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Abstract

Current advances in the field of Robust Optimization (RO) from such authors

as Azarm, Ben-Tal, Elishakoff, Zhang, Renaud and others have led to new and inter-

esting approaches to the treatment of uncertainty in traditional engineering problems.

This paper presents the Budget of Uncertainty (BoU) design method; a new method

by which such approaches can be applied in a manner which balances the need for

optimization with the desire for robust solutions.

Where previous work has focused on immunizing an optimization problem

against pre-set uncertainty ranges, the BoU method adds additional design variables

in an effort to solve for an appropriate uncertainty range. The BoU method simulta-

neously determines an optimum solution and an allowed uncertainty budget within a

restricted feasibility space. The result is a solution that guarantees first order satis-

faction of uncertain constraints and provides a measure of problem sensitivity to its

uncertain parameters. This provides additional insight to early problem development,

and can potentially create alternatives to traditional approaches such as Monte Carlo

analysis.

Within this work we will present a summary of current RO research and intro-

duce the BoU method. We will then apply the BoU method to a simple 2D geometric

problem to illustrate its application. Finally, we tackle two well-studied engineering

design problems, the Golinksi Speed Reducer and the simple Helical Spring design

problem to show a more realistic application of the new method.
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1 Overview

When considering the solution to a given engineering design problem, it is

customary to assume design parameters are fixed, representing measured or known

quantities that have been evaluated empirically or selected through engineering judge-

ment. These fixed parameters are then used to formulate the nominal design problem.

Upon determining a solution to the nominal problem, it is then customary to consider

uncertainty in the design parameters as a secondary activity, usually accounting for

variation with factor of safety and/or Monte Carlo simulation approaches.

This thesis will investigate alternative methods to these traditional approaches

using methods from the latest research in the area of robust optimization. In par-

ticular, the Budget of Uncertainty (BoU) method will focus on engineering design

problems where the uncertainty is considered as part of the initial problem formula-

tion. Since many engineering design parameters are not known to sufficient degree

to determine an appropriate gaussian distribution, design parameters will be con-

sidered in the form of closed convex set uncertainty. The end result will be a first

order guarantee that design constraints are satisfied over the full range of potential

uncertainty.

The Zhang and Ben-Tal methods discussed in this thesis were not derived

here, but rather collected from the most current research in this area. However, this

thesis does something which the prevailing literature is missing; it connects the latest

applied mathematics of robust optimization to current down-to-earth engineering

examples and bridges the gap from research to application. This is done using the
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BoU method. The overall intent is to provide a reference for engineers and scientists

that both surveys the most current methods of robust optimization and provides a

clear method applied to specific case studies.

For each example problem, once a solution has been determined using the BoU

robust optimization techniques, this thesis will consider the tradeoff that occurred as

a result of the robust consideration. In some cases, it will be evident that the robust

formulation does a good job of trading optimality for robust feasibility, in other cases,

it will be apparent that the robust formulation is overly conservative. In both cases,

a clear understanding of the method will be presented and the results made clear to

the reader.

By the conclusion of this thesis, we will present a new method for robust

design. We will show that designers can both consider a budget of uncertainty as well

as optimal design points, and that by balancing optimality conditions and robust

needs, designers can arrive at solutions which provide the necessary flexibility, but

retain critical characteristics of optimal design as well.
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2 Review of Literature

2.1 Introduction

Literature on Robust Optimization is remarkably recent, with most relevant

rsearch only published in the last decade and the most current publications as recent

as the last year. This alone can be claimed as evidence that the field of robust op-

timization is a vibrant field of study. In fact, it could be said that this field is just

now receiving the mainstream recognition it deserves. Advances in computational

technology as well as improved algorithms for finding global and local minima for

well-posed optimization problems have aided this research. Two recent contributors

to literature in the area of robust optimization are Ben-Tal [1, 2] and Zhang [3, 4].

Ben-Tal’s work focuses on solving the inner maximization problems when considering

uncertain constraints and on immunizing problems from pre-selected uncertainty in

the design parameters. The application of this method is limited to concave inequality

constraints. Zhang’s focus has been on a more general approach to robust optimiza-

tion that does not necessarily require particular forms of constraint. Zhang has posed

a method by which all uncertainty is reduced to a single perturbation parameter.

This parameter is then used to pose a new robust counterpart problem. Finally, the

most recent work in this area is by Ben-Tal et al., [5] in which a general method for

obtaining the robust counterpart to a general concave nonlinear inequality constraint

is described.

In recent years, many advancements have been made in the field of Robust

Optimization by authors such as Chen [6]; Allen [7]; Papalambros [8, 9]; Chan [10];
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Han [11]; Kokkolaras [12]; Pomrehn [13]; Athan [14]; Azarm [15,16]; Li [17]; Hu [18];

Gunawan [19]; Besharati [20]; Gu [21, 22]; Agarwal [23–25]; and Renaud [26]. In

this field, the goal is to retain an acceptable design even when faced with uncertain

parameters; that is to say, the constraints must be met under any realization of the

system. Robust Optimization methods generally refer to solutions as ‘Here and Now’

decisions, meaning that a design must be chosen before the value of the uncertain

parameters is known exactly. Such is the case with Ben-Tal [5] and Zhang [3, 4].

These current RO methods require at least an estimation of the uncertain

parameters. They then seek to immunize the solution under these conditions. The

method proposed in this document attempts to include uncertain parameter estima-

tion as part of the original design problem. The method will provide, as part of its

solution set, an acceptable variation for each specified uncertain parameter for which

the problem constraints will still be met.

The method discussed here requires modifications to the objective function

to include the maximization of uncertainty for selected variables in addition to the

minimization of the objective function. This idea of competing objective function

elements is similar to Goal Programming and also the powerful Compromise Decision

Support models studied by Mistree [27]; Bras [28, 29]; Vadde [30]; Bascaran [31];

and Shupe [32] as well as their collaborators. The technique used to balance the

competing objectives of optimality and robustness in this thesis is most similar to

Schniederjans [33].

Uncertainty affects more than just optimization design problems. Other areas,

such as robust control based on input error estimation [34], robust compensators and

4



controllers [35–38], robust feasibility design [39–41], and reliability analsis have been

proposed to compensate for uncertainty in various applications.

A solution which provides information regarding control variables as well as

uncertain parameter variations allows a system designer to better visualize and under-

stand the problem feasibility space in terms of the uncertain parameters and to make

design decisions accordingly. For example, if the problem is found to be insensitive to

the material property of a particular component, a less expensive material might be

selected to reduce cost. Likewise, a parameter for which the sensitivity is high should

be prioritized early in case the required tolerance is not achievable through existing

manufacturing methods or procurement channels.

Although the most recent work is dominated by Ben-Tal and Zhang, older

research on this subject is still relevant. Perhaps the best example of this is the

work by Ben-Haim et al. [42]. In this work, several engineering design problems are

studied when perturbed by specific sets of uncertain parameters. The methods used

are not as sophisticated as the robust optimization methods we see in the more recent

literature, but the approach is straightforward and obviously presented more for the

engineering applications than for presenting a new mathematical method.

This thesis attempts to provide a similiar resource for designers; a straightfor-

ward application of the most recent optimization tools available for solving general

nonlinear robust optimization problems.
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2.2 Design Under Uncertainty

The concept of design under uncertainty has been well understood by field

engineers for many years, but has not been treated by engineering mathematics until

fairly recently. In nearly every design, engineers must understand and account for

manufacturing tolerances, material variability, and other factors to ensure that a com-

pleted product or design functions as intended. In traditional engineering disciplines,

such as bridge design, engineers use methods such as factor of safety to ensure a de-

sign can function even when some variables are not well known. Other disciplines use

an iterative approach, or accept the consequence that a post-manufacturing screen-

ing process may be needed to identify a low number of failed components. With the

advent of Robust Optimization techniques, it is now possible to consider uncertainty

as part of the design process, eliminating the need for screening processes and poten-

tially costly over conservatism. While not yet widely adopted, robust optimization

techniques provide a window to what future engineering designs may hold. When un-

certainty is included in the design process, it is possible to achieve higher efficiencies,

better performance, and lower cost than with traditional conservative engineering

approaches.

The last several decades have produced many contributions in the area of

Robust Optimization and Robust Design. Perhaps the first mentions of uncertainty

stem from Taguchi [43] who sought a means to increase manufacturing quality through

a better understanding of design uncertainties. Much of today’s robust optimization

theory ultimately stem from his initial case studies and approach.
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As computational capability has grown, increasingly complex problems have

become solvable. This increase in computational capability brings with it new chal-

lenges, such as how to pose increasingly complex problems in forms that are solvable

through computer programs. In particular, with the advent of parallel computing,

some researchers have developed methods such as genetic algorithms which take ad-

vantage of several CPUs at once to more readily generate optimal solutions.

In addition to parallel computing methods, algorithmic efficiency and defini-

tions of uncertainty have proved to be fruitful areas of research. Several papers have

developed Collaborative Optimization methods which combine inputs from several

subsystems to provide an optimal solution to systems of problems or particularly

complex programs.

Stemming from the discussion above, this chapter will outline robust opti-

mization fundamentals, including common definitions, a short survey of key research

within the past several decades, and a discussion of some of the more common appli-

cations of this research. Finally, the motivation for this research will be presented,

including the key aspects of this work that represent new additions to the robust

optimization community.

2.3 Robust Optimization vs Stochastic Optimization

A key component of robust optimization is the determination of the uncertain

parameter set. This determination is key to the conclusions from a given analysis.

Two types of uncertainty prevail in current optimization research. The first is stochas-

7



tic uncertainty, otherwise known as reliability theory or probabilistic uncertainty and

the focus of Stochastic Optimization (SO), similar to the definition adopted by Bert-

simas et al. [44,45]. Uncertainties are assumed to be known in terms of a probability

distribution function (PDF), generally approximated as a “normal” distribution [46].

Some current research uses Belief and Plausibility (Dempster-Schafer theory) [23,24]

to provide a second order approximation of these uncertainties. In general, probabilis-

tic uncertainties are treated as statistically independent; however, some research has

tested such assumptions by providing for correlation matrices as part of the stochastic

optimization theory [47], [48]. Regardless of the stochastic definition, these methods

seek to balance reliability and optimality, and avoid the penalties of a true “worst-

case” analysis by providing a high level of design confidence at reduced objective

cost [12, 49].

In contrast, some researchers have opted for a more conservative approach.

Such methods, deemed robust optimization (RO), treat the uncertainty as a closed

set with no defined distribution, assuming that the goal of the robust optimization is

to ensure constraint satisfaction for any value of the uncertain parameters [50, 51].

When solutions of this type are determined, they are worst case solutions (in terms

of the objective function value), and as such, they protect for each parameter simul-

taneously taking their worst case value in terms of the objective cost. While these

solutions are generally more costly, they provide solutions for problems that cannot

tolerate constraint violations. A bridge design, for example, cannot be 99% safe, it

must be 100% safe, and such problems must use this type of interval uncertainty. For

other problems, reliable stochastic information may not be available and as a result,
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probabilistic uncertainties may provide overly optimistic (or just plain incorrect) so-

lutions. A key element of RO is the definition of a convex uncertainty set. Such sets

can be box-type, ellipsoidal-type or other convex forms, and can be generated from

any dataset [52].

In general, the SO and RO methods are treated separately and a particular

example problem will contain only a single type of uncertainty. However, some re-

search has begun to investigate problems in which both methods are used [24, 53].

In such cases, SO theory allows for inclusion of generally accepted random variations

that are uncontrollable such as temperature variation. Other conditions, such as

machining tolerance, are considered as interval uncertainties, with no guarantee that

mean-valued parameters are more likely. Ultimately, this balance produces solutions

which account for each type of uncertainty with a defined reliability factor. In this

way, the combined SO and RO uncertainties suffer from some of the same drawbacks

as the SO methods alone in that they produce solutions with the potential for con-

straint violation. Only problems with exclusively interval uncertain variables can be

guaranteed to be feasible for any realization of those variables.

2.4 A Definition of Robust Optimization

Robust Optimization, as defined in this text and used herein, seeks to find a

solution that is feasible for ANY realization of the uncertain parameters within their

uncertainty range. The optimum in this case is defined as the minimum objective

function value that still guarantees satisfaction of all uncertain constraints. The
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uncertainties considered in this thesis, and more generally in the field of Robust

Optimization as a whole are deterministic and set-based rather than probabilistic.

Within this thesis, when discussing robust design solutions, we claim that a

given design is immunized against a given uncertainty condition if the chosen solution

results in no constraint violations for the entire range of uncertainty.

Solutions to Robust Optimization problems are treated as ”here and now”

decisions, meaning that a solution must be chosen before the particular realization of

the uncertainty set is known.

2.5 Definition of Terms Commonly Used in Robust Optimization Litera-

ture

Throughout this document, several terms will be used specific to robust opti-

mization literature. Each term will be described and defined below.

Type I Robust Design – This design method focuses on uncontrollable

uncertainties and attempts to immunize an objective function against these uncon-

trollable variations

Type II Robust Design – This design method focuses on controllable de-

sign parameters and studies how their definition and correlation can affect objective

function values

Feasibility robustness – When variations within the uncertain parameters

do not produce constraint violations, the solution is said to be “feasibly robust”.

The result can be thought of as the lowest objective value of the worst case
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realization . This concept is a key component of this thesis.

