
Enabling Efficient Neural Network Computation

Via Hardware And Software Co-Design

by

Xingyao Zhang

A dissertation submitted to the Department of Electrical and Computer Engineering,

Cullen College of Engineering

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Electrical Engineering

Chair of Committee: Xin Fu

Committee Member: Jinghong Chen

Committee Member: Miao Pan

Committee Member: David Jackson

Committee Member: Xuqing Wu

University of Houston
August 2020

Copyright 2020, Xingyao Zhang

ABSTRACT

In recent years, the neural networks have achieved great successes in the many area, e.g.

automotive driving, medical and Intelligent Personal Assistants (IPAs). Among the neural

network models, Long-Short Term Memory network (LSTM) and Capsule Network (Cap-

sNet) are popular but exhibit low efficient when processed on the hardware device.

In this dissertation, I introduce two hardware and software co-design approaches to

efficiently execute the inference stage of the LSTM and the CapsNet. In the first work,

we observe that LSTMs exhibit quite inefficient memory access pattern when executed

on mobile GPUs due to the redundant data movements and limited off-chip bandwidth.

To address the redundancy, we propose inter-cell level optimizations to improve the data

locality across cells with negligible accuracy loss. To relax the pressure on limited off-

chip memory bandwidth, we propose intra-cell level optimizations that dynamically skip

the loads and computations of rows in the weight matrices with trivial contribution to

the outputs. We also introduce a light-weighted module to the GPUs architecture for the

runtime row skipping in weight matrices.

In the second work, CapsNet execution is observed low efficiency due to the execution

features of their routing procedure, including massive unshareable intermediate variables

and intensive synchronizations. we propose the software-hardware co-designed optimiza-

tions, SH-CapsNet, which includes the software-level optimizations named S-CapsNet and

a hybrid computing architecture design named PIM-CapsNet . In software-level, S-CapsNet

reduces the computation and memory accesses by exploiting the computational redundancy

and data similarity of the routing procedure. In hardware-level, the PIM-CapsNet leverages

the processing-in-memory capability of today’s 3D stacked memory to conduct the off-chip

in-memory acceleration solution for the routing procedure, while pipelining with the GPU’s

on-chip computing capability for accelerating CNN types of layers in CapsNet.

iii

TABLE OF CONTENTS

ABSTRACT iii

LIST OF FIGURES viii

1 Introduction 1

2 Background 4
2.1 Long-Short Term Memory Networks (LSTMs) 4

2.1.1 Recurrent Neural Networks . 4
2.1.2 LSTM Computation . 5
2.1.3 LSTM Execution on Mobile GPUs 7

2.2 Capsule Network (CapsNet) . 8
2.2.1 CapsNet Structure . 9
2.2.2 Essential Mechanism For Avoiding Feature Loss: Routing Procedure

(RP) . 10

3 Towards Memory Friendly Long-Short Term Memory Networks (LSTMs)
on Mobile GPUs 13
3.1 The Memory Bottleneck . 13

3.1.1 The Inter-Cell Level Memory Bottleneck: Redundant Data Movements 14
3.1.2 The Intra-Cell Level Memory Bottleneck: Limited Off-Chip Bandwidth 15

3.2 Inter-Cell Level Optimizations . 15
3.2.1 The Irrelevance Between Two LSTM Cells 16
3.2.2 LSTM Layer Division . 17
3.2.3 LSTM Layer Reorganization . 19
3.2.4 The Implementation . 22

3.3 Intra-Cell Level Optimizations . 23
3.3.1 Dynamic Row Skip . 23
3.3.2 The Implementation . 24

3.4 Evaluation . 26
3.4.1 Experimental Setup . 26
3.4.2 The Effectiveness of the Overall System 29
3.4.3 Performance-Accuracy Trade-offs . 31
3.4.4 Impact of Model Capacity . 33
3.4.5 User Study . 33
3.4.6 Overhead Analysis . 34

4 Enabling Highly Efficient Capsule Networks Processing Through A
PIM-Based Architecture Design 35
4.1 Characterization and Analysis . 35

4.1.1 Overall Evaluation for CapsNet Inference 35
4.1.2 Root Causes for Inefficient RP Execution 37

4.2 S-CapsNet: Software Optimizations . 40
4.2.1 Key Observations . 40

iv

4.2.2 RP Execution Compression . 44
4.3 Architectural-Level Opportunity: Processing-in-Memory + Pipelining . . . 47
4.4 PIM-CapsNet: Architecture-level Optimization 49

4.4.1 Inter-Vault Level Design . 49
4.4.2 Intra-Vault Level Design . 55
4.4.3 Contention Reduction in CapsNet Design 59

4.5 Evaluations . 62
4.5.1 Experimental Setup . 62
4.5.2 Effectiveness of SH-CapsNet . 64
4.5.3 Compression Schemes Comparison 67
4.5.4 Effectiveness of Intra-Vault and Inter-Vault Level Designs 68
4.5.5 Sensitivity to PE Frequency Scaling 69
4.5.6 Overhead Analysis . 70

5 Future Works: Improving Computation Efficiency for LSTM Training 72
5.1 Reducing LSTM Backpropagation Workloads 72
5.2 Insignificant cell skipping within LSTM BP layer 74
5.3 Reducing insignificant computations within LSTM BP cell 75

6 Related Works 77

7 Conclusions 79

BIBLIOGRAPHY 81

v

LIST OF FIGURES

1 The schematic of one RNN layer (left) and its unrolled model (right). The
cell represents the operations of mapping the inputs to the outputs. In the
unrolled model (right), the cell 0 represents cell at timestamp 0 and so on. . 4

2 The schematics of (a) the CNN convolution (Conv) layer, and (b) the CNN
fully connected (FC) layer. 5

3 The LSTM cell schematic. 6
4 The comparison of neural networks in identifying lung cancer cells, where

CapsNet outperforms the traditional CNN on detection accuracy. The heat
maps indicate the detected features. 8

5 The computation diagram of CapsNet for MNIST. 9
6 Dynamic Routing Procedure (RP) in CapsNet: describing computation flow

and multiple ways for parallel processing. 9
7 The contribution of each major factor to the pipeline stall cycles when exe-

cuting Sgemv(). 13
8 The sketch map of the kernel execution for the LSTM layer. 14
9 Utilization of on-chip and off-chip memory when executing Sgemv(). . . . 15
10 Sigmoid activation function and tanh activation function. 16
11 The overview of the inter-cell level optimization. 17
12 The normalized performance of one LSTM layer and shared memory band-

width utilization as the tissue size increases. 20
13 The implementation of the inter-cell level optimizations. 20
14 Irrelevant rows in weight matrix Uf,i,c that have trivial impact on cell output

ht. 24
15 The architecture of CTAs reorganization module. 26
16 The evaluation diagram for our optimizations. 27
17 The (a) speedup and (b) energy saving achieved by our system when applying

inter-cell level optimizations, intra-cell level optimizations and the overall
system with the combined optimizations. 29

18 Per-layer speed up and energy saving when applying the inter-cell level opti-
mizations. 30

19 (a) Weight matrix compression ratio, (b) speed up and (c) energy saving
when applying different weight compression schemes. 30

20 The performance-accuracy trade-offs of LSTMs for BABI with (a) different
hidden unit sizes; (b) different input lengths. Each line represents a configu-
ration of (hidden unit size - input length) pair. 32

21 Performance-Accuracy trade-offs under different sets of thresholds across the
different applications. 32

22 The user satisfaction score on different schemes. 33
23 The overall execution time breakdown of CapsNets on GPU across different

layers. Red line represents the actual inference time. 36
24 The breakdown for pipeline stall cycles during RP execution on Tesla P100

Pascal GPU. 37

vi

25 (a) Ratio of intermediate variables’ size to on-chip storage of different GPUs;
(b) the impact of on-chip storage sizes of state-of-the-art GPUs on RP’s exe-
cution. A: 1.73MB (K40m), B: 5.31MB (Tesla P100), C: 9.75MB (RTX2080Ti),
D: 16MB (Tesla V100). 38

26 The impact of memory bandwidth on the overall RP performance. GDDR5:288GB/s
(K40m), GDDR5X: 484GB/s (GTX 1080Ti), GDDR6: 616GB/s (RTX 2080Ti),
HBM2: 897GB/s (Tesla V100). 39

27 The pattern of the capsule formation from feature map neurons (left part).
Such pattern causes the information similarity between capsules (right part).
Note that the similarity could decrease with capsule-capsule distance increase. 41

28 The average similarity across the coefficients for different datasets. D1/D2/D3
represent the distance of the corresponding input capsules. 42

29 The heat map displays the average coefficients similarity for the different
capsules with its adjacent capsules. Representative results are generated
from (a) Caps-MN1 and (b) Caps-CF1. 42

30 The means (x-axis) and variations (y-axis) of the similarity between the same
coefficients from adjacent iterations. 43

31 The Diagram of RP compression scheme: (a) simple compression, (b) Importance-
aware compression with different EssCoe/SimCoe region identifications. Each
block represents the coefficients corresponding to certain input capsule. The
blank coefficients are those to be compressed, the green coefficients are Sim-
Coe, while blue ones are EssCoe. 45

32 Left: HMC Organization. Right: HMC Block Diagram. The Red dashed
box marks the vault structure. 48

33 The overview of PIM-CapsNet Design. 49
34 The execution diagram for the RP procedure with B-dimension distribution.

The workloads in green blocks can be split across vaults, but workloads in
purple blocks cannot be distributed via B-dimension. 54

35 Intra-vault level Architecture Design. 56
36 (a) An example of transferring the exponent representation A (i.e., byc+ b)

and fraction representation B (i.e., 2y−byc − 1) to the exponential function’s
result C in FP32 format. (b) Combining the exponent representation A and
the fraction representation (i.e., D that transferred from B), and applying a
unified bit shifting to obtain the exponential function’s result C. 57

37 (a)The default address mapping of 8GB in HMC Gen3; (b) Our address
mapping. 59

38 The Evaluation Infrastructure. 62
39 The (a) speedups and (b) normalized energy consumption of different designs

on the RP execution. 65
40 The (a) speedups and (b) normalized energy consumption of different design

on entire CapsNet execution. 66
41 The accuracy loss (bar) and speedup (line) when implementing different com-

pression schemes for the RP execution on the baseline GPU. The Simple-Dn
represents the simple compression scheme with the reuse-distance of n, and
the IAC is the importance-aware compression scheme. 68

vii

42 The breakdown of the factor to (a) normalized performance and (b) normal-
ized energy consumption when performing RP execution on different PIM
designs. 70

43 The speedup (heat map) achieved by different workloads distribution dimen-
sions (X-axis) under different HMC execution frequency. Red means better
improvement. 71

44 LSTM BP workload reduction with different LSTM fine-tuning cell patterns. 72
45 An example of insignificant computation identification for both DIC (1 ∼ 4)

and SIC (5) during the execution of W � δgates = δx and δgates⊗x = ∇W
from BP of LSTM training. The colored elements are removable, and the
dashed boxes indicate the insignificant computations located via insignificant
data. 75

viii

1 Introduction

Recently, machine learning has bloomed into rapid growth and been widely applied

in many areas, including medical [1, 2], security [3], social media [4], engineering [5] and

etc. These applications adopt different neural network models. There are three major

models: 1. convolutional neural network (CNN) are widely used to support general image

identifications. 2. Recurrent neural networks (RNNs), especially one of their forms –

Long-Short Term Memory networks (LSTMs), are becoming the core machine learning

technique applied in the natural language processing (NLP) based IPAs. 3. Capsule network

(CapsNet) exhibits extraordinary ability for precise human life related recognition tasks.

While many works propose the CNN optimizations, LSTM and CapsNet remain low

efficient. We observe that LSTMs exhibit quite inefficient memory access patterns and face

two serious memory bottlenecks when executed on mobile GPUs. (1) Redundant data

movements: as a natural feature of LSTMs, some weight matrices are shared by all the

cells (basic units in RNNs, corresponding to neurons in CNNs) in one LSTM layer. And

all cells have to be processed in-order in each layer due to the context link (i.e., the data

dependence) between every two adjacent cells. Given the limited mobile GPUs on-chip

storage, this sequential execution causes redundant loads from the off-chip memory for the

shared weight matrices across cells. (2) Limited off-chip bandwidth: the relatively large

working set per LSTM cell also causes severe pressure to the off-chip memory bandwidth.

Both these two bottlenecks significantly extend LSTM execution time and cause high power

consumption on mobile GPUs. Unfortunately, previous proposed technologies on CNNs

cannot effectively address these challenges as LSTMs have completely different computation

patterns from CNNs (See detailed comparison between LSTMs and CNNs in Section 2.1.1).

On the other hand, Because CapsNets execution exhibits a high percentage of matrix

operations, state-of-the-art GPUs have become primary platforms for accelerating CapsNets

by leveraging their massive on-chip parallelism and deeply optimized software library [6,7].

1

However, processing efficiency of CapsNets on GPUs often cannot achieve the desired level

for fast real-time inference. To investigate the root causes of this inefficiency, we conduct a

comprehensive performance characterization on CapsNets’ execution behaviors on modern

GPUs, and observe that the computation between two consecutive capsule layers, called

routing procedure (Section 2.2.2), presents the major bottleneck. Through runtime profiling,

we further identify that the inefficient execution of the routing procedure originates from

(i) tremendous data access to off-chip memory due to the massive unshareable intermediate

variables, and (ii) intensive synchronizations to avoid the potential write-after-read and

write-after-write hazards on the limited on-chip storage. These challenges are induced

by the unique features of the routing procedure execution, and cannot be addressed well

via common NN optimization techniques [8–19] as well as software-level on-chip memory

management (e.g., register manipulation or shared memory multiplexing).

To address the inefficient execution of the LSTM and CapsNet, I propose two hardware

and software co-design approaches via modifying the execution flow and enabling processing-

in-memory technique, respectively. To summarize, I make the following contributions:

� We observe that memory is the bottleneck for LSTMs on mobile GPUs. It is mainly

caused by the frequent data re-loads across sequentially processed LSTM cells, and

the large size of the weight matrices per cell. We also observe the weak context links

between some adjacent cells, and leverage this feature to explore the inter-cell level

optimizations that intelligently parallelize the processing of the LSTM cells, hence,

reducing the data re-loads with user-imperceptible accuracy loss. Besides, We propose

intra-cell level optimizations that dynamically skip the loads and computations of the

trivial weight matrix rows with negligible contribution to the outputs. We introduce

a light-weighted module to the GPUs architecture for the runtime row skipping in

weight matrices. The experimental results show that our proposed techniques achieve

on average 2.54x (upto 3.24x) performance improvement and 47.23% energy saving

on the entire system with only 2% accuracy loss that is generally user imperceptible,

2

comparing with the state-of-the-art LSTM execution on mobile GPUs. And our opti-

mizations exhibit the strong scalability with the increasing input data set. Our user

study also shows that our designed system delivers excellent user experiences.

� We conduct a comprehensive characterization study on CapsNet inference on modern

GPUs and identify its root causes for execution inefficiency. Based on the inter-

esting insights from the characterization and further algorithm analysis, we propose

the software-hardware co-designed optimizations, SH-CapsNet, which includes the

software-level optimizations named S-CapsNet and a hybrid computing architecture

design named PIM-CapsNet . In software-level, S-CapsNet reduces the computation

and memory accesses by exploiting the computational redundancy and data sim-

ilarity of the routing procedure. In hardware-level, the PIM-CapsNet leverages the

processing-in-memory capability of today’s 3D stacked memory to conduct the off-chip

in-memory acceleration solution for the routing procedure, while pipelining with the

GPU’s on-chip computing capability for accelerating CNN types of layers in CapsNet.

Evaluation results demonstrate that either our software or hardware optimizations

can significantly improve the CapsNet execution efficiency. Together, our co-design

can achieve greatly improvement on both performance (3.41x) and energy savings

(68.72%) for CapsNet inference, with negligible accuracy loss.

3

2 Background

2.1 Long-Short Term Memory Networks (LSTMs)

2.1.1 Recurrent Neural Networks

Cell = Cell 0 Cell 1 Cell 2 Cell t

......

......

Context
Link

xt

ht h0 h1 h2 ht

x0 x1 x2 xt

Figure 1: The schematic of one RNN layer (left) and its unrolled model (right). The cell
represents the operations of mapping the inputs to the outputs. In the unrolled
model (right), the cell 0 represents cell at timestamp 0 and so on.

One RNN layer usually contains one cell which integrates the operations of mapping the

inputs to the outputs, as shown in Fig. 1 (left). The cell produces the outputs periodically

using not only the activations from the last layer, but also the historic self-output, also

known as context link (highlighted by the red line in Fig. 1). This feature helps model

the context dependency within the input activations in the sequence modeling tasks (e.g.

language modeling tasks). In order to simplify the analysis, the RNN layer can be unrolled

into a sequence of cells to represent the cell states at different timestamps, as shown in

Fig. 1 (right). To clarify, we focus on the RNN unrolled layer in this study, and a cell

in the layer means the unrolled cell at certain timestamp. Correspondingly, we refer the

previous/next cell in the layer as the unrolled cell at the previous/next timestamp.

Even the RNN unrolled layer looks similar to CNN neural network layers, e.g. the

convolution (Conv) layer and the fully connected (FC) layer, it has a completely different

4

Conv op Conv op

x0 x1 x2 x3

h0 h1

FC op FC op FC op

x0 x1 x2

h0 h1 h2

(a) Conv layer (b) FC layer

Figure 2: The schematics of (a) the CNN convolution (Conv) layer, and (b) the CNN fully
connected (FC) layer.

computation pattern. Fig. 2 also demonstrates the schematics of the Conv layer and the FC

layer from CNNs for comparison. Firstly, the input formats of these three layers are totally

different: the Conv layer processes multiple matrix sets, and the FC layer takes a bunch

of single activations as the input while the RNN unrolled layer processes the activation

matrix with each cell processing an activation vector. Furthermore, the Conv layer and the

FC layer produce the output activations by only using the layer inputs, which are all ready

before the layer begins. Thus, the Conv/FC operations of the same layer can be parallelized.

However, the operations of each cell in the RNN unrolled layer involve one more dimension

besides the layer input and output, which is the context link between the adjacent cells (red

line in Fig. 1). Therefore, instead of concurrently processing all layer inputs, the RNN layer

can only iteratively process partial input activations at each timestamp. In other words,

only one vector in an input activation matrix can be processed at a time, and the processing

of the following vector should wait until the processing of the previous vector finishes.

2.1.2 LSTM Computation

There are mainly three types of RNNs: Simple RNNs (or vanilla RNNs), Long-Short

Term Memory networks (LSTMs) [20] and Gated Recurrent Unit networks (GRUs) [21].

Simple RNNs can hardly connect the useful information between two inputs with the large

5

𝑊𝑊𝑓𝑓 𝑊𝑊𝑖𝑖 𝑊𝑊𝑐𝑐 𝑊𝑊𝑜𝑜

𝑈𝑈𝑓𝑓

𝑈𝑈𝑖𝑖

𝑈𝑈𝑐𝑐

𝑈𝑈𝑜𝑜

+

+

+

+

𝑖𝑖𝑡𝑡

𝐶𝐶𝑡𝑡

𝑓𝑓𝑡𝑡 X

X

𝑂𝑂𝑡𝑡

X

ℎ𝑡𝑡

ℎ𝑡𝑡−1

Output Gate

Input Gate

𝑥𝑥𝑡𝑡

Forget Gate

Cell State Value

𝑐𝑐𝑡𝑡−1

2
1

3

𝑏𝑏𝑓𝑓

𝑏𝑏𝑖𝑖

𝑏𝑏𝑐𝑐

𝑏𝑏𝑜𝑜

Figure 3: The LSTM cell schematic.

time interval [22]. LSTMs and GRUs were introduced to address such problem by setting

gates inside the RNN cell to filter the information from both the input and the historical

self-output, thus only the useful information is well kept through the unrolled cells to enable

the long-term “memory”. The LSTM cell has more gates than the GRU cell, which increases

the computation complexity but ensures a better accuracy. In this paper, we focus on the

analysis and optimizations of LSTMs execution on mobile GPUs, the proposed methods

can also be applied to GRUs with simple adjustment.

Fig. 3 shows the zoom-in view of one LSTM cell located at the tth timestamp. There are

three gates in one LSTM cell: Input Gate it, Forget Gate ft and Output Gate ot. They help

modify the cell state, which “stores” context information over the arbitrary time interval.

The LSTM cell takes three inputs: the layer input xt, the historic self-output ht−1, and the

cell state value of the previous cell ct−1; they are all in the form of vector. The cell also

has two outputs: the cell state value of the current cell ct and the output activations ht;

both them are in the form of vector. The following equations represent all the computations

within one cell in LSTMs:

ft = σ(Wfxt + Ufht−1 + bf), (1)

it = σ(Wixt + Uiht−1 + bi), (2)

6

Algorithm 1 The LSTM Execution on Mobile GPUs

1: for each layer in LSTM do
2: Kernel Sgemm(Wf,i,c,o, x); . 2
3: for each cell in layer do
4: Kernel Sgemv(Uf,i,c,o, ht−1); . 1
5: Kernel lstm− ew(ft, it, ct−1, ct, ot, ht); . 3
6: end for
7: end for

ct = ft · ct−1 + it · tanh(Wcxt + Ucht−1 + bc), (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

and ht = ot · tanh(ct). (5)

Eq. 1 generates the forget gate ft which will be applied to the cell state value of the

previous cell ct−1. Eq. 2 produces the input gate it which will be merged into the cell state

value of the current cell ct. Eq. 3 updates the old cell state ct−1 to a new cell state ct. Eq.

4 and Eq. 5 output ht based on the cell state ct with the output gate ot filtering the output

information.

2.1.3 LSTM Execution on Mobile GPUs

In modern GPUs with strong backend libraries, e.g. cuDNN [23], the above computa-

tions within one LSTM cell are divided into three parts, as shown in Fig. 3 1 2 3.

In 1, since all the (U ×ht−1) functions from Eq. 1,2,3, and 4 share the same input ht−1,

they are integrated into one matrix-vector multiplication kernel Sgemv(Uf,i,c,o, ht−1)

with weight matrices (Uf , Ui, Uc, Uo) concatenated into an united weight matrix Uf,i,c,o.

Similarly, in 2, all the (W ×xt) computations are combined into an united matrix-vector

multiplication kernel Sgemv(Wf,i,c,o, xt). In large-scale GPUs (e.g. Tesla M40 [24]), cells

from different layers can be executed in parallel as long as they have no data dependence,

e.g. the cell at the jth layer and the t + 1th timestamp can be parallelized with the cell

at (j + 1)th layer at the tth timestamp. However, such layer level parallelism requires a

7

large-size memory to hold the weight matrices of multiple layers, and can be hardly imple-

mented on mobile GPUs (e.g. Tegra X1 [25]) with limited on-chip storage. As a result,

the LSTM layers are processed sequentially on mobile GPUs and the whole layer’s inputs

x1−xn are ready at the beginning of each LSTM layer execution. To gain the matrix multi-

plication efficiency, the originally independent matrix-vector multiplications per cell shown

in 2 are then transformed to one matrix-matrix multiplication kernel Sgemm(Wf,i,c,o, x)

per layer.

