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ABSTRACT

Homeostatic processes govern multiple latent state variables within the human body. While

many of these states remain largely unobserved, they frequently give rise to bioelectric and

biochemical phenomena that can be measured. The measured signals provide a window

into estimating the unobserved states. In a number of instances, the observed electrical

and chemical phenomena are pulsatile or impulse-like in nature. This dissertation describes

state-space methods for estimating latent variables tied to changes in skin conductance,

heart rate and cortisol secretion – all of which have a characteristic point process nature.

In the first two sections, state-space methods are developed for estimating sympathetic

arousal from skin conductance and heart rate features. Estimation involves Bayesian filter-

ing applied within an expectation-maximization framework. Results are provided on exper-

iments involving different types of mental stressors and Pavlovian fear conditioning. The

results agree with general expectations with high arousal levels typically occurring during

stressors and lower values occurring during relaxation. General agreement with expecta-

tions is also found with different trial averages in fear conditioning. Skin conductance-based

estimates are also validated with blood flow signals in the brain in a separate experiment.

In the third section, state-space methods are developed to estimate energy production

from blood cortisol measurements. The methods are applied to simulated and experi-

mental data from patients suffering from Cushing’s disease, chronic fatigue syndrome and

fibromyalgia syndrome. The results help shed light on why patients with hypercortisolism

may experience daytime fatigue and nighttime sleeping difficulties. Circadian-like behavior

is also seen with higher energy estimates occurring towards morning awakening and lower

values at bedtime.

In the final section, machine learning methods are used for state-space estimation. Tra-

ditional Bayesian filtering methods do not have the ability to permit external influences such

as domain knowledge or labels to affect the state estimates. We develop a hybrid estimator

that enables this possibility and apply it to both skin conductance-based arousal estimation

and cortisol-related energy estimation. The hybrid estimator permits the enforcement of
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circadian rhythms on to the state estimates and the customization of the level to which the

external influence is permitted to affect them.
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1 Introduction

Annual healthcare expenditure in the United States exceeded $3.5 trillion in 2017 [1], and

is expected to grow even larger over the coming decade [2]. Moreover, healthcare spending

per capita in the United States is one of the highest in the developed world [3]. While many

solutions have been proposed to curb ballooning healthcare expenses—including changes

to government policy, insurance structure and drug pricing—concrete steps to stem the

upward spiral of costs are yet to materialize. A possible technological breakthrough to

impede rising healthcare costs lies in the development of intelligent healthcare systems that

can care for patients. Here, the point-of-care would shift back to the patient. Currently,

the delivery of healthcare is largely physician- or hospital-centric. Individuals typically wait

until they fall ill and then proceed to obtain treatment in a clinical setting. With smart

healthcare systems in place, the emphasis will be on utilizing wearable monitoring, signal

analysis tools and domain knowledge to help patients manage their own clinical needs, or

even just help keep people well. This gradual transition to mHealth is one that holds much

promise [4, 5].

Wearable monitoring is thus expected to play a critical role in the future of healthcare

[6, 7]. Consider the representative graphic of a wearable healthcare system in Fig. 1.

Different sensors can be used to monitor the patient. The sensors may be in the form

of smartwatches, chemical sensor patches that analyze body fluids or smart textiles with

integrated sensing capabilities. The physiological signals recorded from the patient are

primarily electrical or chemical. The bioelectric signals may include electroencephalography

(EEG), skin conductance, electrocardiography (EKG), photoplethysmography (PPG) or

electromyography (EMG). Hormone concentrations in the blood, salt levels in the sweat and

biochemical saliva compositions are examples of the chemical signals that may be monitored.

The signals acquired from these sensors tell us something about the underlying states within

the body. These states could be related to emotion, metabolic energy production or disease.
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The states, however, cannot be observed directly. Nevertheless, biomarkers in the signals

that are continuously monitored provide information regarding them. The signals can thus

be analyzed and corrective action prescribed based on the current state or condition at hand.

The corrective action may involve prescribing a short-acting drug, adjusting the parameters

of an implanted neurostimulation device or sending a simple text alert suggesting a walk

outdoors. This, we argue, is a closed-loop control system—one that seeks to regulate a

particular aspect of health or well-being. Now the problem of sensing latent states in

a system, estimating them and finally applying corrective control is one that has been

investigated for decades in controls engineering. As such, tools from controls theory can be

readily adapted to the case of designing the intelligent closed-loop man-machine healthcare

systems of the future.

Wearable sensing Analysis and detection

Feedback control

Figure 1: Closed-loop medical therapy.

Here we develop decoders based on state-space models for wearable healthcare applica-

tions in two different scenarios. The first concerns the estimation of sympathetic arousal

from skin conductance and heart rate measurements, and the second concerns the estimation

of energy production from blood cortisol measurements. Currently, automated closed-loop

neurostimulation therapies for treating psychiatric disorders and automated cortisol infu-

sion pumps are lacking. The state-space formulations presented herein could be a step

towards their eventual future realization.
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1.1 Disorders of Psychological Arousal

According to the National Alliance on Mental Health, 19.1% of adults in the United

States (approximately 47.6 million) experienced mental illness in 2018 [8]. The illnesses

were serious in about a quarter of the cases. The annual prevalence of a major depressive

episode was 7.2% and that of post-traumatic stress disorder (PTSD) was 3.9% that year.

Depression and PTSD are, in some ways, on opposite ends of a spectrum. Depression

typically involves low levels of psychological arousal [9]. James A. Russell, in his influential

1980 paper entitled “A Circumplex Model of Affect,” described a model where emotion could

be accounted for along two orthogonal axes—valence and arousal [10]. Valence denotes the

pleasant-unpleasant nature of an emotion while arousal captures its corresponding activation

or excitement. In contrast to depression, PTSD patients often experience symptoms of

hyperarousal that include “being easily startled, feeling tense, having difficulty sleeping

and/or having angry outbursts” [11]. While PTSD and depression are associated with

symptoms on opposite ends of the arousal spectrum, bipolar disorder (also known as manic

depression) is characterized by unusual mood swings that range between the two, i.e.,

feelings vary from extreme emotional highs to depression [12]. Note also that the term

“emotional” and “affective” are used interchangeably in the literature [13]. For instance,

the valence-arousal model in [10] is called the Circumplex Model of Affect. Arousal is

tied to the level of activation of the sympathetic branch of the autonomic nervous system.

Consequently, phrases such as “emotional arousal,” “sympathetic arousal”, “autonomic

arousal” and “affective arousal” are all used in the literature. Technically speaking, however,

sympathetic arousal is a broader term governing the body’s fight-or-flight response and

emotional arousal is one part of it [14, 15].

While depression and PTSD can be treated with medication and/or psychotherapy, the

symptoms do not diminish with treatment in certain cases. Neurostimulation therapies such

as deep brain stimulation (DBS) are then a viable alternative, both for depression [16, 17]

and for PTSD [18, 19]. Most commercial DBS systems function in a open-loop manner.
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A patient visits a physician periodically who manually adjusts electrical stimulation pa-

rameters based on current symptoms. Closed-loop DBS (CLDBS) systems are emerging as

the next generation of the technology where stimulation will adjust automatically instead.

CLDBS has been shown to have superior performance in several studies investigating Parkin-

son’s disease [20, 21, 22]. CLDBS for treating disorders of psychological arousal currently

do not exist. Due to its sensitive nature to psychological arousal [23], skin conductance can

be used to estimate arousal to help close the loop in adaptive DBS systems for treating

PTSD or depression [24] (Fig. 2). The applications of skin conductance-based arousal de-

tection are, however, not just limited to PTSD or depression alone, nor to CLDBS systems.

Patients suffering from other disorders of psychological arousal could also benefit from it

(e.g., in the case of a patient suffering from bipolar disorder, both emotional highs and lows

could be detected to monitor the patient’s progress or recovery over time). The approach

could also be used for general stress management and maintaining emotional well-being.

`

Electrical stimuli 
application

Pulse 
generator

Skin 
conductance 
sensor

Skin conductance

Arousal state
Wireless 
connection

Figure 2: Adaptive closed-loop neurostimulation based on measuring skin conductance.
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1.2 Cortisol Dysregulation

Cortisol is the body’s main stress hormone. One of its primary purposes is to raise

blood glucose levels in response to external stressors [25, 26]. As such, it is categorized

among the class of hormones known as glucocorticoids. Cortsiol secretion is governed by a

feedback control system involving the hypothalamus, pituitary and adrenal glands. These,

together with feedback signals, messaging mechanisms and the resulting hormone secretions

form what is commonly known as the hypothalamic-pituitary-adrenal (HPA) axis. Corti-

sol has other functions including the suppression of the immune response and playing a

role in certain metabolic processes. Two types of disorders are typically associated with

cortisol—hypocortisolism (too little cortisol in the bloodstream) and hypercortisolism (too

much cortisol). Now cortisol is secreted in pulses [27, 28]. Typically, between 15–22 pulses

of cortisol are secreted in a healthy adult every day [29, 30]. Cortisol disorders are mostly

treated with oral medication. For instance, in Addison’s disease—a type of hypocortisolism

involving adrenal gland dysfunction—patients are treated with one or two doses of hydro-

cortisone daily. This course of treatment, however, may not be optimal [31]. Concerning the

treatment of congenital adrenal hyperplasia (another type of adrenal deficiency), Nella et al.,

[32] point out that, “conventional cortisol replacement with oral glucocorticoids once, twice,

or thrice daily remains suboptimal.” Given this lack of optimality, an automated closed-

loop infusion system for treating cortisol disorders in a manner that mimics the body’s own

secretory mechanism would be more desirable. Such infusion pumps are already a topic of

investigation in the literature.

Automated closed-loop insulin pumps for treating patients with Diabetes are now mar-

keted by Medtronic (e.g., the MiniMed 670G Insulin Pump System). Devices in this family

continuously monitor blood glucose levels and automatically infuse insulin based on a con-

trol algorithm. However, the corresponding cortisol infusion pump for treating cortisol

dysregulation currently does not exist. Instead, preliminary studies investigating continu-

ous automated cortisol infusion have relied on an off-label use of a device in the class of
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Medtronic’s insulin pumps (e.g., [32, 33, 34]). Encouraging results from these investigations

have shown the superiority of continuous infusion over intermittent doses of oral medi-

cation. Unfortunately, a commercial sensor for convenient long-term cortisol monitoring is

currently unavailable. Without a such a sensor, off-label use of the Medtronic insulin pumps

for cortisol infusion utilize algorithms that mimic the body’s circadian variation of cortisol.

As pointed out before, cortisol is released in pulses. A system-theoretic formulation for the

infusion of pulsatile cortisol into the bloodstream based on sensor measurements that could

be embedded within an automated pump is presently lacking.

Thus we envisage two primary closed-loop application scenarios for the methods that will

be described in this dissertation. The first relates to the treatment of psychological arousal

disorders using automated neurostimulation therapies and second to the automated infusion

of cortisol (hydrocortisone) for treating cortisol disorders. However, the general closed-loop

framework is not just limited to invasive treatment alone. Instead, other, more subtle means

of actuation could also be used to close the loop. For instance, music, beverages such as

herbal tea and coffee, changes in room lighting could all be used as a means of actuation

for regulating arousal. Moreover, cortisol injections at specific times could also be used to

close the loop instead of using subcutaneous infusion through an automated pump. The

basic closed-loop framework could, therefore, be applicable in a number of other scenarios.

1.3 Challenges and Objectives

Several challenges exist when developing a system-theoretic or state-space formulation

governing processes in the human body. A few of them are listed below:

� The time evolution of the underlying state variables and how they are influenced by

external factors are often unknown. For instance, a person’s mood and emotions vary

throughout the day but a precise mathematical equation for how mood or emotions

vary is unknown. Moreover, external circumstances impact mood and emotion in

different ways. Additionally, the information regarding a particular internal state
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within the body may often be distributed among different signals. It is likely, therefore,

that there is no single “super feature” which may tell us everything about a particular

state.

� Variations exist between individuals. Therefore, any model developed needs to be

person-specific. Despite the need for person-specific models, expert labels needed

to make use of supervised learning methods are often hard to come by, or are too

expensive to obtain. This makes the use of supervised learning more challenging.

� There is a reluctance in the clinical community towards the acceptance of purely

black-box methods, and a preference for interpretability. Consider, for instance, the

draft guidance document regarding clinical decision support software published by

the Food and Drug Administration (FDA) in September 2019 [35]. The document

concerns the development of expert software and whether or not it comes under the

definition (and regulations) of a device. If expert software is to be excluded from the

definition of a medical device and thereby avoid regulations, it should enable a

“health care professional to independently review the basis for such recom-

mendations that such software presents so that it is not the intent that such

health care professional rely primarily on any of such recommendations to

make a clinical diagnosis or treatment decision” [35].

The document goes on to mention that,

“in order to describe the basis for a recommendation, regardless of the

complexity of the software and whether or not it is proprietary, the software

developer should describe the underlying data used to develop the algorithm

and should include plain language descriptions of the logic or rationale used

by an algorithm to render a recommendation” [35].

In other words, the software needs to explain itself. While the guidance document is
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only for the purpose of inviting comments, it nonetheless reflects FDA’s desire to see

interpretability in medical-grade expert systems.

Here we utilize Bayesian methods for estimating internal states within the human body

based on sensor observations. We first develop state-space models and corresponding

Bayesian filters for estimating sympathetic arousal from skin conductance and heart rate.

We secondly develop a similar set of tools to estimate energy from blood cortisol measure-

ments. Machine learning methods are finally used for estimation. Descriptions of these

methods are provided in subsequent chapters.

1.4 Approach

Bayesian filtering offers a family of methods for estimating an unknown state variable

from observed data. In the case of both skin conductance and cortisol, the signals have

a “spikey” appearance to them owing to the mechanism responsible for their generation.

Bursts of neural activity to the sweat glands cause variations in the conductivity of the

skin. These bursts of neural activity are often modeled as delta functions [36]. Each burst

of neuroelectric activity gives rise to a single skin conductance response (SCR) in what is

known as the phasic component of a skin conductance signal [37]. The SCRs make up the

phasic component. This relatively fast-varying phasic component is superimposed on top of

a slower-varying tonic component [38]. The sequence of SCRs (or equivalently the sequence

of underlying neural impulses) forms train of binary observations. We have a similar scenario

for cortisol. Cortisol is secreted pulses throughout the day and therefore blood cortisol

concentrations also have a “spikey” profile. Fig. 3 depicts a skin conductance signal and a

blood cortisol profile. In the figure, the upper sub-panel depicts a skin conductance signal

(blue), its tonic component (black) and the neural impulses underlying phasic variations

(red). The lower sub-panel depicts blood cortisol measurements taken at 10 min intervals

(blue dots), the reconstructed minute-by-minute blood cortisol concentrations (black) and

the pulsatile secretions (red).
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Figure 3: A skin conductance signal and a blood cortisol profile.

A particular class of point process Bayesian filters was pioneered by Professor Emery

N. Brown and his Neuroscience Statistics Research Lab of the Massachusetts Institute of

Technology and the Massachusetts General Hospital, for estimating unobserved states un-

derlying neural spiking information [39, 40]. These methods have since been adapted and

applied to experiments in behavioral learning [41, 42, 43, 44, 45, 46], medically-induced

coma [47, 48, 49, 50, 51], anesthetic-induced unconsciousness [52, 53, 54], motor task de-

coding [55, 56, 57, 58] and sleep studies [59]. The methods relate an unobserved neural

state to binary and continuous-valued observations. The filtering itself is typically applied

within an expectation-maximization (EM) framework for state estimation and model pa-

rameter recovery. We follow the same basic approach when developing filters for estimating

sympathetic arousal and energy from skin conductance and heart rate, and blood cortisol

measurements respectively. Heart rate can be derived from either an EKG or PPG sig-

nal. Fig. 4 depicts part of an EKG signal with its constituent waveforms. R-peaks in
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an EKG accompany ventricular contraction (these contractions form a point process) and

RR-intervals can be calculated by detecting individual beats.
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Figure 4: An EKG signal.

1.5 The Need to Estimate an Internal State

Since the methods we develop will likely be embedded within closed-loop control sys-

tems, a question may arise as to the need for estimating an internal state when merely the

external observation can be controlled. This would be best answered by means of an anal-

ogy. Suppose that a person suffers from high blood pressure due to mental stress. Blood

pressure alone could be controlled using medication (e.g., medication that removes excess

fluid and salt from the body). This, however, would not necessarily solve the deeper issue.

An alternate approach would be to try and employ relaxation techniques and/or anxiety

medication directed at the brain or nervous system for lowering blood pressure. Our state-

space methods are analogous to this second approach where we try to estimate and regulate

the internal state instead of trying to merely control the observed symptom. Note, however,

that the analogy to blood pressure strictly does not hold with skin conductance. Lowering

blood pressure alone is of clinical importance (e.g., for lowering the risk of stroke). However,

merely cooling down the skin if skin conductance is high is not of great clinical significance.
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Controlling the external observation instead of the internal energy state is, however, a

viable alternative in the case of hormones. For instance, a control mechanism could solely

focus on regulating blood cortisol concentrations instead of regulating the internal state. In

these situations, however, we do still believe that mathematical models such as the ones we

develop help enhance our understanding of how the human body functions. The models may

also be able to provide insight into pathological mechanisms in certain disease conditions.

Owing to these reasons, the control mechanism and the means of actuation we envisage

are also not primarily directed at the external observation, but rather at the internal state.

Sympathetic arousal, for instance, can be controlled by means of actuation such as music

or different beverages (e.g., herbal tea, coffee).

1.6 Contributions and Outline

We present several state-space methods in this dissertation for estimating latent variables

from physiological signals. In particular, the following contributions are made. We develop:

� Point process state-space methods to estimate sympathetic arousal from skin conduc-

tance measurements

� Multi-timescale point process state-space methods to estimate the same from a com-

bination of skin conductance and heart rate measurements

� Point process state-space methods to estimate energy production from pulsatile blood

cortisol measurements

� A hybrid machine learning-based state estimation method for marked point process

data (MPP) that is able to combine physiological data and an external influence

The rest of this dissertation is organized as follows. Chapter 2 describes the Bayesian

filters and EM algorithms used for estimating sympathetic arousal from skin conductance.