Sensitivity Analysis – Separate from SO or RO methods, sensitivity analysis

refers to post optimization tools used to quantify a change in objective function cost

due to uncertain parameter variations. This can be similar to feasibility robustness

described above, but occurs as a secondary activity after optimization solutions have

already been determined.

2.6 Sources of Uncertainty

In the following section, we describe types and sources of uncertainty. These

definitions will be used later in the text to provide clear descriptions of the uncertain

parameters.

Aleatory Uncertainty – When an uncertain parameter is an inherent vari-

ation of a physical system, it is said to be aleatory, Examples of aleatory uncertainty

might include temperature/pressure variations for a given system.

Epistemic Uncertainty – When an uncertain parameter is uncertain due

to ignorance or lack of knowledge, it is said to be epistemic. Examples of epistemic

uncertainty might include roundoff error, or model error.

Propagated Uncertainty – Propagated uncertainty arises when errors from

a previous iteration increase errors for successive iterations. These errors occur in

addition to aleatory and epistemic uncertainties within a given problem. Simula-

tions which involve the integration of time varying functions suffer from propagated

uncertainty.
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2.7 Survey of Robust Optimization Work Over the Last Several Decades

Nearly all of the current SO and RO work can be traced back in some form to

Taguchi [43]. Taguchi was the first to formally consider uncertainty and its effect on

final product reliability. He used a deterministic approach to develop the concept of

a robust design. However, due to computational limitations and the very new ideas

developed by Taguchi, very little robust design work was generated for some time.

Another early contribution to robust design considerations was Elishakoff and

Ben-Haim [42]. They were able to show that for a subset of problems, monotonicity

allows for efficient solutions to specific uncertain problems. They applied this method

to common engineering problems and showed that design under uncertainty could be

achieved for well posed problems.

More recently, Azarm, Li, and others [15, 54] have exploited monotonicity

methods to find solutions to many uncertain systems. This work has been applied to

many common engineering example problems and provides a means by which many

problems can be simplified for robust considerations.

Another common method in current literature is the Compromise Decision

Support Problem (DSP) which introduces additional deviation parameters d+ and

d− to modify system goals to allow for uncertainties and even collaboration between

multiple subsystems [6].

Multiobjective Robust Optimization has been a topic of much research, provid-

ing methods such as Collaborative Optimization (CO), MultiObjective Robust Opti-

mization (MORO) [16], MultiObjective Collaborative Robust Optimization (McRO)
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[17], and even the newer AA-McRO method [18]. All of this research has generated

methods by which multi-discipline engineering problems can be considered, even in

the presence of uncertain parameters [23, 24, 55]. Many of these current methods

utilize genetic algorithms to balance multiple objectives. Within the field of multi-

objective robust optimization, some methods provide solutions that are “all-at-once”

(i.e. consider all objectives simultaneously) and others use multilevel approaches to

iterate to a collaborative robust optimal design.

Some research has focused specifically on chemical plant design, using a 2-stage

approach to first immunize against uncontrollable uncertainties and then, once more

information becomes available, fine tuning the design using control variable modifica-

tion [56,57]. Not unlike the BoU method presented here, this 2-stage approach allows

uncertainty to be refined as the design becomes more complete.

Some researchers have gone so far as to apply game theory methods to robust

optimization [58]. These methods use Cooperative, NonCooperative, and Sequential

game player models to achieve robust optimal designs. Still others have focused

on evaluating the worst case propagation of uncertain parameters through multiple

systems [21,22,59].

Other researchers have focused on new and innovative ways to determine ob-

jective value, both in the presence of constraints and without them. These methods,

largely grounded in simulation-based design, have provided new computational tech-

niques for identifying robustly feasible solutions that provide the best case result

in the presence of known uncertainty [60, 61]. The Bertsimas, Nohadani, and Teo

method, in contrast to other methods, deals nearly exclusively with the objective
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value, minimizing that quantity in the presence of uncertain parameters [60]. This

iterative method is in contrast to the first order methods of Zhang [3] and the convex

constraint modification of Ben-Tal [5]. Both Zhang and Bertsimas et al., allow for

nonconvex problems, however while Zhang takes a first order approximation method,

Bertsimas et al., takes an iterative approach to zero in on the optimum solution.

Perhaps some of the current research most directly related to the work covered

within this volume, has been performed by Xu [62], Tan [63], and Shukla [64]. Shukla

provides a cellular network approach to trading robustness and optimality, attempting

to balance the cost of flexibility in the network against the true optimum. Tan and

Xu, similar to the method presented here, use a modified objective function based

in goal programming techniques. Although these references explore the relationship

between optimality and robustness, the work to date stops short of determining a true

budget of uncertainty. This extension of the current research underlies the concept

within this work.

2.8 The Budget of Uncertainty and Robust Design

In all of the literature described above, it is assumed that the designer begins

with at least an estimate of the uncertain parameters. This estimation may be based

on expert opinion, detailed statistical data, or engineering judgement, but in all cases,

the RO methods rely on this information as input data. Uncertainties can be described

as box-type, ellipsoidal-type, or some other bounded set. Each method examines the

design reliability, constraint satisfaction, and robust design objective to determine a

14



final design solution, which can then be compared against Monte Carlo simulations

utilizing these same uncertain parameter inputs. However, there is a need for a more

comprehensive approach. What can be done in early phases of design when uncertain

parameter values are still unknown?

In this thesis, we explore one possible method by which the uncertain param-

eters can be included as additional design variables . This produces a solution

which not only provides a feasibly robust design, but also quantifies the allowable

uncertainty within each uncertain parameter. These uncertainty intervals can then

be used to specify machine tolerances or component specifications. This provides a

common sense way by which a designer can begin to account for design uncertainty

even when little is known about the design parameters and then refine the design as

more information becomes available.

The contributions of this work are as follows:

1. The “Budget of Uncertainty” (BoU) method provides a straightforward ap-

proach for understanding the design feasibility space.

2. The BoU method can be implemented in the earliest design stages when uncer-

tainty intervals are not yet known, and indeed can be used to begin to quantify

acceptable uncertainty intervals.

3. The BoU method allows for a regimented and iterative approach to refine the

feasibility space as additional design information becomes available.

4. The BoU method can be applied alongside current research methods such as
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multidisciplinary problems, multilevel approaches, and various robust counter-

part problem realizations.

5. The BoU method systematically provides for the implementation and evolution

of a budget of uncertainty for RO problems.

2.9 Parallels to Goal Programming

The foundation of our new BoU method for robust design lies in goal pro-

gramming techniques. These techniques have been developed by many authors, most

notably Schniederjans and Charnes [33,65]. Goal programming allows the balance of

several objective function components in such as way as to allow simultaneous con-

sideration to each. The BoU method uses an amended objective function to provide a

way to optimize based on uncertainty tolerance, and the amended objective function

is generated using principles common in goal programming.

2.10 Zhang Robust Optimization Method - First Order Robust Nonlinear

Programming Formulation

The first of the current RO methods discussed in this text is a general formu-

lation for robust optimization first presented by YH. Zhang [3]. This method uses the

L1 norm of the uncertainty vector measured from the nominal and uses this single

scalar value as a measure of the uncertainty variation of the problem. This factor

is then used with a linearized version of the original problem. The method is not

without drawbacks, since due to linearization, it can generate solutions with small vi-
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olations of the constraints within the proposed uncertainty. However, Zhang presents

methods by which these excursions can be bounded and reformulation of the problem

can remove these violations.

Ultimately, the Zhang method is intended for problems which by their nature,

do not lend themselves well to robust formulations. In particular, the method is

useful for situations where a given constraint is non-concave. Zhang’s method can be

applied to nonlinear and nonconvex problems and its solution is valid in the vicinity

of the nominal point. This limited applicability of the solution is due in part to the

linearization of the problem, and in part to the assumpion that the uncertainties are

only moderate and do not alter the problem significantly from the nominal.

The Zhang method can be summarized as follows:

For a general nonlinear optimization problem:

min
y∈RNy ,u∈RNu

φ(y, u, s), (1a)

s.t F (y, u, s) = 0, and (1b)

G(y, u, s) ≤ 0, (1c)

where s ∈ RNs is the vector of uncertain system parameters, y ∈ RNy is the state

variable vector, and u ∈ RNu is the design variable vector constrained in a set U ⊂

RN . F (y, u, s) = 0 is the state equation for F ∈ RNy , and G(y, u, s) ≤ 0 is the

vector of safety constraints for G ∈ Rm. The funtions defined by F and G must be

continuously differentiable.
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The robust counterpart formulation is:

min
y∈RNy ,u∈RNu

φ(y, u, ŝ), (2a)

s.t F (y, u, ŝ) = 0, (2b)

τ(Fyys + Fs) = 0, and (2c)

diag (G)E ± τ(Gyys +Gs) ≤ 0, (2d)

where ys ∈ RNy×Ns is a new variable representing the unknown Jacobian of y with

respect to s, E ∈ Rm×Ns is the matrix of all ones, and the matrix inequalities are

elementwise. The functions Fy, Fs, Gy, Gs are all evaluated at (y, u, ŝ).

In recent published work [4], Zhang has used this method to solve several

example problems of various types. In particular he has presented results for a simple

3-bar truss, a heat exchanger network, and a reactor-separator system [4]. In these

results he shows the method in action and the level of conservatism expected. The

Zhang method has been only preliminarily compared to other robust formulations,

specifically results from Kwak and Huang [66].

2.11 Ben-Tal Robust Optimization Method

Ben-Tal et al have recently proposed a general method by which nonlinear

concave inequalities can be reformulated to their robust counterparts [5]. The method

presented involves the use of Fenchel duality, the support function of the uncertainty

region, and the conjugate function of the original constraint function. For simple
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problems this reduces to a fairly straightforward derivation of the robust constraint,

but in the presence of more complicated constraint functions that are not linear in

the uncertain variables, the complexity can rise rapidly. Regardless, this method is

one of the few methods available which treat the generation of a robust counterpart

with a general approach and without need for simplifying assumptions. Additionally,

without the need for linearization, the applicability of the solution is general, and all

constraints are guaranteed to be satisfied for the entire space of uncertain problem

realizations.

Theorem 2 from Ben-Tal [5]: Let a0 be regular. Then the vector x ∈ Rn

satisfies (RC) if and only if x ∈ Rn, v ∈ Rm satisfy the single inequality

(RC) min
a∈U

f(a, x) ≤ 0 and (3a)

(FRC) (a0)Tv + δ∗(ATv|Z)− f∗(v, x) ≤ 0 (3b)

in which the support function δ∗ and the partial concave conjugate function f∗ are

defined later within this document.

Because this Theorem refers to specific conclusions drawn within the paper,

namely the support function and the partial conjugate function, the following para-

graphs provide a restatement of that theorem with the necessary components collected

here. For a detailed explanation on the theory, see the references [5].

For a general inequality constraint:

f(a, x) ≤ 0, (4)
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where x ∈ Rn is the optimization variable, f(., x) is concave in a for x ∈ Rn, and

a ∈ Rm is an uncertain vector which is known only to reside in a set U .

Its robust counterpart is determined by:

(a0)Tv + δ∗(ATv|Z)− f∗(v, x) ≤ 0, (5a)

a = a0 + Aζ|ζ ∈ Z ⊂ RL, (5b)

δ∗(y|S) = sup
x∈S

yTx, and (5c)

g∗(v, x) = inf
a∈Rm
{aTv − g(v, x)}, (5d)

where v ∈ Rm, δ∗ defined in Equation 5c denotes the support function, and f∗ defined

in Equation 5d denotes the partial conjugate function. a0 is the nominal value and

Z is a given nonempty, convex and compact set with 0 ∈ Z.

2.12 Tradeoffs Between Optimal And Robust Formulations

As with any treatment of uncertainty, there is a cost associated with account-

ing for model variation in the sense that the feasibility space decreases with added

variations in the design parameters. As the feasibility set reduces, the resulting opti-

mal solution objective increases with respect to the nominal solution. The final robust

result indicates the best solution that still guarantees satisfaction of the constraints.

In fact, this result is essentially the worst case objective function value permitted by

the given uncertainty space. Depending on the model sensitivity to the uncertainty,

this cost can range from moderate to substantial. An obvious immediate result is that
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nearly every model has a finite uncertainty budget that can be accomodated before

the problem becomes infeasible.

The reduction in feasibility space is is to be expected, and as a result it is

important to consider realistic values for each of the uncertain parameters. Later

chapters will discuss how these competing objectives can be balanced so as to preserve

some meaasure of optimality while also protecting for required uncertainties.

For the examples in this thesis, uncertainty in the problem parameters will

be treated as part of the problem statement. In order to apply the most general

application of uncertainty many parameters will be considered uncertain, but the

author assumes that in practice, only a few design variables will need substantial

uncertainty. Other variables can be considered with a much smaller uncertainty

region.

2.13 Sensitivity to Uncertainty

The sensitivity of a problem to parameter uncertainty is twofold. The uncer-

tainty can affect the objective function value as compared with the nominal solution,

or the uncertainty can reduce slack within specific constraints (i.e. reduce the feasibil-

ity space). With enough uncertainty, the feasibility space can eventually be reduced

to zero, creating a nontractable problem. This will be clearly evident from the later

examples in this thesis. Even simple geometric examples at first glance may appear to

permit vast amounts of uncertainty, but nonetheless, seemingly small variations can

make the problem completely unsolvable. This is not an uncommon characteristic of
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robust design problems; often there is a well defined limit to how much uncertainty

will permit a viable solution.