Finally, the remaining operations of the cell in 3 are included into one kernel lstm−

element − wise(f, i, c, o), which consists of adding and activation functions for each

individual elements.Algorithm.1 summarizes the state-of-the-art LSTM execution on the

mobile GPUs with the strong backend library (e.g. cuDNN).

2.2 Capsule Network (CapsNet)

Input Image CNN Identification CapsNet Identification

Th
eo

ry
Ex

am
pl

e

Figure 4: The comparison of neural networks in identifying lung cancer cells, where CapsNet
outperforms the traditional CNN on detection accuracy. The heat maps indicate
the detected features.

As shown in Fig. 5 [26], CapsNet inherits the convolutional (Conv) and fully connected

(FC) layers from the standard CNNs, but introduces new layers (i.e., Caps layers) to realize

the concept of “capsule” for better information representation. A capsule is a group of

neurons (Fig. 4) whose activity vector represents instantiation parameters of a specific type

entity (e.g., the location and pose of an object). It introduces equivariance which makes

8

standard CNNs understand rotation and proportional change (e.g., in Fig. 4). CapsNet sig-

nificantly lifts the limitation of happenstance translational invariance of pooling operations

applied in the traditional CNNs, thus being considered to be superior in image segmentation

and object detection [27,28].
b0j

bij

PrimaryCaps Layer DigitCaps Layer Fully-Connected
Layer

Convolutional Layer

Classification Results:
Dog

Reconstruction

dx =

[32 x 32] Input

[20 x 20]

256 channel
[6 x 6] 8D Capsules

32 channel

[10 x 1] 16D Capsules 512 1024 784

Encoder Decoder

25
6

8

32

1
0

16

Child Capsule

Prediction Vector

Voting Results

Weight

Routing
Coefficient Child

CapsulePrediction Vector

Parent Capsule

Weight

Routing
Coefficient

∑ x
Prediction

Vector

Weights
Routing

Coefficients

x

PrimaryCaps Layer
DigitCaps

Layer
Fully-Connected

Layer

Convolutional
Layer

Classification
Results
“3”

Reconstruction

Encode
r

Decode
r

Dynamic
Routing

Procedure

wij

ui

b0j

bij

u0

w00 ×

c00

û00

s0

×

v0

û00 b00×

∑

ui

wi0

× ûi0

ci0

×
ûi0 bi0×

b0j

bij

b0j

bij

u0

w0j ×

c0j

û0j

sj

×

vj

û0j b0j×

∑

ui

wij ×

cij

ûij ×
ûij bij×

...

...

...

...

...

...

...

...

L
C

ap
su

le
s

L
C

ap
su

le
s

Batch
es

...

Batch
es

H
 C

ap
su

le
s

∑

∑

∑

∑

b00

bi0

b0j

bij

S

S

...
...

PrimaryCaps Layer DigitCaps Layer Fully-Connected
Layer

Convolutional Layer

Classification Results:
Dog

Reconstruction

[32 x 32] Input

[20 x 20]

256 channel
[6 x 6] 8D Capsules

32 channel

[10 x 1] 16D Capsules 512 1024 784

Encoder Decoder

25
6

8

32

1
0

16

[28 x 28]

Input

[20 x 20]

256 channel

25
6

[6 x 6] 8D

Capsules

32 channel

32

1
0

16

[10 x 1] 16D

Capsules
512 1024 784

1 2

3

4

5

6

PrimaryCaps
Layer

Final Caps Layer Fully-Connected
Layer

Convolutional
Layer

Reconstruction

Encoding Decoding

Routing
Procedure
(Dynamic
Routing)

[28 x 28]

Input
[20 x 20]

256

channel

25
6

[6 x 6] 8D

Capsules

32 channel

32

1
0

16

[10 x 1] 16D

Capsules
512 1024 784

Classification Results
“3”

Dynamic
Routing

Procedure

PrimaryCaps Layer Last Caps Layer Fully-Connected
Layer

Convolutional
Layer

Reconstruction

Encoding Decoding

Routing Procedure
(Dynamic Routing)

25
6 Low-level

Capsules

32

1
0

16

High-

level

Capsules

512 1024 784
Classification Results

“3”

Input

Input Image

b0j

bij

b0j

bij

u0

w00 ×

c00

û00

s0

×

v0

û00 b00×

∑

ui

wi0

× ûi0

ci0

× ûi0 bi0×

b0j

bij

b0j

bij

u0

w0j ×

c0j

û0j

sj

×

vj

û0j b0j×

∑

ui

wij ×

cij

ûij ×
ûij bij×

...

...

...

...

...

...

...

...

L
C

ap
su

le
s

L
C

ap
su

le
s

...

Batch
es

H
 C

ap
su

le
s

∑

∑

∑

∑

b00

bi0

b0j

bij

S

S

...
...

1 2

3

4

5

6

Batch
es

Figure 5: The computation diagram of CapsNet for MNIST.

b0j

bij

PrimaryCaps Layer DigitCaps Layer Fully-Connected
Layer

Convolutional Layer

Classification Results:
Dog

Reconstruction

dx =

[32 x 32] Input

[20 x 20]

256 channel
[6 x 6] 8D Capsules

32 channel

[10 x 1] 16D Capsules 512 1024 784

Encoder Decoder

25
6

8

32

1
0

16

Child Capsule

Prediction Vector

Voting Results

Weight

Routing
Coefficient Child

CapsulePrediction Vector

Parent Capsule

Weight

Routing
Coefficient

∑ x
Prediction

Vector

Weights
Routing

Coefficients

x

PrimaryCaps Layer
DigitCaps

Layer
Fully-Connected

Layer

Convolutional
Layer

Classification
Results
“3”

Reconstruction

Encode
r

Decode
r

Dynamic
Routing

Procedure

wij

ui

b0j

bij

u0

w00 ×

c00

û00

s0

×

v0

û00 b00×

∑

ui

wi0

× ûi0

ci0

×
ûi0 bi0×

b0j

bij

b0j

bij

u0

w0j ×

c0j

û0j

sj

×

vj

û0j b0j×

∑

ui

wij ×

cij

ûij ×
ûij bij×

...

...

...

...

...

...

...

...

L
C

ap
su

le
s

L
C

ap
su

le
s

Batch
es

...

Batch
es

H
 C

ap
su

le
s

∑

∑

∑

∑

b00

bi0

b0j

bij

S

S

...
...

PrimaryCaps Layer DigitCaps Layer Fully-Connected
Layer

Convolutional Layer

Classification Results:
Dog

Reconstruction

[32 x 32] Input

[20 x 20]

256 channel
[6 x 6] 8D Capsules

32 channel

[10 x 1] 16D Capsules 512 1024 784

Encoder Decoder

25
6

8

32

1
0

16

[28 x 28]

Input

[20 x 20]

256 channel

25
6

[6 x 6] 8D

Capsules

32 channel

32

1
0

16

[10 x 1] 16D

Capsules
512 1024 784

1 2

3

4

5

6

PrimaryCaps
Layer

Final Caps Layer Fully-Connected
Layer

Convolutional
Layer

Reconstruction

Encoding Decoding

Routing
Procedure
(Dynamic
Routing)

[28 x 28]

Input
[20 x 20]

256

channel

25
6

[6 x 6] 8D

Capsules

32 channel

32

1
0

16

[10 x 1] 16D

Capsules
512 1024 784

Classification Results
“3”

Dynamic
Routing

Procedure

PrimaryCaps Layer Final Caps Layer Fully-Connected
Layer

Convolutional
Layer

Reconstruction

Encoding Decoding

Routing Procedure
(Dynamic Routing)

25
6 Low-level

Capsules

32

1
0

16

High-

level

Capsules

512 1024 784
Classification Results

“3”

Input

Input Image

b0j

bij

b0j

bij

u0

w00 ×

c00

û00

s0

×

v0

û00 b00×

∑

ui

wi0

× ûi0

ci0

× ûi0 bi0×

b0j

bij

b0j

bij

u0

w0j ×

c0j

û0j

sj

×

vj

û0j b0j×

∑

ui

wij ×

cij

ûij ×
ûij bij×

...

...

...

...

...

...

...

...

L
C

ap
su

le
s

L
C

ap
su

le
s

...

Batch
es

H
 C

ap
su

le
s

∑

∑

∑

∑

b00

bi0

b0j

bij

S

S

...
...

1 2

3

4

5

6

Batch
es

Figure 6: Dynamic Routing Procedure (RP) in CapsNet: describing computation flow and
multiple ways for parallel processing.

2.2.1 CapsNet Structure

Fig. 5 takes CapsNet-MNIST [28] as an example to illustrate a basic CapsNet struc-

ture. It contains two computation stages: encoding and decoding. The encoding stage is

composed of Conv layers and Caps layers. The convolutional operations are first performed

9

on the data mapping from neurons of the Conv layer to the capsules of the first Caps layer,

which is defined as PrimeCaps layer. It is often followed by at least one other Caps layer.

The data mapping between the capsules of the adjacent Caps layers is performed via the

routing procedure (RP). Finally, the last Caps layer produces the classification information

towards categorization, with each capsule representing one category. Following the encoding

stage, the decoding function includes multiple FC layers which attach to the last Caps layer

for image reconstruction (i.e., improving model accuracy in training or plotting abstract

features in inference) [28].

Algorithm 2 Dynamic Routing Procedure

Input: L capsules u, weight matrix W
Output: H capsules v
1: for all L capsule i & all H capsule j from all input set k:

ûkj|i ← uki ×Wij . Eq. 6
2: for all L capsule i & all H capsule j:

bij ← 0 . Initialize Routing Coeffcients
3: for Routing iterations do
4: for all L capsule i:

cij ← softmax(bij) . Eq. 10
5: for all H capsule j from all input set k:

skj ←
∑

i û
k
j|i × cij . Eq. 7

6: for all H capsule j from all input set k:
vkj ← squash(skj) . Eq. 8

7: for all L capsule i & H capsule j:
bij =

∑
k v

k
j û

k
j|i + bij . Eq. 9

8: end for
9: Return v

2.2.2 Essential Mechanism For Avoiding Feature Loss: Routing Procedure

(RP)

The routing procedure (RP) is introduced to route the information from low-level cap-

sules (or L capsules) to high-level capsules (or H capsules) without feature loss. There have

been several routing algorithms used in routing procedure such as Dynamic Routing [28]

and Expectation-Maximization routing [29]. In this work, we use the popular Dynamic

10

Routing [28] as an example to explain the RP execution.

Fig. 6 and Algorithm.2 demonstrate the computation flow and possible dimensions for

parallelization. Given the kth batched input set, in order to generate jth H capsule, ith

L capsule in this input set (uki) first multiplies with the corresponding weight (Wij) to

generate the prediction vector (ûj|i) (Fig. 6 1):

ûkj|i = uki ×Wij . (6)

Then, these prediction vectors will multiply with their corresponding routing coefficients

(cij) with results aggregated across all L capsules (Fig. 6 2:

skj =
∑
i

ûkj|i × cij . (7)

The non-linear “squashing” function is then implemented on the aggregated results of skj

to produce the jth H capsule vj (Fig. 6 3):

vkj =
||skj ||2

1 + ||skj ||2
skj

||skj ||
. (8)

Note that the vkj can not be considered as the final value of jth H capsule unless the features

of L capsules have been correctly inherited. The information difference between an L and

H capsule can be quantified by the agreement measurement via the scalar production of

the prediction vector ûkj|i and the H capsule vkj (Fig. 6 4), where the “0” output means the

information is precisely inherited. In the case of a large divergence, the agreements will be

accumulated into an intermediate variable bij (Fig. 6 5), which will be used to update the

routing coefficients via the “softmax” function (Fig. 6 6):

bij =
∑
k

vkj û
k
j|i + bij (9)

11

and cij =
exp(bij)∑
k exp(bik)

. (10)

The updated routing coefficients will then be integrated in Eq.(7) to start another iteration

in this routing procedure (Fig. 6 2).

The number of iterations is determined by the convergence of routing coefficients and

set by programmers. Several recent studies indicate that the number of iterations increases

for tasks with large datasets and categories [30, 31]. Once all the iterations complete, the

features of L capsules should have already been routed to the H capsules and ready to

proceed to the following layers.

Summary. Generally, the routing algorithms (e.g., Dynamic Routing, Expectation-

Maximization Routing) share the similar execution pattern and exhibit several core features

in CapsNet routing procedure: (1) The execution of the RP exhibits strong data dependency

and needs to be sequentially processed. (2) The procedure adopts all-to-all computation,

which routes all the L capsules to the H capsules and forms aggregation in all possible

dimensions. (3) The procedure produces a large amount of intermediate variables. (4) The

routing procedure is iteratively processed to generate the dynamic coefficients to pass the

feature information. We will discuss these features in relation to performance characteriza-

tion of CapsNet in Section 4.1, and our optimizations on Dynamic Routing in the following

Sections can be easily applied to other routing algorithms with simple adjustment.

12

3 Towards Memory Friendly Long-Short Term Memory Net-

works (LSTMs) on Mobile GPUs

3.1 The Memory Bottleneck

0%

30%

60%

IMDB MR BABI SNLI PTB MT Average

Co
nt

rib
ut

io
n

to

Pi
pe

lin
e

St
al

ls

Memory Access Lack of Resource Inst_fetch Synchronization Other

Figure 7: The contribution of each major factor to the pipeline stall cycles when executing
Sgemv().

Although several optimizations have been made by GPU backend libraries, the LSTM

execution on mobile GPUs is still inefficient. In this study, we implement the state-of-

the-art LSTM execution on a typical mobile GPU, the Jetson-TX1 board, and observe

that kernel Sgemv dominates the overall LSTM execution time (over 90%). We further

investigate the GPU pipeline stalls during the Sgemv execution. Several factors can cause

the pipeline stall, such as the off-chip memory access, the barrier synchronization and so

on. Fig. 7 plots the contribution of each major factor to the overall pipeline stall cycles

when executing Sgemv kernels (benchmark details are presented in Section 3.4.1). As it

shows, the off-chip memory access is the major contributor. Besides, previous works [32,33]

find that the off-chip memory accesses are also very expensive for mobile GPUs from the

power perspective. In this section, we describe two major memory challenges at both inter-

LSTM-cell and intra-LSTM-cell levels that lead to the performance and power bottleneck

for the efficient LSTM execution on the mobile GPUs.

13

Sgemm

Sgemv

Lstm_ew

Cell 0 Cell 1 Cell 2 Cell 3

...

TimeLayer
Begin

Off-chip
Memory

Weight Matrix
Wf,i,c,o

Weight Matrix
Uf,i,c,o

Figure 8: The sketch map of the kernel execution for the LSTM layer.

3.1.1 The Inter-Cell Level Memory Bottleneck: Redundant Data Movements

As illustrated in Algorithm.1-1, the Sgemv kernel is launched per cell when executing

one LSTM layer. The united weight matrix Uf,i,c,o is then repeatedly requested by the

Sgemv kernels across cells at different timestamps in the layer. Unfortunately, the matrix

Uf,i,c,o exhibits quite poor data locality in the GPUs on-chip storage, leading to the redun-

dant data movements and intensive off-chip memory accesses, as described in Fig. 8. This

is mainly caused by the unique LSTM execution pattern: as shown in Fig. 3-1, the Sgemv

kernel at current cell takes ht−1 as the input which is data dependent on the previous cell in

the same layer. This prevents the Sgemv kernels across cells from being integrated into one

matrix-matrix multiplication kernel, which only needs one-time load for the weight matrix

and being processed once per layer. As a result, each Sgemv kernel accesses the weight ma-

trix separately. Even worse, the limited on-chip storage fails to hold such large-size weight

matrix, causing the frequent loads and evictions for the useful data. We also observe that

the size of the actually loaded data is upto 100X larger than the original data size, which

indicates the quite in-efficient data re-loads. Moreover, the redundant data movements

become severer as the number of cells increases in the layer since adding one cell requires

additional loads for the united weight matrix.

To efficiently minimize the redundant data loads and improve the data locality across

cells, we propose the inter-cell level optimization scheme called LSTM layer reorganization.

It divides one LSTM layer into multiple parallel sub-layers, cells from different sub-layers

14

become independent and are further combined to enable the reuse on the weight matrix

Uf,i,c,o. More details are described in Section 3.2.

3.1.2 The Intra-Cell Level Memory Bottleneck: Limited Off-Chip Bandwidth

0%

50%

100%

IMDB MR BABI SNLI PTB MT

U
til

iza
tio

ns
Off-chip Bandwitdh On-chip Bandwidth

Figure 9: Utilization of on-chip and off-chip memory when executing Sgemv().

The Sgemv kernel inside the cell requires to load the united weight matrix (Uf,i,c,o) with

numerous elements. However, the limited off-chip memory bandwidth of mobile GPUs fails

to fulfill such high demands. Fig. 9 plots both off-chip and on-chip bandwidth utilization

during the Sgemv kernel execution. As it shows, the off-chip bandwidth is almost fully

utilized, while the on-chip bandwidth is lightly consumed.

To release the off-chip bandwidth limitation, we propose to effectively shrink the input

data size for the Sgemv kernel. We explore the dynamic row skip scheme by leveraging the

unique computation features of the LSTM cell to dynamically skip the data loads for rows

in the united weight matrix with trivial contribution to the final outputs. More details are

presented in Section 3.3.

3.2 Inter-Cell Level Optimizations

In this section, we focus on the inter-cell level optimizations to enhance the data

locality across cells in one LSTM layer.

15

0
0.25

0.5
0.75

1

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.5
0

0.5
1

-5 -4 -3 -2 -1 0 1 2 3 4 5

hard
sigmoid

Sensitive Area Sensitive Area

Sigmoid Function tanh Function

Insensitive
Area

Insensitive
Area

Insensitive
Area

Insensitive
Area

Figure 10: Sigmoid activation function and tanh activation function.

3.2.1 The Irrelevance Between Two LSTM Cells

The sigmoid function (σ) and hyperbolic tangent function (tanh) are used as the activa-

tion functions for the LSTM cell computations [34]. The sigmoid function takes the input

within the range of [−∞,+∞] and its output is within the range of [0, 1], as shown in Fig.

10(a). Interestingly, when the input is in the range of [−2, 2], its output is nearly linear

to the input, we refer it as sensitive area, as shown in Fig. 10(a); on the other hand, its

output is insensitive to the input within the range of [−∞,−2] and [2,+∞], we refer it as

insensitive area. This is also the case for the tanh function as shown in Fig. 10(b). In some

neural network frameworks, the sigmoid function is modeled by the hard sigmoid function

(shown in Fig. 10(a)) to accelerate the computations [35]. The boundaries to partition the

sensitive and insensitive areas fit both sigmoid and fast sigmoid functions.

According to Eq. 5, the range of the previous cell’s output ht−1 is [−1, 1] because

ot−1 is the output of sigmoid function (shown in Eq. 4) with the range of [0, 1] and the

output of tanh(ct−1) is within the range of [−1, 1]. As shown in Eq. 1, ht−1 is also the

input data for the current cell which will be multiplied to the matrix Uf , and the range

of the multiplication outputs can be derived once Uf is known. Moreover, the range of

the sigmoid function’s input in Eq. 1 can further be derived once (Wf,i,c,o × xt) is finished

at the beginning of the layer processing. And when the range of the input is [2,+∞],

one would easily tell that the output (i.e. ft in Eq. 1) is always close to 1 based on the

feature of sigmoid function discussed above. In other words, the output ft is irrelevant to

16

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4

Weight Matrix
Uf,i,c,o

Off-chip
Memory

Original
LSTM Layer

(a1) Breakpoints

Search

(a1) Breakpoints

Search

Cell 0 Cell 1 Cell 2

Cell 3

Cell 8

Independent
Sub-layers

Strong context link

Weak context link

Cell 5

Cell 7

Weak
Context Link

Weak
Context Link

Strong
Context Link

Cell 6 Cell 7 Cell 8
Weak

Context Link

Cell 4 Cell 5 Cell 6
(a2)

Accuracy

Recovery

(a2)

Accuracy

Recovery

Predicted
Context Link

Cell 0Cell 0 Cell 1Cell 1 Cell 2Cell 2
Cell 3Cell 3

Cell 8Cell 8Cell 7Cell 7
Cell 4Cell 4 Cell 5Cell 5 Cell 6Cell 6

Tissue 0 Tissue 1 Tissue 2

Exceed
Maximum
Tissue Size

(b1)

Tissue

Formation

(b1)

Tissue

Formation

(b2)

Tissue

Alignment

(b2)

Tissue

Alignment
Cell 0Cell 0 Cell 1Cell 1 Cell 2Cell 2
Cell 3Cell 3 Cell 7Cell 7 Cell 8Cell 8
Cell 4Cell 4 Cell 5Cell 5 Cell 6Cell 6

Tissue 1 Tissue 2Tissue 0

Weight Matrix
Uf,i,c,o

Off-chip
Memory

Reorganized
LSTM Layer

Reorganized
LSTM Layer

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4

Weight Matrix
Uf,i,c,o

Off-chip
Memory

Original
LSTM Layer

(a1) Breakpoints Search(a1) Breakpoints Search

Cell 0 Cell 1 Cell 2

Cell 3 Cell 4

Independent
Sub-layers

Cell 5

Cell 8

Weak
Context Link

Strong
Context Link

Cell 6 Cell 7 Cell 8

Weak
Context Link

Cell 5 Cell 6 Cell 7
(a2)

Accuracy

Recovery

(a2)

Accuracy

Recovery

Predicted
Context Link

Cell 0Cell 0 Cell 1Cell 1 Cell 2Cell 2

Cell 3Cell 3 Cell 4Cell 4

Cell 8Cell 8
Cell 5Cell 5 Cell 6Cell 6 Cell 7Cell 7

Tissue 0 Tissue 1 Tissue 2

Exceed
Maximum
Tissue Size

(b1)

Tissue

Formation

(b1)

Tissue

Formation

(b2)

Tissue

Alignment

(b2)

Tissue

Alignment
Cell 0Cell 0 Cell 1Cell 1 Cell 2Cell 2

Cell 3Cell 3 Cell 4Cell 4 Cell 8Cell 8

Cell 5Cell 5 Cell 6Cell 6 Cell 7Cell 7

Tissue 1 Tissue 2Tissue 0

Weight Matrix
Uf,i,c,o

Off-chip
Memory

Reorganized
LSTM Layer

Reorganized
LSTM Layer

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4

Weight Matrix
Uf,i,c,o

Off-chip
Memory

Original LSTM Layer

Cell 0 Cell 1 Cell 2

Cell 3

Cell 8

Independent Sub-layers

Cell 5

Cell 7
Weak

Context
Link

Weak
Context

Link

Strong
Context

Link

Cell 6 Cell 7 Cell 8

Weak
Context

Link

Cell 4 Cell 5 Cell 6
(a2)

Accuracy

Recovery

(a2)

Accuracy

Recovery

Predicted
Context Link

Cell 0Cell 0 Cell 1Cell 1 Cell 2Cell 2
Cell 3Cell 3

Cell 8Cell 8Cell 7Cell 7
Cell 4Cell 4 Cell 5Cell 5 Cell 6Cell 6

Tissue 0 Tissue 1 Tissue 2

Exceed
Maximum
Tissue Size

(b1)

Tissue

Formation

(b1)

Tissue

Formation

(b2)

Tissue

Alignment

(b2)

Tissue

Alignment
Cell 0Cell 0 Cell 1Cell 1 Cell 2Cell 2
Cell 3Cell 3 Cell 7Cell 7 Cell 8Cell 8
Cell 4Cell 4 Cell 5Cell 5 Cell 6Cell 6

Tissue 1 Tissue 2Tissue 0

Weight Matrix
Uf,i,c,o

Off-chip
Memory

Reorganized LSTM Layer

(a1) Breakpoints

Search

Figure 11: The overview of the inter-cell level optimization.

the ht−1 values in this case. The similar derivation can be applied to Eq. 2,3,4, and their

outputs it, ct, and ot are irrelevant to the ht−1 values as well. To summarize, when Uf,i,c,o,

(Wf,i,c,o × xt), and bf,i,c,o are known, given that ht−1 is within the range of [−1, 1], the

range of (Wf,i,c,oxt + Uf,i,c,oht−1 + bf,i,c,o) can be derived, and if it falls in insensitive area,

the previous cell’s output ht−1 can be considered as irrelevant to ft, it, ct, and ot, thus,

having no impact to the current cell’s computation. In other words, there is no context link

between these two cells.