These methods are extended in chapter 3 to include heart rate. Chapter 4 describes ap-

proaches to estimate energy from blood cortisol measurements. In chapter 5, we describe
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how machine learning methods can be used for state estimation in both skin conductance

and cortisol-based applications. We finally conclude with chapter 6 summarizing our work

and noting several possible directions of future research.
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2 Sympathetic Arousal Estimation using Skin Conductance

Data

2.1 Sweat Secretion, Skin Conductance and Arousal

In this chapter, we describe different approaches for estimating arousal from skin con-

ductance measurements. Nerve fibers from the sympathetic branch of the autonomic ner-

vous system innervate the sweat glands [60]. Consequently, a skin conductance signal,

which varies based on sweat secretions, functions as an index of sympathetic arousal [61].

Sympathetic innervation of the sweat glands is primarily cholinergic and involves the neu-

rotransmitter acetylcholine [60]. Several different skin conductance features have been used

in the literature as markers of arousal. Firstly, the rate at which SCRs occur has been taken

as an index of arousal—the higher the arousal, the higher the rate of SCR occurrence. SCR

rate has been used as a marker of arousal in experiments involving thought suppression

[62], alcohol craving [63] and audio processing [64]. Secondly, SCR amplitude has been

considered an index of arousal. This has been used in studies involving emotional visual

stimuli [65] and sounds [66]. Finally, the tonic level has been used as an index of arousal in

experiments involving biofeedback tasks [67], antisocial behavior [68] and the presentation

of visual stimuli [69]. SCR rate, SCR amplitude and the tonic level are the three most

commonly reported skin conductance markers of autonomic arousal in the literature [70].

We describe three different methods for skin conductance-based arousal estimation in

this chapter. The methods use different combinations of the three features just referred to.

The methods are:

� Estimation based on one binary observation

� Estimation based on one binary and two continuous observations

� Estimation based on MPP observations

Estimation based on one binary observation followed the methodology in [41] and does
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not represent an original method we developed. Instead it was our our earliest attempt

at estimating arousal from skin conductance and only utilized the SCR occurrences (or

equivalently the neural impulses that underlie the SCRs) [71, 24]. We next developed an

estimation method based on one binary and two continuous observations. This represents

the most complicated case and is described in [72]. The method utilizes the SCR occur-

rences (binary feature) and a phasic-derived value and the tonic component (two continuous

features) for estimation. The MPP approach was our third attempt at estimating arousal

[73]. It too considered the neural impulses underlying phasic variations, but took into ac-

count the impulse amplitudes as well. In this chapter, we abbreviate the first approach as

the binary observation-based state estimation (BOBSE) method, the second as the binary

and continuous observation-based state estimation (BCOBSE) method and the third as

the MPP-based state estimation (MPPSE) method. From a purely mathematical stand-

point, the derivation of the Bayesian filter equations for the BCOBSE method is the most

complicated. By dropping a single variable in the derivation, we can obtain part of the

equations for MPPSE. Dropping yet another variable in the derivation yields the equations

for BOBSE. We will therefore describe the state-space model used in BCOBSE first in

the Methods section, and thereafter describe the mathematically simpler models used in

BOBSE and MPPSE.

2.2 Data

2.2.1 Neurological Status Assessment Dataset

We first use the Non-EEG Biosignals Dataset for Assessment and Visualization of Neu-

rological Status (which we abbreviate as the Neurological Status Assessment Dataset) [74].

This contains skin conductance recordings from a group of college students who were ex-

posed to several conditions meant to elicit stress. The experiment included physical, cog-

nitive and emotional stressors. Subjects were required to stand, walk and then walk/jog

during the physical stress period. This lasted for approximately 5 min. Here we discard
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the physical stress portion and only consider remaining the psychological components of

the experiment. The cognitive stress period consisted of two different tasks. In the first

task, the subjects had to count backwards in 7’s beginning at 2485. This lasted for ap-

proximately 3 min. The Stroop test was the second cognitive stressor. Different variants

of the Stroop color-word association test appear in the literature. In this particular ex-

periment, the names of colors written in different-colored ink were shown to the subjects.

The subjects had to first read out the color name and then state the color of the ink [74].

The need to perform this correctly requires concentration on the part of the subjects and

is known to generate psychological stress [75]. The Stroop test lasted for approximately 2

min. A buzzer notified the subjects of errors. Subjects were shown a horror movie clip for

5 min as an emotional stressor. The physical, cognitive and emotional stress periods were

interspersed by 5 min intervals of relaxation. The authors of the dataset also categorized

the 40 s just prior to the cognitive stressors as a stress period as they noted the subjects

visibly displaying signs of stress while even being given the instructions [74].

2.2.2 Driver Stress Dataset

We secondly use the Stress Recognition in Automobile Drivers Dataset (we abbreviate

this as the Driver Stress Dataset) [76]. This contains skin conductance recordings from

subjects who drove along a set route in Boston as part of the experiment. The route

consisted of toll roads, highways and city driving. As we pointed out earlier in [71], the

precise timings of the different road conditions are unavailable and we used the data from

a single subject for whom the road condition timings had to be approximately matched to

a figure in [76] which originally described the dataset.

2.3 Motion Artifact Contamination

Data preprocessing typically involves downsampling to 4 Hz, lowpass filtering at 0.5

Hz and tonic-phasic separation using cvxEDA [77]. However, prior to lowpass filtering, we
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usually employ a motion artifact cleaning step. Here we visually inspect the data, identify

contaminated segments and interpolate over them. Motion artifacts can be a major source

of contamination, especially with data acquired from wearable devices in unconstrained

environments. These artifacts can also occur in signals acquired from research-grade equip-

ment in laboratory settings, though not to an extent as great. While we currently clean

motion artifacts manually, adaptive signal processing methods can also be used to suppress

this type of nonlinear contamination. Another alternative to purely using signal process-

ing methods for motion artifact suppression is to develop flexible or adhesive sensors (e.g.,

drawn-on-skin electronics) so that the movement of the sensors relative to the skin is kept

minimal [78]. Adaptive filters could then be added on as another layer for further noise

suppression.

2.4 Methods

We first describe the full model incorporating one binary and two continuous observa-

tions (i.e., BCOBSE). Mathematically, this state-space model gives rise to the most com-

plicated filter equations. The filter equations for the other models can be easily derived by

dropping the continuous variables one at a time.

2.4.1 State-space Model with One Binary and Two Continuous Observations

Random walks and first-order autoregressive models have frequently been used to cap-

ture the time evolution of neural states that cannot be directly observed (e.g., learning

[41, 44, 46, 79], sleep [59] and neural states underlying spiking activity [39]). Similar to

[39], we assume that sympathetic arousal xk evolves with time as

xk = ρxk−1 + αIk + εk, (1)
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where εk ∼ N (0, σ2
ε) is process noise and Ik is an indicator function representing exter-

nal stimuli. ρ and α are coefficients to be determined. We consider three different skin

conductance features to estimate xk here.

We first consider the occurrence of SCRs. SCRs can be detected as phasic peaks that

exceed a threshold between 0.01–0.05 µS [38]. We assign mk = 1 or mk = 0 based on

whether or not an SCR occurred at the kth time index using a threshold of 0.015 µS. The

occurrence of SCRs follows a Bernoulli distribution with a density function pmkk (1−pk)1−mk

where pk is the probability that mk = 1. We relate sympathetic arousal to the occurrence of

SCRs using the theory of generalized linear models. We use a logit transformation following

the suggestion in [80]. This yields

log
( pk

1− pk

)
= β0 + β1xk =⇒ pk =

1

1 + e−(β0+β1xk)
, (2)

where β0 and β1 are constant coefficients. Therefore,

P (mk|xk) = pmkk (1− pk)1−mk =

[
1

1 + e−(β0+β1xk)

]mk[
e−(β0+β1xk)

1 + e−(β0+β1xk)

]1−mk

. (3)

Here we set β1 = 1 and calculate β0 empirically. Assuming that xk ≈ 0 at the very

beginning, we have

log
( p0

1− p0

)
≈ β0. (4)

We can approximate p0 by the baseline probability of an SCR occurring during the entire

experiment.

Secondly, we consider the continuous-valued tonic level sk which is also known to be

related to arousal [81]. Other neural state estimation methods (e.g., [44, 46]) have as-

sumed linear relationships between continuous-valued observations and the latent state to
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be determined. We too take sk to be linearly related to xk as

sk = δ0 + δ1xk + wk, (5)

where wk ∼ N (0, σ2
w) captures sensor noise and modeling error, and δ0 and δ1 are regression

coefficients to be determined.

Figure 5: Phasic skin conductance skew correction via log transformation.

We next consider the rapidly-fluctuating phasic component r̃k. Two main aspects are to

be noted regarding the phasic component. Firstly, its distribution is skewed. A logarithmic

or square-root transformation is commonly suggested to correct skew in skin conductance

features [82]. Here we apply a logarithmic transformation (Fig. 5). Secondly, it is the

amplitudes of the SCRs that are considered to be related to sympathetic arousal [83].

Therefore, we derive an artificial signal rk by interpolating over the SCR peaks and the first

and last values of the log-transformed r̃k. Taking r∗ = {r̃1, r̃K} ∪ {r̃k|mk = 1} to denote
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the phasic SCR peaks along with the first and last values, rk is derived by applying a cubic

interpolation over log r∗ (Fig. 6). The positive skew of the SCR amplitudes is one that has

been noted in the literature and the logarithmic transformation is often used for correction

[84]. Similar to the case of sk, we assume a linear relationship between rk and xk as well.

Therefore,

rk = γ0 + γ1xk + vk, (6)

where the coefficients γ0 and γ1 are similar to δ0 and δ1, and vk ∼ N (0, σ2
v) represents

a noise term similar to wk. MK = {m1,m2, . . . ,mK}, RK = {r1, r2, . . . , rK} and SK =

{s1, s2, . . . , sK} form the complete series of skin conductance observations (Fig. 7). In the

figure, the sub-panels respectively depict: (a) the skin conductance signal zk; (b) the phasic

component r̃k (the red circles depict the SCR peaks); (c) the phasic-derived signal rk; (d)

the tonic component sk.
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Figure 6: Extraction of the phasic-derived component rk from r̃k.
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Figure 7: Constituent components of a skin conductance signal.

Given MK , RK , SK , and letting YK = {MK ,RK ,SK}, we wish to determine XK =

{x1, x2, . . . , xK}. To do so, we use Bayesian filtering within an EM framework. In the

E-step, we first obtain the estimates of XK conditioned on YK and the model parameters

Θ = {α, ρ, γ0, γ1, δ0, δ1, σ
2
v , σ

2
w, σ

2
ε}. In the M-step, we choose the model parameters that

maximize the expected value of the complete data log-likelihood. The algorithm alternates

between the E-step and the M-step until convergence.

We estimate XK in two steps at the E-step using both a forward filter and a backward

smoother. We first make a Gaussian approximation to the posterior distribution p(xk|yk)
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similar to [43, 46] in order to obtain the following filter equations:

xk|k−1 = ρxk−1|k−1 + αIk, (7)

σ2
k|k−1 = ρ2σ2

k−1|k−1 + σ2
ε , (8)

Ck =
σ2
k|k−1

σ2
vσ

2
w + σ2

k|k−1(γ2
1σ

2
w + δ2

1σ
2
v)
, (9)

xk|k = xk|k−1 + Ck

[
σ2
vσ

2
w(mk − pk|k) + γ1σ

2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v(sk − δ0 − δ1xk|k−1)

]
, (10)

and

σ2
k|k =

[
1

σ2
k|k−1

+ pk|k(1− pk|k) +
γ2

1

σ2
v

+
δ2

1

σ2
w

]−1

. (11)

Now,

pk|k =
1

1 + e−(β0+xk|k)
(12)

causes xk|k to appear on both sides of eq. (10) and has to be solved numerically via the

Newton-Raphson method [41]. Similar to a Kalman filter update step, eq. (10) contains

innovation terms for the continuous variables rk and sk and also a term comparing the

binary value mk to its predicted probability pk|k. The smoothed estimates xk|K and σ2
k|K

conditioned on having observed all the data up to time index K [41, 85] are obtained as

follows:

Ak , ρ
σ2
k|k

σ2
k+1|k

, (13)

xk|K = xk|k +Ak(xk+1|K − xk+1|k), (14)
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and

σ2
k|K = σ2

k|k +A2
k(σ

2
k+1|K − σ

2
k+1|k). (15)

The Θ parameters are determined in the M-step. These parameters are selected to

maximize the expected value of the complete data log-likelihood. We make use of the

state-space covariance algorithm when deriving the parameter estimates [86]. Defining

Uk = x2
k|K + σ2

k|K (16)

and

Uk,k+1 = xk|Kxk+1|K +Akσ
2
k+1|K , (17)

we obtain the following parameter estimates for the (l + 1)th EM iteration:

[
ρ(l+1)

α(l+1)

]
=

[ ∑K−1
k=1 Uk

∑K
k=2 Ikxk−1|K∑K

k=2 Ikxk−1|K
∑K

k=1 I
2
k

]−1

×

[ ∑K−1
k=1 Uk,k+1∑K
k=2 Ikxk|K

]
, (18)

[
γ

(l+1)
0

γ
(l+1)
1

]
=

[
K

∑K
k=1 xk|K∑K

k=1 xk|K
∑K

k=1 Uk

]−1

×

[ ∑K
k=1 rk∑K

k=1 rkxk|K

]
, (19)

σ2(l+1)
v =

1

K

[
K∑
k=1

r2
k +Kγ

2(l+1)
0 + γ

2(l+1)
1

K∑
k=1

Uk − 2γ
(l+1)
0

K∑
k=1

rk − 2γ
(l+1)
1

K∑
k=1

xk|Krk

+ 2γ
(l+1)
0 γ

(l+1)
1

K∑
k=1

xk|K

]
, (20)

and

σ2(l+1)
ε =

1

K

[
K∑
k=2

Uk − 2ρ(l+1)
K−1∑
k=1

Uk,k+1 + ρ2(l+1)
K−1∑
k=1

Uk − 2α(l+1)
K∑
k=2

Ikxk|K

+ 2α(n+1)ρ(l+1)
K∑
k=2

Ikxk−1|K + α2(l+1)
K∑
k=1

I2
k

]
. (21)
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The M-step updates for δ
(l+1)
0 and δ

(l+1)
1 may be obtained by replacing rk with sk in eq.

(19). Likewise, σ
2(l+1)
w can be obtained similar to eq. (20).

Note that in this particular state-space model, the posterior p(xk|yk) contains the prod-

uct of the three terms P (mk|xk), p(rk|xk) and p(sk|xk) corresponding to the binary obser-

vation and the two continuous observations.

2.4.2 State-space Model with One Binary Observation

If the two continuous variables rk and sk are removed from the state-space model,

p(xk|yk) will no longer contain p(rk|xk) and p(sk|xk), but will only contain P (mk|xk). In

this case, we obtain the filter equations in [41] which were originally developed to estimate

the cognitive learning state of an animal engaged in a experiment comprising of a sequence

of trials with correct/incorrect responses. Here we adapt the model and consider the SCR

occurrences or the neural impulses underlying the SCRs to form the binary observations

mk. Assuming a random walk

xk = xk−1 + εk, (22)

for the state equation, the filter equations are as follows:

xk|k−1 = xk−1|k−1, (23)

σ2
k|k−1 = σ2

k−1|k−1 + σ2
ε , (24)

xk|k = xk|k−1 + σ2
k|k−1(mk − pk|k), (25)

and

σ2
k|k =

[
1

σ2
k|k−1

+ pk|k(1− pk|k)

]−1

. (26)
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In this case as well, pk|k appears on both sides of the state update equation in (25) and has

to be solved using Newton’s method. The smoother equations do not change except for the

absence of ρ. We also make a small change with this particular state-space model in that

we estimate the initial state x0. Therefore we have the following M-step updates:

σ2(l+1)
ε =

2

K + 1

[
K∑
k=2

(σ2
k|K + x2

k|K)−
K∑
k=2

(Akσ
2
k|K + xk|Kxk−1|K)

]

+
1

K + 1

[
3

2
x2

1|K + 2σ2
1|K − (σ2

K|K + x2
K|K)

]
(27)

and

x
(l+1)
0 =

1

2
x1|K . (28)

2.4.3 State-space Model with One Marked Point Process Observation

Our third and final model is an extension of the previous approach and accounts for the

neural impulse amplitudes in addition to their occurrence alone. In this model as well, we

assume that xk evolves with time following a random walk and that xk is related to the

probability of neural impulse occurrence pk via a sigmoid. Moreover, similar to eq. (6), we

also take the amplitudes of the impulses rk to be linearly related to xk as

rk = γ0 + γ1xk + vk, (29)

where γ0 and γ1 have their usual meanings and vk ∼ N (0, σ2
v). Consequently, the joint

density function for the observed neural stimuli is

p(mk ∩ rk|xk) =


1− pk if mk = 0

pk
1√

2πσ2
v

e
−(rk−γ0−γ1xk)

2

2σ2v if mk = 1.

(30)
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Accordingly, an amplitude is absent if there is no impulse and the amplitude is Gaussian-

distributed when an impulse is present. The filter equations for estimating xk are as follows:

xk|k−1 = xk−1|k−1 (31)

and

σ2
k|k−1 = σ2

k−1|k−1 + σ2
ε . (32)

If mk = 0, we have

xk|k = xk|k−1 + σ2
k|k−1(mk − pk|k), (33)

σ2
k|k =

[
1

σ2
k|k−1

+ pk|k(1− pk|k)

]−1

, (34)

and if mk = 1, we instead have

xk|k = xk|k−1 +
σ2
k|k−1

γ2
1σ

2
k|k−1 + σ2

v

[σ2
v(mk − pk|k) + γ1(rk − γ0 − γ1xk|k−1)], (35)

and

σ2
k|k =

[
1

σ2
k|k−1

+ pk|k(1− pk|k) +
γ2

1

σ2
v

]−1

. (36)

It is of interest to note that the filter equations switch between those in [41] (estimation

based on one binary variable) and [44] (estimation based on one binary variable and one

continuous variable) depending on whether mk = 0 or mk = 1. In [41], Smith et al., devel-

oped a state-space method to estimate an unobserved cognitive learning state from binary

correct/incorrect responses in behavioral experiments involving animal models. Prerau et

al., [44] extended the model to incorporate reaction times (i.e., a continuous variable) so
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that the estimated learning state was based on both a binary variable and a continuous

variable.