In other examples, this sensitivity to uncertainty can be even more pronounced.

The reader is advised to consider any robust optimization method as a balancing

act, balancing the objective function value and the overall uncertainty budget and

feasibility space.

2.14 Drawbacks of Probabilistic and Factor of Safety Approaches

Nearly all current engineering design work involves probabilistic and/or factor

of safety approaches to engineering design. For extremely complicated systems, often

Monte Carlo analysis is coupled with factor of fafety approaches to produce a final

design. While these methods do work, and have been used for decades, they may not

always be the best path to an optimum design. In fact, the current process may drive

overly conservative designs due to lack of specific insights that could be determined

through robust optimization methods. Both Monte Carlo/probabilistic methods and

factor of safety methods have significant drawbacks that more modern methods can

partially mitigate. These drawbacks hinge on the fact that both factor of safety and

Monte Carlo approaches do not take advantage of model characteristics. In addition,

Monte Carlo methods generally require substantial processing time and substantial

post-processing of generated data to obtain the desired result.

When a probabilistic approach to uncertainty is taken, it requires knowledge

of the probabilistic uncertainty. Without an extremely large sample size, it can be
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almost impossible to know the true statistical variance of the design parameter, and

this lack of knowledge can result in an overly optimistic projection for the ultimate

probability of failure in the final design. Indeed the distribution of uncertainty may

not even be Gaussian and probabilistic methods may break down entirely. Even

with perfect knowledge of the statistical probability for the design variables, the final

solution is not assured to be feasible for all possible uncertain realizations, merely a

significant percentage of them based on the assumptions mentioned above. Although

the statistical probability of failure can be shown to be low, it is still possible and this

is not always an acceptable result. Consider bridge design for a moment, is it good

engineering practice to allow any realizations of loading where the bridge structure

fails?

Factor of safety approaches, while traditional, have the drawback of nearly

always being overly conservative. In structural design, a factor of safety approach can

quickly result in additional material costs, additional weight in the final design, and

potentially additional labor costs during assembly due to the increased size and mass.

This added cost and complexity may not be necessary, and modern computational

tools can now begin to illustrate this with methods such as those discussed here.
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3 The BoU Method

3.1 Origins of Robust Design

Even with sophisticated computational methods and immense numerical com-

putational capability, solutions to design problems are always laced with the un-

certainty of the application. This uncertainty takes many forms, from simple mea-

surement uncertainty, to estimated or calculated parameter uncertainty, imperfect

processes, physical variations such as temperature and pressure, and other contribut-

ing causes for which there are no adequate control. As an example, when designing

spacecraft control systems, any single spacecraft thruster firing varies from other fir-

ings due to imperfect combustion, subtle temperature/pressure variations within the

nozzle, density/pressure fluctuations within the propellant system, and other factors.

Most work in the field of optimization neglects these generally small uncertainties in

favor of considering the larger problem and determining an optimum solution for the

nominal or expected problem.

Robust design—and robust optimization methods in particular—considers these

uncertainties and seeks to determine solutions that account (and correct) for the re-

sulting problem variation. Robust optimization seeks to determine a best worst-case

objective so as to guarantee a minimum performance even in the presence of uncer-

tainty. This approach requires considering the competing objectives of optimality and

robustness in addition to uncertainty variation imposed by real-world considerations.

Robust optimization methods have been explored by several researchers in-

cluding Azarm [15–18, 54], Ben-Tal [1, 2, 5, 50, 67–76], Papalambros [8–12, 53], and
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others and a comprehensive discussion of this work is given in Chapter 2. Beyond

Robust Optimization, we also consider the aspect of Robust Design. Robust Design as

defined within this work considers the continuous application of robust optimization

methods throughout an evolving design process. Robust Optimization results serve

to inform design decisions which ultimately refine the uncertainty set. Robust design

then becomes a specific application of robust optimization concepts in a way that can

be applied readily to many engineering disciplines. We formally define Robust De-

sign as the application of robust optimization methods iteratively or continuously so

as to inform and evolve a real world design or to make a determination of acceptable

uncertainty characteristics for the final design.

Within this chapter, we explore first a novel take on current robust optimiza-

tion methods, considering the uncertainty set itself to be part of the design variable

set, and then apply this approach for general robust design. We will present the

method as well as results for three examples, a simple two-dimensional geometric

problem, the Golinski Speed Reducer, and a helical spring.

3.2 An Introduction to Robust Optimization

The standard form for a general nonlinear optimization problem is well known,

and serves as the necessary starting point for the introduction of the “Budget of

Uncertainty” (BoU) method. This form is represented as

min
x∈RNx

φ(x), (6a)
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s.t F (x) = 0, and (6b)

G(x) ≤ 0, (6c)

and shows the minimization of the objective function subject to the equality and

inequality contraints. In the presence of uncertainty some modification of this form

is required. In the presence of uncertainty, the nominal solution does not prevent

violations of inequality constraints, nor does it necessarily retain (or even limit) the

value of the objective function. In fact, as a general rule, a nominally optimized

problem will violate one or more inequality constraints when uncertainty is added.

In addition, in the presence of uncertainty, equality constraints become meaningless

in the sense that equality can not be guaranteed for multiple realizations. For this

reason, the incorporation of uncertainty requires that equality constraints be either

(a) removed through substitution or (b) rewritten in an inequality form. As a means

of illustration, take a simple parabolic example:

min
[x,y]∈R2

y and (7a)

s.t x2 − y ≤ 0. (7b)

This problem has a nominal solution of [x, y] = [0, 0] with a nominal objective

value of 0. If we introduce uncertainty in x in the form [x − dx, x + dx], then our

only constraint is immediately violated at either of the boundary conditions for any

value of dx 6= 0! Even for this simple example, the traditional form is insufficient for
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our needs. Stated more clearly, we desire the solution to the uncertain problem to

be “immunized” against uncertainty such that inequality constraints are not violated

AND the objective value is never greater than the robust solution. To our benefit, this

is well studied and authors such as Zhang and Ben-Tal provide means by which we can

modify the traditional form and create what we will call the robust counterpart of the

optimization problem. For either method, the key elements of this robust counterpart

are (1) ensuring that each inequality constraint becomes a “worst case” constraint

and (2) ensuring that the objective value is a “worst case” value. These two elements

ensure that for any realization of the problem within the defined uncertainty set, the

objective is equal to or less than the calculated value, and constraints remain satisfied

for all realizations. Of course, equality constraints with uncertain parameters are not

possible in this context. In its simplest form, this alters our simple parabolic example

to

min
[x,y]∈R2

y and (8a)

s.t (x+ dx)2 − y ≤ 0. (8b)

So, if our situation dictated dx = 0.1 (that is to say x is contained in the

interval [x − 0.1, x + 0.1]), then our objective value becomes y = 0.01. This is the

worst case objective value which also guarantees the inequality constraint is satisfied

over the entire range of uncertainty. In addition, since this is a worst case objective

value, the true objective value for any realization of the problem within the specified

uncertainty interval is better or equal to our objective value.
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Zhang and Ben-Tal each provide much more in depth studies of uncertainty

set types, problem types, and constraint types [3, 4, 72], however within this work,

we will focus on interval “box-type” uncertainty and so will restrict ourselves to that

discussion. Certainly, the methods presented here can be applied to ellipsoidal or

other uncertainty distributions. Also, although we use a first order approximation

here for the BoU method, we could also use the more general approaches presented by

Ben-Tal. The BoU method is independent of these choices and so is best illustrated

through examples contained within this document.

3.3 The BoU Method of Robust Design

While Zhang, Ben-Tal and others have shown comprehensive and enlightening

insights to the solution of robust optimization problems, to date there has been little

investigation of true robust design as defined in Section 3.1. Robust design does

not generally allow knowledge of the uncertainty set in advance, but rather is the

attempt by a designer to determine an appropriate uncertainty set for a particular

design. This can be visualized as a “Budget of Uncertainty” for a particular design

space. Take our initial parabolic example as a starting point, what if we did not

know in advance that the uncertainty in our “x” variable was ±0.1? How could we

reformulate our problem to determine what uncertainty would be appropriate? Here

in lies the motivation for this work.

We begin by considering the type of problems for which a budget of uncertainty

is a useful consideration. Immediately, in our parabolic example, we see already that

28



we may have some problems. First of all, the feasibility space is unbounded! Without

some bounds, if we merely added the variable “dx” as part of our design variable set

in Equation 8, we would quickly see that “dx” can take any value and in fact will be

driven to zero as a result of our objective function. Also, we must consider penalties

for our uncertainty. If we solve for the uncertainty set, how can we be sure that we are

not “throwing away” our optimality? We will address these two concerns separately.

3.3.1 A Bounded Feasibility Space

For the BoU method, we can bound the feasibility space in two distinct ways,

direct and indirect. The direct method is to add a constraint to the original problem in

terms of the original design variables. For example, we could construct our parabolic

example as follows:

min
[x,y]∈R2,dx∈R1

y, (9a)

s.t (x+ dx)2 − y ≤ 0, (9b)

y − 2 ≤ 0, and (9c)

− dx ≤ 0. (9d)

In this way, we have created a bounded feasibility space, and when we at-

tempt to solve for the allowed uncertainty in x, we will be bounded by our additional

constraint and the feasibility space itself. It is important to note that the feasibility

space must only be bounded in terms of the uncertain variables. Without uncertainty,

we have no need for this potentially artificial bound. Figure 1 provides a geometric
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visualization of the unbounded and bounded feasibility space.
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Figure 1: Feasibility Space for Simple Parabola Problem

The indirect method of bounding the feasibility space is to constrain uncer-

tainty variables through specific constraints. Rather than constrain the design vari-

ables directly to close the feasibility space, we could have added constraints such as

dx ≤ 0.2 and −dx ≤ 0.

Note that at this point, we still have not truly generated our desired outcome.

The problem above will merely default to an “allowed” uncertainty budget of 0, and

provide our nominal solution. We must add uncertainty as an additional optimization

objective!

3.3.2 Balancing Optimality and Robustness - the BoU Objective Function

For our BoU method, we must balance the original optimal objective and our

desire for uncertainty. This is a delicate balance. Too much importance in the optimal

solution will return us to the nominal solution with no allowance for uncertainty.

30



Likewise, too much importance on uncertainty will drive us far from the nominal

solution and potentially create an unnecessarily poor design.

For the solution to this dilemma, we turn to recent developments in goal

programming and multi-objective methods. A survey of multi-objective methods is

provided by Marler and Arora [77] and this provides us several possibilities for our

approach. We will discuss several possibilities in detail in later chapters, but for now,

we will select an appropriate combined objective for our simple problem:

min
[x,y]∈R2,s∈R1

α(y/y − 1) + (α− 1)sw, (10a)

s.t (x+ dx)2 − y ≤ 0, (10b)

y ≤ 0, and (10c)

where dx = xs. (10d)

Our new objective function now has two distinct components and we will

refer to these two components as the “optimal objective component” (y/y − 1) and

the “robust objective component” (
∑1

i=1 siwi = sw). The first term, the optimal

objective component, is an expression of the ratio of the nominal objective value (y

is the nominal objective without uncertainty consideration). Since we expect y ≥ y

in the presence of uncertainty, this term approaches a value of 0 as the solution

approaches the original nominal solution and increases in value as the solution moves

away from its nominal value. In the special case where y is identically 0, we use

y + ε to avoid the singularity. We expect this component to take reasonably small
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values since for most design problems substantial increase of the objective function is

undesired. In fact, we have found that for the design problems investigated to date,

the value of (y/y − 1) is often between 0 and 0.5.

Now we turn our attention to the second term, the robust objective component.

This component is expressed in terms of multiplicative uncertainty using the uncertain

parameter vector, s. To this point, we have (for convenience) defined our uncertainty

as additive in the form of dx and dy, however the use of a vector, s provides a more

reasonably scaled objective function component. When multiple uncertain parameters

are present, we need a way to normalize the uncertainty so that large variables do not

dominate the uncertainty budget when considered alongside small valued variables.

We will see examples of this in later chapters. A simple variable transformation allows

us to convert between multiplicative and additive uncertainty, and the result provides

a compact objective function that simultaneously attempts to minimize the variation

from the nominal optimal point and maximize the potential uncertainty.

In our current form the relative importance of optimality and robustness can

be adjusted by altering the value of α between 0 and 1. However, we have additional

discretion in the secondary weighting vector, w. The secondary weighting vector

allows the designer to assign lexicographic weighting for each uncertain parameter,

biasing the optimizer to allocate more variation to more senstive or more important

parameters. It is worth noting that even when only the secondary weights are changed

it is possible to arrive at a new solution. That is to say, adjusting only the secondary

weights may not only shift the uncertainty budget between uncertain parameters, but

also provide a higher or lower worst case objective value. This is because even when
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the primary weight does not change, adjusting the secondary weighting parameters

may change the relative magnitude of the robust objective component which in turn

may result in a new optimal point. This is especially true if uncertain parameters are

particularly ’costly’ and likely to affect the original objective function value.

The objective function form above is the default form, and is used throughout

this document unless otherwise described. However, other objective function forms

are possible, and may for some models be preferred. Potential varations are discussed

in Chapter 4.

