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ABSTRACT

A review of solutions for heat conduction with heat flux 

boundary conditions is presented for cylindrical geometries. A 

solution is selected that is sufficiently general to be applied 

to a food heating problem associated with the Skylab space 

flights which are to be- conducted by the National Aeronautics 

and Space Administration.

The problem is to compute the total time reguired to 

heat food cans to a desirable temperature for consumption with­

out having the temperature, at any point in the system, becom­

ing higher than the boiling temperature of water for the given 

cabin environment.

This problem is solved, by using a piece-wise, analyti­

cal solution scheme programmed on the digital computer. The 

results of the analysis for a typical data case are presented 

graphically and in tabular form. In particular the effect of 

qo,CV, and Rq as parameters on a graph of T versus heating 

time, a typical family of dimensionless temperature profiles, 

and a table (Table 6.2) demonstrating the range of expected 

heating times predicted for Skylab are presented as primary 

analytical results.

v



vi

The conclusions based on the results are stated and 

the possibility of system improvement is discussed.



NOMENCLATURE

English

A 2Radial surface area of can contents, ft

C Function name. Appendix D

Cp Specific heat at constant pressure (BTU/lbm °R)

DR Radial increment chosen to perform numerical inte­
gration in computer program. Appendix G

E Function name. Appendix D

e Exponential function

f Functional representation

F o
2Fourier modulus, O(t/Ro , dimensionless

F om
o2. 2Modified fourier modulus, OftT/R , dimensionless ' m o

I m Integral function, reference equation 2.7

J o Bessel Function of the first kind and of order zero

J1 Bessel Function of the first kind and of order one

K Thermal conductivity (BTU/ft hr °F)

M Index

N Index
q R

Q ~o oFlux conduction parameter, , dimensionless

q General dimensionless heat flux

%
o

Applied radial heat flux (BTU/hr-ft )

r Radius variable, ft

R o Outer radius of can, ft (unless otherwise stated)
R Dimensionless radius variable, r/RQ
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s Partial sum of a series

s Index

T(r,t) Temperature at a particular radius and time, °F

T Mean temperature level of system, °F

T max Maximum allowable system temperature, °F

T . mm Minimum temperature at which food is consumed, °F

t Time, hr

V 3Volume of can contents, ft

Greek

ex Thermal diffusivity, ft /hr , yCp
3 Material density. Lb /ft * m

'Pm Roots of Bessel Function multiplied by R

Pom Roots of Bessel Function

0 T(r t) - T Dimensionless temperature, -- 1——
Xmax

Miscellaneous

< >c Evaluated at the food centerline

< >1 Initial

< >„
( )n

nth derivative of a function with respect to time 

nth order partial sum of a series
1 = R 
‘r o Evaluated at R o
< >s Evaluated at the food surface

•wall Evaluated at R o
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CHAPTER I

INTRODUCTION

Historically food canning is a recent innovation, the 

practice was first started in 1809, by a Frenchman named 
Nicolas Appert.^ Appert discovered that food could be pre— - 

2 served by heating it in heremetically sealed containers. 

However, he did not understand why the food was preserved.

In the decades following Appert1s discovery, much 

empirical data was produced which specified for how long a 

time and at what temperature a particular food container should 

be heated to preserve its contents without destroying their 

palatability and nutritional value.

Much of modern day food technology still depends on 

empirical data and on simple physical models. This lack of 

advancement in the state-of-the-art of canning is the result 

of no economic, social, or scientific demands for change. 

Since the standard methods of canning have presented no cost 

problems, no health problems, and have been adaptable to most 

new scientific requirements; the industrial procedures have 

changed very little.

Iq. Borgstrom, Principles of Food Science, Volume I, 
Food Technology (New York: The Macmillan Company, 1968).

2Appert1s "cans" consisted of glass jars with cork 
end plugs sealed with wax.
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However, several recent developments have upset the 

status quo of canning technology. Some of these developments 

are the increased resistance of virus and bacteria strains to 

the present thermal-death treatments, the increased variety of 

foods being canned, and the increased use of canned foods in 

environments other than the surface of the earth.

This last development has resulted in activity designed 

to produce the new thermal technology required to use canned 

products in high-altitude flight, in earth orbit, and, in the 

future, for interplanetary space flights.

Obviously, for space flight, new and improved thermal 

modeling is needed to replace the old, empirical methods and 

earth surface models that have sustained the canned food indus­

try in the past. Some of the more important new environmental 

and design requirements encountered in space flight are the 

lack of a gravitational force, no free thermal convection, 

reduced atmospheric pressure, and the low-power consuming, 

light-weight heating systems consistent with spacecraft design 

criteria.

In conjunction with meeting the requirements stated 

above, new thermal models must have boundary conditions that 

correspond to given environments and that maintain the stan­

dard human comfort levels of crew members.

The first spacecraft environment where canned foods 

are to be heated and consumed by crewmen is that of the Skylab
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Program flights produced by the National Aeronautics and Space 

Administration. The Skylab environmental conditions that are 

included in the thermal heating model of this thesis are zero 
gravity, maximum allowable system temperature of 150° F.,and 

a storage temperature of 70° F.

^This value is 10° F below the boiling point of water 
at a 5 psi cabin pressure.



CHAPTER II

THE SYSTEM ANALYSIS

THE PHYSICAL SYSTEM

The system to be modeled is that formed by a thin 
wall (1/64 inch thick) aluminum food can (see Figure 2.1)"*"  

containing various homogeneous and nonhomogeneous foods. An 

electrical resistance heater is wrapped around the can; resis­

tance heating also occurs at the bottom of the container. The 

container's top is insulated. The can wall contains a thermo- 
2couple placed such that the temperature at the radial boun­

dary between the can and its contents is constantly measured. 

Because of the spacecraft environmental constraints mentioned 

earlier, the temperature, at any point in the system, cannot 

become greater than a given value, T . T is the upper max max
limit used by the thermocouple to trigger the heating circuit.

The heating procedure is as follows.

Initially the system is at a uniform constant tempera­

ture (can storage temperature). The system is activated and

"*"Figure  2.1 shows the Skylab Food Tray with several 
opened food cans in the various heating sockets and an orange 
juice container in the drink holder.

2 The thermocouple actually measures the temperature at 
the exterior surface of the can. The small wall thickness 
(1/64 thk) and high termal conductivity of the aluminum can 
makes this a negligible thermal resistance.

4



FIGURE 2.1

THE PHYSICAL SYSTEM
cn
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a constant heat flux, q is uniformly applied to the can's 

bottom and radial exterior. The heat flux (see graphical 

representation. Figure 2.2) is maintained until the thermo­

couple signals that the can/food interface is at Tmax. At 

this time, the heater is shut off. Then, under the zero flux 

boundary condition, the can contents redistribute their energy 

by conduction (no free convection in the can contents in 

zero g). Heat is conducted inward from the regions of high 

temperature at the previously heated boundaries to the regions 

of lower temperature, the can top and center. The heater 

remains off until the temperature at one of the boundaries 

first reaches a value, T . . The heater is turned on and a min
uniform heat flux qQ is again applied to the can bottom and 

circumference.

This sequence of events is repeated until the tempera­

ture of the can's contents at the geometrical centerline is at 
T . Since T and T . differ very little (15° R), the mm max mm 2 '

a temperature profile in the food becomes approximately flat*  as 

the heating cycles continue.

3 ' ■ •The thermal energy level at the can centerline is
within some predetermined error of the value, Tm;£n*

4 oThe 15 R variation between T and T . represents max mon
a percent variation in the value of Tm^n (595 R).
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NOTE

X 
9
fa

I 
■P

Time (sec)

FIGURE 2.2

HEAT FLUX VS. TIME VARIATION

(a) Decrease in heat-up times as the overall thermal 
energy level is increased.

(b) Increase in cool-down time as the overall thermal 
energy level is increased.



8
THE ANALYTICAL MODEL

The analytical model (see Figure 2.3) is the same as 

the physical model except for the following differences.

Both ends of the can are assumed to be insulated (infi­

nite cylinder). The can contents are assumed uniform; that is 

no gas globules (voids) are mixed in with the food or separate 

the food from the can wall. The entire can is assumed to be 

perfectly insulated during the periods when the heat source is 

shut off.

The assumption of an infinite cylinder as compared to \ 
the actual cylinder is based on two considerations. First, 

the heating time computed using such an assumption is conserva­
tive. Secondly, the general relation^ describing the actual 

physical system boundary conditions is so complex that the com­

puter programming and estimated computer solution times are 

beyond the scope of this thesis.

The assumption of complete insulation during periods 

of no heat flux will reduce somewhat the conservatism of the 

infinite cylinder approximation.

The assumption of gas voids being absent during heat­

ing in zero gravity is justified by the earth gravity stowage 

of the cans prior to any space flight. It is felt that the

^Nurettin Y. Olcer, "On the Theory of Conductive Heat 
Transfer in Finite Regions with Boundary Conditions of the 
Second Kind," International Journal of Heat and Mass Transfer, 
8:529-56, 1965.
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Aluminum Can

applied 
uniformly 
to food

FIGURE 2.3

SYSTEM TO BE ANALYZED
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gravity environment's stratification of the can contents and 

the interparticle bonds (e.g., coagulated grease) formed dur­

ing stratification are strong enough to remain stable in the 

zero gravity environment. This, in the absence of any further 

disturbance, precludes any random arrangement of food and gas 

globules from occurring.

In the event an unexpected agitation induces a signifi­

cant number of trapped gas pockets into the food, the conduc­

tion model breaks down. Gases have low conductivities and 

radiation will become an important heat transfer mode.

The differential equation and boundary conditions that 

describe the general analytical model are presented and dis­

cussed below.

T —O/ 
^t

The general boundary and initial conditions are:

T(r,t=0) == nonzero, nonconstant function of (22)
radius

r
tiTil _ % _ 0, heater off
,drjj - kR ~ constant, heater on

wall ° '

Equation (2.3) represents a constant heat flux at the 

boundary.
Lim [r(r,t)| = finite value ,« .
r—*-0
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Thus, the solution needed is the one for an on-off, 

constant heat-flux (i.e., alternately on and then insulated 

qQ = 0) applied at the radial boundary of an infinite right 

circular cylinder with an arbitrary initial temperature dis­

tribution.

CHRONOLOGY OF RESEARCH PERFORMED 
IN THE LITERATURE

6
The lumped-heat-capacity method (Newtonian heating or 

cooling) is a simple approximate method for solving unsteady 

state heat transfer problems for arbitrary geometries.

The approach's principle assumption is that the heated 

body possesses negligible internal resistance to conduction 

heat transfer (i.e., K is large). Thus, there are negligible 

temperature gradients within the body, and its temperature is 

essentially constant (i.e. , one value of temperature character­

izes the thermal state of the body).

The energy entering the body at its surface must all 

be stored within it, resulting in a temperature increase.

The equations associated with this method are:

Aq = C y V -t—- = constant ^o p dt (2.5)

J. P, Holman, Heat Transfer (New York: McGraw-Hill 
Book Company, Inc., 1963): see also F. Kreith, Principles of 
Heat Transfer (Scranton: International Textbook Company, April, 
1963): and P. J. Schneider, Conduction Heat Transfer (Cambridge: 
Addison-Wesley Publishing Company, Inc., September, 1957).
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Upon integrating (2.5), for a constant heat flux, the 

result is:
_ A
T(t) - TI = (t - tz) (2.6)

P
The assumption of high thermal conductivity for all 

7 known canned foods is bad.

The actual temperature distribution is in general not 

uniform, but it is nearly so at the end of the heating process. 

The assumption of a constant heat flux is not compatible with 

the on-off flux requirement of the physical system.

With all the necessary assumptions made to provide a 

solution, the results of the lumped-heat-capacity method can 

serve as the ultra-conservative solution to check, roughly, 

the more elaborate methods. /

It is apparent that the total heating (on) time for 

the (on-off) cyclic heat-flux system would be greater than the 

time calculated from the lumped-heat-capacity model.

Another readily available method of approximating a 

solution is provided by the finite difference technique. This 

method is used largely for nonhomogeneous materials, for non­

linear boundary conditions (radiation), for boundary conditions 

which are functions of space or time, and for unusual shapes. 

However, its use is not limited to those conditions.

7 . . . .Most canned foods have thermal conductivities ranging 
from (.37 to .18 BTU/hr-ft-° R) compared to a range of (6 to 
235 BTU/hr—ft-° R) for metals.
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For this problem, the method's utility is best judged 

by comparing desired solution accuracy to the time required 

to converge to a final answer. For a problem where several 

solutions of a set of finite difference equations are required 

to correspond to the various sets of boundary conditions, the 
8 amount of computation time for an accurate answer becomes 

quite large.

Based upon the previous logic, it was decided to fore­

go the finite difference technique and to seek an approximate 

or exact solution where accuracy and computation time are more 

easily controlled.

Another approximate solution method was considered; it 
9 is called the Schmidt Plot. The method is used to solve 

unsteady state heat transfer problems of arbitrary geometry 

that are one-dimensional and have known initial temperature 

distributions (usually in the form of raw data). This method 

was dropped from consideration because it is graphical, it is 

primarily intended to be performed by hand, and it is not easily 
10 programmed.

The time is large either for hand or computer compu­
tations using this method.

9Holman, loc. cit.; see also Schneider, loc. cit.
^"^Each computation starts over again with the same 

graphical techniques. The process is not set down in terms of 
general relations that can be iterated only by a change of 
input values.
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The next type of solution considered was the analyti­

cal solution. Extensive collections of unsteady state con­

duction solutions can be found in the literature.

The first special case solution was found in Carslaw 
____ ^__,.12 .______and Jaeger's book and is rewritten here in the terminology 

of this thesis (see Appendix A for change of variables).

The boundary conditions for which it is valid are a

variable initial temperature distribution and a zero surface 

flux. These are the boundary conditions that exist when the 

heater is shut off and the can contents are cooling down to 

T . .mm
-FomjCO

(2.7)
o ’omm = 1

The auxiliary equations associated with (2.7) are :

(2.8)

) J (4m) r dr (2.9)

S. Carslaw and J. C. Jaeger, Conduction of Heat in
Solids (2d ed.; Oxford: Clarendon Press, 1959); see also 
Schneider, loc. cit.

Carslaw and Jaeger, loc. cit.
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The physical significance of the auxiliary equation

(2.8) is discussed later.

The second special case solution was also found in 

Carslaw and Jaeger's book and is written as follows (see Appen­

dix B for change of variables).