The M-step update equations are as follows:

[
γ

(l+1)
0

γ
(l+1)
1

]
=

[
|K̃|

∑
k∈K̃ xk|K ,∑

k∈K̃ xk|K
∑

k∈K̃ Uk

]−1

×

[ ∑
k∈K̃ rk∑

k∈K̃ rkxk|K

]
, (37)

σ2(l+1)
v =

1

|K̃|

[∑
k∈K̃

r2
k + |K̃|γ2(l+1)

0 + γ
2(l+1)
1

∑
k∈K̃

Uk − 2γ
(l+1)
0

∑
k∈K̃

rk

− 2γ
(l+1)
1

∑
k∈K̃

xk|Krk + 2γ
(l+1)
0 γ

(l+1)
1

∑
k∈K̃

xk|K

]
, (38)

and

σ2(l+1)
ε =

1

K

[
K∑
k=2

Uk − 2

K−1∑
k=1

Uk,k+1 +

K−1∑
k=1

Uk

]
, (39)

where K̃ represents the indices at which mk = 1.

2.5 Results and Discussion

2.5.1 Simulated Data

Two of the three EM algorithms described above are original formulations (the BCOBSE

and MPPSE methods). We first evaluated the performance of both of them on simulated

data.

We first consider the BCOBSE method. To verify the performance of the correspond-

ing EM algorithm, we simulated data for an arousal state xk using the parameters Θ =

{0.04, 0.995,−4.595, 0.35, 0.4,−0.7, 0.2, 0.002, 0.005, 0.03}. These values were chosen based

on prior experience with experimental data. We arbitrarily set Ik = 1 at 25 time instances

and 0 elsewhere. The EM stopping criteria is similar to [41, 44] and we consider the param-

eters to have converged once their absolute mean deviation in consecutive iterations does
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not exceed 10−8.

Recall that we calculate β0 = log[p0(1 − p0)−1] using an approximation for p0 as the

average probability that mk = 1 [71]. We label this approximate probability p̂0. We set β0

corresponding to a true p0 = 0.01 for simulating data, i.e., β0 = log[0.01(1 − 0.01)−1]. We

next generated two synthetic datasets for which the approximation p̂0 was slightly lower

than, and then slightly higher than 0.01. The model parameters recovered by the EM

algorithm Θ̂ are shown in Table 1. The state estimates and fits to one set of simulated data

are shown in Fig. 8. In the figure, the sub-panels respectively depict: (a) the probability

of binary event occurrence pk (blue) and its estimate (red, the green and black dots on the

upper part of the sub-panel denote the presence or absence of the binary events); (b) the

first continuous-valued variable rk (blue) and its estimate (red); (c) the second continuous-

valued variable sk (blue) and its estimate (red); (d) the state xk (blue) and its estimate

(red, the cyan and black dots on the lower part of the sub-panel denote the presence or

absence of binary inputs); (e) the quantile-quantile (QQ) plot for the residual errors of

xk. While the proposed scheme can recover model parameters and estimate xk reasonably

well, the less-than-true approximation (p̂0 < 0.01) can cause xk to slightly overestimate

the true state and the higher-than-true approximation (p̂0 > 0.01) can cause xk to slightly

underestimate the true state.

Validation with simulated data was similar for the MPPSE method. Again, we generated

two datasets with a true p0 = 0.05, but where the approximations were slightly higher than

and slightly lower than 0.05. The model parameters and their estimates for both cases are

shown in Table 2. Fig. 9 shows the state estimation results in one of the cases. In the figure,

the sub-panels respectively depict: (a) the MPP observations (blue) and the estimated fit

to rk (red); (b) the probability of point process event occurrence pk (blue) and its estimate

(red); (c) the state xk (blue) and its estimate (red); (d) the QQ plot for the residual errors

of xk. In general, there is a good fit to the simulated data although the state estimate can

deviate from the true value in regions where there is no impulse for a long period of time.
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Table 1: Parameter estimation with simulated data – one binary and two continuous ob-
servations

True value Estimate (p̂0 < 0.01) Estimate (p̂0 > 0.01)

α = 0.04 0.018 0.021
ρ = 0.995 0.994 0.994
β0 = −4.595 -4.64 -4.057
β1 = 1 1 (set) 1 (set)
γ0 = 0.35 0.233 0.608
γ1 = 0.4 0.450 0.377
δ0 = −0.7 -0.758 -0.571
δ1 = 0.2 0.224 0.187

σ2
V = 0.002 0.0022 0.0016

σ2
W = 0.005 0.0046 0.0050
σ2
ε = 0.03 0.0219 0.0216

The estimates are closer to the true state in regions where more impulses tend to occur.

Table 2: Parameter estimation with simulated data – one MPP observation

True value Estimate (p̂0 > 0.05) Estimate (p̂0 < 0.05)

γ0 = 0.2 0.27341 0.17119
γ1 = 0.7 0.68694 0.67415
σ2
v = 0.05 0.04840 0.04885

σ2
ε = 0.005 0.00417 0.00366

For both the BSOBSE and MPPSE methods, the QQ plots are close to the 45° diagonal

indicating a Gaussian distribution of the residual errors. Coupled together with the model

parameter estimates and the fits to the true observations and states, the results indicate

the ability of our methods to recover xk accurately from a given set of observations.

A further issue is to be pointed out with regard to the MPPSE method. In regions where

an impulse is absent for a long time (due to xk being low, and consequently the impulse

occurrence probability being small), the estimate can fail to capture small deviations in the

true sympathetic arousal state. Since estimation is performed by only observing mk = 0

when neural impulses are absent, the algorithm has limited information to work with at

these locations. Consequently, if an impulse is absent for a long period of time, then the EM

estimate is unable to capture small variations in xk during that time. In the real-world, this
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Figure 8: State estimation on simulated data for model with one binary and two continuous
observations.

would translate to scenarios where there are small variations in an individual’s emotional

arousal, but none so large as to cause noticeable SCRs. If no SCRs occur in this manner (or

no underlying neural impulses occur), then the MPPSE method is unable to capture the

tiny emotional variations during that time. This issue would, however, be common to other

skin conductance-based approaches for emotion recognition as well—if no SCRs occur, then

the algorithms have little to perform estimation on.

Note further that the EM algorithms place no constraints on the signs of rk or sk

(i.e., to be either positive or negative). Therefore, the algorithms can be utilized in more

general applications as well. Skin conductance represents a special case where some of the

observations can only be positive.
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Figure 9: State estimation on simulated data for model with one MPP observation.

2.5.2 Experimental Data

On experimental data, we compare the performance of the BCOBSE, BOBSE and

MPPSE methods on representative cases of the two datasets described earlier. We used

deconvolved skin conductance data for BOBSE and MPPSE [24, 73] and SCR peak detec-

tion for BCOBSE [72]. In each case, we pay particular attention to the state estimate xk

and the high arousal index (HAI) calculated as p(xk > xthreshold). The HAI is inspired

by the term known as the ideal observer certainty level in [41]. It originally expressed the

probability that a point process event occurred by more than just chance in a behavioral

learning experiment. Here it captures the probability that binary events occur above their

natural baseline rate. Since pk is related to xk according to (2), the certainty level can also

be calculated based on the probability that the state xk exceeds an equivalent threshold.
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The threshold would capture the physiological baseline arousal state value and would in

turn be related to the baseline impulse occurrence probability. We set xthreshold to the

median state value considering that the experiments in the Neurological Status Assessment

Dataset and the Driver Stress Dataset contain both relaxation and stress periods [24].

Unlike in the case of simulated data, we place additional constraints when performing

state estimation on experimental data with the BCOBSE method. Here there is a tendency

for the model parameters to converge to a location where there is an almost perfect fit to one

of the continuous-valued observations (either rk or sk). It is likely that local extrema exist

in the model parameter search space at these points and the EM algorithm can converge to

them. In order to prevent xk from overfitting to rk or sk, we first divide rk and sk by their

respective standard deviations and carefully monitor the variance terms σ
2(l+1)
v and σ

2(l+1)
w

at each iteration. The model parameters related to rk and sk are only allowed to update if

the absolute difference between the two variance terms exceeds a threshold (this prevents

one of the variance terms being driven down at the expense of the other, which is what

happens during overfitting). This largely helps control the degree of overfitting to either rk

or sk. Fig. 10 shows the arousal estimation results using the BCOBSE method (the external

input Ik was not used here). In both sub-figures, the sub-panels respectively depict: (a)

the skin conductance signal (the green and black dots above it depict the detected SCR

peak locations); (b) the phasic-derived value (solid green line) and its fit (dotted line);

(c) the tonic level (solid light mauve line) and its fit (dotted line); (d) the arousal state

estimate and its 95% confidence limits; (e) the probability of SCR occurrence and its 95%

confidence limits; (f) HAI. The regions above 90% and below 10% are shaded in red and

green respectively in sub-panel (f). In the left sub-figure, the background colors in turn

denote the instruction period (red), the counting task (green), the Stroop test (orange),

relaxation (blue) and emotional stress (yellow – horror movie clip) respectively. In the

right sub-figure, the background colors denote rest (green), city driving (blue), toll roads

(red) and highways (yellow). On the Neurological Status Assessment Dataset, the subject’s
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HAI is above 90% during the initial cognitive stressors and extends considerably into the

relaxation interval. Also, there is a sizeable increase that even exceeds 90% at the beginning

of the emotional stress period. On the Driver Stress Dataset, the BCOBSE method provides

a somewhat jagged arousal state estimate. The HAI also has sharp unintuitive rises and

falls indicating an almost binary-like transition. There is also no consistent variation in

arousal depending on the road type. It is also to be noted that the large increase in HAI

during the second rest period was due to the subject being agitated because of a need to

use the restroom [76].

Figure 10: Sympathetic arousal estimation using model with one binary and two continuous
observations.

Fig. 11 shows the state estimates using the BOBSE method. In both sub-figures, the

sub-panels respectively depict: (a) the skin conductance signal; (b) the deconvolved neural

stimuli; (c) the arousal state estimate and its 95% confidence limits; (d) the probability of
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impulse occurrence and its 95% confidence limits; (e) HAI. The background colors corre-

spond to those in Fig. 10. On the Neurological Status Assessment Dataset, the two neural

impulses at the beginning of the emotional stress period cause a considerable increase in

HAI. HAI also remains high during the cognitive stressors and diminishes shortly thereafter

during the relaxation period. The state estimates on the Driver Stress Dataset again yield

no particular pattern depending on the road type and the increase in arousal during the

second rest period is also visible again.

Figure 11: Sympathetic arousal estimation using model with one binary observation.

Results using the MPPSE method are shown in Fig. 12. Again, in both sub-figures, the

sub-panels respectively depict: (a) the skin conductance signal; (b) the deconvolved neural

stimuli; (c) the arousal state estimate and its 95% confidence limits; (d) the probability

of impulse occurrence and its 95% confidence limits; (e) HAI. The background colors are

also the same as in Fig. 10. Notably, on the Neurological Status Assessment Dataset, the
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increase in HAI is not as prominent at the beginning of the emotional stress period. Results

on the Driver Stress Dataset are similar to that of BOBSE. However, the MPP estimate is

not as sensitive to an increase in HAI due to small neural impulses. In the region shortly

before 1000 s, there are a few such small impulses. BOBSE yields a greater increase in HAI

compared to the MPP estimate. Moreover, in the vicinity of 3000 s, the BOBSE method

shows a moderate HAI increase followed by a second smaller HAI increase. However, on

closer examination of the skin conductance signal and the detected impulses, the second

increase is actually larger. The MPP estimate correctly places the larger HAI increase

second.

Figure 12: Sympathetic arousal estimation using model with one MPP observation.

SCR amplitudes contain sympathetic arousal information [83]. The BOBSE method

does not incorporate the amplitude information of the SCRs (or equivalently of the un-

derlying neural impulse bursts) for estimating sympathetic arousal from skin conductance.
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While this method did provide good initial results, the lack of the amplitude information

can result in arousal estimates that have exaggerated responses to small neural impulses.

This is evident from the results for the BOBSE method in Fig. 11.

The BCOBSE method makes use of continuous-valued variables in addition to the binary

SCR occurrences. However, there is a tendency to overfit since the location in the EM

parameter space where the state fits almost perfectly to one of the continuous variables has

a greater extrema. Therefore, the M-step updates related to the continuous variables need

to be monitored and their updating halted when overfitting begins to occur. The method

can also result in a very low σ2
ε estimate, a more jagged state estimate and sharp transitions

in HAI. These effects are seen in Fig. 10.

Neural impulse amplitudes only exist at distinct points in time and not everywhere.

Estimation based on treating the neural impulses as an MPP overcomes the sensitivity to

small values and the tendency to overfit to a continuous variable. Consequently, only a

small rise is seen at the beginning of the emotional stress period in the Neurological Status

Assessment Dataset and a smoother state estimate compared to the BCOBSE method is

seen in the Driver Stress Dataset. Thus the MPPSE method outperforms the BOBSE and

BCOBSE methods in both these regards. Noise is a reality in any physiological signal. A

noisy skin conductance signal can give rise to several small noisy impulses being detected

during the deconvolution process and the MPP-based estimation scheme would be less

sensitive to them in such scenarios.

2.5.3 Gaussian Approximation for Filter Derivation

We make a Gaussian approximation to the posterior density p(xk|yk) in all of the filters

we develop to calculate xk|k and σ2
k|k. Therefore, it is necessary to first verify whether the

EM algorithm is able to estimate xk and recover model parameters accurately on simulated

data (where the ground truth is known) before using it on experimental data. This is the

procedure we follow for all of the major filters we develop. Based on results presented on
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synthetic data in this chapter as well as in subsequent chapters, the filters based on making

this Gaussian approximation to the posterior density do provide good estimation results.

One approach to improving the Gaussian approximation assumption is to use Gaus-

sian kernels for the posterior density. One of the fundamental issues with our estimation

problems, however, is that a ground truth is unavailable. Gaussian kernel methods for

state-space filtering (e.g., [87, 88, 89, 90]) all require training data. In these methods, the

posterior density is approximated as a weighted sum of Gaussian distributions via a ker-

nelized representation. The parameters of these Gaussian distributions are learned through

(xk, yk) pairs of training data. In our cases, we do not have any training data to begin with.

Therefore, we are unable to use this Gaussian kernel method.

2.5.4 Expectation-maximization Algorithm Initialization

We randomly initialize the model parameters when running the EM algorithm. One of

the model parameters that can be somewhat problematic is the process noise variance σ2
ε .

This term relates to how quickly the latent state we are tracking changes. Since sympathetic

arousal is unobserved, it is somewhat difficult to know what σ2
ε is and how it may be best

initialized. One approach to addressing this issue is to determine two extremes for σ2
ε

and then check whether the random initialization and the extreme initializations result in

convergence to the same model parameters.

With skin conductance data, we verified this using the Neurological Status Assessment

Dataset and the MPPSE method. We first ran the EM algorithms during the cognitive

stress periods and the relaxation periods separately for each subject. Thereafter, we took

the two extreme values for σ2
ε , re-initialized the EM algorithm at these values and ran it

again. In general, the final parameters to which the algorithms converged were very close to

what was obtained with the earlier random initialization. Moreover, the visual differences

in the state estimates were also negligible.

We also performed the same verification for cortisol using experimental data from four
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representative subjects using one of the Bayesian filters described in chapter 4. Here, the

data was split into the sleep and awake periods. Again, however, the final estimates based

on the two extreme value initializations of σ2
ε were very close to those obtained with the

original random initialization and there were also only negligible visual differences in the

state estimates.

2.6 Validation

We fundamentally address problems concerning the estimation of different unobserved

state variables within the human body in this dissertation. As such, the ground truth is

unknown, and this presents a number of difficulties. For instance, questions regarding how

many features are to be selected for estimation, which features are optimal, which state-

space model is the best and how the continuous-valued estimates are finally validated are

all challenging to answer. Similar problems arise in biomedical applications elsewhere as

well. For instance, mathematical modeling techniques that estimate central aortic blood

pressure using only peripheral measurements have also encountered validation challenges

[91]. In the case of skin conductance, our choice of features largely relies on the medi-

cal/psychophysiology literature. The rate of SCR occurrence, SCR amplitudes (which are

related to the corresponding neural impulse occurrence rates and amplitudes) and the tonic

levels are three of the most commonly used skin conductance indices of sympathetic arousal

[70]. Hence, we chose to explore these features in our state-space models.

Validation/evaluation of the results relies on a general conformity to known physiology

or a particular type of experiment (e.g., general agreement with stress conditions for skin

conductance). One of our end objectives is to develop closed-loop controllers for patient care

based on point process state-space models such as those described here. The performance

of the closed-loop controllers could also be used to evaluate/validate the performance of the

state-space models. An evaluation criteria could be established based on certain clinical

endpoints and the best model selected from among them.
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A possible option to validate/cross-check the results is to use another physiological

signal(s) and examine its similarity with the state estimate. As a preliminary illustration

of this possibility, we show the arousal estimation results for a participant who engaged

in an n-back task (1-back and 3-back). An n-back task comprises of correctly recalling

previous characters in a sequence of alphabetical letters displayed on a screen. The n-

back tasks had to be performed under two conditions: (i) while listening to calming music;

(ii) while listening to vexing music. The music was selected by the participant and there

was a relaxation interval in-between the two sessions. We collected the participant’s skin

conductance from the non-dominant hand using Biopac sensors and functional Near Infrared

Spectroscopy (fNIRS) using the NIRSport2 headset. The study protocol was approved by

the University of Houston Institutional Review Board.
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Figure 13: Sympathetic arousal estimation with fNIRS validation.
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We processed the data using nirsLAB 2019.4. We first bandpass filtered the fNIRS

signals between 0.01 and 0.2 Hz (default) and then computed the hemodynamic states.

We next extracted the total hemoglobin (hbT) signals over the pre-frontal cortex (two bad

channels were discarded based on a default nirsLAB coefficient of variation criterion of 7.5%)

and calculated a sample-by-sample running average of the hbT squared energy over a 30 s

window. Fig. 13 shows the skin conductance-based state estimates, and the mean and mean

envelope of the hbT energies (based on all 20 channels over the pre-frontal cortex). In the

figure, the sub-figure on the left depicts the fNIRS channel locations (the red and blue dots

denote the sources and detectors respectively). In the sub-figure on the right, the sub-panels

respectively depict: (a) the skin conductance signal zk; (b) the deconvolved neural impulses

(blue) and the estimated fit to the amplitudes (red); (c) the tonic component (orange) and

its estimated fit (red); (d) the probability of impulse occurrence and its 95% confidence

limits; (e) the arousal state estimate and its 95% confidence limits; (f) HAI calculated

based on the median state (the regions above 90% and below 10% are shaded in red and

green respectively); (g) the mean (blue) and mean envelope (red) of the hbT energies. The

background colors correspond to performing the n-back trials during calming music (yellow),

relaxation (green) and performing the n-back trials during vexing music (orange). Here we

used a state-space model with one MPP and one continuous-valued variable for estimation

that is introduced in chapter 4 (the tonic component was the continuous-valued variable).