The term α, otherwise known as our primary weight, provides a tuning pa-

rameter through which a designer can trade between optimality and robustness. In

fact, considering varying values of alpha produces a pareto front through which the

solution space can be analyzed. For our purposes, we restrict 0 < α < 1.

3.4 Inequality Constraint Inner Maximum

With the robust and optimal components of the new objective function settled,

along with the allowance for primary and secondary weighting elements, we must now

revisit our inequality constraints. To avoid constraint violations in the presence of

uncertainty, we must determine the inner maximum for each constraint. This can

be done in general for all concave constraints. The BoU method, in an attempt to

retain generality, applies a first order approximation method. This approximation for

the jth constraint takes the form of
M∑
i=1

∂fj(x,s)

∂si
xisi, where M denotes the number of

uncertain parameters.
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The new term represents an uncertainty ’penalty’ for each inequality. This

penalty ensures that even when uncertain parameters take values such that the in-

equality constraint is at its maximum, this maximum value does not violate the

inequality. The development of a general robust counterpart has been studied exten-

sively by Ben-Tal and others. The method presented here most similar to that found

in Zhang and is selected to provide a straightforward method for general application.

3.5 General BoU Form

Summarizing our conclusions above, we can synthesize a general form for our

approach. In general form, the above method can be stated as follows:

min
x∈Rn,s∈Rm

α(φ(x)/φ(x)− 1) + (α− 1)
m∑
i=1

(wisi), (11a)

s.t f(x, s) + δf(x, s) ≤ 0, (11b)

g(x) = 0, and (11c)

where, δf(x, s) =
M∑
i=1

∂f(x, s)

∂si
xisi. (11d)

This form allows for many inequality constraints, varying forms of objective

function, and many uncertainty parameters. An additional set of tuning parameters

are added, wi, to provide lexicographic adjustment based on the relative importance

of uncertainty values. The term δf(x, s) represents a term to capture the first or-

der approximation of the worst case deviation for each constraint. The feasibility

space must be bounded and there must be no uncertain parameters in the equality
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constraints.

The general form shown above, and in fact the systematic approach to design

of the uncertainty space is presented here as the Budget of Uncertainty (BoU) method.

In the next chapters, we show how the primary and secondary tuning values can be

used to the benefit of the designer, how the objective function can be modified to

suit varying problem forms and sensitivities, and the application of this method to

several design problems.
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4 BoU Illustrative Example 1 - 2D Geometric Optimization

In the previous chapter, we introduced the BoU method of Robust Design.

This method combines elements of multi-objective optimization and goal program-

ming with recent advances in robust optimization to produce a means by which engi-

neering designers can balance a need for robustness against the need for an optimal

design and solve directly for a budget of uncertainty in selected varables. This chapter

will explore variations of the BoU method which allow for alternative formulations

of objective function, weighting considerations and uncertainty sets. As our method

of illustration, throughout this chapter we will refer to a straightforward optimiza-

tion problem with a well-defined, regular feasibility space. The nominal optimization

problem,

min
[x,y]∈R2

x2 + y2, (12a)

s.t 2− x ≤ 0, (12b)

y − 5 ≤ 0, (12c)

px+ (2− 2p)− y ≤ 0, and (12d)

where p > 0, (12e)

will form the basis for our discussion.

The problem reduces to the minimization of distance to the origin for a right

triangular feasibility space with a varable hypotenuse angle. In this problem, the

parameter p represents the slope of the triangle’s hyponenuse. The straightforward
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geometric visualization is shown below in Figure 2 for several values of p. The optimal

point is shown as a filled red dot and the feasibility space is bounded by the lines

representing the three constraints.
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Figure 2: Geometric Representation of Simple Triangle Problem

The problem is straightforward to solve using any readily available numerical

solver, analytically through the application of KKT conditions for optimality, or

through geometric inspection. The optimum point lies at the point (x, y) = (2, 2) and

the problem constraints have been written such that even if the positive parameter

p is varied, the optimal point remains fixed at this location. However, we wish to
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investigate the robust counterpart of this problem, which can be expressed using the

BoU method described in Chapter 3. In this form of our example,

min
[x,y,v]∈R3,s∈R2

α(
v

8
− 1) + (α− 1)

2∑
i=1

wisi, (13a)

s.t 2− x+ δx ≤ 0, (13b)

y − 5 + δy ≤ 0, (13c)

px+ (2− 2p)− y + pδx+ δy ≤ 0, (13d)

(x2 + y2)− v + 2xδx+ δx2 + 2yδy + δy2 ≤ 0, and (13e)

si ≤ 0.5, (13f)

where p > 0, (13g)

δx = xs1, and (13h)

δy = ys2, (13i)

we consider both x and y as uncertain parameters.

In this robust formulation, we are able to solve not only for a best worst-case

solution in terms of x and y, but we can also simultaneously determine a range of

acceptable values for x and y for each solution. Note that we limit the maximum

uncertainty in each parameter through the additional constraint si ≤ 0.5. In general,

a 50% uncertainty range for a particular variable is sufficient, and this allows the op-

timizer to avoid assigning the entire uncertainty budget to a single variable. We can,

through our choice of α, weight the relative importance of optimality versus robust-

ness. Finally, we can, using the lexicographic weights wi, assign relative importance
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to x or y as needed. For example, with values of α = 0.05, w1 = 0.5, w2 = 0.5, and

p = 1, we produce the solution represented graphically in the upper left of Figure 3.

The point (x, y) is shown as a star surrounded by the uncertainty region shown as a

blue box. Note that even at the extreme value of uncertainty, all constraints remain

satisfied. Other possible solutions with varied values for α and wi are also shown in

Figure 3.
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Figure 3: Various BoU Solutions for the Simple Triangle Problem

Figure 3 highlights how changing both the primary and secondary weights

generate varying solutions, each with a defined uncertainty budget for the parameters
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specified in the s vector. In the two upper subplots, we see that when both w1 and w2

are equal, the uncertainty level for y is substantially greater than x. This is because

the cost of uncertainty in y is lower. The bottom two subplots show solutions where

w1 is increased to generate a larger uncertainty in x at the expense of uncertainty

in y. Comparing the left two subplots to the right two subplots, we see the total

uncertainty reduces as α increases. We will explore this characteristic in the more

complex example problems to follow. For now, it is sufficient to highlight both the

lexicographic potential in the w vector and the overall uncertainty control available

in α.

4.1 BoU Variations - Tuning Parameter Considerations

Armed with our robust counterpart to the nominal Triangle problem (shown

in Equation 13), we now wish to consider the solution variations that are possible as

the tuning parameters are adjusted. The tuning variables considered include α as the

primary weighting factor and wi as the lexicographic weighting factors (or secondary

weighting factors).

4.1.1 The BoU Pareto Front (Primary Weighting Factor, α)

As we have shown previously, the parameter α determines the balance between

optimality and robustness. When α is set to 0, the relative importance of uncertainty

is maximized, producing the largest possible uncertainty set at the expense of opti-

mality. When α is set to 1, the relative importance of optimality is maximized, and

the nominal solution is obtained with uncertainty limited to slack conditions that do
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not affect objective function value. Using a fixed value of p and varying only α in our

simple example, we produce the pareto front shown in Figure 4. This pareto front

shows, for various choices of line slope, p, the objective value as a function of α. This

shows the smooth transition from the optimal solution (high values of α) to the fully

robust solution (lower values of α).

0 5 · 10−2 0.1 0.15 0.2 0.25
2

2.2

2.4

2.6

2.8

α

x

p = 0.05
p = 0.25
p = 0.5
p = 1.0
p = 2.0

0 5 · 10−2 0.1 0.15 0.2 0.25
2

2.5

3

3.5

4

4.5

α

y

p = 0.05
p = 0.25
p = 0.5
p = 1.0
p = 2.0

0 5 · 10−2 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

α

d
y

p = 0.05
p = 0.25
p = 0.5
p = 1.0
p = 2.0

0 5 · 10−2 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

α

d
x

p = 0.05
p = 0.25
p = 0.5
p = 1.0
p = 2.0

Figure 4: Pareto Fronts for Varying Slope (p) as a Function of α

In the left two subplots of Figure 4 we see that as the value of p increases, the

cost of uncertainty in x also increases. We see in the right two subplots that the un-

certainty in y is essentially unaffected by the value of α and p. This is expected given
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the geometric orientation of our triangle. Since the value of p affects the hypotenuse

angle of the triangle, higher values of p mean that ensuring uncertainty in x is more

costly than a similar level of uncertainty in y. Given the values of x, y, dx, and dy

do not change significantly as α increases beyond 0.25, the four subplots in Figure 4

provide a clear indication of potential uncertainty space as a function of α.

4.1.2 Secondary Tuning Parameters

In addition to the use of α to vary the relative weighting of optimality and

robustness considerations, it is also possible to tune the BoU method to allow for

lexicographic considerations. The secondary weights, wi, allow for an increase in

the relative weight of specific uncertain design variables and can guide the optimizer

to re-allocate uncertainty to more desired areas. Often in this thesis, we choose

weights where
∑
wi = 1, however this normalization of the secondary weights is not

required. For problems with high sensitivity to particular uncertain parameters is

may be necessary to assign secondary weights with values larger (and perhaps much

larger) than 1.

It is important to note that the potential uncertainty for a particular parameter

is dependent on the feasibility space. In our simple example, we limit the maximum

value of dy to 0.5; the structure of the model is such that this value cannot be exceeded

no matter how much weight we assign to dy using w2. A similar limit exists for dx.

The value of α at which x and y reach their maximum values is dependent upon

the value of p. Even if we had not limited the maximum value of dx and dy, this

would not be unexpected. Since we require that the feasibility space be bounded as a
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pre-requisite for the BoU method, a limit to potential uncertainty should (and for the

BoU method to succeed, must) always exist for each parameter. Beyond that point,

assigning additional weight in the form of the secondary weight factors will provide

no further insight or model flexibility.

In Figure 5, we show the values of dx and dy as a function of the two tuning

parameters w1 and w2. In this example, w1 = 1 − w2, α = 0.05, and p = 1. Values

of w1 < 0.35 and w1 > 0.85 are not shown because there is no appreciable change

beyond the values shown.
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Figure 5: Evolution of dx, dy, and Worst Case Objective Value as a Function of
Secondary Weighting, wi

From this image, we can see that as the relative importance of uncertainty in

x increases, the uncertainty budget is allocated more and more toward x (increasing
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dx) at the expense of uncertainty in y (decreasing dy). This method of secondary

weight tuning affords a designer a means by which to prioritize particular variables at

the expense of other, potentially less important or less costly design considerations.

Also within Figure 5, it is clear that the worst case objective can increase or

decrease even when only the values of wi change. This is a direct result of the cost of

each uncertain parameter. It is possible to specify an additional constraint to limit

the increase in the robust objective function component, however the observation re-

garding objective function value is critical to a full understanding of the BoU method

application.

Finally, in Figure 5 we see a critical point at w1 = 0.62. At this value, we see

the worst case objective value reaches its maximum value. While this point may be

different for other values of α, the trend shown in Figure 5 remains fixed. At this value,

we reach the worst case maximum for x2 + y2. This critical point provides additional

insight to the problem in terms of the feasibility space, and more specifically the

potential for a Budget of Uncertainty.

4.2 BoU Variations – Objective Variations

To this point, we have presented the BoU method with a particular objective

function form as shown in Equation 14. This form is

min
x∈Rn,s∈Rm

αφ1(x) + (α− 1)φ2(x), (14a)

where, φ1(x) = y/y − 1, and (14b)
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φ2(x) =
m∑
i=1

wisi, (14c)

where α represents the primary weighting, φ1(x) represents the optimal component

and φ2(x) represents the robust component.

This form is commonly known as the Weighted Sum Method. While a good

starting point, much research has addressed potential shortcomings to this approach.

The shortcomings are best summarized by Marler and Arora [77], who themselves cite

numerous authors such as Koski [78], Stadler [79, 80], Athan and Papalambros [14],

Das and Dennis [81,82], and Messac [83–85]. Specifically in reference to the Weighted

Sum method, Marlor and Arora [77] have this to say:

“First, despite the many methods for determining weights, a satisfac-

tory, a priori selection of weights does not necessarily guarantee that the

final solution will be acceptable; one may have to resolve the problem with

new weights...

The second problem with the weighted sum approach is that it is im-

possible to obtain points on non-convex portions of the Pareto optimal set

in the criterion space...

The final difficulty with the weighted sum method is that varying the

weights consistently and continuously may not necessarily result in an even

distribution of Pareto optimal points and an accurate, complete represen-

tation of the Pareto optimal set...”

