and requirement for improved resolution in pattern transfer, plasma etching emerged in the 1970s as a critical process in integrated circuit manufacturing⁴. Along with the phenomenal advances in optical lithography, the remarkable improvements in plasma processing of semiconductor materials have allowed the advancement of this industry to continue unabated. Plasma etching is used to transfer lithographically defined patterns in photoresist material to one material while leaving exposed any underlying materials intact. This selectivity is a key component of plasma etching, along with anisotropy, vertical etching rates with minimal horizontal etching⁵. These unique features and the ability to transfer integrated circuit patterns of incredibly small feature seizes has prompted the study of plasma processing and its reaction mechanisms and kinetics.

1.2 Capacitive and Inductive RF discharges

Etching, early on, was primarily done using dual-frequency capacitively-coupled plasma reactors (CCP)⁴. A high rf frequency above 13.56 MHz is typically applied the

smaller of two parallel electrodes. Due to the asymmetrical structure of electrodes, a negative dc self-bias voltage was placed on the smaller electrode causing more energetic ion bombardment of substrates/anisotropic etching. More recently, dual frequency CCP reactors have been developed, with high frequency (typically 13.56 to 50 MHz) applied to an upper electrode, and a lower frequency applied to the lower electrode (usually lower than 13.56 MHz) to generate high-voltage sheaths on the lower electrode that holds the wafer. These are considered low-density discharges that lead to scholastic heating in the plasma sheath region (no collisions). High-density discharges are produced from microwave or rf driven inductively coupled plasmas (ICP) which contain low-voltage sheaths near the whole surface. ICP reactors deliver rf power to the plasma through a dielectric window, tube, or dome. This allows for better ion energy control due to the ability to separately provide energy to the separately rf-powered electrode on which the substrate sits. Much higher etching rates and much higher selectivities were achieved with ICP etchers, making them the tools of choice for etching gate-electrodes and for SiN_x etching required for FinFET.

1.3 The Importance of Silicon Nitride

Silicon nitride is used as a hard mask/gate spacer material in many complex feature size applications. It is often applied as a spacer on the sides of gates in FETs to tune channel length and transistor properties.⁴ SiN_x creates a physical barrier that is superior to SiO₂ for penetration by water vapor, salts, and other species⁵. Furthermore, SiN_x is effective in preventing oxygen from reaching and oxidizing the underlying layer (e.g. Si), as well as preventing Si damage or loss relative to SiO₂ gate spacers. Si damage

or loss would lead to source/drain shorts, causing substrate bias dependent leakage in FETs.⁴

1.4 Challenges

The challenge, however, in SiN_x etching is to maintain a high selectivity over etching of Si and SiO₂. High F-atom generating plasma feed gases, such as CF₄/O₂ or NF₃/O₂, provide etch rates of 30 nm/min SiN_x⁹. This method is not selective with respect to silicon. Anisotropic etching with high selectivity over Si and moderate selectivity over SiO₂ is achieved through ion bombardment using fluorocarbon gases with equivalent C to F atom ratio, such as CH₃F¹⁵. Previous studies are examined in the 'literature review'.

1.5 Statement of Purpose

Despite its importance for highly selective etching of SiN_x on Si or SiO_2 for present and future integrated circuit manufacturing, the fundamental mechanisms for SiN_x etching in hydro-fluorocarbon feed gas plasmas has not been reported. Thus, the purpose of this study is to carry out experiments examining inductively coupled plasmas with CH₃F/O₂ and CH₃F/CO₂ feed gas while etching SiN_x and Si. Particular focus on the hydro-fluorocarbon films that deposit during etching.

Chapter 2 Literature Review

2.1 Etching

Plasma etching (also frequently referred to as reactive ion etching, RIE) involves a combination of neutral species chemical reactions on the surface, influenced by positive ion bombardment. The choice of etchant is determined by many factors including material or substrate type, anisotropy, selectivity, loading, and texture¹⁰. Isotropic etching occurs when chemical 'gasification' reactions between etchant species and a substrate occur with little or no influence by ion bombardment¹⁰. An undercut circular wall profile is produced at the mask edge, where the radius length is equal to the etch depth¹¹. Vertical sidewalls on etched lines and trenches require the ion flux to be perpendicular to substrate surface to stimulate etching reactions that occur at the bottoms of features at a rate that is much faster than on side walls¹⁰. Additional species may be required to suppress chemical etching on the side walls to prevent isotropic etching. Anisotropic etching is required when trying to create nano-features with high aspect ratios (deep via holes or capacitor trenches)¹⁰.

Atomic fluorine reacts rapidly with all types of Si, SiO₂, and silicon nitride (SiN_x) forming stable, volatile products²¹. It is well understood that fluorocarbon radicals also promote etching of these materials¹². Though fluorocarbon-containing plasmas are commonly used in industry, and have been studied extensively for etching of Si and SiO₂, mechanisms for etching SiN have not been reported.

2.2 CF₄/O₂ Plasmas and Etching of Si and SiO₂

Mogab, et al. showed that oxygen addition in fluorocarbon plasma increased atomic fluorine concentration, in figure 1^{11} .

Fig. 1 F atom concentration in CF_4/O_2 plasma of the feed determined by gas-phase titration¹¹.

F atom concentration eventually reached a maximum at 22% O_2 and then decreased as O_2 further diluted the feed gas, CF₄. They also proposed a model, summarized briefly below. Electron-impact dissociation of CF₄ molecules yielded F, negative ions F⁻ and radicals CF₃^{*11} listed as

$$e + CF_4 \to CF_4^* \to CF_3^* + F + e, \tag{1}$$

$$e + CF_4 \rightarrow CF_3 + F + e$$
, and (2)

$$e + CF_4 \to CF_3 + F^-. \tag{3}$$

 F^{-} and CF_{3}^{*} undergo a detachment reaction and dissociative recombination, respectively, to create additional atomic fluorine¹¹ shown as

$$e + F^- \rightarrow F + 2e$$
 and (4)

$$CF_3^* + F \to CF_2 + 2F. \tag{5}$$

F, F⁻, and CF₃ are lost by heterogeneous, homogeneous, and third body recombination reactions forming stable F_2 and CF_4^{11} written as

$$CF_3 + F^- \to CF_4 + e, \tag{6}$$

$$CF_3 + F \xrightarrow{\text{wall}} CF_4,$$
 (7)

$$F + F \stackrel{\text{wall}}{\to} F_2, \tag{8}$$

$$CF_3 + F + M \rightarrow CF_4 + M$$
, and (9)

$$F + F + M \to F_2 + M. \tag{10}$$

A small amount of $C_2F_6^{11}$ was also formed in their proposed model shown as

$$CF_3^* + CF_3^* \to C_2F_{6'} \tag{11}$$

$$CF_3 + CF_3 \xrightarrow{\text{wall}} C_2F_6$$
, and (12)

$$CF_3 + CF_3 + M \rightarrow C_2F_6 + M.$$
⁽¹³⁾

With the addition of oxygen, production of stable CO, CO_2 , and COF_2 species are detected downstream with simultaneous reduction in fluorocarbon.

