APPARENCY OF PIEISICAL DISABILITY AS REIATED TO SOCIAL RESPONSE

A THESIS
Presented to

University of Houston

In Partial Fulfillment

of the Requirements for the Degree
Master of Science
by
Billy Van Jones
May 1972

620754

APPARENCY OF PHYSICAL DISABILITY AS RELATED TO SOCIAL RESPONSE

An Abstract of a Thesis

Presented to the Faculty of the Department of Psychology University of Houston

In Partial Fulfis.ment of the Requirements for the Degree
Master of Science

by
Billy Van Jones

May 1972

ABSTRACT

The relationship between apparency of physical disability and the reaction $0 \dot{i}$ disabled $\underline{S} s$ to social contact was investigated by the performances of $\underline{S} s$ on a binocular rivalry task.

The stimuli of the binocular rivairy test presented photographs depicting a smiling face and a scowling face simultancously, one to each eye and simulating eye-contact with $\underline{S} s$. It was assumed that $\underline{S} s$ would achieve binocular resolition by perceiving in accord wia: heir expectations of social reactions toward self. It was predicted that visibly disabled $\underline{S} s$ would rate the fused stimulus as significantly more unpleasant then would nonvisibly disabled $\underline{S} s$, due to visioly disabled $\underline{S} s^{\prime}$ anticipating social rejection more than $\underline{S} s$ with a nonvisible physical loss. Anticipation of social rejection results from our culture's high value for physical attractiveress and àjility. The hypothesis was not confirmed.

The nonsignificant results were explained as due, in part, to the possible different effects of an emotional disability as compared to a physical disability. In addition, the sample was not severely disabled physically. A subsample of quadriplegics suggested confirmation of the hypothesis when $\underline{S} s$ were definitely and obviously disabled.

Since the Texas Institute for Rehabilitation and Research had available information on each \underline{S}, a secondary hypotiesis was that there
would be a significant relationship between $\underline{S} s^{\prime}$ background data and $\underline{S} s^{\prime}$ performances on the binocular rivalry task. Again, the relationship was not found. The nonsignificant findings were discussed in terms of the Ss' comparison levels.

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION 1
Hypotheses 8
II. METHOD 9
Subjects 9
Instruments and Test Equipment 10
Binocular Rivalry test 10
Graphic scale of pleasantness of faces 13
Graphic rating of apparency of disability 15
Background measures 15
Personaiity data 16
Standardization of test stimuli 20
Construction of external apparency scales 21
Procedure 22
Binocular riva'ry test 22
III. RESULTS 25
Success of procedure 25
Pattern of analysis 25
Results of analysis 26
Reliability of task 26
Consistency of ratings 26
Tenability of primary hypothesis 29
Tenability of secondary hypothesis 31
Findings for the total sample 33
Findings for the physically disabled subsample 33
IV. DISCUSSION 53
V. SUMMARY 59
BIBLIOGRAPHY 62
APPENDIX A: Graphic Scale of Pleasantness of Faces 66
APPENDIX B: \underline{S} Scale of Apparency of Disability 68
APPENDIXC: E Scale of Apparency of Disability 70
APPENDİX D: Reliability of Facic̄ Expressiors 72
APPENDIX E: Standard for External Ratings 75
APPENDIX F: Raw Data of All Measures 77

LLST OF TABLES

TABLE PAGE

1. Frequency and Percentage of Characteristics of Ss. 11
2. Order of Presentation of Binocular Rivalry Test Stimuli 14
3. List of Coded Variables 17
4. Description of 16 PF Factors 19
5. Analysis of Apparency Ratings 27
万. Total Ratings of Visible and Nonvisible Groups 30
6. Correlation Matrix of Quadriplegic Ss 32
7. Analysis of Demographic Data (Total Sampie) 34
8. Analysis of Socio-Economic Data (Total Sample) 36
9. Analysis of WAIS Data (Total Sample) 38
10. Analysis of 16 PF Data (Total Sample) 40
11. Anälysis of OII Data (Total Sample) 42
12. Analysis of Demographic Data (Physically Disabled Sample) 44
13. Analysis of Socio-Economic Data (Physically Disabled Sample) 40
14. Analysis of WAIS Data (Physically Disabled Sample) 48
15. Analysis of 16 PF Data (Physically Disabled Sample) 50
16. Analysis of OII Data (Physically Disableả Sampie) 52

CHAPTER I

INTRODUCTION

When disparate stimuli are presented to the ti. ρ eyes, the visual system ordinarily resolves the disparity into a single percept. Early studies of binocular resolution primarily investigated the effects of formal stimulus properties on what is seen under conflicting conditions. Since formal stimulus properties refer to the stimulus determination of perception, most work used abstract figures, circles, squares, colored patches, discrepant lines and the like. Consequently, the principles of binocular fusion were elaborated on the basis of studies employing such abstract forms. A theory of perception was advanced to account for the single percept in terms of sensory organization independent of content. Content refers to selectivity in perception determined primarily by the positive and negative values of a person, his motivational structure, and the attitudes that he hās learned through past experience. Little attention, if any, was given to the content of the discrepant patterns as a possible source of influence lipon binocular resolution (Woodworth, 1938; Vernon, 1952). In his reference to an attentional theory of binocular rivalry, Helmholtz (1925) almost considerec the influence of content. Helminoliz mentioned the possible role of the interest-character of the objects. Similarly, Kohler (1929) noted that objects with various shapes might acquire meanings. Kohler
considered the evidence for the aliomatic effect cf past experience upon perception as only speculative.

Later experiments were performed to test the theory of the automatic effect of past experience upon subsequent perception. Engel (1956) demonstrated that the meaningful content of stimuli plays a vital role in binocular resolution. Hastorf and Myro (1958) confirmed the results of Engel's experiment under conditions proposed to exclude as much as possible error in data reporting. Subsequent studies demonstrated cultural and individual differences in stereoscopic perception (Bagby, 1957; Beloff and Beloff, 1959; Davis, 1959; Van de Castle, 1960). Thus, it appears that the mearingful contert of stimuli plays a significant role in the organization of experience.

The subject's affect provides an important parameter in the orginization of perceptual maierial (Murphy, 1956; Tomkins, 1962; Young, 1961). The role of affective responses has been show.i to significantly influence stereoscopic resolution (Jackson and Payne, 1963; Reitz and Jackson, 1904). In these studies, shallowness of affect was found to influence the binocular resolution of "pleasant" and "unpleasant" stereoscopicaily presented stimuli. Another group of studies tested the general rypothesis that specific past experiences, aggression themes, acquired under particuiar coràizions or training, sensitize a person to related content in binocular rivalry (Toch and Schuite, 1961; Shelley and Toch, 1962;

Berg and Toch, 1964). After confirming the hypothesis of the effects of differential socialization of the sexes on the perception of violence, Moore (1966) interpreted the findings of contemporary studies as supportive of the use of the stereoscope as a diagnostic tool.

The phenomena of perceptual vigilance and perceptual defense (Bruner anci Postman, 1951) have been theoretically applied by Kelley, Hastorf, Jones, Thibaut, and Usdane (1960) to the psychological rehabilitation of the physically handicapped. Keliey, et al., suggest that the traumatica'ly cisabled person expects negative social evallátion and negative reaction from normals becuuse of the culture's high regard for attractive physicai appearance and abiilty. Expecting rejection from others, the disabled person is acutely interested in the information processing is affected either by perceptuâl vigilance (elevated sensitiviiy) or by perceptuāl defense (lowered sensitivity).

A study by Koechel (1964) is one of only two works related to the foregoing that is reported in the literature. Koechel reasoned that individLials whose traumatic physical deviations are obvious upon sight experience intense discomfort due to the conflict between physical status and the cultural esteem of physical attractiveness. Individuais with a hidden loss, not intensely threatened by social rejection, are not discomfited by such interactions or interpersonal visual contact. Using fifteen lower-limb male amputees (visioly disajied) and fifteen male cardiovascular patients
(nonvisibly disabled), Koechel tachistoscopicaily presented prints of famous paintings to test for differential reactions to the paintings by the two groups. The finding was that amputees, in comparison to cardiacs, responded to the pictures containing persons with either heightened or lowered perceptual sensitivity. Koechel interpreted the finding within the framework of Kelley, et al. (1960). The stimuli, representative of the threat of social rejection by normals, resulted in alteration of perceptual sensitivy by the visibly disabled. Since the threat was not present for the nonvisibly disabled, this group reacted more uniformly and at less extreme levels of perceptual intensity.

Capitalizing on the Koechel study, Zara (1969) performed an experiment to reduce the plausibility of other variables as explanations of Kocchel's findings. Zara chose a forced-choice perceptual test situation presented stereoscopically to achieve an equivocal situation resolved according to $\underline{S} s^{\prime}$ expectations. With all optic variables controlled, Zara believed that the emotionality of expected social rejection after traumatic physical loss was sufficiently intense to negate natural eye superiority. First, Zara conducted a pilot experiment which confirmed his hypothesis that S s with spinal cord injury would report more unpleasant perceptions than cardiacs when viewing smiling and scowling caricatures of the human face simultaneously through a stereoscope. By combining the pilot study with a follow-up study, Zara comparad the performance of 25 visibly disaibled

Ss (spinal cord injury) with that of 25 nonvisibly disabled Ss (cardiacs) on the Embedded Figures Test Form V, a binocular rivalry task, and the In-ternal-External Scale. The twelve stimuli of the binoculur rivalry test consisted of stereograms or caricatures depicting a smiling face and a scowling face presented simultaneousiy, one to each eye, simulating eye contact. The \underline{S} was told that ine was participating in a test to assess his visual acuity. As the \underline{S} looked into the viewer, visual clarity was achieved by E adjusting a dotted line stereogram along the stereoscope viewing arm until S reported seeing a ciear cross mace of dots. Similarly, three stereograms of broken circles were individually adjusted until \underline{S} was able to designate, verbally and accurately, the position of the break in each of the circles. The cardholder remained in the adjusted position throughout presentation of the stimuli. \underline{S} was simply asked to "tell me something about what you see, and do not just ident:iy it. Tell me some important thing about it. . . . answer as quickly as you can" (Zara, 1969, p. 46). As soon as \underline{S} indicated perception of either a "smiling or nonsmiling face" the stimulus card was removed. The number of smiling faces reported and the response time were recorded. To control for possible fatigue effects, a 30-second ineerval was observed between each stereogram presentation. Also, each cardiac \underline{S} received the same order of presentation as the paraplegic \underline{S} witin whom he was matched. Through randomization, presentation of the smiling or scowling face occurred to the right eye and to the left eye ecually as often in the
first six stereogram presentations as in the last six presentaticns. After each \underline{S} was presented the complete set of twelve stereograms, a simple test for eye dominance was conducted.