While we have found that the weighted sum is a good starting point for most
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problems and provides a good initial guess (and often an entirely satisfactory so-

lution), some alternate objective function forms are also possible to address these

shortcomings. Each of these alternative objective function forms shares the following

characteristics:

• The objective function is made of a robust component and an optimal compo-

nent similar to φ1(x) and φ2(x)

• A primary weighting method exists similar (or identical to) α as presented in

previous sections

• The objective function value is minimal when the optimal component is mini-

mized and the robust component is maximized

In an effort to present the BoU method as a method somewhat independent

of the specific objective format, we show, in the next two subsections two alternate

formulations of objective function which also serve as solution methods in similar

spirit to the BoU. The two methods shown are the Weighted Product Method and

the Exponential Weighting Method. As a baseline for comparison, Figure 6 shows

the Pareto front for the weighted sum method, as well as the respective values of dx

and dy as a function of α. A figure of this form will be provided for each objective

function discussed in this section. For each figure, we use the Triangle example

described earlier in this chapter as the data source with p set to a value of 1.
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4.2.1 The BoU Weighted Product Objective Form

In Equation 15, we show the weighted product objective form. In this form, as

in our weighted sum form, we have a primary weighting factor however in this case,

the primary weighting is in the form of a two element vector, α. In addition, similar

to our original weighted sum form, φ1(x) is the optimal component, and φ2(x) is the

robust component. This form is shown as

min
x∈Rn,s∈Rm

φ1(x)α1

φ2(x)α2
, (15a)

φ1(x) = y/y − 1, and (15b)

φ2(x) =
m∑
i=1

wisi. (15c)

The same approach applies when using this objective form as for the previous

weighted sum form. α1 and α2 can be used to generate the Pareto optimal front,

φ1(x) is minimized, and φ2(x) is maximized. Using our Triangle example, we once

again illustrate the Pareto optimal solutions in Figure 7. In Figure 7, α1 is set to 1

and α2 is varied from 1 to 3.

4.2.2 The BoU Exponential Weighted Objective Form

In addition to the Weighted Sum and Weighted Product forms, the last form

presented here is the Exponential Weighted form. This form, in addition to the

α1 and α2 weighting parameters, also includes an additional parameter, p. While

p can take any value, in practice higher values of p have been shown to be more
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advantageous [77]. The BoU objective, modified using the Exponential Weighting

form, is shown as follows:

min
x∈Rn,s∈Rm

(epα1 − 1)epφ1(x) + (epα2 − 1)epφ2(x), (16a)

φ1(x) = y/y − 1, and (16b)

φ2(x) =
m∑
i=1

wisi. (16c)

In the Exponential Weighted form, once again we see α1 and α2 as the primary

weighting elements. Increasing values of α1 increase the relative weighting of the

optimal objective component; likewise, increasing values of α2 increase the relative

weighting of the robust objective component. φ1(x) and φ2(x) exist similarly to the

previous two objective variations. In Figure 8, we set α2 = 1 and p = 1. We vary the

value of α1 from 1 to 15 and show the results in Figure 8.

Reviewing Figures 6, 7, and 8, we clearly see that the choice of the objective

function is not unique for the BoU method. The method accommodates nearly any

multi-objective or goal programming approach to combining the two competing ob-

jectives of optimality and robustness. The BoU method merely applies these ideas as

a means to generate design flexibility and insight regarding potential uncertainties.

For all the methods shown here, the Weighted Sum, Weighted Product, and

Exponential Weighting methods, we have shown how dx, dy, and the Worst Case

Objective value vary as a function of primary weighting. In every variation, we see

the Worst Case Objective value reach a maximum value of 25 and a minimum value

at the original nominal value of 8. The maximum value is a direct result of our choice
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to limit both dx and dy to a maximum value of 0.5. In each of the three variations,

we can see that the trend from maximum to original nominal value changes slightly.

In the Weighted Sum example, we see first a sharp drop, then a slower decrease to the

nominal value as α varies from 0 to 0.2. In the Weighted Product example, we see a

stairstep behavior as α2 varies from 1.2 to 2.6. In contrast, the Exponential Weighted

method shows a smooth transition from the maximum to original nominal objective

value. Similarly, dx and dy show a similar trending behavior. The results shown here

support the conclusions drawn by Marler [77] which suggests the Exponential Weight-

ing method is a superior method for objective function combination of this type. We

will, for the remainder of this document continue to use the Weighted Sum method,

however any of the three methods mentioned here can be used interchangeably as the

model requires.

4.3 BoU Variations – Robust Counterpart Variations

Throughout this work, we choose to present only box uncertainty sets for

uncertain parameters. This selection is made because it is the most conservative

and requires the least amount of knowledge from a designer. This is, in fact, the

intended BoU application scenario. However, current research in the field of robust

optimization, in particular work by Ben-Tal, Hertog, and Vial [5] has considered more

novel forms of uncertainty, including ellipsoidal uncertainties, polyhedral uncertainty,

and other more novel choices of uncertainty regions. While not directly discussed in

this work, the methods described by Ben-Tal et al can be directly applied to the BoU
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process. Once a problem has been expressed as its robust counterpart (using nearly

any robust optimization method for immunizing each inequality constraint), and an

objective function form has been selected, the BoU method can be applied. In this

way, the BoU method can be applied to a wide range of engineering and other design

problems, can account for various models in the choice of objective function, and can

permit simple box uncertainty sets as well as more novel and complex uncertainty

sets. The limit of the BoU method is therefore set only by the designer’s imagination

and the limitations presented earlier.

Within the following Chapters, we apply the BoU method to several example

problems, solving for an optimal solution as well as a potential uncertainty budget.

For each example, we provide the full problem, a sample solution set, and detailed

results to permit replications of this work. The examples include the Golinski Speed

Reducer and a helical spring design. The Speed Reducer shows the BoU method

applied in an example problem with many uncertain parameters with a large number

of constraints. The helical spring design problem, while including only a small number

of uncertain parameters, includes highly nonlinear constraints and highlights the first-

order nature of the BoU method.
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Figure 6: Weighted Sum Method Variation as Function of α
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Figure 7: Weighted Product Method Variation as Function of α2
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Figure 8: Exponential Weighted Sum Method Variation as Function of α
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5 BoU Illustrative Example 2 - Gearbox Example

Having shown the BoU method and its application to a simple 2-dimensional

problem, we now begin the presentation of the method to more realistic problems in-

cluding multi-dimensional feasibility spaces, nonlinear constraints, and non-intuitive

uncertain parameters. Our first example of this type is the well-studied Golinksi

Speed Reducer problem [15, 17, 54, 86], hereafter referred to as the “Gearbox” exam-

ple.

This problem has been studied by many researchers in the fields of multi-

objective optimization, however, it is rarely studied from a robust optimization per-

spective as we will show here. This problem is well-suited to the BoU method due to

the large number of constraints and its use of parameters which take on engineering

values. These parameters are estimated based on historical experience but are likely

not exact and could deviate by small amounts from their predicted value. Most liter-

ature in which the gearbox problem is mentioned treats these parameters as known,

referencing their value based on historical prediction, then focusing on the problem

solution with these known values. Here, we will consider the inherent uncertainty

within those values, and will (1) study the sensitivity (relative to the objective func-

tion value) to parameter knowledge and (2) show that it is possible to generate a

solution for which constraints are not violated when the uncertain parameters vary

from their predicted values.

Figure 9 shows a sketch of the gearbox geometry. Within this figure, the

control variables are defined as follows: x1 represents the width of the gear face; x2
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represents the teeth module; x3 represents the number of pinion teeth; x4 and x5

represent the shaft 1 and shaft 2 length between bearings; and x6 and x7 represent

the diameter of shaft 1 and shaft 2. All dimensions are in centimeters.

x1

x2

x3 x4

x5

x6

x7

Figure 9: Gearbox Illustration

The problem definition is to minimize Equation 17 subject to gear teeth bend-

ing and contact stresses, transverse deflection of shafts, stress in each shaft, and

dimensional requirements/restrictions. The upper and lower bounds for each of the

seven control variables are listed in Equation 19. Finally, nominal values for each of

the necessary constants are listed in Table 1. The form shown in Equations 17 - 19

is the general form in existing research. For the purposes of our example, we slightly

modify the form for our purposes and present this new form in Equation 21. This

new form is a mathematically equivalent presentation, it has merely been transformed

for our convenience. For future reference, we label the 11 significant constraints as

C1-C11. The remaining constraints will be reformulated as bounds to the optimizer.
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We plan to minimize our objective,

min
xi∈R

f = Cf1x1x
2
2

(
Cf2x

2
3 + Cf3x3 − Cf4

)
− Cf5

(
x26 + x27

)
x1 + Cf6

(
x36 + x37

)
+ Cf1

(
x4x

2
6 + x5x

2
7

)
,

(17)

subject to the constraints,

Cg1
x1x22x3

≤ 1.0: C1 - Gear 1 Tooth Bending Stress, (18a)

Cg2
x1x22x

2
3

≤ 1.0: C2 - Gear 2 Tooth Bending Stress, (18b)

Cg3x
3
4

x2x3x46
≤ 1.0: C3 - Transverse Shaft 1 Deflection, (18c)

Cg4x
3
5

x2x3x47
≤ 1.0: C4 - Transverse Shaft 2 Deflection, (18d)√

C2
A12x

2
4

x22x
2
3

+ CA1

Cg5CBx36
≤ 1.0: C5 - Shaft 1 Stress, (18e)√

C2
A12x

2
5

x22x
2
3

+ CA2

Cg6CBx37
≤ 1.0: C6 - Shaft 2 Stress, (18f)

x2x3
Cg7

≤ 1.0: C7 - Dimensional Restriction, (18g)

Cg8x2
x1

≤ 1.0: C8 - Dimensional Restriction, (18h)

x1
Cg9x2

≤ 1.0: C9 - Dimensional Restriction, (18i)

Cg24x6 + Cg245
x4

≤ 1.0: C10 - Shaft Design Condition, and (18j)

Cg25x7 + Cg245
x5

≤ 1.0: C11 - Shaft Design Condition, (18k)
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and the design variable limits,

Cg10 ≤ x1 ≤ Cg11, (19a)

Cg12 ≤ x2 ≤ Cg13, (19b)

Cg14 ≤ x3 ≤ Cg15, (19c)

Cg16 ≤ x4 ≤ Cg17, (19d)

Cg18 ≤ x5 ≤ Cg19, (19e)

Cg20 ≤ x6 ≤ Cg21, and (19f)

Cg22 ≤ x7 ≤ Cg23. (19g)

Table 1: Nominal Values for Gearbox Constants

Parameter Value Parameter Value Parameter Value

Cf1 0.7854 Cf3 14.9334 Cf5 1.5079

Cf2 3.3333 Cf4 43.0934 Cf6 7.477

Cg1 27.0 Cg7 40.0 Cg17 8.3

Cg2 397.5 Cg8 5.0 Cg18 7.3

Cg3 1.93 Cg9 12.0 Cg19 8.3

Cg4 1.93 Cg10 2.6 Cg20 2.9

Cg5 1100.0 Cg11 3.6 Cg21 3.9

CA12 745.0 Cg12 0.7 Cg22 5.0

CA1 0.169× 108 Cg13 0.8 Cg23 5.5
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Table 1: (continued)

CB 0.1 Cg14 17 Cg24 1.5

CA2 0.1575× 109 Cg15 28 Cg25 1.1

Cg6 850.0 Cg16 7.3 Cg245 1.9

For the purposes of this thesis, we will consolidate several of the uncertain

parameters to equivalent representations shown by Equation 20. The new nominal

value table is then shown by Table 2. This representation is mathematically equivalent

to the original problem shown above. We perform this variable transformation to

generate a set of constraints affine in the uncertain variables. When the constraints are

affine in the uncertain parameters, the BoU method produces an exact solution and

can guarantee constraint satisfaction. This property of the BoU method is discussed

in detail in Chapter 3. The new uncertain parameters are represented by

C ′A12 = C2
A12, (20a)

C ′g5 = C2
g5C

2
B, and (20b)

C ′g6 = C2
g6C

2
B. (20c)

Table 2: Nominal Values for Gearbox Constants - Adjusted

Parameter Value Parameter Value Parameter Value

Cf1 0.7854 Cf3 14.9334 Cf5 1.5079

Cf2 3.3333 Cf4 43.0934 Cf6 7.477

58



Table 2: (continued)

Cg1 27.0 Cg7 40.0 Cg17 8.3

Cg2 397.5 Cg8 5.0 Cg18 7.3

Cg3 1.93 Cg9 12.0 Cg19 8.3

Cg4 1.93 Cg10 2.6 Cg20 2.9

C ′g5 12100.0 Cg11 3.6 Cg21 3.9

C ′A12 555025.0 Cg12 0.7 Cg22 5.0

CA1 0.169× 108 Cg13 0.8 Cg23 5.5

Cg14 17 Cg24 1.5

CA2 0.1575× 109 Cg15 28 Cg25 1.1

C ′g6 7225.0 Cg16 7.3 Cg245 1.9

The final problem realization accounting for the adjusted variables as well as

the replacement of constraints with upper and lower bounds is shown in Equations

21 and 22 using nominal parameter values as shown in Table 2. The final problem

realization is expressed as

min
x∈R7

f = Cf1x1x
2
2

(
Cf2x

2
3 + Cf3x3 − Cf4

)
−Cf5

(
x26 + x27

)
x1 + Cf6

(
x36 + x37

)
+Cf1

(
x4x

2
6 + x5x

2
7

)
,

(21a)

s.t. C1 :
Cg1

x1x22x3
≤ 1.0, (21b)

C2 :
Cg2

x1x22x
2
3

≤ 1.0, (21c)
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C3 :
Cg3x

3
4

x2x3x46
≤ 1.0, (21d)

C4 :
Cg4x

3
5

x2x3x47
≤ 1.0, (21e)

C5 :
C ′A12x

2
4

x22x
2
3

+ CA1 − C ′g5x66 ≤ 0.0, (21f)

C6 :
C ′A12x

2
5

x22x
2
3

+ CA2 − C ′g6x67 ≤ 0.0, (21g)

C7 :
x2x3
Cg7

≤ 1.0, (21h)

C8 :
Cg8x2
x1

≤ 1.0, (21i)

C9 :
x1

Cg9x2
≤ 1.0, (21j)

C10 :
Cg24x6 + Cg245

x4
≤ 1.0, and (21k)

C11 :
Cg25x7 + Cg245

x5
≤ 1.0, (21l)

with design variable constraints

Cg10 ≤ x1 ≤ Cg11, (22a)

Cg12 ≤ x2 ≤ Cg13, (22b)

Cg14 ≤ x3 ≤ Cg15, (22c)

Cg16 ≤ x4 ≤ Cg17, (22d)

Cg18 ≤ x5 ≤ Cg19, (22e)

Cg20 ≤ x6 ≤ Cg21, and (22f)

Cg22 ≤ x7 ≤ Cg23. (22g)
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5.1 Nominal Solution

The nominal solution to the gearbox problem is well studied and documented

in the current literature [15, 17, 54, 86]. As a result, we will spend very little time

discussing this particular solution. To generate a solution, the solver is presented

with the objective, constraints, and bounds as shown in Equations 21 and 22, and

the upper and lower bounds are used to directly inform the optimizer (rather than

considering them as additional constraints as in some literature references). The

solution obtained is shown in Table 3 and the objective function value shown is the

value obtained from nominal parameter values.

