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ABSTRACT

Fractures and faults are widely seen in nature. They can play important roles as storage for natural

resources, paths for the migration of fluids including hydrocarbons, structural traps for petroleum

reservoirs. Fracture characterization and fault imaging by using seismic methods have contributed

greatly in finding economic reservoirs. In this dissertation, we focus on how to use multiply

scattered waves to characterize fractures and image the faults.

The first part of the dissertation focuses on the fracture characterization using the Gaussian wave

packet (GWP). Conventionally, using seismic anisotropy to study fractured media has gained great

success in the cases where the effective medium theory (EMT) holds. As a supplement to EMT,

our proposed method characterizes the fractures using multiply scattered waves when the EMT is

no longer valid.

In our proposed method, we use a GWP which approximates as a local plane wave to interact

locally with the fractured medium. The resultant multiply scattered waves can be used to

characterize fractures in terms of spacing, compliance and orientation. We first study the

propagation of the GWP to investigate how well it behaves as a local plane wave relative to

the propagating distance and heterogenous velocities. Then, we describe how to build the GWP

wavefield from the wavefields of point sources. Finally, we develop the method to characterize

fractures. Using numerical examples, we show the potential usefulness of our method in fracture

characterization.

The second part of the dissertation is concentrated on imaging high-angle faults using multiply

scattered waves. When the faults have high angles, the directly reflected waves from fault planes

need a longer offset to be recorded. However, a longer offset may not be favorable in practice.
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Traditionally, the high-angle faults are interpreted and/or extracted by attributes but not imaged

directly. With a limited offset, we aim at using multiply scattered waves to image the high-angle

faults directly.

To fulfill the goal of imaging faults directly, we develop the asymmetrical reverse time migration

(asym-RTM) algorithm. The asym-RTM images the sub-horizontal reflectors in its first iteration.

Then, the imaged reflectors are added into the velocity model for the second iteration. In this way,

we can utilize the second-order scattered waves to image the faults directly.
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1 Introduction

1.1 Motivation and objectives

Conventional seismic imaging methods have gained great success in imaging the sub-horizontal

geological structures. When the task is to characterize fracture networks (Trice, 2014) or image

steep fault planes (Hale, 2013a) underground (Figure 1.1), the conventional methods may have

limitations. The reason is twofold. First, the conventional imaging methods use only primary

waves to form an image. Second, multiply scattering waves generated from fracture networks and

fault planes are removed as noise within the framework of conventional imaging methods.

To characterize fracture networks, seismic anisotropy analysis such as shear wave splitting

(Crampin, 1985) and amplitudes variation versus azimuth (Thomsen, 1995) is only viable when

the fractured medium can be treated as an effective medium. However, due to the unevenness in

fracture spacing and the effect of fracture clustering, the effective medium theory may be violated

(Fang et al., 2017). Other imaging methods try to focus the diffracted waves and produce fracture

images. Such a diffraction imaging method only works when the fractures are sparsely distributed,

and the diffracted waves from individual fractures do not generate strong interference patterns.

For delineation of faults, the high-angle faults are traditionally treated as lateral reflection

discontinuities in a processed migration image. By calculating seismic attributes to estimate

the reflection continuities or discontinuities (Hale, 2013b), the fault planes are picked out by the

calculated attributes. Based on the theory of image segmentation, fault delineation has been done

1



by using machine learning algorithms (Wu et al., 2019). All these methods attempt to detect the

fault locations from the processed images. The high-angle faults are not imaged directly in the

same way as the sub-horizontal reflectors are imaged.

N

50
0m
50

0m

Fault zoneFractures

Figure 1.1: Schematic 3D fracture networks and fault underground, modified from Trice (2014).

Our research is to develop new techniques to enrich and enhance characterizing fractures and

imaging steep fault planes in the subsurface. For fracture characterizations, we focus on using

multiply scattered waves from the fracture networks to characterize them in a local sense. Under

the scope of plane wave scattering theory, we use the Gaussian wave packet (Perel and Sidorenko,
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2007) to represent a local plane wave and interact with fractures. The resultant scattered waves

carry information (spacing, orientation, compliance) of fractures underground by forming specific

scattering patterns in the time-distance domain (Zheng et al., 2013). For steep fault imaging, we

propose a new method that directly exploits multiply (second-order) scattered waves from the fault

planes to image faults. The application of multiply scattered waves is achieved by adding existing

reflectors derived from the migration image into the previous velocity model. The added reflector

is the key factor in imaging the target fault with the second-order scattered waves for the proposed

imaging method.

1.2 Dissertation overview

In this dissertation, we apply multiply scattered waves to fracture characterizations and fault

imaging. The dissertation is divided into two parts. The first part is to characterize fracture

networks. We exploit the Gaussian wave packet (GWP) to characterize the fracture networks.

The second part is to image fault planes by a new imaging algorithm that utilizes the second-order

scattered waves reflected from the fault planes.

In the part on fracture characterizations, we study the Gaussian wave packet (GWP) propagation in

different velocity media and the construction of GWP from point-shot gathers. To use the GWP in

characterizing the fractures, we propose a new algorithm based on the method proposed by Zheng

et al. (2013).The feasibility of the algorithm is exemplified by numerical simulations.

In the part on fault imaging, the conventional reverse time imaging (RTM) method (Baysal et al.,

1983) lays the foundation for our new method: the asymmetrical RTM (asym-RTM). In the
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asym-RTM method, the multiply scattered waves are implemented in forming the steep fault image

directly.

1.3 Dissertation outline

In Chapter 1, a general introduction of the dissertation is given.

In Chapter 2, the GWP is reviewed in its analytical formula and its propagation in the

heterogeneous media is studied through numerical modelling.

In Chapter 3, the process of constructing a GWP record from point-source shot records is given.

The effects of source interval and white noise on the construction of GWP records are discussed.

In Chapter 4, the fracture characterizations are done by using GWP. The multiply scattered waves

due to the interactions between fractures and the incident GWP are studied for characterizing the

fractures.

In Chapter 5, the RTM imaging method is reviewed first for conventional imaging. Then the

asymmetrical RTM imaging method is proposed to image fault planes directly.

In Chapter 6, a summary of this dissertation is presented and future work is proposed.
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2 Propagation of Gaussian wave packet in 2D heterogeneous

media

2.1 Introduction

In the study of wave propagation, knowing both the location and the propagation direction of the

wavefield is of great importance in seismic imaging and data processing. It is known that the

seismic illumination (Xie et al., 2006) and angle coverage (Yan and Xie, 2010) are two key factors

to get a high-quality imaging of the subsurface target. The beams and packets extracted from

the seismic wavefield are good candidates to study the target area with focused illumination and

different incident angles. Many researchers (e.g., Hernández-Figueroa et al., 2007) have studied

how to propagate the wavefield locally and directionally by representing the whole wavefield with

packets or beams.

Popov (1982) and Červenỳ et al. (1982) used the Gaussian beams (GB) to calculate the wavefield

asymptotically in smoothly heterogeneous media. Later, Hill (1990) applied GB to seismic depth

migration due to its fast computation and ability to handle caustics. Though GB are beam-like

solutions localized in the Gaussian manner in the direction transverse to the ray, they are not

localized along the ray because the GB is not localized in time. Babich and Ulin (1984) and

Ralston (1982) discussed Gaussian packets as the building blocks of wave field. Gaussian packets

(GP) has a similar expression (Klimeš, 1989) as GB but it is time-localized. GP and its application

in seismic migration in common-shot domain were discussed by Žáček (2004). To better represent

seismic data sparsely and accurately, Geng et al. (2014) introduced the Gabor-frame-based GP
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decomposition. Initially, GP can have a good localization in both space and propagation direction

at time zero, it will quickly expand and diverge during propagation.

Since the concept of compressive sensing emerged, curvelets have been used to represent image

data sparsely in digital signal processing (Candès et al., 2006). Geophysicists also used curvelets

to represent seismic data sparsely and related them to Kirchhoff depth migration in the asymptotic

sense (Douma and de Hoop, 2007). Besides curvelets, other wavelets are developed to represent

seismic data too. Wu et al. (2008)constructed dreamlets based on a tensor product of beamlet

(space localization) and drumbeat (time localization). The purpose is to get simultaneous

time-space localization for seismic wave propagation and imaging. For the dreamlet, its time-space

localization can only be maintained for a short propagation distance. Thus, after propagation

through several depth intervals, the wavefield may need to be recomposed and decomposed again.

Different from all wave packets mentioned above, the Gaussian wave packet (GWP, not to be

confused with GP) is an exact solution to the homogeneous wave equation (Kiselev and Perel,

1999, 2000; Kiselev, 2003, 2007; Perel and Sidorenko, 2007). Though the GWP is provided by

its analytical formula in the homogeneous media, we can propagate it in any heterogeneous media

by the finite difference method. Based on a set of proper parameters, the GWP can maintain its

localization and direction in space over a long distance propagation in heterogeneous media (Zheng

et al., 2011).
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2.2 Review of GWP as a localized solution to the homogeneous wave

equation

Considering the scalar wave equation in the two-dimensional infinite homogeneous medium, it

describes a pressure wavefield u(t,x) in time and space domain x = (x,z)

∂ 2u
∂ t2 − c2(

∂ 2u
∂x2 +

∂ 2u
∂ z2 ) = 0 (2.1)

where c is the constant wave propagation speed. The most common solution to Eq. 2.1 is the plane

wave u(t,x) = g(t − r ·x/c) where g is a function representing the wavelet and r is the unit vector

along the propagation direction.

Though the plane wave has a unique propagation direction indicated by the vector r, the wavefield

is infinite in space perpendicular to the propagation direction.