The present study is primarily concerned with the relationship between sociāi perception and visibility of handicap, as confirmed by Koechel and Zara, and more specifically, an operational replication of Zara's study. Only slight modifications were made in the measurement and sampling procedures, in order to increase the precision of measurement. Koechel used prints of famous paintings with and without people in their subject matter. Zara used sketches or smiling and scowling caricatures oi the human face. However, both Koechel and Zara generalized their findings with abstract stimuli to the everyday lives of disabled $\underline{S} s$. By using actual photographs of the human faces, the preser: stuc'y attempted to simulate the actual situation more directly. With this refinement, verification of Zara's work would eahance the practical applications for the clinical psychologist in rehabilitation work and his clinical or psychotherapeutic approach to emotional reactions following physical loss.

A secondaiy concern of the present study is the relationship between $\underline{S} s^{\prime}$ living conditions ar.i their performances on the binocular rivalry task. Keliey, et al. (1900) stãed that a marked change in a person's life, such as occurs with a traumatic disability, has profound corse=uences. Their concern was with cases involving losses, such as losses in income,
in experienced rewards, in means of contributing to one's welfare, and in sudden unemployment. Since the Texas Institute for Renabilitation and Research (T.I.R.R.) records contain demographic and socio-economic data on each \underline{S}, it was possible to investigate the importance of this information to the present study.

Also, the T.I.R.R. records contain two measures that were affected by the $\underline{S} s^{\prime}$ general anxiety: the 16 PF personality test anci the Wechsler Adult Intelligence Scale. Physical disabilities suggest a generalized effect upon personality, according to the authors of the lo PF (Cattell, Eber and Tatsuoke, 1970). For example, the effect is manifested in some damage to the typical development of the self-sentiment and in raised tension from frustration. Defensively, physical disabilities produce raised shrewdness and selí concern. Commenting on the subscales of the WAIS, testors have noted that unusually low scores suggest anxiety and poor interpersonal relations as the principle mechanisms impairing performance (Rapaport, et ai., 1945; Gurvitz, 1951; Ogdon, 1969). A third test, the Occupational Interest Inventory ($\mathrm{Cin}_{\mathrm{I}}$), provides informātion on the $\underline{S} s^{\prime}$ preferences for people-related occupations (Lee and Thorpe, i950).

The theory of Killey, et al. (ivo0) states that marked changes in a person's life have profound consequences and tiat some form of anxiety underlies the paysically disablud person's reaction to social
contact. However, it was recognized that the T.I.R.R. records do not contain information about $\underline{S} s^{\prime}$ living conditions and personality prior to the disability. Theiafore, the only interest is determining the presence or absence of a significant relationship between $\underline{S} s^{\prime}$ present living conditions and personality and Ss' facial expression ratings.

The primary task set for this study was to demonstrate a relationship between apparency of physical cisability and expectations of social reactions toward self, as measured by viewing smiling and scowling faces stereoscopically. The secondary task was to demcistrate a reli=ionship between the measured expectations of social reactions toward self and the $\underline{S} s^{\prime}$ living conuitions and personality.

Hypotheses

1. When presented with paired smiling/scowling facial expressions in a binocuiar rivalry situation, $\underline{S} s$ with more visible physical disabilities will rate the fused stimuli as significantly more unpleasant than will $\underline{S} s$ with less apparent disabilities.
2. Ss rating themselves as more visibly cisabled will rate the stimuli of the binocular rivalry task significantiy more unpleasant than will $\underline{S} s$ who rate themselves as less visibly disabled.
3. $\underline{S}^{\prime} \mathbf{s}^{\prime}$ living conciaions and personality will be signizicantly related to their performances on the binocular rivalry task.

CHAPTER II

METHOD

Subjects
Ss were fifty outpatients at tiie Texas Institute for Rehabilitation and Research who received scheduled se:vices in the vocational unit during the months of June through October, 1S71. Brcadiy, the \underline{S} s could be divided among two diagnostic categories: emotional diagnosis ($n=36$) and physical diagnosis ($n=14$). The overwhelming majority of $\underline{S} s$ were referred to the vocacional unit by the State Division of Vocational Rehabilitation. Ages ranged fom eighteen years to sixty years, with a mean age of 29.4 years. Meen age of the emotional group was 28.3 years while the mean age of the disablec group was 28.1. Included in the sample were thirty males and twenty females, of whom thirty-two were white and eighteen were nonwhite. In the disabled group were nine males and five females, Of whom ten were white and four were norwhite. Fine aijjority of the \underline{S} were single ($n=32$), however, all marital statuses were represented. Time since onset of disability ranged from less than two years to more than forty years, with the cisabled group generaiiy incapaciaむtê a longer time tiān the emotional group. Time since last hospitalization ranged from presently hospitalized to five years or moie; with an average of less than one year. None of the $\underline{S} s$ was restricted to bed, on catheter, or in treatment for decubiti o: otiner ailments.

Selection of $S s$ in the sample depended on the availabinity of clients in the vocational unit. Table 1 presents the primary demographic date for the total sample.

Instruments and Test Equipnent

Birocular rivalry test. The viewing instrument used in the binocular rivalry task was an amblyoscope or stereoscope contained in a box covered by black cloth. On each side of the box or each lens was a light bulb with a device attached to the outside of the box which regulated the illumination. White cardboard was usec as a backdrop for the light to prevent uneven giare fiom the exposed bu'os. A rheostat was used to regulate the flow oi electricity to tne ambioscope, thus controlling the lighting. Iilumination control, glare prevention, and control of lighting or viewing time were kept constant for all trials.

The binocular rivalry test stimuli consisted of twenty-three pairs oi color slicies. Each slide measured $1-3 / 8^{\prime \prime} \times 15 / 16^{\prime \prime}$ anà was mounted in an appropriate cardholder to allow easy insertion anto the ambiyoscope. One pair of slides contained a horizontal and a vertical bar slide to achieve binocular fusion. Two additioral pairs of slides consisted of identical presentations to both eyes, the same person smiling or the sams person scowling. Thase two pairs of photograpis (one male, one Eamaje; were "lie cards," or measures of reliability. The remaining ten pairs of sidies contained the test slides, equally distributed into five maile and five female

Frequency anci Percentage of Characteristics of S

$\begin{aligned} & \text { Character- } \\ & \text { istics } \\ & \hline \end{aligned}$	Emotional Diagnosis		Physical Diagnosis		Total	
	N	\%	i.	\%	N	\%
Ace						
18-40 years	30	60	10	20	2.0	80
40 years +	6	12	4	8	10	20
Sex						
Màle	21	42	9	18	30	60
Female	15	30	5	10	20	40
Race						
White	22	44	10	20	32	64
Nonwhite	14	28	4	8	18	30
Marital status						
Sangle	23	46	9	18	32	63
Married	5	10	2	4	7	14
Divorced	4	8	1	2	5	10
Separated	4	8	0	0	4	8
Widow	0	0	2	4	2	4

Time Since Onset of Disab.

Congenital	5	10	4	8	9	$1 E$
Less than 2 yr.	9	18	1	2	10	20
$3-5 \mathrm{yr}$.	7	14	0	0	7	14
$6-10 \mathrm{yr}$.	7	14	1	2	8	16
$11-20 \mathrm{yr}$.	5	10	5	10	10	20
$21-30 \mathrm{yr}$.	1	2	2	-	3	6
$40 \mathrm{yr} .+$	0	0	1	0	1	2
No Data	2	4	0	0	2	4

$\begin{gathered} \text { Character- } \\ \text { istics } \\ \hline \end{gathered}$	Emotional Diagnosis		Physical Diagnosis		Total	
	N	\%	N	\%	N	\%
Time since last hospita':zation						
Presently hosp.	4	3	0	0	4	8
Less than 1 yr .	15	30	3	6	18	36
1-2 yr.	3	6	4	8	7	14
3-4 yr.	6	12	2	4	8	16
$5 \mathrm{yr} .+$	4	8	:	2	5	10
No Data	4	8	4	8	8	16
Referral Source						
*T.R.C.	30	60	12	24	42	84
T.I.R.R.	5	- 0	2	4	7	14
Community agency	0	0	0	0	0	0
Self	1	2	0	0	1	2
Other	0	0	0	0	0	0
T.I.R.R. Stetus						
In Patient	0	0	0	0	0	0
Out Patient	30	72	14	28	50	100

* Texas Rehabilitation Commission (T.R.C.)

Texas institute of Rehabilitation and Research (‥I.R.R.)
targets. The ten pairs were presented twice, with the expression presented to an eye reversed when the sar.e target was shown for the second time. Each trial in the test presented the same incividual twice, once with smiling facial expressions and once with scowling facial expressions.

The sequence by which each eye was presented the smiling or scowling expression is presented in Table 2. Presentation of the smiling or scowling expression occured to the right eye equally as oiten as to the left eye. The sequence of the male-female target presentations is also displayed in Table 2. The order of presentations was determined by a random number table and was constant for all \underline{S} s.

Graphic sca: = leasantness of faces. The measurement used was a rine-point scale of the pleasantness-unpleasantness of each facial expression. One was maximum possible pleasantness; nine was maximum possible unpleasariness; three was somewhat pleasant; five was neither pleasant nor unpieasant; seven was somewhat unpleasant (See Appendix A).

For each S, the ratings of all twenty trials were summed to provice a Tcial Rating, with the maximum possible range from twenty to 180 . A score of twenty indicated a "most pleasan:" ratir.g; a score of 100 incicated a neutral rating; and a score of 180 indicated a "most unpleasant" rating. Since there were ten female target trials ar.c ten raja target trials. the maximum possible range for each sex target was from ten to ninety.

TABLE 2

Order of Presentation of Einocular Rivalry Test Stimuli

Trials	Eye Lef: Right		Sex of Target	Trials	Ey: Left Right	
1	$(+)$	(+)	$\mathrm{F} \neq \mathrm{M}$	12	(-)	(-)
2	+	-	$F=F$	13	-	+
3	$+$	-	$\mathrm{M}=\mathrm{M}$	14	-	+
4	-	$+$	$F=F$	15	+	-
5	$+$	-	$\mathrm{M}=\mathrm{M}$	16	-	+
6	-	+	$\mathrm{M}=\mathrm{M}$	17	+	-
7	+	-	$F=F$	18	-	+
8	-	+	$F=F$	$: 9$	+	-
9	$+$	-	$F=F$	20	-	+
10	-	+	$M=M$	21	+	-
11	-	+	$\mathrm{Mi}=\mathrm{M}$	22	+	-

Note.- Parenthesis indicates "lie card," no binocuiar rivalry.
$F=$ female target
$\mathrm{M}_{\text {. }}=$ male target
= indicates the same target in separcua trials

+ indicates smiling facial expression
- indicates scowling iacial expression.
"Lie Cards" were not included in the computation of scores.
Graphic scales of apparency oi disahility. The scale was a ninepoint measurement of $\underline{S} s^{\prime}$ ratings of the visibility oit their physical hanciicap or p:oblem. The scale ran from one, which was "most aware," to nine, which wis "most unaware." (Appendix B). For the external ratings three independent judges rated the obviousness of $\underline{S} s^{\prime}$ disability on a similar nine-point scale (Appendix C). This scale ran from one, which was "most u..aware," to nine, which was "most aware." In the analysis the extemal ratings were reversed in order that the internal ratings and the external ratirgs were in the same direction. The resuit was that the expected sign of correlation coefficients Detween these ratings and the Total Rating was minus or negative. For example, an apparency rating of one (most aware; should correlate negatively with a Total Rating of 180 (maximum possible unpleasantness) and an apparency rating of nine (most unaware) should correlate negatively with a Total Rating of twenty (maximum possible pleasantness).