Fig. 2 Comparison of results via computer simulations of CF_4/O_2 plasmas with that of Smolinsky and Flamm's experimental data¹³.

Extensive computer model simulations of CF_4/O_2 plasma were carried out by Plumb and Ryan¹³. Their simulations incorporated 13 of their listed 49 reactions¹³

$$CF_4 \xrightarrow{e} CF_3 + F,$$
 (14)

$$CF_4 \to CF_2 + 2F, \tag{15}$$

$$CF_3 + F \xrightarrow{M} CF_4$$
, (16)

$$CF_2 + F \xrightarrow{M} CF_3, \tag{17}$$

$$0_2 \stackrel{e}{\to} 0 + 0, \tag{18}$$

$$CF_3 + 0 \to COF_2 + F, \tag{19}$$

$$CF_2 + 0 \to COF + F, \tag{20}$$

$$CF_2 + 0 \to CO + 2F, \tag{21}$$

$$COF + 0 \xrightarrow{M} CO_2 + F, \tag{22}$$

$$COF + F \to COF_2, \tag{23}$$

$$\operatorname{COF}_2 \xrightarrow{e} \operatorname{COF} + \operatorname{F},$$
 (24)

$$\operatorname{CO}_2 \xrightarrow{e} \operatorname{CO} + 0$$
, and (25)

$$F + CO \xrightarrow{M} COF.$$
 (26)

Their model predictions (reproduced in figure 2, lines without symbols) were compared with experimental data of Smolinsky and Flamms (lines with symbols in figure 2). The model was in reasonable agreement with reactions which produce CO, COF_2 , and CO_2 number density with the addition of oxygen to the plasma. Small discrepancies were ascribed to the difference in experimental and calculated rate coefficients for the dissociative reactions¹³. Major significance was given to reaction equation (19) which confirms an increase in fluorine atom concentration with the addition of O_2 . The curvature in figure 2 of fluorine atom concentration was similar to that of COF_2 with both maximums observed around 22%. The simulations however, disagreed with experiments in the atomic fluorine number density¹³. The ratio of F_2/F changed throughout O_2 percent addition in the simulations whereas it did not change the experimental work of Flamm et

al.¹³. This was partly attributed to the differences in the reactor model (designed in simulation) and actual experimental reactor used by Flamm et al.. Differences in dissociative reaction rate coefficients can also be attributed to the disagreement in F atom number density ¹³.

Mogab et al.¹¹ and d'Agostino et al.¹⁴ conducted analogous experiments found similar behavior of Si and SiO₂ etch rates and atomic fluorine density with addition of % O_2 . Both results are shown in figures 3 and 4.

Fig. 3 Normalized etch rate of Si and F emission from CF_4/O_2 plasma¹¹.

The 703.7 nm excited F atom emission intensity and Si etch rate were normalized and plotted versus O_2 addition¹¹. Their model states the Si etch rate is not "*strictly*" proportional to the F-atom concentration due to the competition between F etchant atoms and O atoms adsorbing on active Si surface sites¹¹. This does not occur in SiO₂ for Si active sites or 'dangling bonds' are already filled by O atoms. It was concluded that oxygen percentage addition in CF₄ increased Si etch rate, led to a maximum, and then decreased because of eventual oxidation of Si. Without sample bias or boundary electrode bias, etching of Si was perceived to be isotropic, non-ion induced etching¹⁵. When ions are accelerated to the sample, anisotropic etching (ion-enhanced CF_x -silicon or CF_3^+ -reactive ion etching) with slight undercutting was noticed¹².

D'Agostino et al. had discovered similar results with slight differences in plasma conditions. Referencing figure 4, both Si and SiO_2 etch rates decreased as O atoms adsorb on active sites¹⁴.

Fig. 4 Relative etch rates of Si and SiO2 (solid lines, points) as well as relative F atom concentration (dashed lines)¹⁴.

The etch rates for Si were about 20 times higher than SiO₂. Furthermore, both sets of experiments illustrate the maximum etch rate for Si was ~12 % O₂ addition, whereas F atom concentration and SiO₂ maximum etch rate were detected closer to the 22 % O₂ addition¹². High selectivity and anisotropy for etching SiO₂, however, is achieved using fluorocarbon radicals as primary etchants rather than only F-atom etchants^{16-18,39}. Reaction rates for fluorine atoms etching Si and SiO₂ as a function of temperature and F atom concentration¹⁹ are given by

$$R_{F(Si)} = 2.91 \pm .20 \times 10^{-12} T^{\frac{1}{2}} n_F e^{-\frac{.108}{kT}} \left(\frac{\mathring{A}}{\min}\right) \text{ and } (27)$$

$$R_{F(SiO_2)} = 6.14 \pm .50 \times 10^{-13} T^{\frac{1}{2}} n_F e^{-\frac{.163}{kT}} \left(\frac{\mathring{A}}{\min}\right). (28)$$

2.3 Etching of SiN_x in 'Free' F Atom and Fluorocarbon Radical – Containing Plasmas

SiN_x can be etched in plasmas that contain large concentrations of F atoms (e.g. CF_4/O_2^{34}), as well as plasmas that contain large concentrations of fluorocarbon radicals (e.g. CHF_3/O_2^{31}). Most plasma that etch SiN will also etch Si and/or SiO₂. Etching of SiN_x in CF_4/O_2 and other 'F atom containing plasmas results in little to no selectivity (SiN_x:Si = 1:8)²². Very high selectivity of SiN_x with respect to Si is typically required for CMOS devices, thus making it vital to avoid the use of gases which produce large amounts of F atoms³⁰.

2.4 Selective Etching of Silicon Nitride using Hydro-Fluorocarbon Plasmas

A highly selective process can be obtained was discovered in rich CHF_x , CF_x -rich plasmas, with hydro-fluorocarbon and/or fluorocarbon-containing plasmas. Conditions for fast SiN_x etching rates were found to be at low pressure, with energetic ion bombardment where SiN_x :Si etching selectivity ranging from 30 - 100:1^{21,23,24,25,26,27,28,29}.

Iijima et al.³¹ reported the etching of blanket SiN_x and SiN_x/SiO_2 via in inductively coupled plasmas of C_4F_8 + Ar with added CHF₃, CH₂F₂, and CH₃F. As shown in figure 5, the SiN_x etch rate and F optical emission intensity both increased when CHF₃ was added to the plasma, and decreased with CH₃F addition, suggesting that F atoms are the etchant of SiN_x^{31} .

Fig. 5 SiN_x etch rate and F radical emission intensity are shown at C_4F_8 (10 sccm) + Ar (150 sccm) with added feed gas CH₃F, CH₂F₂, and CHF₃³¹.

Iijima et al. initially attributed the decrease in etching rate upon CH_3F addition to the increase in H atom concentration, which results in an increase in depletion of F atoms via formation of HF. When H₂ was added to C_4F_8 + Ar, however, the etching rate of SiN_x actually *increased* as shown in figure 6³¹. If the 'F scavenging effect' by H atoms was the explanation of the reduction in etching rate with CH₃F addition, then the addition of H₂ would be expected to reduce the SiN_x etch rate even more so than CH₃F addition³¹. Iijima et al. ascribed the reduction in SiN_x etching rate with CH₃F addition to the enhcanced role of C-H_x radicals relative to H atoms for scavenging F through HF formation³¹.