The boundary conditions for which it is valid are .a

constant surface flux and a zero initial temperature distribu­

tion. These boundary conditions do not exist during the can's 

heating process.

oo
g = ^2-------- +

T / o +
max

(r2 _ - R2 21 e’Fom

m = 1

Jo (?m)
A 0V 2 J UP ) 

m o’om J (2.10)

The auxiliary equations associated with (2.10) are:

p Oft

o

0 2 Oftp = ....om R 2

Q = q- R /K ^o o

(2.11)

(2.12)

(2.13)

The physical significance of the auxiliary equations

is discussed later.
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The boundary conditions for which the third special 
case solution^ is valid^ are a constant surface flux and a

constant, nonzero initial temperature profile. This is the 

set of boundary conditions that exists when the heater is first 

turned on. Equation (2.14) appears to be a valid solution from 

zero until the can wall first reaches T .It does not repre- max
sent a total solution to the problem, only a solution for the 

original set of boundary conditions. It claims., as one of its 
special cases, equation (2.10)."*"^  The solution is written 

below (see Appendix C for change of variables).

The auxiliary equations associated "with (2.14) are 

equations (2.11), (2.12), and (2.13).

13S. J. Lis and P. P. Nuccio, Method of Heating Food m 
Aerospace Flight, Techn. Doc. Report No. AMRL-TDR-63-135, Bio­
medical Laboratory, 6570th Aerospace Medical Research Labora­
tories, Aerospace Medical Division, Air Force Systems Command, 
Wright-Patterson Air Force Base, Ohio, December, 1963.

l^See discussion on page 2/ before applying (2.14).
15See discussion on page 2/ before applying equation

(2.14).
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Langford presents a different kind of solution to the 

unsteady heat conduction problem. The capability of the solu­

tion is best described by this abstract:

New solutions of the heat equation are exhibited 
for the case in which both the temperature and heat 
flow rate are prescribed at a single fixed boundary. 
The prescribed temperature and heat flow rate may be 
any arbitrary infinitely differentiable functions of 
time. The new solutions are applicable for one­
dimensional (radial) heat flow in spheres, cylinders, 
and slabs.

Special solutions may be obtained by choosing spe­
cial forms for the prescribed boundary temperature and 
boundary heat flow rate. These special solutions 
include the classical solutions of the heat equation, 
new sequences of polynomial and quasi-polynomial solu­
tions of the heat equation, and new closed-form solu­
tions to constant-velocity phase change problems with 
spherical and cylindrical symmetry.16

According to Langford, the temperature distribution in 

an infinite, right, circular cylinder as a function of time 

is:
Oo

g(R,t) = [(Q (Ro,t)) mCm (R2/4) - 32(q)m(Ro,t)

m = 0

Em (R2/4)] (2.15)

The functions, Em and Cm, are given for msiO by general 

relations (see Appendix D). Em and Cm are functions only of 

the cylindrical geometry.

16David Langford, "New Analytic Solutions of the One- 
Dimensional Heat Equation for Temperature and Heat Flow Rate 
Both Prescribed at the Same Fixed Boundary (With Applications 
to the Phase Change Problem)," Quarterly of Applied Mathematics, 
24:315-22, 1966.
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In order to use equation (2.15) to compute tempera­

ture values at radial points for any given time, it is only 

required that complete time histories of both heat flux and 

temperature are known or can be accurately constructed at the 

surface, Rq (i.e., at the boundary). If these histories are 

available and analytic, then a complete time history of tern-- ' 

perature at any point in the system can be generated using 

(2.15).

An attempt was made to construct the required time­

history inputs for equation (2.15). The approximations con­

structed were read into a computer program. The results of 

the program indicated an increase in heating time of nearly 

50 percent over the time determined from the lumped-heat- 

capacity method of solution.

It should be mentioned that the construction of the 

heat flux, surface temperature time histories for the computer 

program are somewhat arbitrary and of unknown accuracy. Hence 

the results obtained are, to say the least, questionable.

Olcer presents an analytical solution which is suffi- 
17 ciently general to be applied to the present problem.

In this work general expressions are derived for 

unsteady temperature distributions in finite regions of arbi­

trary geometry, under conditions of prescribed heat flux on all

17Olcer, loc. cit.
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boundaries and with time-dependent heat sources and arbitrary 

initial conditions. The temperature fields are expressed in 

the form of uniformly convergent series solutions.

The general result of the paper specialized to the 

case of an infinite cylinder with a constant heat flux applied 

to its radial exterior and a nonzero, nonconstant initial-tem­

perature distribution is (see Appendix E):

The auxiliary equations associated with (2.16) are:

T = (2/Rq2) / T(r,t=O) 
0

rdr

z-R
I °I=| T(r,f=O) J (<P ) rdr m J • o m

0

’ = roots of Bessel Function, J, m ' 1
multiplied by R

’ = roots of Bessel Function, J.om i

(2.17)

(2.18)

(2.19)

(2.20)
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extF = -- r- , fourier moduluso „ 2 (2.21)

k- O^t-Pm2 
om r 2 

o
modified fourier modulus (2.22)

Q =
q R ^o o
K (2.23)

Some of the auxiliary equations have significant physi­

cal meanings.

T in equation (2.17) represents the initial, mean tem­

perature level of the system.

F_ in equation (2.21) is the fourier modulus and F o om
in equation (2.22) is a modified fourier modulus.

Q in equation (2.23) is the flux conduction parameter. 

It represents the ratio of heat per unit axial length crossing 

the system boundary to the ability of the system materials to 

conduct this heat into the interior of the cylinder. A large 

value of Q represents a conduction (K small) controlled process 

(i.e., changes in qo do not affect the process to a large 

degree). A small value of Q indicates that the process is con­

trolled by the imposed heat flux.

Several special cases of equation (2.16) and its aux­

iliary equations are needed to correspond to the different sets 

of boundary conditions present in this problem.

The first is for a constant boundary heat flux and a 

constant initial temperature distribution. These are the
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boundary conditions when the can is first heated up to T max
The equation as specialized from the general equation (2.16)

is:

(2.24)

The auxiliary equations that change are:

T = T = T(r,t=0) (2.25)

I = Tt J (-P ) rdr m I J o 'm 
0

(2.26)

The remaining auxiliary equations are (2.19) through

(2.23).

Since the same boundary and initial conditions were used 

in the derivation of equation (2.24) as were used for a previ­

ously discussed solution (equation (2.14)); equations (2.14) 

and (2.24) should be the same. They are not; they differ by the 

second bracketed term in equation (2.24). The term is rewritten.
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m = 1

18 Lis and Nuccio lists Carslaw and Jaeger as their

source for equation (2.14). The page referred to in Carslaw and 
19Jaeger's book contains only the solution for a zero initial 

temperature distribution (which is our equation (2.10) from Cars- 
20 law and Jaeger). Apparently the authors, Lis and Nuccio, 

incorrectly made the assumption that the zero initial tempera­

ture condition of Carslaw and Jaeger's could be changed to a 

constant , nonzero initial temperature condition simply by add­

ing in a constant initial temperature term. As it has just been 

shown, this is not true. The term indicated (equation 2.27)) 

must also be accounted for. Therefore, before any conclusions 

based bn the results of Lis and Nuccio are made, the effects 

of (2.27) on the stated results should be considered. Also, 

it can be easily shown that by setting T^ = 0 in equation

(2.24) , I = 0. This causes the term (2.27) to be zero. 

Therefore, equation (2.10) is simply a special case of equation

(2.24) . Equation (2.10) is also a special case of the general

Lis and Nuccio , loc. cit.

Carslaw and Jaeger, loc. cit.
20 .Lis and Nuccio. loc. cit. 
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theory, equation (2.16). This is as it should be.

In the physical model the heater is controlled by a 

thermocouple at the wall. Hence the wall temperature of the 

conduction model must be monitored. The wall temperature is 

determined from equation (2.24) with R = 1. Then, for a con­

stant heat flux and for a constant, nonzero temperature dis­

tribution, the wall temperature is equation (2.28).

o

The auxiliary equations are (2.25), (2.26), and (2.19)

through (2.23).

After the initial heat-up cycle, the wall temperature

must again be monitored for the case of a nonuniform initial

temperature distribution. The result from equation (2.16) with

R = 1 is:
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The form is the same as (2.28), but the auxiliary equa­

tions are different. The auxiliary equations are equations 

(2.17) through (2.23).

The next special case required of equation (2.16) is 

for the boundary condition of zero flux with an arbitrary ini­

tial temperature profile. This occurs physically during the 

cool-down periods of the food boundary from T to T . . 

From equation (2.16) with Q = 0:

The auxiliary equations are equations (2.17) through 

(2.22).

It is recalled that the boundary and initial conditions 

imposed in the derivation of equation (2.7) are the same as 

those used above; and, upon inspection, it is seen that the two 

equations are identical. Therefore, the general theory, equa­

tion (2.16), has as a special case equation (2.7). Also, it is 

shown (see Appendix D) that the superposition of equations (2.7) 

and (2.10) produces the general theory, equation (2.16).

The final special case of equation (2.16) is the one 

for which the boundary heat flux is zero, the radius is Rq, and 

the initial temperature profile is nonuniform. This gives the 

food boundary temperature, measured by the thermocouple, as a 
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function of time during the cool-down periods of this analy­

sis. Evaluation of equation (2.30) for R = 1 yields:

m = 1

The auxiliary equations are the same as those of equa­

tion (2.30).

It is noteworthy that many other solutions to the basic 

differential equation, equation (2.1), exist. However, these 

solutions are for different boundary and initial conditions 

than (2.2), (2.3), and (2.4). The primary sources of these 
21 other solutions are footnoted.

Table 2.1 is presented as a summary of available solu­

tions for constant heat flux boundary conditions in infinite

21R. B. Bird, E. N. Lightfoot, and W. E. Stewart, Trans­
port Phenomena (6th ed.; New York: John Wiley & Sons, Inc., 
1965); see also Carslaw and Jaeger, loc. cit.; R. V. Churchill, 
Operational Mathematics (2d ed.; New York: McGraw-Hill Book 
Company, Inc., 1958); Holman, loc. cit.; W. M. Kays, Connective 
Heat and Mass Transfer (New York: McGraw-Hill Book Company, 
Inc., 1966); Kreith, loc. cit.; A. V. Luikov, "Heat and Mass 
Transfer Institute, Minsk, BSSR, USSR," Analytical Heat Diffu­
sion Theory, James P. Hartnell, editor (New York: Academic 
Press, 1968); Schneider, loc. cit.; and C. R. Wylie, Jr., 
Advanced Engineering Mathematics (2d ed.; New York: McGraw- 
Hill Book Company, Inc., 1960).



TABLE 2.1
SUMMARY OF SOLUTIONS FOR HEAT FLUX BOUNDARY CONDITIONS ON THE SURFACE 

OF INFINITE RIGHT CIRCULAR CYLINDERS

Item
Problem Statement

Boundary Condition(s) & Initial Condition(s)
Solutions
Available

Literature3
Source Comments

1 (1) Constant initial & final temperature 
profiles.

(2) Heat flux known as a time function.
Eg.'s (2.5) & 
(2.6) Lumped- 
Heat -Capa city 
Method

Bird, et al.; 
Holman; Kays; 
& Kreith

(1) Approximation best for 
high thermal conductivity 
materials.

2 (1) Arbitrary boundary and initial condi­
tions.

Finite 
Difference 
Technique

Holman; and 
Schneider

(1) Best for unusual boundary
conditions. ,

(2) Unusual geometries.

3 ' (1) Arbitrary boundary and initial condi­
tions.

Schmidt Plot 
No equation

Holman; and 
Schneider

(1) Graphical technique.
(2) Useful for one dimension 

only.
(3) Not easily programmed.

4 (1) Zero surface flux.
(2) Arbitrary initial temperature dis­

tribution .
Eq. (2.7) Carslaw and 

Jaeger
(1) Valid for cool-down 

sequence of thesis prob­
lem .

(2) Special case of equation 
(2.16) .

5 (1) Constant surface flux.
(2) Zero initial temperature distribu­

tion
Eq. (2.1,0) Carslaw and 

Jaeger
(1) Special case of equation

(2.16).

M



TABLE 2.1 (continued)

Item
Problem Statement

Boundary Condition(s) & Initial Condition(s)
Solutions
Available

Literature3
Source Comments

6 (1) Arbitrary boundary conditions. Eq. (2.15) Langford (1) Temperature and heat flux 
time histories must be 
known at radial surface.

(2) Time histories must be 
analytic.

7 (1) Constant or zero flux boundary condi­
tion .

(2) Arbitrary initial temperature distri­
bution

Eq. (2.16) Olcer (1) Represents a general 
analytical solution to 
the problem.

aSee Bibliography.
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circular cylinders. It also contains the respective bound­

ary and initial conditions and selected comments.

22Some of the solutions presented m Table 2.1 are 
valid for semi-infinite and finite cylinders as well as other 
geometries.



CHAPTER III

DEVELOPMENT AND DISCUSSION OF A PROGRAMMING TECHNIQUE

FOR APPLYING THE ANALYTICAL SOLUTION

Equation (2.16), its auxiliary equations, the special 

cases of (2.16), and their auxiliary equations are in effect 

a collection of analytic solutions, accounting for the chang­

ing boundary and initial conditions,' of each segment of the 

problem. What is required is to put these equations together 

to form a piece-wise solution to the overall heat transfer. 

problem.

The logic that underlies the assimilation of the 

piece-wise solution is based on two facts. The first fact is 

that five different sets of boundary conditions are applied 

to equation (2.16) generating five special cases. The second 

fact is that the criteria for choosing the appropriate set of 

boundary conditions (special case equation) for a given phy­

sical situation is whether the boundary temperature is T^, 

T , or T . and from what direction the boundary temperature 

is approaching Tt, T , or T . . The five sets of boundary y I' max' min 1
conditions are presented in Table 3.1.

The use of the given boundary conditions in conjunc­

tion with equations (2.16) through (2.23) to produce the 

required piece-wise solution is demonstrated in Table 3.2.

29



BOUNDARY CONDITIONS

TABLE 3.1

Boundary-
Condition Description

Comments 
(See Figure 2.2)

A Initial Temp. 
Boundary Temp. 
Heat Flux:

Dist.: Constant , 
TI 
%

nonzero Initial system configuration.