Background noasures. Information about each \underline{S} was taken from the records of T.I.R.R. and included age, sex, diagnosis onset, and various socio-economic indices, eg. gracia level, income, income source, and empioyment history. Since not all oi the data were orciaial, a coding procedure was necessary before includiry the data in rec:ession equations.
"Dunmy vāriable coding" was ūilizeć (Cohen, 1968). Dumni; variable
coding is an arbitrary assigning of weights to data that differ cualitatively instead of quantitatively. Table 3 shows the ten variables that were coded in this manner. In all cases, the condition considored ti.e most dependent upon otiter people was ari_urarily assigned the number one, whereas, the most inclependent condition was assic.ed the number 0 .

Personality data. The T.I.R.R. records aiso contained three other measures on each S: the Sixteen PF, the WAIS, and the OII. Six factors of the Sixteen PF were usec in the study: C, $\mathrm{E}, \mathrm{H}, \mathrm{O}, \mathrm{Q}_{3}$, and Q_{4}. Five of these primaries are measures of a second-stratum factor called "Adjustment versus Anxiety," while Factor E is a measure of "Subduedness versus Independence." Tajle 4 gives a brief description of each factor. The iollowing WAIS subscaies were used in this study: Full Scale IQ, Performance -2 , Verbal IQ, Picture Arrangement, Picture Completicn, and Block Designs. The first three scales are general measures of ineeiligence. The Picture Anangement Test measures the \underline{S}^{\prime} 's ability to put disarmanged pictures in the dight orcer to make a sensible story. Simiarly, in tise Picture Complet.on Fest, the \underline{S} is required to discover and anme the missing parts of an incompletely drawn picture. The final test, Eiock Desic: \therefore measures the ability to analyze wholes into parts or the aỉlity to perceive patterns.

Tia CII is an inventciy in which preferences are expresseci between 240 paired items. The afomation cintained consists of the \underline{S} 's

TMBLE 3

List of Coded Variables

Variable

Living Arrangement

1. Alone 0
2. With parents1
3. With spouse and/or children 0
4. With relatives 1
5. With nonrelatives 1
6. Nursing home 1
7. Dormitory
Primary Source of Income
8. None1
9. Personal employment earnings 0
10. Social security benêits 1
11. Veteran benefits 1
12. Pensions 1
13. Public weliare assistarce 1
14. Workman's compensation (or other insurance) 1
15. Family and/or friends 1
16. Savings-investment 0
17. Child support 1
18. Texas Rehabilitation Commission 1
19. Other 1
20. Data not available i
Type of Disability
21. Physical disaj:lity 1
22. Emotional disajility 0
Primary Mob:": : E Y Status0
23. Amoulates with impairment 1
24. Uses standard wheelchair 1
25. Uses electric wheelchair 1
monsporta-ion
26. Drives self 0
27. Uies puibic conveyã:.ce 0
28. Depends on relatives or Ariends 1
29. Other 1
Time Since Iast Hospitalization
30. Never hospitalized 0
31. Presently hospitalized 1
32. Less than 1 year 1
33. 1-2 years 0
34. 3-4 years 0
35. 5 years or more 0
36. Daia not available 0
Onset ć Disab:lity
37. Congenitā 0
38. Less than 2 years 1
39. 3-5 years 1
40. 6 - 10 years 0
41. 11 - 20 years 0
42. 2: - 30 years 0
43. 31 - 40 years 0
44. Niore than 40 years 0
45. Data not available 0
Loser Extremity
46. No impairment 0
47. One extremity impaired 1.
48. Both exiremities impaired 1
Temporary Employment Experience
49. Yes 0
50. No 1
Permanent Employment Experience
51. Yes 0
52. No 1

TABLE 4
Dascription of 16 PF Factors

Factor	Low Sten Score Descridtion	High Sten Score Description
C	Affected by foolings, omotio.ally less stable, easily upset, changeable: Lower Ego Surength *	Emotionally stadle, matu゙a, faces reality, calm: Higher Ego Strength
E	Humble, mild, easily led, cocile, accommodating: Submissiveness	Assertive, aggressive, con..petitive, stubborn: Eominance
H	Shy, timid, threat-sensitive, Threctica	Venturesom, uninhibited, Parmia
0	Seli-assured, piacià, secure, complacent, serene: Untroubleci Adecuacy	Ap:chensive, selireapprcaching, insecure, worrying, troubled: Guilt-Proneness
Q_{3}	```Uncisc:pinned self- conflict: -ow Self-Sent:ment attegration```	Controlloci: High Strength of Self-Sentiment
Q_{i}	Relaxed, tranquil, unfustrated: Iow Ergic Tension	Tense, frustrated, overwrought: Hich E:gic Tersion

* Zactor Name.
expression of́ preference for activities usually asscciated with a civen vocation. The interest areas are: Social-Personal Contact, Ni:ural, Niccharical, Business, Artistic, Scientific, Verbal, Complitatici, and Varipiolation.

Stancardization of tost stimuli. A pilot study was conductec by Schmidt (1971) using ien males and twelve fumales, ail normal college stucents. Schmidt was interesteci in tio relationshiy between depression as measured by the Self-Rating Depression Scale (SニS) and the frequoncy of negative perceptions. Aithough Schmicit did not sind a relationship between SJS score anA percention, possiby due to her sample not reflecting extreme sccres on the SDS scale, tie stuiy ciamonstrated the reliability of tie present measurement tools. Schmidt's procedure was used in the prosent study.

Compuiation of anaiysis of veriance Eor Schmida's iwenty-iwo Ss reveale؛ that the "lie cards" were accurately discrimineted. The grard mean of tudgments was 4.55, which is identical to the mideoint of the scale. Two trials of the same target either smiling or scowing each time yielded an insignificant F-value. Female targets were perceived as signizicantly more pleasant than male targets ($\mathrm{y}<\mathrm{L} .01$) . Neitier eya comi: Ence ror sex of \underline{S} was significent.
\therefore class in introductory psyciolosy demonswatec accitional sup-
 $*$ were compuited for each of the ten related toial pairs of the ris:t eye
resentation (2-13, 3-14, etc.). Each related trial pair consisted of the same target both smiling and scowling with the order of the second presentation the reversal of the first. Calculation of t-staistics on the reans of sampie variables A and B, where A and 3 were the related trial pairs, yielciec sig:ificant t-values for each pair of related trials (p<.01). Ineronatarions of these daia indicated that persons accurately discrimirated ine smiling faces or expressions from the scowling expressions.

Conswuction of externè appere: 2 y scales. Siller (1967) tested a large group of nondisableci perzons of both sexes ard varying ages to ciscover their attituies townrd the dizabled. A smaller group, weighted ¿owari aversive đititudes, was seiected for intensive interviews to explore the orisin and nature of their atitucies. Four of Siller's fincings are espacia:ly perinent to this stucy. (1) There is a strong tendency to asc:ibe resauive and evil perscnal qualities to those with cistoried bocies. (2) Grouping cisabilities in terms of the way others tend to perceive them rainer than by impairment may be preferrea over the conveniona: methods. (3) Esthetic :ejection is the most frecuently reported bisis for aversive feeling. (4) Aititudes toward blinciness, deafness, and amputation are lisually tiae most fuvorable, while those toward skin disorders, jody deformity, cerebral palsy, and muscular dystrophy are the least favorable. Keeping in mind Siller's findings, a psychology class was asked to rate various indicators of disability on a nine-point scale. The final scaie
was constructed by preserving as much as possible the order of the ciuss ratings while being mindful of Silier's tindings (Appendix E). mís scale was the standard used by extornal juciges in rating the apparency of $\mathrm{S}^{\prime \prime}$ disabilities.

Procedure

The 16 PF , the WAIS, and the OII data were aiready available at T.I.R.R. Tha binocular rivalry task was administered to $\underline{S} s$ according to the availability of clients at the vocational unit of T.I.R. $\overline{\text {. }}$.

Binocular Eivalry Test. In administering tie binocular rivalry test, Zara's procedure was adopted with oniy slight modifications. Each S was told that he was being givon an eye test to determine his visual acuity. Visual clarity was established with \underline{S} loo:ing into the viewer and E acjusting the horizontal and vertical bar stereograms until \underline{S} reported seeing a "cross." No \underline{S} failed to see the horizontal and vertical bars cross. The amblyoscope was leit in this position throughout presentation of the slides. Iilumination was adjusted by \underline{E} brighteniag and dimming the licht buibs until the \underline{S} reported equivalent illumination to both eyes. Overall, ine illumination did not vary much from one \underline{S} to another.

Afer visual clarity and illumination equivalence were achieved, S pulle幺 away from the ambiyoscope and was instructed:

You are taking part in a visual acuity test intc:ested in yourirst impression of facial expressions, not theis attran...veness. I will put
colored slides into a cardholcier one by one. Keep both eyes open and do not tai: \mathfrak{a} your eyes away from the ienses. Keep your head as still as possible. Mark your impression by rating each face on a nine-point scale. Here is a copy of the scale: one is maximum possible pleasantness; rine is maximum possible unponnsantness; three is somowhat plcasant; flve ia nether ploasant nor unploasant; sevon is somewhat unpleasant. I will tell you when to look into the lenses. When I turn off the light, stop looking into the lenses. Then rate the face by circling your impression.

When E was satisfiec that \underline{S} fuily understood the directions, the trial pairs were inserted one àt a time into the cardholder of the amblyoscope. S was then aiowen five seconds to view each trial pair. The set of slides was removed when the light was turned off. The response to each trial pair was recorded by \underline{S}. There was a thirty-second inteival between triai presentations to conizol for possible iatigue effects.

Aiter each \underline{S} had been presented the complece set of twenty-two trials, he was asked to rate the apparency of his handicap. The following was read to the \underline{S} :
(1) Preiace: All of us have physical problems from time to time. T.is could be anything as minor as flat feet or as major as paraiyzed legs. (2) Problem (S's response to the statement): Name tie one thing wout yourself that you see as a physical problcm or handicap that bothers you most. (3) Apparency of disability (S's response to the statement): The physical problem is sometring that others are aware of never-to-always on a nine-point scale.

After E was satisfied that \underline{S} understood the instructions, \underline{S} recorded nis response. While \underline{S} recorded his response, \underline{E} inciepenciently recorcied kis rating of the apparency of the S's disability. Two other judges indeperdently rated the apparency of \underline{S} 's disability.

