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The drag coefficient of a gas bubble in steady motion in an unbounded axisymmetric shear flow is 
obtained numerically for different values of the Reynolds and Weber numbers. 

Ryskin and Leal used a novel boundary-fitted coordinate 
generation method l to study the flow around a bubble rising 
at constant velocity in a quiescent, unbounded viscous 
liquid.2-4 They allowed the shape of the bubble surface to 
adjust to the flow so that the kinematic and dynamic bound
ary conditions could be exactly satisfied. They also assumed 
that the gas-liquid interface was free of impurities, so that 
zero-tangential-stress boundary conditions applied. 

In the present study we extend their results to the case in 
which the fluid far from the bubble is not at rest, but in a 
state of uniform axisymmetric shear with the axis coincident 
with the symmetry axis of the bubble. We use a recent ex
tension of their numerical technique described in Ref. 5. 
Other slight differences with their numerical approach are 
described at the end of this note. 

In addition to its intrinsic fluid dynamic interest, the 
present study is relevant for the understanding of the flow of 
hubbly liquids, in which bubbles typically move in regions 
of nonuniform flow. While the present axisymmetric flow is 
certainly a very special case, it is relatively simple to analyze 
and gives some indication on the behavior of the drag coef
ficient in response to disturbances of the incoming flow. 

Consider an axisymmetric shear flow given, far from the 
bubble, by 

u=u- ~nr 2, v=O. (1) 

Here u and v are the velocity components respectively par
allel and orthogonal to the axis (taken as the x axis and 
oriented in the direction of U), and r is the distance from the 
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FIG. 1. Drag coefficient for steady motion in a quiescent fluid, 1),.=0. The 
lines are the results of Ref. 4, the circles the present ones. 
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axis. In the frame of reference of the bubble, U is the con
stant velocity attained under the action of a constant pre
scribed force such as buoyancy, and n is a parameter related 
to the magnitude of the shear. The velocity field (1) is an 
exact solution of the Navier-Stokes equations with a pres
sure field given by 

iJp 
iJx = - 2 J-Ln, (2) 

where J-L is the viscosity. The associated streamfunction 1/1 
and vorticity field ware given by 

(3) 

The inviscid flow generated by spheres and ellipsoids im
mersed in the flow field (1) has been studied by Rube1.6 

We solve the Navier-Stokes equations imposing that the 
flow is given by (1) far from the bubble and that the usual 
kinematic and dynamic boundary conditions hold at the 
bubble surface, including the effect of surface tension. In the 
following we use quantities made dimensionless with respect 
to the equivalent bubble radius a and the velocity U. The 
nondimensionalization of the equations introduces the Rey
nolds and Weber numbers 

Re=2aUp/J-L, We=2paU2/u, 

and the shear parameter 

n*=a 2n/u. 

(4) 

(5) 

Here p and u are the liquid density and interfacial tension. 
The drag coefficient is defined in the usual way by 

(6) 
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FIG. 2. Drag coefficient as a function of the Weber number for Re=10 and 
different values of the shear parameter flo. 
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FIG. 3. Drag coefficient as a function of the Weber number for Re=20 and 
different values of the shear parameter n •. 
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FIG. 4. Drag coefficient as a function of the Weber number for Re= 100 and 
different values of the shear parameter n •. 

(a) 0=0, C D =2.97 

(b) 0"'0.1 ,CD=1.95 

(e) 0=-0.2, C D =4.J3 

FIG. 5. Computed bubble shape and stream lines for Re=20, We=8, and 
n.=o (top), 0.1 (center), and -0.2 (bottom). 

Phys. Fluids, Vol. 6, No.9, September 1994 

where F is the total hydrodynamic force acting on the bubble 
which, in steady conditions, equals the imposed force. 

In Fig. 1 we compare our results for !h=O with those of 
Ryskin and Leal3 (triangles). The figure shows the drag co
efficient as a function of the Weber number for several Rey
nolds numbers. The agreement is excellent up to Re=50. For 
Re= 100 and 200 the present results are slightly different 
from those of Ryskin and Leal possibly due to the alternative 
coordinate generation method that we use. 