3.2.2 LSTM Layer Division

Based on the above observation that the context links between every two cells are not

uniform throughout the LSTM layer, we propose the LSTM layer division scheme which

breaks the context link between cells with no or quite weak link so that a LSTM layer is

divided into multiple independent sub-layers, as shown in Fig. 11(a1). This opens the door

for sub-layer parallelization and reducing the data reloads which will be explored in Section

3.2.3. Though it is weak, the context link is lost between sub-layers which may affect the

final output accuracy, a predicted context link (Fig. 11(a2)) is further applied to the first

cell of each sub-layer (except the first sub-layer) to recover the accuracy.

Breakpoints Search: Theoretically, breaking the context link between two irrelevant

cells has no impact on the output accuracy. However, in most cases, it is hard to find

two consecutive cells in the layer that are completely irrelevant. Breaking the weak links

becomes the main target for the LSTM layer division scheme, and quantitatively justifying

17

Algorithm 3 Relevance Value Acquisition

Input: Hidden Layer Size Dim; Weight Matrices Uf ,Ui,Uc and Uo; Output Vectors
X′f ,X

′
i,X

′
c and X′o from the matrix multiplications (i.e., Wfxt, Wixt, Wcxt, Woxt);

Offset Vectors bf , bi, bc and bo
Output: Relevant Value S
1: S ← 0; . initial the relevance value
2: Df,i,c,o ← sum(abs(Uf,i,c,o));
3: for j ∈ [0, Dim− 1] do
4: Sjf ← min(4,max(X ′jf + bjf +Dj

f + 2, 0));

5: Sji,c,o ← min{
[
2 +min(2, abs(X ′ji,c,o + bji,c,o))

]
,[

min(2, 2 +Dj
i,c,o −max(2, abs(X ′ji,c,o + bji,c,o)))

]
};

6: Sj ← Sjo × (Sjf + Sji × S
j
c);

7: S ← S + Sj ;
8: end for
9: return S;

the relevance between two cells is the first step towards finding the weak context links for

the breakpoints. In this study, we introduce the relevance value S to describes the impact

of precedent cell’s output on current cell. A smaller S implies a weaker link between the

cells and ”0” means totally irrelevant.

Algorithm.3 calculates S for the link between the precedent and current cells. In line 2,

the range [−D,D] is computed for each element in the output vector of matrix multiplication

(Uf,i,c,o×ht−1) in current cell. In line 4-5, the computed ranges, values from the offset vector

bf,i,c,o, and the values from the output vector of matrix multiplications (Wf,i,c,o × xt) in

current cell are used to calculate the range of input values for the activation function. The

range is then compared with the sensitive area to measure the overlapping value between

them. Since there are multiple activation functions in each LSTM cell, in line 6, the range

overlapping values for all activation functions are combined to calculate S for one input

element. Finally in line 7, Ss for all elements in the input vector are summed up to derive

the overall S for current cell.

At the beginning of each LSTM layer, the relevance value Ss for each two cells are

computed since our algorithm does not take any timestamp-based value. Then each S

18

value will be compared with a relevance threshold αinter to determine the weak context

links for current LSTM layer: if S is lower than the threshold, the two cells are considered

as weakly linked which will be selected as the breakpoint.

Accuracy Recovery: We use a pre-determined vector to predict all the context links

lost at the breakpoints (one context link is one vector). Although the predicted vector is not

quite accurate when applying to all breakpoints, it can well recover the application output

accuracy since the weak context links have relatively small impact on the application output

and are insensitive to a small prediction error.

We predict the weak context links by analyzing the distribution of a large set of context

links which are collected through executing LSTMs offline with large training datasets.

Note that we study the distribution of all context links since the weak context links share

quite similar distribution pattern with strong context links. It is unnecessary to particularly

focus on the weak context links which vary with the relevance threshold. Since the context

link is in the form of vector, the value distribution for each element will be collected, and

the expectation of each element in the weak context link can be achieved by the following

equation:

hj =
n∑
i=0

hj(i)× ρij . (11)

Where hj is the expectation for jth element in the context link, and ρij represents the

possibility for the distribution of the jth element in the context link. The expectations of

all the elements compose a vector which is the predicted context link at the breakpoints.

3.2.3 LSTM Layer Reorganization

Tissue Formation: Given the independent LSTM sub-layers, we parallelize them via

fusing cells from the sub-layers into tissues. One cell will be selected per sub-layer, and the

selected cells together form a tissue. For example, in Fig. 11, the LSTM layer is divided into

four sub-layers, cells 0, 3, 4, and 7 from them, respectively, are combined into one tissue;

19

0x

1.5x

3x

4.5x

6x

1 2 3 4 5 6 7 8
0%

25%

50%

75%

100%

La
ye

r S
pe

ed
 U

p

Tissue Size

Sh
ar

ed
 M

em
or

y
Ba

nd
w

id
th

IMDB MR BABi SNLI PTB MT
IMDB MR BABi SNLI PTB MT

Best Performance

Figure 12: The normalized performance of one LSTM layer and shared memory bandwidth
utilization as the tissue size increases.

GPU
Config

LSTM
Config

MTS

Kenrel
Sgemm(Wf,i,c,o, xt)

Breakpoints
Search

Kenrel
Sgemm(Uf,i,c,o, ht-1)

Tissue
Alignment

Input
Batching

Kenrel
lstm_ew

User
Accuracy

Preference

Layer
Begin

Predicted
Context

link

LSTM
Begin

Layer
End

LSTM
End

1
Set Threshold
Upper Limit

Statistics

24

5 9

Output
Accuracy

Offline
Preparison

LSTM
Runtime

Operation

Thresholds
Update

3

Accuracy
Recovery

6

Per-App Processing

Per-Execution Processing

Per-Layer Processing

Tissue
Formation

7 8

Figure 13: The implementation of the inter-cell level optimizations.

and the next cells from these sub-layers which are only cells 1, 5, and 8 from the first three

sub-layers as the second sub-layer only contains cell 3, are combined into another tissue. As

Fig. 11 shows, the LSTM layer is transformed into a sequence of tissues. The cells inside

each tissue will be executed concurrently. Note that the data dependency across cells in

each sub-layer still maintains which is treated as the data dependency across tissues.

In this study, we define the number of the cells per tissue as the tissue size. Ideally,

when there are more sub-layers and more cells are fused into a tissue, there will be fewer

tissues in the layer and thus, fewer re-loads for the weight matrices and performance are

improved as well. However, we observe that keeping increasing the tissue size would even

hurt the performance. Fig. 12 demonstrates the normalized performance of one LSTM

layer as the tissue size increases when executing the investigated benchmarks (The baseline

case introduced in Section 3.4.1.). As it shown, the performance first increases with the

increasing tissue size, and then drops when the tissue size exceeds a certain number (e.g. 6

20

for BABI benchmark, 5 for the others in Fig. 12). We define this number as the maximum

tissue size (MTS).

The performance drop is caused by the limited on-chip bandwidth (i.e. shared memory

bandwidth) of the mobile GPUs. Fig. 12 also plots the utilization of the shared memory

bandwidth. As it shows, the bandwidth utilization increases with the increasing tissue

size, and it approaches to 100% at the MTS. Further increasing the tissue size would cause

the kernel re-configuration at the compilation time to ensure that the on-chip bandwidth

utilization is below 100%. The re-configuration reduces the on-chip bandwidth requirements

per thread but increases the thread amount in the kernel. As a result, the execution time

per tissue significantly increases which could not be well compensated by the saved time on

the reduced matrix re-loads, leading to the overall performance droop. Note that the MTS

is determined by the GPU configurations, a framework is needed to dynamically implement

the LSTM layer reorganization scheme for various LSTM layer configurations on different

mobile GPUs.

Tissue Alignment: Since the tissue formation mechanism simply combines multiple

cells into tissues but ignores the MTS, it may generate both fat and thin tissues. Fat tissues

have more cells than MTS (e.g. Tissue 0 in Fig11(b1) as MTS is 3 in this example) leading

to the over-utilized share-memory bandwidth, while thin tissues have quite few cells (e.g.

Tissue 2 in Fig11(b1)) and are unable to effectively reuse the weight matrix. Both will

affect the performance boost. To maximize the performance, we further explore the tissue

alignment mechanism to well balance the tissue size by moving cells from the fat tissues

to thin tissues, e.g. moving cell7 and 8 from Tissue0 and Tissue1 to Tissue1 and Tissue2,

respectively, in Fig11(b1). Note that tissue alignment does not further break any context

link and ensures every tissue size is below or equal to the MTS.

21

3.2.4 The Implementation

Offline Operations: We first execute LSTMs on the target GPUs platform with vari-

ous tissue sizes to determine the MTS (Fig. 13-1). Ideally, when the tissue size is MTS for

every tissue in the layer, the number of tissues for this layer is minimized, leading to the

maximal performance. Therefore, the minimal number of tissues can be conducted by:

Nmin =
⌈Norigin

MTS

⌉
. (12)

Where Norigin is the original number of LSTM cells in the layer. Next, we execute LSTMs

equipped with our optimizations to obtain a value for the relevance threshold αinter which

leads to Nmin number of tissues. This value is set as the upper limit for αinter (Fig. 13-2).

Then, αinter is initialized to its upper limit aiming to the best performance. Since the

accuracy loss may be considerable when the system gains the best performance, αinter will

be adjusted per each execution of the application given the accuracy difference between the

user preferred accuracy and the application output accuracy, thus, leading to the optimal

performance-accuracy trade-offs from the user perspective (Fig. 13-3). Furthermore, the

predicted context link is produced based on the LSTM configurations (Fig. 13-4). Note

that the operations 1/2/4 are determined by the GPU and LSTM configurations and only

processed once per application.

Runtime Operations: At the LSTM runtime, after performing the per-layer multi-

plication kernel Sgemm(Wf,i,c,o, x), the breakpoints search (Fig. 13-5) and the accuracy

recovery (Fig. 13-6) are triggered to break the layer into a set of sub-layers, which will

be further transformed into a set of tissues with balanced tissue size (Fig. 13-7/8). In

each tissue, the cells are concurrently processed by batching their input vectors ht into

a united input matrix Ht, and the input state vectors ct are batched into one matrix Ct

as well (Fig. 13-9). Correspondingly, the originally per-cell matrix-vector multiplication

22

Sgemv(Uf,i,c,o, ht) kernels are now combined into one per-tissue matrix-matrix multiplica-

tion Sgemm(Uf,i,c,p, Ht) kernel. The weight matrix Uf,i,c,o is effectively re-used by all the

cells within the tissue, and its loading frequency reduces from one per cell to one per tissue.

3.3 Intra-Cell Level Optimizations

As illustrated in Section 3.1, besides the redundant data movements across cells, the

off-chip memory bandwidth is the other major performance limitation for each LSTM cell.

Since weight matrix Uf,i,c,o is the largest input data for one cell, it is important to shrink

it, hence addressing the bottleneck inside the LSTM cell. In this section, we focus on the

intra-cell level optimization and effectively reducing the data loads per cell. Generally,

a common mechanism to shrink the weight matrix size is targeting at each weight element

and erasing the near-zero ones [36]. Noticing that weights in LSTM are processed in the row

order, and especially, the elements from different rows are totally irrelevant. We leverage

this unique feature to propose the row-level weight compression technique, called dynamic

row skip, which compacts weights in the matrix at the row level without affecting the output

accuracy.

3.3.1 Dynamic Row Skip

As an interesting observation, we find that some rows in the weight matrix Uf,i,c have

trivial contribution to the cell output vector ht. This is because ht is strongly affected by the

output gate ot. As shown in Eq. 5, if one element in ot is near zero, the corresponding output

element in ht will become near-zero (Fig. 14-1) no matter what value the corresponding

element in ct is (Fig. 14-2). Furthermore, since ct is calculated based on the weight matrices

Uf , Ui, Uc as shown in Eq. 1,2,3 (Fig. 14-3), the corresponding rows in these matrices can

be treated as irrelevant to the final output element in ht (Fig. 14-4).

We propose the Dynamic Row Skip (DRS) scheme to dynamically skip those irrelevant

rows in the weight matrices Uf , Ui, Uc whose computations have trivial contribution to

23

Uf,i,c

● ● ●

● ● ●

Uf

Ui

Uc

Weight matrix for
Kenrel Sgemv Cell outputLatent value

● ● ●

● ● ●

●
●
●

0

ot

⁞

ct

●
●
●

0

ot

● ● ●

Uf Ui Uc

● ● ● ● ● ●

ct ⁞

Eq.1,2,3

⁞ 0

⁞ 0

ot

Eq.5

● ● ●

ct

⁞

ot
⁞
0

⁞
0

● ● ●

ht
Eq.5

Eq.5

2

1

3

4

Eq.1,2,3

Weight matrix

Cell State

Output

Output
Gate

Uf

Ui

Uc

Figure 14: Irrelevant rows in weight matrix Uf,i,c that have trivial impact on cell output ht.

the cell output vector ht. By doing this, the skipped rows will not be loaded and their

computations are ignored as well, leading to both performance and energy optimizations.

Note that the DRS will also affect the state vector ct, some of its elements corresponding

to the skipped rows will be approximated to zero. However, this impact is observed to

be quite limited to the overall accuracy since the next cell will use the forget gate ft+1 to

filter the state vector from previous cell as shown in Eq. 3. Unlike the traditional weight

pruning methods performed offline [36], DRS is conducted at runtime for each LSTM cell as

it requires the latent information, and the rows to be skipped vary across different LSTM

cells.

3.3.2 The Implementation

In DRS, the rows to be skipped is determined by the latent vector ot. In other words,

only when the near-zero elements in the ot are available, the corresponding rows in weight

matrices Uf , Ui and Uc can be identified and skipped in the cell execution. This requires the

modification of the computation flow for the LSTM cell to generate ot before processing the

weight matrices Uf , Ui, and Uc. We split the Sgemv(Uf,i,c,o, ht−1) kernel into two kernels:

one multiplies weight matrix Uo with the input vector ht−1, and the other multiplies the

weight matrix Uf,i,c with ht−1.

Algorithm 4 illustrates the reorganized computation flow by the DRS. In each cell,

24

Algorithm 4 LSTM Computation Flow with DRS

1: for each layer in LSTM do
2: Kernel Sgemm(Wf,i,c,o, x);
3: for each cell in layer do
4: Kernel Sgemv(Uo, ht−1);
5: Kernel lstm− ew(ot);
6: Kernel DRS(ot, αintra, R)
7: Kernel Sgemv(Uf,i,c, ht−1, R);
8: Kernel lstm− ew(ft, it, ct−1, ct, ht);
9: end for

10: end for

Sgemv(Uo, ht−1) kernel will be launched first (line 4) followed by the lstm ew(ot) kernel to

compute the latent vector ot (line 5). Then, each element in ot is compared with a near-

zero threshold (αintra) in our DRS(ot, αintra, R) kernel to obtain the trivial rows whose

ID are saved as the list R. (line 6). Next, Sgemv(Uf,i,c, ht, R) kernel will be launched

to perform matrix multiplication Uh,i,c × ht with the trivial rows in Uf,i,c disabled, which

are indicated by R (line 7). Finally, the remaining computations in the cell are finished

by lstm ew(ft, it, ct−1, ct, ht) (line 8). Note that the near-zero threshold is also adjusted

based on the user preferred accuracy requirement to deliver the user satisfied performance-

accuracy trade-offs.

Hardware Design: Even our DRS can be implemented by the pure software method,

i.e. assigning different operations for trivial and non-trivial rows, it causes branch divergence

during the GPU execution and decreases the warp efficiency and the system performance.

We propose a hardware design to support the DRS, which introduces CTAs reorganization

module (CRM) to the grid management unit (GMU), as illustrated in Fig. 15. The CRM is

able to identify the threads assigned to process the trivial rows and re-organize the CTAs to

skip them. After a kernel being launched, its information (e.g. kernel name and argument

number) can be acquired through the initialization. And a kernel with additional argument

(i.e., R) implies containing trivial rows. It will then be assigned to CRM for CTAs re-

organization.

25

Grid Management Unit (GMU)

Pending Kernel Pool

Software TID
Queue

TR
B

Mask

D
eco

d
e

Prefix Sum
H

ard
w

are TID
 Q

u
eu

e

Accumulation Shifter

CTA schedule

32

32

32

32

Hardware
Work

Queue

CTAs
Reorganization

Module

LD

DTIDs

O
ffsets

Figure 15: The architecture of CTAs reorganization module.

Once a kernel enters into the CRM, a load module (LD) first loads and saves the trivial

rows IDs to the trivial rows buffer (TRB), and then the disabled thread IDs (DTIDs) can be

decoded based on the trivial rows IDs and the grid configurations. Note that there are two

kinds of thread IDs during the GPU kernel execution, one is the software thread ID (STID)

within a kernel launch, and the other is the hardware thread ID (HTID) that indicates the

hardware thread slot assigned to the software thread. Since some threads will be disabled

during the kernel execution, there will be an offset between the STID and HTID for each

thread. Next, each thread’s STID in the kernel is filtered by the DTID and sent to the

prefix sum to determine the offset, which is then used to sort and shift the STID to acquire

the correct HTID. This HTID acquisition process is conducted at the unit of 32 threads,

which is the warp size that is usually divisible by the CTA size. It is further partitioned

into two stages shown by the dash boxes in Fig. 15 for the pipelined process in the CRM.

Finally, the re-organized CTAs will be sent to hardware work queue and wait to be issued.

3.4 Evaluation

3.4.1 Experimental Setup

In this work, we leverage a software-hardware cooperated method to evaluate our opti-

mizations for the LSTM execution. From the software side, we employ PyTorch [37] which

26

Table 1: Platform Specifications

Hardware Specification

System Tegra X1 SoC
CPU Cortex-A57 +Cortex-A53

Memory 4GB LPDDR4, 25.6GB/s
GPU Maxwell, 256 Core, 998MHz

Skipped
Rows

Number

Breakpoints
Information

Threshold
sets

Outputs

LSTMs

Pytorch

Baidu
DeepBench

Performance

Power

R
ep

lay P
ro

gram
Jetson TX1

Accuracy Evaluation Performance & Energy Evaluation

User
StudyGate-Level

Simulation

Skipped
Rows

Number

Breakpoints
Information

Threshold
sets

Outputs

LSTMs

Pytorch

Baidu
DeepBench

Performance

Power
Jetson TX1

Gate-Level
Simulation

Figure 16: The evaluation diagram for our optimizations.

is a popular open-source machine learning framework that supports the dynamic compu-

tation graphs; we also use Baidu DeepBench [38], a tool to benchmark the operations of

deep learning on the hardware platform. From the hardware side, considering that the

current GPU architecture simulators (e.g. GPGPU-Sim [39]) cannot support the latest

backend libraries for machine learning (e.g. cuDNN [23] and cuBLAS [40]), we employ the

Jetson Tegra-X1 develop kit [41], a representative mobile GPU development board with the

configurations listed in Table 1.

Fig. 16 illustrates the evaluation diagram. Both our inter- and intra-level optimizations

require data approximation that affects the output accuracy, and computation flow change

that affects the performance and power. The data approximation can be implemented

on PyTorch to obtain the accuracy results. The computation flow changes can hardly

be implemented on PyTorch as the latest GPU machine learning backend libraries (i.e.

cuDNN) are released as pre-compiled binaries. We thus use PyTorch, DeepBench, and real

GPU cooperated method to evaluate our techniques on performance and power. We first

27

Table 2: The state-of-the-art NLP applications investigated in our study

Name Abbr. Hidden Size Layers Length

IMDB [42] SC 512 3 80
MR [43] SC 256 1 22

BABI [44] QA 256 3 86
SNLI [45] ET 300 2 100
PTB [46] LM 650 3 200
MT [47] MT 500 4 50

use PyTorch to produce the breakpoints information for the inter-level optimizations and

the number of trivial rows for the intra-level optimizations. These informations will then

be sent to the DeepBench to simulate the LSTM execution with our optimizations on the

Jetson Tegra-X1 board. We obtain both performance and energy results from the board,

note the obtained energy result describes the energy consumption of the overall system

including CPU, GPU, etc. To consider the performance and power overheads caused by our

hardware design, we model it via the gate-level simulation and include the overheads into

our results.

Benchmarks: We employ 6 state-of-the-art NLP Apps listed in Table 2 as the LSTM

benchmarks. Each App has the unique LSTM configurations, where the Hidden Size

indicate the weight matrix size and the length indicates the number of cells per LSTM layer.

IMDB [42] and MR [43] perform sentiment classification (SC) that predict the positive or

negative attitude of texts. BABI [44] performs question answering (QA) for automatic

text understanding and reasoning. SNLI [45] is a collection of 570k human-written English

sentence pairs manually labeled for balanced classification with the labels entailment (ET).

PTB [46] is used for word-level language modeling (LM). And MT [47] performs the English

to French translation (MT).

In general, 2% accuracy loss is imperceptible to the end users. We first fix the user

preferred accuracy requirement as 98% when evaluating the performance and energy im-

provements gained by our techniques. We also conduct the user study by tunning the

accuracy requirement per each individual user.

28

0x

1x

2x

3x

4x

IMDB MR BABI SNLI PTB MT Average
Sp

ee
d

U
p

Inter-cell Intra-cell Combined

0%

20%

40%

60%

80%

IMDB MR BABI SNLI PTB MT Average

En
er

gy
 S

av
in

g

(a)
0x

1x

2x

3x

4x

IMDB MR BABI SNLI PTB MT Average

Sp
ee

d
U

p

Inter-cell Intra-cell Combined

0%

20%

40%

60%

80%

IMDB MR BABI SNLI PTB MT Average

En
er

gy
 S

av
in

g

(b)

Figure 17: The (a) speedup and (b) energy saving achieved by our system when applying
inter-cell level optimizations, intra-cell level optimizations and the overall system
with the combined optimizations.

3.4.2 The Effectiveness of the Overall System

Fig. 17 plots the performance speed-up and the energy savings obtained by our inter-cell

level optimizations, intra-cell level optimizations, and the overall system with the combined

optimizations. The results are normalized to the baseline case that executing the state-of-

the-art LSTMs on mobile GPUs.