Next, a simple iest for eye dominance was corducted. This consisted of having \underline{S} point his fc: singer at the intersec.ion of the walls near the ceiling. With his arm completely exteried and looking cown his arm and forefinger, \underline{S} fixated at the point with both eyes open. Without moving the arm or finger, \underline{S} then closed his leit eye and reported if the finger still pointed at the intersection of the walis, as with both eyes open. S then opened his left eye and closed his right eye, also reporting where the mari was seen. The open eye winich visually retairod the original ixx x ation was considered the nominnnt eye. This result was recorded for each S. Each \underline{S} reported retaining the original fixation with one eye and not the other.

CHAPTER III

RESULTS

Success of Procedure

The success of the procodural routine was indicateu by the ease and smootr.ness of the ciaca collecion. None of the \underline{S} s ierminated the experimer.t prematurely. Neither did ary \underline{S} complain about eye strain, fatigue, or similar ciscomforts. Although ail ss readily understood the instructions, some \underline{S} s experienced cifficuity in idertifying the physical problem that bothered them host. Hewever, afer a moment of thought, these $\underline{S} s$ were able to identify the physical problem (Appendix F). Ss appeared interested and coc.jerative throughout the resting.

Pattern of Aralyses

The raw data for each of the fitiy $\underline{S} s$ in their indiviuual performances on the binocular rivalry task, the 16 Pr, the WAIS, and the OII are shown in Appendix F. The following analyses were calcuiated for each sci of data: elementary statistics, correlation, regression, multiple reg:ession, árd step-wise reg:ession.

Regression is a technique for obtaining a functional relationship among variabies where the values of one variable can be measured interms of the associated variable. Nultiple regression is similar to regression;
the primary difference is that multiple regression analyzes a relationship between a cepencient variable and a set of inceperment variabies irstead of separate variables. In othur words, y is estimated froi.. multiple predictors.

Step-wise regression is a method to select indejendent variables in the order oi importance anc to enter them in a multiple linear regression model. The criterion of i...portance is based on the reduction of the sum of squares. The inciependent variable which reduces the largest amount of variance in a given step is eriered in the regression. In aralysis of the data, y was always descinated as the Total Rating or criterion and x was labeled the predicior(s) or the value(s) of \underline{S} measures and apparency ratings.

Results of Analyses

Reliability citass. Taide 5 cisplays the reliability of the task stimuli. Scores for the maxe and female targets intercorreiated strongly and positive, indicating a high spit-halif reliability for the measurement. In adèticn, females were rated as more pleasant than were males. This finding is in agreement with the pilot study.

Consistency of ratings. Table 5 also shows the aniysis for the apparency of cisability ratings and the Total Rating. The apparency ratings had high possitive intercorrelations, as woud be expected on the

TABLE 5
Analysis of Apparency Ratings
$=-=-=$ Moans, Stawdard Deviations, and Correlation Matrix of Apparency Ratings and Total Rating

Correlation Matrix of Predictors and Criterion

TABLE 5

Anclysis of Apparency Ratings

basis of reliability C_{f} the scale ($p<.01$). However, the aseement between the external raters was much better than the agreemert of any external rater with $\underline{S} s^{\prime}$ ratargs. The $\underline{S} s$ varied more in their ratirgs than ciid the external raters and $\underline{S} s$ judged their own disabilities as slightiy less apparent than did the external raters.

Tenability of Primary Pyoothesis. Table 5 shows low ronsigniz̈icant correlation coeificients between exterma: raters of apparency of disability and the Total Ratings. Neither cid the $\underline{S} s^{\prime}$ ratings correlate significantiy with the Total Ratings. In other words, the hypothesis was not confirmed: $\underline{S} s$ with more apparent disabil.ties did not rate the fused stimuli as significantly more unpleasart than did $\underline{S} s$ with less apparent disabilities.

The eifect of combining two and three raters is also displayed in Table 5. As was true for the single predictors or raters, multiple predictors were nonsignificant. Also shown is the step-wise regiession analysis. No rater accounted fc: a significant per cent of the variance, as indicated by the F-values and the cumulative R.

Since Zara employed a dichotomized scheme for categorizing Ss as eitner cardiovascuiar or spinal coid patients, in other woris, visible cr nonvisible handicap, t-tests wer: computed for $\underline{S} s$ who werc rated visible or ronvisible on the apparency scale by rater. . Visible and noninvisible were defined for this purpose as ratings of $1-3$ and $7-9$, respectively. Table 6 displays the Total Ratings of these tw sroups. The two

TABLE 6
Total Ratings of Visibie and Nonvisible Groups

$$
\begin{aligned}
\mathrm{T} & =-.713 \\
.05 & =2.021
\end{aligned}
$$

groups dic not differ significantly in their Tctal natirgs. Furthermore, reither group rated the faces as hnpleasar... The mean rating of the nonvisible group was 74.451 and the mean rating of the visitia group was 81.625. The neitral point or midgoint of the Total Rating was 100. Since not more that fourieen \underline{S} s were definitely diagnosed as only physically disabled, ti:a possibility exists that the hypothesis was not confirmed because the sample was not severely disabled physically. Support for this explanation is provided by the correlation matrix of quadriplegics' apparency ratings and Total Ratings (Table 7). All Ss with both extremities impaired were defined as quadriplegics. The correlation coefficient between apparency ratings ard the Total Ratings was -0.799 , statistically significant ($p<.01$) . Not only was the correlation coefficient signiiicant, but the sign of the coefinicient was in the expected direction. At least in the case of a definite and obvious physical disability, the hypothesis was confirmed.

Tenability of secondiry hypothesis. Since the T.I.R.R. records contained background information about each \underline{S}, it was convenient to examine the relationship between these dsta, the apparency ratings, and the Total Ratj::gs for the total sample and the physically disabled subsampat. The hypothesis merely stated that a sigri:sicant relationship exists between $\underline{S} s^{\prime}$ background data and Ss' $^{\prime}$ Totai satincs. The hypothesis was not confirmed.

TABLE 7
Correlation Matrix of Quadriplegics

	Rater 1	Male Target	1.000

```
NOTï:
    df=7 *<.05=.666 **<.01=.798
    + indicates external apparency ratings.
```

Findings for the tota! sample. One set oî background measures was the \underline{S}^{\prime} living condition indices (Tables 8 and 9). A significant relationship was not found between a living condition index and the Total Rating. There was a significant relationship between apparency ratings and two indices: transportation and mobility status ($p<.01$). High apparency Ss were more limited in their locomotion than were low apparency Ss. Other data were Ss' performances on the WAIS, the 16 PF, and the OII (See Tables $10,11,12$, respectively). Again, there was a nonsignificant relationshi. 3 between each $\underline{S} s^{\prime}$ performances on each test and both the apparency ratings anci the Total Rating.

Findincs for the physical'y cisabled subsample. Overall, the same results wera found in the physically disabled subsample. Tables 13 and 14 show that only one living condition index correlated significantly with the Total Rating: maximum salary ($2<.05$). Ss with high salaries rated the facial expression as pleasant. Only one index was significantly related to the apparency ruings, namely transportation ($p<.05$). S s with high apparency ratings were not dependent upon others for transportation.

Tailes 15 and 16 show that there were no significant correlations between either the WAIS performances or the l6PF performacices and the Iotal Rating. The same was true ior the reiationship between these data and apparency ratings. Table 17 shows that only one scaie of the OII correlated significantly with the Total Rating, namely Science (p<.01). Ss interested in Science perceive二 he facial expressions as unpleasant.

TABLE 8

$=1=1=1$ Analysis of Demorranhic Data (Total Samnle)
Mcans, Standard Deviations, and Correlation Matrix of Demographic

* Variables	X	SD	1	2	3	4	5	6	7	8	9.
1. $\mathrm{L} \Lambda$	0.70	0.46									
2. IS	0.84	0.37	. 071								
3. Disab	0.28	0.45	. 019	. 029							
4. Onset	0.70	0.58	-. 038	. 057	. 403 **						
5. MS	0.52	0.51	-. 017	. 236	. 421 **	. 26.5					
6. UE	0.28	0.45	. 117	. 029	. 206	. 248	. $332 *$				
7. Trãn	0.50	0.51	.393**	- . 218	-.356**	-. 244	. 160	. 089			
8. Rl	6.80	2.60	. 017	$-.119$	-. 194	-. 054	-.698**	. 142	$-.3+0$ *		
9. SR	6.18	3.02	. 083	-. 211	-. 008	. 136	-. $384 * *$. 097	-.301*	-.465**	
10. TR	78.02	24.92	-. 028	-. 051	-. 093	. 079	. 033	. 140	-. 040	-. 134	-. 200
		NOTF:	$\mathrm{df}=48$ *	$*=\mathrm{p}<.05$	$73.4 *=$	<.01 $=$					

Correlation Matrix of Predictors and Critorion

Presicto	ritorje	Predictor	riterio	
Single: LV(Λ)	-.028 (df=48 * $<.273$)	Multiple: $\mathrm{A}+\mathrm{B}+\mathrm{C}$. 137	(* < . $05=.373$)
IS (B)	-. 051	$A+B+C+D$. 160	(* < ${ }^{\text {(}}$. $05=.379$)
Dis(C)	-. 093	$A+B+C+D+C$.169	(* < . $05=.412$)
Ons(D)	. 079	$A+B+C+D+E+F$. 222	(*<.05=.440)
MS (E)	. 033	$A+B+C+D+E+F+G$. 222	(* <.05=.464)
UE (F)	. 140	$A+B+C+D+E+F+G+I I$. 199	(* <.05=.504)
$\operatorname{Tr}(\mathrm{G})$	-. 040			
R_{1} (H)	-. 134			
SR (I)	-. 200			

TABLE 8
Analysis of Demographic Data (Total Sample)

* Abbreviations are: LA (living arrangement); IS (income source); Disab (disability); Onset MS (molility status); UE (upper extremity); Tran (transportation mode); R1 (Rater); SR (S Rating); and TR (total rating).

```
Total 10.9
R(Adjusted) = .199(* <.05=.504)
```

TABLE 9
Analysis of Socio-Economic Data (Total Sample)
Means, Standard Deviations, and Correlation Matrix of Socioeconomic

TABLE 9

Criterion and Predictor	\% of Variance		F-Valu	of Variable
Total Rating				
TS		6.2	2.757	($\mathrm{df}=1,42 \mathrm{~F}_{05}=4.03$)
R_{1}		1.9	0.830	$\left(\mathrm{df}=1.41 \mathrm{~F}_{05}=4.03\right.$)
IN		1.6	0.724	($\mathrm{df}=1,40 \mathrm{~F}_{05}=4.08$)
TE		2.2	0.988	($\mathrm{dF}=1,39 \mathrm{~F}_{05}=4.08$)
GL		0.7	0.306	($\mathrm{df}=1,38 \mathrm{~F}_{05}=4.08$)
MS		0.5	0.206	$\left(\mathrm{df}=1,37 \mathrm{~F}_{05}=4.08\right)$
TM		1.5	0.638	($\mathrm{df}=1,36 \mathrm{~F}_{05}=4.08$)
PL		0.2	0.083	($\mathrm{df}=1,35 \mathrm{~F}_{05}=4.08$)
	Total	14.8		
	R (adjusted)	. 133		

*/hblreviations are: In (income); TS (Time Since Last Hospitalization); GL (Grade Level); TE ('lomporary Employment); PT. (Permant Employment); TM (Total Employment); MS (Maximum Salary).