B Initial Temp. 
Boundary Temp. 
Heat Flux:

Dist. : Variable, 
Tmax
%

nonzero System configuration when 
boundary heats up to Tmax*

C Initial Temp. 
Boundary Temp. 
Heat Flux:

Dist. : Variable, 
T gmax

nonzero System configuration when the 
boundary begins to cool down 
from T" max

D Initial Temp.
Boundary Temp.
Heat Flux:

Dist.: Variable, 
T . ginin

nonzero System configuration when the 
boundary cools down to Tm^n*

E Initial Temp.
Boundary Temp.
Heat Flux:

Dist. : Variable,
T .mm
%

nonzero System configuration when the 
boundary begins to heat up from 
T . .mm

co 
o



PIECE-WISE SOLUTION SCHEME

TABLE 3.2

Time Span

Initial & Final 
Boundary 

Conditionsd

Equation used to 
iterate to req'd 
boundary condition 
& record system 
time

Equation used to 
generate temp. dist. 
in food at time req'd 
boundary condition 
is reached

1 (Initial 
heat-up)

Initial: A N/A N/A

Final: B Eq. (2.28) Eq. (2.24)

2 (1st cool 
down)

Initial: C N/A N/A

Final: D Eq. (2.31) Eq. (2.30)

3 (Heat- 
up)

Initial: E N/A N/A

Final: B Eq. (2.29) Eq. (2.16)

4 (Cool 
down)

Initial: C N/A N/A

Final: D Eq. (2.31) Eq. (2.30)

5 (Heat- 
up)

Initial: E N/A N/A

Final: B Eq. (2.29) Eq. (2.16)

aSee Table 3.1.
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The piece-wise solution scheme in Table 3.2 has been 

programmed for the Univac 1108 computer and is executed by the 

computer in the sequence suggested by Table 3.2 Steps (4) and 

(5) of the sequence are repeated by the machine until, at 

either Step (4) or (5), the centerline temperature is greater 

than or equal to T . . mm
The basic flow diagram used to execute the piece-wise 

solution technique is presented in Figure 3.1. A completely 

detailed flow chart, listing of the program, and an example 

of the program output are presented in Appendix G.
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CHAPTER IV

DISCUSSION OF INPUT DATA TO THE

COMPUTER PROGRAM

The determination of thermal properties of foods is 

not complete and is the subject of many studies today. How­

ever, several methods of estimating these properties exist and 
have been used for many years."*"  Most of the methods are based 

on the percentage of water a canned food contains and the fact 

that the dehydrated remainder of the can contents is a fibrous 

material similar to balsa wood or cork in its material proper­

ties. Using this logic a total homogeneous property is deter­

mined by multiplying the weight fraction of a particular 

component by its known property value and adding the results 

for all components together. The mathematical statement of 

the described operation is:
(4.1) m

Total Homogeneous Property = (Weight Fraction)^X

i = 1 (Property)^

The requirement for the present study is to determine 

the range of material properties to be expected in canned 

foods. This was accomplished using equations similar to (4.1)

R. L. Earle, Unit Operations in Food Processing (1st 
ed.• Fairview Park, Elmsford, N.Y.: Pergamon Press, 1966).

37



(see Appendix H). The results of the work are presented in

Table 4.1.
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TABLE 4.1

MATERIAL PROPERTY RANGES TO BE EXPECTED 
IN CANNED FOODS

Representative of an average material property.

Property 
(Units)

Lower
Limit

-r . 1 ■ , aIntermediate
Value

Upper
Limit

Thermal
Conductivity (BTU/hr-ft-°R)

.184 . 235 .3081

Density.
(Ibm/f t"5) 25.28 39.2 59.15

Heat Capacity 
at Constant 
Pressure 
(BTU/lbm-°R)

.36 .60 .944

Thermal 
Diffusivity 
(Ft /hr)

.0055 .01 .02

Along with the material property ranges exhibited in

Table 4.1, it was decided that additional useful data would 

be produced by the material properties of pure water (H^O).
2These properties are accurately known and readily available.

2Earle, loc. cit.: see also J. P. Holman, Heat Trans­
fer (New York: McGraw-Hill Book Company, Inc., 1963).
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The properties of water in conjunction with the values 

of Table 4.1 yield an expanded set of properties. The new 

property group is displayed by Table 4.2.

TABLE 4.2

MATERIAL PROPERTY RANGES CONSIDERED 
FOR ANALYSIS

aValues are for water at 110°F; see Holman, loc. cit.

Property 
(Units)

Lower
Limit

Intermediate
' Values

Upper
Limit

Thermal 
Conductivity 
(BTU/hr-ft-R)

.184 .235 .3081 .368a

Density- 
(Ibm/fr) 25.28 39.2 59.152 61.84a

Heat Capacity 
at Constant 
Pressure 
(BTU/lbm-R)

.36 .60 .944 .997a

Thermal 
Diffusivity 
(Ft /hr)

.0055 .0058a .01 .02

The values in Table 4.2 are those that are entered in 

the digital computer program.

Another input variable to the program is the outer 

radius of the can. There are only two can sizes to be used in 

the Skylab Program. One size has an outer radius of approxi­

mately 1.34 inches and the other of 2.34 inches.
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One more input variable that must be considered prior 

to executing the analysis is the applied heat flux, qo.

A range of realistic boundary heat fluxes for this 
3 analysis was determined from Lis and Nuccio. This reference 

suggested a nominal value of heat flux to be used. The nominal 

value's selection was based on the classic aircraft and space­

craft design considerations of availability of power and mini­

mization of system weight. This nominal heat-flux value is 

800 (BTU/hr-ft ). The anticipated flux range has been arbi­

trarily built around the central flux value (see Table 4.3).

The flux variation in Table 4.3 is considered to be representa­

tive of available spacecraft power levels.

TABLE 4.3

RANGE OF HEAT FLUXES CONSIDERED 
FOR ANALYSIS

Minimum
Heating

Rate

Nominal
Heating

Rate

Maximum
Heating

Rate

400 
(BTU/hr-ft )

800 
(BTU/hr-ft )

1200 
(BTU/hr-ft )

3 S. J. Lis and P. P. Nuccio, Method of Heating Food in 
Aerospace Flight,, Techn. Doc'. Report No. AMRL-TDR-6 3-135, Bio­
medical Laboratory, 6570th Aerospace Medical Research Labora­
tories, Aerospace Medical Division, Air Force Systems Command, 
Wright-Patterson Air Force Base, Ohio, December, 1963.
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Three of the input variables-heat flux, can radius, 

and thermal conduct!vity—are combined to form a single input 
parameter (see page 20). This parameter is called the flux 

conduction parameter. It has been previously defined, but its 

definition is rewritten for clarity.

g R ’
Q = —— , flux conduction' parameter (4.2)

IX

Based on equation (4.2) Table 4.4 is generated which 

is analogous to Table 4.3 for heat flux.

RANGE OF THE FLUX CONDUCTION PARAMETER

TABLE 4.4

Can Radius R(In) °

Minimum
Flux Conduction 

Parameter
(R)

Maximum 
Flux Conduction 

Parameter
(R)

1.34 121.38 728.26

2.34 211.96 1271.74

From Table 4.4, it is seen that the maximum range of 

the flux conduction parameter is from 121.38 (R) to 1271.74 (R)

This important input variable is not read directly into 

the computer, but is calculated using (4.2) from other input 

data.
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By introducing the parameter the number of unique 
input variables of 0 is reduced to three. They are Q,Of, and 

R .o
After examination of the data presented in Tables 4.2,

4.3, and 4.4 and taking into account the knowledge that two 

sizes of cans are to be heated, it was decided that twenty- 

four data cases should be submitted to the computer.

Mathematically, with three values of qo, four values 

of K and O^, and two values of Rq; there are ninety-six possi­

ble combinations of the input variables. However, only twenty- 

four of these combinations have any physical meaning.

The twenty-four data cases submitted to the computer 

are summarized in Table 4.5 (they will generate adequate out­

put data to draw the correct results and conclusions).



TABLE 4.5

SUMMARY OF DATA CASES FOR THE COMPUTER

Data
Case

Can 
Radius 
(in)

Thermal 
Conductivity 
(BTU/HR-FT-R)

Thermal 
Diffusivity 
(FT2/HR)

Flux 
Conduction 
Parameters (R)

Material
Most Closely 
Represented

1 1.34 .184 .02 242.75 Bacon
2 1.34 .184 .02 485.51 Bacon
3 1.34 .184 .02 7 28.26 Bacon
4 1.34 .235 .01 190.07 Fat Beef
5 1.34 . 235 .01 380.14 Fat Beef
6 1.34 .235 .01 570.21 Fat Beef
7 1.34 .368 .0058 121.34 Water
8 1.34 .368 .0058 242.75 Water
9 1.34 .368 .0058 364.13 Water

10 1.34 .3081 .0055 144.97 Asparagus
11 1.34 .3081 .0055 289.95 Asparagus
12 1.34 • .3081 .0055 434.93 Asparagus
13 2.34 .184 .02 423.91 Bacon

» 14 2.34 .184 .02 847.83 Bacon
15 2.34 .184 .02 1271.74 Bacon
16 2. 34 .235 .01 331.91 Fat Beef
17 2.34 .235 .01 663.83 Fat Beef
18 2.34 .235 .01 995.74 Fat Beef
19 2.34 .368 .0058 211.96 Water
20 2.34 .368 .0058 423.91 Water
21 2.34 .368 .0058 635.87 Water
22 2.34 .3081 .0055 253.16 Asparagus
23 2.34 .3081 .0055 506.33 Asparagus
24 2.34 .3081 .0055 759.51 Asparagus

UJ



CHAPTER V

DETERMINATION OF ERROR ENVELOPES ASSOCIATED

WITH THE ANALYSES

The error is defined by equation (5.1); it is, in 

general, a function of the same arguments as the dimensionless 

temperature, Q (equation (2.16)). In addition the error is a 

function of M, the finite number of series terms taken.

ERR = f(F , F , R , R, I , Q,, M) (5.1)o' om' o' ' m' ' ’m'^om'

For the material property ranges of canned foods and a 

given food can radius, the variation of only six of the nine 

arguments of (5.1) significantly effect the error. This six 

argument effect is demonstrated by (5.2).

ERRC^ f(F , F , R, I ,-P , M) (5.2)o' om' .' m ' 1 m*

The first two arguments in (5.2) are functions of t. 

The next three are functions of the size of the radial incre­

ment used in the digital computer program. The last argument 

is the number of series terms taken.

Based on the experience gained by use of the program 

to evaluate data range effects, equation (5.2) is replaced 

with equation (5.3).

ERR CX f (<Xt, DR , M) (5.3)

44
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The most apparent and the hardest error type to con­

trol is the undamped error phenomena; it is associated with 

the first argument of (5.3). The error is produced in equa­

tion (2.16) and its special cases when the O(t product in the 

exponential terms of these equations approaches zero. Equa­

tion (5.4) demonstrates the form of the terms under discussion 

for a given radius.

(5.4)General Form

(Bessel Functions = f(m))

The exponential term is the damping term, it damps out

the error oscillations that occur when the series of Bessel 

Functions are evaluated for a finite number of terms. If the 

productO(t approaches zero the exponential (damping) term 

approaches one. At this value, one, there is no damping; this 

causes the worst case error.

The second variable in (5.3) that effects the error is

the radial increment size chosen for numerical integration per­

formed by the computer. The form of the integration is demon­

strated by equation (5.5).

Integral (-P) rdr m (5.5)
0
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In equation (5.5) the radius, r, is an argument of the 

Bessel Function = f(r)), appears by itself in the inte­

grand, and is the variable of integration.

The smaller the size of the radial increments taken the 

more accurately the integral is evaluated and the smaller the 

error induced into equation (2.16) and its special cases.

The last argument of (5.3) to be discussed is the num­

ber of terms of the series used. The first few (one to seven) 

terms add great accuracy to the equation being evaluated, but 

the accuracy effect of adding terms dies out exponentially as 

M increases. Twenty terms of the series in equation (2.16) 

and its special cases were taken.

Proof of series convergency is furnished by two dif­

ferent methods. The first is the small (less than 1/2 a per­

cent) accuracy improvement noted when forty terms of the series 
are compared to the twenty terms used. The second method"1" 

uses only five terms of the series and maintains the accuracy 

level of twenty terms. The method uses a simple algebraic 

closed form to converge a series by using three of its partial 

sums. A partial sum of the series is defined, generally, by 

equation (5.6).

"I'M. Abramowitz and A. Stegun, Handbook of Mathemati- 
cal Functions (New York: Dover Publications, Inc., 1964).
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i 1

The convergency relation is:

(general series term)^sn

2 Qn n + 2 , n + 1 x
Series Sum = -— ------a-—------ ---sn + Sn + 2 - 2Sn + 1

n

(5.6 )

(5.7)

.Both of the methods converge to the same temperature

- profiles.

An estimate of the total error involved in the analysis

- can be attained by comparing the theoretical reguirement of 

zero heat flux during a cool-down cycle (heater shut off) to 

the actual numerical results. For the perfectly insulated, con­

dition the energy in the system remains constant as does T, 

which is proportional to the system energy. Therefore, any 

variation in the value of T, as numerically computed, at the 

beginning and end of a cool-down cycle is error.

% ERROR = 100 x T ini1Llal~.T fln-1- (5.8)J. iniLia,!

The maximum error encountered for any cool-down cycle 

and for any data case is less than one-half of a percent.



CHAPTER VI

RESULTS

The majority of the results of the computerized anal­

yses are displayed graphically. Therefore, each figure (graph) 

is presented and discussed individually. For presentation pur­

poses a nominal data case (Case 17, Table 4.5) has been chosen. 

The effect of each parameter is then demonstrated while all 

other parameters remain fixed at their nominal values.

The first typical result is demonstrated in Figure 

6.1; it is a temperature profile for the nominal data case 

(Case 17, Table 4.5). Curves 1 and 2 are intermediate profiles 

for 1/3 and 2/3 of the time reguired for the can wall to first 

reach T ; Curve 3 is the temperature when the can wall first max' 
does reach T . The remaining odd numbered curves correspond max y
to times when the can wall heats to T . and the remaining max' y
even numbered curves correspond to the time when the can wall 

cools to T . . Curve (16), the last profile, occurs when the min ' '
can content's temperature at the centerline is greater than or 

egual to Tm£n} and the wall temperature is less than or equal 

to T . Notice the flatness of this final profile, max
Figure 6.2 demonstrates that T remains constant 

(except for round off error) during a cool-down cycle (line

48
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R (Dimensionless)

FIGURE 6.1

TYPICAL FAMILY OF CURVES FOR DIMENSIONLESS TEMPER­
ATURE VERSUS DIMENSIONLESS RADIUS
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FIGURE 6.2

CONSTANT SYSTEM ENERGY DURING COOL-DOWN CYCLES 



51

segments AB, and CD in Figure 6.2) (q = 0). This is consis­

tent with the criteria of zero heat flux (no energy leaving 

the system) that exists during cool-downs. Figure 6.2 (Case 7, 

Table 4.5) is plotted using a large scale to show more clearly 

the constant energy steps that occur during any data run for 

cool-down sequences.