Fig. 6 SiO₂ and SiN_x etch rates vs. added H₂ in C₄F₈ + Ar plasma³¹.

Chen et al.³² reported on the mechanisms of selectively etching Si₃N₄ over SiO₂ in hydro-fluorocarbon, capacitively-coupled plasmas using CHF₃, CH₂F₂, and CH₃F with added O₂. Figure 7 shows etch rates as a function of O₂ addition for constant hydrofluorocarbon feed³². Maximum etch rates were found at 40%, 60%, and 80% O₂ for CHF₃, CH₂F₂, and CH₃F, respectively. The highest etch rates measured were for CHF₃, followed by CH₂F₂ and CH₃F, consistent with Iijima et al. findings³². The authors attributed the reduction of Si₃N₄ etch rates to the increase in C/F ratio, since F is the main etchant of Si₃N₄³².

Fig. 7 Si $_3N_4$ and SiO $_2$ etch rates versus O $_2$ % increase in fluorocarbon gases³².

It was also apparent that Si_3N_4 etch rates decreased as $O_2\%$ increased, as expected (O_2 dilution). This effect was not noticed for CH_3F at the higher $O_2\%$ region. Referencing figure 8, the normalized optical emission intensity plot versus $O_2\%$ increase, H (656.5 nm) emission intensity initially increased for all hydro-fluorocarbon gases. The initial increase in H emission with added O_2 in hydro-fluorocarbon can be described by

$$CH_xF_v + 0 \rightarrow H + C0 \text{ or } COF_2 + F$$
 (29).

Fig. 8 Normalized optical emission intensities for Ar (750.4 nm), F (703.4 nm), CF (240 nm), CF₂ (252 nm) and H (656.5 nm) versus O_2 % increase in fluorocarbon gases³².

A maximum and steady decrease in H atom emission was noticed for both CHF_3 and CH_2F_2 but not CH_3F – possibly due to the larger amount of H atoms in methyl fluoride. The authors had discovered a correlation amongst H atoms and Si_3N_4 etch rate shown by figure 9.

Chen et al. had claimed H atoms play a vital role in the removal of CN - an involatile product within the thin polymer layer on the substrate surface³². With large amounts of H in plasma, H radicals diffuse through the polymer layer forming and removing stable HCN. The removal of N atoms from Si_3N_4 substrate is described by (30) – (32).

Fig. 9 Normalized H emission intensity and Si_3N_4 etch rate versus O_2 % increase in fluorocarbon gases³².

$$H + CN \to HCN, \tag{30}$$

$$Si_3N_4 + H + CF_x \rightarrow HCN + SiF_x$$
, and (31)

$$Si_3N_4 + CHF_x \rightarrow HCN + SiF_x.$$
 (32)

Since the Si_3N_4 etch rates were measured to be faster than SiO_2 etch rates, the thickness of the polymer layer on Si_3N_4 in these experiments should be less than the thickness of the etch inhibiting layer on SiO_2 . Excluding CHF₃ – possible role of ion-induced defluorination of fluorocarbon film³⁵ - this was indeed the case. Figure 10 has the polymer thickness (nm) versus hydro-fluorocarbon gas.

Fig. 10 Polymer thickness formed on etched surfaces in hydro-fluorocarbon Plasma³².

2.5 Polymer Films on SiN_x after Etching with Hydro-Fluorocarbon Plasma.

Continuing with the experiments conducted by Chen et al., x-ray photoelectron spectroscopy spectra were obtained for partially etched Si_3N_4 and SiO_2 substrates using CH₃F/O₂ plasma³². The Si 2p, C 1s, F 1s, N 1s, and O 1s peaks were of primary focus shown in figure 11.

The polymer film on Si₃N₄ contains C-C, C-H, and a very small amount of C-CF_x. In contrast, the polymer film on SiO₂ includes C-C, C-H, and a much larger amount of C-CF_x bonds. The integrated area of C 1s was larger on the SiO₂ substrate, indicating a thicker polymer film³². Chen et al. also noticed the difference in Si/N ratio, before and after etching. The Si/N ratio was .75, originally. This value decreased after exposing the Si₃N₄ substrate to various hydro-fluorocarbon plasmas, suggesting SiF_x products are removed at a faster rate than N atoms³². Park et al. gave evidence that the N atom removal from a Si₃N₄ wafer is one of the major rate limiting step³³.

Fig. 11 XPS spectra after etching Si₃N₄ and SiO₂ with CH₃F/O₂ plasma³².

Figure 12 has the Si₃N₄ etch rate and CH_xF_y polymer thickness as a function of H₂ flow rate addition to feed $CH_2F_2 + Ar$ - examined by Park et al.³³. The reduction of steady state CH_xF_y film thickness was attributed to the removal of hydro-fluorocarbon layer by the formation of HCN and SiF_x molecules with increasing H₂³³⁻³⁶. Ultimately, Si₃N₄ etch rates were enhanced. Though the selective etching of Si₃N₄ was heavily dependent on the hydro-fluorocarbon film thickness, Standaert et al. studied the significance of ion-induced defluorination of the polymer film, resulting in a difference of F/C ratio – which may affect Si₃N₄ etch rates³⁵.

Fig. 12 Si_3N_4 etch rate and hydro-fluorocarbon film thickness versus H_2 flow rate addition to $CH_2F_2 + Ar^{33}$.

Standaert et al.³⁵ investigated the role of fluorocarbon and hydro-fluorocarbon film formation in the etching of Si, SiO₂, SiCH, and SiN_x while varying substrate selfbiased voltage (-V). Their plot relating etch rate with polymer film thickness is referenced in figure 13.

Fig. 13 Etch rates of SiO₂, Si₃N₄, SiCH, and Si in multiple fluorocarbon plasmas as a function of self-biased voltage. CF_x film thicknesses were measured³⁵.

The gases in the plot above were CF₄, CHF₃, and C₄F₈, where each deposited 5, 250, and 330 nm/min of fluorocarbon (FC) film on Si, respectively³⁵. The difference in deposition rates are strongly dependent on polymerization, therefore, the discharges with a lower F/C ratio would deposit at a much higher rate – creating larger FC films³⁵. For CF₄, as self-biased voltage on the substrate holder increased, the Si₃N₄ etch rate increased, but the polymer film thickness did not increase. In contrast, when self-bias increased from -45 to -200 V for CHF₃ and C₄F₈ plasma, the FC film thickness increased and etch rates decreased.

The etching rates are vertical in the chemical-sputtering region - where the film thickness was less than 1.2 nm. Here, etch rates are independent of film thickness and dependent on self-bias³⁵. The 'chemical sputtering' region is, thus, less dependent on film thickness and more dependent on the ion energy³⁵. They consider this the region where most ions penetrate the FC film possibly causing defluorination of the FC film, resulting in higher etch rates (higher probability of forming more SiF_x products desorbing from Si substrates)³⁵. The 'Diffusion controlled' region has a different effect. Once FC thickness had increased 1.2 nm, the etch rates sharply decreased. Etch rate values are much smaller at larger FC thicknesses due to less ion induced penetration/fragmentation/deflourination and less diffusion of H or F for the formation of HCN and/or FCN.