Different from the plane wave solution, the GWP (Perel and Sidorenko, 2007) solution has a finite

size in space and a well-defined propagating direction:

u(t,x) =
√

π
2
(ps)υKυ(ps)√

z+ ct − iε
,r = (x,z) (2.2)

in which

s =
√

1− iθ/γ (2.3)

and

θ = z− ct +
x2

z+ ct − iε
(2.4)
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where Kυ is the modifed Bessel function of the 3rd kind, and υ is a real number which is chosen as

0.5 for its wavelet transform analysis (Perel and Sidorenko, 2007). Eq. 2.2 describes a GWP that

propagates along the z direction. Since the solution is complex-valued, both the real and imaginary

parts satisfy the wave equation (Eq. 2.1), seperately. Because the variable t is differentiated two

times in the wave equation, the GWP can propagate from negative infinity to positive infinity in

time or vice versa. The GWP can even be treated as a wavelet, and it still satisfies the wave equation

with the wavelet transform (dilation, rotation, translation) (Perel and Sidorenko, 2007).

2.2.1 Propagation of GWP in homogeneous media

The GWP’s geometric shape is controlled by three positive parameters (p,ε,γ), and its propagation

direction and center location can be set by a rotation and a translation applied to the original

GWP in space (Figure 2.1). Qualitatively,
√

p indicates the number of oscillations in the wave

packet along the longitudinal direction (i.e., the propagation direction); γ controls the packet spatial

width in the longitudinal direction; γ/ε is the aspect ratio of the longitudinal dimension over the

transverse dimension.
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Figure 2.1: Three different GWPs with propagation indicated by arrows: (1) The GWP constructed
with parameters p = 16,γ = 0.4,ε = 40. (2) The GWP constructed with parameters p = 16,γ =
0.2,ε = 40. (3) The GWP constructed with parameters p = 64,γ = 0.4,ε = 40.

The analytical GWP (Eq. 2.2) takes an asymptotic form when p ≫ 1, γ ≤ ε and

2ct/ε =O(p−l), 1/3 <−l < 1/2. We call this form the "rigid-motion" asymptotic solution:

u(t,x)∼ exp[ik(z− ct)− (z− ct)2

2σ2
z

− x2

2σ2
x
] (2.5)

where

k = p/(2γ),σ2
z = 4(γ)2/p,σ2

x = γε/p (2.6)

9



The essential support area of this asymptotic solution is an ellipse (when σz ̸= σx ) in space with

the following aspect ratio:

e = σz/σx = 2
√

γ/ε (2.7)

The packet propagates along the z-direction in Eq. 2.1, which can be defined as any direction.

The packet amplitude profile forms a 2D Gaussian shape in space and it does not broaden in

propagation.

The GWP is related to the Gaussian packet (GP), a widely used form in seismic imaging (Žáček,

2004; Geng et al., 2014) when p ≫ 1, γ > ε and 2ct/ε > 1:

u(t,x)∼ exp[ik(z− ct)− (z− ct)2

2σ2
z

− x2

2σ̃2
x
+ i

2ctkx2

4c2t2 + ε2 ]
C√

2ct − iε
(2.8)

where

σ̃2
x = σ2

x (1+4c2t2/ε2) (2.9)

In this case, the transverse packet width (σ̃x) increases with propagation time. The phase front is

parabolic in the transverse direction, similar to the Gaussian beam (Červenỳ et al., 1982; Popov,

1982).

With numerical examples, we show the propagation of several GWPs based on different choices

of parameters e = σz/σx,
√

p, σz (Zheng et al., 2011) (Figure 2.2). The medium is homogeneous

and 1.5 km/s. If we fix the GWP longitudinal dimension σz and the number of oscillations
√

p

in the longitudinal direction, the wave packet is diffraction-resistant when the packet aspect ratio

e is small (Figure 2.2a & c). The packet shows a better localization and directionality when
√

p

is large while e, σz are fixed (Figure 2.2a & b). We note that the curvelet in Candès et al. (2006)
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only has one oscillation. If we only vary σz, a smaller σz will give a more localized and directional

GWP when keeping the other two factors fixed (Figure 2.2a & d).

Figure 2.2: Four GWPs based on different parameters propagating vertically in a constant velocity
model (1.5 km/s), and their wavefield snapshots at four time steps (0 s, 3 s, 6 s, 9 s) are shown in
space.

2.2.2 GWP data recorded in homogenous media

When we create a GWP with a set of (p,ε,γ) in space at time 0 s by Eq. 2.2, the velocity c will

not influence its packet shape. We show the same GWP propagating horizontally in two different

constant velocity models (Figure 2.3). The GWPs in these two media keep the same overall shape

at the same distance, but with different arrival times controlled by the velocity. The compactness

of GWP is roughly symmetrical across time 0 s. We also record the data with vertically arranged

receivers at the same horizontal location 0 km in the two media. The data recorded in the medium

with velocity 1 km/s shows a broader packet shape along the time axis than the GWP data in

the other medium (5 km/s) (Figure 2.4a & b). The broader packet means that the data has lower

frequency ( f ) content (Figure 2.4c & d). Since the frequency ( f ) content in the data is related
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to both the medium velocity (c) and the wavelength (λ ) by the equation f = λ/c. Thus, for the

same GWP propagating with different velocities, we need sample it correctly in the time domain

to avoid artifacts (Jerri, 1977).

Figure 2.3: The GWP (p = 81,γ = 0.5,ε = 80) propagating horizontally in two different media,
with receivers vertically arranged at the horizontal location 0 km. (a) Its wavefield at seven time
steps (-15, -10, -5, 0, 5, 10, 15 s) in the constant velocity model (1 km/s). (b) Its wavefield at seven
time steps (-3, -2, -1, 0, 1, 2, 3 s) in the other constant velocity model (5 km/s).
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Figure 2.4: Data recorded at receivers in Figure 2.3. (a) GWP data recorded in receivers from Fig.
2.3a. (b) GWP data recorded in receivers from Fig. 2.3b. (c) Normalized amplitude spectrum of
the red trace in (a). (d) Normalized amplitude spectrum of the red trace in (b).

2.3 Propagation of GWP in heterogeneous media

The original GWP solution (Kiselev and Perel, 2000; Perel and Sidorenko, 2007) was proposed for

a homogeneous medium and can achieve the desired properties (localized in space and directional).

It is unclear whether these desired properties can still exist for a GWP in heterogeneous media. To

investigate this question, we use a finite-difference numerical method (FD, 2nd order accuracy in

time and 4th order in space) to propagate a GWP into a heterogeneous medium with all absorbing

boundaries (Moczo, Kristek, and Halada, Moczo et al.; Zhou, 2014).
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In the model, we add a top homogeneous layer in which the GWP is initialized using the analytical

solution. The input for the FD algorithm is the analytical GWP wavefields in the top layer at the

first two time steps (t1 = 0s, and t2 = δ ts, where δ t is the time discretization step of the FD) and

the velocity model. Then, the FD method can evolve the wavefield in time in the whole model

(including the heterogeneous part). The GWP represented by Eq. 2.2 is complex-valued, but our

modeling uses only the real part. In the following, we show three numerical examples for different

complex media.

Case 1: Reflection and transmission of a GWP

Our first model is a two-layered velocity medium. The GWP (p = 64,γ = 0.6,ε = 40) is incident

on the interface with an incidence angle of 30◦ (Figure 2.5a). The wave packet behaves as a particle

traveling along the straight seismic ray. When it hits the interface, it splits into a reflected packet

and a transmitted packet (Figure 2.5a).

Case 2: GWP in a gradient medium

The second medium is a homogenous layer atop a gradient layer (Figure 2.5b). The propagating

GWP (p = 36,γ = 0.6,ε = 40) is localized along the curved seismic raypath in the gradient layer.

The shape of the packet is being constantly distorted during propagation, especially at the turning

point. However, the GWP reclaims its original shape when it returns to the top homogeneous layer.

This is in sharp contrast with the traditional GB whose beam front usually diverges quickly and

will not reconstruct to its original shape.

Case 3. GWP in a random medium

The third medium is a homogenous layer overlaying a smooth Gaussian random layer (Figure

2.5c) (Zheng and Wu, 2008). The shape of the GWP (p = 36,γ = 0.6,ε = 40) becomes distorted
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as it goes through the random heterogeneities. However, the packet stays localized in space

(Figure 2.5c). This is the case if the horizontal length scale of the heterogeneity is larger than the

packet dimension.

Figure 2.5: GWPs propagating in three heterogeneous media: (a) a layered medium, with a
velocity v=1.5 km/s in the top layer and v=2 km/s in the lower layer. (b) a homogeneous medium
atop a gradient medium. The homogenous layer has a velocity v=1.5 km/s for depth < 2.5 km.
Below the 2.5 km depth, the linearly gradient layer has a velocity gradient dv/dz = 0.36 /s. (c) A
homogeneous medium (v=1.5 km/s) overlying a Gaussian random medium. The random medium
has a scale length az = 0.2 km in the vertical direction, and ax = 5 km in the horizontal direction.
The root-mean-square (RMS) velocity perturbation is 2%. The GWP is propagated in the left part
of the top homogenous layer with p = 64,γ = 0.6,ε = 40 in (a) and p = 36,γ = 0.6,ε = 40 in (b)
and (c). For each GWP, snapshots at different times are shown in the model. The snapshot time is
labeled adjacent to the GWP.

15



To summarize the above modeling results in inhomogeneous media, a GWP can retain both its

shape and its directional quality during propagation in a variety of media. Thus, it may serve as

an excellent substitute for the approximate GBs that were used in Zheng et al. (2013) for fracture

characterization.

2.4 Conclusions

We showed how the parameters govern the GWP’s properties of localization in space and time

during its propagation in the homogeneous model. Furthermore, we propagated the GWPs

designed by the same sets of parameters in different velocity media and record the data. The

recorded data show that we may need use different sampling rates to avoid artifacts, the GWP

propagating with a higher speed needs a higher Nyquist frequency sampaling than the other GWP

in our examples.