A similarity is seen between the skin conductance-based sympathetic arousal estimates and

the hbT mean energies. Both xk and the hbT energies are lower during calming music and

are higher during vexing music. It is likely that the participant had to put in more cognitive

effort during the vexing music session to get the answers correct. Since a ground truth is

unavailable for the estimation problems we describe here, the use of other physiological

signals such as fNIRS for validation is an option. Moreover, since the size of the pupil is

also influenced by the sympathetic nervous system, validating the estimate against a pupil

size signal is also a viable alternative.
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3 Sympathetic Arousal Estimation using Skin Conductance

and Heart Rate Data

3.1 Modeling and Autonomic Regulation of Heart Rate

We next focus on extracting sympathetic arousal information from the heart to supple-

ment the skin conductance features considered earlier. Recall that nerve fibers from the

sympathetic branch of the autonomic nervous system innervate the sweat glands. Con-

sequently, skin conductance becomes a sensitive index of sympathetic arousal [61]. It is

more complicated with the heart. The heart is innervated by both the sympathetic and

parasympathetic branches which have a “push-pull” effect on it. Moreover, the heart also

has its own pacing mechanism [92]. Now an EKG is one of the most common methods of

extracting information regarding cardiac activity. An EKG signal comprises of repeating

elements known as QRS complexes. Most prominent in a QRS complex is the R-peak which

accompanies ventricular contraction. Heart rate can be easily obtained from an EKG sig-

nal by extracting the RR-intervals and calculating the time difference between successive

beats. In this chapter, we describe two different state-space models for estimating sympa-

thetic arousal based on skin conductance and heart rate measurements. The first, described

in [93], utilizes binary SCR occurrences and RR-intervals, and the second, described in [94],

utilizes binary SCR occurrences, tonic and phasic information (as continuous-valued obser-

vations) and RR-intervals.

The sympathetic nervous system increases heart rate and the force of contraction via

the neurotransmitter norepinephrine [95]. In contrast, parasympathetic activation causes

the release of actylcholine at the heart and has the opposite effect. Beat-to-beat variations

in RR-intervals, known as heart rate variability (HRV), reflect changes in sympathetic and

parasympathetic control on the heart. Here we relate sympathetic arousal to heart rate.

Studies in animal models have shown that the stimulation of autonomic nerve fibers leading
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to the heart results in an almost linear relationship between stimulation frequency and RR-

intervals [96, 97]. Based on findings in these studies, we select a linear model to capture the

relationship between RR-intervals and sympathetic arousal xk. Note, however, that we do

not assume that RR-intervals are linear, but rather that the effect of sympathetic arousal

on RR-intervals is linear. It is, however, possible to assume more complex effects between

xk and RR-intervals if necessary.

Heartbeats occur due to the depolarization of cells in the heart’s sinoatrial (SA) node

which subsequently propagates throughout the atria and ventricles. The rise in the mem-

brane potentials in the SA node cells can be modeled as a Gaussian random walk with

drift [98, 99]. Consequently, the times between successive ventricular contractions can be

modeled using the inverse Gaussian probability density model. Barbieri et al., [98, 100]

successfully used a history-dependent inverse Gaussian (HDIG) probability density func-

tion to model RR-intervals. If L consecutive R-peaks occur at times ul within (0, T ] such

that 0 < u1 < u2 < . . . < uL ≤ T , and hl = ul− ul−1 is the lth RR-interval, then the HDIG

density function for RR-intervals at t > ul is,

g(t|ul) =

√
θq+1

2π(t− ul)3
exp

{
−θq+1[t− ul − µ̂]2

2µ̂2(t− ul)

}
, (40)

where q is the model order, θq+1 is related to the variance and

µ̂ = θ0 +

q∑
i=1

θihl−i+1 (41)

is the HDIG mean [100]. The θi’s are coefficients to be determined. This model expresses the

dependence of an RR-interval on its immediate history (this dependence has also led to the

successful application of autoregressive models to the analysis of HRV [101, 102]). Barbieri

et al., [98] divided the time axis into bins of size ∆ = 5 ms and performed local likelihood

estimation to determine the θi’s every ∆ ms (i.e., the θi’s were time-varying). These time-

varying parameters capture part of the non-stationary nature of HRV that occurs due to
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underlying pathological and physiological reasons [103].

Based on our earlier assumption of linearity between sympathetic arousal xk and the

RR-intervals, we re-define a new HDIG RR-interval mean µ as one which depends linearly

on both the immediate history and xk as

µ = θ0 +

q∑
i=1

θihl−i+1 + ηxk, (42)

where η is a coefficient to be determined. Moreover, we also assume that the θi’s are fixed

and that variations in sympathetic arousal account for part of the RR-interval stochasticity.

According to this formulation, changes in arousal would cause the HDIG probability density

function to shift to the right or the left.

We typically analyze skin conductance data at a sampling frequency of 4 Hz due to its

low bandwidth (sampling time ts = 250 ms). Now the bin size ∆ = 5 ms proposed by

Barbieri et al., [98] used for the HDIG model is much smaller. There are J = ts/∆ = 50

heart rate observation bins corresponding to the kth skin conductance sample. We index

these smaller heart rate bins over j and generate a binary point process by assigning nk,j = 1

or nk,j = 0 depending on whether or not an R-peak occurred at the time. The joint density

over these J observations is then [104]

P (nk,1, nk,2, . . . , nk,J |xk) = e
∑J
j=1 log(λk,j∆)nk,j−λk,j∆, (43)

where the conditional intensity function (CIF) λk,j is

λk,j ,
g(tk,j |uk,j)

1−
∫ tk,j
uk,j

g(z|uk,j)dz
, (44)

and uk,j is the time of occurrence of the last R-peak prior to tk,j . The sequence

NK = {n1,1, n1,2, . . . , n1,J , n2,1, n2,2, . . . , n2,J , . . . , nK,1, nK,2, . . . , nK,J} (45)
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forms the set of heart rate observations. We use NK as an additional feature capturing

sympathetic arousal information in the state-space models described here.

3.2 Data

3.2.1 Smart Reasoning for Well-being at Home and at Work Dataset

We first use the Smart Reasoning for Well-being at Home and at Work (SWELL) Dataset

[105]. In the SWELL experimental study, skin conductance, EKG, computer interactions,

video and posture data were recorded from subjects as they engaged in activities typi-

cally performed in an office. The tasks included preparing reports and presentations, and

responding to e-mails. The experimental trials were divided into three blocks and each sub-

ject had to prepare two reports and one Powerpoint presentation (on one of those reports)

in each block. In the first block, subjects could take as much time as they liked. In one

of the other two blocks, subjects were sent eight e-mails (some of which were irrelevant)

and were instructed to make use of the incoming information and reply as required. In the

remaining block, a subject could only take 2/3rds of the time taken for the very first block.

The order of these last two blocks was varied from subject to subject. Here, we label these

blocks as the Unfamiliar Task (UT) block (since the subjects were newly introduced to the

experimental task), the Repeated Task (RT) block and the Constrained Task (CT) block.

The six report and presentation topics included: stress at work, healthy living, internet

privacy, tourist attractions in Perth, the life of Napoleon and details for a road trip across

the United States. Two topics were randomly selected for each block and the subjects were

permitted to browse the web in preparing their reports. Each block was preceded by 8 min

of relaxing music. Here, we analyze the data from one subject (subject 16) over all three

blocks.

The skin conductance and EKG data were recorded at 2048 Hz in the SWELL dataset.

Many of the skin conductance recordings were heavily noise corrupted. Subject 16 was

selected due to the least signal contamination being present across blocks UT, RT and CT.
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We first manually identified locations where motion artifact corruption was present (usually

manifesting as sharp drops) and linearly interpolated over them. We finally lowpass filtered

the skin conductance at 0.5 Hz similar to [106] and downsampled the data to 4 Hz. We also

performed peak detection on the EKGs to identify R-peaks.

3.2.2 Fear Conditioning Dataset

We secondly use data from a Pavlovian fear conditioning experiment. In this general

category of experiments, a subject learns an association between a biologically-relevant

stimulus and a neutral cue through repeated pairing [107]. The paradigm originated with

experiments conducted by the Russian scientist Ivan Pavlov in the early part of the 20th

century [107]. In his classic experiment, Pavlov repeatedly paired the ringing of a bell with

food, eventually causing a dog to salivate merely at the ringing of the bell [108]. The food

was named as the unconditioned stimulus (US) and the ringing of the bell as the conditioned

stimulus (CS). Learning the association between the CS and US lies at the heart of Pavlovian

conditioning; eventually, the CS alone will begin to elicit the biological response typically

associated with the US. In fear conditioning experiments, the US is unpleasant. It can

take the form of a mild electric shock, a loud sound, an aversive image, a blast of air to

the throat etc. [108, 109]. Pavlovian fear conditioning has been examined in both human

subjects and animal models. Additional forms of fear conditioning experiments arose later.

These include differential conditioning and the use of more complex stimuli. In differential

conditioning, there are two types of conditioned stimuli—CS+ and CS-. The CS- is never

associated with the US. The CS+ may be associated fully or partially with the US. The

CS+ can also be chosen to reinforce the threat of the US (e.g., the image of a fearful face

may be used as the CS+ and a neutral face as the CS-).

Here we use the PsPM-TC: SCR, EKG, EMG and Respiration Measurements in a Dis-

criminant Trace Fear Conditioning Task with Visual CS and Electrical US Dataset [110].

The dataset is described in detail in [111, 112, 113], and is publicly available through the
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Zenodo repository. The original experiment involved 23 subjects (13 males, 10 females,

age 23.8 ± 3.0 years) from whom four subjects were discarded [111]. The dataset available

online contains physiological signal measurements from the other 19 healthy subjects. In

trace fear conditioning, as opposed to delay fear conditioning, there is a time gap between

the termination of the CS+ cue and the US onset [108]. Blue and red rectangles on a

computer screen were used as the CS+ and CS- visual cues. The US was a series of 0.2

ms square electrical pulses applied at a frequency of 10 Hz for a duration of 0.5 s to the

subject’s forearm using a pin-cathode/ring-anode electrode configuration. The stimulation

intensity was set to approximately 90% of each subject’s pain threshold following a two-

step procedure. Skin conductance was recorded from Ag/AgCl cup electrodes placed on the

thenar/hypothenar of each subject’s non-dominant hand and EKG was likewise recorded

using Ag/AgCl electrodes placed on the limbs. Only 50% of the CS+ trials were accom-

panied by the US. Skin conductance and EKG can be contaminated by various sources of

noise including motion artifacts and powerline noise. We analyzed data from 12 subjects

for whom only low to moderate noise contamination was present in the signals.

3.3 Methods

As stated earlier, we developed two different state-space models and corresponding

Bayesian filters to estimate sympathetic arousal from skin conductance and heart rate.

The model that only utilizes binary SCR occurrences and RR-intervals [93] can be consid-

ered to be a special case of the extended model [94]. The filter equations for the simpler

model can also be derived by taking the extended model and dropping the terms corre-

sponding to rk and sk in the posterior density p(xk|yk). We evaluated the extended model

on the PsPM-TC Dataset and the simpler one on the SWELL Dataset. Note also that when

heart rate observations are included, a slight modification is necessary to the EM algorithm.

Owing to computational complexity, we are unable to estimate η at the M-step and instead

have to rely on an alternate means of estimation. The EM algorithm details are described
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below.

3.3.1 State-space Model with One Binary, Two Continuous and One Spiking-

type Observation

Here we assume that sympathetic arousal varies with time as

xk = ρxk−1 + αIk + εk (46)

similar to eq. (1). We set Ik = 1 at the times corresponding to the presentation of the

CS+, CS- and US stimuli. We also assume that xk is related to the probability of SCR

occurrence pk through

pk =
1

1 + e−(β0+β1xk)
, (47)

where β0 and β1 are coefficients to be determined.

The derivation of the E-step equations is similar to what was seen in the earlier chapter.

We make a Gaussian approximation to the posterior density p(xk|yk) similar to [46] to

obtain the following filter equations:

xk|k−1 = ρxk−1|k−1 + αIk, (48)

σ2
k|k−1 = ρ2σ2

k−1|k−1 + σ2
ε , (49)

Ck =
σ2
k|k−1

σ2
vσ

2
w + σ2

k|k−1(γ2
1σ

2
w + δ2

1σ
2
v)
, (50)

xk|k = xk|k−1 + Ck

[
β1σ

2
vσ

2
w(mk − pk|k) + γ1σ

2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v(sk − δ0 − δ1xk|k−1) + σ2

vσ
2
w

J∑
j=1

1

λk,j|k

∂λk,j|k

∂xk
(nk,j − λk,j|k∆)

]
, (51)
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and

σ2
k|k =

{
1

σ2
k|k−1

+ β2
1pk|k(1− pk|k) +

γ2
1

σ2
v

+
δ2

1

σ2
w

−
J∑
j=1

[
1

λk,j|k

∂2λk,j|k

∂x2
k

(nk,j − λk,j|k∆)

−
nk,j
λ2
k,j|k

(
∂λk,j|k

∂xk

)2]}−1

. (52)

The M-step is more complicated. Ideally, all model parameters related to both skin

conductance and heart rate should be estimated at the M-step simultaneously. Recall that

we have to determine θ0, θ1, . . . , θq+1 and η for heart rate. Calculating these values at the

M-step requires the maximization of [46]

Q̄ =
K∑
k=1

J∑
j=1

E
[

log(λk,j∆)nk,j − λk,j∆
]
. (53)

Maximizing Q̄ with respect to the θi’s and η for a fixed model order q is extremely time

consuming. Additionally, multiple values of q need to be evaluated for selecting the best

order. Owing to this large time complexity, we resorted to an alternate two-step strategy

for determining the model parameters related to heart rate.

� Step 1: Determining the model order q and the θi coefficients

The HDIG density function models the RR-interval mean as a weighted sum of the

previous q RR-intervals. This is similar to an autoregressive model where a value in a

time series is predicted based on its past values [103]. Barbieri et al., [98, 100] assessed

goodness-of-fit when modeling RR-intervals based on the HDIG density function us-

ing the Kolmogorov-Smirnov (KS) plot. The KS plot is based on the time rescaling

theorem [114] and provides an indication of how well a CIF fits to point process obser-

vations. In addition to heartbeat data, the time rescaling theorem is also frequently

used in the analysis of neural spike trains [115, 116, 117]. The closer the KS plot

is to the 45° diagonal, the better the fit is to the point process observations. Thus,
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the maximum distance between the KS plot and the 45° diagonal (known as the KS

distance), provides a quantitative measure of goodness-of-fit. For each model order

q, we estimated θ0, θ1, . . . , θq+1 offline via maximum likelihood [98]. The best model

order q and the θi coefficients were selected based on the smallest KS distance. We

performed step 1 for each participant prior to arousal estimation using EM.

� Step 2: Determining η

After selecting the θi’s and the model order q, we run the full EM algorithm for

arousal estimation for a fixed set of values for η. Since RR-intervals decrease (i.e.,

heart rate speeds up) with increased sympathetic drive, we chose to try a set of

negative values for η. We resorted to this two-step strategy because determining η

and the θi’s simultaneously at the M-step proved to be extremely time consuming. Q̄

in (53) can be approximated by

Q̄ ≈
K∑
k=1

J∑
j=1

log(λk,j|K∆)nk,j − λk,j|K∆ +
1

2

[
1

λk,j|K

∂2λk,j|K

∂x2
k

(nk,j − λk,j|K∆)

−
nk,j
λ2
k,j|K

(
∂λk,j|K

∂xk

)2]
σ2
k|K . (54)

Ideally, the η value with the largest Q̄ during state estimation should be selected.

However, the inclusion of xk in the HDIG model causes the KS plot obtained via

maximum likelihood to change. Therefore, η should be chosen to maximize Q̄ subject

to the new KS plot falling within or reasonably close to the 95% confidence limits.

In summary, the EM algorithm is split into two. All model parameters excluding the

ones related to heart rate are calculated in the regular EM manner. The θi coefficients are

estimated offline prior to running the EM algorithm. For η, we run the EM algorithm for

different values of η and then select the one with the highest log-likelihood subject to the

KS plot falling reasonably close to the 45° diagonal.
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3.3.2 State-space Model with One Binary and One Spiking-type Observation

Since no external inputs such as such as cues to electric shocks are present in the SWELL

experimental study, we choose the random walk xk = xk−1 + εk for the state equation. We

also consider xk to be related to pk through

pk =
1

1 + e−(β0+xk)
, (55)

where β0 is determined empirically.

The filter equations are as follows:

xk|k−1 = xk−1|k−1, (56)

σ2
k|k−1 = σ2

k−1|k−1 + σ2
ε , (57)

xk|k = xk|k−1 + σ2
k|k−1

[
(mk − pk|k) +

J∑
j=1

1

λk,j|k

∂λk,j|k

∂xk
(nk,j − λk,j|k∆)

]
, (58)

and

σ2
k|k =

{
1

σ2
k|k−1

+ pk|k(1− pk|k)

−
J∑
j=1

[
1

λk,j|k

∂2λk,j|k

∂x2
k

(nk,j − λk,j|k∆)−
nk,j
λ2
k,j|k

(
∂λk,j|k

∂xk

)2]}−1

. (59)

The equations are similar to those in the previous case except that now the terms for rk

and sk are absent.
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3.4 Derivation of Expectation-maximization Algorithm Equations for Model

with One Binary, Two Continuous and One Spiking-type Observation

At this point we briefly digress from our usual flow to provide the EM algorithm deriva-

tions for the state-space model with one binary, two continuous and one spiking-type ob-

servation. Mathematically, this represents the most complicated case without an MPP

observation. All other filter equations can be derived by making adjustments to this par-

ticular state-space model. This section also forms a self-contained unit having just the EM

derivations.