TABLE 10
Analysis of WAIS Data (Total Samplo)

TABLE 10

*Abbrcviations are: FS (Full Scale IQ); VI (Verbal IQ); PI (Picture IQ); PC (Picture Completion); RL (Block Design); PA(Picture Arrangement).

TABLE 11
Analysis of 16 PF Data (Total Samplc)
Means, Standard Deviations, and Correlation Matrix of 16 PF

Correlation Matrix of Predictors and Criterion

$\overline{\text { Predictor }}$	Criterion	Predictor	Criterion
Multiple	$.249(*<.05=.349)$	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}$	$.329(*<.05=.397)$
$\mathrm{R}_{1}+\mathrm{C}$.251	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}+\mathrm{H}$	$.283(*<.05=.445)$
$\mathrm{R}_{1}+\mathrm{E}$.127	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}+\mathrm{H}+\mathrm{O}$	$.348(*<.05=.482$
$\mathrm{R}_{1}+\mathrm{H}$.266	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}+\mathrm{H}+\mathrm{O}+\mathrm{Q}_{3}$	$.380(*<.05=.512)$
$\mathrm{R}_{1}+\mathrm{O}$.048	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}+\mathrm{H}+\mathrm{O}+\mathrm{Q}_{3}+\mathrm{Q}_{4}$	$.345(*<.05=.538)$
$\mathrm{R}_{1}+\mathrm{Q}_{3}$.114		
$\mathrm{R}_{1}+\mathrm{Q}_{4}$			

TABLE 11

Criterion and Predictor		Varian	F-Valu	of Variable
Total Rating				
E		7.7	2.823	($\mathrm{df}=1.34 \mathrm{~F}_{05}=4.08$)
0		8.9	3.501	($\mathrm{df}=1.33 \mathrm{~F}_{05}=4.08$)
Q_{3}		2.4	0.947	($\mathrm{df}=1.32 \mathrm{~F}_{05}=4.08$)
C		3.0	1.187	$\left(\mathrm{df}=1.31 \mathrm{~F}_{05}=4.08\right)$
H		2.7	1.064	($\mathrm{df}=1,30 \mathrm{~F}_{05}=4.17$)
R_{1}		2.1	0.812	($\mathrm{df}=1.29 \mathrm{~F}_{05}=4.17$)
Q_{4}		0.4	0.141	$\left(\mathrm{df}=1.28 \mathrm{~F}_{05}=4.17\right.$)
R (Adjusted)		$\begin{aligned} & 27.0 \\ & .345 \end{aligned}$	$=.538)$	

TABLE 12

Correlation Matrix of Predictors and Criterion

Predictor	Criterion	Predictor	Criterion
Multiple		Multiple	
$\mathrm{J}+\mathrm{A}$	$.137(*<.05=.413)$	$\mathrm{J}+\mathrm{A}+\mathrm{B}$	$.251(*<.05=.498)$
$\mathrm{J}+\mathrm{B}$.112	$\mathrm{~J}+\mathrm{A}+\mathrm{B}+\mathrm{C}$	$.274(*<.05=.552)$
$\mathrm{J}+\mathrm{C}$.145	$\mathrm{~J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$	$.177(*<.05=.592)$
$\mathrm{J}+\mathrm{D}$.041	$\mathrm{~J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}$	$.173(*<.05=.624)$
$\mathrm{J}+\mathrm{E}$.184	$\mathrm{~J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}$.265
$\mathrm{~J}+\mathrm{F}$.145	$\mathrm{~J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}$.327
$\mathrm{~J}+\mathrm{G}$.083	$\mathrm{~J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}$.369
$\mathrm{~J}+\mathrm{H}$.098	$\mathrm{~J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I}$.350
$\mathrm{~J}+\mathrm{I}$.163		

TABLE 12

*Abbreviations are: A (Social-Personal); B (Natural); C (Mechanical); D (Business); E (Art); F (Science); G (Verbal); H (Manual); I (Computation); J (Rater ${ }_{1}$).

TABLE 13
Analysis of Demogre thic Data (Physically Disabled Sample)
Means, Standard Deviations, and Correlation Matıix of Demographic Data,

Variable	X	SD	1	2	3	4	5	6	7	8	9
1. LA	0.79	0.43									
2. IS	0.86	0.36	-. 213								
3. Disab	1.00	0.00	. 000	. 000							
4. Onset	$t 0.93$	0.27	-. 145	-. 113	. 000						
5. MS	0.86	0.36	-. 213	. 417	. 000	. 679 **					
6. UE	0.50	0.52	-. 174	. 408	. 000	-. 277	$-.000$				
7. TRAN	0.21	0.43	. 273	. 213	. 000	. 145	. 213	-. 174			
8. R_{1}	6.00	2.83	. 255	-. 300	. 000	-. 305	-. 449	. 262	.639*		
9. SR	6.14	3.42	-. 030	-. 354	. 000	-. 241	-. 354	-. 174	-. 340	. 510	
10. TR 7	74.36	20.81 Note	.079 * $=$ p	.017 $<.05=$. 000	$\begin{gathered} .088 \\ *=p<.01 \end{gathered}$	$=.068$	$-.139$	$.156$	$-.187$	-. 216

Correlation Matrix of Predictors and Criterion

Predictor	Criterion	Predictor	Criterion	
Single		Multiple		
LV(A)	$.079(*<.05=.532)$	$A+B+C$.346	$(*<.05=.627)$
IS(B)	.017	$A+B+C+D$.479	$(*<.05=.683)$
Ds(C)	.000	$A+B+C+D+E$.604	$(*<.05=.722)$
Ons(D)	.088	$A+B+C+D+E+F$.728	$(*<.05=.751)$
MS(E)	.068	$A+B+C+D+E+F+G$.864	$\left(d f=7.6 F_{05}=4.21 \quad F_{\text {obs }}=.054\right)$.
UE(F)	-.139			
$T R(G)$.156			
$R_{1}(H)$	-.187			
SR(I)	-.216			

TABLE 13

Criterion and Predictor	\% of Variance	F-Value of Variable	
Total Rating			
R_{1}	3.5	$.434 \quad\left(\mathrm{df}=1,12 \mathrm{~F}_{05}=4.75\right)$	
IA	1.7	$.199 \quad\left(\mathrm{df}=1,11 \mathrm{~F}_{05}=4.84\right)$	
UE	0.4	$.040 \quad\left(\mathrm{df}=1,10 \mathrm{~F}_{05}=4.96\right)$	
ONSET	0.1	$.007 \quad\left(\mathrm{df}=1,9 \mathrm{~F}_{05}=5.12\right)$	
TRAN	0.1	$.006 \quad\left(\mathrm{df}=1,8 \mathrm{~F}_{05}=5.32\right)$	
MS	0.1	$.004 \quad\left(\mathrm{df}=1,7 \mathrm{~F}_{05}=5.59\right)$	

TABLE 14

Variable	X	SD	1	2	3	4	5	6	7	8	9
IN(A)	2.92	2.25									
TS(B)	0.23	0.44	. 019								
GL(C)	11.31	2.84	-. 035	. 139							
TE(D)	0.08	0.28	-. 256	-. 158	. 496						
PE(E)	0.15	0.38	-. 280	-. 234	. 186	-. 123					
TM(F)	3.23	1.48	. 430	. 296	-. 018	. 359	-. 669*				
MS (G)	3.92	2.29	. 386	. 434	-. 009	-. 252	-. 567*	. 546			
$\mathrm{R}_{1}(\mathrm{H})$	6.31	2.69	. 321	. 076	. 238	-. 481	. 279	-. 145	. 383		
SR	6.46	3.33	-. 106	. 035	-. 245	-. 492	. 205	-. 260	. 234	. 429	
TR	74.85	21.57	-. 359	-. 128	. 126	. 336	. 487	-. 476	-.657*	-. 245	-. 264
Note $\mathrm{df}=11 *=\mathrm{p}<.05=.533 * *=\mathrm{p}<.01=.684$											

Correlation Matrix of Predictors and Criterion

Predictor	Criterion	Predictor	Criterion
Multiple		Multiple	
$H+A$	$.264(*<.05=.553)$	$\mathrm{H}+\mathrm{A}+\mathrm{B}$	$.091(*<.05=.648)$
$\mathrm{H}+\mathrm{B}$.111	$\mathrm{H}+\mathrm{A}+\mathrm{B}+\mathrm{C}$	$.286(*<.05=.703)$
$\mathrm{H}+\mathrm{C}$.117	$\mathrm{H}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$	$.445(*<.05=.741)$
$\mathrm{H}+\mathrm{D}$.206	$\mathrm{H}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}$	$.316(*<.05=.770)$
$\mathrm{H}+\mathrm{E}$	$.582^{*}$	$\mathrm{H}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}$	$.870(*<.05=.792)$
$\mathrm{H}+\mathrm{F}$.516	$\mathrm{H}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}$	$.842(*<.05=.826)$
$\mathrm{H}+\mathrm{G}$	$.616 *$		

TABLE 14
Variance Accounted for By Predictors

Criterion and Predictor	\% of Variance		F-Value of Variable	
Total Rating				
MS		43.1	8.333*	($\mathrm{df}=1,11$
TE		3.1	0.579	(df=1,10
TM		9.9	2.030	($\mathrm{df}=1$, 9
TS		5.4	1.113	($\mathrm{df}=1,8$
GL		13.1	1.046	($\mathrm{df}=1,7$
IN		7.6	3.835	($\mathrm{df}=1,6$
R_{1}		0.7	2.975	($\mathrm{df}=1,5$
PE P (Adjusted)	Total	87.9		$(d f=1,$
R (Adjusted)	. $842\left(\mathrm{df}=8.4 \mathrm{~F}_{05}=6.04 \mathrm{~F}_{\mathrm{Obs}}=3.620\right)$			

TABLE 15
Analysis of WAIS Data, (Physically Disabled Sample)

Correlation Matrix of Predictors and Criterion

Predictor	Criterion	Predictor	Criterion
Multiple	$.545(*<.05=.553)$	Multiple	A+B+C
$A+B$	$A+B+C+D$	$.480(*<.05=.671)$	
$A+C$.478	$A+B+C+D+E$	$.382(*<.05=.703)$
$A+D$.475	$A+B+C+D+E+F$	$.271(*<.05=.741)$
$A+E$.213	$A+B+C+D+E+F+G$	$.260(*<.05=.770)$
$A+F$.544	$.192(*<.05=.792)$	
$A+G$.354		

TABLE 15

TABLE 16
Analysis of 16 PF Data (Physically Disabled Sample)