Then, we studied the propagation of the GWP in heterogeneous media, beyond its original

analytical formulation. We found qualitatively that when the packet aspect ratio is small and

when there are more oscillations in the packet support along the propagation direction, the GWP

will retain its localized shape and directionality over a long propagation distance. In a smooth

Gaussian random medium, when the heterogeneity length scale is larger than the size of the packet,

the packet moves along the ray path with small distortion. We also observed that when a GWP is

incident upon an interface, it splits into a transmitted packet and a reflected packet traveling along

the respective ray paths dictated by Snell’s law, with both being localized and directional. These

properties provide the basis to use GWPs to invert for the subsurface fracture parameters.
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3 Construction of 2D Gaussian wave packet data from shot

records

3.1 Introduction

Packets or beams are often used as propagators to speed up the algorithms in seismic imaging (Wu

et al., 2002). The packets are usually formed from the source side and receiver side separately.

However, what would be the recorded data if the source were one packet or beam source is less

studied.

Our main goal in this chapter is to generate the GWP wavefield records from point source gathers

as if the source were a GWP. Since the GWP provides a local illumination with a specific incident

angle on the target, its data record provides us a way to study the medium through the constructed

partial wavefield. Based on the analytical formulation of GWP in a homogenous medium provided

in Chapter 2, we show a method to construct a GWP source and its corresponding recorded data

by using the point sources and shot records. Then, we synthesize the GWP data using point-source

wavefield data in two numerical models. Results from numerical examples show that we can get

the GWP records as if the source were a GWP source. And we use the constructed data to produce

an image of the model with the reverse time migration (RTM) method (Zhou et al., 2018).
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3.2 Representation of GWP wavefield from point-source records

Seismic data in the field are acquired/observed in the form of common shot gathers, Dobs(t,xg,xs),

where t is the recording time, xg denotes the receiver location, and xs is the source position. Point

sources and receivers are usually located on the same surface A. It is common to assume that the

source wavelet in Dobs is the Ricker wavelet in field data. Although the exact shape of the wavelet

does not matter for our synthesis purpose, we need to keep in mind that real field data are shaped

by some source wavelet. The wavefield from a point source interacts with all parts of the velocity

model whereas a GWP field interacts with only part of the model. Thus, it would be beneficial to

excite a GWP wavefield. However, there is no physical device that can excite a GWP in practice.

Therefore, we need to figure out how to synthesize the GWP field using the common shot gathers

that are available to us. We will show that such a synthesis can be done with the concept of time

reversal (e.g., Zhou, 2014). In the process of synthesizing a GWP wavefield, although the Earth’s

surface is a free-surface, we will assume there is no free-surface boundary condition. Through four

main steps, we are able to simulate a synthesized GWP wavefield from the recorded point-source

data.

Step 1 The first step is to design an analytical GWP at time 0 s by Eq. 2.2 in the subsurface at

a location xc = (x0,z0). Since GWP centers around at location xc at time 0 s, the location xc has

to be deep enough such that GWP is entirely in the model. It propagates along a certain direction

θ (Figure 3.1a). We can choose a set of desired parameters (p,ε,γ) to obtain the GWP using Eq.

2.2.
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Figure 3.1: Synthesis of a GWP source. (a) The designed GWP overlaid on a constant velocity
model (1.5 km/s) at time 0 s, with the propagation angle θ =−π (blue arrow). The center (x0,z0)
and parameters (p,ε,γ) that define the GWP are shown (black) next to the packet. The red line
indicates the surface A where point sources and receivers are located. (b) The recorded GWP data
by 501 receivers from 0 to 6.5 km horizontally. The receivers are at depth of 5 m. The receiver
interval is a constant (13 m).
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Step 2 We propagate the designed GWP along the direction of θ . The GWP moves upward from

(x0,z0) to the surface A. We record this GWP wavefield D(t,x′
) on the surface A with the total

recording time length equal to T s, where x′
represents surface locations. We use the local constant

velocity near the location (x0,z0) to propagate GWP. This near surface velocity can be readily

estimated in the field. Hence, we can compute GWP propagation analytically in a constant velocity

model (Eq. 2.2). Because GWP is localized in space, the recording D(t,x′
) is nonzero only for the

partial illuminated region of surface A (Figure 3.1b). The illuminated region depends on the center

location xc = (x0,z0) and propagation direction θ of the designed GWP using desired parameters

(p,ε,γ). For those locations that are not illuminated by the packet, the fields are zero.

Step 3 We use the reverse-time concept to propagate the recorded GWP field on surface A

downward into the medium. At x′
, we time-reverse the recorded D(t,x′

) and take it as the virtual

GWP source Sgwp(t,x
′
) (Figure 3.2):

Sgwp(t,x
′
) = D(T − t,x

′
) (3.1)

Step 4 The ideal field data Dideal
gwp (t,xg) that would be generated by the GWP source is a

convolution between the Green’s function and the GWP source Sgwp :

Dideal
gwp (t,xg) =

∫
A

G(t,xg,x
′
)⊗Sgwp(t,x

′
)dA(x

′
) (3.2)
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Figure 3.2: Synthesis of a GWP source. (a) The time-reversed GWP data in Fig. 3.1b, which
behave as the virtual GWP source Sgwp. (b) The Ricker sources SRicker. (c) The synthesized
Ricker-wavelet-shaped GWP source S f iltered

gwp . The red gwp trace in S f iltered
gwp is obtained by

convolution of red trace from Sgwp and SRicker at the same source location (Eq. 3.7). The horizontal
blue dashed lines indicate the time arrivals of peak amplitudes in all subplots. Only 30 traces are
shown in each subplot, but the total trace number is 501 in each subplot.
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in which G(t,xg,x
′
) is Green’s function for a point source x′

at with an impulsive source wavelet

and a receiver at xg. The integration is over the recording surface, A. The problem is that we do

not know the Greens function for any x′
. However, if x′

corresponds to one of the true point-source

locations, xs, this difficulty can be remediated by noting that the recorded point-source trace is

again a convolution between Green’s function and a source wavelet (e.g., Ricker), e.g.,

Dobs(t,xg,xs) = G(t,xg,xs)⊗SRicker(t) (3.3)

Therefore, if we assume that the source wavelet is a Delta function δ (t,xs) and constrain ourselves

to the true discrete source locations, i.e.,

x
′
∈ xs (3.4)

Eq. 3.2 can be approximated as

Dapprox
gwp (t,xg)≈ ∑

xs

G(t,xg,xs)⊗Sgwp(t,xs)dA(xs) (3.5)

If the source wavelet is a Ricker or already known in Eq. 3.3, we can calculate G by deconvolution

of the wavelet from the data. Applying the calculated G to Eq. 3.5, we obtain Dapprox
gwp . However,

the deconvolution can be unstable. Instead, we convolve a source wavelet (e.g., Ricker) to both

sides of Eq. 3.5 and get

Dsyn
gwp(t,xg)≈ SRicker(t)⊗Dapprox

gwp = ∑
xs

Dobs(t,xg,xs)⊗Sgwp(t,xs)dA(xs) (3.6)

We have completed our synthesis algorithm to obtain Dsyn
gwp using Eq. 3.6. Note that Dsyn

gwp has an

extra Ricker wavelet compared to the Dideal
gwp data. This is not a significant issue in reality as the

Ricker-convolution in Eq. 3.6 can be thought as filtering, which is commonly done in seismic data
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processing. Eq. 3.6 gives the key step to produce a Ricker-shaped GWP data using recorded shot

gathers. In numerical examples where we know the Green’s function, the accuracy of Dsyn
gwp can be

compared with

Dnum
gwp(t,xg) = SRicker(t)⊗Dideal

gwp (t,xg)

= SRicker(t)⊗Sgwp(t,xs)⊗Ggwp(t,xg,xs)

= S f iltered
gwp (t,xs)⊗Ggwp(t,xg,xs)

(3.7)

We notice that the Ricker SRicker(t) (Fig. 3.2a) filters (or shapes) our Sgwp(t,xs) to get S f iltered
gwp

(Fig. 3.2c) as a wavelet-shaped GWP source. If we inject this wavelet-shaped GWP source into

the model, we will record Dnum
gwp.

We have assumed that the source at every location has the same Ricker wavelet in Eq. 3.6 and the

GWP source is calculated in a constant velocity model. However, random noise is unavoidable

in field acquisitions (Li et al., 2014) and velocity variations at the source location can cause

near-surface statics problems (Zhou 2014). Moreover, we have used summation of shot gathers

generated by discrete point sources in Eq. 3.6 to approximate the integration along the surface A

(Eq. 3.7). Hence, the source intervals will have an effect on how well the numerical summation

can approximate the integration. In the next two parts, we will study these influences of point

sources on GWP wavefield propagation, which consequently influences the construction of GWP

data, i.e., the approximation in Eq. 3.6.
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3.3 Effect of noise and statics

In field seismic data, random noise is common and unpredictable. It often masks our data in

seismic imaging and generates unsatisfactory results. Statics problems from the source side may

also cause problems by skewing the starting time in the shot gathers to be misaligned at the same

time moment.

To see the influence of noise and statics in point source wavelets on our synthesized GWP

wavefield, we show three case studies. To produce three different wavelet-shaped GWP sources,

we convolve one GWP source with three different point source wavelets. With numerical

modeling, we propagate the synthesized S f iltered
gwp (t,xs); into the model gwp to compute the

wavefield Dnum
gwp.

Case 1 We consider an ideal situation for Case 1 and will use it to benchmark results in Case 2 and

Case 3.

The ideal situation for synthesizing S f iltered
gwp (t,xs) in Eq. 3.7 is to convolve the GWP source with the

same Ricker wavelet (Figure 3.3a) at all point source locations. The 501 point sources are located

from 0 to 6.5 km horizontally. They are at the depth of 1 m. The source interval is constant (13

m). After convolving this Ricker wavelet with the designed GWP source Sgwp(t,xs) (Figure 3.3c),

we get the Ricker-shaped GWP source and we call it S f iltered
gwp1 (Figure 3.3b). We then propagate it

in a two-layered medium using the finite-difference algorithm and record its wavefield at time 2.1

s. The wave packet keeps its compact shape and splits into two packets (reflected and transmitted)

after interacting with the interface (Figure 3.3c).
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Case 2 We show the random noise influences in point source wavelets to the synthesized GWP

wavefield by adding Gaussian white noises (Mendel, 1977) to the Ricker wavelets (Figure 3.3d).