Inter-cell Level Optimizations: On average, the inter-cell level optimizations achieve

2.05X speed up and 35.94% energy saving compared with the baseline case. We observe

that our techniques show even stronger capability in improving the performance and energy

consumptions when the length (i.e. the number of LSTM cells) of the LSTM layer increases.

For example, PTB with the longest layer length among all investigated benchmarks achieves

the highest performance and energy enhancements. This implies that our techniques well

scales with the longer LSTM layer.

29

0%

12%

24%

36%

48%

60%

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

La
ye

r E
ne

rg
y

Sa
vi

ng

La
ye

r S
pe

ed
 U

p
Application-LSTM layer

Speed up Energy Saving

Figure 18: Per-layer speed up and energy saving when applying the inter-cell level opti-
mizations.

0x
0.5x

1x
1.5x

2x
2.5x

Sp
ee

d
U

p

0%
7%

14%
21%
28%
35%

En
er

gy
 S

av
in

g

0%

20%

40%

60%

80%

Co
m

pr
es

sio
n

Ra
tio

Zero-pruning Pure Software-based DRS DRS with hardware design

(a) (b) (c)
Figure 19: (a) Weight matrix compression ratio, (b) speed up and (c) energy saving when

applying different weight compression schemes.

We further investigate the effectiveness of our inter-cell optimizations on each LSTM

layer, shown in Fig. 18. As it shows, our techniques perform better for the earlier (e.g.,

layer 1) than the latter layers (e.g., layer 3). This is because the context information is

closer to the original text inputs, and the context links are more distinct for the earlier

layers. They can be divided into more sub-layers for higher performance and energy gains.

Intra-cell Level Optimizations: Fig. 17 also shows that on average, our intra-

cell level optimizations achieve 1.65X speed up and 16.93% energy saving compared with

the baseline case. We observe that our techniques gain higher performance and energy

improvements with the larger weight matrices. For example, PTB with the largest weight

matrices among all investigated benchmarks achieves the highest performance and energy

saving. In one sentence, our techniques exhibit the strong scalability with the increasing

input data set, which is the trend of the NLP-based IPA applications.

30

We further compare our intra-cell level techniques with the popular weight matrix com-

pression scheme (zero-pruning [36]) and pure software-based DRS, shown in Fig. 19. As it

shows, the zero-pruning scheme reduces 37% data movements with only 7% power saving

and even degrades the performance by 35%, comparing with the baseline case. This is be-

cause the zero-pruning scheme prunes the near-zero elements in the weight matrices without

considering the possible branch divergences when executing the LSTMs on GPUs. Excit-

ingly, our DRS scheme achieves better weight compression ratio (i.e., on average 50.35%)

and better energy saving (i.e., 16.92%) than the zero-pruning scheme. The pure software-

based DRS still induces the branch divergence and can only achieve small performance

gain 1.07X on acerage. With the hardware design to enable the CTAs re-organization,

our intra-cell level optimizations maintain the high warp efficiency and achieve additional

57.78% speed up than the pure software method.

Putting It All Together: As shown in Fig. 17, on average, our system with the

combined intra- and inter-level optimizations outperforms the baseline case by 2.54X (upto

3.24X) in performance and 47.23% (upto 58.82%) in energy saving. Note that the improve-

ments gained by the overall system are not the sum of the improvements obtained by each

technique as there are some overlaps on the data movements reduction between the two

level techniques.

3.4.3 Performance-Accuracy Trade-offs

To explore the design space for the performance and accuracy trade-offs, we conduct

the sensitivity analysis by tunning the two thresholds applied in our techniques, i.e., αinter

and αintra. Note that the energy saving is proportional to the performance boost and

we mainly analyze the performance-accuracy trade-offs. For each threshold, we explore

11 values increasing from ‘0‘ (representing the baseline case without any accuracy loss) to

its maximal value (representing the most aggressive case with the maximal performance

boost). We then obtain 11 threshold sets with each set containing a pair of values for

31

0x

2x

4x

6x

8x

0% 20% 40% 60% 80%

Sp
ee

d
U

p

Normalized Accuracy Loss

256-86 512-86
768-86 1024-86

(a) (b)

0x

2x

4x

6x

0% 20% 40% 60% 80%

Sp
ee

d
U

p

Normalized Accuracy Loss

256-26 256-46
256-66 256-865% 5%

Figure 20: The performance-accuracy trade-offs of LSTMs for BABI with (a) different hid-
den unit sizes; (b) different input lengths. Each line represents a configuration
of (hidden unit size - input length) pair.

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
40%

55%

70%

85%

100%

0x

1x

2x

3x

4x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
0%

25%

50%

75%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%

40%

60%

80%

100%

1x

3x

5x

7x

9x

0 1 2 3 4 5 6 7 8 9 10
Ac

cu
ra

cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%
36%
52%
68%
84%
100%

1x
2x
3x
4x
5x
6x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p
Thresholds Set

Speed Up Accuracy

AO
BPA

AO
BPA

AO
BPA

AO BPA
AO

BPA BPA

AO

(a) IMDB

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
40%

55%

70%

85%

100%

0x

1x

2x

3x

4x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
0%

25%

50%

75%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%

40%

60%

80%

100%

1x

3x

5x

7x

9x

0 1 2 3 4 5 6 7 8 9 10
Ac

cu
ra

cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%
36%
52%
68%
84%
100%

1x
2x
3x
4x
5x
6x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p
Thresholds Set

Speed Up Accuracy

AO
BPA

AO
BPA

AO
BPA

AO BPA
AO

BPA BPA

AO

(b) MR

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
40%

55%

70%

85%

100%

0x

1x

2x

3x

4x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
0%

25%

50%

75%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%

40%

60%

80%

100%

1x

3x

5x

7x

9x

0 1 2 3 4 5 6 7 8 9 10
Ac

cu
ra

cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%
36%
52%
68%
84%
100%

1x
2x
3x
4x
5x
6x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p
Thresholds Set

Speed Up Accuracy

AO
BPA

AO
BPA AO BPA

AO BPA
AO

BPA BPA

AO

(c) BABI

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
40%

55%

70%

85%

100%

0x

1x

2x

3x

4x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
0%

25%

50%

75%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%

40%

60%

80%

100%

1x

3x

5x

7x

9x

0 1 2 3 4 5 6 7 8 9 10
Ac

cu
ra

cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%
36%
52%
68%
84%
100%

1x
2x
3x
4x
5x
6x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p
Thresholds Set

Speed Up Accuracy

AO
BPA

AO
BPA

AO
BPA

AO BPA
AO

BPA BPA

AO

(d) SNLI

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
40%

55%

70%

85%

100%

0x

1x

2x

3x

4x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
0%

25%

50%

75%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%

40%

60%

80%

100%

1x

3x

5x

7x

9x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%
36%
52%
68%
84%
100%

1x
2x
3x
4x
5x
6x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p
Thresholds Set

Speed Up Accuracy

AO
BPA

AO
BPA

AO
BPA

AO BPA
AO

BPA BPA

AO

(e) PTB

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
40%

55%

70%

85%

100%

0x

1x

2x

3x

4x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
0%

25%

50%

75%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy

40%

55%

70%

85%

100%

0x

2x

4x

6x

8x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%

40%

60%

80%

100%

1x

3x

5x

7x

9x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed up Accuracy
20%
36%
52%
68%
84%
100%

1x
2x
3x
4x
5x
6x

0 1 2 3 4 5 6 7 8 9 10

Ac
cu

ra
cy

Sp
ee

d
U

p

Thresholds Set

Speed Up Accuracy

AO
BPA

AO
BPA

AO
BPA

AO BPA
AO

BPA BPA

AO

(f) MT

Figure 21: Performance-Accuracy trade-offs under different sets of thresholds across the
different applications.

αinter and αintra, respectively. Threshold set 0 (10) has the lowest (highest) threshold

values. Fig. 21 demonstrates the normalized speedup and accuracy when different sets of

thresholds are applied for the investigated applications. We denote AO (accuracy oriented)

as the threshold set corresponding to the optimizations with user-imperceptible accuracy

loss (i.e., 2%). As the figure shows, a higher threshold value leads to a better performance

gain, and we denote BPA (best performance-accuracy) as the threshold set leading to the

highest Speedup × Accuracy.

32

0

1

2

3

4

5

IMDB MR BABI SNLI PTB MT

U
se

r
Sa

ti
sf

ac
ti

o
n

 S
co

re

Baseline AO BPA UO

Figure 22: The user satisfaction score on different schemes.

3.4.4 Impact of Model Capacity

Model capacity defines the size and input format of the LSTMs, which affects compu-

tation scale. To evaluate the impact of model capacity on our techniques, we conduct a

sensitivity analysis on performance-accuracy trade-offs of LSTMs given different model ca-

pacity (e.g., hidden unit size and input length) when applying our techniques. Fig.18 shows

the trade-off results for one representative benchmark BABI due to the space limit. As it

shows, given the same accuracy requirement, our techniques achieve higher speedup when

the hidden unit size or the input length increases. On the other hand, when the accuracy

loss is small (e.g. <5%), the speedup achieved by our technique varies slightly across dif-

ferent hidden unit size and input length. In other words, model capacity has trivial impact

on our technique since NLP tasks usually have high accuracy requirement.

3.4.5 User Study

Since our techniques require both software and hardware simulations, it is impossible to

test on a real product. To evaluate our system impact on the user experience, we build a

replay program that provides users the pre-produced outputs (thus, output accuracy) with

a response delay (thus, performance) according to the selected thresholds. We compare four

schemes: the baseline case, the scheme applying the AO threshold set, the scheme applying

the BPA threshold set, and finally, our UO (user oriented) scheme that dynamically adjusts

the thresholds by further taking each individual user’s preferences as the user input.

33

We randomly recruit 30 participants on a college campus. We let them experience

multiple replays for several NLP applications, and rate the satisfaction score (i.e., 1 being

unsatisfied and 5 being most satisfied) based on the output and the response delay. Each

participant will be asked to rate 100 replays for each application with the scheme changed

every 25 replays. The order of the schemes is random. Fig. 22 shows the averaged user

satisfaction scores on different schemes. As it shows, AO always achieves better user sat-

isfaction score against the baseline case because the application response time is reduced

and the users can not notice the accuracy loss. However, BPA does not achieve good user

satisfaction score as most users are not willing to trade much accuracy loss for aggressive

performance improvements. Finally, in general, our UO scheme achieves the best users

satisfaction score among all the four schemes since it takes the user preferences into the

consideration to dynamically tune the threshold for the excellent user experience.

3.4.6 Overhead Analysis

The inter-cell level optimizations introduce some light-weight computations, causing

only 2.23% performance and 1.65% power overheads on average. The intra-cell level op-

timizations modify the LSTM computation flow and introduce some extra computations

at the software side, which cause 3.39% performance and 3.21% power overheads on aver-

age. At the hardware side, the CTAs reorganization module is mainly composed of simple

logic gates which only causes 1.47% performance and <1% power overheads based on our

gate-level simulations.

34

4 Enabling Highly Efficient Capsule Networks Processing

Through A PIM-Based Architecture Design

4.1 Characterization and Analysis

While the CapsNet starts gaining popularity from both academia and industry, the

performance characterization of CapsNet on modern high-performance platforms is largely

neglected. Given that GPU has become the major platform for executing CapsNet due to

high computation capability and deep optimization on matrix operations (which CapsNet

has a large amount of), we adopt some of the state-of-the-art NVIDIA GPU platforms

to conduct a comprehensive characterization towards the execution behaviors of various

CapsNets listed in Table 3. We use 4 different datasets and corresponding 12 CapsNets

with CapsNet-MNIST like structure (Section 2.2.1), and different configurations on batch

size (BS in Table 3), L capsules, H capsules and routing iteration number. These CapsNets’

inference are processed via PyTorch framework [48] with the latest deep learning library

(i.e., CuDNN [49]), which already enables the state-of-the-art CNN optimizations [50].

4.1.1 Overall Evaluation for CapsNet Inference

Fig. 23 demonstrates the performance breakdown of each layer to the overall CapsNet

execution. It shows that, across different CapsNet configurations, the routing procedure

(RP) accounts for an average of 74.62% of the entire inference time, becoming the major

performance bottleneck. we further conduct detailed analysis on the performance results of

CapsNets on GPU and make the following observations:

Observation 1: ineffectiveness of batched execution. One common strategy

to accelerate CNNs is to conduct batched execution for improving hardware utilization,

especially when input dataset is large. However, it cannot improve the RP’s performance

during inference. As Fig. 23 illustrates, with the increasing of batch size (i.e., Caps-MN1

35

Table 3: CapsNet Benchmark Configurations

Net-
work

Dataset
Configuration

BS L Caps H Caps Iter

Caps-MN1
MNIST [51]

100 1152 10 3
Caps-MN2 200 1152 10 3
Caps-MN3 300 1152 10 3

Caps-CF1
CIFAR10 [52]

100 2304 11 3
Caps-CF2 100 3456 11 3
Caps-CF3 100 4608 11 3

Caps-EN1 EMNIST Letter [53] 100 1152 26 3

Caps-EN2 EMNIST Balanced [53] 100 1152 47 3

Caps-EN3 EMNIST By Class [53] 100 1152 62 3

Caps-SV1
SVHN [54]

100 576 10 3
Caps-SV2 100 576 10 6
Caps-SV3 100 576 10 9

0
2
4
6
8
10
12
14
16

0%
20%
40%
60%
80%

100%

Ex
ec

ut
io

n
Ti

m
e

(s
)

Pe
rc

en
ta

ge
 o

f E
xe

cu
tio

n
Ti

m
e

Conv Layer L Caps Layer H Caps Layer FC Layer Execution Time

74.62%

Figure 23: The overall execution time breakdown of CapsNets on GPU across different
layers. Red line represents the actual inference time.

→ Caps-MN3),the overall CapsNet inference time increases; meanwhile, the RP proportion

also expands with batch size.

Observation 2: sensitivity to network scaling. Table 3 shows the network size

(formed by a combination of L capsules, H capsules and routing iterations) for each indi-

vidual case, e.g., Caps-SV1 being the smallest. The red curve in Fig. 23 also demonstrates

that the overall inference time and RP’s percentage generally increases when scaling up

the network size (e.g., comparing Caps-MN1, Caps-CF1, Caps-EN1 and Caps-SV1). This

implies that RP’s execution time is sensitive to network size as well.

To summarize, using the highly optimized deep learning library, the RP execution time

36

0%
25%
50%
75%

100%

Co
nt

rib
ut

io
ns

 to
 P

ip
el

in
e

St
al

ls Memory Access Synchronization Lack of Resource Inst_Fetch Other

44.64%

34.45%

Figure 24: The breakdown for pipeline stall cycles during RP execution on Tesla P100
Pascal GPU.

on GPU can not be effectively reduced through the general CNN optimization techniques

such as batch execution. Moreover, it exhibits a certain level of sensitivity to network

scaling. Both of these factors make the RP execution a dominating performance bottleneck

for CapsNet inference, especially with a growing size and complexity of future CapsNet

structures [30,31].

4.1.2 Root Causes for Inefficient RP Execution

To understand the root causes of RP’s inefficiency on GPU, we use NVprofiler [55] to

collect runtime GPU stats for comprehensive analysis. We observe two root causes for poor

RP execution efficiency on GPU-like architectures:

(1) Significant Off-Chip Memory Accesses: We profile the utilization of several

major GPU function units during RP execution on a NVIDIA Tesla P100 GPU. We observe

that the arithmetic logic unit (ALU) is lightly utilized (i.e., on average only 38.6% across

the investigated benchmarks) while the load/store unit (LDST) is heavily stressed with

an average utilization of 85.9%. This implies that CapsNets’ RP phase fails to effectively

leverage the GPU strong computation capability and is severely limited by the intensive

off-chip memory access. We further investigate the factors that may contribute to GPU

pipeline stalls during RP, including the off-chip memory access, barrier synchronization,

lack of resource, etc. Fig. 24 profiles the individual contribution of each major factor to the

overall pipeline stall cycles. As can be seen, the majority of the pipeline stalls are induced

37

0x

10x

20x

30x

40x

Ra
tio

 o
f I

nt
er

m
ed

ia
te

 V
ar

ia
bl

e
to

 O
n-

ch
ip

 S
to

ra
ge

Ratio_A Ratio_B Ratio_C Ratio_D
49x 106x 169x

55x
104x 155x

50x

205x

67x

128x

41x

231x

75x 41x

305x

99x 54x

42x 128x

42x

50x 67x 41x 75x
41x

99x
54x

42x

(a)

1.09
1.111.114

0.8

0.9

1.0

1.1

1.2

N
or

m
al

ize
d

Ro
ut

in
g

Pe
rf

or
m

an
ce

Perf_A Perf_B Perf_C Perf_D

(b)

Figure 25: (a) Ratio of intermediate variables’ size to on-chip storage of different GPUs; (b)
the impact of on-chip storage sizes of state-of-the-art GPUs on RP’s execution.
A: 1.73MB (K40m), B: 5.31MB (Tesla P100), C: 9.75MB (RTX2080Ti), D:
16MB (Tesla V100).

by the memory access (i.e., on average 44.64%). This further confirms that RP performance

is significantly limited by the off-chip memory access. This is caused by a combination of

massive intermediate variables from RP execution and limited on-chip storage. Fig. 25(a)

illustrates the ratio of RP’s intermediate variables’ size to on-chip memory sizes of different

generations of NVIDIA GPUs. As can be seen, the size of RP’s intermediate variables far

exceeds the GPU on-chip storage. Given the iterative computation pattern of RP, these

variables (e.g., û, sj , vj , bij , cij) need to be periodically loaded into GPU cores from the

off-chip memory due to the limited on-chip storage. Moreover, the intermediate variables

are not sharable among different input batches, which also explains the ineffectiveness of

batched execution as we observed in Section 4.1.1. Due to the large data volume and lack

of temporal value similarity from these variables, software-level schemes such as register

manipulation and shared memory multiplexing are also not very effective.

38

1.26
1.19

1.14

0.0

0.5

1.0

1.5

N
or

m
al

ize
d

RP
 P

er
fo

rm
an

ce

GDDR5 GDDR5X GDDR6 HBM2

Figure 26: The impact of memory bandwidth on the overall RP performance.
GDDR5:288GB/s (K40m), GDDR5X: 484GB/s (GTX 1080Ti), GDDR6:
616GB/s (RTX 2080Ti), HBM2: 897GB/s (Tesla V100).

(2) Intensive Synchronization: Fig. 24 also indicates that the frequent barrier syn-

chronization is the second major contributor (i.e., on average 34.45%) to the pipeline stalls.

These synchronization overheads are induced by the syncthread() calls, which coordinate

shared memory accesses for all threads in one thread block. There are two major factors

causing the frequent synchronization during the RP execution: (i) the RP execution con-

tains numerous aggregation operations (e.g., Eq. 7), inducing massive data communication

between the threads through shared memory; (ii) the size of the intermediate variables far

exceeds the shared memory size, leading to frequent data loading from the global mem-

ory. Thus, syncthread() calls occur frequently to avoid the potential write-after-write and

write-after-read hazards.

To address these issues above, we attempt to apply two naive solutions: scaling up the

on-chip and off-chip memory capacity. Fig. 25(b) shows the impact of on-chip memory sizes

of different generations of NVIDIA GPUs on RP execution. We can observe that increasing

on-chip memory size can help alleviate the challenges above but not very effective, e.g., only

up to an average of 14% performance improvement for the 16MB V100. This is because

the nonsharable intermediate variables’ size from RP still far exceeds the current GPUs’

on-chip storage, shown in Fig. 25(a). Similarly, Fig. 26 shows that only increasing memory

bandwidth from 288GB/s GDDR5 to 897 GB/s HBM slightly improves the overall RP’s

performance by an average of 26%. This indicates that higher off-chip memory bandwidth

can only solve a small part of the problem but itself does not reduce the high intensity

39

of the off-chip memory accesses. Therefore, to significantly improve CapsNet’s inference

performance, we need a customized solution to address the root causes for RP’s inefficient

execution.

4.2 S-CapsNet: Software Optimizations

In this section, we first explore the opportunities of software-level optimizations to reduce

the computation intensity and the large unsharable intermediate variables generated by RP,

thus improving RP’s overall execution efficiency through the perspectives of software design.

4.2.1 Key Observations

According to the analysis in Section 4.1, the tremendous intermediate variables gener-

ated by the iterative algorithm results in poor data locality under the limited GPU on-chip

storage. The repetitive accesses to these intermediate variables significantly reduces RP’s

processing efficiency due to the saturated memory bandwidth as well as the large synchro-

nization overhead, leading to the extremely long execution time.

To a great extent, such inefficiency is first and foremost caused by the large volume

of the intermediate variables during the iterative process, which is very difficult to be

solely addressed by system-level optimizations. The first fundamental step towards solving

this efficiency issue is to explore data volume and memory access reduction mechanisms

that do not hurt the overall accuracy. To achieve this goal, we investigate RP’s intrinsic

pattern similarity or redundancy at both data and program level. More specifically, we make

two key observations from the capsule-capsule information mapping properties: capsule-

wise mapping similarity (data similarity) and loop-wise mapping consistency (program-level

redundancy).

Capsule-Wise Mapping Similarity: In the RP, the input capsules are designed to

transfer their information to the output capsules, where the information bridging and filter-

ing are accomplished via multiplying input capsules with their corresponding coefficients,

40

99.86% 99.84% 99.84% 99.84% 99.87% 99.86%

99.91% 99.87% 99.84% 99.83% 99.84% 99.86%

99.85% 99.85% 99.82% 99.82% 99.85% 99.87%

99.86% 99.84% 99.82% 99.81% 99.84% 99.86%

99.88% 99.85% 99.84% 99.84% 99.86% 99.89%

99.88% 99.87% 99.87% 99.86% 99.90% 99.92%

99.58% 99.09% 98.96% 98.96% 98.96% 99.16% 99.09% 99.58%

99.09% 98.32% 98.08% 98.08% 98.08% 98.44% 98.32% 99.19%

99.42% 98.92% 98.44% 98.08% 97.96% 98.08% 98.32% 99.19%

99.03% 98.20% 98.20% 97.84% 97.84% 98.20% 98.44% 99.19%

99.09% 98.32% 98.08% 97.84% 97.72% 98.08% 98.32% 99.19%

99.22% 98.56% 98.20% 98.08% 98.08% 98.32% 98.68% 99.19%

99.22% 98.56% 98.44% 98.44% 98.32% 98.80% 99.04% 99.19%

99.52% 99.19% 99.19% 99.19% 99.19% 99.19% 99.19% 99.19%

Capsule Information Similarity

Distance-1 (Adjacent)

Distance-2

Feature Maps

Capsule

Figure 27: The pattern of the capsule formation from feature map neurons (left part). Such
pattern causes the information similarity between capsules (right part). Note
that the similarity could decrease with capsule-capsule distance increase.

i.e., cij in Eq. 10. And the purpose of the iterative execution in RP is to update these

coefficients to reflect the capsule-capsule mapping relations. First, we profile the amount

of similarity in the capsule-wise mappings by calculating the cosine-similarity, as described

by:

CosSim(CA, CB) =
CA · CB

‖CA‖ × ‖CB‖
, (13)

between the coefficient vectors of different input-capsules.