3.4.1 E-step Filter Equations

We follow an approach similar to [46] in deriving the filter updates. Recall that we have

the following linear relationships between xk, rk and sk:

rk = γ0 + γ1xk + vk (60)

and

sk = δ0 + δ1xk + wk. (61)

We take the two noise terms vk and wk to be independent of each other. Consequently, the

density functions p(rk|xk) and p(sk|xk) conditioned on already having observed xk are also

independent of each other. Taking yk to denote the observations recorded up to time index

k, we have

p(xk|yk) =
p(xk|yk−1)p(yk|xk)

p(yk|yk−1)

=
p(xk|yk−1)P (mk|xk)p(rk|xk)p(sk|xk)P (nk,1:J |xk)

p(yk|yk−1)
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∝ exp

[
−(xk − xk|k−1)2

2σ2
k|k−1

+mk log

(
pk

1− pk

)
+ log(1− pk)

− (rk − γ0 − γ1xk)
2

2σ2
v

− (sk − δ0 − δ1xk)
2

2σ2
w

+
J∑
j=1

log(λk,j∆)nk,j − λk,j∆

]
. (62)

Therefore,

log
[
p(xk|yk)

]
=

[
−(xk − xk|k−1)2

2σ2
k|k−1

+mk log

(
pk

1− pk

)
+ log(1− pk)

− (rk − γ0 − γ1xk)
2

2σ2
v

− (sk − δ0 − δ1xk)
2

2σ2
w

+
J∑
j=1

log(λk,j∆)nk,j − λk,j∆

]

+ const. (63)

We make a Gaussian approximation to the posterior p(xk|yk) to derive the mean and vari-

ance. Setting the partial derivative of the logarithm term to 0, we obtain

∂

∂xk
log
[
p(xk|yk)

]
=
−(xk − xk|k−1)

σ2
k|k−1

+ β1(mk − pk) +
γ1(rk − γ0 − γ1xk)

σ2
v

+
δ1(sk − δ0 − δ1xk)

σ2
w

+
J∑
j=1

1

λk,j|k

∂λk,j|k

∂xk
(nk,j − λk,j|k∆) = 0. (64)

Solving for xk in the equation above provides the filter update (i.e., the mean value) for

xk|k. Here we have taken

∂pk
∂xk

= β1pk(1− pk) (65)

when calculating the partial derivative. Similarly, the second partial derivative is

∂2

∂x2
k

log
[
p(xk|yk)

]
=
−1

σ2
k|k−1

− β1
∂pk
∂xk
− γ2

1

σ2
v

− δ2
1

σ2
w

+
∂

∂xk

[
J∑
j=1

1

λk,j|k

∂λk,j|k

∂xk
(nk,j − λk,j|k∆)

]
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=
−1

σ2
k|k−1

− β2
1pk(1− pk)−

γ2
1

σ2
v

− δ2
1

σ2
w

+
J∑
j=1

[
1

λk,j|k

∂2λk,j|k

∂x2
k

(nk,j − λk,j|k∆)−
nk,j
λ2
k,j|k

(
∂λk,j|k

∂xk

)2]
. (66)

The filter update for σ2
k|k is given by [46]

σ2
k|k =

{
− ∂2

∂x2
k

log
[
p(xk|yk)

]}−1

. (67)

3.4.2 M-step Updates

Complete Data Log-likelihood

Taking Θ to denote all the model parameters, the complete data likelihood conditioned

on Θ is

p
(
YK ,XK |Θ

)
=

K∏
k=1

pmkk (1− pk)1−mk ×
K∏
k=1

1√
2πσ2

v

e
− (rk−γ0−γ1xk)

2

2σ2v

×
K∏
k=1

1√
2πσ2

w

e
− (sk−δ0−δ1xk)

2

2σ2w ×
K∏
k=1

e
∑J
j=1 log(λk,j∆)nk,j−λk,j∆

×
K∏
k=1

1√
2πσ2

ε

e
−

(xk−ρxk−1−αIk)
2

2σ2ε . (68)

Therefore, the expected log-likelihood is

Q =
K∑
k=1

E
[
mk(β0 + β1xk)− log

(
1 + eβ0+β1xk

)]
+

(−K)

2
log
(
2πσ2

v

)

−
K∑
k=1

E
[
(rk − γ0 − γ1xk)

2
]

2σ2
v

+
(−K)

2
log
(
2πσ2

w

)
−

K∑
k=1

E
[
(sk − δ0 − δ1xk)

2
]

2σ2
w

+
K∑
k=1

J∑
j=1

E
[

log(λk,j∆)nk,j − λk,j∆
]

+
(−K)

2
log
(
2πσ2

ε

)

−
K∑
k=1

E
[
(xk − ρxk−1 − αIk)2

]
2σ2

ε

. (69)
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Similar to [41], we denote the following expected values as:

xk|K = E
[
xk|yK ,Θ

]
, (70)

Uk = E
[
x2
k|yK ,Θ

]
, (71)

and

Uk,k+1 = E
[
xkxk+1|yK ,Θ

]
. (72)

M-step Updates for α and ρ

Let

Q1 =
1

2σ2
ε

K∑
k=1

E
[
(xk − ρxk−1 − αIk)2

]
(73)

denote the term in Q containing α and ρ. While it is possible to determine the starting

state x0 as a separate parameter, we follow one of the options in [41, 44] and set x0 = x1.

This permits some bias at the beginning. Therefore,

Q1 =
1

2σ2
ε

{
K∑
k=2

E
[
(xk − ρxk−1 − αIk)2

]
+ E

[
(αI1)2

]}
. (74)

We take the partial derivatives of Q1 with respect to α and ρ and set them to 0 to obtain

the M-step updates. Taking the partial derivative of Q1 with respect to α, we have

∂Q1

∂α
=

1

2σ2
ε

{
K∑
k=2

E
[
− 2Ik(xk − ρxk−1 − αIk)

]
+ 2αI2

1

}
. (75)

Setting this term to 0 yields

0 = −
K∑
k=2

IkE
[
xk
]

+ ρ
K∑
k=2

IkE
[
xk−1

]
+ α

K∑
k=1

I2
k
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= −
K∑
k=2

Ikxk|K + ρ
K∑
k=2

Ikxk−1|K + α
K∑
k=1

I2
k . (76)

Taking the partial derivative of Q1 with respect to ρ yields

∂Q1

∂ρ
=

1

2σ2
ε

{
K∑
k=2

E
[
− 2xk−1(xk − ρxk−1 − αIk)

]}
. (77)

Setting this term to 0, we obtain

0 = −
K∑
k=2

E
[
xkxk−1

]
+ ρ

K∑
k=2

E
[
x2
k−1

]
+ α

K∑
k=2

IkE
[
xk−1

]
= −

K−1∑
k=1

Uk,k+1 + ρ

K−1∑
k=1

Uk + α

K∑
k=2

Ikxk−1|K . (78)

The solutions to these two simultaneous equations provide α and ρ.

M-step Updates for γ0, γ1, δ0 and δ1

Let

Q2 =
K∑
k=1

E
[
(rk − γ0 − γ1xk)

2
]

2σ2
v

(79)

denote the term in Q containing γ0 and γ1. Taking the partial derivative with respect to

γ0 we obtain

∂Q2

∂γ0
=

1

2σ2
v

K∑
k=1

−2E
[
rk − γ0 − γ1xk

]
. (80)

Setting this term to 0 yields

0 = −
K∑
k=1

rk + γ0K + γ1

K∑
k=1

E
[
xk
]

= −
K∑
k=1

rk + γ0K + γ1

K∑
k=1

xk|K . (81)
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Taking the partial derivative of Q2 with respect to γ1 yields

∂Q2

∂γ1
=

1

2σ2
v

K∑
k=1

−2E
[
xk(rk − γ0 − γ1xk)

]
. (82)

Setting this term to 0, we obtain

0 = −
K∑
k=1

rkE
[
xk
]

+ γ0

K∑
k=1

E
[
xk
]

+ γ1

K∑
k=1

E
[
x2
k

]
= −

K∑
k=1

rkxk|K + γ0

K∑
k=1

xk|K + γ1

K∑
k=1

Uk. (83)

The solutions to these two simultaneous equations provide γ0 and γ1. δ0 and δ1 may be

obtained similarly from the term in Q containing sk. In the case of an MPP observation,

the constant coefficients are calculated by performing the corresponding summations only

over the reduced set of indices at which mk = 1.

M-step Updates for σ2
v and σ2

w

Let

Q3 =
−K

2
log
(
2πσ2

v

)
−

K∑
k=1

E
[
(rk − γ0 − γ1xk)

2
]

2σ2
v

(84)

denote the term in Q containing σ2
v . Setting the partial derivative of Q3 with respect to σ2

v

to 0, we obtain

∂Q3

∂σ2
v

=
−K
2σ2

v

+
1

2σ4
v

K∑
k=1

E
[
(rk − γ0 − γ1xk)

2
]

= 0. (85)

Therefore,

σ2
v =

1

K

K∑
k=1

E
[
(rk − γ0 − γ1xk)

2
]

=
1

K

{
K∑
k=1

r2
k +Kγ2

0 + γ2
1

K∑
k=1

E
[
x2
k]− 2γ0

K∑
k=1

rk − 2γ1

K∑
k=1

rkE
[
xk
]
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+ 2γ0γ1

K∑
k=1

E
[
xk
]}

=
1

K

{
K∑
k=1

r2
k +Kγ2

0 + γ2
1

K∑
k=1

Uk − 2γ0

K∑
k=1

rk − 2γ1

K∑
k=1

rkxk|K + 2γ0γ1

K∑
k=1

xk|K

}
. (86)

The update for σ2
w may be obtained likewise. Again, in the case of an MPP observation,

the sensor noise variance is calculated by performing the corresponding summations over

the reduced set of indices at which mk = 1.

M-step Update for σ2
ε

Let

Q4 =
−K

2
log
(
2πσ2

ε

)
−

K∑
k=1

E
[
(xk − ρxk−1 − αIk)2

]
2σ2

ε

=
−K

2
log
(
2πσ2

ε

)
−

K∑
k=2

E
[
(xk − ρxk−1 − αIk)2

]
2σ2

ε

−
E
[
(αI1)2

]
2σ2

ε

(87)

denote the term in Q containing σ2
ε . Setting the partial derivative of Q4 with respect to σ2

ε

to 0, we obtain

∂Q4

∂σ2
ε

=
−K
2σ2

ε

+
1

2σ4
ε

K∑
k=2

E
[
(xk − ρxk−1 − αIk)2

]
+

(αI)2

2σ4
ε

= 0. (88)

Therefore,

σ2
ε =

1

K

K∑
k=2

{
E
[
x2
k

]
− 2ρE

[
xkxk−1

]
+ ρ2E

[
x2
k−1

]
− 2αIkE

[
xk
]

+ 2αρIkE
[
xk−1

]}
+
α2

K

K∑
k=1

I2
k

=
1

K

{
K∑
k=2

Uk − 2ρ

K−1∑
k=1

Uk,k+1 + ρ2
K−1∑
k=1

Uk − 2α

K∑
k=2

Ikxk|K + 2αρ

K∑
k=2

Ikxk−1|K

+ α2
K∑
k=1

I2
k

}
. (89)

56



M-step Updates for β0 and β1

Let

Q5 =
K∑
k=1

E
[
mk(β0 + β1xk)− log

(
1 + eβ0+β1xk

)]
(90)

denote the expectation term containing β0 and β1. Performing a Taylor expansion of the

logarithm term around xk|K [46], we obtain

log
(
1 + eβ0+β1xk

)
≈ log

(
1 + eβ0+β1xk|K

)
+ β1pk|K(xk − xk|K)

+
β2

1

2
pk|K(1− pk|K)(xk − xk|K)2. (91)

Taking the expected value on both sides yields

E
[

log
(
1 + eβ0+β1xk

)]
≈ log

(
1 + eβ0+β1xk|K

)
+ β1pk|KE

[
xk − xk|K

]
+
β2

1

2
pk|K(1− pk|K)

× E
[
(xk − xk|K)2

]
= log

(
1 + eβ0+β1xk|K

)
+ 0 +

β2
1

2
pk|K(1− pk|K)σ2

k|K . (92)

Therefore,

Q5 ≈
K∑
k=1

[
mk(β0 + β1xk|K)− log

(
1 + eβ0+β1xk|K

)
− β2

1

2
pk|K(1− pk|K)σ2

k|K

]
. (93)

Now,

∂pk|K

∂β0
=

∂

∂β0

[
1

1 + e−(β0+β1xk|K)

]
=

(−1)[
1 + e−(β0+β1xk|K)

]2 ×
[
− e−(β0+β1xk|K)

]

= pk|K(1− pk|K). (94)
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And similarly,

∂pk|K

∂β1
= pk|K(1− pk|K)xk|K . (95)

The partial derivative of Q5 with respect to β0 is

∂Q5

∂β0
=

K∑
k=1

{
mk − pk|K −

β2
1σ

2
k|K

2

∂

∂β0

[
pk|K(1− pk|K)

]}
. (96)

Setting this to 0, we obtain

0 =

K∑
k=1

[
mk − pk|K −

β2
1σ

2
k|K

2
(1− pk|K)(1− 2pk|K)pk|K

]
. (97)

And similarly for β1 we have,

∂Q5

∂β1
=

K∑
k=1

[
mkxk|K − xk|Kpk|K −

β1σ
2
k|K

2
pk|K(1− pk|K)

[
2 + β1xk|K(1− 2pk|K)

]]
= 0.

(98)

These two simultaneous equations involving the partial derivatives of Q5 with respect to β0

and β1 can be solved numerically to obtain the corresponding M-step updates.

Approximation for the Expectation Term Containing λk,j

Let

Q6 =
K∑
k=1

J∑
j=1

E
[

log(λk,j∆)nk,j − λk,j∆
]

(99)

denote the expectation term containing λk,j . A Taylor expansion of the summed term

around xk|K [46] yields

log(λk,j∆)nk,j − λk,j∆ ≈ log(λk,j|K∆)nk,j − λk,j|K∆

+
1

λk,j|K

∂λk,j|K

∂xk
(nk,j − λk,j|K∆)(xk − xk|K)
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+
1

2

[
1

λk,j|K

∂2λk,j|K

∂x2
k

(nk,j − λk,j|K∆)−
nk,j
λ2
k,j|K

(
∂λk,j|K

∂xk

)2]

× (xk − xk|K)2. (100)

Taking the expected value on both sides, we obtain

E
[

log(λk,j∆)nk,j − λk,j|K∆
]
≈ log(λk,j|K∆)nk,j − λk,j|K∆

+
1

λk,j|K

∂λk,j|K

∂xk
(nk,j − λk,j|K∆)E

[
xk − xk|K

]
+

1

2

[
1

λk,j|K

∂2λk,j|K

∂x2
k

(nk,j − λk,j|K∆)−
nk,j
λ2
k,j|K

(
∂λk,j|K

∂xk

)2]

× E
[
xk − xk|K

]2
≈ log(λk,j|K∆)nk,j − λk,j|K∆ + 0

+
1

2

[
1

λk,j|K

∂2λk,j|K

∂x2
k

(nk,j − λk,j|K∆)−
nk,j
λ2
k,j|K

(
∂λk,j|K

∂xk

)2]

× σ2
k|K . (101)

Therefore,

Q6 ≈
K∑
k=1

J∑
j=1

log(λk,j|K∆)nk,j − λk,j|K∆

+
1

2

[
1

λk,j|K

∂2λk,j|K

∂x2
k

(nk,j − λk,j|K∆)−
nk,j
λ2
k,j|K

(
∂λk,j|K

∂xk

)2]
σ2
k|K . (102)

This term can be numerically optimized with respect to the coefficient(s) in λk,j that need

to be determined.
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3.5 Results and Discussion

3.5.1 Simulated Data

Only the extended model containing rk and sk was evaluated on simulated data. The

procedure for simulating data is similar to that described in the earlier chapter (we set β1 = 1

and calculated β0 empirically on simulated data). We generated two datasets using a true

p0 = 0.01, but where the approximation p̂0 was slightly lower than and slightly higher than

0.01 in the actual data. We also set the indicator function Ik = 1 at 25 arbitrary locations.

The model parameters used and their estimates and shown in Table 3. Fig. 14 shows

the estimation results in one of the cases. In the figure, the sub-panels respectively depict:

(a) the probability of binary event occurrence pk (blue) and its estimate (red, the green and

black dots on the upper part of the sub-panel denote the presence or absence of the binary

events); (b) the first continuous-valued variable rk (blue) and its estimate (red); (c) the

second continuous-valued variable sk (blue) and its estimate (red); (d) the state xk (blue)

and its estimate (red, the cyan and black dots on the lower part of the sub-panel denote

the presence or absence of binary inputs); (e) the sequence of RR-intervals rri (orange dots)

and the estimated RR-interval mean µ (blue); (f) QQ plot for the residual errors of xk.

In general, there are good fits to rk, sk and the RR-intervals. However, the fits to pk and

xk are better in one case (p̂0 > 0.01) than in the other. It is likely that since β0 and β1

(calculated using p̂0) appear in exponent terms, state estimation is more sensitive to them.

3.5.2 Experimental Data – Fear Conditioning Dataset

We evaluated the performance of the extended model containing rk and sk on the Fear

Conditioning Dataset (PsPM-TC Dataset). We set Ik = 1 corresponding to the times at

which the CS+, CS- and US stimuli were presented. We investigated model orders up to

q = 8 based on partial autocorrelation plots of the RR-intervals similar to [103] and tried

out values for η belonging to the set {−10−6,−10−5,−10−4,−10−3,−10−2,−10−1} in the
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Table 3: Parameter estimation with simulated data – one binary, two continuous and one
spiking-type observation

True value Estimate (p̂0 > 0.01) Estimate (p̂0 < 0.01)

α = 0.04 0.0082 0.0281
ρ = 0.995 0.9941 0.9947
δ0 = −0.7 -0.739 -0.704
δ1 = 0.2 0.2532 0.4417

σ2
w = 0.003 0.003 0.0031
γ0 = 0.35 0.2716 0.3422
γ1 = 0.4 0.5057 0.8848
σ2
v = 0.002 0.0019 0.0022

β0 = −4.5951 -4.5458 -4.7015
β1 = 1 1 (set) 1 (set)

σ2
ε = 0.03 0.0188 0.0058

θ0 = 0.27432 0.24028 0.29978
θ1 = 0.83697 0.83787 0.76209
θ2 = −0.10511 -0.07417 -0.05446
θ3 = 234.22144 239.28030 237.89351
η = −0.005 -0.001 -0.001

EM algorithm. Overfitting constraints similar to those described in the previous chapter

also had to be applied. We also calculated β1 and β2 at the M-step (instead of setting β0

= 1 and calculating β0 empirically) as overfitting, rather than convergence, is the major

concern with experimental data. We also included an additional constraint to prevent the α

coefficient from becoming negative during estimation as this would imply that the external

stimuli (for instance, the electric shock) decreases sympathetic arousal.