The SNR in the noise-added Ricker wavelets is equal to 0.01. We convolve the noise-added Ricker

wavelets with the GWP source to form the GWP field and we call it S f iltered
gwp2 (Figure 3.3e). After

propagating it in the same two-layered medium, its wavefield at time 2.1 s shows the reflected and

transmitted packets. Additionally, the white noises from S f iltered
gwp2 generate wavefields and mask the

compact wave packets (Figure 3.3f) in the medium.

Case 3 We show the statics influences of the point sources by perturbing the Ricker wavelet

arrival times at each source location randomly (Figure 3.3g) with the normal distribution (µ =

0s,σ = 0.003s) (Silverman, 2018). Compared with time period of the main frequency (30 Hz)

in Ricker, the maximum static shift (0.098 s) is more than a quarter of the time period (0.033 s).

Correspondingly, the perturbation of Ricker arrival times causes the traces at different locations

to be out-of-phase in wavelet-shaped GWP source S f iltered
gwp3 (Figure 3.3h). The wavefield at time

2.1 s not only has the reflected and transmitted wave packets, but also contains a smearing

wavefield. (Figure 3.3i). The smearing wavefield, in this case, is due to the interference among the

out-of-phase traces in S f iltered
gwp3 .
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Figure 3.3: Effects of point-source wavelets on the propagation of the wavelet-shaped GWP source:
(a) point sources with the same Ricker wavelet. (b) S f iltered

gwp1 (p = 81;ε = 80;γ = 0.3) synthesized

by convolution of Sgwp (Fig. 3.2a) with SRicker in (a). (c) The wavefield at t = 2.1 s due to S f iltered
gwp1

(d) SRicker in (a) with white noise added. (e) S f iltered
gwp2 synthesized with noise-added SRicker in (c).

(f) The wavefield at t = 2.1 s due to S f iltered
gwp2 . (g) SRicker in (a) with arrival time perturbed randomly.

(h) S f iltered
gwp3 synthesized with starting-time-perturbed SRicker in (g). (i) The wavefield at t = 2.1 s

due to S f iltered
gwp3 . All snapshots are overlaid on the two-layered medium with velocities 1.5 km/s and

2.5 km/s. R indicates the reflection from the horizontal interface, and T indicates the transmitted
wavefield.
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3.4 Effect of point-source interval

In Eq. 3.6, we perform the summation of discrete shot gathers on the surface A to construct

the GWP data. Thus, the point-source interval is crucial to approximate well the integration by

summation of shot gathers. To study the effect of the discrete source interval on the GWP wavefield

numerically, we generate wavelet-shaped GWP sources with four different point source intervals

based on Eq. 3.7. We propagate each wavelet-shaped GWP source into the same velocity model

and produce a snapshot of the wavefield at time 2.1 s correspondingly.

In the previous S f iltered
gwp1 (p = 81,ε = 80,γ = 0.3) (Figure 3.3b), the point sources have a constant

interval of 13 m. The snapshot (Figure 3.3c) at t = 2.1 s shows the GWP wavefields propagate

as compacted packets without artifacts. We then directly extract traces from S f iltered
gwp1 with four

different source intervals (26 m, 36 m, 52 m, 65 m). Propagating the 4 new-sampled wavelet-shaped

GWP sources, we will record their wavefields to see if any artifacts generate.

To give a quantitative description of the GWP wavefields from the four source-interval resampled

S f iltered
gwp1 s. We compare their source intervals with the main wavelength of this Ricker-shaped

GWP packet. The main wavelength is 50 m in the first layer. When the source interval (26 m)

is approximate to half (25 m) of the main wavelength, this wavelet-shaped GWP source propagates

with compact packet field (Figure 3.4a). For source intervals which are 39 m, 52 m, and 65 m, the

wavelet-shaped GWP sources do not achieve complete destructive interference to have compact

"GWP packet" wavefields only. Artifacts (Figure 3.4 b-d) are generated due to insufficient spatial

sampling of the wavelet-shaped GWP source. These artifacts will appear in our constructed GWP

data if the discrete point sources have sparse intervals.
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We conclude that the receivers may not only record Ricker-shaped GWP wavefield, but also the

artifacts generated due to noise, random starting time in point sources, and sparse source interval.

In our investigations, the Gaussian noise (SNR equals to 0.01) and the random time-arrival shift

with a normal distribution (µ = 0s,σ = 0.003s) in the Ricker wavelets, can cause the Ricker-shaped

GWP source S f iltered
gwp1 (p = 81,ε = 80,γ = 0.3) generate obvious artifacts. In the resampled S f iltered

gwp1

(propagation direction 0o ), artifacts generate when the source interval is larger than 3/5 main

wavelength in the first layer. Before doing the synthesis of GWP records, practical preprocessing

(e.g., static correction and noise suppression) to shot records (Wang, 2006; Zhang et al., 2014) may

be necessary.

Figure 3.4: Four wavefields at t = 2.1 s in the two-layered velocity medium, due to the GWP source
with four different source intervals. (a) Source interval is 26 m. (b) Source interval is 39 m. (c)
Source interval is 52 m. (c) Source interval is 65 m. The red line indicates the source locations in
each plot. The yellow dashed line circles the artifacts out.
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3.5 Numerical examples

Following the procedures in the previous section, we show two numerical examples on the

construction of GWP data record from shot records. Moreover, we show its application in the

seismic imaging and illumination analysis with the second model.

In our first numerical example, we make a two-layered model (Figure 3.5a). There is a

circular-shaped low-velocity anomaly with a radius of 0.25 km centered at (xc= 2.26 km, zc =

0.3 km) in the first layer. The source is located at a depth of 5 m, starting from a horizontal position

275 m to 1825 m at an interval of 5 m. The receivers are at the depth of 5 m and range across the

whole model with the interval of 5 m. The source wavelet is a Ricker with center frequency 30 Hz.

With a shot record, we show that the data not only have the reflection from the interface, but also

the diffractions caused by the velocity anomaly (Figure 3.5b).

To get the synthesized GWP data using point-source wavefields, we record our designed GWP

as D(t,xgwp
g ) at receivers that are collocated with point sources. We time-reverse this GWP data

to form a GWP source Sgwp(t,xs) (Figure 3.5c). Using the operation expressed by Eq. 3.6, we

produce the synthesized GWP data Ds
gwp(t,xg) from the point source records (Figure 3.5d).

To verify our synthesized GWP data is the same as the modeled GWP wavefield, we need to

form the GWP source Ssyn
gwp(t,xgwp

s ) with Eq. 3.7 and propagate it into the model. We denote the

recorded the GWP wavefield at receivers by Dd
gwp(t,xg) (Figure 3.5e). After comparison with their

amplitudes, we find that the direct record of GWP source and the synthesized GWP data are indeed

the same, apart from the slight differences due to numerical precision (Figure 3.5f).
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Figure 3.5: GWP data construction from point source records. (a) A two-layered medium with
a low velocity (0.1 km/s) zone in the upper layer. Three wavefield snapshots of a filtered GWP
source (locations indicated by the red line) are shown. (b) Data record from a Ricker source located
at 0.275 km. (c) The time-reversed GWP data used for building the filtered GWP source. (d) GWP
data synthesized from point source records. (e) GWP data directed recorded from the filtered GWP
source. (f) Wavefield difference between (d) and (e).
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Furthermore, we show the snapshots of the filtered GWP source at three discrete time moments

(Figure 3.5a). During the propagation, this GWP source does not interact with the low-velocity

anomaly from this specific initial propagation direction. By constructing such GWP data, we can

study the wavefield interacted with the specific part of the model.

In the second numerical model, we show an application of GWP in the seismic imaging. In the

two-layered model, a triangle-shaped low-velocity anomaly is present in the first layer (Figure

3.6a). We generate a GWP source to image the targeted area of the model. The point shot data

obtained in this model show strong scattered wavefields besides the direct arrivals and the interface

reflection (Figure 3.6d). But with our GWP source and its corresponding constructed GWP data

(Figure 3.6e & f), we can extract exclusively the multiple. This extracted GWP multiple follows

the ray geometry (Figure 3.6b) and bounces between the layer interface and the triangle base. We

propagate this GWP source and the time-reversed GWP data in the model to form an image using

the RTM (Liu et al., 2016). In the image, we see this GWP only imaged three local parts indicated

by the green boxes (Figure 3.6b). The horizontal resolution is controlled by the GWP width, and

the vertical resolution is restricted by the narrow frequency band in the GWP source. With the

seismic illumination analysis (Geng et al., 2012), the GWP source only illuminates the area along

its propagation path (Figure 3.6c). This is a feasible way to control the seismic illumination in the

model through the data set. Though we only use one GWP with a specific propagation angle to

construct GWP data and do the seismic imaging, it is doable to design GWPs at different locations

and with different propagation angles. With the specific chosen GWP and construct GWP data, we

are able to image the medium in the sense of locality.
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Figure 3.6: GWP data construction and the partial RTM image from the constructed GWP data.
(a) A two-layered medium with a low velocity (0.1 km/s) zone in the upper layer. The red line
indicates the source locations at depth of 5 m. (b) The RTM image from GWP wavefield. The green
boxes show the imaged area. The red dash line shows the central ray geometry of the extracted
multiple. (c) The illumination of the GWP source. (d) Data record from a Ricker source with D
and R indicating the direct arrival and the reflection from the interface. The rest of wavefields are
due to the anomaly. (e) The GWP source. (f) GWP data constructed from point source records as
if the source were a GWP source at the red line segment in (a). The green lines in (b) and white
lines in (c) denote the anomaly shape and the interface in (a).
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3.6 Discussion

Since the synthesized GWP wavefield behaves as a local plane wave, we can design it to interact

with a target area with many different propagation angles. We showed its ability in seismic imaging

to image local areas. GWP can also be useful in fracture characterizations (Hu and Zheng, 2018a).