This solution agrees with previous documented solutions. Of note, before we

move to robust formulations for this problem, is the fact that x2, x3, and x4 all take

values at their respective bounds.

Table 3: Gearbox Nominal Solution

x1 x2 x3 x4 x5 x6 x7 Objective
3.5 0.7 17.0 17.3 7.7153 3.3502 5.2867 2994

In the remaining sections of this Chapter, we will consider variations in the

uncertain parameters and we will use, for the purposes of discussion, a goal of 5%

uncertainty allowance in each of the uncertain parameters. However, before we can

do this, we must first select the parameters which we consider to be uncertain. Table

4 shows the selected uncertain parameters. We have deliberately chosen nearly all the

engineering values for potential uncertainty due to (1) lack of historical experience

insight and (2) as a means of illustrating the utility of the BoU method in the presence

of large numbers of uncertain parameters. We have specifically chosen to exclude
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parameters used essentially as bounds for x1 – x7 since those values could very easily

be modified for any solution method. Similarly Cg8 and Cg9 are excluded since these

represent merely a desired range of x1
x2

and themselves represent a bound for that

relationship.

Table 4: Gearbox Uncertain Parameters

Cg1 Cg2 Cg3
Cg4 C ′g5 C ′g6
Cg7 Cg24 Cg25
Cg245 CA1 CA2
C ′A12

As a point of comparison, we apply a random selection of 10,000 realizations

of these parameters to the nominal solution. To generate the random realizations we

use a uniform distributed sampling method with a 5% variation for all the parameters

listed in Table 4. In Figure 10 we show first the total number of constraint violations

for all cases. This shows the expected number of total constraint violations for any

specific case is expected to be either 1 or 2. Only a small percentage of realizations

result in full constraint satisfaction implying that our design is infeasible most of the

time when subjected to only a 5% uncertainty range in the selected engineering val-

ues. The bottom of Figure 10 shows the total number of violations for each constraint

summed over all 10,000 realizations. Here, we see that we are most likely to violate

constraints 5, 6, and 11. So, when subjected to 5% uncertainty in the engineering

parameters, our solution is likely to violate shaft stress constraints (Constraints C5

and C6) or design considerations (Constraint C11). As we investigate the traditional

approach to such uncertainty and our BoU methodology, we certainly would expect to
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improve upon the 10% success rate shown here. Finally, in Table 5, we provide a sum-

mary of the Monte Carlo results showing the number of successful and unsuccessful

cases for this solution.
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Figure 10: Summary of Results when Nominal Solution is Confronted with 5% Un-
certainty

Table 5: Nominal Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 1243
Cases with Constraint Violations 8757
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5.2 Traditional Monte Carlo Approach to Robust Optimization

Lacking model insight, the traditional approach to engineering problems with

several varying parameters is to vary them and evaluate a Monte Carlo dataset. We

investigate this method here to see how it compares to our nominal and eventually

our BoU solution.

We start by generating 10,000 random problem realizations and we solve as if

each is a nominal problem with a slightly altered parameter set. We then tabulate

our results for each parameter. The results of this monte carlo analysis are shown in

Figures 11 and 12. Within these figures, we illustrate the upper and lower bounds

for each variable with red horizontal dashed lines. We see clearly that x5 and to a

lesser extent x7 show large effects as the uncertain parameters vary. Additionally, we

can see that for any particular problem realization, the objective function remains

bounded by 2700 and 3300.

Reviewing Figures 11 and 12, we are faced with the problem of selecting the

most appropriate values for each design parameter. For this, we must rely on problem

insight. In deference to our stress and deflection constraints, we choose maximum

values for x1, x2, x6, and x7. To minimize stress, we also choose a minimum value

for x3. x4 and x5 are a bit tougher to choose since there is engineering justification

for both maximal and minimal values. Through trial and error, we checked results

for x4 and x5 set to their maximum, minimum, and average values. We found the

fewest constraint violations when these parameters were both set to their maximums,

so this will be the chosen set. The solutions as a result of these selections can be seen
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Figure 11: Summary of Results from Traditional Monte Carlo Investigation 1 of 2

in Table 6. The objective value shown is obtained from nominal parameter values.

We then apply the solution in Table 6 to 10,000 random problem realizations

(the same 10,000 realizations shown in Figure 10). The results are shown in Figure

13. We see few violations; more than 99% of the realizations show no constraint

violations. The computational cost for this solution was high however, requiring first

the nominal solution of 10,000 cases to determine a potential range of values for x1

– x7, and then the application of knowledge and insight (along with a small amount
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Figure 12: Summary of Results from Traditional Monte Carlo Investigation 2 of 2

of trial and error) to determine the final solution. With MATLAB on a quad-core

intel processor and 2 GB of RAM, a single nominal solution requires approximately

0.03s of processor time. Multipled by 10,000 cases, this yields approximately 300s

of computation. We will compare this statistic to the BoU method later in this

Chapter. Similar to the summary data shown for our nominal solution, Table 7

provides summary information for the traditional method.
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Table 6: Gearbox Monte Carlo Solution

Variable x1 x2 x3 x4 x5 x6 x7 Objective
Selection Max Max Min Max Max Max Max –
Value 3.5003 0.7 17.0 7.3014 8.1324 3.3790 5.3321 3040

Table 7: Traditional Monte Carlo Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 9972
Cases with Constraint Violations 28

5.3 BoU Solution

Given our revised variable set (shown in Table 2) and the full problem defini-

tion in Equations 21 and 22, the application of the BoU method is straightforward.

The robust version of our problem is shown in Equations 23 and 24. Within these

Equations additional optimizer variables are denoted by si. These variables, similar to

our earlier Triangle Illustration problem, provide a consistent means to optimize pa-

rameter uncertainty. The initial lexicographic weighting for the uncertain parameters

is shown in Table 8. We provide the following initial BoU model:

min
x∈R7,s∈R13

α

(
f

2994
− 1

)
+ (α− 1)

∑
wisi, (23a)

s.t. C1 :
Cg1

x1x22x3
+

δCg1
x1x22x3

≤ 1.0, (23b)

C2 :
Cg2

x1x22x
2
3

+
δCg2
x1x22x

2
3

≤ 1.0, (23c)

C3 :
Cg3x

3
4

x2x3x46
+
δCg3x

3
4

x2x3x46
≤ 1.0, (23d)

C4 :
Cg4x

3
5

x2x3x47
+
δCg4x

3
5

x2x3x47
≤ 1.0, (23e)
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Figure 13: Summary of Results when Traditional Monte Carlo Solution is Confronted
with 5% Uncertainty

C5 :
C ′A12x

2
4

x22x
2
3

+ CA1 − C ′g5x66 +
δC ′A12x

2
4

x22x
2
3

+ δCA1δC
′
g5x

6
6 ≤ 0.0, (23f)

C6 :
C ′A12x

2
5

x22x
2
3

+ CA2 − C ′g6x67 +
δC ′A12x

2
5

x22x
2
3

+ δCA2 + δC ′g6x
6
7 ≤ 0.0,

(23g)

C7 : x2x3 − Cg7 + δCg7 ≤ 0.0, (23h)

C8 :
Cg8x2
x1

≤ 1.0, (23i)

C9 :
x1
x2
− Cg9 ≤ 1.0, (23j)

C10 :
Cg24x6 + Cg245

x4
+
δCg24x6
x4

+
δCg245
x4

≤ 1.0, (23k)
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C11 :
Cg25x7 + Cg245

x5
+
δCg25x7
x5

+
δCg245
x5

≤ 1.0, (23l)

δCg1 = s1Cg1,δCg2 = s2Cg2, δCg3 = s3Cg3, δCg4 = s4Cg4, δC
′
g5 = s5C

′
g5, (23m)

δC ′g6 = s6C
′
g6,δCg7 = s7Cg7, δCg24 = s8Cg24, δCg25 = s9Cg25, (23n)

δCg245 = s10Cg245,δCA1 = s11CA1, δCA2 = s12CA2, and δC ′A12 = s13C
′
A12, (23o)

with design variable limits of

Cg10 ≤ x1 ≤ Cg11, (24a)

Cg12 ≤ x2 ≤ Cg13, (24b)

Cg14 ≤ x3 ≤ Cg15, (24c)

Cg16 ≤ x4 ≤ Cg17, (24d)

Cg18 ≤ x5 ≤ Cg19, (24e)

Cg20 ≤ x6 ≤ Cg21, and (24f)

Cg22 ≤ x7 ≤ Cg23. (24g)

Table 8: Gearbox Initial Lexicographic Weighting of Uncertain Parameters

Uncertain Parameter Weight Uncertain Parameter Weight
Cg1 1 Cg2 1
Cg3 1 Cg4 1
C ′g5 1 C ′g6 1

Cg7 1 Cg24 1
Cg25 1 Cg245 1

As a first step, we solve the BoU method for varying values of alpha. This

determines an initial pareto front for our solution space. For the purposes of this
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plot, we solve the BoU problem for increasing values of alpha and seed each iteration

with the previous iteration result. The first iteration uses the nominal solution for

the initial guess. The initial guess is critical since there is no mathematical guarantee

of a unique BoU solution. These results are presented in Figures 14, 15, 16, and 17.
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Figure 14: Initial BoU Pareto Front - Control Variables
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Figure 15: Initial BoU Pareto Front - Uncertain Parameters 1 of 2

As stated previously, the BoU method does not guarantee a unique solution,
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Figure 16: Initial BoU Pareto Front - Uncertain Parameters 2 of 2

and it may be possible to achieve similarly minimized objective values with slightly

different choices of uncertainty. This is evident in Figure 16 near α = 0.7. Here, the

uncertainty allowance for the variable Cg245 (represented by s10) is reduced while Cg24

(s8), CA1 (s11) and CA2 (S12) are increased. However, as α increases, we see uncertain

parameters return to near previous values. Near this value, Cg24 (s8) begins a steadily

increasing trend of uncertainty. This implies the existence of at least two solutions

near α = 0.7 for which the BoU problem can be solved. In general, this is not a

problem since the goal of the BoU method is to explore the feasibility space in the

presence of uncertainty. Here we gain additional insight on the tradeoff between these

parameters.

From Figure 14, we observe the design variables, aside from x3, change very

little as a function of α. This is in stark contrast to our Monte Carlo analysis, however,

when we review the permitted uncertainty for each uncertain parameter in Figures

15 and 16, it is quickly apparent that our initial BoU solution does not allow 5%
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Figure 17: Initial BoU Pareto Front - Worst Case Objective Function

uncertainty in all variables. In fact, even for very low values of α (implying high

weight on the robust component of the objective function) we do not achieve 5%

uncertainty. Clearly, we will need to revise our BoU solution if we are to account for

the full desired range of uncertainty.

Figure 17 shows our objective function value varies as expected over the range

of α, approaching (and in fact matching) the nominal solution when α = 1. An

interesting result of our BoU solution can be seen when α is very near a value of 1.

Here, we find the worst case objective function equal to that of the nominal solution,

but we also see permitted levels of uncertainty in several uncertain parameters. These

values represent the “slack” in the constraints. Any constraint with slack has the

potential for increased uncertainty without violation of the constraint. Evaluating

the BoU solution near α = 1 provides us with insight on how slack in constraints can

translate to permitted levels of uncertainty. The BoU solution for the chosen value

of α = 0.5 is shown in Table 9. Within this table, we also show the nominal solution
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for comparison.

Table 9: Gearbox Budget of Uncertainty Solution

x1 x2 x3 x4 x5 x6 x7 Objective
BoU 3.6 0.72 17.8744 8.3 8.3 3.9 5.5 3626
Nom 3.5 0.70 17.0 17.3 7.7153 3.3502 5.2867 2994

Applying the solution in Table 9, Figure 18 shows how our initial BoU result

compares to the desired uncertainty of 5%. For this figure, we have chosen an α value

of 0.5 (consistent with the solution shown in Table 9, equally weighting optimality and

robustness. As we expect given our initial results, our method does not as yet provide

the desired level of uncertainty in key variables, fairing similarly to the traditional

method based on Monte Carlo results. We see constraint violations in constraint C11.

A summary of our test results is provided in Table 10.