Pavlovian fear conditioning experiments have often sought to examine average differ-

ences in physiological features between the trial types. Since this is similar to the study of

event-related potentials (ERP) with EEG data, we provide the ERP-like images for the three

types of trials—CS-, CS+ without the US (CS+US-) and CS+ with the US (CS+US+).

The state estimation results are shown in Fig. 15 for two representative cases. In both

sub-figures, the sub-panels respectively depict: (a) the skin conductance signal zk; (b) the

probability of impulse occurrence (the green and black dots on the upper part of the sub-

panel depict the detected SCR peak locations); (c) the phasic-derived value (solid green
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Figure 14: State estimation on simulated data for model with one binary, two continuous
and one spiking-type observation.

line) and its fit (dotted line); (d) the tonic level (solid light mauve line) and its fit (dotted

line); (e) the arousal state estimate (the cyan and black dots on the lower part of the sub-

panel depict the stimuli input locations); (f) the sequence of RR-intervals rri (orange dots)

and the estimated RR-interval mean µ (blue); (g) a 10 s ERP-like skin conductance plot for

the CS- (green), CS+ without a shock (mauve – CS+US-) and CS+ with the shock (red –

CS+US+) trials; (h) 10 s ERP-like arousal state plots along with their confidence intervals.

The estimation results for all participants can be found in [94].

We divided the participants into three categories based on their physiological responses

and state estimates. Overall, both the skin conductance and estimated arousal states are

highest in the CS+US+ trails. For each of the participants in the first category, the average
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Figure 15: Sympathetic arousal estimation in the PsPM TC Dataset.

response to the CS+US+ is highest followed by the CS+US-. The CS- trials have the lowest

average response. This is as expected. Clear gaps are visible between the averaged responses

for each of the three types of trials. The gaps are visible for both averaged skin conductance

and arousal. For participants in the next category, the gap between the CS+US- and CS-

trials is very small. However, the average response for the CS+US+ is still larger. In the

third category are participants for whom the general trend is that the averaged CS- curve

tends to exceed the CS+US- curve. Participant 2 was an exception. Here, the averaged skin

conductance and state estimates for the CS- and CS+US- were interchanged. Upon further

analysis, it appeared that participant 2 developed a skin conductance arousal response to

the CS- trials towards the end of the experiment. This was unusual as the participant

should have by then learned that the CS- trials were never accompanied by the electric

shock.

The KS plots (also provided in [94]) are close to the 45° diagonal for almost all the
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participants indicating a good fit to the heartbeat observations. However, there are a few

deviations from within the 95% confidence limits. The HDIG model developed by Barbieri

et al., [98, 100] used time-varying θi coefficients that were estimated every 5 ms. The use of

a fixed set of θi’s estimated via maximum likelihood together with changes in arousal may

have been insufficient to account for the HRV stochasticity completely.

In Pavlovian fear conditioning, a neutral stimulus is paired with an unpleasant stimulus

such as an electric shock. Through repeated exposure, a subject learns an association

between the two types of stimuli and eventually begins to display a response typically

associated with the unpleasant stimuli to the neutral predictor as well. Due to ethical

considerations involved in causing pain to human subjects, the intensity of the electric

shocks used in fear conditioning experiments is often adjusted to be “highly annoying, but

not painful” [108]. In the dataset used here, the shock intensity was adjusted to 90% of

each subject’s pain threshold [111]. Subjects have different pain thresholds and an electric

shock that is not painful enough may not cause the subject to fear the US as much. This

may be one of the possible reasons why variations are seen among the subjects analyzed in

the PsPM TC Dataset. Ideally, we would expect to see the highest averaged responses (skin

conductance and sympathetic arousal) for the CS+US+ trials and then for the CS+US-

trials. The CS- trials would be expected to have the lowest averaged responses. However,

this clear difference is only visible in participants in the first category. It appears that

these participants learned the association between the CS+ cue and the electric shock and

developed a fear response to the CS+ alone. In participants belonging to both the other

categories, a clear separation with the average response for CS+US- being higher than the

average response for CS- is not seen. There is almost no difference between the averaged

responses for the CS+US- and CS- trials for participants in the second category and the

response is inverted for participants in the third category. The reason for responses such as

those seen for these participants is likely due to them not learning to fear the unpleasant

electric shock enough. A further possibility for the lack of a response to the CS+ trials could
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be the type of experiment that was used. The data come from a trace fear conditioning

experiment. In trace fear conditioning, there is a gap between the time the CS+ ends

and the application of the US. In delay fear conditioning, the CS+ stimuli co-terminate

with the US without any time gap. Due to the closer pairing in time, the response to

the CS+ stimuli in delay fear conditioning is usually larger than in trace fear conditioning

[108]. Trace conditioning involves the hippocampus while delay conditioning predominantly

involves the amygdala [108]. Finally, the experiment included the electric shock only in 50%

of the CS+ trials. Therefore, a participant learns that not all CS+ trials precede a shock.

The use of: (i) trace conditioning, (ii) CS+ only accompanying the US in 50% of the trials

and (iii) shocks that may have not been unpleasant enough are possible reasons why only

some participants had a response as expected.

It is also to be noted that there is a latency of a few seconds between the presentation of

the stimuli and the appearance of an SCR (Fig. 15). This delay arises due to two primary

reasons. One is related to the mechanism of sweat secretion [118] and the other is neural.

Sweat largely comprises of water and sodium chloride (NaCl). When sympathetic nerve

fibers stimulate the sweat glands, Cl– ions enter the sweat ducts and cause Na+ ions to

enter as well due to the resulting electrochemical gradient. Potassium chloride (KCL) also

enters the sweat ducts. The presence of these ions within the sweat ducts creates a second

osmotic gradient causing water to enter through aquaporin channels. As a result, pressure

builds up inside the sweat ducts and the liquid is finally forced out through the pores onto

the skin surface. It is the presence of this salty liquid that causes the conductivity of

the skin to drop. This mechanism of sweat secretion accounts for part of the delay from

stimuli presentation to SCR appearance. There is, however, a second neural component to

this delay. This neural aspect of SCR delay was the subject of investigation over several

decades in the previous century. In particular, SCR latency was found to vary depending on

phenomena such as the type of stimulus, habituation and the pairing of the stimuli. Some

of these findings are described in [119, 120, 121]. Since the complete pathway from sensory
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input to SCR appearance consists of the cerebral cortex, the hypothalamus, the spinal cord

and sympathetic nerve fibers, the neural processing of the stimuli is thought to contribute

to SCR latency as well.

3.5.3 Experimental Data – Smart Reasoning for Well-being at Home and at

Work Dataset

We evaluated the performance of the reduced state-space model on the SWELL Dataset.

Here we investigated model orders q = 1, 2, 3, 4 and selected q = 3 as the one with the small-

est KS distance across all three trial blocks for the subject. We also tried out values for η

ranging from (−1) × 10−5 to (−1) × 10−4 in increments of 10−5. Estimates for two of the

three experimental blocks are shown in Fig. 16. In both sub-figures, the sub-panels respec-

tively depict: (i) the skin conductance signal zk; (ii) the occurrence of the SCRs (binary);

(iii) the arousal state estimate and its 95% confidence limits; (iv) the probability of SCR

occurrence and its 95% confidence limits (the dotted line indicates the baseline probability);

(v) the sequence of RR-intervals rri (orange dots) and the estimated RR-interval mean µ

(blue); (vi) the certainty level (HAI). The estimates for the third experimental block and

the KS plots can be found in [93]. The certainty level of arousal is calculated as the proba-

bility that pk exceeds its baseline value. Sympathetic arousal as measured by the certainty

level is highest at the start of the experiment in block UT and gradually decreases. Here,

certainty exceeds 90% for about the first 20 minutes. In block RT, the certainty level does

not exceed 90% even once, although it is highest at the start of the block. Arousal remains

lowest during block CT and a gradual increase can be seen as the experiment progresses.

This may be expected as the subject had to complete the writing tasks within the shortened

time limit. The raw skin conductance signal can also be seen to decrease from block UT,

to RT, to CT indicating a decline in arousal as the experiment proceeds.

The KS plots do not fall entirely within the 95% confidence limits although there is

close agreement. In general, the better the CIF for modeling heart rate, the closer will be
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Figure 16: Sympathetic arousal estimation in the SWELL Dataset.

the plot to the 45° diagonal. The subject’s EKG appeared to show some irregularity and

this may have caused deviations from the HDIG model fits.

The SWELL experiment in [105] was originally designed to examine psychological stress

in the presence of external interruptions and time restriction pressures. While interruptions

and time constraints do cause anxiety, our analysis seems to point out that unfamiliarity

or how new the task is seems to have caused the most stress for this particular subject. It

may be the case that unfamiliarity with a task dominates the anxiety caused by both time

constraints and unnecessary interruptions.

We also investigated whether the subject’s typing correlated with the sympathetic

arousal estimates. Unfortunately, this was complicated by certain factors. For instance,

the key typing data did not agree with the final reports that the subject created. Since the

subject was permitted to browse the web during the experiment, it may have been the case

that the subject copied and pasted some text from the internet onto the reports. Thus, an
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analysis of the key presses alone would be unable to account for a “working state” during

the tasks. Moreover, based on the extracted timestamps, it also appeared that the sub-

ject appeared to wait for a while prior to beginning typing. Sympathetic arousal estimates

tended to be high during the beginning of the sessions and it would have been interesting

to investigate whether the subject made more mistakes (measured by the number of times

the delete or backspace keys were pressed) during these times. Unfortunately, this was not

possible due to the time interval between task commencement and when the subject began

typing. Further analysis of the typing data, however, is a possible direction of future work.

For instance, the typed key presses and the backspace/delete key presses may be considered

as a sequence of binary correct/incorrect responses and a working state could thereby be

estimated for further mental state analysis.

3.5.4 Model Parameter Selection

Recall that we select the θi coefficients and η separately. While this procedure eases

computation (the θi’s no longer have to be repeatedly estimated at the M-step until con-

vergence), it also creates the challenge of having to optimize both types of parameters

simultaneously. To illustrate, the θi coefficients are calculated offline via maximum likeli-

hood. This may give rise to a KS plot indicating a reasonably good fit to the heartbeat

observations. However, the inclusion of ηxk into the HDIG mean during state estimation

alters the KS plot and the KS distance. Consequently η may have to be finally selected

based on a trade-off of maximizing Q̄ subject to the KS plot remaining within or close to

the 95% confidence bounds. Moreover, the separate selection of the θi’s and η can also give

rise to numerical issues; this can especially occur at larger η values. As the HDIG CIF

involves derivatives and integrals over small numbers, the Newton-Raphson method used

to solve for the state update can go into infeasible regions. The HDIG model we use here

is computationally demanding. The use of a simpler probability density function to model

RR-intervals may permit parameters related to heart rate to be estimated simultaneously
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at the M-step. This would partly eliminate issues arising due to the need to separately

optimize model parameters.

Alternatively, the θi coefficients could be considered as additional states. This would

permit the simultaneous estimation of sympathetic arousal and the θi’s. Additionally, it

would also allow the θi’s to be time-varying and account for some of the HRV stochasticity.

In this case, the state vector to be estimated would consist of both xk and the time-varying

θi’s. Barbieri et al., estimated a vector consisting of only the θi coefficients via Bayesian

filtering in [100]. Their model could be extended to include xk. However, the estimation of

a vector state would also add to the complexity of the model and therefore other trade-offs

may have to be considered as well.
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4 Energy Production Estimation using Serum Cortisol Data

4.1 Hypothalamic-pituitary-adrenal Axis Function, Cortisol and Energy

Production

Hormones play a critical role in regulating the body’s internal environment. Cortisol,

a hormone categorized as a glucocorticoid, is the body’s primary stress hormone. Cortisol

is secreted as the end result of a cascade of other secretory events in the HPA axis [92].

When the brain interprets sensory inputs as requiring cortisol secretion, the hypothalamus

first begins to secrete corticotropin releasing hormone (CRH). This in turn causes the se-

cretion of adrenocorticotropic hormone (ACTH) from the anterior pituitary. The secretion

of ACTH triggers cortisol secretion from the adrenal glands. The secretion of cortisol has

a negative feedback effect preventing the further secretion of CRH and ACTH. One of the

major functions of cortisol is to raise blood glucose levels and give the body more energy

in response to external stressors [122]. Most cortisol disorders involve either too much (hy-

percortisolism) or too little (hypocortisolism) of it in the bloodstream. Cortisol is secreted

in pulses, and between 15–22 pulsatile secretions typically occur each day in a healthy adult

[28]. Since cortisol is directly related to energy production, diminished levels of cortisol can

can cause fatigue (e.g., in Addison’s disease). In this chapter, we describe two different

state-space models for estimating energy production based on blood cortisol measurements.

The estimators may be eventually embedded within automated infusion pumps for treating

cortisol disorders. However, a cortisol sensor that would be crucial for the functioning of

such infusion pumps is presently lacking in the commercial market. Preliminary results of

cortisol sensors described in the literature nevertheless provide the hope that such sensors

will indeed be available in the near future [123, 124].

State-space models governing cortisol secretion dynamics have been developed previously

(e.g., [125]). However, none of them explicitly take into account the pulsatile secretory

nature and relate cortisol to the underlying state variable that the human body is actually
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attempting to maintain within a desirable range. Here we describe two state-space models

relating cortisol secretions to the body’s internal energy state. The energy state is related

to the pulsatile secretory events and to other continuous-valued phenomena related to blood

cortisol. As before, we use Bayesian filtering within an EM framework for state estimation

and model parameter recovery.

4.2 Data

4.2.1 Cushing’s Dataset

In the absence of experimental data spanning multiple days, we first simulated cortisol

measurements using the statistical models described in [30, 126] for a healthy subject and

two Cushing’s disease patients. Cushing’s disease is a type of hypercortisolism that can be

triggered by tumors or prolonged drug use [127].

Following [30], for a healthy subject, we draw pulse inter-arrival times for cortisol from

a Gamma distribution with parameters α = 54 and β = 39. These parameters are for

inter-arrivals in terms of hours and we converted them to minutes during simulation. The

pulse amplitudes hk follow a time-of-day-dependent Gaussian distribution hk ∼ N (µk, κ
2
k),

where

µk = 6.1 + 3.93 sin
( 2πk

1440

)
− 4.75 cos

( 2πk

1440

)
− 2.53 sin

( 4πk

1440

)
− 3.76 cos

( 4πk

1440

)
, (103)

κk = λ
√
µk and λ = 0.1 [30]. Given a vector of pulse input timings and amplitudes, we

follow the solution of the coupled differential equations regulating the secretion of cortisol

described in [128, 129] to obtain the serum cortisol profile over five days. We also use

cortisol infusion and clearance rates of 0.0751 min-1 and 0.0086 min-1 based on the median

rate parameters in [28] extracted for ten healthy subjects. Noise with standard deviation

0.5 µgdL-1 was finally added to the simulated observations.

Lee et al., [126] suggest inter-arrival times of 59 ± 11 min with amplitudes of 38 ± 2.5
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µgdL-1min-1 for simulating the serum cortisol profile of a male Cushing’s disease patient

recruited in the study originally described in [130]. We used the Gamma and Gaussian

distribution parameters corresponding to the Cushing’s mean and standard deviation values

above to simulate a second set of inter-arrival times and amplitudes respectively for a

patient.

Berg et al., [130] noted the preservation of a cortisol circadian rhythm in a few Cushing’s

disease patients. We therefore simulated data for another hypothetical patient, one whose

circadian rhythm was preserved by means of the time-of-day-dependent Gaussian pulse

amplitudes. We set λ = 2.5/
√

38 when calculating the new pulse-amplitude standard

deviation. We selected

µk = 38.5 + 1.93 sin
( 2πk

1440

)
− 1.6 cos

( 2πk

1440

)
− 1.5 sin

( 4πk

1440

)
− 3.5 cos

( 4πk

1440

)
(104)

to produce amplitudes in the same approximate range as for the first Cushing’s disease

patient with the same Gamma inter-arrival distribution and simulated a third set of mea-

surements.

The cortisol measurements from these three subjects form the Cushing’s Dataset.

4.2.2 Chronic Fatigue Syndrome and Fibromyalgia Syndrome Dataset

We secondly used an experimental dataset. The blood cortisol measurements in this

dataset are from the study described in [131] conducted at the University of Michigan

Medical Center. The study sought to investigate HPA axis function in patients diagnosed

with fibromyalgia syndrome (FMS), chronic fatigue syndrome (CFS) or both. Blood samples

were drawn intravenously at 10 min intervals over a 24 h period from patients and matched

controls and were later processed to yield cortisol concentrations. Pednekar et al., [132]

deconvolved the blood cortisol measurements from 31 of the 36 data record pairs that

were available. Deconvolution yields the cortisol pulse amplitudes and timings as well as
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the cortisol infusion and clearance rates with which a minute-by-minute cortisol profile

can be reconstructed. We utilize the cortisol pulses and the reconstructed blood cortisol

measurements for energy state estimation. Thirteen of the 31 patients were diagnosed with

CFS (we label this the CFS patient group) and the remaining 18 were diagnosed with FMS

or both FMS and CFS (we label this the FMS patient group). The data from these 31

subject pairs form the CFS and FMS Dataset.

4.3 Methods

4.3.1 State-space Model with One Binary and Two Continuous Observations

We first use a state-space model with one binary and two continuous observations for

cortisol-related energy state estimation. The model is described in [133]. Unlike the earlier

model in chapter 2, however, here we change the state equation to explicitly account for the

circadian rhythmicity of cortisol [30]. We assume the energy state xk evolves with time as

xk = ρxk−1 + Ik + εk, (105)

where

Ik =

2∑
i=1

ai sin
(2πik

1440

)
+ bi cos

(2πik

1440

)
, (106)

εk ∼ N (0, σ2
ε) is process noise and ρ is a coefficient to be determined along with the ai

and bi terms. Ik acts as a forcing function in keeping with known energy variations during

wakefulness and sleep in a 24 h period. It is generally taken that the circadian secretory

pattern of ACTH imposes the same rhythm on cortisol [125].