With the constructed GWP dataset, we could study some specific property (e.g., fractures) of the

medium, which is more difficult to study if we process the seismic data of point sources based on

the conventional processing flow.

Another potential application of GWP is to interpolate the seismic data set. Because real data

may have missing traces, curvelets and dreamlets have been used for the seismic data interpolation

(Herrmann and Hennenfent, 2008; Wang et al., 2014). Moreover, seismic data interpolation is the

key part for applying compressive sensing in the seismic acquisition. Thus, we may see more

different packets (e.g., GWP) to be invented and applied to the seismic data interpolation.

3.7 Conclusions

In this chapter, we demonstrated the process to construct a GWP dataset in the time domain from

shot records. We investigated the point sources’ influences on the GWP source propagation. Based

on the propagation of a proper GWP source, we found that the GWP packet propagates towards a

definite direction without diffraction, which is different from the wavefield generated from a point

source. With the numerical examples of synthesizing the GWP wavefield in the data domain, we

created the wavefield propagating along a certain ray path and avoiding interactions with areas
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away from such a path. With the RTM applied to the GWP dataset, we produced a partial image

of the model.
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4 Fracture characterization with 2D Gaussian wave packet

4.1 Introduction

Knowing the distributions of subsurface fractures is crucial to Earth sciences and related fields

(e.g., Le Pichon and Fox, 1971; Olsson et al., 1992; Hall et al., 2003). This can impact many

applications that include hydraulic fracturing, nuclear waste storage, exploitation of geothermal

energy, and probing the stress state. Since most geolocical structures made by interfaces are

sub-horizontal, conventional structural seismic imaging has been very effective in delineating these

structures. However, fractures are usually alined vertically in the subsuface with large angles, and

such a geometry pattern makes conventional seismic imaging of limited use in portraying vertical

fractures.

For fractures with a preferred orientation, many authors (e.g., Thomsen, 1995; Liu et al., 2000)

have shown that the host rock can be treated as an effective anisotropic medium (the effective

medium theory or EMT). Rüger (1998) and Lynn and Thomsen (1990) demonstrated that the

P-wave and S-wave reflection coefficient should depend on azimuth (AVAZ). In addition, elastic

anisotropy can split an incident shear wave into a fast shear wave and a slow shear wave (Crampin,

1985)(Crampin, 1985). In traditional seismic processing, the AVAZ and the shear-wave splitting

are the main tools for remote detection of subsurface fractures.

Besides the anisotropy-based methods, scattering approaches were also proposed. The fracture

transfer function (FTF) and the scattering index (SI) method (Willis et al. 2006; Fang et al. 2013,
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2014) were developed to invert for fracture orientation. These methods exploit the differences

between waves traveling along fracture corridors and those propagating perpendicular to fracture

planes. The diffraction imaging uses singly scattered waves by fractures (non-specular reflection of

fractures, Fomel et al. 2007) to identify subsurface fractures. Both the effective medium approach

and these scattering-based approaches have challenges in distinguishing and resolving multiple

sets of fractures.

Zheng et al. (2013) developed a new approach to use multiply scattered waves spawned by a

local set of fractures illuminated by a local plane wave. The propagation direction and amplitude

of the scattered wave can be used to estimate various fracture parameters, including the density,

orientation and compliance of fractures. They showed that their method could invert for spatially

dependent fracture parameters for coexistent multiple fracture sets. However, both the incident

and scattered waves need to be localized in space and be directional. In their paper, the local plane

wave is created by a focusing Gaussian beam (GB) shot from the surface (Červenỳ et al., 1982;

da Costa et al., 1989; Hill, 1990). It is well known that the GB will lose its directionality over a

long propagation distance and the beam width tends to diverge as well (Ralston, 1982; Babich and

Ulin, 1984; Hill, 2001). We need a better wave object, which can remain localized and directional

after long distance. To minimize such diffraction of the global GB, Chen et al. (2006) suggested

re-decomposing the wavefield into local Gabor-Daubechies beamlets at each step in its downward

continuation. To implement this propagation, we need to have an accurate velocity model that is

unavailable in general.

In this chapter, we begin with a brief review of fracture characterization using the plane-wave

multiple scattering theory. The basic idea is that when a plane wave is incident upon a group of

fractures, the scattered waves contain information of the fracture parameters: fracture orientation,
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density, and compliance. To obtain spatially dependent fracture properties, we use the localized

GWP as a local incident plane wave. The algorithm is target oriented. To test the feasibility of our

algorithm, we conduct three synthetic tests. All examples are conducted in 2D space so that the

orientation of the fractures is fixed. We only need to invert for the fracture spacing as a function of

space.

4.2 Brief review of plane wave scattering

For a plane wave interacting with a set of discrete, periodic, and parallel vertical fractures, the

scattering direction and the incident direction are related (Zheng et al., 2013):

Kg
T (n) = Ks

T (n)+n
2π
a

ϕ̂ (4.1)

where the incident-wave wavenumber Ks = (Ks
T ,K

s
Z) has two components (horizontal Ks

T and

vertical Ks
Z); similarly Kg = (Kg

T ,K
g
Z) is the wavenumber for the scattered plane wave to receivers;

Kg
T = ωpg where pg is the transverse component of the scattered-wave slowness vector; ϕ̂ , the

fracture orientation, is defined as the unit vector perpendicular to the fracture plane; a is the spacing

between neighboring fractures. It is apparent that the wave can scatter into different directions

designated by n (Figure 4.1). Each propagation direction, n, includes both singly and multiply

scattered waves. Though n can be any integer, we use n = −1 to detect fracture properties. The

main reason is that, if n is too large, the resultant vertical wavenumber |n| may become purely

imaginary, making the scattered waves evanescent. We note that n = 0 corresponds to the specular

reflection commonly used in fracture inversion using reflected-wave amplitude information.
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Figure 4.1: Schematic plane wave scattering caused by equally spaced vertical fractures
underground.

Eq. 4.1 should work in both acoustic and elastic media. In an elastic medium, the scattering wave

will generally be partitioned into P and S waves due to a pure incident P or S wave. It is possible for

us to utilize different incident-scatttering wave pairs (P-P, P-S, S-P, S-S) to characterize fractures.

Eq. 4.1 describes the kinematics of plane-wave multiple scattering produced by an infinite number

of periodic fractures. However, the fracture network with a single constant spacing is too ideal for

the real world. Fracture spacings and orientations may vary due to the changing of local stresses,

local rock properites, etc. To make the scattering theory explained by Eq. 4.1 still work in such

a situation, we employ the GWP as a local plane wave to interact with fractures locally. In such

a way, the GWP can characterize a fracture network having the variation of fracture spacing and

orientations. Examplified by Zheng et al. (2013), two coexisting orthoganal fracuture networks

in which fracture spacing varies spacially can be characterized successfully by local Gasussian

beams. In Hu et al. (2018), the random spacing fractures were characterized by the local GBs

developed in Zheng et al. (2013).
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In the following synthetic tests, we apply this theory locally for 2D acoustic cases. We confine

ourselves to characterize the 2D vertical fractures in a horizontal layer. When the fractured layer

is dipping, the coordinate transformation can be applied at the locations of fractured layer to

cahracterize fractures properly using Eq. 4.1 (Hu and Zheng, 2018b).

4.3 Methodology of fracture characterization

The GWP fracture characterization algorithm is target-oriented and frequency dependent. The

inputs to the algorithm include: (1) a velocity model for tracing the rays of the scattered waves, (2)

the approximate depth of fractured reservoir and (3) recorded shot gathers.

The first step is to select a subsurface fracture target location r in the model. We then shoot a

GWP from a location r0 at surface toward the fracture target. We can obtain the GWP gather

Dsyn
gwp(t,xg) using the three-step synthesis approach (Eq. 3.6). Since we have a velocity model,

we can calculate Ks using ray tracing from the shooting location to the target. With n = −1 , we

grid-search fracture spacing and orientation (a, ϕ̂) to calculate Kg at r to trace the scattered ray

back to the surface location xe
g. For a pair of (a, ϕ̂), we can compute the total traveltime tarrival

from the GWP shooting point to the target then to the receiver. Due to localization of the GWP in

time and in space, we window Dsyn
gwp(t,xg) around t = tarrival and around xg = xe

g:

Dwin
gwp(t,xg|ω ,θ) = gt(t − tarrival)gx(xg −xe

g)D
syn
gwp(t,xg) (4.2)

where gt can be Gaussian windowing function and gx be a box car function. In the 2D case, we

can use the scalar θ to replace the vector θ̂ . The true fracture parameter a should yield a Kg which
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matches the wavefield direction information in Dwin
gwp(t,xg|ω ,θ) generated by an incident GWP

with progagation θ . We probe this consistency using slant stacking for every frequency ω in the

data.

In this windowed data, we first implement a slant stack with a slowness vector pg as Asacttered:

Asacttered(pg,τ|ω,θ) =
∫

A
Dwin

gwp(τ +pg ·xg,xg|ω ,θ)dxg (4.3)

where τ is the intercept time. We then define the scattered energy Esacttered by the integration of

the absolute |Asacttered| :

Esacttered(pg,ω,θ) =
∫ ∞

0
|Asacttered|dτ (4.4)

The maximum value of Esacttered should occur at pg corresponding to the true fracture spacing a

(Eq. 4.1). We are dealing the 2D space now so we ignore the fracture orientation ϕ̂ . We can repeat

this processing for other frequencies ω too. However, they should produce the same a. In order to

combine results from different frequencies ωI and different GWP incident angles θJ , we multiply

all the Esacttered’s to build a new function Egwp
sacttered that varies only with pg:

Egwp
sacttered(pg) =

N

∏
I=1

M

∏
I=1

Esacttered(pg,ω,θ) (4.5)

where I, J are the indexes of the selected discrete frequencies and propagation angles, respectively,

and N, M are the total numbers of the discrete ω , θ , respectively. We do not use simple linear

summation type stacking in Eq. 4.5 here since we want to emphasize the consistency of pg across

a wide frequency range and among all different incident angles. Since pg and a are one-to-one

according to Eq. 4.1, we can rewrite Egwp
sacttered(pg) as Egwp

sacttered(a). Therefore, the trial spacing a

resulting in the maximum of Egwp
sacttered(a) will be considered as the final inverted spacing for the
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subsurface fractures.