Correlation Matrix of Predictors and Criterion

Predictor	Criterion	Predictor	Criterion
Multiple		Multiple	
$\mathrm{R}_{1}+\mathrm{C}$. 177 (*<.05=.632)	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}$. 440 (* $<.05=.726$)
$\mathrm{R}_{1}+\mathrm{E}$. 279	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}+\mathrm{H}$. 550 (* $<.05=.777$)
$\mathrm{R}_{1}+\mathrm{H}$. 329	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}+\mathrm{H}+\mathrm{O}$. 434 (* < $205=.811$)
$\mathrm{R}_{1}+\mathrm{O}$. 366	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}+\mathrm{H}+\mathrm{O}+\mathrm{Q}_{3}$. 464 (*<.05=.835)
$\mathrm{R}_{1}+\mathrm{Q}_{3}$. 272	$\mathrm{R}_{1}+\mathrm{C}+\mathrm{E}+\mathrm{H}+\mathrm{O}+\mathrm{Q}_{3}+\mathrm{Q}_{4}$.796 (* $<.05=8.54$)
$\mathrm{R}_{1}+\mathrm{Q}_{4}$. 567		

Variance Accounted for by Predictors

Criterion and Predictor		\% of Variance	F-Valu	of Variable
Total Rating				
Q_{4}		30.8	3.556	($\mathrm{df}=1,8 \mathrm{~F}_{05}=5.32$)
O		20.2	2.884	($\mathrm{df}=1.7 \mathrm{~F}_{05}=5.59$)
E		21.2	4.568	($\mathrm{df}=1.6 \mathrm{~F}_{05}=6.61$)
R_{1}		10.6	3.057	($\mathrm{df}=1.5 \mathrm{~F}_{05}=6.61$)
C		4.7	1.517	($\mathrm{df}=1,4 \mathrm{~F}_{05}=7.71$)
Q3		0.3	0.062	($\mathrm{df}=1,3 \mathrm{~F}_{05}=10.13$)
H		0.0	0.005	($\mathrm{df}=1.2 \mathrm{~F}_{05}=18.5 \mathrm{l}$)
	Total R (Adjusted)	87.8 .796 (*<		

TABLE 17
Analysis of OII Data (Physically Disabled Sample)
Means, Standard Deviations, and Correlation Matrix of Occupational

Variable	X	SD	1	2	3	4	5	6	7	8	9	10	11
A	53	34											
B	43	22	. 423										
C	21	31	. 140	-. 589									
D	47	21	. 362	-. 647	. 656								
E	36	31	. 195	. 192	. 406	-. 070							
F	36	30	. 462	. 065	-. 131	-. 131	-. 466						
G	46	28	.717*	. 691	-. 209	-. 057	. 510	-. 041					
H	30	14	.710*	. 088	-. 010	. 461	. 009	. 444	. 518				
I	47	19	. 020	-. 414	-. 090	. 313	-.739*	. 760*	-. 495	. 293			
J	6	3	. 119	. 178	. 150	-. 077	. 351	-. 269	. 220	-. 462	-. 394		
SR	6	3	. 336	-. 391	. 472	. 751 *	. 252	-. 105	. 168	. 291	. 052	. 472	
TR	75	26	. 411	. 065	-. 160	. 135	-. 558	. $917 * *$	-. 019	. 327	. 665	-. 233	-. 222
			df=7	* $=\mathrm{p}<$	$05=.707$	**=p	$<.01=.834$						

Correlation Matrix of Predictors and Criterion

Predictor Criterion		Predictor Criterion		
J+A	. 377 (* $<.05=.707$)	$\mathrm{J}+\mathrm{A}+\mathrm{B}$. 090	(* $<.05=.758$)
J+B	. 260	$J+A+B+C$. 177	
J+C	. 251	$\mathrm{J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$. 434	
J+D	. 246	$\mathrm{J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}$. 749	
J+E	. 463	$\mathrm{J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}$. 700	
J+F	.904** (** < . $01=.834$)	$J+A+B+C+D+E+F+G$. 998	$\left(\mathrm{df}=7.1 \mathrm{~F}_{05}=237.00 \mathrm{~F}_{0 \mathrm{bs}}=125.51\right)$
J+G	. 283	$\mathrm{J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}$. 949	
$\mathrm{J}+\mathrm{H}$. 106	$\mathrm{J}+\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I}$. 834	
I I	. 604			

TABLE 17

CHAPTER IV

DISCUSSION

Statistical tests strongly indicated the reliability of the measurement tools utilized in this study. First, agreement between three judges rating the apparency of $\underline{S} s^{\prime}$ disability supported the contention that the apparency scale can be used as a reliable guide in assigning persons to various degrees of visibility of handicap. Furthermore, such assignment was statistically consistent with \mathbf{S}^{\prime} ' opinions as to how apparent their disability was to others, although this agreement was not as strong as the reliability among external raters. In all cases, the physically disabled $\underline{S} s$ indicated that "the one problem that bothers you most" was symptomatic of the diagnosed ailment, whereas, the total sample $\underline{S} s^{\prime}$ responses were much more inconsistent with the diagnosed malfunction. It appears that the total sample $\underline{S} s$ experienced difficulty in determining how apparent their disability was to others. Probably, this accounts for some of the variance between \underline{S} ratings and external ratings. Second, the intercorrelation coefficient between the male and female targets served as a split-test reliability measure. The high and positive correlation coefficient indicated an acceptable level of reliability. As was true in the pilot study, male targets were rated as more unpleasant than were female targets.

Since all $\underline{S} s$ were tested by the author, the question of \underline{E} bias is
worth mentioning. Two precautions were maintained to protect against \underline{E} subtly conditioning S over the twenty-two trials to yield the expected results. \underline{S} recorded his own rating without \underline{E} 's awareness of the judgment. The forced-choice task eliminated the need for \underline{E} to interpret \underline{S}^{\prime} 's response. \underline{E} did not rate the apparency of \underline{S} 's disability until after the testing. Two independent judges rated the apparency of each \underline{S} 's disability without any information as to the \underline{S} 's rating of facial expressions.

It was theorized that, since the human face is a critical stimulus in social interaction, representation of interpersonal contact through viewing the human face would be more threatening to $\underline{S} s$ with a high apparency of disability than to $\underline{S} s$ with a low apparency of disability. Specifically, it was hypothesized that $\underline{S} s$ with a more visible physical disability would perceive the scowling face significantly more often than would $\underline{S} s$ with a lesser visible physical disability when presented with a paired smiling/ scowling facial expression in a binocular rivalry situation. The prediction was not confirmed, either for external ratings or \underline{S} ratings of apparency of disability.

There are at least two plausible explanations for the nonsignificant results. First, it is possible that the hypothesis was not confirmed because the sample did not include enough extremity or variation in physical disability. Of the fifty $\underline{S} s$, only fourteen were definitely diagnosed as physically disabled and few of the fourteen $\underline{S} s$ would be considered
severely disabled. Support for this explanation comes from the analysis of the quadriplegic $\underline{S} s$ in Table 7. For these $\underline{S} s$, the correlation coefficient between apparency ratings and the Total Ratings was statistically significant ($p<.01$) and in the expected direction. S s with a more visible disability did perceive the facial expressions as significantly more unpleasant than did $\underline{S} s$ with a lesser visible disability. At least in the case of a definite and obvious physical disability, the hypothesis was confirmed.

A second and related explanation takes into account the possible different effects of an emotional disability as compared to a physical disability. The apparency scale did not predict well for the whole sample, mostly composed of emotionally diagnosed $\underline{\text { S }}$. Although a small subsample of physically disabled $\underline{S} s$ behaved as predicted, the total sample did not demonstrate a pattern of behavior. From the study, the effect of an emotional disability cannot be determined, but the effect might be found in the population. Furthermore, when physical disability is confounded with emotional disability, unless the physical disability is definite and unmistakably obvious, the effect of the physical disabllity might not be appreciated. Many of the $\underline{S} s$ were indecisive when asked to name the "one physical problem or handicap that bothers you most." Even though the Ss identified and rated their "physical disability," the saliency of the physical disability for these $\underline{S} s$ is questionable.

It was also hypothesized that $\underline{S} s^{\prime}$ living conditions and personality measures would be significantly related to their performances on
the binocular rivalry task. A significant relationship was not found between the living condition indices and the binocular rivalry task. Neither was a significant relationship found between the personality measures and the binocular rivalry task. These findings are possibly due, in part, to the s^{\prime} ' "comparison levels." That is, the $\underline{S} s^{\prime}$ evaluations of their circumstances were relative to the $\underline{S} s^{\prime}$ previously experienced living conditions and the interpretations that the $\underline{S} s^{\prime}$ made of these conditions. Unfortunately, nothing is known about the Ss' comparison levels. However, the theory of Kelley, et al. (1960) listed three adjustments to the disability that might have prevented $\underline{S} s$ from experiencing dissatisfaction. First, the pretrauma comparison levels might not have been high, consequently the posttrauma conditions were at or near the comparison level. Second, other factors might have operated to keep $\underline{S} s$ from realizing the loss involved. Many temporary events could have delayed this realization by providing substitute gratifications that enabled $\underline{S} s$ to remain at or near the comparison level. Finally, the comparison level itself might have dropped sharply if $\underline{S} s^{\prime}$ evaluations became dominated by immediate, momentary conditions, and $\underline{S} s$ no longer took account of earlier, better experiences. Ss might not have expected the earlier conditions to continue due to their loss of power. If the comparison level dropped, the new conditions would be accepted.

The overall findings do not fit well the general proposal that individuals who are visibly handicapped perceive social interaction very differently than individuals whose disability is hidden (Kelley, Hastorf,

Jones, Thibaut \& Usdane, 1960). The sample used in the study was diagnosed as either physically disabled or emotionally disabled. Perhaps a more reasonable test of the proposal would be to use only $\underline{S} s$ who have been diagnosed as physically disabled. In addition, $\underline{S} s$ providing a greater range of apparency of physical disability should be tested.

CHAPTER V

SUMMARY

The relationship between visibility of handicap and reaction to social contact was examined by associating apparency of disability ratings and $\underline{S} s$ ' performances on a binocular rivalry task. S s were fifty outpatients at T.I.R.R., thirty-six emotionally disabled and fourteen physically disabled.

The stimuli used in the binocular rivalry situation were photographs depicting a smiling and a scowling face, presented one to each eye and illustrative of simulated eye-contact with $\underline{S} s$. The assumption was that $\underline{S} s$ would achieve binocular resolution by perceiving according to expectations of social reactions toward self. It was predicted that visibly disabled $\underline{S} s$ would perceive the unpleasant expressions significantly more often than nonvisibly disabled $\underline{S} s$.

Visibly disabled $\underline{S} s$ did not perceive the unpleasant expressions significantly more often than did nonvisibly disabled S. Neither was the predicted relationship found when a dichotomizing scheme was adopted. However, a small group of quadriplegic $\underline{S} s$ suggested confirmation of the hypothesis. It was also predicted that $\underline{S} s^{\circ}$ ratings of their disabilities would be more accurate predictors of social contact responses than would external ratings. The prediction was not confirmed. External raters and

S raters correlated strongly and positively with each other, but neither correlated significantly with the facial expression ratings.