Table 10: Initial BoU Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 9901
Cases with Constraint Violations 99

5.4 Lexicographic BoU Solution

In an attempt to gain additional uncertainty in critical variables, we now

modify our BoU problem to lexicographically weight specific variables. Given our

initial result in Figure 18, we increase the relative secondary weights on Cg24 and

Cg25. The weighting for all uncertain parameters is shown in Table 11. Note the

weights shown in Table 11 are normalized to 1 when used within the method and are

shown as whole numbers for illustration purposes only. All other elements of the BoU

73



0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1
·104

# of Constraint Violations

#
of

C
as

es

Histogram Showing Number of Violations by Case

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

Constraint #

#
of

V
io

la
te

d
C

as
es

Total Number of Violations for Each Constraint

Figure 18: Summary of Results when Initial BoU Solution is Confronted with 5%
Uncertainty, α = 0.5

setup remain the same as shown in Equations 23 and 24. The resulting pareto front

solution is provided in Figures 19, 20, 21, and 22.

Table 11: Gearbox Modified Lexicographic Weighting of Uncertain Parameters

Uncertain Variables Weight Uncertain Variables Weight

Cg1 1 Cg2 1

Cg3 1 Cg4 1

C ′g5 1 C ′g6 1

Cg7 1 Cg24 2
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Table 11: (continued)

Cg25 2 Cg245 1

CA1 1 CA2 1

C ′A12 1
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Figure 19: Lexicographic BoU Pareto Front - Control Variables
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Figure 20: Lexicographic BoU Pareto Front - Uncertain Parameters 1 of 2
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Figure 21: Lexicographic BoU Pareto Front - Uncertain Parameters 2 of 2

As we expect, the permitted uncertainty for Cg24 and Cg25 is increased and for

many values of α even shows a level above 5% as we desire. However, we clearly see

that permitted uncertainty in other variables is sacrificed, and for our desired solution,

this will still not be acceptable. Table 12 shows the solution for α = 0.5, Figure 23

shows the results when this solution is submitted to 5% uncertainty, and Table 13

provides summary information. By attempting to prioritize specific parameters, we

have improved the situation for C11, but created a much more serious violation for

C6.

Certainly a near infinite amount of trial and error is possible at this point, and

for some problems it may even be a desired feature to trade within the uncertainty

design space, however, we need something more. In the next section we will provide

yet a third variant for the BoU method.
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Figure 22: Lexicographic BoU Pareto Front - Worst Case Objective Function

Table 12: Gearbox Lexicographic Budget of Uncertainty Solution

x1 x2 x3 x4 x5 x6 x7 Objective
BoU 3.6 0.72 17.8744 8.3 8.3 3.9 5.5 3626
Lexi 3.6 0.72 17.0000 8.3 8.3 3.8775 5.2875 3309
Nom 3.5 0.70 17.0 17.3 7.7153 3.3502 5.2867 2994

5.5 BoU with Minimum Uncertainty - MinP Variation

Our next application of the BoU method inserts additional constraints in our

uncertain variables in the form of lower bounds. Using a lower bound of si > 0.05

for our uncertain variables, we can ensure our final results will at least meet this

criteria. We will, of course, suffer in our objective function value, but we can ensure

all constraints are met and remove the tedious process of lexicographic tuning. This

BoU variation will hereby be refered to as the ’MinP’ variation. Results for this

variation are shown in Figures 24, 25, 26, and 27.

Unlike our previous two BoU iterations, the addition of lower bound con-

straints on the uncertain parameters means that we do not return to the optimal
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Figure 23: Summary of Results when Lexicographic BoU Solution is Confronted with
5% Uncertainty, α = 0.5

objective function value at α = 1. In this case, rather than choose α = 0.5 as we

have done previously, the application of the additional bounds make α = 1 a better

choice. We provide this solution in Table 14. Applying this solution, we achieve the

Monte Carlo results in Figure 28. Results are summarized in Table 15. This special

case of the BoU method, when a fixed lower bound is used for si, is very similar to

the results shown recently by Ben-Tal.

We finally achieve what we have desired all along. We see all constraints

met, for the various realizations under 5% uncertainty. We also see a modest cost

in objective function value for this assurance (3078 from a nominal value of 2994 -
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Table 13: Lexicographic BoU Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 5008
Cases with Constraint Violations 4992
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Figure 24: Minimum Uncertainty BoU Pareto Front - Control Variables

roughly a 3% increase). Clearly, we have generated a solution which both tolerates

the required uncertainty and provides an assurance that the objective function will

remain bounded below its worst case value.

5.6 Summary of Results

We now compare the results of all methods. Table 16 shows the solution

for all methods discussed in this chapter, including all three iterations of the BoU

method. For convenience we refer to the BoU variants as “initial”, “lexicographic”,

and “MinP”.

From these results, we see the following performance when we subject each

solution to a 5% uncertainty in each of several selected uncertain variables (see Table
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Figure 25: Minimum Uncertainty BoU Pareto Front - Uncertain Parameters 1 of 2

Table 14: Gearbox Minimum Uncertainty Budget of Uncertainty Solution

x1 x2 x3 x4 x5 x6 x7 Objective
BoU 3.6 0.72 17.8744 8.3 8.3 3.9 5.5 3626
Lexi 3.6 0.72 17.0000 8.3 8.3 3.8775 5.2875 3309
MinP 3.5 0.7 17.0 7.3605 8.2040 3.4067 5.3758 3078
Nom 3.5 0.70 17.0 17.3 7.7153 3.3502 5.2867 2994

4 for a list of these variables).
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Figure 26: Minimum Uncertainty BoU Pareto Front - Uncertain Parameters 2 of 2

Table 15: BoU MinP Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 10000
Cases with Constraint Violations 0
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Figure 27: Minimum Uncertainty BoU Pareto Front - Worst Case Objective Function
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Figure 28: Summary of Results when Minimum Uncertainty BoU Solution is Con-
fronted with 5% Uncertainty, α = 1.0

Table 16: Gearbox Solution Comparison

x1 x2 x3 x4 x5 x6 x7 Obj % Pass
Nom 3.5 0.7 17.0 17.3 7.7153 3.3502 5.2867 2994 12.43
Trad 3.5 0.7 17.0 7.3546 8.1981 3.4080 5.3779 3040 99.72
BoU 3.6 0.72 17.8744 8.3 8.3 3.9 5.5 3626 99.01
Lexi 3.6 0.72 17.0001 8.3 8.3 3.8208 5.2875 3309 50.08
MinP 3.6 0.72 17.8732 8.3 8.3 3.9 5.3762 3078 100
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6 BoU Illustrative Example 3 - Helical Spring Example

Our next example contains a smaller number of constraints, but they are

highly nonlinear functions. The example used here is based on the form presented in

Azarm’s doctoral thesis [54] and will be referred to hereafter as the “helical spring”

problem.

Our objective is to select the wire diameter and coil diameter for a helical

spring such that specific design conditions are met, such as the minimum number of

coils, spring constant value, deflection distance, and material constraints (e.g. buck-

ling). The objective function is a representation of the total material volume resulting

in the minimum material usage for a given specification. The problem is best visual-

ized by Figure 29.

D
d

Figure 29: Illustration of a Helical Spring

The nominal problem is shown in Equation 25. This formulation uses the wire

diameter, d, and the coil diameter, D, as the control variables rather than the Spring

index (C = D
d

) and the wire diameter, d as presented by Azarm. This modifica-

tion is mathematically equivalent and was chosen to better illustrate the uncertainty
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investigation for this example. For the helical spring problem, we minimize the vol-

ume of wire (Equation 25a) subject to the constraints in Equation 25b-25l. Table 17

shows the constants used for the nominal solution. Equation 26 shows intermediate

calculations for the problem constants. We solve the NLP,

min
[D,d]∈R2

2.04

(
FU − FL
C1NCB1

+
FU + FL
C2

)
C0.86

d(2+A1)
, (25a)

s.t G1 : K1Gd
3 −D ≤ 0: Surging, (25b)

G2 : K2Gd
5 −D5 ≤ 0: Buckling, (25c)

G3 :
K3D

3

G
− d4 ≤ 0: Min. No. of Coils, (25d)

G4 : GK6d
5 + L6dD

3 −D3 ≤ 0: Pocket Length, (25e)

G5 : K7D +K7d− 1 ≤ 0: Outside Diameter, (25f)

G6 : d+K8 −D ≤ 0: Inside Diameter, (25g)

G7 :
K11D

3

G
− d5 ≤ 0: Clash Allowance, (25h)

G8 : ILd−D ≤ 0: Spring Index Bound, (25i)

G9 : D − dIU ≤ 0: Spring Index Bound, (25j)

G10 : dmin − d ≤ 0: Wire Diameter Bound, and (25k)

G11 : d− dmax ≤ 0: Wire Diameter Bound, (25l)

with the intermediate variables

K1 =
f∆

112800(FU − FL)
, (26a)
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K2 =
FU(1 + A)

22.3k2
, (26b)

K3 = 8kNmin, (26c)

K6 =
(1 + A)

8kLm
, (26d)

L6 =
Q

Lm
, (26e)

K7 =
1

OD
, (26f)

K8 = ID, and (26g)

K11 =
0.8(FU − FL)

A
. (26h)

Table 17: Nominal values for Spring Constants

Parameter Value Unit Description

Q 2 – Number of Inactive Coils

Lm 1.25 in Max Spring Length at Max Force

A 0.4 – Percentage of Wire Diameter

Between Adjacent Coils Under Max Force

OD 3 in Max Outside Diameter

ID 0.75 in Min Inside Diameter

Nmin 3 – Min Number of Coils

IL 4 – Min Spring Index

IU 20 – Max Spring Index

∆ 0.25 in Spring Deflection

G 11.5e6 psi Shear Modulus
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Table 17: (continued)

FU 30 lb Max Force

FL 18 lb Min Force

NC 1e6 – Number of Cycles to Failure

f 500 Hz Min Allowable Natural Frequency

dmin 0.004 in Min Wire Diameter

dmax 0.25 in Max Wire Diameter

A1 -0.14 – Material Constant

C1 630500 – Material Constant

C2 160000 – Material Constant

B1 -0.2137 – Material Constant

Although relatively straightforward, this problem contains highly nonlinear

constraints. For the purposes of our discussion in this chapter, we will consider the

following scenario:

Let us assume that we are a spring manufacturer and have just received an or-

der from a potential customer to produce a large volume of specially designed springs.

The new customer plans to order a large quantity of springs and has provided several

very specific constraints. As the manufacturer, we must determine what quality of wire

must be purchased. More expensive wire sources come with assurances of minimal ma-

terial variation whereas less expensive wire sources come with higher variations. We

must determine if a wire source with an expected 5% variation in material properties

can be used and still satisfy the customer constraints.
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Given this scenario, Table 18 shows the parameters for which we will consider

uncertainty.

Table 18: Helical Spring Uncertain Parameters

A1 B1 C1

C2 G

6.1 Nominal Solution

The nominal solution to the helical spring problem is shown in Table 19.

Clearly, this solution provides a satisfaction of all constraints under nominal condi-

tions, however when we investigate the solution under the desired 5% material un-

certainty, we immediately see that this solution falls well short of the desired robust

solution. To test the robustness of the solution we evaluate constraint satisfaction

for a random selection of 10,000 realizations of the material parameters. Figure 30

shows almost 100% of the Monte Carlo realizations fail either constraint 1 (G1) or

G3. Clearly we need a better solution if we are to purchase from a less expensive wire

manufacturer. Table 20 summarizes the results of this Monte Carlo investigation. As

in the previous chapter we will use these values as a point of comparison.

Table 19: Helical Spring Nominal Solution

D d
0.95202 0.096422

Table 20: Nominal Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 26
Cases with Constraint Violations 9974
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Figure 30: Summary of Results when Nominal Solution is Confronted with 5% Un-
certainty
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6.2 Traditional Monte Carlo Approach to Robust Optimization

Without a general method, traditional engineering practice is to use a monte

carlo approach. For this approach, the designer will generate many random realiza-

tions with the desired uncertainty, solve each problem independently, and then select

a final solution from statistical analysis or extreme values. The results of such an

investigation are shown in Figures 31-32. Figure 31 shows the values for D and d

respectively and Figure 32 shows the objective function value for each realization.

Only a representative set of 1000 cases are shown in these figures, however a total

sample of 10,000 was used.
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Figure 31: Summary of Results from Traditional Monte Carlo Investigation 1 of 2

After completing the Monte Carlo analysis, we must choose values for D and

d to see if we have achieved our goal of allowing the desired material uncertainty.
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Figure 32: Summary of Results from Traditional Monte Carlo Investigation 2 of 2

Without specific insight, we reviewed maximum, minimum, and average values for

both D and d and reviewed the performance of each permutation against another

10,000 sample set of realizations. Unlike the gearbox example, this problem is not

readily solved with this method. Ultimately we elect to use the minimum values of

D and d from our Monte Carlo analysis. Table 21 shows the best solution based

on this method and Figure 33 shows this solution measured against our desired 5%

uncertainty.

Clearly, Monte Carlo will not be enough for this problem. We still violate
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Table 21: Helical Spring Traditional Solution

Variable D d
Selection Min Min
Value 0.9428 0.0946

constraints for an overwhelming majority of the test cases. Unfortunately, choosing

the average or maximum values for D and d result in similarly poor robust per-

formance. Table 22 summarizes our findings. Certainly more involved traditional

methods could be employed for this problem - perhaps a systematic exploration of

the design space with a concurrent investigation of robust performance, but for our

purposes we have shown already the opportunity for an improved method. We will

now turn our attention to the BoU method and see if we can improve this situation.