The use of the velocity model in our algorithm is to find the scattered wavenumber and approximate

time window. The velocity model here does not have to be very accurate, in contrast to the case

for seismic migration.

To illustrate the method described above, we use a GWP (p = 144,γ = 0.5,ε = 80) with 5 different

incident angles (0o,15o,30o,45o,60o) to interact with one set of fractures embedded in a constant

velocity model(2.1km/s) (Figures 4.2 to 4.6). With the recorded data from each GWP with a

specific incident angle, we scan the data with the different trial spacing at each selected frequency

as in Eq. 4.4 (Figure 4.7). To get a final result as the fracture spacing, we multiply the data along

the frequency and trial spacing as in Eq. 4.5 (Figure 4.8). We find that the multiple scattering

directions is more obvious when the incident angle is large (Figure 4.6). This is due to the incident

wave having a larger horizontal wavenumber correpondingly.
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Figure 4.2: (a) GWP with the incindent angle 0o. (b) Its corresponding snapshot, the black line
segments indicate the fractures. (c) The GWP data recorded at the surface.
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Figure 4.3: (a) GWP with the incindent angle 15o. (b) Its corresponding snapshot, the black line
segments indicate the fractures. (c) The GWP data recorded at the surface.

43



Figure 4.4: (a) GWP with the incindent angle 30o. (b) Its corresponding snapshot, the black line
segments indicate the fractures. (c) The GWP data recorded at the surface.
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Figure 4.5: (a) GWP with the incindent angle 45o. (b) Its corresponding snapshot, the black line
segments indicate the fractures. (c) The GWP data recorded at the surface. The blue arrows
indicate the scattering directions and the dashed line segments indicate the corresponding local
plane wavefronts in (b).
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Figure 4.6: (a) GWP with the incindent angle 60o. (b) Its corresponding snapshot, the black line
segments indicate the fractures. (c) The GWP data recorded at the surface.
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Figure 4.7: Esacttered(pg,ω,θ) with repsect to the incident angle θ , frequency ω and Trial spacing
values which correspond to pg.
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Figure 4.8: (a) Esacttered(pg,θ) for each θ and pg by multipling the data values in Figure 4.7 along
the axis of frequency. (b) Esacttered(pg,ω) for each θ and pg by multipling the data values in Figure
4.7 along the axis of incident angle. (c) The toal Egwp

sacttered(a) produced by multipling the traces
together either in (a) or (b).

4.4 Numerical examples of the fracture characterization using GWPs

We limit our application to the onshore problems, where most areas have a simple layered structure.

Even in such structurally simple media, we have challenges to characterize the reservoir properties

inside the layer. To test our algorithm, we create three acoustic models and generate GWP seismic

data by propagating the GWP source in the model. The propagation is done with a full-waveform

FD method. The sources and receivers are located horizontally from 0 km to 5.5 km with an
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interval of 5 m, at the depth of 15 m and 25 m, respectively. We treat the fractures as localized

low-velocity (0.5 km/s) anomalies. Each individual fracture has a vertical extent of 20 m and a

thickness of one FD spatial grid (5 m). Though such a model is not a realistic representation of thin

fractures underground, the wave scattering phenomena should be similar for both thick fractures in

numerical simulation and thin fractures in reality. We have not followed the linear-slip boundary

condition formulism in representing fractures as in Zheng et al. (2013), because our focus here

is to invert for the fracture spacing using GWPs rather than the fracture compliance. The fracture

length is 20 m in our model, but the length of fractures will not influence the scattering wave pattern

generated by the interferences among individual fractures in a target zone.

In our first example, we add a set of fractures with a constant spacing of 110 m to the third layer

(Figure 4.9a). We illuminate the fracture target with five GWP sources. The five GWP sources are

constructed with the same GWP parameters (p = 289,γ = 1.2,ε = 10) in the first layer. However,

their propagation angles are different: 0◦, 5◦, 10◦, 15◦, 20◦, with respect to the vertical axis.

Figure. 4.9b presents the data due to a 0◦ GWP source (propagation angle 0◦). Instead of using the

accurate velocity model, we use an inexact model. In this inexact model, each layer thickness does

not change, but the velocities are reduced by 20%. The time window determined by this inexact

model can still capture the main energy of the multiply scattered waves produced by fractures.

We use five incident GWPs of 5 different propagation angles and ten discrete frequencies from 25

Hz to 34 Hz with increment of 1 Hz to calculate the normalized Egwp
sacttered(a), which achieves the

maximum when the trial spacing a is 110 m, which is the value put in the model (Figure 4.9c).
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Figure 4.9: (a) A layered velocity model with increasing velocities: 1.5 km/s, 2 km/s and 2.5
km/s. The fracture set has a spacing 110 m located in the third layer. A wavefield snapshot due to
a 0-deg GWP is also shown. (b) The modeled GWP-gather Dgwp due to a GWP source. The box
denotes the scattered data produced by fractures. (c) The normalized Egwp

scattered with respect to trial
spacing a.
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In the second example, we illustrate the effectiveness of using the GWP source (constructed with

p = 289,γ = 1.2,ε = 10 in a velocity model of 2.5 km/s) to detect multiple fracture sets locally in

a constant velocity model (2.5 km/s) (Figure 4.10a). From the left to the right, there are three sets

of fractures with different spacings, 160 m, 110 m and 60 m, at a depth 0.75 km. We synthesize the

GWP source from different surface locations to illuminate these targets separately. For each set of

fractures, the normalized reaches the maximum value at the spacing value 160 m, 110 m and 60 m

respectively (Figure 4.10b). Because we only use three propagation angles ( 0◦, 5◦, 10◦) and seven

discrete frequencies (43 Hz to 49 Hz, with increment of 1 Hz), the normalized Egwp
scattered may give

other values around the true spacing.

Figure 4.10: (a) Three sets of fractures (different colors) located as the same depth 0.75 km in a
constant velocity model (2.5 km/s). For distance 0-2.5 km, 2.5-4 km and 4-5.5 km, the spacing
interval is 160 m, 110 m and 60 m respectively. The three targets are shown within the double
arrows. (b) The normalized Egwp

scattered for the three sets of fractures.
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In our third example, we demonstrate how GWPs can be used to distinguish two sets of fractures

at different depths in a constant velocity model. The first set is located at a shallower depth (0.8

km) and has a spacing of 110 m and the deeper set (depth of 1.2 km) has a spacing of 60m (Figure

4.11a). To detect the fractures in a targeted area (Figure 4.11a), we illuminate them with the GWP

from five propagation directions (0◦, 5◦, 10◦, 15◦, 20◦). For each angle, we have ten discrete

frequencies (43 Hz to 52 Hz, with increment of 1 Hz) to calculate Egwp
scattered . In this targeted

area, the normalized Egwp
scattered shows its maximum at the true fracture spacings 110 m and 60 m,

respectively (Figure 4.11b).

Figure 4.11: (a) Two sets of fractures with spacing 110 m and 60 m located at depth 0.8 km and
1.2 km, respectively, in a homogenous model (v=2.5 km/s). The yellow area shows the targeted
fractures. (b) The normalized Egwp

scattered for the two sets of fractures.
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4.5 Discussion

The ability to decompose the seismic wavefield into a set of localized and directional packets, as

shown in this study, is of great importance in seismic imaging and inversion (Nowack, 2012). The

GWP we used is an object in the phase space and the phase-space approach has been proven to be

very useful in seismic imaging (De Hoop et al., 2000; Fishman, 2002; Wu, 2003).

It provides us a new view on seismic imaging, analogous to the experiment setup in the high-energy

particle physics: a physicist would shoot a stream of directional particles to bombard a target to

interrogate its composition and structure by studying the scattering. The "particle" for seismic

imaging here is the recently proposed GWP, whose spatial localization and directional properties

allow us to control its interaction with only selected targets. In contrast, a point-source wavefield

will interact with all subsurface objects and creates various interferences such as multipathing that

may inhibit our ability to infer the structures around the target.