Chapter 3 Experimental

3.1 Apparatus

An inductively coupled plasma was ignited in a 1.4" inner diameter alumina tube, surrounded by a 3 turn, $\frac{1}{4}$ " outer diameter copper tubing, and housed in a 4" outer diameter co – axial stainless steel cylindrical enclosure (figure 14). Deionized (DI) water flowed through Teflon tubing around the exterior wall of the alumina tube providing cooling. A chiller maintained the DI water temperature of 20° C.

Fig. 14 Schematic of compact, inductively coupled plasma source.

Gas was fed into a reactor through a ¹/₄" stainless steel tube which was connected to a gas manifold. Flows of CH_3F , CO_2 , O_2 and a trace rare gas (TRG) mixture (40% Ne, 20% Ar, 20% Kr, and 20% Xe) were controlled by MKS model 1179A mass flow controllers. The reactor was pumped by a 300 l/s turbomolecular pump – (Ebara Corporation) backed by a dry pump. A base pressure of 3.0×10^{-8} Torr was measured using a Varian (model XGS-600) controller and Ion Gauge. The operating pressure, measured with a capacitance manometer at the top of the reactor, was maintained constant at 10 mTorr via a throttle valve.

Power was supplied to the ICP coil using a Hewlett-Packard (model 3325A) frequency synthesizer set at 13.56 MHz and ENI (model A-300) radio frequency (rf) power amplifier. With a π –impedance-matching network, a forward power of 300 W could be maintained with zero reflected power. Power was measured with in-line Birdmeters. A programmable DC power supply (Kepco model KLP 150-16- 1200 Watt) was connected onto the substrate holder, allowing ion energy control by applying either a positive (to slow or stop positive ions) or negative (to promote energetic ion bombardment) bias.

Fig. 15 Top view schematic of the overall system consisting of a plasma chamber, load lock chamber, ICP plasma reactor, mass spectrometer, and XPS.

The processing chamber was connected to a Physical Electronics' Model 10-420 X-ray photoelectron spectrometer (XPS) and Hiden Analytics EQP model 7036 mass spectrometer (MS). Samples were introduced into a loading chamber between the roundhouse and plasma chamber. The XPS and Roundhouse chambers were each pumped by a separate ion pump (Gamma Vacuum model TitanTM 300TV) achieving base pressures of 3.0×10^{-9} Torr.

The loading chamber was purged with dry nitrogen when inserting or removing a sample. The substrate sample holder was moved between chambers with transfer arms, where each chamber could be isolated by gate valves. The samples used in this study were 300 nm SiN_x on Si, 10 nm Si on a 1000 nm Ge on a Si substrate, or a p-type Si wafer. Samples were cleaved into 3 cm pieces and held on the sample holder with conductive carbon tape. The Si/Ge and Si substrate samples were dipped into 50% dilute HF solution before mounting for the removal of the native oxide layer (SiO₂).

3.2 X-Ray Photoelectron Spectroscopy

Quantitative chemical analysis of plasma-exposed wafers was carried out with XPS. XPS spectra were collected for 70 cycles, with a 0.05 eV/step for high resolution scans. The Ge 3d (29.4 eV), Si 2p (99.3 eV), C1s (284.5 eV), N 1s (398.1 eV), O 1s (531 eV), and F 1s (684.9 eV) regions were of primary focus.

XPS was also used to determine the thickness of films that were etched or deposited. Etching and deposition rates were then determined from thickness changes. The method was based on measuring the relative intensity of peaks from the film, which increased as the film thickned and those from the underlying substrate, which decreased as the polymer film thickned.^{37, 38} For Si on Ge, the Si thickness is given by

$$t_{Si} = \lambda_{Si} \sin \theta \cdot \ln \left[1 + \frac{I_{Si}}{I_{Ge}} \cdot \frac{\lambda_{Ge}}{\lambda_{Si}} \cdot \frac{n_{Ge}}{n_{Si}} \cdot \frac{S_{Ge}}{S_{Si}} \right].$$
(33)

 λ_{Ge} and λ_{Si} are electron inelastic mean free path of 2.35 nm⁴³ and 2.2 nm^{37,38}. θ is the angle between the sample surface plane and the axis of the photoelectron collection lens, 90⁰. n_{Ge} and n_{Si} are the atom densities for Ge (4.44 x 10²² cm⁻³) and Si (5.0 x 10²² cm⁻³), respectively^{37,38}. I_{Ge} and I_{Si} are the integrated intensities of Ge(3d) and Si(2p), respectively, and S_{Ge} and S_{Si} are the sensitivity factors for Ge and Si^{37,38}. Note that the underlying Ge film is too thick for photoelectrons from the Si substrate underneath the Ge film to contribute to the Si signal.For the thickness of the polymer deposited on Si

$$t_{c} = \lambda_{c} \sin \theta \cdot \ln \left[1 + \frac{3 \cdot I_{c}}{I_{Si}} \cdot \frac{\lambda_{Si}}{\lambda_{c}} \cdot \frac{n_{Si}}{n_{c}} \cdot \frac{S_{Si}}{S_{c}} \right].$$
(34)

Here the stoichiometry of the polymer film was assumed to be C:(H+O+F) = 1:2 and the carbon atom density was assumed to be that of polyethylene. λ_{C} is the electron inelastic mean free path of 4.1 nm⁴³. n_c is the atom densities for polymer thickness deposited on Si assumed to be 3.9 x 10²² cm⁻³. S_c and I_c are the sensitivity factor and integrated intensity of C(1s). Since H was not measured, there is considerable uncertainty in the absolute thickness of the polymer films, but comparisons of relative deposition rates under different conditions are valid. Polymer film thickness deposited on SiN_x is given by^{37,38}

$$t_{c} = \lambda_{c} \sin \theta \cdot \ln \left[1 + \frac{3 \cdot I_{c}}{\frac{7}{3} \cdot I_{Si}} \cdot \frac{\lambda_{Si_{3}N_{4}}}{\lambda_{c}} \cdot \frac{n_{Si_{3}N_{4}}}{n_{c}} \cdot \frac{s_{Si}}{s_{c}}\right].$$
(35)

Where SiN_x was assumed to have a stoichiometry of Si_3N_4 . $\lambda_{Si_3N_4}$ is the electron inelastic mean free path of for Si_3N_4 of 2.7 nm⁴³. $n_{Si_3N_4}$ is the atom densities for Si_3N_4 1.48 x 10^{22} cm⁻³. $S_{Si_3N_4}$ and $I_{Si_3N_4}$ are the sensitivity factor and integrated intensity of Si(2p).