From the profiling, we make the observation that data similarities exist among the

coefficients of the nearby capsules. This is the result of adopting Conv layers in CapsNet

for image feature extraction, making nearby neurons (coming from the nearby pixel blocks)

in the feature maps to contain similar information. As shown in Fig. 27, one capsule is

formed using the same positioned neurons from several features maps, which ensures the

consistency of the information likelihood with its surround capsule values. Thus, it leads

to similar mapping behaviors towards the output capsules.

Fig. 28 demonstrates the average similarity across the coefficients for different datasets,

under various distances between the input-capsules and their surrounding capsules. The

adjacent capsules with distance of 1 appear to have the highest similarity in the information

mappings, i.e., on average 99.34% across different testing inputs. This capsule-wise mapping

similarity originates from the value likeness of the feature map neurons. For instance, for

41

97%

98%

99%

100%

Figure 28: The average similarity across the coefficients for different datasets. D1/D2/D3
represent the distance of the corresponding input capsules.

MN-D1 MN-D2 MN-D3 CF-D1 CF-D2 CF-D3 EMN-D1EMN-D2EMN-D3 SV-D1 SV-D2 SV-D3

Similarity 0.9984 0.9979 0.9973 0.9854 0.9808 0.9753 0.994 0.991 0.989033 0.996352 0.995 0.994

MN1
99.86% 99.84% 99.84% 99.84% 99.87% 99.86%

99.91% 99.87% 99.84% 99.83% 99.84% 99.86%

99.85% 99.85% 99.82% 99.82% 99.85% 99.87%

99.86% 99.84% 99.82% 99.81% 99.84% 99.86%

99.88% 99.85% 99.84% 99.84% 99.86% 99.89%

99.88% 99.87% 99.87% 99.86% 99.90% 99.92%

99.58% 99.09% 98.96% 98.96% 98.96% 99.16% 99.09% 99.58%

99.09% 98.32% 98.08% 98.08% 98.08% 98.44% 98.32% 99.19%

99.42% 98.92% 98.44% 98.08% 97.96% 98.08% 98.32% 99.19%

99.03% 98.20% 98.20% 97.84% 97.84% 98.20% 98.44% 99.19%

99.09% 98.32% 98.08% 97.84% 97.72% 98.08% 98.32% 99.19%

99.22% 98.56% 98.20% 98.08% 98.08% 98.32% 98.68% 99.19%

99.22% 98.56% 98.44% 98.44% 98.32% 98.80% 99.04% 99.19%

99.52% 99.19% 99.19% 99.19% 99.19% 99.19% 99.19% 99.19%

96%

97%

98%

99%

100%

101%

M
N
-D
1

M
N
-D
2

M
N
-D
3

C
F-
D
1

C
F-
D
2

C
F-
D
3

EM
N
-D
1

EM
N
-D
2

EM
N
-D
3

SV
-D
1

SV
-D
2

SV
-D
3

97%

98%

99%

100%

(a)

MN-D1 MN-D2 MN-D3 CF-D1 CF-D2 CF-D3 EMN-D1EMN-D2EMN-D3 SV-D1 SV-D2 SV-D3

Similarity 0.9984 0.9979 0.9973 0.9854 0.9808 0.9753 0.994 0.991 0.989033 0.996352 0.995 0.994

MN1
99.86% 99.84% 99.84% 99.84% 99.87% 99.86%

99.91% 99.87% 99.84% 99.83% 99.84% 99.86%

99.85% 99.85% 99.82% 99.82% 99.85% 99.87%

99.86% 99.84% 99.82% 99.81% 99.84% 99.86%

99.88% 99.85% 99.84% 99.84% 99.86% 99.89%

99.88% 99.87% 99.87% 99.86% 99.90% 99.92%

99.58% 99.09% 98.96% 98.96% 98.96% 99.16% 99.09% 99.58%

99.09% 98.32% 98.08% 98.08% 98.08% 98.44% 98.32% 99.19%

99.42% 98.92% 98.44% 98.08% 97.96% 98.08% 98.32% 99.19%

99.03% 98.20% 98.20% 97.84% 97.84% 98.20% 98.44% 99.19%

99.09% 98.32% 98.08% 97.84% 97.72% 98.08% 98.32% 99.19%

99.22% 98.56% 98.20% 98.08% 98.08% 98.32% 98.68% 99.19%

99.22% 98.56% 98.44% 98.44% 98.32% 98.80% 99.04% 99.19%

99.52% 99.19% 99.19% 99.19% 99.19% 99.19% 99.19% 99.19%

96%

97%

98%

99%

100%

101%

M
N
-D
1

M
N
-D
2

M
N
-D
3

C
F-
D
1

C
F-
D
2

C
F-
D
3

EM
N
-D
1

EM
N
-D
2

EM
N
-D
3

SV
-D
1

SV
-D
2

SV
-D
3

97%

98%

99%

100%

(b)

Figure 29: The heat map displays the average coefficients similarity for the different capsules
with its adjacent capsules. Representative results are generated from (a) Caps-
MN1 and (b) Caps-CF1.

the image processing tasks, nearby pixels tend to be alike. Moreover, we also notice that

the mapping similarity decreases with the growing distance between capsules due to the

large information representations gaps between far-way neurons.

In addition to explore the average impact of the capsule-capsule distances on the map-

ping similarity, we also observe that such impact is not unified across all the capsules. Fig.

29 illustrates this observation using Caps-MN1/Caps-CF1 as examples. The heat maps

represent the average coefficients’ similarity for the capsules and their adjacent capsules.

A darker color represents higher similarity: more surround capsules can share the same

mapping pattern without significantly damaging accuracy; while a lighter color represents

42

0

2

4

6

8

10

0.9965 0.997 0.9975 0.998 0.9985 0.999 0.9995 1 1.0005

N
o

rm
al

iz
ed

 V
ar

at
io

n

Average Similarity

MN1 SV3>90%
Central
Capsules

>70%
Margin
Capsules

Figure 30: The means (x-axis) and variations (y-axis) of the similarity between the same
coefficients from adjacent iterations.

capsules with more different mapping patterns than their surrounding capsules. Further-

more, the figure shows that for both datasets the light-colored areas reside at the center

of the heat maps, indicating that the central capsules have more unique mapping patterns.

This is because the corresponding central neurons are generated from the central pixels of an

input image, which typically contain more critical information than the marginal area. On

the contrary, darker areas contain little or even no information due to the usage of ReLU

functions that produces numerous ”0” neurons, leading to similar information mapping

patterns.

Loop-wise Updating Consistency: The coefficients are initialized at runtime and

require several RP iterations to finish updating. Such iterative process not only ensures the

correctness of input-output capsule mapping, but also may induce significant data move-

ments between on-chip units and off-chip DRAM. As discussed previously, the iterative

process generates a tremendous mount of intermediate variables, resulting in bad data lo-

cality and saturating the DRAM bandwidth.

However, not all the capsules require the entire number of iterations to finish the co-

efficient updating. We make a key observation that some coefficients updating becomes

43

trivial during the RP iterations; in other words, different capsules require different iter-

ation numbers to reach the accurate coefficients update, and only a portion of capsules

require the whole iteration procedure. Fig. 30 illustrates the mean and variation values of

the similarities between the same coefficients from the adjacent iterations, which indicates

the average coefficients changes corresponding to all the input capsules throughout the RP

iterations. According to the variation magnitude, these coefficients can be classified into

two categories. One category contains the relatively stable coefficients that require less

iterations (right side of the right line); the other category contains coefficients that actually

benefit from the entire RP iterations (left side of the red line). Specifically, we identify that

most of the capsules belonging to the first category are from the marginal areas. These

input capsules contain less information and their coefficients require less iterations to be

determined. On the other hand, the input capsules from the second category embedded

with essential information and must maintain the entire iteration processing to ensure the

correctness of the information mapping.

4.2.2 RP Execution Compression

Based on the previous two key observations, there exist computation and memory access

redundancy for the RP procedure. Therefore, at software level, we propose S-CapsNet to

conduct RP execution compression using the capsule-wise mapping similarity and loop-wise

updating Consistency.

Simple Compression: According to the first observation (the close capsules share the

similar coefficients value), we propose to modify the RP algorithm that apply only a few

input capsules to calculate the coefficients, and reuse these coefficients for the surrounding

capsules to calculate the output capsules. This compression pattern is shown in Fig. 31(a).

We locate and group every 3x3 capsules to calculate only the center coefficients with the

iteration skipped for the surrounding capsules. This compression method is convenient to

implement, and it can significantly reduce the computation and the intermediate variables

44

99.86% 99.84% 99.84% 99.84% 99.87% 99.86%

99.91% 99.87% 99.84% 99.83% 99.84% 99.86%

99.85% 99.85% 99.82% 99.82% 99.85% 99.87%

99.86% 99.84% 99.82% 99.81% 99.84% 99.86%

99.88% 99.85% 99.84% 99.84% 99.86% 99.89%

99.88% 99.87% 99.87% 99.86% 99.90% 99.92%

99.58% 99.09% 98.96% 98.96% 98.96% 99.16% 99.09% 99.58%

99.09% 98.32% 98.08% 98.08% 98.08% 98.44% 98.32% 99.19%

99.42% 98.92% 98.44% 98.08% 97.96% 98.08% 98.32% 99.19%

99.03% 98.20% 98.20% 97.84% 97.84% 98.20% 98.44% 99.19%

99.09% 98.32% 98.08% 97.84% 97.72% 98.08% 98.32% 99.19%

99.22% 98.56% 98.20% 98.08% 98.08% 98.32% 98.68% 99.19%

99.22% 98.56% 98.44% 98.44% 98.32% 98.80% 99.04% 99.19%

99.52% 99.19% 99.19% 99.19% 99.19% 99.19% 99.19% 99.19%

Capsule Information Similarity

Distance-1 (Adjacent)

Distance-2

Feature Maps

Capsule

(a) (b)

Figure 31: The Diagram of RP compression scheme: (a) simple compression, (b)
Importance-aware compression with different EssCoe/SimCoe region identifi-
cations. Each block represents the coefficients corresponding to certain input
capsule. The blank coefficients are those to be compressed, the green coeffi-
cients are SimCoe, while blue ones are EssCoe.

involved in the RP iterations. Note that this method only allows a capsule coefficient to

be reused by the adjacent capsules (i.e., distance equals to 1) to maintain the accuracy.

Although these coefficients have trivial differences for the remote capsules (e.g., less than

2% in Fig 29), they could eventually induce significant accuracy loss for the output cap-

sules. Therefore, this simple compression method is ineffective to address accuracy-sensitive

applications.

Importance-Aware Compression: In order to maintain high accuracy while reducing

the computation intensity and memory access, we propose to apply different schemes to

different area capsules.

As demonstrated in Fig. 29, compared with the marginal area coefficients, the coeffi-

cients of central area have lower similarity to the surrounding coefficients, and they tend

to experience big value changes throughout the RP iterations. This makes it very risky

to aggressively skip computation for the central area coefficients. Thus, we define the cen-

tral area coefficients as essential coefficients, or EssCoe, because they are critical to the

information mapping between input and output capsules. We also define the marginal area

coefficients as similar coefficients, or SimCoe, due to their highly similar values with the

surrounding coefficients. The solution to maintain the overall high accuracy is to maintain

45

the EssCoe computation while reducing the SimCoe computation; and how to identify these

two regions becomes the key challenge.

We further explore the EssCoe/SimCoe regions with different datasets and found that

the EssCoe/SimCoe regions are highly related to the ratio of the underlying object to the

entire picture as well as the object complexity. For example, in Fig. 31(b)-left figure, since

the objects in MNIST occupy a small area and are relatively simple, high accuracy can be

achieved with only the central area set as EssCoe. However, for datasets like CIFAR10 1

shown in Fig. 31(b)-right figure, its objects occupy nearly the whole image and contain

quite complex information, resulting in a larger EssCoe region compared to the MNIST

dataset.

Given the analysis above, the method to identify the EssCoe/SimCoe regions is explained

as follows. The identification can be conducted before runtime. For an image dataset, the

average object size can be calculated and the object complexity can be evaluated using

the previous method for image complexity measurement [56]. Based on the Conv layer

configuration before the capsule layer, we propose to determine the initial EssCoe area as

the area of the corresponding feature neurons from the object pixels. And for those datasets

with less object complexity, their EssCoe area can be furthered shrunk.

From Fig. 30, we can observe that the SimCoe values trend to be stable after the

first iteration. Therefore, in addition to compress the number of the SimCoe involved in

the RP procedure, we propose to further reduce its iterative computation. The deductible

iteration number is determined by the size of the SimCoe region. For a smaller SimCoe,

less information is preserved, leading to faster convergence for the SimCoe value. On the

contrary, a larger SimCoe contains more information and also higher risk to skip iterative

computation.

In this section, we have discussed the software-level optimization opportunities. We

1Note that the actual feature map of CIFAR10 before capsule layer should be 8× 8. We use 6× 6 here
as an example to simplify the discussion.

46

make several key observations to explore the data similarity and redundancy of the compu-

tation and memory access in RP procedure. These software-level optimizations can provide

moderate improvement on GPU execution efficiency while maintaining a high accuracy.

However, after value trimming and compression, the intermediate variable size generated

by RP’s iterative process is still much larger than GPU’s on-chip storage, i.e., at least

4.64×. The RP execution remains bounded by the hardware limitations, which motivates

us to conduct deeper architectural-level exploration.

4.3 Architectural-Level Opportunity: Processing-in-Memory + Pipelin-

ing

As discussed previously, we aim to address CapsNets’ significant off chip-memory access

caused by massive unshareable intermediate variables and intensive synchronization due to

numerous aggregation operations in RP. Meanwhile, we also want to utilize the excellent

core computing capability provided by modern GPUs for deep learning’s matrix operations.

Thus, we propose a hybrid computing engine named “PIM-CapsNet”, shown in Fig. 33.

It utilizes GPU’s native on-chip units as the host for fast processing layers such as Conv

and FC, while pipelining with an off-chip in-memory acceleration that effectively tackles

RP’s inefficient execution. For example, since multiple input sets are generally batched

together to be concurrently processed in RP to avoid the local optimal solution of the routing

coefficients [57], host processors can start processing Conv/FC operations from the different

batches of the input sets while waiting for RP’s results from in-memory processing on the

current batch, forming an execution pipeline. Furthermore, the in-memory accelerators of

our PIM-CapsNet design can hierarchically improve RP’s execution efficiency by minimizing

data movement and maximizing parallel processing. Note that our proposed design is a

general optimization solution that is applicable to different routing algorithms used in RP.

To build our in-memory acceleration capability for RP, we resort to one of the emerging

47

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

DRAM
Dies

Logic
Layer

Vault

...

Cross Bar (Switch)

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

TSV

Host Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Su
b

-M
em

o
ry

C
o

n
tro

ller

I/O

PE PE PE PE

PE PE PE PE

Su
b

-M
em

o
ry C

o
n

to
ller

I/O

E-C
trl

Vault

R
eg

Reg

Reg

PE PE PE PE

PE PE PE PE

PE PE PE PE

Reg

R
eg

Reg

E-C
trl

...

Cross Bar (Switch)

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Host Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

 Sub-Memory
 Contoller

PE PE PE...

Instruction Buffer

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Dynamic
Routing

Procedure

Independent Workloads

Independent Workloads

Independent Workloads

Independent Workloads

Independent Workloads

Independent Workloads

Independent Workloads

Performance
Evaluation

Device
Config

Workloads
Allocation

DR Procedure

Device
Config

PE PE PE...

D
R

A
M

 b
an

k

D
R

A
M

 B
an

k

D
R

A
M

 B
an

k

...

Operation
Simplification
W/ PE design

Memory
Addressing

 Sub-Memory
 Contoller

Parallel
Processing

Data

Execution

Intra-Vault Level DesignInter-Vault Level Design

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...Workloads
Allocation

DR Procedure

Device
Config

PE PE PE...

D
R

A
M

 b
an

k

D
R

A
M

 B
an

k

D
R

A
M

 B
an

k

...

Operation
Simplification
W/ PE design

Memory
Addressing

 Sub-Memory
 Contoller

Parallel
Processing

Data

Execution

Intra-Vault Level Design

Inter-Vault Level Design

Conv/PrimeCaps/FC

Sub-Memory
Controller

PE PE PE...

Host Processor

Inter-Vault
Level

Design

Intra-Vault
Level

Design

Distribution

Workloads Architecture

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...DR Procedure

Conv/PrimeCaps/FC

 Sub-Memory
 Contoller

PE PE PE...

Instruction Buffer

Host Processor

Parallel Processing

Sub-Operations

Inter-Vault
Level

Design

Intra-Vault
Level

Design

Distribution

Workloads Architecture

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Parallel Processing

Sub-Operations

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Customized
Address
MappingIntra-vault Data

Vault Logic

Vault
Storage

Split
Workloads

Conv/PrimeCaps/FC

Sub-Memory
Controller

PE PE PE...

Host Processor

Inter-Vault
Level

Design

Intra-Vault
Level

Design

Distribution

Workloads Architecture

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Parallel Processing

Sub-Operations

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Customized
Address
MappingIntra-vault Data

Vault Logic

Vault
Storage

Inter-Vault Level Design

CapsNet
Conv/PrimeCaps/FC

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

DR Procedure

Conv/
PrimeCaps/FC

DR
Procedure

Host Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Sub-Memory Controller

PE PE PE...

Vault Logic

Split Workloads

C
u

sto
m

ized

P
E D

esig
n

Sub-
workload

Sub-
workload

Sub-
workload

Sub-
workload

Sub-
workload

Sub-
workload

Workload
Division

Inter-Vault Design

Intra-Vault Design

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Intra-vault Data

Customized Address Mapping

Customized
Address Mapping

Parallel
Processing

C
o

n
v

P
ri

m
eC

ap
s

D
R

P

ro
ce

d
u

re

FC

CapsNet

Inter-level
Workload

Distribution

Sub-Operations

Intra-level Workload Distribution

Conv/
PrimeCaps/FC

DR Procedure

Host Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Sub-Memory Controller

PE PE PE...

Vault Logic

C
u

sto
m

ized

P
E D

esig
n

Split
workload

Split
workload

Split
workload

Split
workload

Split
workload

Split
workload

Workload
Division

Inter-Vault Design

Intra-Vault Design

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Intra-vault Data

Customized Address Mapping

Customized
Address Mapping

Parallel
Processing

C
o

n
v

P
ri

m
eC

ap
s

D
R

P

ro
ce

d
u

re

FC

CapsNet

Sub-Operations

Intra-level Workload Distribution

Intelligent Workload Distributor

Split WorkloadsDevice
Config

Inter-level Workload Distribution

DR
Procedure

Host
Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die
Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Sub-Memory Controller

PE PE PE...

Vault Logic Customized PE
Design

(Section5.2.2)

Split
workload

Split
workload

Split
workload

Split
workload

Split
workload

Split
workload

Inter-Vault Level Design

Intra-Vault Level Design

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Intra-vault Data

Customized Address Mapping

Customized
Address Mapping

(Section5.3)

CapsNet

Sub-Operations

Intra-vault Workload Distribution (Section5.2.1)

Intelligent Workload Distributor
(Section5.1.2)

Split WorkloadsDevice
Config

Inter-level Workload Distribution

Conv

PrimeCaps

DR
Procedure

FC

Conv layer
PrimeCaps

FC layer

P
a

ra
lle

l
P

ro
ce

ss
in

g

Host GPU

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

HMC Logic Layer

Cross Bar (Switch)

Vault
Logic

Vault
Logic

...

I/O

R
M

A
S

(S
ec

.5
.3

.2
)

Vault
Logic

GPU

CONV/FC/
PrimeCaps

Routing Procedure Workloads

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Customized PE
Design

(Section5.2.2)

Sub-Memory Controller

PE PE PE...

Vault Logic

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Operations

Para
lle

l

Pro
ce

ss
in

g Inter-vault Level
Design (Sec.5.1)

DR
Procedure

Host GPU

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die
Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Sub-Memory Controller

PE PE PE...

Vault Logic Customized PE
Design

(Sec.5.2.2)

Snippet Snippet Snippet

SnippetSnippetSnippet

Inter-Vault Level Design Intra-Vault Level Design

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Intra-vault Data Customized
Address Mapping

(Sec.5.3.1)

CapsNet

Sub-Operations

Intra-vault Workload Distribution (Sec.5.2.1)

Intelligent Workload Distributor
(Sec.5.1.2)

Workload
Snippets

Conv

PrimeCaps

DR
Procedure

FC

Conv layer
PrimeCaps

FC layer

R
M

A
S

M
o

d
u

le

R
M

A
S

(S
ec

.5
.3

.2
)

Routing
Procedure
Workloads

CONV/FC/
PrimeCaps

Runtime Memory
Access Schduler

(Sec.5.3.2)

Pip
elin

ed

Intra-vault Data

Inter-vault Level
Design (Sec.5.2)

Memory Address
Mapping Mechanism

(Sec.5.3.1)

CapsNet

DRAM
Dies

Logic
Layer

Vault

...

Cross Bar (Switch)

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

TSV

Figure 32: Left: HMC Organization. Right: HMC Block Diagram. The Red dashed box
marks the vault structure.

3D stacked technologies, i.e., hybrid memory cube (HMC) [58], which has become a promis-

ing PIM platform [59–63]. The major reason to replace current GPU’s off-chip memory (e.g.,

GDDRX or HBMs) with HMC in our design is their lack of logic layer for in-memory in-

tegration. As illustrated in Fig. 32, HMC stacks several DRAM dies on the CMOS logic

layer as a cube (specification 2.1 [64]). The memory cube connects with the host processor

(i.e., GPU cores in our case) via the fully-duplex links which can provide up to 320GB/s

of external memory bandwidth. Additionally, the logic layer is split into 32 sub-memory

controllers with each communicates its local DRAM banks through Through-Silicon Vias

(TSVs) which together provide an internal memory bandwidth of 512GB/s [58, 61]. The

sub-memory controller and its local DRAM partitions (each partition contains multiple

DRAM banks) form the vault architecture, as highlighted in the red dashed box. The logic

layer receives system commands and routes memory access to different vaults. A crossbar

is integrated in the logic layer to support the communication between SerDes links and

vaults. Note that relatively simple computation logic can be integrated onto HMC’s logic

layer which can directly access data from vaults via memory controllers and benefit from

large internal memory bandwidth. This layer is very suitable for integrating in-memory

accelerators for RP execution. Next, we will discuss the detailed PIM-CapsNet design.

48

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

DRAM
Dies

Logic
Layer

Vault

...

Cross Bar (Switch)

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

TSV

Host Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Su
b

-M
em

o
ry

C
o

n
tro

ller

I/O

PE PE PE PE

PE PE PE PE

Su
b

-M
em

o
ry C

o
n

to
ller

I/O

E-C
trl

Vault

R
eg

Reg

Reg

PE PE PE PE

PE PE PE PE

PE PE PE PE

Reg

R
eg

Reg

E-C
trl

...

Cross Bar (Switch)

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Host Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

 Sub-Memory
 Contoller

PE PE PE...

Instruction Buffer

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Dynamic
Routing

Procedure

Independent Workloads

Independent Workloads

Independent Workloads

Independent Workloads

Independent Workloads

Independent Workloads

Independent Workloads

Performance
Evaluation

Device
Config

Workloads
Allocation

DR Procedure

Device
Config

PE PE PE...

D
R

A
M

 b
an

k

D
R

A
M

 B
an

k

D
R

A
M

 B
an

k

...