The nonsignificant findings were discussed in terms of the severity of disability of the sample. The quadriplegic subsample suggested that the hypothesis might have been confirmed had the sample been obviously and definitely disabled. Also, the different effects of an emotional disability as compared to a physical disability might have been related to the absence of a behavior pattern.

A secondary hypothesis was that living conditions and personality profiles would be significantly related to the binocular rivalry task. The T.I.R.R. records contained information about each \underline{S}, including the \underline{S} 's performances on the 16 PF , the WAIS, and the OII. Again, the hypothesis was not confirmed. Two explanations were proposed. First, sudden change might not have occurred in living conditions between the pretrauma and posttrauma periods. Second, if a significant change occurred, $\underline{S} s^{\text {© }}$ comparison levels might not have been altered enough to cause $\underline{S} s$ to experience dissatisfaction.

In view of the nonsignificant findings, it was suggested that further studies test \underline{S} s only diagnosed as physically disabled and that the studies test $\underline{S} s$ with a great range of apparency of disability.

BIBLIOGRAPHY

Bagby, J. A. A cross-cultural study of perceptual predominance in binocular rivalry. Journal of Abnormal and Social Psychology, 1957, 54:331-334.

Beloff, H. and Beloff, J. Unconscious self-evaluation using a stereoscope. Iournal of Abnormal and Social Psychology, 1959, 275-278.

Berg, P. S. D. and Toch, H. H. "Impulsive" and "neurotic" inmates: A study in personality and perception. Journal of Criminal Law, Criminology, and Police Science, 1964, 55:230-234.

Bruner, J. S. and Postman, L. An approach to social perception. In W. Dennis (ed.), Current Trends in Social Psychology. Pittsburgh: University of Pittsburgh Press, 1951.

Cattell, R. B., Eber, H. W. and Tatsuoka, M. M. Handbook for the Sixteen Personality Factor Questionnaire. Champaign: Institute for Personality and Ability Testing, 1970.

Cohen, J. Multiple regression as a general data-analytic system. Psychological Bulletin, 1968, (70), 6:426-443.

Davis, J. M. Personality, perceptual defense, and stereoscopic perception. Journal of Abnormal and Social Psychology, 1959, 58:398402.

Engel, E. The role of content in binocular resolution. American Journal of Psychology, 1956, 69:87-91.

Gurvitz, M. The Dynamics of Psychological Testing. New York: Grune \& Stratton, 1951.

Hastorf, A. H. and Myro, G. The effect of meaning on binocular rivalry. American Iournal of Psychology, 1958, 393-400.

Helmholtz, H. von. Treatise on Physiological Optics (J. P. C. Southall, ed.), 1924, 3:498-500.

Jackson, D. N. and Payne, I. R. Personality scale for shallow effect. Psychological Reprints, 1963, 13:687-698.

Kelley, H., Hastorf, A., Jones, E., Thibaut, J., and Usdane, W. Some implications of social psychological research on the handicapped. In L. Lofquist (Ed.), Psychological Research and Rehabllitation. Washington, D. C.: American Psychological Association, 1960.

Kochel, J. Perceptual defense and perceptual vigilance in individuals with obvious and hidden disabilities. Unpublished doctoral dissertation, University of Houston, 1964.

Kohler, Wolfgang. Gestalt Psychology. New York: H. Liveright, 1929.
Lee, E. A. and Thorpe, L. P. Manual: Occupational Interest Inventory. Monterey: Del Monte Research Park, 1956.

Moore, M. Aggression themes in a binocular rivalry situation. Iournal of Personality and Social Psychology, 1966 (3), 6:685-688.

Murphy, G. Affect and perceptual learning. Psychological Review, 1956, 63:1-15.

Ogdon, D. P. Psychodiagnostics and Personality Assessment: A Handbook. Los Angeles: Western Psychological Services, 1969.

Rapaport, D., Gill, M., and Schafer, R. Diagnostic Psychological Testings, Vol. 1. Chicago: Year Book Publishers, 1945.

Reitz, W. E. and Jackson, D. N. Affect and stereoscopic resolution. Journal of Abnormal and Social Psychology, 1964 (69), 2:212215.

Schmidt, M. Degree of depression as a significant determiner of choice in a binocular rivalry situation. Unpublished report for Psychology 464, University of Houston, 1971.

Shelley, E. L. V. and Toch, H. H. The perception of violence as an indicator of adjustment in institutionalized offenders. Journal of Criminal Law, Criminology, and Police Science, 1962, 53:463469.

Siller, J. Attitudes of the nondisabled toward the physically disabled. Research Briefs, 1967, 1:4.

Toch, H. H. and Schulte, R. Readiness to perceive violence as a result of police training. British Journal of Psychology, 1961, 52:389393.

Tomkins, S. Affect-Imagery-Consciousness, Vol. 1. New York: Springer, 1962.

Van De Castle, R. L. Perceptual defense in a binocular-rivalry situation. Journal of Personality, 1960, 28:448-462.

Vernon, M. D. A Further Study of Visual Perception. Cambridge: University Press, 1952.

Wechsler, D. The Measurement and Appraisal of Adult Intelligence. Baltimore: The Williams and Wilkins Co., 1966.

Woodworth, R. S. Experimental Psychology. New York: H. Holt \& Co., 1938.

Young, P. T. Motivation and Emotion. New York: Wiley, 1961.
Zara, R. Expectations of social reaction towards self as related to cognitive style and locus of control in persons with obvious and hidden physical handicaps. Unpublished doctoral dissertation. University of Houston, 1969.

APPENDIX A

GRAPHIC SCALE OF PLEASANTNESS OF FACES

SUBJECT NO. SEX
DOMINANT EYE

APPENDIX B

S Scale of Apparency of Disability

SEX
DOMINANT EYE

APPENDIX C

E SCALE OF APPARENCY OF DISABILITY

1) 123456789
2) 123456789
3) 123456789
4) 123456789
5) 123456789
6) 123456789
7) 123456789
8) 123456789
9) 123456789
10) 123456789
11) 123456789
12) 123456789
13) 123456789
14) 1234856789
15) 123456789
16) 123456789

17) 1234456789
18) 123456789
19) 123456789
20) 123456789
21) 123456789
22) $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
23) 123456789
24) 123456789
25) 1234456789
26) 123456789
27) 1223456789
28) 123456789
29) 1234456789
30) 123456789
31) 123456789
32) 123456789
Not apparent = nonapparent
Very apparent = most apparent

APPENDIX D

RELIABILITY OF FACIAL EXPRESSIONS

Psychology Class

Trials 2-13	3-14	4-15	5-16	6-17
49	56	96	57	73
62	44	13	44	49
83	43	29	53	74
63	53	36	54	38
51	74	16	64	47
51	43	16	54	58
54	44	36	55	49
73	53	26	54	47
81	52	98	64	39
72	63	98	54	36
71	43	25	63	58
81	81	19	53	36
63	43	22	66	78
51	54	36	64	48
61	52	37	44	69
72	22	17	52	39
71	42	25	84	36
81	53	18	53	28
73	41	28	64	38
62	53	37	54	48
21	53	96	63	38
73	22	16	53	29
63	85	77	54	37
63	63	27	54	38
62	43	26	54	29
71	53	26	53	38
62	33	28	74	48
62	46	26	63	56
62	52	26	54	49
57	53	37	75	46
73	67	64	47	49
41	43	27	74	47

Computed $t=9.02885^{* *} t=5.24981 * * t=6.961 .50 * * t=5.57832 * * t=8.60201 * *$

Trials 7-18	8-19	9-20	10-21	11-22
47	34	27	65	85
33	18	65	39	25
62	77	82	76	29
63	87	73	76	26
41	14	93	35	59
54	36	63	45	44
74	16	84	35	26
44	25	74	25	36
82	16	92	35	18
33	25	72	35	17
32	27	72	35	26
82	12	81	24	19
41	16	74	25	28
53	27	66	35	26
43	16	73	25	18
22	16	72	25	17
43	26	53	24	15
42	15	72	35	16
73	15	72	25	17
63	28	63	36	27
43	18	83	36	16
42	19	41	15	16
64	24	83	34	88
64	16	74	36	36
43	17	83	15	26
63	18	63	35	25
53	37	83	45	28
42	13	74	23	27
52	28	82	45	16
52	16	73	35	77
67	14	37	35	85
52	26	72	34	27

Computed $\mathrm{t}=6.05224 * * \mathrm{t}=11.16118 * * \mathrm{t}=7.74252 * * \mathrm{t}=7.93719 * * \mathrm{t}=8.49385^{* *}$

APPENDIX E

STANDARD FOR EXTERNAL RATINGS

Rating of Indicators of Physical Handicap

1. Glasses: 1.0
2. Hearing Aid: 2.0
3. Obesity-Underweight: 2.0
4. Limp: 3.0
5. Mild Jerk: 3.0
6. Short Leg Brace: 4.0
7. Crutches: 4.0
8. Walkers: 4.0
9. Reciprocals, Armslings: 5.0
10. Long Leg Brace: 6.0
11. Wheelchair: 6.0
12. Arm-Hand Paralysis: 7.0
13. Above/Knee Amputation: 8.0
14. Missing Arm: 8.0
15. Hip Disarticulation: 8.0
16. Shoulder Disarticulation: 8.0
17. Spinal Disarticulation: 8.0
18. Facial Disfiguration: 9.0
19. Severe Paralysis: 9.0