Figure 6.3 represents the effects of heat flux as a 

parameter on a plot of T versus heating time for the nominal 

data case (Case 17, Table 4.5). The can size (R = 2.34 in.) ' o
2and the thermal diffusivity (O^= .01 Ft /hr) are held constant 

in Figure 6.3. As the heat flux applied at the radial surface 

increases, the total heating time decreases; and T increases 
at a faster rate. For T = T . (595° R) , the heating time ismm ' y
approximately .40 hours (1420 seconds) with qo = 1200 (BTU/hr- 

2ft ), and approximately .70 hours (2585 seconds) with qo = 400 
2 (BTU/hr-ft ) a decrease of 80 percent in heating time for a 

corresponding increase of 200 percent in heat flux. The cross­

over of the curves of Figure 6.3 that occurs during low times 

is caused by the longer initial heating periods (initial time 

the heater is on and the initial time that is required for the 

wall to first reach T ) required for the lower surface heat 

rates.

Figure 6.4 represents the effects of thermal diffusiv­

ity as a parameter on a plot of T versus heating time for the 

nominal data case (Case 17, Table 4.5). The can size (R = * o
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2.34 in.), and the heat flux (q^ = 800 BTU/hr-ft ) at the can's 

radial surface are held constant in this plot. As the thermal

diffusivity increases, heating time decreases and T increases 
at a faster rate. For T = T . (595° R), the heating time ismin '

2 approximately .13 hours (470 seconds) forO/= JD2 ft /hr; and
2 approximately 1.63 hours (5875 seconds) for O(= J0055 ft/nr, an

increase of 1150 percent in heating time for a corresponding 

decrease of 265 percent in thermal diffusivity.

Figure 6.5 represents the effects of can size (outer 

radius) as a parameter on a plot of T versus heating time with 
constant flux (800 (BTU/hr-ft2-° R)) and thermal diffusivity 

2(.01 (ft /hr)). As the can radius increases, heating time

increases, and T increases at a slower rate. For T = T . • min
(595° R), it takes approximately .06 hours (225 seconds) to

heat a small Skylab food can (Rq = 1.34 in.) and approximately 

.49 hours (1780 seconds) to heat up a large Skylab food can

(Ro = 2.34 in.), an increase of 690 percent in heating time 

for a corresponding increase of 75 percent in.can radius.

Figure 6.6 represents the variation of food centerline 

temperature with time with thermal diffusivity as a parameter 

for the nominal data case (Case 17, Table 4.5). As the thermal 

diffusivity increases heating time decreases and Tc increases 

at a faster rate.

An oscillation between consecutive data points is dis­

played in Figure 6.6; the oscillation generates two parallel
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FIGURE 6.5

MEAN SYSTEM TEMPERATURE VERSUS TIME WITH
EXTERNAL RADIUS AS A PARAMETER FOR

THE NOMINAL DATA CASE
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Heating Time (Sec. )

Parameters

R = 2.34 (in) 9 q° = 800 (BTU/hr-ft2)'

FIGURE 6.6

FOOD CENTERLINE TERMPERATURE VERSUS TIME WITH THERMAL
DIFFUSIVITY AS A PARAMETER FOR

THE NOMINAL DATA CASE
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curves. The data points in the higher valued curve correspond 

to heat-up solutions (equation (2.16)), and those in the lower 

valued curve correspond to cool-down solutions (equation 

2.30)). Also, three additional data points for low times are 

plotted from equation (2.24) corresponding to the first three 

temperature distributions analogous to those of Figure 6.1. 

The random effect noticed for the individual data points at 

the centerline as contrasted to the smooth curves of the aver­

age property T versus time (e.g., Figure 6.3) is caused by the 

use of mean initial conditions rather than initial distribu­

tions when changing from a heat-up to a cool-down solution (or 

vice versa). The curve fitted to this data is linear. The 

differences between these three solutions (equations (2.16), 

(2.24), and (2.30)) are demonstrated by Table 6.1.

Figure 6.7 represents the variation of food centerline 

temperature with time with heat flux as a parameter for the 

nominal data case (Case 17, Table 4,5). As the heat flux 

increases, heating time decreases; and Tc increases at a 

faster rate. The comments, stated for Figure 6.6, about the 

oscillation of consecutiv.e data points apply to Figure 6.7, as 

well.

Figure 6.8 represents the variation of food cylinder 

surface temperature (measured by the thermocouple) with time 

for the nominal data case (Case 17, Table 4.5) with thermal 

diffusivity as a parameter. The plot consists of data points
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Heating Time (Sec.)

Parameters

R = 2.34 (in.)
<X= «01 ft /hr

FIGURE 6.7

FOOD CENTERLINE TEMPERATURE VERSUS TIME WITH HEAT
FLUX AS A PARAMETER FOR THE NOMINAL DATA CASE
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Heating Time (Sec.)

Parameters

R = 2.34 (in.) 
q° = 800 (LTU/hr-ft2)

FIGURE 6.8

FOOD SKIN TEMPERATURE VERSUS TIME WITH THERMAL
DIFFUSIVITY AS A PARAMETER FOR THE

NOMINAL DATA CASE
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corresponding to the cyclic heat-up ^T|wajj = Tm£x = 610° R) 

and cool down (T| ,, = T . = 595° R) times of the can wallI wall mm 
during the heating process. The general effects suggested by 

Figure 2.2 are present in this plot. They are the increase in 

time for each cool-down cycle as the number of cool-down cycles 

increases, and the decrease in the heat-up cycle time for each 

cycle as the number of cycles increases. The latter effect is 

diminished visually because of the overall scale in Figure 

6.8; but, nevertheless, it is present in the graph.

The heat-up times are very short (less than 3 seconds) 

for the canned food data ranges because the low capability of 

foods to conduct heat allows the heat to remain at the can wall 

where it is first applied. This causes the wall temperature to 

climb rapidly to T , causes the heater to shut-off, and initi- 

ates a cool-down cycle.

Cool—down cycles are relatively long, again, because of 

the slow conduction of heat into the food’s interior.

The relative size of cool-down and heat-up cycles is 

readily apparent from Figure 6.8. AsO(increases, heating times 

decrease in Figure 6.8.

Figure 6.9 represents the variation of food cylinder 

surface temperature (measured by the thermocouple) with time 

for the nominal data case (Case 17, Table 4.5) with applied 

heat flux as a parameter.
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517 1034 1551 2068 2585

Heating Time (Sec.)

Parameters

R = 2.35 (in.)
<£= .01 (ftVhr)

FIGURE 6.9

FOOD SKIN TEMPERATURE VERSUS TIME WITH HEAT FLUX AS
A PARAMETER FOR THE NOMINAL DATA CASE
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The same general effects noted for Figure 6.8 also 

apply to Figure 6.9.

Figure 6.10 represents the variation between heat flux 

and total heating time with thermal diffusivity as a parameter. 

The can size is held constant (R = 1.34 in., for the small 
Skylab can). The constant O< curves are approximately linear 

in Figure 6.10. The general trend is that the larger values 

of q for a given OC, require a shorter heating time. Also, 

the larger constant O<lines required shorter heating times for 

any given heat flux.

Figure 6.11 represents the variation between heat flux 

and total heating time with thermal diffusivity as a parameter 

for the large Skylab can size (R = 2.34 in.). The trends are 

the same for Figure 6.11 as they are for Figure 6.10.

From the twenty-four data cases submitted to the com­

puter (Table 4.5) the range of heating times to be expected 

for the Skylab food system has been determined. The informa­

tion is displayed in Table 6.2, page 65.

Finally, the impact of the infinite cylinder assump­

tion on the results of this paper is examined. Since there 

are no available solutions to the finite cylinder with the 

constant flux boundary condition; the assumption is made that 

the heating time difference (error) between infinite and 

finite cylinders is approximately the same for constant
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66
TABLE 6.2

RANGE OF HEATING TIMES TO BE EXPECTED FOR 
SKYLAB CANNED FOODS

aReference Table 4.5.

Data Case3
Heating Time 

(Hour s) Comments

Case 3

Case 17

Case 22

.02 hours

.5 hours

2.1 hours

Shortest Time

Nominal Data Case

Longest Time

temperature boundary conditions (where the error is known^) as 

it is for the constant flux boundary condition (error unknown). ;.'v 

For the constant temperature boundary condition the ’

error is derived from a plot of heat transfer percentage 

(finite flux/infinite flux) versus Fq with the cylinder slen- 

derness ratio (height/radius) as a parameter. The worst case 

error determined by employing this assumption is 20 percent.

F. Kreith, Principles of Heat Transfer (Scranton: 
International Textbook Company, 1963); also personal communi­
cation between this investigator and Charlton Chen, May 24, 
1972.

2Chen, loc. cit.



CHAPTER VII

CONCLUSIONS

The range of heating times (Table 6.2) is acceptable 

for the detailed schedules presently incorporated into crew 

activity timelines. However, the requirement that a crewman, 

at some time in the future, might desire or require a quick, 

hot meal that is not on a schedule deserves consideration. 

Since the foods are extremely slow heat conductors and the 

cabin pressure limits the duration of the wall flux, other 

means need to be examined to optimize the system heating time 

or to create a more optimum heating system.

Reduction of the heating time range of the present 

system type would require changes in existing design parameters. 

Several paths of optimization could be considered. The first 

might be to optimize the area of the can (or container) exposed 

to heat flux (e.g. , long thin cans, large flat rectangular 

containers, etc.). The second method might require a small 

pressure chamber where the environment pressure could be tem­

porarily increased causing an increase in acceptable Tmax 

levels and, consequently, causing the heater to not be shut 

off as frequently. This would shorten the heating time.

Other methods should also be conceived and investigated that 

could improve the system performance.
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The possibility of a different system opens a large 

spectrum of techniques some of which have been critiqued and 
discarded by the designers of this system and similar systems.^" 

However, the possibility of radiation ovens (heaters), hot 

liquid (e.g., water) heating systems, and other devices should 

be investigated for future space flights. '

Such a system, once developed, would allow much greater 

freedom in planning and scheduling prior to any lengthy mis­

sion, and would allow greater flexibility in spontaneous time­

line changes during a space flight.

S. J. Lis and P. P. Nuccio, Method of Heating Food in 
Aerospace Flight, Techn. Doc. Report No. AMRL-TDR-63-135, Bio­
medical Laboratory, 6570th Aerospace Medical Research Labora­
tories, Aerospace Medical Division, Air Force Systems Command, 
Wright-Patterson Air Force Base, Ohio, December, 1963.
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APPENDIX A

Change of Variables in Solution of Carslaw and Jaeger 

to the Variables of this Thesis

The equation (1) is from page 204 of Carslaw and Jaeger.'

oo
2 fa , 2 \ -KOf ^t/a^

v = / r' f(r' )dr' + ^2" / 6 n (1)
: a2 a2 z-—1,0 n = 1

J (r /a) [
—--- ---- X J r,f(r,)J (r'c^ /a)dr1

2 0 ° nJo (^1,

The boundary conditions associated with (1) are:

Initial temperature f(r) (2)

Zero surface flux (3)

The variables in (1) are:

v = temperature at a particular radius and (4)
time

a = outer radius of cylinder (5)

r = radius variable (6)

r' = dummy variable of integration (7)

t = time (8)

= positive roots of J^ (9)

The following substitutions for the variables are

made in equation (1).

6 = (10)
max
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O(= K (11)

R = a o (12)

=«n (13)

m = n (14 )

T(r,t=0) = f(r' ) (15)

The following definitions are also substituted in 

equation (1):

T(r,t = 0) dr (16)

P o<t-em2
r = ——— om R 2

o
modified.fourier modulus (17)

mI
J ('P )rdr 
o ' m

0
(18)

Then as a final result:

0 T -T max
(19)

Equation (19) is the same as equation (2.30) which is

a special case of the general result equation (2.16).



APPENDIX B

Change of Variables in Solution of Carslaw and

Jaeger to Variables of this Thesis

The equation (1) below is equation (11), Chapter 13,

page 329, of Carslaw and Jaeger. The equation is stated in 

terms of the variables of Carslaw and Jaeger.

— F a . 2  o I 2kt r  1_- K ) 2 + - 2 - 4
[a 2a

OO
„ \ , n 2^. , 7-x Jo(rcfs/a)

- 2 > exp(-k« t/a > 2 j (e< )
4- 1  s o ss = 1

(1)

The boundary and initial conditions associated with

(1) are:

a. Constant heat flux Fo
b. Zero initial temperature

The variables in equation (1) are:

v = v(r,t) = temperature distribution (2)

F = heat flux (3)o
k = thermal diffusivity (4)

a = outside radius (5)

r = radius (6)

t = time (7)

O<g = positive roots of J^ (8)

K = thermal conductivity (9)
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The substitutions required to convert equation (1) to

the variables used in this paper are:

T = v

q = -F ^o o

R = ao

M = s

e<= k

(10)

(11)

(12)

(13)

(14)

(15)

Applying equations (10) through (15) to equation

(1) the following result is obtained:

Applying the forthcoming definitions to equation (16) 

will complete the change of variables.

F = , fourier modulus (17)
O -n 2 '

Q = —° , flux conduction parameter (18)
Jx

R = r/R , dimensionless radius variable (19)o
/•R

- 2 r °T = 2/R ZJ T(r,t=0)rdr = 0 (20)
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T (r t) — TQ + —--ijr , dimensionless temperature (21)
max

F om modified fourier modulus (22)

Equations (17) through (22) applied to equation (16)

give the result:

(23)

This is equivalent to a special case of equation (2.16)

of the thesis, for the same boundary conditions.



APPENDIX C

Change of Variables in Solution of Lis and Nuccio 
to the Variables of this Thesis'*'

The equation (1) is from page 14 of Lis and Nuccio.

(1)

The boundary conditions associated with (1) are a con­

stant heat flux and a constant, nonzero initial temperature 

distribution.