Operation
Simplification
W/ PE design

Memory
Addressing

 Sub-Memory
 Contoller

Parallel
Processing

Data

Execution

Intra-Vault Level DesignInter-Vault Level Design

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...Workloads
Allocation

DR Procedure

Device
Config

PE PE PE...

D
R

A
M

 b
an

k

D
R

A
M

 B
an

k

D
R

A
M

 B
an

k

...

Operation
Simplification
W/ PE design

Memory
Addressing

 Sub-Memory
 Contoller

Parallel
Processing

Data

Execution

Intra-Vault Level Design

Inter-Vault Level Design

Conv/PrimeCaps/FC

Sub-Memory
Controller

PE PE PE...

Host Processor

Inter-Vault
Level

Design

Intra-Vault
Level

Design

Distribution

Workloads Architecture

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...DR Procedure

Conv/PrimeCaps/FC

 Sub-Memory
 Contoller

PE PE PE...

Instruction Buffer

Host Processor

Parallel Processing

Sub-Operations

Inter-Vault
Level

Design

Intra-Vault
Level

Design

Distribution

Workloads Architecture

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Parallel Processing

Sub-Operations

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Customized
Address
MappingIntra-vault Data

Vault Logic

Vault
Storage

Split
Workloads

Conv/PrimeCaps/FC

Sub-Memory
Controller

PE PE PE...

Host Processor

Inter-Vault
Level

Design

Intra-Vault
Level

Design

Distribution

Workloads Architecture

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Parallel Processing

Sub-Operations

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Customized
Address
MappingIntra-vault Data

Vault Logic

Vault
Storage

Inter-Vault Level Design

CapsNet
Conv/PrimeCaps/FC

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

DR Procedure

Conv/
PrimeCaps/FC

DR
Procedure

Host Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Sub-Memory Controller

PE PE PE...

Vault Logic

Split Workloads

C
u

sto
m

ized

P
E D

esig
n

Sub-
workload

Sub-
workload

Sub-
workload

Sub-
workload

Sub-
workload

Sub-
workload

Workload
Division

Inter-Vault Design

Intra-Vault Design

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Intra-vault Data

Customized Address Mapping

Customized
Address Mapping

Parallel
Processing

C
o

n
v

P
ri

m
eC

ap
s

D
R

P

ro
ce

d
u

re

FC

CapsNet

Inter-level
Workload

Distribution

Sub-Operations

Intra-level Workload Distribution

Conv/
PrimeCaps/FC

DR Procedure

Host Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Sub-Memory Controller

PE PE PE...

Vault Logic

C
u

sto
m

ized

P
E D

esig
n

Split
workload

Split
workload

Split
workload

Split
workload

Split
workload

Split
workload

Workload
Division

Inter-Vault Design

Intra-Vault Design

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Intra-vault Data

Customized Address Mapping

Customized
Address Mapping

Parallel
Processing

C
o

n
v

P
ri

m
eC

ap
s

D
R

P

ro
ce

d
u

re

FC

CapsNet

Sub-Operations

Intra-level Workload Distribution

Intelligent Workload Distributor

Split WorkloadsDevice
Config

Inter-level Workload Distribution

DR
Procedure

Host
Processor

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die
Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Sub-Memory Controller

PE PE PE...

Vault Logic Customized PE
Design

(Section5.2.2)

Split
workload

Split
workload

Split
workload

Split
workload

Split
workload

Split
workload

Inter-Vault Level Design

Intra-Vault Level Design

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Intra-vault Data

Customized Address Mapping

Customized
Address Mapping

(Section5.3)

CapsNet

Sub-Operations

Intra-vault Workload Distribution (Section5.2.1)

Intelligent Workload Distributor
(Section5.1.2)

Split WorkloadsDevice
Config

Inter-level Workload Distribution

Conv

PrimeCaps

DR
Procedure

FC

Conv layer
PrimeCaps

FC layer

P
a

ra
lle

l
P

ro
ce

ss
in

g

Host GPU

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die

HMC Logic Layer

Cross Bar (Switch)

Vault
Logic

Vault
Logic

...

I/O

Runtime
Memory Access

Scheduler
(Sec.5.3.2)

Vault
Logic

GPU

CONV/FC/
PrimeCaps

Routing Procedure Workloads

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Customized PE
Design

(Section5.2.2)

Sub-Memory Controller

PE PE PE...

Vault Logic

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Operations

Pip
elin

ed

Pro
ce

ss
in

g Inter-vault Level
Design (Sec.5.1)

DR
Procedure

Host GPU

Silicon Interposer

Logic Layer

DRAM Die

DRAM Die

DRAM Die
Cross Bar (Switch)

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

Vault
Logic

...

...

Sub-Memory Controller

PE PE PE...

Vault Logic Customized PE
Design

(Sec.5.2.2)

Snippet Snippet Snippet

SnippetSnippetSnippet

Inter-Vault Level Design Intra-Vault Level Design

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Intra-vault Data Customized
Address Mapping

(Sec.5.3.1)

CapsNet

Sub-Operations

Intra-vault Workload Distribution (Sec.5.2.1)

Intelligent Workload Distributor
(Sec.5.1.2)

Workload
Snippets

Conv

PrimeCaps

DR
Procedure

FC

Conv layer
PrimeCaps

FC layer

R
M

A
S

M
o

d
u

le

R
M

A
S

(S
ec

.5
.3

.2
)

Routing
Procedure
Workloads

CONV/FC/
PrimeCaps

Runtime Memory
Access Schduler

(Sec.5.3.2)

Pip
elin

ed

Intra-vault Data

Intra-vault Level
Design (Sec.5.2)

CapsNet

DRAM
Dies

Logic
Layer

Vault

...

Cross Bar (Switch)

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

Partition

Partition

Partition

Sub-Memory
Controller

...

Partition

TSV

Memory Address
Mapping Mechanism

(Sec.5.3.1)

Cross Bar (Switch)

Vault
Logic

Vault
Logic

... Vault
Logic

Inter-vault Level
Design

Intra-vault Level
Design

Memory Address
Mapping Mechanism

Runtime
Memory Access

Scheduler

RMAS
Module

Runtime Memory
Access Scheduler

DRAM
Dies

HMC Logic Layer

Cross Bar (Switch)

Vault
Logic

Vault
Logic

...

I/O

Runtime
Memory Access

Scheduler

Vault
Logic

GPU

CONV/FC/
PrimeCaps

Routing Procedure Workloads

Sub-Memory Controller

PE PE PE...

Vault Logic

DRAM
Bank

DRAM
Bank

DRAM
Bank...

Vault
Storage

Operations

Pip
elin

ed

Pro
ce

ss
in

g Inter-vault Level
Design

Intra-vault Data

Intra-vault Level
Design

CapsNet
Memory Address

Mapping Mechanism

Figure 33: The overview of PIM-CapsNet Design.

4.4 PIM-CapsNet: Architecture-level Optimization

There are two key design objectives in PIM-CapsNet: (i) maintaining workload bal-

ance with minimal data communication at inter-vault level(Section.4.4.1 and Section.4.4.3),

and (ii) maximizing parallel processing at intra-vault level but within architecture design

constraints (Section.4.4.2 and Section.4.4.3).

4.4.1 Inter-Vault Level Design

As an interesting feature, the operations of RP equations (Section 2.2.2) are highly

parallelizable. For example, in Eq.(6), the vector-matrix multiplications for all the low- to

high-level (L-H) capsule pairs are independent. We define such independent operations on L

capsules as parallelism in the L-dimension, while the independent operations on H capsules

are defined as parallelism in the H-dimension. Additionally, if operations corresponding to

different batches are independent, they are defined as parallelism in the B-dimension. Thus,

we make the following key observations:

Observation I: Operations of each equation in the RP can be partitioned into multiple

independent sub-operations on at least one of the three dimensions (L, H, or B), suggesting

highly parallelizable feature.

Table 4 further demonstrates which possible dimensions these five equations of the

dynamic routing procedure can be parallelized through. Based on it, we also make the

second key observation:

49

Table 4: Possible Parallelizable Dimensions

Batch
(B-dimension)

Low-level Caps
(L-dimension)

High-level Caps
(H-dimension)

Eq. 6 x x x
Eq. 7 x x
Eq. 8 x x
Eq. 9 x x
Eq. 10 x

Observation II: All the RP equations cannot be concurrently executed through the same

dimension.

Observation I indicates that the inter-vault data communication can be reduced by paral-

lelizing the independent sub-operations of each equation on one chosen dimension and then

distributing them across HMC vaults. By doing so, the major communication across vaults

is only required by the aggregation operations at that dimension (aggregations required by

the other two dimensions will be performed locally within vaults), which is relatively low.

Observation II, however, emphasizes that the inter-vault communication can not be fully

eliminated for RP as none of the three dimensions can support the parallelization for all the

RP equations. When distributing the entire RP workloads on a certain dimension, some

related data have to be reloaded to another designated vault for aggregation operations.

Parallelization and Workload Distribution: Since distributing the workloads on

different dimensions leads to different communication overheads and execution patterns, it

is important to apply an intelligent workload distributor to achieve the optimal design for

power and performance. To minimize the inter-vault communication, our distributor only

distributes the RP workload on a single chosen dimension. Fig. 34 illustrates an example

of the RP execution flow when distributing on the B-dimension. As it shows, the RP

operations of Eq. 6,7,8 (1/2/3) exhibit parallelism along the B-dimension. Additionally,

the multiplication operations of Eq. 9 (4) (i.e., vkj × ûkj|i) can also be parallelized along the

B-dimension. These parallelable workloads can be divided into snippets (i.e. green blocks)

and distributed across the HMC vaults. Note that typical CapsNet workloads will generate

50

Table 5: Parameters for Modeling Inter-Vault Data Movement

Symbol Description

I DR iteration number

NB
Scale for B-dimension
i.e. batch size

NL
Scale for L-dimension
i.e. number of low-level capsules

NH
Scale for H-dimension
i.e. number of high-level capsules

NLC Scale for actual intra-iteration L-dimension

Nvault Number of Vault

CL
Dimension of low-level capsule
i.e. number of scaler per low-level capsule

CH
Dimension of high-level capsule
i.e. number of scaler per high-level capsule

SIZEx Data size of a variable or packet head&tail

R
Compression ratio using
algorithm-level optimization

way more snippets than the number of vaults in the HMC (e.g., up to 32 vaults in HMC

Gen3).

Due to the aggregation requirements on all the dimensions during RP execution, there

are always some workloads that cannot be processed in parallel on the selected dimension,

leading to workload imbalance. For instance, the remaining operations of the RP procedure

in Fig. 34 (i.e., the purple blocks), including partial Eq. 9 (5) and Eq. 10 (6) cannot be

divided into snippets due to the lack of parallelism on the B-dimension. Additionally, these

workloads usually require data to be aggregated in one place, making it hard to utilize all

the HMC computation resources. Furthermore, the data size requested by the aggregation

operations can be large, which may cause massive inter-vault communication and even the

crossbar stalls. To reduce the inter-vault communication and increase hardware utilization,

we propose to pre-aggregate the partial aggregation operations inside each vault for the

corresponding allocated snippets. For example, when the RP workloads are distributed on

B-dimension, the pre-aggregation can be performed for Eq.(9) to combine the bkij from the

snippets assigned to a specific vault before performing global inter-vault aggregation.

51

Guiding Distribution via an Execution Score: To achieve the optimal power/thermal

and performance results, we propose a metric called execution score S to guide workload

distribution, which quantitatively estimates the RP execution efficiency under a given work-

load distribution. S considers workload assignment to each vault, inter-vault communication

overheads, device-dependent factors and inter-vault memory bandwidth. S is modeled as

S = 1/(αE + βM).

where E represents the largest workloads distributed to a single vault (since even distri-

bution across vaults is typically not feasible), which can be quantified based on the amount

of allocated operations. M represents the amount of inter-vault data movement. Both

E and M are affected by the distribution strategy and the model configuration. Finally,

α and β represent the device-dependent coefficients, determined by HMC frequency and

inter-vault memory bandwidth, respectively.

The calculation of S is independent of the online parameters, thus, the distribution

strategy can be determined off-line before the actual inference. Then, the in-vault opera-

tions according to this selected distribution dimension will be generated by compiler and

the corresponding workloads will be assigned into each vault via a hardware scheduler at

runtime.

Note that our software optimization also works for the PIM processing, hence, we need

to firstly produce the correctly dimension information after the compression to conduct the

most efficient workload distribution. Our S-CapsNet will reduce the L-dimension during

the processing of the RP iterations, i.e. NL, which could significantly change the amount of

the computation and the data movement involved in the iterations. But the computation

outside the iterations remain the same, leading to two different dimension information. In

order to precisely predict the best parallelism dimension, we additionally mark the actual

L-capsule number inside the RP iterations as NLC , which can be calculated using following

equation:

NLC = NL/(R+ 1e−8). (14)

52

Where the NL is the original L-dimenison scale, R represents the compression ratio (e.g.

“1” means no compression) and 1e−8 is adopted to the keep the computation safe. Note

that the iteration number (I) is another parameter that could be potentially impacted by

our S-CapsNet. However, since the E represents the largest in-vault workloads, the iteration

number for that vault can be considered as unchanged, because entire iterations are required

for those EssCoe as discussed in Section.4.2.2.

With the parameter updated, we now demonstrate how to model S via estimating E

and M on the three distribution dimensions.

Distribution on B-dimension: As Fig. 34 illustrates, the largest workload assigned

to a single vault (E) consist of the workload snippets including 1/2/3/4 and the partial

operations 5/6. With our optimizations, the single vault can get at most dlog2(Nvault)e
Nvault

of

the unparallelizable operations, where Nvault represents number of the HMC vaults. Using

parameters shown in Table 5, E can be modeled as follows:

EB = d NB

Nvault
e ×NL ×NH × CH × (2CL − 1) + I × [d NB

Nvault
e×

NH × CH × (2NLC − 1) + d NB

Nvault
e ×NH × (3CH + 19)+

d NB

Nvault
e ×NLC ×NH × (2CH − 1) +

dlog2(Nvault)e
Nvault

+ 4× CH].

(15)

Since NL � 1, the above equation can be simplified as:

EB = d NB

Nvault
e ×NL ×NH × [(

4I

R+ 1e−8
− 1)CH + 2CLCH −

I

R+ 1e−8
]. (16)

The inter-vault data communication consists of sending pre-aggregated bij from all the

vaults to a single vault and scattering cij across all the vaults. The data transmission is

in the form of packets with the head and tail size represented as SIZEpkt. Therefore, the

amount of data movements M can be represented as:

53

u0
0~uk

i

w0j~wij

× û0
0j~ûk

ij

c0j~cij

sj× vj

û0
0j~ûk

ij

×
u0

0~uk
i

w0j~wij

× û0
0j~ûk

ij

c0j~cij

sj× vj

û0
0j~ûk

ij

b0j~bij×

û0
i0~ûk

ij

bi0~bij

×
û0

i0~ûk
ij

bi0~bij

×
u0

i~uk
i

wi0~wij

× û0
i0~ûk

ij

ci0~cij

× si0~sij
u0

i~uk
i

wi0~wij

× û0
i0~ûk

ij

ci0~cij

× si0~sij

ui wij

cij sij vij bij

×

Equation 1

Equation 3 Equation 4 Equation 5

Equation 5

Equation 4,
part 2

Equation 2
Equation 2

...Equation 2

...Equation 3

...

Equation 4, Part 1

Host Processor Hybrid Memory Cube

Equation 3

Equation 2,
part 2

...Equation 4

...Equation 5

...

Equation 2, Part 1

Host Processor Hybrid Memory Cube

Equation 1
1

2
3

4

5
6

2

3

4

5

1

6

Equation 1

Equation 5

...Equation 2

...Equation 3

...

Host Processor Hybrid Memory Cube

2

3

4

5

1

Equation 4

ui

s0

si

...

v0

vi

...

×

... ...

...

...×

×

... ...

...

...×

+
u0~ui

w00~wij

× û00~ûij

c00~cij

s0~sj× v0~vj

û00~ûij

b00~bij×
u0~ui

w00~wij

× û00~ûij

c00~cij

s0~sj× v0~vj

û00~ûij

b00~bij×
uk

0~uk
i

w00~wij

× ûk
00~ûk

ij

c00~cij

sk
0~sk

j× vk
0~vk

j

ûk
00~ûk

ij

bk
00~bk

ij×

Diff
ere

nt B
at

ch
es

b00~bij

s0~sj v0~vju0
i~uk

i

wi0~wij

× û0
i0~ûk

ij

ci0~cij

× si0~sij + û0
i0~ûk

ij

bi0~bij

×

+

Diff
ere

nt P
-c

ap
s

softmax

u0
0~uk

i

w0j~wij

× û0
0j~ûk

ij

c0j~cij

sj× vj

û0
0j~ûk

ij

b0j~bij×

softmax

Diff
ere

nt D
-c

ap
s

softmax

1 2 3 4
5

6

1 2 3

5

6

1 2 3 4 5

4

Figure 34: The execution diagram for the RP procedure with B-dimension distribution.
The workloads in green blocks can be split across vaults, but workloads in purple
blocks cannot be distributed via B-dimension.

MB = I × [(Nvault − 1)×NLC ×NH × (SIZEbij + SIZEpkt)

+(Nvault − 1)×NLC ×NH × (SIZEcij + SIZEpkt)].

(17)

Distribution on L-dimension: As Table 4 illustrates, the RP operations of Eq. 6,9,10

can be divided into workload snippets on the L-dimension. Besides, partial operations from

Eq. 7 (i.e., ûkj|i×cij) also exhibit parallelism on the L-dimension. Thus, E can be represented

as:

EL = NB × d
NL

Nvault
e ×NH × [

2I

R+ 1e−8
(2CH − 1) + CH(2CL − 1)]. (18)

The inter-vault communication contains data all-reducing for of sj and broadcasting vkj :

ML = I × [NB × (Nvalut − 1)×NH × (SIZEskj
+ SIZEpkt)

+NB × (Nvault − 1)×NH × (SIZEvkj
+ SIZEpkt)].

(19)

Distribution on H-dimension: As Table 4 presents, only Eq. 10 cannot be paral-

lelized on this dimension. Hence, E can be represented as:

EH = NB ×NL × d
NH

Nvault
e × CH × [2CL − 1 +

2I

R+ 1e−8
]. (20)

54

The inter-vault communication contains data all-reducing for of bij and broadcasting cij :

MH = I × [(Nvault − 1)×NLC × (SIZEbij + SIZEpkt)

+NLC × (SIZEcij + SIZEpkt)].

(21)

4.4.2 Intra-Vault Level Design

In this section, we propose the intra-vault level design that effectively processes the sub-

operations of each equation that are allocated to a vault. We target the design for IEEE-

754 single precision (FP32) format, which provides sufficient precision range for CapsNet

workloads [28]. Our design can also fit other data formats with minor modifications.

Intra-Vault Level Workload Distribution: In a basic HMC design, the logical

layer of each vault contains a sub-memory controller to handle the memory access. In order

to conduct RP specific computation, we introduce 16 processing elements (PEs) into each

vault. This design overhead has been tested to satisfy both area and thermal constraints for

HMC [63] (see detailed overhead analysis in Section 4.5.6). These PEs (integrated onto the

logic layer) are connected to the sub-memory controller in the vault, shown in Fig. 35(left).

Note that the number of parallel sub-operations on certain dimension is generally the orders

of magnitude higher than the number of vaults in HMC. In other words, many parallel sub-

operations will be allocated to the same vault. Hence they can be easily distributed on

the same dimension and concurrently processed via the PEs without introducing additional

communication overheads. There may exist some extreme cases that the number of parallel

sub-operations allocated to the vault is smaller than the number of PEs, leading to low PE

utilization. Since most equations in RP can be parallelized on more than one dimension, the

workloads can then be distributed along a different dimension which can produce enough

parallelism to fully utilize the PE resources.

Customized PE Design: There have been some studies [62, 63, 65] that integrate

adders and multipliers onto the HMC logic layer to perform multiply-accumulation (MAC)

55

VaultSu
b

-M
em

o
ry

C
o

n
to

ller

I/O

MUX

× + ∫

E-C
trl

MUX

× + ∫

Vault

Router

× +

∫

MUX

R
eg

Reg

Processing
Element

Control Signal

H
 In

p
u

t

V
 In

p
u

t

O
u

tp
u

t

P-P Router

MUX

Reg

Add Add Add SF

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

Add Add Add Add

Mul Mul Mul Mul

Mul Mul Mul Mul

(b) (c)

(a)

 Sub-Memory
 Contoller

PE PE PE...

Instruction Buffer

Data Buffer

M
u

x

×

+

>>

M
u

x

M
u

x

+ >>

PC

Processing Element

Write
Buffer

1 2 3

Vault

PE PE PE...
Instruction Buffer

Data Buffer

M
u

x

× M
u

x

M
u

x

+ <<

Program Counter

Processing Element

1 2 3

DRAM
Bank

DRAM
Bank

DRAM
Bank

...

 Sub-Memory
 Contoller

Write
Buffer

Vault

PE PE PE...

Data Buffer

M
u

x

× M
u

x

M
u

x

+ <<

OP Controller

Processing Element

1 2 3

DRAM
Bank

DRAM
Bank

DRAM
Bank

...

Sub-Memory Contoller

16 PEs

Figure 35: Intra-vault level Architecture Design.

which is an essential operation for deep learning (e.g., CNN). However, CapsNet’s RP

execution involves other operations beyond MAC. As discussed in Section 2.2.2, among

the five RP equations, Eq. 6, Eq. 7 and Eq. 9 can be translated into MAC operations.

But the other operations including Eq. 8 and Eq. 10 involve more complex functions

such as division (Eq. 8), inverse square-root (Eq. 8) and exponential functions (Eq. 10)

that require complicated logic design, resulting in large performance and power/thermal

overheads [66,67].

Operation Approximation: To gain high performance while maintaining low hardware

design complexity, we propose approximation to simplify these operations with negligible

accuracy loss. For simplifying division and inverse square-root functions of the FP32, we

apply bit shifting [68], which is widely adopted in graphics processing domain [69–71]. For

exponential function, we approximate the operation as follows:

The original exponential function can be transformed in the form of power function with

the base as 2 [72]:

ex = 2log2(e)×x = 2y = 2byc(1 + 2y−byc − 1). (22)

Where byc is the integer part of y, and y − byc is the decimal part.

Fig. 36(a) illustrates an example of representation transfer. First, the ep of both A and

B will be subtracted from the bias b to get their real exponents (i.e., ep−b), as shown in Fig.