3.3 Optical Emission Spectroscopy

One of three Ocean Optics model HR4000 high resolution spectrometers was positioned at the top of the plasma source, with the entrance slit on the z-axis of the discharge tube and no intervening optical lenses (see figure 14). The three spectrometers covered wavelength ranges of 200-427, 578 – 775, and 734-916 nm, respectively. Sharp cut filters were used to block second order dispersion for the latter two spectrometers. Second order dispersion of the 734-916 nm region was used to obtain spectra between 367 – 458 nm. A colored glass filter, Kopp4305, was used to block first order dispersion in this case. The spectral resolution was 0.14 to 0.17 nm in first order and .07 nm in second order.

3.4 Mass Spectrometer

The processing was connected to the mass spectrometer (MS) by two 4" nipples separated by an aperture and gate valve. The MS chamber contained an ionizer, chopper, and a Hiden Analytics MS EQP (model 7036) probe. Two stages of differential pumping were created with a turbo molecular pump ($\sim 1x10^{-7}$ Torr) in the chamber closest to the processing chamber and a Cryogenics Helix Technology corporation (model 100CryoTorr) cryopump ($\sim 1x10^{-9}$ Torr) in the second chamber.

3.5 Spectroscopic Ellipsometry

Silicon nitride film thickness was measured before and after etching using a spectroscopic ellipsometry. The ellipsometer (J.A. Woollam Co. model M-2000S) was operated at a fixed angle of incidence 55⁰ (micrometer angle 15 mm) over a wavelength range of 200-90 nm. A theoretical model of the sample was created within the 'WVASE32' or VASE-equipped software.

Chapter 4 Results and Discussions

4.1 Selected Optical Emission Measurements

In a previous study from this laboratory, abrupt transitions in optical emission intensities were noted when oxygen addition to methyl fluoride reached 48% in a 300 W ICP at a pressure of 10 mTorr, and constant flow rate of 10 sccm.^{40,41} These measurements were repeated in CH_3F/O_2 plasmas and extended to CH_3F/CO_2 plasmas.⁴² Emission intensity and number density ratios to either Ar or Xe, normalized to unity at a particular dilution (usually for pure CH_3F), are plotted as a function of CO_2 or O_2 addition with a constant total flow rate of 10.3 sccm, including 0.3 sccm TRG, at a pressure of 10mTorr and a power of 300W in figures 16-18.

Fig. 16 Normalized number densities for (nH/nAr)/80.36, (nF/nAr)/2.89 and (nO/nAr)/24.58, and normalized intensity ratios for HF+/Ar, as a function of CO₂ or O₂ addition⁴².

Fig. 17 Normalized intensity ratios of CH/Xe, CF/Xe, C/Xe, and OH/Xe emission as function of CO_2 or O_2 addition⁴².

In figure 16, normalized number densities for n_H/n_{Ar} , n_O/n_{Ar} , and n_F/n_{Ar} are plotted for both O₂ and CO₂. Expected dilution trends are observed independent of added gas, until sharp increases in number densities are noticed at 48% O₂ and 73% CO₂ addition. Both phenomena were attributed to the transition from a polymer-covered to polymerfree reactor wall conditions when exceeding the transition gas composition⁴⁰⁻⁴². Figures 16-17 contain species F/Ar, H/Ar, C/Xe, CH/Xe, CF/Xe, HF+/Ar and CO/Ar number densities or emission ratios which were similar in trend at less than 40% O₂ or CO₂⁴². One clear difference between the two plasmas was observed in OH/Xe emission intensity (figure 17).

Fig 18. Normalized number densities for $(n_{CO}/n_{Xe})/84.35$ and $(n_{CO2}^+/n_{Ar})/27.59$ as a function of CO₂ or O₂ addition⁴².

OH/Xe emission was lower in CH_3F/CO_2 than in CH_3F/O_2 plasmas as a function of O_2 and CO_2 addition⁴². In the region greater than 80% O_2 or CO_2 , O number density was about twice in CH_3F/O_2 plasmas than in CH_3F/CO_2 plasmas⁴². Another key difference, in figure 18, was the larger CO_2^+ number density in CH_3F/CO_2 plasmas plasmas⁴².

C/Xe emission ratios are identical in both plasmas up until 60% addition of O_2 and CO_2^{42} . After exceeding 60% O_2 addition, C/Xe emission dropped linearly until the feed was of pure O_2 . This was identical to the behavior of CO and CO_2^+ number density as a function of O_2 addition. With CO_2 addition, however, C/Xe emission was maintained about constant. Due to the similar trend in CO/Xe and C/Xe emission versus

 CO_2 addition, C atoms may have been formed through dissociative excitation of CO, as well as electron impact on C produced from dissociation of CO^{42} .

H atom number density appears to be the most abundant species measured using self-actinometrical calculations. This was further confirmed with mass spectrometry. The characterization of a CH_3F/O_2 1:1 ratio, 10 sccm gas and plasma (300W) were compared. Shown in figure 19, MS spectra were initially recorded of the feed mixture, and then again after supplying power to the 3 turn, ICP copper coil within the plasma reactor.

Fig. 19 Mass spectrometry suggests nearly complete dissociation of CH₃F into smaller, stable products.

Gas mass-to-charge (m/z) peaks detected were of parent molecules CH_3F , O_2 , and H_2O . After the plasma was on, near complete dissociation of CH_3F and its conversion to products H_2 , CO, HF, and CO₂ were found. A sharp increase in H_2 counts (52.8 fold) suggests large conversion to H_2 , maybe due to recombination third body reactions off of MS chamber walls. All MS data were obtained without the use of a chopper and proper line-of-sight.

4.2 Deposition of Polymer on Si with CH₃F/O₂ and CH₃F/CO₂ Plasma

Polymer films were deposited on Si using the polymer heavy side of the transition composition (<80% CO₂ and <50 % O₂). Samples were turned away from the plasma source for 20s to reach steady-state plasma conditions (300 W and 10 mTorr with no boundary bias) and then exposed to the plasma source for an additional 20s, or in some cases, 40s. Polymer-film growth rates, using the time that the samples were directly exposed to the plasma beam, were measured with x-ray photoelectron spectroscopy and with use of equation (17).⁴⁹ The results are shown in figure 20.

Fig. 20 Film deposition rates on p-Si for CH₃F/O₂ and CH₃F/CO₂ plasmas at 300 W, 10 mTorr, and no boundary bias⁴².

The film deposition rates decreased with increasing CO_2 and O_2 addition, approaching zero near 70% CO_2 and 40% O_2 . This supports the explanation for the abrupt increases in F and O number density observed in both plasmas at higher O_2 and

 CO_2 additions - the polymer film is etched by O atoms at a rate higher than the deposition rate⁴⁰⁻⁴². The C(1s) spectra, displayed in figures 21 a) and b), contained a sharp peak near 284.3 eV (CH, CH₂ and/or graphitic carbon) and weaker peaks at 286.4 eV (CO) and 289 eV (CF), with perhaps very week CF₂ (or more likely CFO) feature near 290 eV.

Fig. 21 The C (1s) spectra of deposited film on p-Si as a function of a.) CH_3F/O_2 and b.) CH_3F/CO_2 plasma⁴².