Q = temperature excess above initial temperature (2)

= T(r,t) - T(r,t=0),for T(r,t=0) = constant

F = heat flux (3)o
o< = thermal diffusivity (4)

= time (5)

k = thermal conductivity (6)

r = radius variable (7)

r^ = outside radius (8)

= positive roots of (9)

The following substitutions for the above variables

are made.

See discussion on page 2/ before applying (1).
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q = F ^o o (10)

K = k (11)

R = r, o 1 (12)

(13)

M = N (14)

The following definitions are used to complete the 

conversion of (1) to the variables of this thesis.

F =^-t„ , fourier modulus (15)
o R 2 

o

CT I^iQ = Ho o , flux conduction parameter (16)
K

R = R— , dimensionless radius variable (17)
o

- 2 rR
T = IT (r,t=O)rdr = T(r,t=O), for (18)Rd JQ

T(r,t=O) = constant

T (X*  t ) ~ T0 = ——1----—ip. , dimensionless temperature (19)
max

F
°m R 2 

o

modified fourier modulus (20)

Equations (10) through (14) and then equations (15)

through (20) applied to equation (1) give the result, (21).
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This is equivalent to a special case of equation

for the same boundary conditions.

(21)

(2.16)



APPENDIX D

Change of Variables in Solution of Langford to

the Variables of this Thesis

The equations (1), (10), (11), (12), (14), (15), and 

(16) are written below and their variables defined as they 

appear in Langford. Equations (13) and (17) are written in 

a more programmable form than the form of Langford.
(1) 

CO
= 2EZ f^n (t) Cn (x2/4) " % (t) En (x2/4)) 

n = 0

The variables in (1) are:

M(X,t) = dimensionless temperature at any point (2) 
in the cylinder at any time

X= f- (3)
o

(4)
at

^-(t) = dimensionless temperature distribution (5) 
at the surface R for all timeo

%<t) -Jr (6>

q(t) = dimensionless temperature distribution (7) 
at the surface R for all timeo
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E°(Z) = In (Z/Zq)

E1(Z) = Z(ln Z/Z - 2) + Z (In Z/Z + 2) 
o o o

2E2(Z) = (In Z/Z - 3) + Z Z In
O 4 O Z

O

o
+ (In Z/Zq + 3) Zq /4 

for n>2

C°(Z) = 1.0

C1(Z) = (Z - Z ) - Z ln(Z/Z ) 
o o o

(8)

(9)

(10)

(11)

(12)

(13)

j - 1 
nrr

(14)

(15)



83

C2(Z) = (Z2 - Z 2)/4 + Z (Z - Z ) * (16)
o o o

- Z (Z + Z /2) ln(Z/Z ) o o o 

n - 1, Zn - Z n Z 3
-n(Z) = -Z En - 1 + ----- - ) -2-

(n<)2 jZL-.1 (j,) (17)

The following variable substitutions and definitions 

are made in equations (1) through (17).

R = X (18)

R /4 = Z (19)

1/4 = Zq (20)

0(R,t) = U(X,t) (21)
6(Ro,t) = f(t) (22)

0^(R ,t) = dn/dtnrf (t )1 (23)
no *-  -*

q (R , t) = q (t) ( 24 )n o n

index m = index n (25)

Applying equations (18) through (25).to equation (1) 

and’equations (10) through (17) to (1) gives the following 

results:
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OO

9(R,t) = ) |0m(R ,t) Cm(R2/4) - X q (R t) (26)
' / L m ° m °

m = 0

Em (R2/4)|

The auxiliary equations for E and C become:

E° = In R2 (27)

19 *)  *)E = R /4 (In R - 2) + (In R + 2) (28)

O 9 p 2 nEz = ^7" (In Rz - 3) + yr- In Rz + 1/64 (29)256 16

9 (In R + 3)

(31)1.0C°



85

19 9C = 1/4 (R - 1) - 1/4 In Rz (32)

C2 = K 1 + 1/16 (R2 - 1) - 1/16 (R2 + ?5) (33)

In R2

_m_  Em " 1 R2m - 1

4 4m (m-)2
(34)

i rcm - j + e™ 1 j 
4d (j,)2 |_C 4 (j + 1).

m>2



APPENDIX E

Change of Variables in Solution of Olcer to 

the Variables of this Thesis

The general result from Olcer, specialized to the gen­

eral boundary conditions of this thesis is:

a
F (r) rdr + -K-^—■ + W f ~ (i)

txa. ZIx 1 Z Z j \ J- /0 \ a /

Where:

a = outer cylindrical radius (2)

F(r) = initial temperature distribution (3)

r = radius (4)

k = thermal diffusivity (5)

K = thermal conductivity (6)
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1

(8)Q = applied constant heat flux

(9)time

The following substitutions for the above variables

will be made:

(10)

(11)

(12)

(13)o <m

(14)Q

the following variable groups are defined:Also

(15)fourier modulus

(16)flux conduction parameterQ =

(17)dimensionless radius variable

(18)

(19)m

T dimensionless temperature (20)

F o

R 
r ° 
jT(r,t=0) rdr 
0

2__
R 2 

o

o<t
R 2 

o

Q — -i ■
T max

R - R

R = a o

q R ^o o
K
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J (P )rdr o 1 m (21)

F om
O<t>4m2

R 2 
o

modified fourier modulus (22)

Then, upon substituting equations (2) through (22)

into equation (1), we have:

0 (F , F , R , R, I , Q,->P )
o' om*  o' • m' ' 3 m' 'om (23)

/.t

+

A more appropriate form of equation (23) for the spe­

cial case of a zero heat flux boundary condition is:

0(F , F , R , R, I , Q,>P , )o' om' o' ' m*  ,3m' ’om (24)

T--- I QFo + 4 (r2 - y
max I
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The auxiliary equations associated with equation (24) 

are:

T = 2__
R 2 
o

T(r,t=0)rdr (25)

T(r,t=0) (26)

The equation (24) and its auxiliary equations (25) and

(26) have several special cases that are of interest. The sim­

plifications are stated in the main body of the thesis.



APPENDIX F

Superposition of Solutions from Appendix A and

Appendix C to Get the Constant Initial 

Temperature Result Equation (2.24)

From Appendix A, equation (19):

oo

max
m = 1

let T = T(r,t=0) (1)

From Appendix C, equation (21):

F o

oo

' 2 
m om J

To get the total solution the following superposition

is performed:

O4. 4. -1 total Q1 + 02 = 0 = Eq. (1) + Eq. (2) (3)

The result is:
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This is equivalent to equation (2.24) which is the gen­

eral result for a system with a constant, 

perature distribution.

nonzero initial tern-



APPENDIX G

Computer Program, Program Flow Chart, 

and Sample Printout

The following pages consist of a combined program list­

ing and flow chart (pp. 33-36) and a sample printout (pp. .93- 

119) for data case 3 (Table 4.5).
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Anu? FOOT OF EESSFL ..<0, DIVIPFO RY P.'TSTDE RADIUS CF CAM VI*
AX= ALPHfJ/'jf FPIC ACRAY UHTCH CWTAfNS THE TITLE F^R THE ABSICCA1-. n, 

EACH C-cePH •
AY= ALFHAMHERIC ARRAY WICH CONTAINS THE TITLE FOR THE ORDINATES •

CF EACH CFAPH •
COUNTS FL OAT P.3 PT. VALUE CF INDEX. NA I , MINUS WE e
DR= RADIAL CrcDJNATE INCCtr-WT [TN] •
DT= TjrE Tf.CRFrENT (SEC) *
ERRs FAX ALL.X'ADtE rcc-iq FrrjFFH TcpP AT CAN'/rnnf) INTERFACE. AND T« 
ERR2= FAX ALLCVADLE EccrR ?FTt-EEN TFrC AT F^py CEN’TFLINE AND tmi*;*  
ERR3= r.AX ALLWASLE ERROR BETWEEN SUCCESSIVE TEPmS CF THE tefpepat* 
PROFILE •

•C F0= FOURIER FODULUSt DLES5) •
•C N= NO. CF TERMS OF THE BESSEL SERIES aEOUTRED <
♦C NRI= NO. OF RADIAL C^FDINAT INCREMENTS. PLUS WE •
♦C C= flux CWDUCTICN Pafa^ctfc (R) •
*C CUirnv= UNIVAC HOB $USs0Vttne that produces niCRPFILfn GRAPHS »
•C ROOT= FOOT CF THE BESSEL FUNt. J1(F0'3T):0 •
•C Tx TTnE(SEC) •
•C TBAR= MEAN TmCPmal LEVEL CF CAN CONTENTS, FOR A PARTICULAR INITIAL*
♦C TEMPERArjRE OISTRIB’JTIWCR) •
*t TD= THERMAL DIFFUSIVITY re ^AN CWTENTS riN2/SEC) •
•C TEMPx TE^P. FOR A PASTfCVLAc PAOfUS. Tfrc VALUE. SVnrro over ALL N*
♦C TErPO= ARRAY CF TrrBFPA'".'cE rsDF.’ATES T0 BE FLATTED ON niCBOFILn F»
♦C the FIR5T(LCt-EST> Tfrc VALUE fR> •
•C TEMPU= TEMP AT CAtj/FC,'D JN'fffaoE PfR A PARTICULAR TirF(R) •
•C TFETAx CLESS TEMPEFATjer DISTRIBUTION •
•C TIME= AtPAY nr TirE VALUES FOR Umjch LQLL ’TEMP TS AT TMAX OR TMINC*
•C TIN=*VALUE  CF 1NTF0,6al tpap cviE APBcrxirAT^v (IN2-R) •
*C TK= THERMAL CIADVCTIVIFY re can CW’Ff.tR (BTV/HR-FT-R) •
•C TMOX= TAX ALLPL.SBLE VALLE fF SYSTEM tt-p AT ANY PnlNT(R> *
*C TMIN= LO-FP SWITCHING VALUE CF SYSTEM TEMP MEASURED AT CAN/FOOD •
•C INTERFACE^) ♦
*C TOI= VALUE CF INTEGRAL FP^n trap POLE approximation (IN2-R> •
•C Xx RADIAL CCS?INATE fCIMENS!WLES5\ XcR/PD •
•C X0= AFSUTENT PF BESSEL fl*.C  JO *
wt Xl= ARGITFNT CF EFSCFL FU’.C JO •
*t Y= ARRAY OF TEMP C»DINATE VALUES Tn BE PLOTTED ON MICRnFTLH, LE. •
•C FOR A PARTICULAR RADIUS a\0 TJCE VALLEf«> •
• DTrENSIW TEMPI 31. ?s<? > AXf 22).AV( ?2 ).AX1( 22 ).AJW RO),ROPT( to )•
• l,AnU(AO).X( 3M.VC 31 ).TF-?nf  3) ).Tnt 31 ) JOlOl) ,T?NfRO) •*
• 1,TIME( 399),F0< 399 ),TtcTA( 3], :«99),TBARf 399),AJ0( 31 ,RO),AY1( 22) »• FEAOfS.SS )(AX( J )/1-1, 12) •
• READf5,55) (AYfI), 1=1,12) •
• -READ(5,55) (AXlf I),I = l,l?) ♦
• REAC(5,55> (AYHDJ = 1,12) •
• 55 FORMATf12A6) •
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! 
I 
r 
T

«C---------------------------------------------------------------------
•C BEAD THE POOTS IT THE BESSEL FL'hCTIOH, JI •

  -

I
I
!

»**•••< *•**•»*•*•••*••**<•*••••••**
A • BO 130 1=1,36.5 •
A •»<••*»•****»»*•«■•»  ••**•  v« •« mi #•«*«•««•«  i*e***««<«e  e»
• 1
A !
A I

A • BEADIS.2301 POOTt I >,KOOT( 1*1  l.ROOTt 1*2). POOTt r+3>.P00T( !♦*  > •
A •••<•♦»••♦«•••«»»•«••<»•**•<•***»•••******••**•»•*•••♦*••«*•**•*••«»*««>*
A I
A I
A I
A •**»»»»MM»X4«»«MMMMMMeMM  *«*« MM<*«•*««  «« ***MM••»»«**«««■«««»«*»«**«»«.«**<**
...................• 130 C’riTP.i'E •

• 230 FtTfiATtsno.S 1 «

I 
I
r

 ,c-------------------------------------------------------------------- -
•C BEAD IN SVSTEH PAFAFETEAS •  «t-------- ----------------------------------------- ------------------•
-***«***»*««<  MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM  MM MM MMMMMMMMMMM

1
V<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
I D

eee<»Me*MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM*MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM  C
• 31 FFSDI5,56> RO.TC.TFAX.TMPJ.CR.DT.TI.SPT « 0
e 55 FCWATC 7F10.3.110) » D
e 32 FEADt5,57> N.TK.OO • 0
■ ST FCRflATC I10.2F!0.3> • 0
«*««M»**««MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM*MMMMMMMM*  Q

1 D
I 0
I 0

wee•••*•••••••«•*»•*•• a•*«•«•••••••••••••«*••••••••••••••••••  Q
 wC---------------------------------------------------------------   D

«€ INITIALIZE ARRAYS to ZERO • 0 •C-------------------------------------------------------------------- • D

I 0
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ire

I* 1® I D
1 0
1 D
r d •

A.......................................• D058 1:1,31 • 0

* r o
A I 0
A T 0
A eeiaaaQ
A B.................................. » 0058 3=1,399 . 0

AB I 0
AB I 0
AB I 0 <

A B C.............................. • 0058 K=1,SO • 0

ABC I 0
ABC I 0
ABC I 0
ABC ••«««*«**««.*-««»«««•«••**«««««••*••««««*««•»*««««»«*«**«*«*««*«««*>«««««*•*  q
ABC • TIN(K)=O. * D
ABC • AJOt I,K 1=0. • 0
ABC • AJ1IK )=0. • D
ABC • AML'tK 1=0. • 0
ABC • X! n=0. ♦ D
ABC • V!I)=O. • D
ABC • TEMPO! 1 )=0. • D
ABC * TO!T)=O. • D
ABC • TOK 11=0. , • 0
ABC • TtnE(J)=O. • 0
ABC • TBAR!J)-O. • D
ABC , • F0<J3=0. ’ • 0
ABC » THETA(l,J)zO. • 0
ABC • TEIIPC I,J>=C. • 0
ABC »•••••.••• ae 0
ABC J D
ABC ! 0
ABC I 0 "
BBC ......................................................................... o
.........................................♦ 58 CONTINUE ♦ D

d
1 0
I 0
I 0

0,r--------------------------------------------------------------------- n
*C MITE HEADINGS AM) PRINT CUT SYSTEM INFORMATICS • D
eC--------------------------------------------------------------------- D
• MTTE(6,77r7) • D
• MITE(6,7777 ) • D
• WRITE! (*, 7778) • D
• 7778 FORMAT! S4*!,‘NEW DATA CASE*) • D
• WRITE! 6,7777 ) • D
• WRITEI6.7777) • D
• 7777 FORMAT! IX,*---------------------------------------------------- - 0
« J------------------------------------------------------------------ ---------------------------------------- - o
• 2-----------•) • D
• WR!TE!6,98n ) • D
• 9811 FORMAT! 55X,'ROOTS CF* JI*//) • D
• URITE(6,98I2) ♦ D
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F!