We analyze our data at a time resolution of one minute (24 h = 1440 min). The

presence or absence of a cortisol pulse each minute forms a binary point process and we

assign mk = {1, 0} accordingly. The occurrence of a cortisol pulse at each time instant is a
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Bernoulli distributed random variable with probability pk. As in earlier cases, we take pk

to be related to xk through

log
( pk

1− pk

)
= β0 + β1xk, (107)

where β0 and β1 are coefficients to be determined. We also calculate the upper and lower

envelopes of the reconstructed blood cortisol levels using MATLAB’s envelope function to

be used as the continuous-valued observations. Fig. 17 shows the simulated data for two

of the subjects in the Cushing’s Dataset. In both sub-figures, the sub-panels respectively

depict: (i) the simulated blood cortisol concentrations; (ii) the pusaltile secretions; (iii) the

upper (green) and lower (mauve) envelopes of the cortisol concentrations. Here, we use

the peak option in MATLAB to estimate the envelopes as spline interpolations over local

extrema. Labeling the upper and lower envelopes as rk and sk respectively, we assume the

following linear relationships with xk:

rk = γ0 + γ1xk + vk (108)

and

sk = δ0 + δ1xk + wk. (109)

Here, vk ∼ N (0, σ2
v) and wk ∼ N (0, σ2

w) represent sensor noise terms. The terms γ0, γ1, δ0

and δ1 are regression coefficients to be determined.

A modification to the upper and lower envelopes rk and sk was necessary in the case

of Cushing’s disease where the levels of serum cortisol are much higher. This elevation is

likely due to a malfunctioning of the feedback control mechanism governing the secretion

of cortisol [127]. For a healthy subject, the serum cortisol levels can decrease to a value

close to zero, although not to zero itself. Therefore, we can assume that zero forms a lower
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Figure 17: Simulated serum cortisol data for a healthy subject and a Cushing’s patient.

baseline. We hypothesize that the control system malfunction in Cushing’s is caused by the

body establishing a new lower baseline that cortisol levels are not allowed to drop below.

This lower baseline is much higher than normal and is likely caused by the body gradually

developing a resistance to the chronically high levels of cortisol. For both the (simulated)

Cushing’s patients we take the minimum cortisol level across the five days as the lower

baseline and subtract it from the cortisol profile to obtain the modified upper and lower

envelopes.

The E-step is very similar to what was described for the state-space model with one

binary and two continuous observations in chapter 2. The forward filter equations are as

follows:

xk|k−1 = ρxk−1|k−1 + Ik, (110)

σ2
k|k−1 = ρ2σ2

k−1|k−1 + σ2
ε , (111)

Ck =
σ2
k|k−1

σ2
vσ

2
w + σ2

k|k−1(γ2
1σ

2
w + δ2

1σ
2
v)
, (112)

xk|k = xk|k−1 + Ck

[
β1σ

2
vσ

2
w(mk − pk|k) + γ1σ

2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v(sk − δ0 − δ1xk|k−1)

]
, (113)
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and

σ2
k|k =

[
1

σ2
k|k−1

+ β2
1pk|k(1− pk|k) +

γ2
1

σ2
v

+
δ2

1

σ2
w

]−1

. (114)

Again, the appearance of pk|k on both sides of the state update equation requires the use of

Newton’s method for solving. The model parameters are estimated at the M-step and the

equations are similar to those for the other state-space methods. The ai and bi terms are

estimated at the M-step by way of optimization [133].

4.3.2 State-space Model with One Marked Point Process and One Continuous

Observation

The second state-space model considers the pulsatile profile to form a set of MPP ob-

servations (mk, rk) and the reconstructed minute-by-minute blood cortisol concentrations

to form a continuous-valued variable sk. Thus, the model is an extension of the earlier

MPP-based approach described in chapter 2. In this model, we assume that: (i) xk follows

a random walk; (ii) the (mk, rk) pairs are related to xk similar to eq. (30); (iii) sk is linearly

related to xk similar to eq. (109). With this formulation, the filter equations switch be-

tween those in [44] and [72] depending on mk (i.e., they switch between the model with one

binary and one continuous observation and the model with one binary and two continuous

observations).

The filter equations for this state-space model are as follows:

xk|k−1 = xk−1|k−1 (115)

and

σ2
k|k−1 = σ2

k−1|k−1 + σ2
ε . (116)
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If mk = 0, we have

Ck =
σ2
k|k−1

γ2
1σ

2
k|k−1 + σ2

v

, (117)

xk|k = xk|k−1 + Ck[β1σ
2
v(mk − pk|k) + γ1(rk − γ0 − γ1xk|k−1)], (118)

σ2
k|k =

[
1

σ2
k|k−1

+ β2
1pk|k(1− pk|k) +

γ2
1

σ2
v

]−1

, (119)

and if mk = 1, we instead have

Ck =
σ2
k|k−1

σ2
vσ

2
w + σ2

k|k−1(γ2
1σ

2
w + δ2

1σ
2
v)
, (120)

xk|k = xk|k−1 + Ck

[
β1σ

2
vσ

2
w(mk − pk|k) + γ1σ

2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v(sk − δ0 − δ1xk|k−1)

]
, (121)

and

σ2
k|k =

[
1

σ2
k|k−1

+ β2
1pk|k(1− pk|k) +

γ2
1

σ2
v

+
δ2

1

σ2
w

]−1

. (122)

The M-step updates for the model parameters are similar to those for the other state-

space models in earlier chapters. However, one notable change is made with experimental

data. Now xk can overfit to the continuous-valued blood cortisol concentration sk. This

overfitting can also occur very rapidly within the first few EM iterations. Moreover, the

overfitting to a continuous variable is a problem that is common to other point process

Bayesian filters as well. Therefore, we apply a two-part modification at the M-step to

prevent this from occurring. First, we take θ = {δ0, δ1, σ
2
w} to be the model parameters

governing xk’s fit to sk, and modify the (l + 1)th M-step update for θ to

θ(l+1) = θ(l) + ψ
[
θ

(l+1)
pred − θ

(l)
]
, (123)
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where 0 < ψ ≤ 1. Setting ψ = 1 would mean that we perform the full update θ(l+1) = θ
(l+1)
pred .

Instead we choose ψ < 1 taking a smaller step in the direction of the next value. Secondly,

the noise variance estimate σ2
w critically influences overfitting. Without any overfitting

control, σ2
w drops rapidly within the first few EM iterations causing xk to overfit to sk.

Therefore, as a second measure, we initialize σ2
w,init at a larger value and allow θ to only

update until σ2
w reaches a threshold σ2

w,stop. The other model parameters continue to update

until convergence. This is a form of the early-stopping used in [72] but with the ψ term

now included. Tuning σ2
w,init, ψ and σ2

w,stop provides a fine-grained means of controlling the

degree of overfitting to a desired level.

4.3.3 Derivation of E-step Filter Equations for State-space Model with One

Marked Point Process and One Continuous Observation

At this point, we briefly digress again to show the E-step filter derivations of the model

with one MPP and one continuous observation. Mathematically, this is the most complex

form we will encounter with an MPP present (the E-step equations for the earlier MPP-

based model in chapter 2 can be derived by dropping the continuous-valued variable here).

First consider the case when mk = 0 and p(mk ∩ rk|xk) = (1 − pk) = elog(1−pk). The

posterior density is

p(xk|yk) =
p(xk|yk−1)p(yk|xk)

p(yk|yk−1)

=
p(xk|yk−1)p(mk ∩ rk|xk)p(sk|xk)

p(yk|yk−1)

∝ exp

[
−(xk − xk|k−1)2

2σ2
k|k−1

+ log(1− pk)−
(sk − δ0 − δ1xk)

2

2σ2
w

]
. (124)

Therefore,

q1 = log
[
p(xk|yk)

]
=
−(xk − xk|k−1)2

2σ2
k|k−1

+ log(1− pk)−
(sk − δ0 − δ1xk)

2

2σ2
w

+ const. (125)
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We first take the partial derivative of q1 and set it to 0. This yields

∂q1

∂xk
=
−2(xk − xk|k−1)

2σ2
k|k−1

+
1

(1− pk)
[−β1pk(1− pk)] +

2δ1(sk − δ0 − δ1xk)

2σ2
w

= 0. (126)

Therefore,

−β1pk +
δ1(sk − δ0 − δ1xk)

σ2
w

=
(xk − xk|k−1)

σ2
k|k−1

. (127)

Since mk = 0, we can write −β1pk = β1(0− pk) = β1(mk − pk). Therefore,

β1(mk − pk) +
δ1(sk − δ0 − δ1xk)

σ2
w

=
(xk − xk|k−1)

σ2
k|k−1

. (128)

Solving for xk yields,

xk = xk|k−1 +
σ2
k|k−1

δ2
1σ

2
k|k−1 + σ2

w

[
σ2
wβ1(mk − pk) + δ1(sk − δ0 − δ1xk|k−1)

]
, (129)

which is the filter equation for the state xk in [44]. Taking the second derivative yields

∂2q1

∂x2
k

=
−1

σ2
k|k−1

− β2
1pk(1− pk)−

δ2
1

σ2
w

. (130)

This provides the variance update in [44]

−

[
∂2q1

∂x2
k

]−1

=

[
1

σ2
k|k−1

+ β2
1pk|k(1− pk|k) +

δ2
1

σ2
w

]−1

. (131)

Next consider the case when mk = 1 and

p(mk ∩ rk|xk) = elog(pk) 1√
2πσ2

v

e
−(rk−γ0−γ1xk)

2

2σ2v . (132)
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This yields the posterior

p(xk|y1:k) ∝ exp

[
−(xk − xk|k−1)2

2σ2
k|k−1

+ log(pk)−
(rk − γ0 − γ1xk)

2

2σ2
v

− (sk − δ0 − δ1xk)
2

2σ2
w

]
.

(133)

Using the label q2 in this case and taking the first partial derivative yields

∂q2

∂xk
=
−(xk − xk|k−1)

σ2
k|k−1

+
1

pk
β1pk(1− pk) +

γ1(rk − γ0 − γ1xk)

σ2
v

+
δ1(sk − δ0 − δ1xk)

σ2
w

=
−(xk − xk|k−1)

σ2
k|k−1

+ β1(1− pk) +
γ1(rk − γ0 − γ1xk)

σ2
v

+
δ1(sk − δ0 − δ1xk)

σ2
w

. (134)

Since mk = 1, we may replace (1− pk) with (mk − pk). Setting the partial derivative to 0

and solving for xk yields

xk = xk|k−1 +
σ2
k|k−1

σ2
vσ

2
w + σ2

k|k−1(γ2
1σ

2
w + δ2

1σ
2
v)

×
[
σ2
vσ

2
wβ1(mk − pk) + γ1σ

2
w(rk − γ0 − γ1xk|k−1) + δ1σ

2
v(sk − δ0 − δ1xk|k−1)

]
.

(135)

Similarly, the second derivative is

∂2q2

∂x2
k

=
−1

σ2
k|k−1

− β2
1pk(1− pk)−

γ2
1

σ2
v

− δ2
1

σ2
w

. (136)

Therefore, the variance update is

−

[
∂2q2

∂x2
k

]−1

=

[
1

σ2
k|k−1

+ β2
1pk|k(1− pk|k) +

γ2
1

σ2
v

+
δ2

1

σ2
w

]−1

. (137)

These update equations for the mean and variance when mk = 1 correspond to those given

in [72].
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4.4 Results and Discussion

4.4.1 Simulated Data

We tested out the performance of the second state-space model on simulated data (the

first state-space model with one binary and two continuous observations is almost identical

to the model in chapter 2 that was earlier evaluated on simulated data). The procedure for

generating synthetic data is very similar to the earlier cases. In this case, we simulate two

sets of data with a true p0 = 0.05, but where the approximation p̂0 is firstly slightly less

than and secondly slightly greater than 0.05. Fig. 18 shows the state estimation results in

one of the cases. In the figure, the sub-panels respectively depict: (a) the MPP observations

(blue) and the estimated fit to rk (red); (b) the probability of point process event occurrence

pk (blue) and its estimate (red); (c) the continuous variable sk (blue) and its estimate (red);

(d) the state xk (blue) and its estimate (red); (e) the QQ plot for the residual errors of

xk. The model parameters used to generate both datasets and their final EM estimates are

shown in Table 4.

Table 4: Parameter estimation with simulated data – one MPP and one continuous obser-
vation

True value Estimate (p̂0 < 0.05) Estimate (p̂0 > 0.05)

γ0 = 0.2 0.18761 0.13222
γ1 = 0.7 0.63388 0.77937
σ2
v = 0.05 0.04510 0.06064
δ0 = −0.3 −0.34946 −0.33654
δ1 = 0.4 0.36998 0.45076

σ2
w = 0.002 0.00195 0.00208
σ2
ε = 0.005 0.00644 0.00414

In general, there is a good agreement between the true values and their estimates. Since

no constraint has been placed on the sign of the mark values, the algorithm can be used in

other applications as well.
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Figure 18: State estimation on simulated data for model with one MPP and one continuous
observation.

4.4.2 Experimental Data – Cushing’s Dataset (Simulated)

We tested out the first state-space model with one binary and two continuous observa-

tions on the Cushing’s Dataset. Energy state estimates and fits to the observations for the

healthy subject and the Cushing’s patient without the circadian rhythm are shown in Fig.

19. In both sub-figures, the sub-panels respectively depict: (i) the raw blood cortisol data

zk; (ii) the pulsatile secretions mk; (iii) the probability of pulse occurrence pk; (iv) the upper

envelope rk (solid green) and its estimate (dashed); (v) the lower envelope sk (solid mauve)

and its estimate (dashed); (vi) the energy production state xk. The results for the other

Cushing’s patient can be found in [133]. The healthy subject’s energy state varies fairly

consistently following circadian periodicity. A large energy peak typically appears between

6:00–10:00 a.m. as expected, and a slight drop occurs in the afternoon. A secondary peak
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Figure 19: Cortisol-related energy state estimation on a simulated healthy subject and a
Cushing’s patient.

occurs between late afternoon and early evening.

No such circadian energy variation is seen for the first Cushing’s disease patient. There

are significant nighttime energy increases and daytime drops. This is expected as the

simulations used a non-circadian probability distribution.

Interestingly, the second Cushing’s disease patient also does not exhibit circadian energy

variations despite the amplitudes being drawn from a Gaussian distribution with a circadian

mean. We use coefficients for the sinusoids that do not give rise to a circadian rhythm with

peaks as prominent as for the healthy subject. Moreover, the λ is also larger than 0.1. While

the pulse amplitudes for this patient do follow a somewhat repetitive pattern, the serum

cortisol levels do not exhibit that same pattern. It is likely that the Gamma-distributed

inter-arrival times for Cushing’s cause this circadian rhythm disruption.

A healthy subject regularly experiences more energy during hours of wakefulness than
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during sleep. Recall that cortisol primarily raises blood glucose levels. One would expect

therefore, that unusually high cortisol levels in a Cushing’s disease patient constantly pro-

vide more energy. Instead, patients frequently experience fatigue and insomnia [134, 135].

While several factors could underlie this phenomena, we present a new perspective purely

based on the energy state model. Our analysis offers the explanation that fatigue during

the day and sleep disturbances at night could be due to the way in which energy varies

during each 24 h period. For Cushing’s patients, drops in energy are frequently seen in the

daytime, as are increases during the night and likely cause daytime fatigue and nighttime

sleeping difficulties.

4.4.3 Experimental Data – Chronic Fatigue Syndrome and Fibromyalgia Syn-

drome Dataset

We evaluated the second state-space model comprising of one MPP and one continuous

observation on the CFS and FMS Dataset. Estimation results on two representative cases

are shown in Fig. 20. Within each sub-figure, the sub-panels respectively depict: (a) the

raw blood cortisol data zk; (b) the deconvolved cortisol pulses (blue) and the estimated fit to

rk (red); (c) the reconstructed blood cortisol profile sk (orange) and its estimated fit (red);

(d) the probability of pulse occurrence pk with its 95% confidence limits; (e) the energy

production state xk with its 95% confidence limits. We likewise estimated energy states

for all patients and matched controls in the dataset. Typically, cortisol levels begin to rise

early morning during late sleep and reach peak values within 30-45 min after awakening.

Cortisol concentrations thereafter gradually decline and tend to reach nadir values at about

midnight during sleep [136, 137]. In general, this pattern is visible for xk in both patients

and matched controls. However, we did not observe any major differences between average

energy levels for the patients and the matched controls as shown in Fig. 21. In this figure,

the sub-figures depict the mean pulse probabilities and estimated states for CFS and FMS

patients and matched controls. Within each sub-figure, the sub-panels respectively depict:
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(a) the mean probabilities for patients (red) and controls (blue); (b) the mean energy states

for patients (red) and controls (blue). Care also must be taken when interpreting the average

values since the raw xk estimates can lie in slightly different ranges for different subjects.
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Figure 20: Cortisol-related energy state estimation on a CFS patient and the corresponding
healthy control.

The CFS and FMS Data contains measurements from patients diagnosed with CFS,

FMS or both, and matched controls. CFS is a chronic condition of unknown etiology

characterized by debilitating fatigue [138]. It is also accompanied by symptoms such as

difficulty concentrating, sleep disturbance, pain and post-extertional malaise [138]. FMS is

a similar condition sharing certain symptoms with CFS.

There has been a lack of consensus in studies investigating cortisol variations in CFS

patients and healthy controls. A review of the data prior to 2003 can be found in [139], and

a more recent review of the studies after 2003 in [140]. Single sample studies, which have

been criticized as being of limited use, have reported no change, increases and decreases
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Figure 21: Mean pulse probabilities and energy states for CFS and FMS patients and con-
trols.

between CFS patients and healthy controls [139, 140]. Two of the most important serial

sample studies in [131] and [141] where blood samples where drawn every 10-15 min over

a 24 h period found no significant differences between patients and controls at any point

in time [140]. While evidence does point to hypocortisolism in at least some CFS patients,

it is likely that there is no single cause for CFS [140]. Moreover, whether changes in

HPA axis function are causal or consequential also remains unclear. Studies investigating

cortisol changes between FMS patients and healthy subjects have also yielded mixed results

[142, 143]. The serial sample study in [131] (we use this data here) also found no significant

differences between FMS, and FMS and CFS patients and matched controls. This may be a

possible reason as to why we also did not see any significant differences between the average

values for patients and controls.
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5 Machine Learning Approaches for State Estimation

5.1 Limitations with Traditional Approaches and the Need for Hybrid

Estimation

We have thus far described several state-space models and corresponding EM algorithms

for estimating unobserved quantities within the human body. There are, however, a few

drawbacks with the general state-space EM approach. Firstly, the overall approach is

somewhat inflexible and does not scale well with the number of observations (features).