Figures 22 a) and b) shows the Si(2p) spectra with peaks at 99.5 eV (Si) and 103.7 eV (SiO₂). The SiO₂ peak increases, relative to Si(2p), as a function of % O₂ and CO₂ addition as anticipated. Figures 23 a) and b) displays the O(1s) spectra. A shift towards higher binding energy of peak 532 eV was noticed as % O₂ and CO₂ increased, presumably due to the increased formation of CO and CF_x or COF. The same effect was detected in the F(1s) XPS spectra for peak 686.2 eV, presented in figures 24 a) and b).

Fig. 22 The Si (2p) spectra of deposited film on p-Si as a function of a.) CH_3F/O_2 and b.) CH_3F/CO_2 plasma⁴².

Fig. 23 The O (1s) spectra of deposited film on p-Si as a function of a.) CH_3F/O_2 and b.) CH_3F/CO_2 plasma⁴².

Fig. 24 The F (1s) spectra of deposited film on p-Si as a function of a.) CH_3F/O_2 and b.) CH_3F/CO_2 plasma⁴².

As O_2 and CO_2 addition increased in plasma, XPS peaks relative ratios $CO_{286.4}$ _{eV}/C_{1s} and $CF_{288.8 eV}/C_{1s}$ increased as expected⁴². Though CH_3F/CO_2 produced higher film deposition rates, it can be concluded that there were no significant differences between the polymer-films deposited in CH_3F/O_2 versus CH_3F/O_2 plasmas (at similar deposition rates).⁴² Perhaps the higher OH and or H_2O levels in O_2 -containing plasmas suppresses deposition. Thermodynamic equilibrium also favors solid carbon formation in CH_3F/CO_2 plasmas throughout all percentages of O_2 and CO_2 addition.⁴², as shown in figure 25⁴² possibly explaining the higher film deposition rates.

Fig. 25 Relative abundance of species at thermodynamic equilibrium in CH₃F/O₂ (hole symbol) and CH₃F/CO₂ (solid symbol) plasmas at 10 mTorr and a temperature of 373 K. Overlapping plots convey no difference in trends⁴².

4.3 Etched Si on Ge with CH₃F/O₂ and CH₃F/CO₂ Plasmas

Si (10 nm) on Ge (1000 nm on Si substrates) samples were exposed to CH_3F/CO_2 and CH_3F/O_2 plasma beams at 300 W, 10 mTorr and a constant flow rate of 10 sccm. Samples faced the plasma beam for 20s at 70%, 80%, and 85% CO₂, 40s for 90% and 80s for 95% CO₂ - conditions for which the reactors walls were polymer free. For O₂, wafers were exposed to the plasma beam for 20s versus O₂ % addition in the polymer-free wall condition (>50% O₂). XPS analysis (equation (16)) revealed that the Si film was partially removed. It was noted (figure 26) that etching had stopped after the removal of ~ 30 Å of Si for both plasmas, independent of composition and time.

Fig. 26 Si thickness remaining on Ge after exposing to CH_3F/O_2 (solid circles) and CH_3F/CO_2 (open circles) plasmas at 300 W and 10 mTorr without boundary bias.

XPS spectra in the Si (2p) and Ge (3d) regions provide further insight. Initially, the spectra shown in figures 27 and 28 were recorded before the sample was dipped in HF solution. A native oxide layer was evident on top of the initial Si film. Ge (3d) can easily be detected since the Si layer was very thin and the ineleastic mean free path of Si at 1456.6 eV (the x-ray energy 1486 minus the Ge 3d binding energy) is 2.2 nm. Most significantly, there was no GeO_2 peak, indicating that the Si layer deposited on Ge was continuous and contained no open patches or pinholes. If any Ge were exposed, it would oxidize in the period of months that the Si/Ge wafer sat in open air.

Fig. 27 Ge (3d) XPS spectrum of Si on Ge without HF dip.

Fig. 28 Si (2p) XPS spectrum of Si on Ge without HF.

The substrate was then dipped in HF, removing the SiO2 layer as was evident from the Si (2p) spectrum in figure 29 a.) and b.) - labelled as original. Separate HFdipped samples were then exposed to plasma beams formed from plasmas with different O_2 and CO_2 addition. With Si (2p) normalized to unity, the relative oxide peak increased as the O_2 % or CO_2 % increased, as anticipated. Plasma assisted oxidation of Si appears to stop Si etching after 2.5 nm of Si ratios) was removed – calculated using XPS peak intensities and equation (34).

Fig. 29 XPS spectra of Si on Ge after exposing wafer to CH₃F/O₂ (a.) and CH₃F/CO₂ (b.) focused on Si (2p) region. Si (2p) peaks were normalized to unity at plasma conditions 300 W and 10 mTorr.

What was not anticipated was the appearance of an oxide/fluoride peak, labeled as GeO_xF_y in the Ge (3d) region, with exposure of the substrate to the plasma beam in conditions that result in very little of the Si layer being removed (figure 30 (a.) and (b.)). The magnitude of GeO_xF_y -to-Ge intensity ratio indicates that the oxyfluoride layer was several monolayers thick for both plasmas.

Fig. 30 XPS spectra of Si on Ge after exposing wafer to CH₃F/O₂ (a.) and CH₃F/CO₂ (b.) focused on Ge (3d) region. Ge (3d) peaks were normalized to unity at plasma conditions 300 W and 10 mTorr.

The only reasonable explanation was that F and/or O penetrate the 75 – 80 nnm thick Si overlayer (100 nm the original thickness and 75-80 nm the "self-limiting" thickness found by XPS) and react with the underlying Ge. The intensity of the peak relative to Ge increases some between 50% and 60% O₂, but then was constant between 60% and 80%, indicating that the Ge oxyfluoride layer reaches a saturated thickness *before* the surface Si oxyfluoride layer. It is also possible that the tensile stress in the Si layer (Si lattice constant is 0.543 nm and Ge is 0.568 nm)^{6,44} could greatly aid the transport process.

The transport mechanism for F and/or O through the 10 nm thick Si film is not clear. Low energy heavy ions should penetrate no more than 1 nm, hence this does not seem to be a reasonable explanation. Fickian diffusion of F and O would be expected to be very slow at room temperature. Perhaps field assisted diffusion of F- or O- (i.e. Mott Cabrera mechanism) was occurring⁴⁵⁻⁴⁹.

4.4 Deposition of Polymer Film on SiN_x

XPS analyses were done to measure in-situ polymer film thicknesses deposited on SiNx. Samples were, once again, turned away from the plasma source for 20s to reach steady-state CH_3F/O_2 plasma conditions mentioned earlier. Deposition rates were calculated under the assumption that no polymer film deposited on the SiN_x wafers during this 20s period. The substrate holder was then turned to face the plasma source for an additional 30s, 2 min, 3 min, and 3 min for 10% O₂, 20 % O₂, 30 % O₂, and 40 % O₂ respectively. Their results are shown in figure 31. The film deposition rate sharply decreased as O₂ % addition approached the abrupt increase in O and F number density (polymer etchants) ~ 48% O₂, shown in figure 16⁴¹. The maximum polymer deposition rate calculated was 37 Å/min.

Fig. 31 Polymer film deposition on SiNx as function of O₂% addition rates. CH₃F/O₂ power and pressure was 300 W and 10 mTorr, respectively.