The effects of shear for Re= 10, 20 and 100 are demon
strated in Figs. 2-4, in which CD is shown as a function of 
We for different values of !l*. To interpret these results it is 
useful to keep in mind that (1I2)fh is the percent free-stream 
velocity change at unit distance from the axis of symmetry, 
so that, for example, !h=O.l corresponds roughly to a 5% 
velocity drop over the bubble radius. The magnitude of the 
effect is thus seen to be quite large, particularly at the larger 
Weber numbers where the bubble is more highly deformed. 
It is seen from Fig. 1 that, with increasing We, the drag 
coefficient reaches an asymptotic value, at least for moderate 
Reynolds numbers. Figures 2 and 3 show that, for 0*<0, the 
asymptotic value is attained at smaller Weber numbers while, 
for 0*>0, it is reached beyond the range of values of We 
that we have studied, if at all. 

It is also interesting to look at the effect of the free
stream shear on the flow and bubble shape. Figure 5 shows 
the bubble and the stream lines for Re=20, We=8, and 

(a) 0 = 0 , CD = 0.839 
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(b) 0=0.1, CD = 0.658 
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(e) 0=-0.1, CD = 1.105 

FIG. 6. Computed bubble shape and stream lines for Re=100, We=4, and 
n.=o (top), 0.1 (center), and -0.1 (bottom). 
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Ca) We= 2, CD = 3.78 

(b) ,Ve=4, CD = 4.61 

(e) We=8, CD= 5.02 

(d) We= 12, CD = 5.04 

FIG. 7. Computed bubble shapes for Re=lO, {}.=-0.2, and different val
ues of the Weber number. 

fl*=O, 0.1, and -0.2. It is seen that a positive shear has a 
strong tendency to inhibit the recirculating eddy behind the 
bubble, with a consequent drop of the drag coefficient from 
2.97 to 1.95. Conversely, a negative shear considerably in
creases the attached eddy and, with it, the drag coefficient 
that reaches the value of 4.13 in this example. A similar trend 
is observable in Fig. 6 for Re= 100. A smaller, but qualita
tively similar effect, is also found for smaller We, i.e., less 
deformable bubbles. The low-Reynolds-number shapes of 
Fig. 5 show a marked flattening of the rear part of the bubble 
while, for Re= 100 (Fig. 6), the flattening is more pro
nounced at the front. A comparison among Figs. 2-4 indi
cates that this difference, which is in keeping with the results 
of Ref. 3, has little effect on the dependence of CD on We 
and fl, at least in the low-Weber-number region. Figure 7 
shows the effect of We on the bubble shape for Re= 10 and 
fh=-0.2. 
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The referee of this paper suggested that the drag coeffi
cient might depend on the incident flow only indirectly 
through its effect on the bubble shape. To test this hypothesis 
we have performed several calculations placing a bubble 
with the shape determined for a certain value of fl* in flows 
with different a*, including fl*=O, i.e., a uniform flow. The 
drag coefficient was found to be a strong function of 11* for 
the same bubble shape. This direct effect of the incident flow 
is probably mediated by the evolution of the vorticity field 
around the bubble. 

The numerical method we have used is essentially the 
same as that of Ryskin and Leal with two modifications. 
First, due to the alternative formulation of the coordinate 
generation method of Ref. 5, at each iteration we are able to 
update directly the bubble surface, rather than the metric 
coefficients as in Refs. 2-4. Thus, using the same notation as 
in the references, we write 

(7) 

with a similar equation for the radial coordinate. The factor 
in the first term enforces conservation of the bubble volume 
and the parameter II, equal to the normal stress imbalance 
across the surface, "guides" the surface nodes towards their 
proper position. The constant f3 is used for under-relaxation. 
Secondly, for large values of Re and fl*, the undisturbed 
velocity boundary condition "at infinity" is imposed on an 
outer boundary in the form of a prolate ellipsoid, rather than 
a sphere. The major and minor axes of this ellipsoid were 
taken as 11.5 and 8 bubble radii, respectively. 
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