For instance, there is a significant increase in filter complexity as a state-space model goes

from incorporating one binary observation to incorporating one binary and one continuous

observation. Adding yet another continuous observation increases the complexity even

further. Secondly, the models do not include a convenient means of incorporating external

influences such as domain expertise or subject-provided labels. For instance, assume that a

particular state xk related to a hormone needs to decrease at meal times or at night. If this

“knowledge” to be included in the model, the state equation has to be explicitly changed

to incorporate it. Suppose now, that the external influences are also patient-specific. This

would necessitate the development of an entire series of models, each with its own EM

algorithm. The development of machine learning methods to perform state estimation

[144, 145] now enables a convenient means through which some of these challenges can be

addressed. Here we describe an existing neural network approach [144] for state estimation

which we modified to incorporate an external influence. This enables a hybrid estimator

that can learn xk from a mix of physiological data and an external influence. We show

how this this method can be utilized when the features of interest are in the form of MPP

observation pairs (mk, rk) and a continuous-valued observation sk.
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5.2 Data

We used the Neurological Status Assessment Dataset and the CFS and FMS Dataset for

evaluating the state-space machine learning approach. Descriptions of these two datasets

can be found in chapter 2 and chapter 4 respectively.

5.3 Methods

In [144], Krishnan et al., introduced a technique to learn xk from data using neural

networks. They consider the following general Gaussian state-space model:

xk ∼ N (fµx(xk−1), fσ2
x
(xk−1)) (138)

and

yk ∼ Π(fy(xk)). (139)

Here yk represents the observations. Both the state transition equation and the output

equation are learned using two separate neural networks (for simplicity, we group both of

them together under the title state-space neural network – SSNN). A separate recurrent

neural network (RNN) is used to estimate xk. Taking ψ and φ to denote the weights of the

SSNN and the RNN respectively, the networks are trained by maximizing

Q̃ =
K∑
k=1

Eqφ(xk|~y)

[
log pψ(yk|xk)

]
−KL(qφ(x1|~y)||pψ(x1))

−
K∑
k=2

Eqφ(xk−1|~y)

[
KL(qφ(xk|xk−1, ~y)||pψ(xk|xk−1))

]
, (140)

where pψ(·) and qφ(·) denote density functions. The actual training is performed within the

algorithm as a minimization of the negative term which we label Q. Analogous to a typical

state-space method, with this alternate neural network-based approach, the SSNN replaces
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the explicit state-space model, the RNN replaces the Bayesian filter and the weights of the

neural networks replace the model parameters. Since neural networks are used to learn the

state-space model, more complicated state transitions and input-output relationships are

permitted. However, these come at the expense of interpretability.

The neural networks parameterized by ψ and φ are updated using stochastic backpropa-

gation and details of this can be found in [144]. Here we point out some similarities with our

regular state-space EM approach, particularly with regard to the terms in Q. For instance,

when a binary variable mk is present among the observations yk, Q contains the summation

−
∑[

mk log
( 1

1 + e−fm(xk)

)
+ (1−mk) log

(
1− 1

1 + e−fm(xk)

)]
, (141)

similar to the term observed in the log-likelihood of the regular EM algorithm, except now

that fm(·) is a function learned by the SSNN. Similarly, if a continuous-valued variable sk

is present in yk, there is the summation

∑ 1

2
log
[
2πfσ2

s
(xk)

]
+

[
sk − fµs(xk)

]2
2fσ2

s
(xk)

(142)

in Q, where fµs(·) and fσ2
s
(·) represent mean and variance functions learned by the SSNN.

Again, we have a similar term involving sk in the log-likelihood of the EM algorithm.

We make two modifications to the original method in [144] here. We firstly change the

training cost function to

Q̃ = (1− ρ)Q+ ρ
∑

(xk − lk)2, (143)

where lk is an external influence and 0 ≤ ρ ≤ 1. Our general approach is to first train the

neural networks with ρ = 0 similar to the original method in [144], then take the pre-trained

model, change the value of ρ, introduce lk and re-train for several more epochs to modify

the state estimates. As we show later on, this permits a class of hybrid estimators to be
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learned that can determine xk from a mix of physiological data and an external influence.

We also change the form of eq. (142) to sum only over the indices at which a point process

event occur in the case of the MPP amplitudes rk.

For the cortisol data, we use a neural network configuration for the SSNN with two

layers and a hidden layer dimensionality of 256. We also selected 256 for the RNN size.

This particular configuration was chosen because it yielded non-inverted state estimates.

The moderately larger network size also is able to adapt to lk quicker. On cortisol data, we

use 500-epoch pre-trained neural networks with ρ = 0 and lk is introduced thereafter.

For skin conductance, we selected a hidden layer dimensionality of 200 for the SSNN

and two layers. The RNN size was also 200. We also use 2500-epoch pre-trained models

prior to introducing lk.

5.4 Results and Discussion

5.4.1 Cortisol Data

Cortisol-related energy state estimation results for CFS Patient 1 with and without (a

hypothetical) lk are shown in Fig. 22. Within each sub-figure, the sub-panels respectively

depict: (a) the raw blood cortisol data zk; (b) the deconvolved cortisol pulses (blue) and

the estimated fit to rk (red); (c) the reconstructed blood cortisol profile sk (orange) and its

estimated fit (red); (d) the probability of pulse occurrence pk; (e) the energy production

state xk (purple) with its 95% confidence limits and the lk term (blue). As illustrated in the

figure, xk can made to conform to lk as closely as desired. Here we have chosen a binary-

like lk term corresponding to the sleep-wake times for the subjects merely for illustration

[132]. We first trained the neural networks for 500 epochs with ρ = 0. We then took the

pre-trained model, set ρ = 0.5, introduced lk and trained for several more epochs. With

ρ = 0, xk is only estimated from the data. However, after setting ρ = 0.5 and training for

an additional j = 100 epochs, xk completely fits to the lk. By changing ρ and the number

of additional training epochs j, the lk term can be allowed to have as much influence as
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desired on the state estimates.
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Figure 22: Effect of lk on estimation when using state-space machine learning method.

A more practical example of the use of lk in reducing overfitting during state estimation

is shown in Fig. 23. Within each sub-figure, the sub-panels respectively depict: (a) the raw

blood cortisol data zk; (b) the deconvolved cortisol pulses (blue) and the estimated fit to

rk (red); (c) the reconstructed blood cortisol profile sk (orange) and its estimated fit (red);

(d) the probability of pulse occurrence pk; (e) the energy production state xk (purple) with

its 95% confidence limits and the circadian lk term (blue). For each subject, we first fit a

circadian lk term to the xk estimate from the pre-trained model based on a least-squares

minimization. Thereafter, we take the pre-trained model and train for an additional j = 20

epochs with ρ = 0.75. As can be seen from the sub-figures, the use of lk helps undo some

of the overfitting to sk.

We also investigated the effect of the RNN size, the number of layers in the SSNN and
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Figure 23: Cortisol-related energy state estimation using state-space machine learning
method.

the dimensionality of the hidden layers in the SSNN on the resulting estimates (the number

of layers in the two neural networks in the SSNN can be changed independently, but here

we set them equal to each other and only changed them together). We did so using cortisol

data from four subjects (CFS patient 1, CFS control 1, FMS patient 1 and FMS control 1).

The following are some general observations we made:

� In a number of configurations, the neural networks learn a state xk that is inverted.

Physiologically, we would expect the cortisol-related energy production state to be

high towards morning awakening and lower at bedtime. Even though inverted, the

estimated xk in these cases still, however, does tend to correspond to the general

shape of the observed data. A similar inversion can also happen to the probability of

pulse occurrence pk. The neural networks can also learn an inverted state xk with a
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non-inverted pk and vice versa.

� Whether a particular configuration with a certain RNN size and SSNN hidden layer

dimensionality learns an inverted xk or not tends to remain stable over subjects. For

instance, if a neural network configuration with a hidden layer dimensionality of 256

in the SSNN and an RNN size of 256 learns a non-inverted state xk for a particular

subject, then that same configuration tends to provide non-inverted state estimates

for the other three subjects as well. However, this is not always the case. Occasion-

ally, a neural network configuration that provides a non-inverted state estimate for a

particular subject will provide an inverted estimate for another subject. We exam-

ined this effect for 49 × 2 network configurations prior to selecting a suitable one (49

different combinations of the RNN size and SSNN hidden layer dimensionality for the

cases of one layer and two layers in the SSNN). Manually exploring which of these

configurations provide inverted or non-inverted state estimates is time consuming. As

such, this trial-and-error approach would not be a suitable method for selecting a par-

ticular neural network configuration in the real-world. One possible alternative to this

would be use an additional processing layer (perhaps another neural network) before

the two main state-space neural network systems and configure this layer to handle

the selection of the neural network sizes (layers and dimensionality) in an automated

fashion.

� In general, a larger SSNN hidden layer dimensionality and RNN size tend to provide

smoother estimates quicker (i.e., after a fewer number of training epochs). While the

smaller network configurations can also provide similar smooth estimates, they tend

to require more training epochs to do so. The larger neural network configurations

are also able to adapt to the lk term quicker. The larger networks do, however, tend

to take more time to train.

� If the number of training epochs is kept fixed (e.g., 750), and we keep increasing the
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number of layers in the SSNN (without changing number of dimensionality of the

hidden layers), there comes a point where the fits to the observations (e.g., to sk and

pk) become very noisy and continue to be so.

We chose the neural configurations described above for cortisol-related energy estimation

and sympathetic arousal estimation taking into consideration some of the observations.

5.4.2 Skin Conductance Data

Sympathetic arousal estimates using the machine learning method for a representative

subject in the Neurological Status Assessment Dataset are shown in Fig. 24. Here too

we also illustrated two cases with and without lk. Within each sub-figure, the sub-panels

respectively depict: (a) the skin conductance signal zk; (b) the deconvolved neural im-

pulses (blue) and the estimated fit to rk (red); (c) the tonic component sk (orange) and its

estimated fit (red); (d) the probability of impulse occurrence pk; (e) the arousal state xk

(purple) with its 95% confidence limits (the lk term is shown in blue on the right sub-figure);

(f) HAI (the regions above 90% and below 10% are shaded in red and green respectively).

The background colors correspond to the instruction period (red), the counting task (green),

the Stroop test (orange), relaxation (blue) and emotional stress (yellow) respectively. As

shown in the figure, the estimated arousal state can be made to conform to an external

influence lk as closely as we please in the case of skin conductance as well.

We evaluated the method for six participants in the dataset. The arousal estimates vary

between different participants based on their individual responses to the stress stimuli. In

general, for most of the participants, the sympathetic arousal estimates are high during the

initial part of the experiment (mainly comprising of the cognitive stressors) and gradually

diminish thereafter. A slight increase is to be noted around the time of the emotional

stressor (horror movie clip). Variations between participants are also to be noted. The

only exception to the general trend is participant 4. Unusually large increases were seen in

the skin conductance signal for participant 4 at transition points in the experiment. These
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Figure 24: Sympathetic arousal estimation using state-space machine learning method.

unusual increases, possibly due to a form of motion artifact contamination, may have been

the likely reason why the estimates deviated considerably from that of the others.

The cognitive stressors employed in the experiment (a counting task and a color-word

association task) involve active engagement on the part of the subjects and likely is the

reason for the elevated arousal during this portion. Watching the horror movie clip as a

part of the emotional stressor only involves passive engagement and may not have generated

an arousal response as large or prolonged.

Changes in internal states within the human body give rise to measurable electrical and

chemical phenomena. It is likely, however, that physiological sensor data alone does not

capture all of the necessary information required for estimating these latent states. Rather,

behavioral measures (e.g., a person’s social media posts, internet searches), medical exper-

tise (e.g., knowledge of biological rhythms) etc. also remain a vital source of information
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regarding what is occurring within the body. Consequently, physiological state estimation

may ultimately need to be based on a fusion of sensor data and external information. The

results shown in this chapter illustrate how latent states tied to markers in skin conductance

and cortisol can be estimated based on physiological data and an external influence. The

approaches could also find applications with other pulsatile phenomena as well.

The parameter ρ may be chosen based on the type of real-world application. One

possible method of tuning ρ is to first test out the hybrid estimator on unseen data. Based

on its performance on this data, an accuracy metric may be defined by how closely the state

estimates agree with lk. This accuracy metric can then be used to tune either ρ or any of

the other hyper-parameters. Moreover, the general formulation

Q̃ = (1− ρ)Q+ ρ
∑

(xk − lk)2, (144)

is not just applicable to the neural network approach but to the general state estimation

framework as well. For instance, in all the other EM approaches we use, we have a similar

log-likelihood term that is to be maximized. We typically isolate different components in

this term, take derivatives and solve for the M-step updates. However, we could also obtain

the M-step updates via an optimization of the full log-likelihood term. Thus, a quantity

similar to ρ
∑

(xk − lk)2 could be added to this term as well. This would then enable the

regular EM approach to also estimate latent states within the human body based on a mix

of physiological data and an external influence.
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6 Conclusions

Healthcare technology has seen rapid advances over the course of the past several years.

In particular, a number of advances have been made in making healthcare systems smarter.

It is likely that these smart technologies will play an increasing role in our everyday lives in

the future. Wearable monitors are expected to play a crucial role here. In this dissertation,

we argue that the basic system comprising of wearable sensing, diagnosis/detection and the

prescription of corrective action forms a closed-loop framework. As such, tools from controls

theory can be readily used to help build some of the smart healthcare systems of the future.

Here we presented several state-space methods for estimating underlying states within the

body that give rise to point process phenomena. These state estimators could be embedded

within closed-loop controllers for automated therapy delivery in different scenarios.

6.1 Sympathetic Arousal and Skin Conductance

In our first section, we developed several methods for estimating sympathetic arousal

from skin conductance measurements. These methods could be used to monitor patients

with certain types of neuropsychiatric disorders (e.g., PTSD, depression) and perhaps even

adjust closed-loop neurostimulation parameters accordingly. The methods could also find

general stress management applications. The method based on treating the neural impulses

underlying skin conductance variations as an MPP outperformed two of the other methods.

We showed that the MPP-based approach did not run into the overfitting problem as did

one of the other methods nor overreact to small impulses. Results were presented on two

datasets having different stress conditions in experiments conducted both inside and outside

laboratory environments. Our main contribution in this section was a set of point process

state-space models and decoders for estimating sympathetic arousal from skin conductance.

The models and decoders could have applicability elsewhere as well.
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6.2 Sympathetic Arousal, Skin Conductance and Heart Rate

In the next section, we supplemented skin conductance features with heart rate mea-

surements to estimate arousal from multi-timescale point process observations. Thus the

primary research contribution involved the development of multi-timescale point process

state-space models and decoders for tracking arousal. The methods help lay the ground-

work for how other point process observations on different timescales may be incorporated

into physiological state-space models. Respiration, for instance, is a slower point process

but could very well be included for estimating sympathetic arousal as well. Results were

shown on two different experimental datasets. The arousal estimates matched general ex-

pectations in the fear conditioning dataset and also revealed the interesting fact that task

unfamiliarity may generate more stress than other factors (interruptions and time pressure)

in the other dataset. The results overall indicate the viability of combining multi-timescale

skin conductance and heart rate features within a single model for estimating arousal. Heart

rate can be easily measured via PPG waveforms from the wrist. Skin conductance signals

can also be recorded from this location. Thus a convenient wrist-worn wearable device could

easily track arousal based on the models we developed.

6.3 Cortisol-related Energy Production

The hormone cortisol functions to increase blood glucose levels in response to external

stressors. Cortisol therefore plays a key role in energy production within the body. The

secretion dynamics of cortisol are very similar to that of skin conductance. Cortisol is se-

creted in pulses, just like neural impulses are responsible for skin conductance variations.

We developed state-space methods for estimating an unobserved energy state from binary

and continuous-valued blood cortisol measurements. When applied to data from patients

with Cushing’s disease, the results helped shed light on why hypercortisolism patients may

experience daytime fatigue and nighttime sleeping difficulties. No significant differences

were found in the case of CFS and FMS patients for whom there is also a lack of consensus
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in the literature regarding cortisol differences. These state estimators could be embedded

within automated drug infusion pumps for therapy delivery. Currently, many cortisol disor-

ders are treated with oral medication doses and may not be optimal in certain cases. Here

again, our main research contribution was a set of point process state-space models and

decoders for estimating energy production from blood cortisol measurements. The methods

could have more widespread applicability related to other pulsatile endocrine secretions as

well.

6.4 Machine Learning for State Estimation

In our final section, we used machine learning for state estimation and addressed a no-

table drawback with traditional state-space methods. Traditional methods are unable to

incorporate external influences such as subject-provided labels or domain expertise during

estimation. We showed how an existing neural network approach for state estimation could

be modified so as to yield a hybrid estimator capable of estimating a latent state based

on a mix of physiological data and an external influence. Results were shown with both

skin conductance and cortisol data. The basic framework for hybrid estimation could be

applicable in a number of scenarios. For instance, the methodology could be used to in-

corporate medical expertise, patient feedback, location information etc., during estimation.

The weighted combination could also be tuned so that the external influence is permitted to

affect the state estimates as much as desired. We also pointed out how the parameter gov-

erning the degree of influence could be selected and how the basic mathematical framework

for hybrid estimation could be adapted to the regular EM case as well. In this section, our

main contribution involved developing a hybrid estimation method for physiological marked

point process data capable of permitting an external influence to affect the state estimates.
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6.5 Future Work

While our methods are able to track sympathetic arousal well, human emotion, in reality,

is a complex multi-dimensional phenomena [10]. Therefore, an accurate characterization of

a person’s emotions requires the estimation of a vector-valued state (containing both arousal

and valence). Future work would include the extension of the current models to estimate

valence alongside arousal. Moreover, here we have also only considered a single hormone

for energy state estimation. Energy production and calorie intake are influenced by more

than one hormone in the body. Therefore, the models presented here could be extended to

include features from more hormones and perhaps even estimate a vector-valued energy state

(e.g., with two components related to calorie intake and stress). Furthermore, the human

body is also not static; instead changes occur over time. Consequently, a model trained on

data today may not work accurately several weeks from now. The models described here

are based on parameters estimated on fixed segments of data. Therefore, another possible

future direction of research is to introduce time-varying parameters into the models. The

results we have presented thus far have also largely been based on data acquired from healthy

subjects or previously-collected data. We do envisage that the methods we have developed

could be utilized for treating actual patients. These may include patients diagnosed with

neuropsychiatric or hormone disorders. Real-world implementation of the methods could

be pursued in future with appropriate clinical collaboration.
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