Though we only demonstrated our fracture characteriztion method in the 2D acoustic media, it is

possible to apply the method to characterize the fracture networks of which the host media are

2D elastic ones, either isotropic or anisotropic. The plane wave scattering theroy still holds in the

elastic media, but we need to find the correct wavenumber of the scattered waves based on different

wave types (P wave or S wave) and/or different wave propagation direction. To obtain the correct

wavenumber for the scattered waves, we can solve the boundary conditions on the interface below

which is the media hosting fracture networks.
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4.6 Conclusions

Based on plane wave scattering theory, we developed a procedure for fracture inversion using

GWPs. Our fracture inversion algorithm can invert for fracture density in different cases, including

that with a single set of parallel fractures of uniform fracture spacing, a set of parallel fracture with

spatially variable spacing, and that with two sets of fractures located at two different depths in the

subsurface. In addition, our new method can tolerate significant errors in the velocity model, as

demonstrated in the synthetic examples.
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5 Faults imaging using second-order scattered waves

5.1 Introduction

Imaging faults accurately is fundamental in geological interpretation of petroleum system

development and energy exploration and development. Due to limitations within traditional

seismic imaging methods, faults in the seismic images are usually interpreted/delineated by

interpreters or by specific post-stack processing methods by studying image attributes (e.g., Cohen

et al., 2006; Hale, 2013b; Wu and Hale, 2016a,b). In exploration seismology, there are two

main reasons why faults are rarely directly imaged in traditional RTM imaging methods (Baysal

et al., 1983). Firstly, conventional imaging methods only treat single scattering events (primary

reflections) as useful signals when forming the subsurface image. Secondly, since the faults usually

have high dipping angles and the seismic acquisition aperture is limited, primary reflections from

the fault planes cannot propagate back to geophones located on the surface. Imaging high-angle

faults needs multiple scattering events (e.g., (Zuberi and Alkhalifah, 2014)). We hereby introduce

a modified RTM method to utilize the second order scattering events (multiples) (He and Wu,

2009) reflected from the fault plane. He and Wu (2009) used the seismic interferometric virtual

source idea (Wapenaar, 2004; Schuster et al., 2004; Schuster and Snieder, 2009; Zheng and He,

2010; Zheng, 2010; Bakulin and Calvert, 2006)(Wapenaar, 2004; Schuster, 2001; Schuster, 2009;

Zheng, 2010; Zheng & He, 2010; Bakulin & Calvert, 2006) to first focus the wavefield to a

subsurface point. The difference is that they focus the field to a real scattering point. Here, we

propose a different approach using scattered energy to do imaging. We first run traditional RTM in

the initial migration velocity model to obtain an image from which we can identify scattering
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points/reflectors. We then modify the migration velocity model by adding some horizontal

reflector/scatters identified in the previous step. We do the RTM imaging again. During the second

iteration of RTM, we run the forward (or backward) propagation in the original velocity model

but run the backward (or forward) propagation in the modified velocity model. In this way, we

are able to image the fault planes directly. The added sub-horizontal reflector is readily obtainable

in the traditional RTM image. We can calculate the local velocity (or density) perturbation from

the reflectivity horizon in the image. This calculated local velocity (or density) perturbation is

the reflector we add into the smoothed migration velocity. We demonstrate with two numerical

examples that our asym-RTM method can image the fault directly.

5.2 Review of RTM

Our modified RTM is based upon the principles of conventional RTM. Before presenting our

modified RTM (the asym-RTM), we first list the basic assumptions of the RTM imaging method.

We use a simple model to illustrate the strengths and weaknesses of traditional RTM. The model

is a constant velocity model that has two reflectors: the horizontal R1 and the vertical R2 (Figure

5.1a).

In implementing the traditional RTM, there are three inputs: source, data, and a migration velocity

model. The migration velocity is a smoothed velocity model without any distinctive boundaries.

Conducting RTM in the following three steps, we can get the image.

Step 1. Forward modeling of the source field (Figure 5.1b): we propagate the source signal at

location xs to every subsurface point x in the migration velocity model. We simply consider the
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source wavelet as a Delta function through the paper. The source wavefield can be expressed as

the Greens G(x,xs,ω) in the frequency ( ω ) domain.

Step 2. Backward extrapolation of recorded data (Figure 5.1b): we propagate the time-reversed

data D(x,xg,ω) in the same migration velocity as in Step 1.

xsxg(b)

Image point x

R1

(a)

R1

True velocity 

Smooth velocity 

R2

Figure 5.1: Traditional RTM: (a) A constant background velocity model (rectanglar block) having
two reflectors (R1 & R2, yellow bars). (b) Conventional RTM in the smoothed velocity model,
the red dot is the image produced by raypaths from backward propagation (Blue) and forward
propagation (Black). Note that the blue dotted line in (b) is the imaged R1 by traditional RTM in
the smoothed velocity model.
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Step 3. Imaging condition (Figure 5.1b): we can form an image I(x) at every location x by

cross-correlating the wavefield from the source side and the wavefield from receiver side:

I(x) = ∑
ω

∑
xs

∑
xg

G(x,xs,ω)D∗(x,xg,ω) (5.1)

in which D∗ is the complex conjugate of data D. To simplify the equations, we omit variable ω

in future equations. The image formed in Step 3 only has the horizontal reflector R1, while the

vertical reflector R2 is not observable using the conventional RTM. We show such an image in our

later section Numerical examplesNumerical examplesNumerical examples.

5.3 Asymmetrical RTM

We propose a modified RTM method based on the foundations of conventional RTM. In our

modified RTM method, we perform RTM algorithms twice to utilize second order events into the

imaging. The first-time running of RTM is to image the sub-horizontal reflectors. The second-time

running of RTM is to image the vertical/steep reflectors, with the aid of sub-horizontal reflectors.

The procedures for our modified RTM method can also be categorized into 3 steps.

Step 1. Initial RTM: we first perform traditional RTM in the smoothed migration velocity to

obtain the image I(x). In the image, sub-horizontal reflectors like R1 (Figure 5.1) is imaged. The

reflector R1 in the image is the source-wavelet- modified reflectivity. Assuming the source wavelet

is a Delta function, the image can represent the reflectivity. Treating the reflectivity for each image

point as that obtained at the zero degree incidence, we express the reflectivity (r1) in terms of the
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impedance Z:

r1 =
Z1 −Z2

Z1 +Z2
(5.2)

where the impedance Z is the scalar product of density ρ and velocity V. Z1 and Z2 are impedances

above and below the reflector, respectively.

Step 2. Injection of reflectivity into the model: Assuming Z1 is the background impedance at the

imaged reflector, we write Z2 as Z1 plus an impedance perturbation term dZ. Using Eq. 5.2 we

calculate the impedance perturbation term:

dZ =−2Z1r1

1− r1
(5.3)

If we further treat the density as a constant around the imaged reflector, we get the velocity

perturbation:

dV =
dZ
ρ1

=− 2V1r1

1− r1
(5.4)

Similarly, we can treat the velocity as a constant around the imaged reflector, we get the density

perturbation:

dρ =
dZ
V1

=− 2ρ1r1

1− r1
(5.5)

Based on Eq. 5.4 and Eq. 5.5, we have transferred the reflectivity (r1) in image domain into the

model parameter perturbation (dV or dρ) in the model domain.

In our study, we keep the density model unchanged and calculate the dV. We define dV as the
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reflector R1cal:

R1cal = dV =− 2Z1r1

1− r1
(5.6)

We then add the reflector R1cal into the smoothed velocity model to construct a new migration

velocity model ( Figure 5.2).

(a)

(b)

Smooth velocity 

Smooth velocity 

R1cal

R1cal

Figure 5.2: Modified RTM: (a) the reflector R1 added in the migration velocity for proapgating the
source. (b) the reflector R1 added in the migration velocity for propagating the time-reversed data.
The black arrows show the raypaths from the source side; the blue arrows show the raypaths from
the receiver side; the red dots are the images produced by waves from the plotted ray paths; and
the blue dotted lines indicate the images formed using second order scattering events.
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Step 3. Asymmetric RTM: We run the RTM for the second time. The backward modeling is

still done in the previous migration velocity, but the forward modeling is performed in the newly

modified migration velocity, which has R1cal (Eq. 5.6) in it (Figure 5.2a). In forward modeling,

the source wavefield will reflect off the added reflector (Figure 5.2a). Cross-correlating these

two wavefields, we form the image I f wd(x) with both the first order scattering events (primary

reflections) and second order scattering events (multiples):

I f wd(x) = I f wd(x)

+∑
xs

∑
xg

G(x,xR1)Rcal(xR1)G(xR1,xs)D∗(x,xg)
(5.7)

Vice versa, second order scattering events can also be incorporated by forward modeling and

backward modeling in the previous smoothed velocity model and the new migration velocity model

(Figure 5.2b), respectively. We then form the image Ibwd(x):

Ibwd(x) = I f wd(x)

+∑
xs

∑
xg

G(x,xs)G∗(x,xR1)Rcal(xR1)D∗(xR1,xg)
(5.8)

Based on our modified RTM, we get three images: I(x), I f wd(x), and Ibwd(x). We extract the image

formed by the second order scattering events:

I2nd_Order
f wd (x) = I f wd(x)− I(x) (5.9)

and

I2nd_Order
bwd (x) = Ibwd(x)− I(x) (5.10)

The amplitudes of the second order scattering events are usually smaller with orders of magnitudes,

when compared with the amplitudes of the first order scattering events. Thus, the image
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I2nd_Order
f wd (x) is also smaller with orders of magnitudes than the image I(x). To enhance the image

I2nd_Order
f wd (x), we multiply it with a scaling factor (A). Then, we sum the scaled I2nd_Order

f wd (x) and

I(x) to form a final image:

I f inal
f wd (x) = A ˙I2nd_Order

f wd (x)+ I(x) (5.11)

The same process is applied to I2nd_Order
bwd (x):

I f inal
bwd (x) = A ˙I2nd_Order

bwd (x)+ I(x) (5.12)

5.4 Numerical examples

5.4.1 Step model

First, we use a two-layered velocity to test our method. There is a vertical step along the velocity

boundary in the model (Figure 5.3a). The grid points in the model are distributed as 408 vertically

and 906 horizontally. The gird size is 10 m. There are 303 sources locate from 0 km to 9.05 km,

with an interval of 30m. We deploy 906 receivers from 0 km to 9.05 km with an interval of 10 m

to record data for every source. Both sources and receivers are at depth of 50 m. The source signal

is a Ricker wavelet. Its main frequency is 30 Hz. The total recording time length is 3.6 s.We use

the velocity in the first layer (1.5 km/s) as the migration velocity (Figure 5.3b) for the traditional

RTM. Adding the velocity anomaly (2.5 km/s) as the reflector into the migration velocity (Figure

5.3b), we obtain the modified migration velocity (Figure 5.3c). This added reflector is obtained

from one reflectivity horizon in the traditional RTM image (Step 1&2 in Modified RTM ).
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For the traditional RTM, we run the forward modeling and backward modeling in the migration

velocity (Figure 5.3b) and form the image I(x) (Figure 5.3d) following the imaging condition (Eq.