Table 22: Traditional MC Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 11
Cases with Constraint Violations 9989

6.3 BoU Solution

As with the gearbox example, we first apply the BoU method with equal

secondary weights, wi, and by exploring the pareto front as the primary weight, α,

progresses from 0 (most robust) to 1 (most optimal). We use a modified version of the

original problem as shown in Equations 27 - 29. The initial lexicographic weighting

is shown in Table 23. We solve the NLP,

min
[x,y,v]∈R3,s∈R5

α
( v

0.7501
− 1
)

+ (α− 1)
5∑
i=1

wisi, (27a)
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Figure 33: Summary of Results when Traditional Monte Carlo Solution is Confronted
with 5% Uncertainty

s.t. G1 : K1Gd
3 −D +K1d

3δG ≤ 0, (27b)

G2 : K2Gd
5 −D5 +K2d

5δG ≤ 0, (27c)

G3 :
K3D

3

G
− d4 +

K3D
3δG

G2
≤ 0, (27d)

G4 : GK6d
5 + L6dD

3 −D3 +K6d
5δG ≤ 0, (27e)

G5 : K7D +K7d− 1 ≤ 0, (27f)

G6 : d+K8 −D ≤ 0, (27g)

G7 :
K11D

3

G
− d5 +

K11D
3δG

G2
≤ 0, (27h)

G8 : ILd−D ≤ 0, (27i)
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G9 : D − dIU ≤ 0, (27j)

G10 : dmin − d ≤ 0, (27k)

G11 : d− dmax ≤ 0, and (27l)

K0D
0.86

d2.86+A1
+
K0D

0.86ln(d)δA1

d2.86+A1
+

2.04D0.86(FU − FL)ln(NC)δB1

d2.86+A1C1NCB1

+
2.04D0.86(FU − FL)δC1

d2.86+A1C2
1NC

B1
+

(FU + FL)D0.86δC2

d2.86+A1C2
2

− v ≤ 0,

(27m)

where uncertain parameters are defined by,

δG = Gs1, (28a)

δA1 = A1s2, (28b)

δB1 = B1s3, (28c)

δC1 = C1s4, and (28d)

δC2 = C2s5, (28e)

and intermediate constants are

K1 =
f∆

112800(FU − FL)
, (29a)

K2 =
FU(1 + A)

22.3k2
, (29b)

K3 = 8kNmin, (29c)

K6 =
(1 + A)

8kLm
, (29d)

L6 =
Q

Lm
, (29e)
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K7 =
1

OD
, (29f)

K8 = ID, (29g)

K11 =
0.8(FU − FL)

A
, and (29h)

K0 = 2.04
(FU − FL)

C1NCB1
+

(FU + FL)

C2

. (29i)

Table 23: Helical Spring Initial Lexicographic Weighting

Uncertain Variables Lexicographic Weight

G 1
A1 1
B1 1
C1 1
C2 1

Solving this problem, we produce the pareto front shown in Figures 34-36.

Clearly, the uncertainty required for the parameter G will require the most work

since the allowed uncertainty for this parameter, δG, remains quite low throughout

the pareto front. This shows G has a high cost, or stated differently, the problem is

sensitive to changes in G.

Selecting α = 0.5, we investigate this solution against 10,000 random problem

realizations. This solution is shown in Table 24. Again, in Figure 37, we see violations

in contraints G1 and G3. This result is not surprising however, because when α = 0.5,

the allowed uncertainty for the parameter G is much lower than 5% and consequently,

we expect to see constraint violations in constraints which contain this parameter. To

correct this, we will attempt to weight this parameter and evolve our BoU solution

to a lexicographic representation. A summary of our results is shown in Table 25.
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Figure 34: Initial BoU Pareto Front - Control Variables

Table 24: Helical Spring BoU Solution

D d s1 s2 s3 s4 s5
0.9520 0.0964 0.0 0.4999 0.00 0.00 0.5

6.4 Lexicographic BoU Solution

In an attempt to improve our results, we choose a new set of lexicographic

weights, shown in Table 26. These weights attempt to increase the available un-

certainty for G, while maintaining the uncertainty we enjoy for the other uncertain

parameters. We specifically reduce the weighting for wire and coil diameter since

these can be easily screened in the case of wire diameter or tuned through manufac-

turing means. The results are shown in Figures 38 - 40. Again, the numbers shown

in Table 26 are normalized when used directly in the BoU solution.
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Figure 35: Initial BoU Pareto Front - Uncertain Parameters 2 of 2

Table 25: BoU Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 32
Cases with Constraint Violations 9968

The solution obtained when α = 0.5 is shown in Table 27. In Figure 39, we

clearly see increased levels of acceptable uncertainty in the variable G at the expense

of other parameters. Since this parameter exists in multiple constraints, we expect to

see an improvement in the tolerance to uncertainty. Figure 41 shows how this solution

holds up with the desired 5% uncertainty and Table 28 shows a summary of these

results. Although we see an acceptable solution already (no constraint violations),

we will continue to investigate to see if we can reduce the worst case objective value

while still maintaining the desired immunization to uncertainty.
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Figure 36: Initial BoU Pareto Front - Worst Case Objective Function

Table 26: Helical Spring Lexicographic Weighting

Uncertain Variables Lexicographic Weight

G 10
A1 1
B1 1
C1 1
C2 1

6.5 BoU with Minimum Uncertainty - MinP Variation

As our final BoU iteration, we insert lower bounds in our uncertain parameters

and again solve the BoU problem. Results are shown in Figures 42 - 44. We choose

a lower bound of 0.05 for each of the uncertain parameters, excluding the wire and

coil diameters

In this variation, we see all the desired uncertain parameters now show an

uncertainty level of 0.05 even when α = 1. This solution should also allow the full

5% uncertainty. Choosing α = 1 we arrive at the solution shown in Table 29.

Unlike previous examples, we do not see a “guarantee” of constraint satisfac-
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Figure 37: Summary of Results when Initial BoU Solution is Confronted with 5%
Uncertainty, α = 0.5

tion even though si ≥ 0.05 for necessary parameters. The violations shown in G3 are

a direct result of our first order approximation of the BoU method. Similar to results

shown in Zhang [4], highly nonlinear constraints are merely changed to an approx-

imation of their worst case value for a given level of uncertainty and consequently,

when the solution is tested, we see some small number of violations. We summarize

our results in Table 30.

Even with a specified minimum uncertainty in the previous solution, we still

find our solution to show violations for the desired level of uncertainty. In our simple

example, we could perform a trade study to see if the number of rejected springs
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Figure 38: Lexicographic BoU Pareto Front - Control Variables

Table 27: Helical Spring BoU Lexicographic Solution

D d s1 s2 s3 s4 s5
0.8398 0.0898 0.0937 1.88e−6 3.06−7 1.02e−6 3.55e−6

(in this case 252 of them) and the cost of testing them would outweigh the benefits

of more expensive material with a lower level of material uncertainty. Similarly, we

could revise our problem to consider a desired uncertainty level of 0.06 for the problem

parameter, G, to protect against the approximation error. These results are shown

in Table 31 and Figures 46 - 48.

Results are of course similar to our previous solution, but with slightly more

uncertainty provided for G. Reviewing this new solution against 10,000 realizations,

produces the desired results shown in Figure 49. A summary of these results is shown
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Figure 39: Lexicographic BoU Pareto Front - Uncertain Parameters 2 of 2

Table 28: BoU Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 0
Cases with Constraint Violations 10000

in Table 32.
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Figure 40: Lexicographic BoU Pareto Front - Worst Case Objective Function

Table 29: Helical Spring BoU Minimum Uncertainty Solution

D d s1 s2 s3 s4 s5
0.8892 0.0927 0.05 0.05 0.05 0.05 0.05

Table 30: BoU Minimum Uncertainty Performance Under 5% Uncertainty

Number of Cases
Acceptable Cases 9748
Cases with Constraint Violations 252

Table 31: Helical Spring BoU Minimum Uncertainty Solution 2

D d s1 s2 s3 s4 s5
0.8775 0.0920 0.06 0.05 0.05 0.05 0.05

Table 32: BoU Minimum Uncertainty Performance 2 Under 5% Uncertainty

Number of Cases
Acceptable Cases 10000
Cases with Constraint Violations 0
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Figure 41: Summary of Results when Lexicographic BoU Solution is Confronted with
5% Uncertainty, α = 0.5
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Figure 42: Minimum Uncertainty BoU Pareto Front - Control Variables
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Figure 43: Minimum Uncertainty BoU Pareto Front - Uncertain Parameters 2 of 2

103



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

α

W
or

st
C

as
e

O
b

je
ct

iv
e
v

Figure 44: Minimum Uncertainty BoU Pareto Front - Worst Case Objective Function

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1
·104

# of Constraint Violations

#
of

C
as

es

Histogram showing Number of Violations by Case

0 1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

Constraint #

#
of

V
io

la
ti

on
s

Total Number of Violations for Each Constraint

Figure 45: Summary of Results when Minimum Uncertainty BoU Solution is Con-
fronted with 5% Uncertainty, α = 1.0
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Figure 46: Minimum Uncertainty BoU Pareto Front - Control Variables
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Figure 47: Minimum Uncertainty BoU Pareto Front - Uncertain Parameters 2 of 2
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Figure 48: Minimum Uncertainty BoU Pareto Front - Worst Case Objective Function
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Figure 49: Summary of Results when Minimum Uncertainty BoU Solution is Con-
fronted with 5% Uncertainty, α = 0.5
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7 Summary and Conclusions

The BoU method presented in this work not only provides a means to de-

termine robust solutions to models with uncertain parameters, but is also capable

of providing a budget of uncertainty for those same uncertain parameters. We have

shown this method build on, and in some ways generalizes current RO research from

authors such as Zhang, Ben-Tal, Azarm, and others in the sense that we determine

robust constraint counterparts in a similar fashion and can impose constraints to gen-

erate similar solutions to previous work. However, the BoU method is a completely

new concept in that it does not require knowledge of the uncertain parameters a-priori.

The BoU method, as presented here allows for several variations. The first

type of variation is in the revised objective function. Within this work, we have fo-

cuses on the Weighted Sum objective formulation, but have presented the Weighted

Product and Exponentially Weighted forms. The secondary variations allow for lexi-

cographic tuning of uncertain parameters and additional constraints to further refine

the solution set as needed.

Within our discussion, we have shown robust solutions for three sample prob-

lems which show moderately more expensive solutions (in terms of the original ob-

jective function value) with the ability to absorb specific uncertainty. We have shown

the BoU method produces a worst case objective function value so as to quantify the

true cost of the proposed uncertainty budget.

For our example problems, we have explored the range of solutions along a

Pareto front where we investigate solutions ranging from the original optimum so-
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lution, to a highly robust formulation. In each case, we clearly show the impact

on uncertainty budget, the tradeoff between uncertain parameters, and the ultimate

solution.

In the first example problem we showed the BoU applied to a simple 2 dimen-

sional geometric problem. Through this example, we showed the method’s ability

to determine an initial solution, refine that solution lexicographically to overcome

problem sensitivity, and finally to fix the desired uncertainty budget and determine

an effective design.

Next, in our Gearbox example, we showed the BoU method applied to a prob-

lem with many constraints and a large number of uncertain variable. Through this

example we showed the BoU method is capable of managing a large number of un-

certain variables and can generate fully immunized solutions.

Finally, in the Spring example, we apply the BoU method to a problem with

highly nonlinear constraints and show the limitations of our first order approxima-

tion. Even in the presence of this limitation, we show the ability to compensate

and ultimately generate a robust solution, but in so doing, we highlight the current

limitations of our approach.

What is perhaps not shown clearly to this point is the intended application of

the BoU method. This method is intended to be used very early in the design process,

when uncertain parameters are poorly characterized. When used at this point, the

model provides insight to the potential uncertainty in each parameter and can help

guide engineering development work, procurement decisions, and machine tolerance

requirements. As more information becomes available, the designer continues to refine
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the BoU solution, imposing additional uncertain parameter constraints and adjusting

the weighting factors to refine the uncertainty budget estimate. Ultimately, near

the completion of the design, the resulting solution provides not only a worst case

objective function value, but also an allowed uncertainty for each selected parameter.

This uncertainty budget can then be used as part of a comprehensive quality and

inspection activity throughout manufacture and certification of the ultimate design.

Similarly, if this technique were used for non-physical systems, it would be

possible to determine the accuracy needed for specific parameters. Again, this method

provides an inherent approach to uncertainty requiring little insight from the designer.

7.1 Forward Work

Currently, the BoU method seems to show promise as a comprehensive ap-

proach to Robust Optimization, however it is currently limited in its first order ap-

proximation. Future work will focus on improving the development of robust con-

straint counterparts for concave constraints. In addition, the method has been so

far applied to physical and geometric problems, but has not been applied to fields

such as electrical engineering or portfolio management. These are potential areas of

application which may generate additional capability or insight.

Finally, future work may include the development of a software tool to al-

low automatic BoU application to problems formulated as standard optimization

problems. This tool could facilitate the inclusion of additional example problems or

perhaps facilitate the use of the BoU method by other researchers.
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