Figure 32 contains high resolution peaks normalized to unity after deposition of polymer onto SiN_x. All peaks have shifted by about 4.83 eV, surface charging. The 286.4 eV (CO) and 288.8 eV (CF) peaks, which appears at 291.2 eV and 293.6 eV, increased relative to C (1s) peak at 284.3 eV (shifted to 289.4 eV) as O₂ % increased. This was similar a trend when compared with the polymer deposited on p-Si using CH₃F/O₂ plasma, in figure 20 a). The O and CO number density results/behavior in figures 16 and 18 are also in good agreement with these findings. The Si(2p), O(1s), F(1s), and N(1s) detected at 106.7 eV, 537.1 eV, 691.1 eV, and 402.3 eV respectively, do not appear to differ from each-other as a function of % O₂ increase.

Fig. 32 XPS spectra of polymer film deposited on SiN_x comprising of a) C (1s), b) Si (2p), c) O (1s) d) F(1s), and e) N(1s) peaks.

4.5 SiN_x Etching with CH₃F/O₂ and CH₃F/CO₂ Plasmas

SiN_x was etched using CH₃F/O₂ and CH₃F/CO₂ plasma at a power of 300 W, pressure of 10 mTorr, and flow rate of 10 sccm (no boundary bias). Spectroscopic ellipsometry was used to measure SiN_x thickness before and after plasma exposure. Figures 33 and 34 show the change in SiN_x thicknesses as a function of etch duration. After 20s of non-exposure, the substrate was turned towards the plasma beam for 1.5 min, 3 min, and 6 min at the polymer-free reactor walls composition of 80% O₂ and 80% CO₂. A constant etch rate of 27 Å/min and 18 Å/min for 20% CO₂ and 20% O₂ was maintained independent of etch time. Figure 35 displays SiN_x etch rate as a function of % O₂ and % CO₂ addition. Faster etch rates are detected in CH₃F/CO₂ than CH₃F/O₂ over similar CO₂ or O₂ additions.

Fig. 33 SiN_x thickness change was measured using an ellipsometry after exposing the substrate to CH₃F 20% O₂ 80% plasma beam at a constant flow rate of 10 sccm. Plasma was maintained at 300 W and 10 mTorr without boundary bias.

Fig. 34 SiN_x thickness change was measured using an ellipsometry after exposing the substrate to CH₃F 20% CO₂ 80% plasma beam at a constant flow rate of 10 sccm. Plasma was maintained at 300 W and 10 mTorr without boundary bias.

The reason for faster SiN_x etch rates in CH_3F/CO_2 plasmas compared with CH_3F/O_2 may possibly be explained by the reaction mechanisms (30) – (32), postulated by Chen et al.³². As discussed in chapter 3, Chen et al.³² and Park et al.³³ propose the removal of N atoms is the major rate limiting steps in etching SiN_x using hydro-fluorocarbon plasmas The Si/N ratio was decreased from 0.75, before SiN_x substrate was exposed to hydro-fluorocarbon plasma, to less than $0.5^{32,33}$. This would be consistent with SiF_x products being removed faster than N-containing products. The additional C atoms in CH_3F/CO_2 plasma and the atomic C/Xe emission trend, in figure 16, gives evidence of the increased probability for forming CN⁻ involatile by-products during etching in the presence of the thin polymer layer over formed with 75% - 95% O₂ and CO₂ addition. OES measurements⁴² and mass spectrometer spectra (figure 18) indicate atomic H are the abundant species in CH_3F/CO_2 and CH_3F/O_2 plasmas in the region of 75% - 95% O₂ and CO₂. Therefore, it appears plausible that the formation of HCN form more readily in CH_3F/CO_2 plasmas, compared with CH_3F/O_2 plasmas.

Fig. 35 SiN_x etch rates measured using a spectroscopic ellipsometry as a function of $O_2\%$ and $CO_2\%$ addition. The plasma power was 300 W and pressure was 10 mTorr.

Chapter 5 Summary and Conclusions

The use of silicon nitride films for integrated circuits has recently risen as feature sizes continue to decrease towards the atomic scale. SiN_x films are commonly used as hard mask material for various etching steps, for gate spacer formation, and as a final passivation/encapsulating layer^{5,30}. It is vital to find ways to etch silicon nitride films with infinite/high selectivity over Si and SiO₂ in nano-sized features.

Various experiment in CH₃F/O₂ and CH₃F/CO₂ inductively coupled plasmas were performed. The similarities/differences amongst the two hydro-fluorocarbon plasmas were initially investigated by optical emission spectroscopy and actinometry⁴⁰⁻⁴². The etching of p-Si on Ge and SiN_x films using CH₃F/O₂ and CH₃F/CO₂ plasmas was carried out. The removal of Si on Ge stopped after the removal of 30 Å Si in both plasmas, likely due to the formation of a surface oxyfluoride layer. Most surprisingly, the underlying Ge layer becomes oxidized and/or fluorinated, possibly due to field assisted diffusion of F⁻ and O⁻ through the Si film.⁴⁵⁻⁴⁹ SiN_x etch rates were faster in CH₃F/CO₂ plasmas, compared with CH₃F/O₂ plasmas in the region of 75%-95% O₂ and CO₂ addition, perhaps due to the increase in CN by products in the polymer film that then go on to react with impinging H atoms form volatile HCN. Polymer films were characterized by XPS and their deposition rates on p-Si and SiN_x were obtained and compared⁴². There were not many differences in polymer film composition in both plasmas. CO and CF_x peaks increased relative to C (1s) peak as % O₂ and % CO₂ increased on both SiNx and p-Si. Larger film deposition rates on p-Si were found in CH₃F/CO₂ plasmas, possibly due to the larger amount of solid C that will form at thermodynamic equilibrium in CH₃F/CO₂ gas-phase mixtures.

References

- (1) Schaller, R.R., Spectrum, IEEE, vol.34, no.6, pp.52,59, Jun 1997.
- (2) F. Faggin, M. E. Hoff, S. Mazor, and M. Shima, *IEEE* Micro 16, 10 (1996).
- (3) Bohr, M., & Mistry, K. (2011). "Intel's Revolutionary 22 nm Transistor Technology". Rob Willoner at Innovation.
- (4) V. M. Donnelly and A. Kornblit, J. Vac. Sci. Technol. A 31, 050825, 2013.
- (5) M. A. Lieberman and A. J. Lichtenberg, <u>Principles of Plasma Discharges and</u> Materials Processing, second ed. (John Wiley & Sons, Inc., 2005).
- S.M. Sze, <u>Physics of Semiconductor Devices.</u> (John Wiley and Sons, Inc, New York, 1981).
- Guillorn, M.; Chang, J.; Bryant, A.; Fuller, N.; Dokumaci, O.; Wang, X.; Newbury, J.; Babich, K.; Ott, J.; Haran, B.; Yu, R.; Lavoie, C.; Klaus, D.; Zhang, Y.; Sikorski, E.; Graham, W.; To, B.; Lofaro, M.; Tornello, J.; Koli, D.; Yang, B.; Pyzyna, A.; Neumeyer, D.; Khater, M.; Yagishita, A.; Kawasaki, H.; Haensch, W., *VLSI Technology*, 2008 Symposium on , vol., no., pp.12,13, 17-19 June 2008.
- (8) Kuo, Y. (1995). Journal of The Electrochemical Society, 142(1), 186-190.
- Kastenmeier, B. E E; Matsuo, P. J.; Oehrlein, G.S., *Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films*, vol.17, no.6, pp.3179,3184, Nov 1999.
- (10) Donnelly, V. M. and Flamm, D. L. and Dautremont-Smith, W. C. and Werder, D. J., *Journal of Applied Physics*, 55, 242-252 (1984), DOI:http://dx.doi.org/10.1063/1.332872.
- (11) C.J. Mogab, A. C. Adams, and D.L. Flamm J. Appl. Phys. 49, 3796 (1978).