36(a)1& 3. Then, the most significant ep− b+ 1 bits of A’s significand (i.e., 1 + fraction)

56

1 1 1 1 1

0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Shifting 23 Bits

2^a0*(1+2^-a1 + 2^-a2 + 2^-a3)

2^a0+2^(a0-a1) + 2^(a0-a2) + 2^(a0-a3)

2^b0*(1+2^-b1 + 2^-b2 + 2^-b3)

2^b0+2^(b0-b1) + 2^(b0-b2) + 2^(b0-b3)

Y_integer + 127 2^(Y_frac)-1

23 Bit Shift 23 Bit Shift

0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

7

- 127

1

-6

+

0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+-127 +

+134

+7

+7
-6

+1

+-127 + +

-2 -6

-3
-5

-9

0.15820315

+

-22

-25

130

+124

<< <<

Shifting 23 Bits<< <<

-3

<< <<

Abandon

Bit Shifting

0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+-127 +

+134

+7

+7
-6

+1

+-127 + +

-2 -6

-3
-9

+
-25

+124

<< <<

 Bit Shifting<< <<

-3

<< <<

Ignore

-5

-22

A

C

B

A

B

C

1
2

3

4
5

6

+ +

<< <<

0 Exponent Mantissa

+

×

offset

0 Exponent MantissaInput

Output

0 Exponent Mantissa
Exponent+
Mantissa

bias

Exponent represnetation

Mantissa represntation

Target FP32 Number

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 +

+132 -127

Significand

<<
+5

0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 01 +

+124 -127
|-3|

Chunked

A

C

B

Exponent

1 +

1

3

2

4

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 +

Significand

A

Exponent

0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0+

D 1 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 01 +E 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0C 1 +

+132 -127 <<+5
>>

+

(a) (b)

Matching
Exponent

Non-overlapping fraction bits

0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1+

1+

1+

-127

-127

>>

<<

Exponent Significand

+132
+5

+124

|-3|

1 2

3 4

A

C

B

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 01 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01+A

D

Non-overlapping fraction bits

0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 01+C

Exponent Significand

Chunked
-127 <<

Identical
Exponent

+132 +5

(a) (b)

0+0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0

1+

1+

1+

-127

-127

>>

<<

Exponent Significand

+132
+5

+124

|-3|

1 2

3 4

A

C

B

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 01 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01+A

D

Non-overlapping fraction bits

0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 01+C

Exponent Significand

Chunked

-127 <<

Identical
Exponent

+132 +5

(a) (b)

Over-
Chunked

1 1 1 1 10+0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0

1+

1+

1+

-127

-127

>>

<<

Exponent Significand

+132
+5

+124

|-3|

1 2

3 4

A

C

B

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 01 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01+A

D

Non-overlapping fraction bits

0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 01+C

Exponent Significand

Chucked

-127 <<

Identical
Exponent

+132 +5

(a) (b)

Over-
Chucked

Mean Difference %

Figure 36: (a) An example of transferring the exponent representation A (i.e., byc + b)
and fraction representation B (i.e., 2y−byc − 1) to the exponential function’s
result C in FP32 format. (b) Combining the exponent representation A and the
fraction representation (i.e., D that transferred from B), and applying a unified
bit shifting to obtain the exponential function’s result C.

will be chunked and filled into the least significant ep− b+1 bits of C’s exponent field, with

the remaining exponent bits in C filled by zeros, as shown in Fig. 36(a)2. We conduct s

similar operation to transfer B to the C’s fraction. Since B is a fraction value, its exponent

is a non-positive number. B’s significand will be logical shift right by |ep− b| bits and then

its most significant 23 bits are filled into C’s fraction field, as shown in Fig. 36(a)4.

The above two transfers can be considered as bit shifting on the significand (i.e., 1 +

fraction) in FP32 format with the distance and direction determined by the real exponent

(i.e., ep− b). As illustrated in Fig. 36, theB’s exponent can increase to match the exponent

of A with its significand bits logically shifting right. By doing this, the faction representation

can be described as D in Fig. 36(b). Given the matched real exponent value (i.e., ep− b),

the two representations, i.e., A and D in Fig. 36(b), now share the identical bit shifting

operations. Additionally, A and D correspond to ExpResult’s (i.e.,exponential function’s

result) integer and fraction, respectively. There is no overlapping between their fraction bits.

Thus, these two representations can be combined (i.e., A OR D) followed by a unified bit

shifting operation on the significand. Note that the exponent matching procedure (B→D)

could over chuck several least significant bits which would originally be mapped into the

ExpResult.

Since the exponent matching and combination of two FP32 numbers can be simply

57

considered as a FP32 addition, we can treat the ExpResult computation as an addition

of the exponent and fraction representations (i.e., byc + b + 2y−byc − 1) followed by the

bit shifting operations. Note that the power of 2 function causes high complexity in both

execution and logic design, we propose to simplify it as follows:

The above polynomial can be expanded as (y + 2y−byc − (y − byc) + b − 1); then, the

average value Avg of (2y−byc − (y − byc)) can be achieved via integrating the polynomial

over (y− byc) ∈ [0, 1), which is fixed and can be obtained offline. With y represented by x,

the exponential function can be described as follows:

ExpResult ' BS(log2(e)× x+Avg + b− 1). (23)

Where the BS is bit shifting operations with information from ep − b; and log2(e) is a

constant that is computed offline.

Accuracy Recovery: Under the worst case scenari, othere might be several lowest

significand bits chucked when mapping from D to C. It may cause some accuracy loss. To

minimize the bit chucking impact, we analyze 10,000 exponential executions to collect the

value differences between the approximated and original results. During the approximation

execution, the accuracy loss will be recovered via enlarging the results by the mean per-

centage of the value difference. Note that our accuracy recovery scheme only introduces

one additional multiplication operation during the inference, which guarantees the high

performance and the low design complexity compared to other exponential approximation

methodology, e.g., applying look-up tables [67]. Section 4.5.6 shows the detailed accuracy

analysis.

Final PE Structure: According to the discussion above, the special functions can be

simplified as a combination of addition, multiplication, and bit shifting operations. Thus,

our intra-vault PE employs adders, multipliers, and bit-shifters to construct these special

functions, as shown in Fig. 35. Specifically, our PE enables the flow configuration via the

58

… …
033 4

Sub-page ID Bank ID Vault ID

… …
033 4

Sub-page ID

Bank IDVault ID

Block ID

Indicator

(a)

(b)

Block ID

Block Address

Figure 37: (a)The default address mapping of 8GB in HMC Gen3; (b) Our address mapping.

multiplexer (MUX) to support different types of operations. For example, PE execution

flow 1-2 is for MAC operations; 3-2-1-2-1 is for inverse square-root operations; and 1-2-2-3

is for exponential function.

4.4.3 Contention Reduction in CapsNet Design

In this section, we discuss strategies to combat the memory-level contention in our

PIM-CapsNet design. Memory Address Mapping Mechanism: In the default HMC

design, memory access granularity is 16 bytes which is defined as a block, and the sequential

interleaving mapping mechanism is applied to benefit from better bandwidth utilization.

Moreover, MAX block is introduced to define the maximum number of blocks that one

bank can provide at a time. Its size can be set to 32B, 64B, 128B, or 256B [58]. In this

study, we redefine MAX block as a subpage in order to differentiate it from block, and one

subpage is composed of multiple blocks. Fig.37(a) illustrates the default address mapping

from HMC Gen3 specifications [58]. The lowest 4 bits and the highest 1 bit are ignored,

and the remaining bits describe the block address. From its lower to higher bits, a block

address is composed of several fields: the block ID in the sub-page (the number of bits

is determined by the sub-page size), the 5-bit vault ID for 32 vaults, the 4-bit Bank ID

for 16 banks per vault, and the sub-page ID in the bank. As can be seen, sub-pages with

consecutive addresses will be first spread sequentially to different vaults and then different

DRAM banks.

Note that our inter-vault level design requires consecutive blocks allocated into one vault

to avoid high inter-vault communication. This can be easily addressed by moving up the

59

vault ID field to the highest field of the block address (as shown in Fig.37(b)) so that vault

ID remains unchanged during the intra-vault memory address mapping. However, at the

intra-vault level, PEs process their workloads in parallel and concurrently generate data

requests, which may result in serious bank conflicts and vault request stalls (VRS).

Interestingly, we observe that most of the concurrent PE requests assigned to the same

bank actually visit different blocks. Based on this, we propose a new memory addressing

scheme to distribute these blocks to different banks, in order to significantly alleviate bank

conflicts and decrease the VRS. However, simply distributing blocks to different banks

could further increase the VRS as one PE may request multiple consecutive blocks at a

time. Because in this case these blocks will reside in multiple banks, it leads to multiple

accesses to these banks, resulting in higher bank conflicts. To ensure the consecutive blocks

required by one PE are stored in the same bank, our scheme will dynamically determine

the sub-page size according to the size of the requested data. As shown in Fig.37(b), we

leverage bit 1 ∼ bit 3 in the lowest 4 ignored bits as the indicator to determine the sub-page

size for the data requests, where range “000” ∼ “100” represents the sub-page size from

16B ∼ 256B. Given that the data requests from PEs and host GPU need to be allocated

into different banks, the indicator bits are dynamically assigned by the page table during

the virtual-physical address translation according to the storage requested by each variable

involved in each execution thread.

Identifying Memory Access Priority: During CapsNet execution, resource con-

tention from concurrent data requesting to the same vault from both host GPU and PEs

could occur. Although the Conv/FC layers exhibit much better data locality than the RP,

they may still need to periodically request data from the HMC. By default, the priority of a

request is determined by the arrival time. But this can cause stalls if both sides are request-

ing to access the same bank in a vault, which may occur more frequently after applying our

new address mapping.

60

To address this issue, we propose a runtime memory access scheduler (RMAS) to dy-

namically identify the priority of memory requests from both the host GPU and vault PEs.

We first observe that, with our address mapping mechanism, consecutive data are likely to

be distributed across the banks within a vault instead of being scattered over all the vaults.

Thus, it is highly likely that each consecutive data request from the host will only access a

single or few vaults at a time instead of all the vaults. This provides opportunities for some

vaults to serve the GPU memory requests in rotation without affecting the overall HMC

execution.

To quantify the impact of vault access priority, the runtime scheduler (RMAS) first

collects the information of the issued operations by HMC and the number of PE requests

(Q) from the vault request queues in HMC. It also collects the information of the issued

operations from the host GPU about which and how many of vaults the operations are

requesting from the HMC (defined as nmax). The collected information above from RMAS

is associated with the HMC performance overhead if granting priority to access from either

side. Thus, the performance impact of serving the two types of access requests from HMC

and GPU can be quantified via the following overhead functions:

κ = γv × nh ×Q+ γh ×
nmax
nh

. (24)

Where κ represents the quantified performance impact; γv and γh represent the impact

factors that are determined by the issued operations’ type from HMC and host GPU, e.g.,

memory intensive operations corresponds to a large γ as their performance is more sensitive

to the memory bandwidth than the computation intensive operations; Q is the average

number of PEs’ requests in the request queues from the targeted vaults; nh is the number

of vaults that are granted with access priority from the host GPU, which is in the range

of [0, nmax]. If nh is ”0”, all the target vaults will first process current HMC PEs requests

before processing the GPU requests; while if nh is nmax, all the target vaults will grant

61

NVprofiler

Nvidia-smi

HMC-sim

Gate-Level
Simulation

Performance Power

GPU

Pytorch

Conv/
PrimeCaps/FC

Layers

HMC-sim

Output

Gate-Level
Simulation

Pytorch

GPU

CapsNet

Performance

Power

Pytorch

NVprofile

Nvidia-smi

Gate-Level
Simulation

HMC-simGPU

Event Trace For RP

GPU

Execution
Status

Execution
Status

Output Power

Performance

Performance+

Figure 38: The Evaluation Infrastructure.

priority to the GPU requests. To achieve the minimal impact (i.e. min(κ)), nh should be

equal to
∣∣∣√nmax×γh

Q×γv

∣∣∣, where nh ∈ [0, nmax]. The RMAS will then send the control signals to

nh vaults that will give host GPU higher priority to access. Note that a vault with smaller

Q has higher priority to be chosen by our RMAS to further reduce the impact on execution.

Given the S-CapsNet could skip the RP computation and data movement, some vaults

could originally contain less workload compared with the other vaults. we propose to

identify them and store more GPU related data in these less workloads vaults via enabling

the RMAS with a two-level vault priority mechanism. The RMAS will first choose a broad

range of low Q value vaults to be the potential GPU data provider and destination. Then,

it will further locate those vaults with less workloads. Such information is generated along

with the offline workload distribution, and saved into the buffer inside the RMAS. With the

RMAS, the parallel workload unbalancing caused by the compression could be neutralized,

thus, improving efficiency of both GPU-HMC pipeline.

4.5 Evaluations

4.5.1 Experimental Setup

Our evaluation infrastructure to evaluate the algorithm and architural optimization is

shown in Fig. 38. We first employ Pytorch [48], a popular open-source machine learning

framework that supports dynamic computation graphs, to perform the CapsNet on our

host GPU. We then implement our software optimizations via modifying pytorch program

62

Table 6: Platform Specifications

Host Processor (GPU)

Shading Unit 3584 @ 1190MHz

On-chip Storage
L1Cache/Shared: 24KB x 56

L2 Cache: 4MB

Default Memory HBM, 8GB, 320GB/s

HMC

Capacity 8 GB, 32 Vault, 16 Banks/Vault

Bandwidth Extl:320 GB/s, Intl: 512GB/s

No. of PEs per Vault 16

Frequency 312.5MHz

corresponding to the RP procedure. For the evaluation of our architectural level optimiza-

tion, We then conduct a physical-simulator cooperated platform which is able to obtain the

detailed performance and energy results using the execution status of CapsNet provided by

Pytorch. From the physical side, we adopt the Nvidia Tesla-P100 [73] as our host proces-

sor to evaluate performance and energy consumption of the Conv/PrimeCaps/FC layers of

CapsNet. The detailed execution time and power information for these layers are captured

by using NVprofiler [55] and Nvidia-smi [74]. From the simulator side, we collect the event

trace from host with the NVprofiler and pass it to a modified HMC-sim 3.0 [75] to simulate

the computing and memory accesses of the HMC. Considering that HMC-sim 3.0 cannot

provide precise execution cycles and power information for the logic layer design, we con-

duct a gate-level simulation on Cadence [76] to measure the execution latency and power

consumption for our logic design (PE). We then integrate the gate level results and our PIM

design in HMC-sim to obtain the performance and energy consumption of RP execution.

Finally, since the execution of CapsNet is pipelined on the host processor and HMC, we

combine the results from both sides via overlapping the execution time and accumulating

the energy consumption. The detailed platform configurations are shown in Table 6. In

this work, we select 12 different CapsNets corresponding to several datasets with different

model configurations as our benchmarks which are introduced in Section 4.1 and shown in

Table 3.

63

To evaluate the effectiveness of our software-hardware optimization, we compare with

the following design scenarios: (1) Baseline: the state-of-the-art GPU accelerated CapsNet

execution with the HBM memory (320GB/s). (2) GPU-ICP: the GPU accelerated CapsNet

execution with ideal cache replacement policy. (3) S-CapsNet: our software-level optimiza-

tion. (4) PIM-CapsNet: our combined inter-vault level and intra-vault level design for RP

acceleration with the new memory addressing scheme and RMAS scheme. (5) PIM-Intra:

our PIM-CapsNet without inter-vault level design, and the memory addressing scheme does

not optimize the inter-vault data distribution. (6) PIM-Inter: our PIM-CapsNet without

intra-vault level design, and the memory addressing scheme does not support the intra-vault

bank conflict optimization. (7) RMAS-PIM and (8) RMAS-GPU: Our PIM-CapsNet with

the naive memory access scheduling, which always grants HMC PEs higher priority than

GPU for RMAS-PIM, and always grants GPU higher priority than HMC PEs for RMAS-

GPU. (9) All-in-PIM: the HMC accelerated CapsNet execution, including compressed RP

and other layers’ execution. (10) SH-CapsNet: our combined software-hardware co-design

for efficient CapsNet Execution.

4.5.2 Effectiveness of SH-CapsNet

Performance and Energy for RP execution: We first evaluate the effectiveness

of our software and hardware optimizations on RP execution. Fig. 39 illustrates the nor-

malized performance and energy consumption of our software-hardware co-design compared

with both the GPU-based design (i.e., The Baseline and GPU-ICP) and the HMC-based

design (i.e. PIM-CapsNet) for the RP execution. From the figure, we first observe that

the GPU-ICP only outperforms Baseline by 1.14% on performance and 0.77% on energy

during RP execution. This is because RP requires a large number of intermediate vari-

ables which exceed the on-chip storage. As a result, the cache policy improvements can

barely reduce the off-chip memory accesses. Then, our GPU-based S-CapsNet can achieve

on-average 1.91× (upto 2.76×) speedup and 43.53% energy consumption saving compared

64

0x
2x
4x
6x
8x

Sp
ee

du
p

Baseline GPU-ICP S-CapsNet PIM-CapsNet SH-CapsNet

0%

50%

100%

N
or

m
al

ize
d

En
er

gy

Co
ns

um
pt

io
n

Baseline GPU-ICP S-CapsNet PIM-CapsNet SH-CapsNet

(a)

(b)
Figure 39: The (a) speedups and (b) normalized energy consumption of different designs

on the RP execution.

with the baseline case. That is because S-CapsNet deducts both the computation and the

data movements involved in the RP processing.

On the other hand, with RP procedure offloaded into the HMC, our PIM-CapsNet

outperforms Baseline by 117% on performance by addressing the large number of memory

access as well as the intensive synchronizations. Additionally, from Fig. 39(b), we observe

PIM-CapsNet saves 92.18% on energy consumption comparing to Baseline. This is because

the entire working power of our PIM design is much lower then host and PIM-CapsNet is able

to reduce a huge number of data movements between host and HMC. Moreover, we observe

that PIM-CapsNet can achieve better performance and energy saving for RP execution in

larger size CapsNet, e.g. 2.27× speedup and 92.52% energy saving of accelerating Caps-EN3

compared with 2.09× speedup and 91.90% energy saving of accelerating Caps-SV1. This

implies that PIM-CapsNet exhibits the scalability in optimizing the RP execution with the

65

0x
1x
2x
3x
4x
5x

Sp
ee

du
p

Baseline S-CapsNet All-in-PIM RMAS-PIM
RMAS-GPU PIM-CapsNet SH-CapsNet

0%

20%

40%

60%

80%

100%

N
or

m
al

ize
d

En
er

gy

Co
ns

um
pt

io
n

Baseline S-CapsNet All-in-PIM RMAS-PIM
RMAS-GPU PIM-CapsNet SH-CapsNet

(a)

(b)

Figure 40: The (a) speedups and (b) normalized energy consumption of different design on
entire CapsNet execution.

ever-increasing network size.

Finally, our SH-CapsNet takes both advantages of the computation reduction and the

efficient low power PIM design, that achieves significantly on average 4.79× speedup and

saves 95.05% of the energy compared with the baseline case.

Performance and Energy for Entire CapsNet: Fig. 40 shows the normalized

speedup and energy of different design schemes during entire CapsNet execution. To under-

standing the effectiveness of the pipeline execution after enabling processing-in-memory.

We compare the speedup and energy under different architecture design schemes: the

GPU-based designs (i.e., Baseline and S-CapsNet); HMC-based design (All-in-PIM); and

GPU-HMC hybrid design (i.e. RMAS-PIM, RMAS-GPU, PIM-CapsNet and SH-CapsNet).

From the figure, we observe that the S-CapsNet can achieve on average 1.48x performance

66

improvement and 28.51% energy saving over the baseline case due to the software-level

optimization on the RP execution. Compared to the GPU-based processing, although the

All-in-PIM design achieves better execution efficency (i.e. performance /energy consump-

tion) by reducing the energy consumption by 71.11%, it causes the 47.56% performance

drop. This is because we mainly focuses on the RP procedure optimization at minimal de-

sign cost in HMC, and such strategy can hardly achieve the best performance for Conv/FC

layers.

For the GPU-HMC hybrid designs, We observe that these naive schedulers (RMAS-PIM

and RAMS-GPU) can hardly achieve the best performance and energy saving compared

with either the PIM-CapsNet or the SH-CapsNet due to the stalls caused by unbalanced

GPU-HMC memory accesses. We also observe that, with RP compression, the SH-CapsNet

outperforms the PIM-CapsNet by 1.41x on the performance and 3.82% on the energy saving.

This is because the compression not only reduces the RP workloads, but also enhances our

RMAS scheduling on the memory access balancing between the GPU and the HMC. In

summary, our software and hardware co-design outperforms baseline on both performance

(i.e., on average 3.76×) and energy saving (i.e., 68.73%). According to above discussion,

our software optimization can even enhance the hardware optimizations to enable efficient

pipelined execution, leading to even higher performance improvement compared with the

acceleration for RP execution only.

4.5.3 Compression Schemes Comparison

In order to evaluate the sensitive of our proposes under different compression schemes,

we compare the accuracy loss and the speedup of RP processing between our simple com-

pression schemes (i.e., Simple-D1, Simple-D2 and Simple-D3) and our importance-aware

compression scheme (IAC). As shown in Fig. 41, the simple compression schemes are able

to significantly improve the performance over the baseline by trading the accuracy of Cap-

sNet. For example, on average, simple-D1 achieves 3.93× performance improvement over

67

0x
1x
2x
3x
4x
5x
6x
7x
8x

0%

5%

10%

15%

20%

25%

Sp
ee

du
p

(li
ne

)

Ac
cu

ra
cy

 L
os

s (
ba

r)

Simple-D1 Simple-D2 Simple-D3 IAC Simple-D1 Simple-D2 Simple-D3 IAC

Figure 41: The accuracy loss (bar) and speedup (line) when implementing different com-
pression schemes for the RP execution on the baseline GPU. The Simple-Dn
represents the simple compression scheme with the reuse-distance of n, and the
IAC is the importance-aware compression scheme.

the baseline with 5.72% accuracy loss. the performance improvement and accuracy loss

even increase With the growth of the reuse distance (from D1 to D3). This is because

the simple compression, on the one hand, reduce more computations that could accumu-

late more value difference. On the other hand, the simple compression fails to reserve the

important coefficients that results in imprecise output capsule value. We also notice that

the accuracy loss of the simple compression for Caps-MN and Caps-SV1 is relatively small,

indicating that it can still be apply to the simple tasks with small iterations requirements,

e.g. Caps-MN, where the coefficients are highly similar.

Finally, We observe that the IAC can always maintain a high accuracy (only 0.3%

accuracy loss on average). Meanwhile, the IAC is capable to achieve on average 1.91×

speedup (upto 2.76×). Given the CapsNet is design to achieve the higher accuracy, the

IAC can be widely applied to achieve better performance without critical accuracy penalty.

4.5.4 Effectiveness of Intra-Vault and Inter-Vault Level Designs

To better understanding the effectiveness of our intra-vault and inter-vault level de-

signs, we compare PIM-CapsNet with other PIM design scenarios for the RP execution

only. Fig. 42(a) illustrates the evaluation results of normalized performance with the

68

breakdown factors for different PIM designs. From the figure, we have several observations.

First, even though PIM-Intra achieves 1.22× speedup over Baseline, the inter-vault com-

munication overheads contribute on averages 45.24% to the overall performance. This is

because the PIM-intra design induces massive concurrent data transfer between the cen-

tralized computation units in the logic layer and the DRAM banks in vaults, leading to

high crossbar utilization and serious stalls. Second, PIM-Inter decreases the performance

by 4.73% compared with the Baseline. Compared with PIM-Intra, the inter-vault com-

munication overheads have been significantly reduced in PIM-Inter, but the vault request

stalls (VRS) grow which contribute on average 57.91% to the execution time due to the

serious bank conflicts within the vault. Finally, PIM-CapsNet improves the performance

about 127.83%/76.62% on average comparing to PIM-Inter/PIM-Intra by reducing both

inter-vault communications and VRS. From the energy perspective, as Fig. 42(b) shows,

these PIM designs achieve high energy saving compared with Baseline by executing RP

on energy-efficient PIM design and our PIM-CapsNet on average outperforms the PIM-

Inter/PIM-Intra by 4.81%/4.52% respectively on energy saving.