i

DO 9813 J=1,*tO

A

.• 9813

1099

m

i 
i

D 
D 
D 
D 
D 
D 
D 
0 
D 
0 
D 
D 
D 
D 
0 
D 
0 
0 
D 
D 
0 
D 
D 
D 
D 
0 
D 
D 
D 
D 
D 
D 
0 
D 
D 
0 
D 
D 
D 
D 
D 
D 
D 
D 
D 
0

UPrTE(fr.9?l«l) J.RnnT(j) 
981*  FOR^AT(N3l,!2,28X,ri0.5 )

kRTTEttJSg) RC‘,QO.TT.’n'iAX,‘miV,TX,FD,PB,OTetRIfN 
158 FORHAK

fcmiTE(6,77m

9812 FORHATf «i*«X e eK •, 30*  . <e00T( K »

• WRTTEf6,l?8) •
• 128 FCRMAT( ix,'cnDlUF  ,6X,‘FLVX^TX. Trr.p<  7X,E4,9X,‘Temp AT'* * *
< !,8X, *C(T»r>.* e8X, 'DTRFe,6X# 'INCPE^EM' ,3X, 4I\CREnENT',*iX,  'RADIAL *,6X*
• 2, 'TEPflS' ) •
• UPITEf 6.129) •
• .J29 FCPrATf 2X, prf)',5X,'fBn'/HR-'.frX, 4( R V.7X, 4TnP OF«,9X,'UMTCH FOD*
• lD4,5X,-(Bn.'/MR-',6X, •rpT2/,7X, '( INCHES>4,5X, '< SEC)4,5X,  PiCREr.ENT* * *
• 25,,?X,40F B$SL4 ) ' »
• H’HA’OVF CACO NOT FOOCESSED - PARENTHESES DON'T HATCH!!!!! •
• L^TTEff.ZCSA) •
• 2089 F0RnAT(p.x,'FT2)J7X r4$Y5TrMfP)'f3xilS  EATEM R P^X,‘FT-R >4,8X,'♦* *
• 2HR I'.SOX^CC^LESS)',^!,'SERIES4//) ♦
• W»ITEf 6,7777) #

CONTINUE *
K'RfTEt 6,7777 ) •
WRTTE(6,1G99) •
FrR*1AT(61X, e5YSTFH PROPERTIES4//) •
URITE(6.127) ' •
FCRHAT( IX, *OL 4TER',5X, TAX MEAT* , AX.4 INITIAL * ,6X . TAX IHL'H' ,5X, 'MINT*

|P!Ufl4,7X, 'TMEPHAL ',6X,'THr^rAL *,5X,  'RADIAL ', 7X, 4TinE4,7X, 'NO. CF4,6*
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D 
0 
D 
D
D 
0 
D 
D
D

SECT1W CF PRPG CfR^ESPO*̂!^  TO INITIAL TprP DISTRIBUTION. 6ND TH 
HF-E FFQO FOR Th£ LALL 70 FIRST HEAT UP 10 TTAX.

Qt <D0*AD)/CTK»12. ) W D
1=©T • D

V»■««»«*••«»«»*«»*«•«•••»•»*••*••*•«»•••••♦•**••••  0
I 0
! 0
I D

seM********••<•**■»•«**•»»**•»•••••*»••*••«»*•»•••»»•»•»••»  0
....1............ • DG3201 K=!,H ♦

»»»•<•»»•♦»••*•<••*•*•«•»•  
I 
I 
I 

*•<4«<*•**«»««««»«««•«««<•«««•««»««•««**««*•••««««««>*«••«•*««•«••«***«*«  *
• WfK)= RPDT(K)/R0 •
< Xi^ PO»Ar.U(K) •
• AJK<)= BSStm J ) e

! 
I 
I 

•••••••••••axx»ee»ew»i*e »»»»»•«»♦* vex
B............B73301 J=1,NRT •
B ••*•»<••••  aeeevee*#»eeeeeeee*eeeeeeeveeeeeeeeeeaeeeaeeeeveaveev «»♦»»••»»»»
B I
B - T
B .• I
B •••<»••••••»•• **»*■«*«■«*««  *»**«»*««  *««*«*««»*
B • Cf".'M= Ftr-ATi J >-l. •
B • R= ctwr.cs •
B e XO= R»ReTT( K )ZFt? «
B • «UXJ,K>= Bsstrin.l) •
B • TtH J>=AJW J.K> -R-CR •

B !
B I
B I
B ••••••*«••••■  eeeina «««•««•«•*«*«•*«*•■»*««*««*«««*«  •««■««*■**««««««>««««*«
.................• 3301 CmilSL'E • 

r SLW^O. •
» «=SRI-1 •

D 
D 
0 
D 
D 
0 
0 
0 
D 
D 
D 
0 
0 
0 
D 
0 
0 
D 
D 
0 
D 
0 
D 
0 
D 
D 
D 
0 
0 
0 
D 
D 
0 
0

I
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* 
A

r 0 L
i D I.

D t
• 201 CWTIMT • D L
• TEMFUP T1 ♦ 2./(R0--2) • SUM? ♦( 2.*Q0«TD-T/(  TK*R0*t2.  ) )♦(RO»QO/( • 0 ' I
• 1 B.»TK»12. )) - (?.»Gn/(TK»P0«|2. > • SVH3) • D L
♦ ERR= !. - (TMAX- TErPU) • D L .
#e»ei v» »»«»«♦ n«*  e*erse»e» D L *

1 0 L
I D L
I 0 t

D L

T

* 2 Sl'HIx T •

' I
I 
T 

»»•»•»<»«

•C SECT CE PROG USED Tp rr>,rcATE Frn5T Twerp TErP OTSTRfBUTir^S, THE •
♦C DISTRIBUTION OCCURS LHEN THE LAIL FIRST REACHES Tr.AX, •
<C---------------------------------------------------------------------
• TTfiE(3)= SUMI •
• T!nEf?)= (SUM1»2.)/3. ♦
* TirE(I )= (SUMI/3. ) •
»•♦*»#»»♦»»•»•*»••»•*••*••« •»»»eee»»ie»»••••••<*••»•*•»•»••♦»»•»*•♦*••••••

I 
I
I

A................. • DO 20M 1 = 1,3 •

A T

D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
0 
D 
0 
D 
D 
D 
0
D 
D 
D 
0 
0
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f o
* I 0
A ! 0
A I 0
A *•«*«••*•*••■*•«»*•**«««•«■«*«*«*•««*••«««•*•••«•««*•««««••*«««*«••*«•*•** o •
A • F(Xt )= CTD«TinE<l )>zrR0»»2) « 0
A • T= TTrE(L) • D
A 0 v
A I D
A I D
A 1 0
A D s
A B............ .........* DO * 1=1. K9I • D
A B *•«**«  •♦»•#•»»»»»»»<*»••••♦*•*«•••••••••••*•••«•*•#••*•*•••  •«<»♦♦••*«••••• D
A B I D
A B I 0
* B I 0 <
A 8 *•*«***«*«««*»**»*••«*  V************************************ •«»«»«*«  »««*««« D
A B • COUNT = FL run I)-!. • 0
A B • R= COL’NT^DA ♦ D
A B • 51^2=6. ♦ D
A B * sun3=0. • D
* B D
A B I 0
A B I 0
A B ! 0
A B eve me •3ee3»*e»<BB»A»«BB«A«»*BB*»MB*«  «4> •»****<•.«•«»•«•«* D
A B C........ .........* DO 1201 K=1,N > D
ABC W»eeee»eee»eeee»*eee»«eeev»eee*e»»»»  e*****  •••<•«»*  v eeeeee •>» ee* D
ABC I 0
ABC ! 0
ABC 1 D
ABC 0
ABC • SUn2= SVM2*  (DEXPf-1 .eTD*6nL«(K  )»Anej( r )*T) mAJO< !f K )/( Aru< K )»AMU( K )• 0
ABC • l»AJ|(K>H • D
ABC , • $un3;'S’jns ♦ <OEXP<-l.»TD»Ani,t« >*T}»AJ(XT,K  >»TINfK >*TTZ  « d
ABC • 1(AJ1(K>*AJHK)))  • D
ABC •««**«•«•  eee»e»*»eee»*»<»e«»»e»eeeeeeee*e**eeeee»  e» ••<••*»•»«•••  M»ee«e*»»» D V
ABC 1 D
ABC I 0
ABC r 0
ABC •eee»*»*»»*e»»*e»w***»*»»w*<Meeeee»**eeee«eme»**»»e»*»»»»  ••••••••••»*•••• D
A B........... .........• 120! CCrjTTNVE * D
A B • TFnP<I,L>= TT ♦ <2./(*0»R0))«9jn3  - < 2.*00'(  TK»R0»12. ) 2.»» D
A B • 1 4)0*TD*T/C  TX-RD-!2.>) * (Pn,fiO/ f2.»TK*!2.))  • (( R/RO) —2-.5 ) * D
A B •»e»»e»eeeeeee»ee**»e»i»»*e*eee»»*eeeeee»<»e*me  •*••♦***»**<**•*  seeeeeeeee 0
A B I 0
A B I D
A 3 I 0
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I 0
B r 0
B V******************* *«««***••«*«*•••••• BB»»BBB»BBB»BBB«B«••«••••••••••••*« D
B * TRt.EO.l*  on TO ^50 *>>»D>»»>>V
B D * I '•
B ! 0 L
B I 0 I
B I 0 L'
B ****«• ■ »*i*««**«*««««  94BV************************************************** 0 I
B • TCTT)-= TEnP( T,L-1 )*R*DR  • 0 L
B 0 L
B I 0 L
B V<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<D<<<<<<<<
B 1 D
8 »»•»•»«•«**••»■••»•»••••••»*•»••••*• 0
B • ^50 Cnr;TVjijE w 0
B D »
B I D
B 1 D
B I D
B D

* CEWTJ?JL'E • 0
c

I 0
1 D
r D

D
• JFtt.EQ.l > GO TO 451 •»»D»>»»V
*«***«**«»*«'•««*««*«*«««**«««*•»«»«***«»«*«**«•*«•*««■«»*»«***«««««**«•**** 0 L

I D L
I D L
I D L

D L
■ sens=o. • D L
• KK=*iRT-I  e ♦ D L

* D L
1 0 L
1 D L
1 0 L

*** B*B|BB«***B*VB*BB**B***«*B*B*B**<*VBB*B*B**B*B4****B***** D L
B... __ • en 9204 i=2,kk * D L
B D * L
B I D L
B I D L
B I D L
B ••<••**•«*•••»••••••••••»»•••»«•••••••••••»•♦• a**************** 0 L
B • SL'nBT SLT?» TO n • D L
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14 t 
1 
I 
I

0 
0 
D 
D

L 
L 
L 
t

T
T 
T
T

0 ■ L V T
*. ........ ...» 002301 K=1,N ♦ D I T
A 0 L •T
A 
A
A

I 
I
I

D 
0
D

c 
L 
L

T
T
T

A ****«**•*« e*«««««*»*«««*•*••«»«*>*«> 0 L T
A B.......... , ....... ...*  DO 5CH 1=1/wRI • 0 L T
A B D I T
A 
A
A

B 
B
B

I 
I
I

D 
D 
D

L 
L 
L

T 
T
T

A B »•«•••••»•aaa««••»••••••••••••••#*•> •a*****************•*«*•*•*•*«••*••**** D ♦ L T
A 
A

8 
B

• COUNT: FLOATCI) -1.
♦ • R= CCUNT»DR

0 
D

L 
L

T 
T

A B • TOC I) = TErPf !,J-1 )»R vDR • D L T
A B * TOHI) = TErPC T, J-l )»R»A JOC T,K)«DR • 0 L T
A B D L T
A B I D L T
A 
A

B 
B

1 
I

D 
0

L
L

T 
T

A B 0 L T
A 
A

......... .... 50H CONTINUE
• $Un8=0. *

D 
D

L 
L

T 
T

A • 9JM^=0. 0 L T
A • KK=f.'RI-l D L T
A •*«*««**4«**««« *«*****••***«««««»«««*»* D L T
A 
A X

1
I

D
D

L
L

T 
T

A I D L T
A **<*••**(«*•«••*•****««**•*(«*(•**• «««*««*««***««•«»«*«••««**»«• a*««•«««*« D L T
A B........ .... V. . . .... DO N5CH 1=2,KX • D L T
A 8 0 L T
A 
A
A

B 
B
B

I 
I 
I

D 
0 
0

L 
I 
t

T 
T 
T

A B • ••••VW***************************«*B««**»**»««*««»*«*****»**««**»«*«»t** D L T
A 
A

B
B

* Sl'm8= SUMS ♦ TOC !)
• sun9= $UM9 ♦ TOK T> *

0 
D

L 
L

T 
T

A B D L T
A 
A

6 
B

I 
I

D 
D

L
L

T 
T

A B I D L T
A B D L T
A 
A

......... .... .50*1  CONTINUE
• TOl^ .5*  (TC(l) ♦ TOfNRT)) ♦ sung •

D 
D

L 
L

T 
T

A 
A

• TBAR(J)= T0M2. /(RH.?))*
• TIN(K)= .5»(TOU1) ♦ TOKNRI )) ♦ 9JM9 w

D 
D

L 
L

T 
T

A •«••••«•««•***••«••«*•••«« D L T
A 1 0 L T
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TErtPUsO. • 0 L "T

I D L T
V<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<O<<<<<<<L<<<<<<<T<<<<<<<<r 0 t T 2******•«««»« 0 L T 2

• 5 Sl'M2=0. • 0 L T 2
• CHECKS TEF.PW • D L T 2
»»♦*♦•****■♦********«**•*•**•***•♦*••••*****•* a*************************** 0 L T 2