5.1). While the horizontal boundary is imaged clearly, the step of the boundary fails to be imaged.

In our modified RTM, we acquire two images I f inal
f wd (x) (Figure 5.3e) and I f inal

bwd (x) (Figure 5.3f),

based on Eq. 5.11 and Eq. 5.12. The step boundary is clearly imaged in both images.

Acquisition plane
(a)

(b)

Added reflector

(c)

V(km/s)

(b)

(c)

(a)(d)

(e)(e)

(f)

(a)

(b)

(c)

Figure 5.3: (a) Two-layered(1.5km/s & 2.5 km/s) velocity model. (b) Constant migration velocity
(1.5 km/s). (c) Modified migration velocity, with an added reflector. (d) Traditional RTM image I.
(e) Modified RTM image I f inal

f wd . (f) Modified RTM image I f inal
bwd .
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5.4.2 Fault model one

In our second example, we use a multi-layered model (Figure 5.4a) with a vertical fault in the

middle. The fault is located at x = 4 km. This velocity model is similar to the model in Figure 13

used by Malcolm et al. (2009). The model consists of a 400 by 800 grid. The grid size is 10 m.

The 400 sources range from 0 km to 7.8 km. For each source, there are 400 receivers ranging from

0 km to 7.8 km. Both the sources and the receivers have a constant interval of 20 m. They are both

located at the depth of 50 m. The source signal is a Ricker wavelet. It has a main frequency of 15

Hz. The total recording time length is 5 s.

For traditional RTM imaging, we use the smoothed migration velocity (Figure 5.4b) to run the

forward and backward modeling. For the modified RTM, we build a modified migration velocity

(Figure 5.4c) for forward modeling. There is a strong reflector in the model that can be easily

picked out from the image of traditional RTM. For backward modeling, we still use the smoothed

migration velocity (Figure 5.4b). In the modified RTM method, we get the image using Eq. 5.11.
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Added reflector

(a)

(b)

(c)

Acquisition plane V(km/s)

Figure 5.4: (a) True velocity model. The dashed line indicates the acquisiotn plane. (b) Smoothed
migration velocity. (c) Modified migration velocity with a reflector added.
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In the traditional RTM image (Figure 5.5a), the fault is not clearly imaged. In comparison, for the

modified RTM image (Figure 5.5b), the fault is easily observable.

(a)

(b)

Figure 5.5: (a) Traditional RTM image I. (b) Modified RTM image I f inal
f wd .
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5.4.3 Fault model two

In our third numerical example, the high-angle fault model (Figure 5.6) is built from a partial area

in the acoustic Marmousi model. The fault model is 3 km vertically and 4 km horizontally. The

grid size is 10 m. There are 100 sources evently distributed along the surface. For each source,

there are 200 receivers from 0 km to 3.98 km with a constant interval of 20 m.

x (km)

z 
(k

m
)

V 
(k

m
/s

)

Figure 5.6: True velocity model. The red line at the top denotes the acquisition plane.

We produce a reflectivity model (Figure 5.7) using the velocity model and the constant density

model (1 kg/m3). Convolving a source wavelet with the vertical reflectivity model (Figure 5.7),

we produce a zero-offset image (Figure 5.8) as a benchmark image for the conventional RTM

image and the asymmetrical RTM image.
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Figure 5.7: Reflectivity model which is derived from the true velocity model in Figure 5.6.

x (km)

z 
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Figure 5.8: Zero-offset RTM image from the reflectivity model in Figure 5.7.
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The smoothed velocity model (Fiugre 5.9) is acquired by smoothing the origional velocity model

using a 2D Gaussian smooth function. We ran the traditional RTM algorithm using the smoothed

velocity model to produce an RTM image (Figure 5.10). The RTM image showed clearly on the

sub-horizontal reflections along the horizontal axis from 1 km to 3.98 km. However, the steep fault

that went through from the top part to the base part of the model was hard to be imaged. It would

be difficult to interpret the fault location just based on the traditional RTM image (Figure 5.10).

Based on the asymmetrical RTM method, we were able to utilize the second scattered waves to

image the high-angle fault. By extracting different reflectors in the tradtional RTM image and

add the corresponding velocity perturbations at different depths, we could use the different second

order scattered waves to image the specific part of the fault. The first reflecor (reflector01) we

extracted from the image is at a depth of around 2.5 km. Then we added velocity perturbation

at this reflector location in the velocity model. The amplitudes of the velocity perturbation is

propotional to the positive amplitudes along the reflector in the RTM image (Figure 5.10). Using

the modified velocity model (Figure 5.11), The modified RTM image I2nd_Order
f wd01 (Figure 5.12) of

the fault using Eq. 5.11 was obtained. The lower part of the fault plane was imaged clearly in

I2nd_Order
f wd (Figure 5.12). Similarly, we chose the second reflector (reflector02) at a shallow depth

to image the shallow part of the fault. Using the modified velocity with the velocity perturbation

added at the location of reflector02 (Figure 5.13), we imaged the shallow part of the fault I2nd_Order
f wd02

(Figure 5.14) successfully.
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Figure 5.9: Smoothed velocity model.
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Figure 5.10: Traditional RTM image from the smoothed velocity model.
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Figure 5.11: Modified velocity model by adding velocity perturbations at the location of
reflector01.

x (km)

z 
(k

m
)

Figure 5.12: Modified RTM image I2nd_Order
f wd01 using velocity model in Figure 5.11.
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Figure 5.13: Modified velocity model by adding velocity perturbations at the location of
reflector02.
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Figure 5.14: Modified RTM image I2nd_Order
f wd02 using velocity model in Figure 5.13.
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Summing the images I2nd_Order
f wd01 and I2nd_Order

f wd02 together, we formed the final image I2nd_Order
f wd f inal

(Figure 5.15). Compared with the traditional RTM image (Figure 5.10), the image I2nd_Order
f wd f inal

shows the fault reflection clearly to assist the geological interpretation. Based on this example,

we showed that it is possible to utilize the second order scattering waves and image the steep fault

in a relative complex geological model.

x (km)

z 
(k

m
)

Figure 5.15: Modified RTM image I2nd_Order
f wd f inal

.

5.5 Discussion

High-fidelity imaging of high-angle faults in the subsurface is a challenging topic in seismic

imaging industry even if we were given the correct migration velocity and accurate reverse time

migration (RTM) operator. We showed a simple modified RTM method to image the vertical

fault planes. The success of the modified RTM method is due to that a previously imaged
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reflector is added into the velocity model as a perturbation of the smooth background velocity.

Such an additional information of the velocity model contributes to utilizing the second order

scattering waves in our proposed asymmetrical RTM. In the traditional imaging methods, primary

reflections are assumed to be the only useful information when forming an image. Multiples

are considered as noise and removed during the pre-processing. However, in our asymmetrical

RTM, the second-order scattering waves are considered as signal to delineate high-angle faults. It

provides a new way to exploit multiples in imaging just by velocity model building, which can be

easily adapted to the current imaging algorithms.

5.6 Conclusions

We have developed a modified RTM imaging method (the asym-RTM) to image the fault directly.

Simply by incorporating a calculated reflector of the traditional RTM image into the smoothed

background velocity, we can utilize the second order scattering events to form the fault image in

the asym-RTM. In the two numerical examples, we imaged the vertical faults with high fidelity.
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6 Conclusions and future work

6.1 Conclusions

In this dissertation, two new algorithms were developed in order to utilize multiply scattered waves

to characterize fractures and image faults respectively. For fracture characterization, the Gaussian

wave packet (GWP) is chosen to approximate local plane waves and interact with fractures locally.

The resultant multiply scattered waves are used to characterize the fractures. For fault imaging,

the asymmetrical reverse time migration is proposed to employ second-order scattered waves for

imaging the faults directly in the same way as the sub-horizontal reflectors are imaged.

To implement GWP in fracture characterization, we studied its diffraction-resistant property

relative to the propagation distance in both homogenous and heterogeneous media. During the

process of synthesizing GWP data from the point-shot data, we considered the effects of noise,

statics, and point-source intervals on the final synthesized GWP. A local image was produced

from the synthesized GWP to demonstrate its directionality and localization along the propagation

path. When the GWP was applied to characterize fractures, we did two numerical tests to prove

its feasibility. In the first test, three sets of fractures with different spacing at different horizontal

locations were recovered. In the second test, two sets of fractures with different spacing at different

vertical locations were successfully detected.

In fault imaging, we did three numerical tests to prove the feasibility of the asym-RTM. The first

numerical model is a simple step model which is widely used in the literature for fault imaging.
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The second numerical model is a vertical fault in horizontal layers. The third one is a high-angle

fault in a complex geolocical background. For all these models, we have imaged the fault clearly

and correctly using asym-RTM.

6.2 Future work

For fracture characterization, we noticed that the source interval is important to synthesize a proper

GWP from the point shot gathers. Seismic data interpolations should be useful before applying the

synthesis of GWP. Extending fracture characterization from 2D to 3D needs to be further studied.

In our fracture characterization method, we assume that there is no free surface effect. However,

the free surface effect in reality may generate strong multiples, and wave type conversions (P to S

and S to P). It will be difficult to process and remove all unwanted waves just based on the pressure

data. Due to the improvements in seismic acquisition, we may be able to remove waves caused by

the surface effect using recorded data with 4-component receivers. This research direction of free

surface effects should be explored too.

The theory and method of asymmetrical reverse time (asym-RTM) migration was proposed at first

only for imaging steep faults. It should be easy to apply asym-RTM in salt flank imaging which is

a difficult task in traditional seismic imaging.

For both the fracture characterization and fault imaging, further applications with real datasets

should be performed.
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In traditional seismic imaging, multiply scattered waves are treated as noise and need to be

suppressed during preprocessing. Though we only utilized multiply scattered waves in two

applications, it is promising to apply multiply scattered waves in many other aspects of seismic

imaging.
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