APPENDIX F

RAW DATA FOR EACH \underline{S} ON ALL MEASURES

S\#	IA	IN	Disab	Onset	MS	UP	TRAN
1	3(0)	10(1)	PP(1)	-8(0)	2(1)	1(0)	$2(0)$
2	2(1)	2(0)	IS(1)	1(0)	1(0)	1(0)	1(0)
3	6(1)	6(1)	TQ(0)	4(0)	3(1)	3(1)	3(1)
4	2(1)	13(1)	TQ(0)	4(0)	4(1)	3(1)	3(1)
5	6(1)	2(0)	TQ(0)	4(0)	3(1)	3(1)	3(1)
6	2(1)	1(1)	MR(0)	1(0)	1(0)	1(0)	3(1)
7	2(1)	1(1)	PP(1)	5(0)	2(1)	2(1)	1(0)
8	3(0)	10(1)	$E P(0)$	6(0)	1(0)	1(0)	$2(0)$
9	3(0)	8(1)	OP(1)	6(0)	2(1)	3(1)	1 (0)
10	2(1)	8(1)	PP(1)	5(0)	2(1)	1(0)	1(0)
11	2(1)	3(1)	OP(1)	2(1)	1(0)	2(1)	$2(0)$
12	2(1)	6(1)	TQ(0)	2(1)	2(1)	2(1)	3(1)
13	3(0)	7(1)	TP(0)	2(1)	3(1)	1(0)	3(1)
14	6(1)	1(1)	MS(1)	5(0)	3(1)	1(0)	3(1)
15	4(1)	6(1)	TP(0)	2(1)	3(1)	1(0)	3(1)
16	2(1)	8(1)	TP(0)	2(1)	3(1)	1(0)	3(1)
17	2(1)	2(0)	PY(0)	5(1)	1(0)	1(0)	$2(0)$
18	5(1)	3(1)	AP(1)	4(0)	2(1)	1(0)	1(0)
19	6(1)	6(1)	CP(0)	1(0)	3(1)	3(1)	3(1)
20	2(1)	6(1)	TP(0)	2(1)	3(1)	1(0)	3(1)
21	2(1)	1(1)	EP(0)	2(1)	1(0)	1(0)	2 (0)
22	7(1)	1(1)	PY(0)	2(1)	1(0)	1(0)	3(1)
23	7(1)	11(1)	PY(0)	5(0)	1(0)	1(0)	$2(0)$
24	3(0)	2(0)	CV(0)	3(1)	1(0)	1(0)	1(0)
25	4(1)	2(0)	MO(0)	2(1)	1(0)	1(0)	5(1)
26	1(0)	1(1)	OR(0)	9(0)	1(0)	1(0)	2 (0)
27	5(1)	1(1)	PP(1)	6(0)	2(1)	3 (1)	$2(0)$
28	3(0)	3(1)	OP(1)	5(0)	2(1)	1(0)	1(0)
29	2(1)	1(0)	LR(0)	1(0)	1(0)	1(0)	3(1)
30	7(1)	1(1)	PY(0)	3(1)	1(0)	1(0)	3(1)
31	3(0)	3(1)	OR(0)	3(1)	1(0)	1(0)	3(1)
32	2(1)	1(1)	CV(0)	5(0)	1(0)	1(0)	2 (0)
33	1(0)	3(1)	ND(0)	4(0)	2(1)	1(0)	$2(0)$
34	3(0)	13(1)	TQ(0)	3(1)	3(1)	3(1)	3(1)
35	2(1)	11(1)	PY(0)	4(0)	1(0)	1(0)	3(1)
36	1(0)	2(0)	PY(0)	5(0)	1(0)	1(0)	2(0)
37	7(1)	11(1)	PY(0)	9(0)	1(0)	1(0)	3(1)
38	2(1)	1(1)	PY(0)	2(1)	1(0)	1(0)	3(1)
39	3(0)	3(1)	OR(0)	3(1)	1(0)	1(0)	1(0)
40	2(1)	1(1)	ND(0)	5 (0)	2(1)	3(1)	3(1)
41	1(0)	8(1)	PY(0)	4(0)	1(0)	1(0)	1(0)
42	2(1)	1(1)	OR(0)	1(0)	2(1)	1(0)	3(1)
43	5(1)	2(0)	OP(1)	1(0)	2(1)	1(0)	1(0)
44	8(0)	1(1)	PP(1)	$5(0)$	2(1)	2(1)	$2(0)$
45	2(1)	1(1)	MR(0)	5(0)	1(0)	1(0)	3(1)
46	2(1)	8(1)	LR(0)	1(0)	1(0)	1(0)	1(0)
47	2(1)	1(1)	MR(0)	1(0)	1(0)	1(0)	$2(0)$
48	3(0)	2(0)	OR(0)	3(1)	1(0)	2(1)	$2(0)$
49	2(1)	13(1)	MD(1)	1(0)	2(1)	3(1)	5(1)
50	2(1)	1(1)	$C D(1)$	1 (0)	3(1)	1(0)	3(1)

Abbreviations are: LA (Living Arrangement; IN (Income); Disab (Disability); Onset (Onset); MS (Mobility Status); UP (Upper Extremity); TRAN (Transportation Mode).

S\#	Psychometric Data					
	FSIQ	VIQ	PIQ	PCOM	BLOC	PARR
1	89	86	93	8	9	8
2	117	120	111	11	12	11
$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$						
6	61	70	55	5	3	2
7	114	114	111	10	12	10
8	80	91	68	7	7	2
9	102	103	100	11	9	9
10 102 100						
11	90	101	77	8	7	7
13 106 10						
14	95	109	78	9	5	6
15	108	110	104	13	12	10
18	98	96	100	9	6	10
19	97	99	95	11	9	11
20	74	77	74	7	5	6
21	94	92	98	10	11	8
22	83	72	99			
23	102	99	106	10	10	12
24	110	110	108			
25	79	80	80			
26	80	79	84	9	2	11
27	73	85	79	8	5	5
28	85	86	86	7	6	4
29	73	67	83	8	7	7
30	79	77	85	8	7	7
31	89	91	87	8	9	6
32	87	81	98	11	9	11
33	100	115	80	6	6	6
34	116	156	102	11	9	7
35	81	89	73			
36	83	87	80	7	9	5
37	91	95	88	8	7	12
38 39	98	99	97	6	7	14
40	86	95	76	8	6	6
41	105	104	105			
42	89	94	85	9	5	11
43	75	79	73			
44	94	95	92	10	7	9
45	59	59	63			
47	75	74	79	7	6	8
48	76	78	76	5	6	6
49 50	123	140	98	8	14	9

Abbreviations are: FSIQ (Full Scale IQ); VIQ (Verbal IQ); PIQ (Picture IQ): PCOM (Picture Completion); BLOC (Block); PARR (Picture Arrangement).

Socio-economic Data with Codes in Parenthesis

S\#	IN	TSH	GL	TE	PE	TM	MS
1	3	4(0)	5	1(0)	1(0)	3	2
2	3	5(0)	12	1(0)	1(0)	2	3
3	2	$5(0)$	12	2 (1)	$2(1)$	1	1
4	3	7 (0)	15	1 (0)	$2(1)$	1	1
5	2	5(0)	12	2(1)	2(1)	1	1
6	1	5(0)	12	1(0)	$2(1)$	1	1
7	1	4(0)	11	1(0)	2(1)	1	1
8	2	5(0)	12	1(0)	1(0)	3	4
9	8	4 (0)	12	1(0)	$1(0)$	5	6
10	5	5(0)	13	1(0)	1(0)	2	5
11	2	3(1)	12	1(0)	1(0)	4	8
12	2	3(1)	12	1(0)	1(0)	3	4
13	2	2(1)	8	1(0)	1(0)	5	5
14	1	3(1)	12	1(0)	1(0)	3	5
15	2	3(1)	13	1(0)	1(0)	3	7
16	1	2(1)	13	1(0)	2(1)	1	1
17	2	6(0)	12	1(0)	1(0)	3	3
18	4	4(0)	8	1(0)	1(0)	5	7
19	2	3(1)	15	2(1)	1(0)	3	5
20	2	2(1)	7	1(0)	1(0)	5	5
21	1	3(1)	13	1(0)	1(0)	2	2
22	1	6(0)	8	1(0)	2(1)	1	1
23	2	3(1)	13	1(0)	1(0)	5	5
24	5	4(0)	14	1(0)	1(0)	5	7
25	2	3(1)	8	1(0)	1(0)	4	3
26	1	3(1)	8	1(0)	1(0)	4	4
27	1	7(0)	12	1(0)	1(0)	3	5
28	6	3(1)	12	1(0)	1(0)	5	4
29	1	7(0)	12	1(0)	1(0)	2	5
30	1	3(1)	11	1(0)	1(0)	$\underline{6}$	4
31	5	5(0)	7	1(0)	1(0)	5	6
32	1	3(1)	12	1(0)	2(1)	1	1
33	3	6(0)	12	1(0)	1(0)	5	5
34	9	2(1)	18	1(0)	1(0)	5	8
35	2	3(1)	7	2(1)	1(0)	2	9
36	4	$4(0)$	14	1(0)	1(0)	$\frac{6}{6}$	$\frac{9}{9}$
37	2	3(1)	10	1(0)	1(0)	2	$\underline{9}$
38	1	3(1)	11	2(1)	2(1)	1	1
39	3	3(1)	13	1(0)	1(0)	5	6
40	1	7 (0)	12	2(1)	2(1)	1	1
41	2	5(0)	10	1(0)	1(0)	5	4
42	1	3(1)	12	1(0)	1(0)	3	4
43	2	7(0)	14	1(0)	1(0)	1	1
44	1	6(0)	8	1(0)	1(0)	3	2
45	1	6(0)	12	2(1)	2(1)	1	1
46	1	3(1)	11	1(0)	1(0)	2	4
47	1	7(0)	12	2(1)	1(0)	3	5
48	3	4(0)	16	1(0)	1(0)	5	3
49	$\underline{9}$	7 (0)	16	2(1)	2(1)	1	1
50	1	7 (0)	16	2(1)	1(0)	5	2

- Abbreviations are: IN (Income); TSH (Time since last hospitalization);

GL (Grade Level): TE (Temporary-Employment); PE (Permanent-Employment);
TM (Total Permanent-Employment); MS (Maximum Salary).
Underlined number (9) indicates information not available.

	OII Data									
S\#	Soc	Nat	Mec	Bus	Art	Sci	Ver	Man	Com	Lev*
1										
2	70	5	60	90	5	60	20	50	80	90
3										
5	90	80	1	30	10	40	60	10	40	
7	80	50	5	50	10	90	50	30	70	99
8										
10										
11										
12	50	50	30	30	50	50	80	70	50	20
14										
15	80	1	20	99	70	50	95	70	98	70
16										
17										
18	30	40	2	40	60	2	60	30	40	
19	90	20	30	20	80	20	60	60	70	40
20	10	40	2	50	10	20	40	5	30	
21	30	70	20	30	50	80	50	60	30	90
22	95	20	2	90	80	20	90	80	60	
23	80	20	10	80	70	60	70	80	98	
24	30	70	80	20	1	50	5	10	10	40
25	40	70	20	30	50	80	50	40	20	
26	30	40	70	80	50	20	30	60	80	20
27	90	70	10	50	50	20	80	40	30	
28	20	50	10	30	5	10	20	5	40	
29	5	50	90	30	80	60	30	20	30	
30	95	30	10	90	80	30	98	80	40	
31	90	1	30	99	30	10	95	99	95	
32	10	40	1	50	50	10	40	10	40	
33	1	50	60	20	90	50	30	60	30	90

OII Data										
S\#	Soc	Nat	Mec	Bus	Art	Sci	Ver	Man	Com	Lev*
34	90	80	5	20	5	90	60	20	70	20
35	70	40	5	50	95	10	95	40	50	
36										
37	30	95	10	30	10	80	40	50	20	
38	40	30	70	40	20	80	40	35	50	60
39	30	40	2	30	20	30	30	20	20	
40	30	20	20	30	10	50	10	2	5	
41	5	10	50	60	80	60	40	90	99	40
42	20	30	5	50	20	20	40	30	40	
43	60	40	2	20	40	10	40	20	40	
44	10	40	10	20	30	50	5	20	60	
45	5	30	10	40	2	50	5	10	30	
46	60	40	1	30	30	2	20	20	20	
47	2	30	10	30	10	70	20	20	30	
48	20	20	50	90	50	50	40	80	80	50
49										
50	99	80	1	30	50	60	90	50	40	95

* Two forms of the OII were administered (literate-nonliterate). Far the total group only the literate form was analyzed. Due to the size of the physical group, both forms were combined and analyzed.

	Disabilities
S\#	Identified by Ss
Disability	