I D L T 2
I D L T 2
I D L T 2

*««•«••*«•*•*•***•*•♦*»**•*•»•»*****••***♦♦•*•*••*••**•*****•♦<*•*•******« D L T 2
A............. ........... e DO 301 K=!,N • D L T 2
A ••••«««*««•»*•••*••*•*•***•*••••*»••••♦•*•••••***•»•»•«•**•»•••»*•»»<•*•** D L T 2
A I D L T 2
A 1 D L T 2
A I D L T 2
A *«*••««« we***********************************************«*»*«««««»*«*«««• D L T 2
A • $ur.2= $L'n2 « (tCElK -1 .*TC»Ar'J(K  K >.T1.TIN( K 1>Z6J1( K >) • D L T 2
A ♦♦«*»»♦**•***<■**•**»*♦**»******•*»*•*•♦***•»******»*****»»***♦»*****»*»*♦ 0 I T 2
A I D L T 2
A I D L T 2
A T e L T 2
A ♦»»•••**•*•••••*•»*••**••*•*******•*»**•<*••««*»««* V********************** 0 L T 2

...........e 30! CONTTM’E • o L T ?
• TEFiPUs (P.aSUMZ/ROfCO) ♦ TB6C(J) * D L T 2
• ERRs 1. * < ThlM- TEFPU) • D L T 2
<*♦*•»•»•*•**  » •»***•••*  ** *♦**•*  «*«*•*»  ***-*v**r«v««**  **♦•*♦*»•**»•»**♦*•»*••* D L T 2

. .■ 1 D L T 2
I D L T • 2
I 0 L T 2

•*.•*••«■•***»*»*•*»•***••••••••♦•*••»»•**••**•«*****♦•*••«»•*♦**•••*•*•*«* D L T 2
• IF(FFR) 11,11.10 •:»»0>»V L T 2
♦»♦»**•♦•»•♦*•*•••••••««••••*♦**•••*••••••*•*••«<**•*♦*»♦»***<*»•»*•••••** D H L T 2

! 0 H M L T 2
I D H L T 2
I D H L T 2

•»♦•**•»••••••••••••»«*•*•*••••••••••**•»••••*•*•*•••♦•*•*♦*•**•*•••*****♦ D H L T 2
* 10 1TE5T= rFIX(T/DT) • D H L T 2
♦*»••»••*♦*••••••••••»•*•••••••*•••**•***«•*•**••*•*••**»*•*»***»***••»*** 0 H L T 2

I D H L T 2
I 0 H L T 2
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T 0

A. 
A
.................. • CO 12 T-l.NR! • 0 

0
A T 0
A I 0
A 1 D
A •••*•»•«»•*•»•<•••1»••«**«««**«»••»••»«*••»«<••»•»••••••••«•••••••*«««*•*• D
A • CCJNTr FLOAT! 1) -1. « 0
A • R= CfX'NTvDR • D
A » S»jn?=O. * D
A D
A I D
A T D
A I D
A 0
A B............... • CO 2201 K=1,N • D
A 0
A B I 0
A B I 0
A B T D
A D
A B • $UM2= S>.'n2*  (FEXP! -1. »TC»An'J( K ).AMLI( K >»T > •TP« K ).AJ(K 1, K > >Z( A JI • D
A B • 1<K>*»2>  • D
A B ••«•««•«*«*«*«*«*••*«•  *«•»•*«*»»»«•*•««««•«««»«••• 0
A B ! D
A B I 0
A B 1 0
A B »<»»»»w*••••••••••**••»••••»♦»•»*»•»•••••••••» w*******•*••••♦*•»•»»«•»»•»• D
A ..................• 2201 Cr»,‘TIM'E • 0
A • TEHP(!,J)= < 2.»SUn2/RP»R01 ♦ TBAC(J) e D
A *««»«••«**«««•«*••***«•«•«•«*«*««»««••*■*•**«•** 0
A . I 0
A 1 0
A ' ' I D
A ••••••••••••••••••*•»••»••♦••••<•»■•«•••»»•••••••»••»»••*•*»»••♦•»••••«• vi D
.................. ♦ 12 CWTINVE • fi

• ERR2= THIN- TFmp(1J) * 0
*v wwv v vwvewwvvv vv« vw wwvvwvvvwvvvwa *«w*vv*w«**  vvvwvvw D

I D
I 0
! 0

••••••vvvvvvvv vvwvvv vvvwvvw vvvveevvvvsvvvvvvvevawwvvoeewvvvvvvvvavava 0

L T
L T
I T
L T
L * T 
L -T
L r t
I T
L T
L T
L T
L T
L T
L T
L T
t ;

L T
L T
L T
L T
L T
L T
L T
L T
L T
I T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T

. t T
I T
L T
L T

♦ IF(ERR2) 21,21,^1 •»»D»>»»V T
0 L T

I D L T
! 0 L T
I D L T
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DO 501

i

D 
D 
D 
0 
D 
D 
D 
D 
D 
D 
D 
D 
0 
D 
D 
D 
D 
D 
0 
0 
D 
D 
0 
D 
D 
D 
D 
0 
D

SUfi2= *■-*12  ♦ TFipf-1 .W7nV6P-nf K x >.T)/r firijf X )•■?)
SUfl3= Sfn3*  (DEXPC-l.eTD*fi*itj(x  )ee*e<K  )»T)»TT\( K ))/( AJK K ))

18 $L‘n2=Oe 
$L*H3=0.  
CHECKS

501 CMTIV.T
TEr.PW=-l_*f  2.*00fTTic*»0»12.  ))»5,JM2*r  2./( poppu-C SVn3*T0T  )
l(2.»C<*-TO*T)/(  ) ♦ Pn»00/(N.»TK*|2.  >
ERR= I. - (Trax- TEMPO)

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
I 
L 
I 
L 
L 
L 
I 
L 
L
L

T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T

T 
T 
T 
T

2
2 
2
2
2 
2
2
2 /.t
2
2
2 ?
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
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I 0 L 
L 
L 
L

T 
T 
T 
T

?
2
2
2

I 0
! 0
I D ■

*•«««*»*«•«»••«*•«•  •«««*««««««*•»««*•«•»»«*«*•*••«  V*************** D L T 2
• IF(ER»> 15,16,16 •>'>>D>»V L * T 2
•••««•« »»eeee.»«K*»  ••««•««•» Q H

I 0 H
1 0 H
I OH

L’ 
L 
L 
L

T 
T
T 
T

2 
2
2
2

Q H L T 2
* 15 ITEST= IFTXf 1/07) • D H L 7 2
♦»•♦«••**••»*»♦•♦■•**••<«•#•••**  »••<•***•<*••*♦»•»•••»••«*<••  D H

I D H
I 0 H
I D H

L 
L 
L 
*L

7 
7 
7 
T

2
2
2
2

»•*•••*•«  ••»♦»«•*•»«•••»•»<•<•••<♦»»*♦•*«»»»<««»»»  d h L T 2
• fFCITEST . ED .1) GO TO 189 •»»D>»M»>L»>V 7 2

L P 7 2
I D H L P T 2
I D H L P 7 2
I D H L P 7 2

**»*»««**«»*4**»«**««  «•«**•«««*«***«••***«»«*««***««•*«•«**«  •••«•«*«**•«•»  0 H L P 7 2
♦ ERR3= .003 - A95(1E^CU- CHECK) • D H L . P 7 2

0 H L P 7 2
I D H L P 7 2
I OH L P 7 2
I OH L P 7 2

<**•*«**»«•«*»*«««*««•»*««  »««*«««•»««««*»*•««****«***««*«««**»**«  •»««««**«*  D H f P 7 2
• IF<ERR3) 169,16,16 •»»D»>V L P 7 2

L P 7 2
/ I D H L P 7 2

V<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<O<<<H<<<L<<<<
' T DHL

7 
7

2 
2

L 7 2
• 169 T-T*DT  • D H L 7 2

! 0 H
r oh
I 0 H

L 
L 
L 
L

T 
T 
T 
7

2
2
2 
2

L T 2
• . GO TO 18 a»»D»>H»>L»»»>T»>»»^
<eewa^»v*»»»e<e<a*»eaaaaaa<«*»8#aaeaaeaaaa<aaea«e**»e»e*»*»ee*e»»»i»»»*#e  OHL T

DHL T
V<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<D<<<< L T
I D L T .

•»«*«*««v»««»««**««**i*****«««(*«*«*««««*a*««**»**«««***«**««»a**«««*>«**«  0 . L T
• 16 $uni= SLni  T   D L T* * *
• TinE(J)= 9ni  • 0 L T*
• F«J)= (TD-TlnECJ)) / (P0-»?) • D L T

•♦••••♦•••♦••••eeaeaaeaaeaaaaaaaaaaaaa D L T
I D L T



110

1
I 
I
1

•c GruERAimv cr tef.p orsTRiB'jTim for times wall temp is at tmax. • .c---------------------------------------------------------------------

I 
t 
I

*......................................
* 
*
*
A
A 
A
A
A 
A
A
A
A
A
A
A B..................................
A B
A B 
A B
A B
A B 
A B
A B
A B
A B
A 6
A B
A B 
A B 
A B

• DO 1? 1=1,  
*•«««««««««««««»««»«««««««««««******»«»«««««»
*

*****************************

• SUM?- SUM? ♦ IDETPr -l.•TD•anlJ<K)•en'J(K>•T)•aJ('( T,K)>/(6r>j<K>»flHU(»
• 1K>»AJI(K)> •
• sun3= $l'M3 ♦ (DFXP(-l.»TD»anu<K UA.M'JIK >»T>»AJ0( 1,K >»TIWK))/(AJ1»
• 1CK)»AJUK>) «
**««****«»••*»•«*««•»•«**««*««««»•«***«*««**«*«««»«««*«**•«*****«*«*«■«***

I 
I 
1 

**••**•****««*«**«•«•««»«««*••««•««*•«••*•«v******************************

1 
T 
I

*• « *««*«»*  i «*«»»«  «««*»•«
• cpjmtt flcati d -i . •
• R= enuNT-OR •
• SL'H2=0. «
• SL'fi3=0. •
«•*•*•«»««««*««««*««««**««**«»««*«»*««««««**«**«««**«**»««««««***«*««***»»

I 
I
I

• CO 1501 K=1,N •
***•»*«*««* V***********************************««««««*«**»»***«*«*»***«»**

, 1
I

- ’1

A....................................* 1501 C^TJNUE *
A ♦ TErP(I,J)= (2.*00*TO»T/(TK*RO* 12. )) ♦ <P0»00/(2.»TK*12.  ))•(( •
A • 1R/RO)»»2 - .5) ♦ (?./(Rf'»RO))*  inf - (2.*do/f  TOfiO«12. )) • 5Un2 ♦ •
A • 2 (2./(R0«»0)) • Sun3 •

A I

0 
0 
D 
0 
D 
0 
D 
D 
0 
D 
0 
D 
0 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
0 
0 
D 
D 
0 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D

L T
I T
L . T 
L T
L - T 
U T
L T
L T
L T
I T
L T
I T
I T
L T

« L T
I T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
L T
I T



Ill

19 CMTIM'E

I

T

'C-

•C'
EPR2= ThlK-TEKPII.J)

IF IERR2) 21,21.20

CO TO-22

1
I
1

I 
1

L 
t

L
I

SECTION CF FR'^FC'f Tv ar CHECKS !F Cf-LE'JiaTrn CENTER'. V.E tempecaT'JR- 
t-'ITHHV PRESCRIBED EcceR OF DESIRED CENTERLINE te^c( tt.in >.

D 
0 
0 
0

• D
• 0
• 0 

0 
0 
0

• 0 
0 
0

• D 
D

• 0 
D 
D 
0 
D

• D 
•»»D»>»»V T
• D L T

0 L T
D L T

- 0 L T
• D L T
• 0 L T
• D L T

D L T
D L T
D L T

t 0 L T
•»»0»>»»L»»»>a 
'• 0 L

D L
V<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<D<<<<<<<< 
I 0

• 21 k-RITECt.77771 • 0

I D
I D
I D

eC--------------------------------------------------------------------  o
•t FRINT-OVT (F UtAOltGS AF.’D TE^p VS. CA0TU5 VALUES FOR SELECTED TIME*  0 
<c-------------------------------------------------------------------- - 0
• WTT€Cfr,»28>  C • D*
• <128 F0P.6T(N2X,  •FLL'I CWJCTfrw^ PARArETERs.ElO.S,  ♦( R)4//) • 0** *

o
I 0
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! 0
I D
I D
T D

......................................................................... o
• DO 25 K=1,J e D

**««••« p
I D
I D
I D

••♦ivve p
* URTTEf 6.9226) T»r=(K y.rnf k ).75ORr K ).’frP( 1,K) • p
♦ 9226 FCPf^AU !CX, Tr rE=,.F10.5 JCX, TC-jciFR ^rD=  ,E 10.5,1 OX, ‘ TBA»=  ,E 10.» D* * *
* 15,!0X,'TErP AT CL=,E10.5//)  • D*
w WRTTE(6,26) • 0
• 26 F0RrAT(22X,<(R/R0MCLESS>4,29X,TErPERATJRE(DEG.R>\29X, <DLES$ TER  D* *
* 1PERATUPEV) • D

I D
I D
I 0

* DC*09  L=!,KRT a p

I D
I D
T D

aeaaaaaaaaavaaavaeaa*  w*a«a»*aa»*aaeaa»aae»*aa»aeaaaaaaaaaaaaaaeaaaaaeaaaaa  P
* COUNT- HCAKL) -1.  D*
* X(L )r CO.NT»DR/Pf? a p
* THETA'L,K)= (TErP(L.K) - TT) / (Trax-TI) • D
* UR!TE( 6,<27  >• J<L \ T?  pf L ,K ),TFFTfi<t ,X) • p* *
* A27 FCRnAT(29X,F10.3,35X,Fi9.3,35X,Fin, -»» « p
•aaaaaaaa a» *•*«  •••••♦« ••»a»»aaa**aa#a*»a»»  Q

,■ I • • 0
I D
T D

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa*  asaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 0
a <109 CWTINUE • D
* KRTTEt 6,<29)  a 0*
a A29 FPFnATflX,*  V///) a p
aaa*a«aaaaa*aa*aaaaaa*aaaaaaaa*aaaaaaaaaaa*aaaaaaaaa*aaaaaaaaaaaa*aaaaaaaa  0

I D
I 0
I D

 o
* 25 COTTIHVE • D
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A
 A

 A
 e

!
I 
!