- (12) G. Smolinsky and D. L. Flamm, J. AppL Phys. 50, 4982 (1979).
- (13) Plumb, I. C., and K. R. Ryan. <u>Plasma chemistry and plasma processing</u> 6.3 (1986): 205-230.
- d'Agostino, Riccardo and Cramarossa, Francesco and De Benedictis, Santolo and Ferraro, Giovanni. *Journal of Applied Physics*, 52, 1259-1265 (1981), DOI:http://dx.doi.org/10.1063/1.329748.
- (15) M. J. Vasile and F. A. Stevie, *Electrochem. Soc. Extend Abstr.* 81-2, 613 (1981).
- (16) M. J. Vasile, *Journal of Applied Physics*, 51, 2510 (1980).
- (17) R. Heinecke, Solid State Electron. 18, 1146 (1975).
- (18) R. Heinecke, *Solid State Electron*. 19, 1039 (1976).
- (19) Daniel L. Flamm, Vincent M. Donnelly, and John A. Mucha. J. Appl. Phys. 52, 3633 (1981).
- (20) C.I. M. Beenakker, J. H. J. van Dommelen, and J. Dieleman, *Electrochemical Society*, Vol. 80-1 St. Louis, May, 1980, p. 330; R. G. Frieser and C. J. Mogab, eds., *Electrochemical Society*, Vol. 81-1 New Jersey, 1981, p 302.
- (21) Daniel L. Flamm, and Vincent M. Donelly, <u>Plasma Chemistry and Plasma</u> <u>Processing</u> Vol 1, Issue 4, pp 317-363 (Dec 1981).
- (22) E. P. G. T. van de Ven, P. A. Zijlstra, and R. Heinecke, CVD Proj. RP7-78, Annual Report, Std. Telecom. Lab. Ltd., Harlow, Essex (1973).
- (23) R. Heinecke, *Solid State Electron* **18**, 1146 (1975).
- (24) R. Heinecke, *Solid State Electron* 19, 1039 (1976).
- (25) S. Matsuo, J. Vac. Sci. Technol. 17, 587 (1980).
- (26) Y. Kurogi, M. Tajima, K. Mori, and K. Sugibuchi, *Electrochem. Soc. Extended*

Abstr. 77-2 (1977).

- (27) S. Muramoto, T. Hosoya, and S. Matsu, *IEEE IEDM Tech. Digest*, p. 185 (1978).
- (28) S. Matsuo, Jpn. J. Appl. Phys. 17, 235 (1978).
- (29) L. M. Ephrath, J. Electrochem. Soc. 126, 1419 (1979) and H. Komiya, H. Toyoda, and H. Itakura, *Electrochem. Soc.*, Extended Abstr. 79-1 (1979).
- (30) O. Joubert; M. Darnon; G. Cunge; E. Pargon; D. Thibault; C. Petit-Etienne; L. Vallier; N. Posseme; P. Bodart; L. Azarnouche; R. Blanc; M. Haas; M. Brihoum; S. Banna; T. Lil, *SPIE* 8328, 83280D (2012).
- (31) Y. Iijima, Y. Ishikawa, C. Yang, M. Chang, and H. Okano, *Jpn. J. Appl. Phys.*,
 Part 1 36, 5498–5501 (1997).
- (32) L. L. Chen, L. D. Xu, D. X. Li, and B. Lin, *Microelectron*. Eng. 86(11), 2354
 2357 (2009).
- (33) C.K. Park, H.T. Kim, C.H. Lee, N.E.Lee, H.Mok *Microelectron*. Eng., 85 (2008),p. 375.
- (34) B. E. E. Kastenmeier, P. J. Matsuo, and G. S. Oehrlein. *Journal of Vacuum Sciences Technologies*. A 17 (6), (1999).
- (35) T.E.F.M. Standaert, C. Hedlund, E.A. Joseph, G.S. Oehrlein, T.J. Daltone, J. Vac. Sci. Technol. A 22 (2004) 53.
- N.R. Rueger, J.J. Beulens, M. Schaepkens, M.F. Doemling, J.M. Mirza, T.E.F.M.
 Standaert, G.S. Oehrlein, J. Vac. Sci. Technol. A 15 (1997) 1881.
- (37) Wang, C. and Donnelly, V. M., Journal of Vacuum Science & Technology B, 23, 547-553 (2005), DOI:http://dx.doi.org/10.1116/1.1875292.
- (38) Pelhos, K. and Donnelly, V. M. and Kornblit, A. and Green, M. L. and Van

Dover, R. B. and Manchanda, L. and Hu, Y. and Morris, M. and Bower, E., *Journal of Vacuum Science & Technology A*, 19, 1361-1366 (2001), DOI:http://dx.doi.org/10.1116/1.1349721.

- (39) M. Matsui, T. Tatsumi, M. Sekine, J. Vac. Sci. Technol. A 19 (2001).
- (40) Karakas, Erdinc; Donnelly, Vincent M.; Economou, Demetre J., *Applied Physics Letters*, vol.102, no.3, pp.034107,034107-4, Jan 2013 doi: 10.1063/1.4789435.
- (41) Erdinc Karakas, Vincent M. Donnelly, and Demetre J. Economou., J. Applied Physics, vol 113, 000000 (2013).
- (42) Qiaowei Lou, Sanbir Kaler, Vincent M. Donnelly, and Demetre J. Economou. To be published.
- (43) Seah, M. P., and W. A. Dench. Surface and Interface Analysis 1.1 (1979): 2-11.
- (44) S. Wolf, R. Tauber., <u>Silicon Processing for the VLSI Era</u>. (Lattice Press, Sunset Beach, California, 1986.)
- (45) Cabrera N and Mott N F 1949 Rep. Prog. Phys. 12 163-84.
- (46) K. Koshino, J. Matsuo, and M. Nakamura, *Jpn. J. Appl. Phys.*, Part 1 32, 3063 (1993).
- (47) T. Morimoto, Jpn. J. Appl. Phys., Part 1 32, 1253 (1993).
- (48) K. Kim, M. H. An, Y. G. Shin, M. S. Suh, C. J. Youn, Y. H. Lee, K. B. Lee, and H. J. Lee, *J. Vac. Sci. Technol.* B 14, 2667 (1996).
- (49) A. Dolique and A. H. Reader, J. Non-Cryst. Solids 187, 29 (1995).