».................. • CO Mt*  K = I,J •

* I
» I
A I
A •»•♦»•»•*•»••»»*••••
...................• Mtt> tWTVi'JF, •

• TEr^tX 1 )=0. •

H w********************************************* ««««««««« »■««««*«««•«««««»«*
* I
* I
* <• I

AB................ • DO 2C67 1=1,NRI .

* B I
AB ' T
» B I
A B <•*»♦♦•••*••**»•••••••*••••»*<»»••*•••*»•<•«»••••  *«•«*»■*••«•«««««•«*■•«••
A.....................................• 2067 V(L>- 7r^P(L,K) •
A » CALL C,JlXMV(0JH»,ftI,AY,-31,X,V) •

I

D 
0 
0 
0 
0 
0 
0 
0 
0 
0 
D 
D 
D 
0 
0 
0 
D 
0 
D 
0 
0 
0 
0 
D 
D 
D 
0 
0 
0 
0 
D 
D 
0 
D 
0 
D 
D 
0 
0 
0 
0 
0 
D 
0 
D 
0 
0 
0 
0 
D
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.......M»5 TFTPOfX )=1. * D 
* CALL C*J!KrV(-lr!K«,AXl,AY!,31,Y,TEnPn> • 0

**<«****««**«*««4««*«*•«««**«»*«•*«*»««**«••»*«*••*««**»«**«*«*«««*••*«*«*  D
I 
! 
I

w•*••*♦•»•<<*»*•»**»♦***  D 
a...................................... • oo *iot6  k=i,j • o

• GO TO 31 ♦
***««»»«*•«•«««**«•»««¥*••«**••««*¥«»»*•••  ««*«*«¥«*¥¥»* «»««««* V***********

a ••♦••*»*1*«*<»»*e«»*i**<*»e*ee«****»»e»»*i  »•*•»•••*••**»•*•»**•  •**»**¥»••*  0
a r o
a t o
a r o

a B..................................• DO <iOt7 t=l,f;ST • D
a B *•»•••••«¥<•¥••*•»••»♦••¥¥¥«•¥•»»•»¥•¥•»•»•••¥»¥•¥»•  «»»¥••¥••«•¥*••»»«•»¥¥  0
a B i o
a B ! D
a b i d
a B •*•*••*•¥¥*¥¥¥•«»  ***•**»»¥¥<¥•••¥*«<««•¥¥••¥¥«**•¥¥¥••«••¥»¥»»•¥•»¥»¥•¥¥¥¥  D
a....................................• sot? vrtu Tvt-nifL.K) • o
a • can C,Jirr-v<0,lH.-Ari.ev|-.3i-x,v) . o
a •<•••»»•••••¥¥•¥¥¥♦¥•¥»••••»¥¥¥»»>•»»¥¥»•••»*•••»»•¥¥»••••»»¥»¥•»¥¥•»*»•••  Q
a 'i o
a •' i o
a i o
A D

-........... • *iCt6  CONTINUE • D
•♦»••••¥¥•••¥•¥ *»»¥••¥¥•¥»•¥¥•»»•♦*»  ¥•¥•¥¥*♦•¥¥••«<•»¥¥¥¥¥¥  »¥¥¥¥***••¥  **««  0

I D
I D
I 0

*»«¥«**«*«»¥»•¥*«*«««*«*»«««««•¥««*«»»««*■**»**••«••»¥«•••¥••««»««¥•«**¥**  Q 
• GO TO 31 •»»A
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IF

1

NEU CATA CASE

SPOTS OF JI

scon k >

1 3.83)71
2 7.01559
3 10.173N7
A 13.32389
5 16.97083
6 19.61586
r 22.76008

25.90367
1 29.09683
10 32.18968
11 35.33231
12 38.97977
13 91.61709
IN 99.75932
15 97.90196
16 51.09359
17 59.18555
18 57.32753
19 60.96996
20 63.61136
21 65.19000
22 68.33150
23 71.97300
2* 79.61950

77.75600
26 * 87.89760
27 89.03910
28 87.18060
29 90.32220
30 93.96370
31 96.60530
32 99.79680
33 102.88890
39 106.02990
35 109.17150
36 112.31310
37 115.95960
38 118.59620
39 121.73770
90 129.87930

SYSTEM PROPERTIES

OUTER FAT WAT INITIAL FAX mun niNTrvn TRE^FAL THERMAL RADIAL TIME NO. OF ND. 0
RADIUS FLUX TEFP ALLCUABIE TEFP AT Crv/D. CIFF INCRErENT INCFErENT RADIAL T^en<
(IN) (B7U/HR- fR) TFrP (V WTCH FPCD (BTU/HR- (FT2/ (INCHES) (SEC) INCREMENTS OF BES

FT2) 5VSTEWR) IS EATENfR) FT-R) HR ) <DF«LES5> SERIE

1.3A0 1200.000 530.000 610.000 595.000 .189 .02. .139 1.000 11 20
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FLUX CPTmCUCTIW PARAHEIER: .72S26*G?f  R >

TIKEs .33333*00  FOURIER RCO- .37128-02 TBAR= .53600*03 TEMP AT CLs .*6569*03 - •

(R/RO KDLESS) TEMPERATJRnDES.R) DLES5 temperature

.000 *65.638 -.80;

.ICO RW.C87 -.38

.200 526.956 - -.0*

.300 529.897 - ■-.00

.*00 529.999 -.00

.500 529.999 ♦ -.00

.too 529.999 -.60*

.TOO 530.017 .00

.800 530.796 .00

.000 5*0. ‘JOI .13
1.050 586.015 .70

TinE= .84667*00 FCyRIER nro= .79256-02 TBAR= .53683*03 TCHP AT CL = .*9*17*03

(WZROXDLESS) TEnPERATURECPEU.R) OLESS TEMPERATURE

.000' *99.165 -.38

.100 508.262 -.21
'.200 522.372 -.09f-

•' .300 * *528.661 -.or
.900 529.881 -.6^
.500 529.995 -.00
.600 530.6*5 .00
.TOQ 530.6*0 .00
.80S 535.120 .06
.900 559.657 • .30

I.GOO 606.857 .96

rrnc^ .10000*01  rwrier nnor .une-oi TEARS .5*221*03 TERP AT CL= .50970*03

CR/R0MDtE55> TEWRATUREC DFt5 .R ) OLESS TEMPERATURE

.000 509.701 -.25

.100 513.870 -.20

.200 521.905 -.10

.300 527.932 -.03

.*00 529.987 -.00

.500 529.977 -.00

.600 530.398 .00

.TOO 532.579 .03

.800 551.612 .15
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.»oo
1.090

•
567.967 .*7
623.68* 1.17

TrRE= .30000*01 FOURTFR fitoT .33M5-01 TBARx .5*763*03  UMP AT CL= .*6682*03  ' •

C#/FOHDLESS) TEFlPFRATUREt DEG.R)

.000 *86.819

.100 *89.61*

.200 *96.626

.300 505.087

.*00 513.371

.500 522.196

.600 533.663

.700 5*8.979

.009 566.265

.900 580.363
1.000 585.755

DLFSS TEfiPERATUPE
-.5*  s 
-.50 
-.*1  
-.31 
-.20
-.Ct 
.0*  ' 
.23 
.*5  
.63 
.6%

TinEi .*0000.01 FtVRIER rro= .1*1553-01 TBARt .59779+03 TE:1P AT CL= . *17767.03

<«/RO)t DLESS) 

.000/ 

.100 
*.200 

, »*  .300
.*00  
.500 
.609 
.TOO 
.too 
.990 

1.000

TEMPERATURE( CFG.R)

977.679
983.097 
999.920

• 506.569
516.721
527.137
539.362 
559.593 
576.063 
611.957
670.9*9

BLESS TErPEAATyeE

-.65 
-.58-
-.*ir.'
-.2?.
-.16
-.035
.11
.30
.57

1.01
1.75

TinE= .11000*02 FOURIER *100= .12252*00 TBAR= .56555*03 TEMP AT CL- .50215*03

<R/R0>< BLESS > TEnPEAATt'REt BEG-R > BLESS TEMPEPATL'AE

.000 

.100 

.200 

.300 

.900 

.500 

.600 

.700 

.too

502.155
505.309
510.588
520.516
532.580
557.028
561.161
573.523
583.572

-.35 
-.32 
-.25 
-.11
.03 
.21 
.35 
.55
.67
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.100
1.000

.75 

.78
550.305
512.125

Tints .12000*02 FOURIER MCO= .13366*00 TBAP= .56570*03 TEMP AT CL= .51119*03  * •

<R/RO)(DLESS> lEnPERATJPE(DEG.R) DLE55 TEnPEPAH'PE

.000 W.995 -.97

.100 •197.830 -.90

.200 510.929 -.23

.300 529.727 -.06

.100 537.505 .09

.500 599.999 • .25

.600 562.931 .90

.700 575.396 .56

.800 592.922 .78

.500 629.668 1.18
1.000 682.205 1.90

TIME= .25000*02 FOURIER MOO- .27816*00 TBAR= .583'<5+03 TEHP AT CL= .55999*03

<R/RO)< DLESS1 TEMPERATURE! DEG .P1 BLESS TEMPEPATJFE

•

.000'

.100
* .200

/ .300
.900 
.500 
.600
.700 
.800 
.900

1.000

551.937 
560.787 
563.258 

* 567.057
571.810 
577.006 
582.111 
586.613 
590.068 
592.256 
592.163

.37 

.38 

.91 

.96 

.52 

.58 

.65 

.70 

.75 

.77 

.78

Tlr>E= .26000*02 FOURIER TilX)^ .26160*00 TBAR= .5 8 351*03 TEMP AT CL= .55203*03

( R/RO)( BLESS Y TEMPERATURE!DEG.R> BLESS TEHPEPATL’PE

.000 552.027 .15

.100 557.156 .21

.200 557.738 .39

.300 566.816 .96

.900 573.027 .53

.500 577.959

.600 582.726

.TOO 588.763

.800 600.830
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.100
l. 000

4?».13t
485.522

1.23
1.9H

TIW= .76000*02 TBAR= .60118*03 TFHP AT CL= .6011<*0T  -FOURIER nOO= .89651*00

(R/ROH DLE5S) TEnPERATJ=E(OEG.R) DLESS TEnPEPAH’^F

.000 601.1*5 .88
JOO 601.1*6 .88
.200 601.150 .88
.300 601.156
.NOO 601.169 .89
.500 601.173 • .89
.600 601.181
.700 601.188
.800 601.199
.900 601.197

1.000 601.198

PAGE 0.



APPENDIX H

Calculation of Material Property Ranges to be Used 

with the Computer Program

A. Discussion of Formulae

The following formulae were taken from page 334 of • 

Earle.

The formula for specific heat at constant pressure is:

c /BTU
P \LB -°R m

_ P  .2(100 - P)- 100 + 100 (1)

Where P is the percentage of water in the can contents.

The formula for thermal conductivity above freezing is:

(BTU \ .32P .15(100 - P)
\HR-FT-R/ =z' -100 + 100 (2)

Where P is defined previously.

The density formula is based on the weight fraction 

method and is a standard computation procedure.

(tf) composite (X')i (w)±

(^composite = avera9e material density 

(^J^ = food component density

(3)

120
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(W)^ = weight fraction of component present

M = number of components present

Usually canned foods are two component varieties (e.g., 

water and green beans). However some, such as beef stew, have 

many components.

The contents of a can, other than water, are typically 

a fibrous mass when they are dehydrated. It is well known that 

the material properties of the fibrous residues are very close 

to those of balsa wood or cork.

The material properties of such residues are taken to 

be those of cork in this analysis.

Thermal diffusivity is directly related to the proper­

ties just discussed. Therefore, the only formula required is:

B. Computation of Material Property Ranges

1. Specific Heat:

a. Highest Value (Asparagus (Lis and Nuccio)):

From (1):

r - 93 4. *2 (10° " 93)p “ 100 + 100

c = .944 (BTU/LB - R)p m
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b. Intermediate Value (Fat Beef (Lis and Nuccio)):

From (1):

 50 .2(100 - 50)
p - 100 + 100

C = .6 (BTU/LB - °R) p m

c. Lowest Value (Bacon (Lis and Nuccio)):

From (1):

 20 .2 (100 - 20)p * 100 + 100

C = .36 (BTU/LB - °R)
_JE____________________ SJ________

2. Thermal Conductivity:

a- Highest value (Asparagus (Lis and Nuccio)):

From (2) :

K  .32(93) .15(100 - 93)100 + 100

K = .3081 (BTU/HR-FT-°R)

b. Intermediate Value (Fat Beef (Lis and Nuccio)):

From (2):

.32(50) .15(100 - 50)100 + 100

K = .235 (BTU/HR-FT-°R)

c. Lowest Value (Bacon (Lis and Nuccio)):

From (2 ) :
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K  .32(20) .15(100 - 20)
100 + 100

K = .184 (BTU/HR-FT-R)

3. Highest Value (Asparagus (Lis and Nuccio)):

a. Highest Value

Material

(Asparagus (Lis and Nuccio)):

Density ■a (LB /FT ) m

Water 62.4 (Holman)

Cork 16.0 (Weast)

From (3):

.93(62.4) + .07(16)

59.152 (LB /FT3) 
m

b. Intermediate Value (Fat Beef (Lis and Nuccio) ):

From (3):

.5(62.4) + .5(16)

39.2 (LB /FT3) 
____________m_____

c. Lowest Value (Bacon (Lis and Nuccio)):

From (3):
y= .2(62.4) + .8(16)

25.28 (LB /FT3)

1r. C. Weast (ed.), Handbook of Chemistry and Physics 
(45th ed.; Cleveland: The Chemical Rubber Co., 1964-1965).



124

4. Thermal Diffusivity:

a. Largest Value (Bacon (Lis and Nuccio)):

From (4):

3-y .184 BTU LB - R I FTO<=  m ___________
HR-FT-R .36 BTU 25.28 LB 1 m

CK= .020 (FT /HR)

b. Intermediate Value (Fat Beef (Lis and Nuccio)):

From (4):

,01 (ft2/hr)

.235 BTU FT3 LB -°R m
HR-FT-°F 39.2 LB ID .6 BTU

c. Smallest Value (Asparagus (Lis and Nuccio)):

From (4):

o^= .3801 BTU LBm-R pT3
HR-FT-R .944 BTU 59.152 LB m

<X= .0055 (FT2/HR)

C. Summary of Material Properties

Along with the upper, intermediate, and lower values of 

the properties just defined, another data point of interest is 

useful. The most obvious set of properties to use are those of 
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water. A tabulation has been constructed on page 39 of the 

main report summarizing all of these values.