4.5.5 Sensitivity to PE Frequency Scaling

We conduct the sensitivity analysis on inter-vault level workload distributions in our

PIM-CapsNet when different frequency is adopted in the PEs, e.g., 312.5MHz, 625MHz

and 937.5MHz. Note the frequency scaling will be controlled under a certain range without

violating the HMC thermal constraint. Fig. 43 shows the speedup achieved by selecting dif-

ferent distribution dimensions (i.e., B-dimension, L-dimension, and H-dimension) under the

above three different frequencies. The darker color indicates the higher speedups (e.g., the

red color indicates the substantial speedups while the yellow color means trivial speedups).

It is obvious that PIM-CapsNet can achieve better improvement with higher execution

frequency. We also notice that the selection of the distribution dimension changes with

frequency scaling. For example, for Caps-SV3, the L-dimension distribution can achieve the

69

0

0.4

0.8

1.2

1.6

N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

Execution X-bar VRS

MN1 MN2 MN3 CF1 CF2 CF3 EN1 EN2 EN3 AverageSV1 SV2 SV3

Caps-MN1 Caps-MN2 Caps-MN3 Caps-CF1 Caps-CF2 Caps-CF3 Caps-EN1 Caps-EN2 Caps-EN3 AverageCaps-SV1 Caps-SV2 Caps-SV3

(a)

0%

5%

10%

15%

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
PI

M
-In

te
r

PI
M

-C
ap

sN
et

PI
M

-In
tr

a
CA

M
P-

In
tr

a
PI

M
-C

ap
sN

et

N
or

m
al

ize
d

En
er

gy
 C

on
su

m
pt

io
n Execution DRAM XBAR Vault

MN1 MN2 MN3 CF1 CF2 CF3 EN1 EN2 EN3 AverageSV1 SV2 SV3

Caps-MN1 Caps-MN2 Caps-MN3 Caps-CF1 Caps-CF2 Caps-CF3 Caps-EN1 Caps-EN2 Caps-EN3 AverageCaps-SV1 Caps-SV2 Caps-SV3

(b)

Figure 42: The breakdown of the factor to (a) normalized performance and (b) normalized
energy consumption when performing RP execution on different PIM designs.

best performance under 312.5MHz execution frequency; but the H-dimension distribution

achieves the best performance when frequency increases to 937.5MHz. This indicates that

the dimension selection is affected by not only the network configurations, but also the

hardware configurations, e.g. processing frequency.

4.5.6 Overhead Analysis

Accuracy Analysis: Table.7 illustrate the absolute accuracy after implementing ei-

ther our software optimization (S-CapsNet) or hardware optimization (PIM-CapsNet) or

both (SH-CapsNet). As it shows, our software optimization only induce on average 0.38%

accuracy loss, while our approximation in PIM-CapsNet with accuracy recovery will only

cause 0.04% accuracy difference. Finally, our SH-CapsNet achieves the same accuracy as

S-CapsNet, which indicates that the tiny difference of value caused by our PIM-CapsNet

70

312.5 MHz

B P D

Caps-SV3
Caps-SV2
Caps-SV1
Caps-EN3
Caps-EN2
Caps-EN1
Caps-CF3
Caps-CF2
Caps-CF1
Caps-MN3
Caps-MN2
Caps-MN1

625 MHz

B P D

937.5 MHz

B P D

s
p
e
e
d
u
p

2

4

6

8

Figure 43: The speedup (heat map) achieved by different workloads distribution dimensions
(X-axis) under different HMC execution frequency. Red means better improve-
ment.

Table 7: Accuracy Validations

Caps-MN1 Caps-MN2 Caps-MN3 Caps-CF1 Caps-CF2 Caps-CF3

Origin 99.75% 99.75% 99.75% 89.40% 90.03% 90.43%

S-CapsNet 99.74% 99.74% 99.74% 88.86% 88.99% 89.58%

PIM-CapsNet 99.75% 99.75% 99.75% 89.37% 90.02% 90.39%

SH-CapsNet 99.74% 99.74% 99.74% 88.86% 88.99% 89.58%

Caps-EN1 Caps-EN2 Caps-EN3 Caps-SV1 Caps-SV2 Caps-SV3

Origin 88.74% 85.01% 82.36% 96.70% 95.90% 95.90%

S-CapsNet 88.60% 84.77% 82.02% 96.69% 95.29% 95.15%

PIM-CapsNet 88.69% 84.96% 82.34% 96.42% 95.90% 95.90%

SH-CapsNet 88.60% 84.77% 82.02% 96.69% 95.29% 95.15%

approximation can be neutralized by our S-CapsNet scheme.

Area Analysis: Our PIM-CapsNet introduces 16 PEs and operation controller into

each HMC vault architecture, with one RMAS module located in the logic layer. Based

on our gate-level simulations, our logic design for 32 vaults and the RMAS together incurs

3.11mm2 area overheads under the 24nm process technology, which only occupy 0.32%

HMC logic surface area.

Thermal Analysis: Note that our logic design raises the total power of the HMC,

which could cause thermal issues for the 3D stacked memory architecture. We observe the

average power overhead of our logic design is 2.24W , which is below the maximum power

overhead (i.e., 10W thermal design power (TDP) [77]) the HMC can tolerate.

71

5 Future Works: Improving Computation Efficiency for LSTM

Training

Note that LSTMs have completely different computation patterns from CNNs, moreover,

within the LSTM training, the forward (FW) and backpropagation (BP) procedures have

totally different dataflows and computations. In the future works, we will leverage the

unique features of LSTM networks to explore further algorithm and architecture support

for fast and low-power LSTM BP procedure, and enable the real-time training for LSTM

to satisfy the relaxed request on real-time learning speed.

5.1 Reducing LSTM Backpropagation Workloads

(

(T
●

W

x

(

(T
●

W δ gates

δ gates

δ gates

δ W

= =

δ gates x δ W

②

①

③

④
Trivial Value

Non-Trivial

Value

pruning

O
u

tp
u

t Erro
rs

Fo
r En

tire Layer

Trivial C
ells

R
earran

ged
 Execu

tio
n

s

Identify trivial cells
in BP procedure

Skip trivial cell
executions Parallel

Execution

Trivial
cell

Trivial
cell

Tim
esta

m
p

Trivia
l

cell

Trivia
l

cell

(a) (b)

(c)

(d)

Trivial C
ell

Id
en

tificatio
n

D
yn

am
ic Skip

Execu
tio

n
R

eo
rgan

izatio
n

W

x

(

(T
●

W δ gates

δ gates

δ gates

δ W

= =

δ gates x δ W

②

①

③

④
Trivial Value

Non-Trivial

Value

pruning

Weights Pruning Deep PruningData Sparsity

W δ gates

● (

(T
● = (

(T
● = (

(T
● =

W δ gates W δ gates

δ x δ x δ x

δ gates W

∆

= = =

x

δ gates W

∆

x

δ gates W

∆

x

①

②

③

②

④

(a) (b) (c)

(d) (e) (f)

W δ gates

(

(T
● =

δ x

δ gates Wacc

∆

+

x

W δ gates

(

(T
● =

δ x

δ gates W

∆

=

x

Wnew

∆

=

δ gates W

∆

=

x

Insignificant
computation
Identification

②

③

④

⑤

Insignificant Data Insignificant Computation

Figure 44: LSTM BP workload reduction with different LSTM fine-tuning cell patterns.

With the proceeding of training iterations, partial weight updating and the correspond-

ing computations becomes trivial. In order to improve the training efficiency while main-

taining the accuracy, we propose to leverage the knowledge of fine-tuning from the transfer

learning (TL). TL can transfer the model knowledge domain for the specific tasks via mea-

suring the similarity between the training model and target model, followed by the different

72

model tuning strategy according to the measurement. If the target model is highly over-

lapped with the trained datasets, light training will be conducted for last few layers; whereas,

for the case target model exhibit very different knowledge domain compared with the trained

model, more layers will be involved in the TL procedure. Although TL can enhance the

user experience on the LSTM model accuracy, its localized executions on mobile devices

will induce many challenges. (i) TL pattern exploration for LSTM: Currently, the transfer

learning for LSTM share the similar strategy with CNN, which conduct the training for the

entire unrolled cells in the last few layers. And when there exists the huge difference be-

tween the knowledge domain of local dataset and the general dataset, the executions of the

TL exhibit high complexity, as TL involves large number of layers. However, we observe the

essential difference between the BP execution of the CNN layer and the LSTM layer is that

the weight gradients of LSTM are sequential accumulated by the cells. Note that the last

few layers are more sensitive to the knowledge domain, and our previous work (chapter.3)

indicates that unrolled cells exhibit different impact on their next timestamp cell, we con-

jecture only partial cells are sensitive to the knowledge domain changes. And we propose to

explore the sensitive cell pattern for LSTM transfer learning. We will evaluate the different

sensitive cell patterns with different applications. For sensitive cell pattern in one cell, two

patterns are considered: (a) cells gains the sensitivity with the growth of the timestamp;

(b) sensitive cells evenly distributed through the timestamps. On the other hand, there are

also two sensitive cell patterns across the sensitive layers: (a) sensitive layers contains same

amount of sensitive cell; (b) sensitive cells number changes with sensitivity of the layers.

(ii) Architecture design for efficient TL execution: The transfer learning will bring addition

executions for mobile device, causing performance and energy overheads. Therefore, it is

essential to develop an architecture for high efficient executions. Note that the purpose of

FW and BP are different, it is essential to conduct the specific design for both executions

of Inf and BP procedure. And usually applications generate different requirements on the

response time, power budget and output accuracy, hence, we plan to equip our FW and

73

BP accelerator design with controller to enable the different scheme policies of sensitive

cell selection, approximation computing, DVFS (dynamic voltage & frequency scaling) for

achieving those requirements.

5.2 Insignificant cell skipping within LSTM BP layer

The sequence length of the unrolled layer largely affects the LSTM BP performance

and energy due to the sequential execution of BP cells in the layer. The deduction in the

sequence length could potentially benefit the performance at the cost of accuracy drop.

We notice that the cell error varies across cells in the same LSTM layer which produces

different weight gradient, thus, we propose to analyze the importance of different BP cells

and skipping the insignificant cells that has trivial impact on gradients computation. (i)

Insignificant cell identification and execution reorganization: We plan to explore the rela-

tionship between the output error and the weight gradients, and locate the insignificant

cells via analyzing the output errors at the beginning of the LSTM BP layer execution.

When skipping the insignificant cell, the execution dependence connected to this cell can

be removed so that cells from the same layer can be concurrently processed to enhance the

computation parallelism. (ii) Skipping all insignificant cells may affect the error values for

the previous layer, and may cause the reduction of the model accuracy and/or convergence

speed. We thus propose the accuracy-aware selective cell skipping. We will explore the

importance of the errors pass between the LSTM layers using the cell inputs and gates

values of the previous layer obtained during the FW stage. If the passing error makes little

contribution to the cell error of the cell in previous layer, the cell that passes this kind of

error can be skipped. (iii) We would like to further compensate the weight gradients caused

by the insignificant cell skipping. One possible approach is to estimate weight gradients by

exploring the relationship between the output error and the weight gradients.

74

(

(T
●

W

x

(

(T
●

W δ gates

δ gates

δ gates

δ W

= =

δ gates x δ W

②

①

③

④
Trivial Value

Non-Trivial

Value

pruning

O
u

tp
u

t Erro
rs

Fo
r En

tire Layer

Trivial C
ells

R
earran

ged
 Execu

tio
n

s

Identify trivial cells
in BP procedure

Skip trivial cell
executions Parallel

Execution

Trivial
cell

Trivial
cell

Tim
esta

m
p

Trivia
l

cell

Trivia
l

cell

(a) (b)

(c)

(d)

Trivial C
ell

Id
en

tificatio
n

D
yn

am
ic Skip

Execu
tio

n
R

eo
rgan

izatio
n

W

x

(

(T
●

W δ gates

δ gates

δ gates

δ W

= =

δ gates x δ W

②

①

③

④
Trivial Value

Non-Trivial

Value

pruning

Weights Pruning Deep PruningData Sparsity

W δ gates

● (

(T
● = (

(T
● = (

(T
● =

W δ gates W δ gates

δ x δ x δ x

δ gates W

∆

= = =

x

δ gates W

∆

x

δ gates W

∆

x

①

②

③

②

④

(a) (b) (c)

(d) (e) (f)

W δ gates

(

(T
● =

δ x

δ gates Wacc
∆

+

x

W δ gates

(

(T
● =

δ x

δ gates W

∆

=

x

Wnew
∆

=

δ gates W

∆

=

x

Insignificant
computation
Identification

②

③

④

⑤

Insignificant Data Insignificant Computation

Figure 45: An example of insignificant computation identification for both DIC (1 ∼ 4) and
SIC (5) during the execution of W �δgates = δx and δgates⊗x = ∇W from BP
of LSTM training. The colored elements are removable, and the dashed boxes
indicate the insignificant computations located via insignificant data.

5.3 Reducing insignificant computations within LSTM BP cell

Due to the tremendous difference between DNN and LSTM on network type and scale,

there are few insignificant weights in the LSTM to enable previous pruning technique [78].

In the future work, we aim to explore the LSTM-specific insignificant computation during

the BP procedure. We propose to investigate all data required by the major executions

within each LSTM BP cell, i.e. layer input weights W , context weights U , gate loss δgates,

context h, layer input x, layer input weight updates ∇W , context weight updates ∇U , com-

prehensively figure out the insignificant computation at algorithm level and furthermore,

maximize data reduction with a customized architecture design. There are several research

challenges: (i) How to locate the insignificant computations? The insignificant computation

can be classified into dynamic and static insignificant computation (i.e., DIC and SIC). The

DICs vary across cells and training iterations, they are determined by the low-magnitude

data of cell inputs (i.e., W,U, δgates, h, x) which generate the near-zero outputs for the cell

75

execution. We will locate DICs via the runtime identification of the near-zero input data

at element-level, as shown in Fig. 45(1 ∼ 4). On the other hand, the SICs are relatively

stable throughout the entire training procedure, they are determined by the trivial data in

cell outputs (i.e.,∇W,∇U) which have less impact on the weight updating throughout the

training stage. We observe that if the rows in ∇W/nablaU conjugate with the correspond-

ing cell inputs, the weight updating of these rows can be considered as trivial, as shown in

Fig.45(5). We plan to use this to identify the SIC computations at the beginning several

training iterations via locating the insignificant ∇W,∇U data at row-level. (ii) How to ex-

plore efficient pruning scheme achieving the optimal trade-offs between performance/energy

and accuracy? Although DIC can be considered as prunable in the LSTM training proce-

dure, inefficient pruning (e.g., pruning caused irregular parallelism and over-pruning) may

affect the model accuracy, the convergence speed of the LSTM training, and also the per-

formance/energy gains. In addition, since the SIC identification requires the additional

executions on locating insignificant data at row level, the identification speed needs to be

considered. We would like to develop an intelligent pruning scheme that takes the features

of LSTM BP training into the consideration to dynamically control the prune pattern for

DIC and identification speed for SIC. (iii) Our pruning scheme makes the computations

more irregular and sparser, we plan to further explore a customized architecture design to

efficiently support the pruning in LSTM BP. Specifically, we aim to achieve the dynamic

workload adjustment for different data sparsity across cells which intelligently matches the

BP cell workloads from different execution batches with the execution capability of the

hardware device.

76

6 Related Works

CNNs Optimizations: There have been multiple studies on CNNs optimizations.

Some of them target at CNNs optimizations on mobile GPUs [10,79]. while others design the

ASIC accelerators for high performance neural netwroks [80, 81]. Also several studies have

been well conducted on the weight compression for CNNs via erasing trivial elements [82–86].

And the execution-efficiency-aware weight matrices compression for CNNs are well studied

by [87–90]. For example, [87] proposes DeftNN to compress the CNNs weight matrix by

eliminating columns, [88] explores the node pruning for CNNs. Since the execution patterns

of LSTMs are far different from CNNs, these works are not applicable to the LSTMs.

RNNs Optimizations: There are also some works on RNNs computation optimiza-

tions. [91, 92] propose the scheme to eliminate memory bandwidth pressure of uploading

recurrent weights on-chip. However, these optimizations can hardly be implemented on

mobile device as the limited on-chip storage of mobile GPUs can not eliminate the re-

dundant data accesses. Besides, [93,94] explore the accelerator design for high performance

RNNs execution. Our work focus on mobile GPUs which are more flexible to process various

applications with different LSTMs configurations.

Computation Flow Optimizations: Several studies have exploited optimizations

on computation flow [95–98]. These works leverage the computation characteristics of their

applications to explore the parallelism. However, none of these works can be directly applied

to the layer processing of LSTMs. Our work is the first work to explore the parallelism

inside each LSTM layer via analyzing the unique mathematical characteristics of LSTM

cell computations.

PIM-Based NN Acceleration: There have been multiple studies focus on exploring

PIM-based neural network accelerators [99–104]. For example, [100] employs the ReRAM-

based PIM to conduct efficient neural network execution. However, the massive interme-

diate variables involved in the RP could induce both performance and energy overheads

77

in the ReRAM design for frequent value updating. Besides, [62, 63, 105] propose the CNN

accelerator design using 3D stack PIM technique. Since the execution pattern of the RP

procedure are far different from CNN layers, previous logic layer designs of 3D stacked

memory exhibit low efficiency on the RP execution. To our best knowledge, this is the first

work that leverages HMC to explore a customized architectural design for efficient CapsNet

acceleration.

Workload Distributions: Several studies have explored the workload distribution for

efficient neural network execution [106–110]. For example, [108] proposes to distribute the

parallel workloads of convolutional layer among the computation units within a single device;

and [110] splits the convolutional execution and distribute the workloads into multiple

devices. Their methods have achieved significant CNN accelerations via greatly improving

the resource utilization. Since the execution of the RP procedure is much more complicated

than the convolutional layer and involves strong execution dependence, these studies are

not applicable to the CapsNet acceleration.

Exponential Approximation: There are also some works on approximation for expo-

nential function [66,67,111,112]. For example, [67] leverages the lookup table to conduct the

fast exponential execution, which causes substantial performance and area overheads. [112]

accelerates exponential function via software optimizations, which are hard to be imple-

mented via the simple logic design. In this work, we conduct the efficient acceleration for

exponential function (Section 4.4.2) with low design complexity and low power overhead.

78

7 Conclusions

In recent years, the LSTM and CapsNet has outperformed the CNN on the natural

language processing and image processing tasks and becomes increasing popular in many

areas. However, LSTMs exhibit quite inefficient memory access pattern when executed

on mobile GPUs due to the redundant data movements and limited off-chip bandwidth.

And processing efficiency of CapsNets on GPUs often cannot achieve the desired level for

fast real-time inference. To address these challenge, I propose two hardware and software

co-design approaches via modifying the execution flow and enabling processing-in-memory

technique, respectively.

In the first work, we propose two level optimizations to hierarchically explore the mem-

ory friendly LSTM on mobile GPUs, thus, achieving the substantial improvements on both

performance and power. At the inter-cell level, we propose LSTM layer division and re-

organization techniques to greatly improve the data locality across cells. At the intra-cell

level, we propose dynamic row skip (DRS) techniques to conduct dynamic row-level weight

matrix compression. Based on our experiment results, our proposed techniques achieve on

average 2.54X (upto 3.24X) performance improvement and 47.23% energy saving on the

entire system with only 2% accuracy loss that is generally user imperceptible, comparing

with the state-of-the-art LSTM execution on mobile GPUs. And our optimizations have

the strong scalability in dealing with the increasing size of input data. Our user study also

shows that our designed system delivers excellent user experiences.

In the second work, we propose the software-level optimizations named S-CapsNet along

with a hybrid computing architecture design named PIM-CapsNet. The S-CapsNet reduces

the computation and data movements leveraging the data-similarity and the redundancy

of the computation and memory access of the routing procedure. And our PIM-CapsNet

leverages the processing-in-memory capability of today’s 3D stacked memory to conduct

the off-chip in-memory acceleration solution for the routing procedure, while pipelining

79

with the GPU’s on-chip computing capability for accelerating CNN types of layers in Cap-

sNet.Evaluation results demonstrate that either our software or hardware optimizations can

significantly improve the CapsNet execution efficiency. Together, our co-design can achieve

greatly improvement on both performance (3.41x) and energy savings (68.72%) for CapsNet

inference, with negligible accuracy loss.

80

Bibliography

[1] Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and

perspective. Artificial Intelligence in medicine, 23(1):89–109, 2001.

[2] Bradley J Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timothy L Kline.

Machine learning for medical imaging. Radiographics, 37(2):505–515, 2017.

[3] Anna L Buczak and Erhan Guven. A survey of data mining and machine learning

methods for cyber security intrusion detection. IEEE Communications Surveys &

Tutorials, 18(2):1153–1176, 2016.

[4] Justin Grimmer. We are all social scientists now: How big data, machine learning,

and causal inference work together. PS: Political Science & Politics, 48(1):80–83,

2015.

[5] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:

A survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[6] Daniel Anthony Lopez. Evolving GPU-Accelerated Capsule Networks. PhD thesis,

2018.

[7] Ayomide Yusuf and Shadi Alawneh. A Survey of GPU Implementations for Hy-

perspectral Image Classification in Remote Sensing. Canadian Journal of Remote

Sensing, pages 1–19, 2018.

[8] Arthur Stoutchinin, Francesco Conti, and Luca Benini. Optimally Scheduling CNN

Convolutions for Efficient Memory Access. arXiv preprint arXiv:1902.01492, 2019.

81

[9] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou. Optimiz-

ing memory efficiency for deep convolutional neural networks on GPUs. In SC’16:

Proceedings of the International Conference for High Performance Computing, Net-

working, Storage and Analysis, pages 633–644. IEEE, 2016.

[10] Mingcong Song, Yang Hu, Huixiang Chen, and Tao Li. Towards Pervasive and User

Satisfactory CNN across GPU Microarchitectures. In High Performance Computer

Architecture (HPCA), 2017 IEEE International Symposium on, pages 1–12. IEEE,

2017.

[11] Zhaoyun Chen, Lei Luo, Wei Quan, Yang Shi, Jie Yu, Mei Wen, and Chunyuan

Zhang. Multiple CNN-based Tasks Scheduling across Shared GPU Platform in Re-

search and Development Scenarios. In 2018 IEEE 20th International Conference on

High Performance Computing and Communications; IEEE 16th International Confer-

ence on Smart City; IEEE 4th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), pages 578–585. IEEE, 2018.

[12] Xingyao Zhang, Chenhao Xie, Jing Wang, Weidong Zhang, and Xin Fu. Towards

Memory Friendly Long-Short Term Memory Networks (LSTMs) on Mobile GPUs. In

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), pages 162–174. IEEE, 2018.

[13] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,

Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-learning super-

computer. In Proceedings of the 47th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 609–622. IEEE Computer Society, 2014.

82

[14] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing

Feng, Yunji Chen, and Olivier Temam. ShiDianNao: Shifting vision processing closer

to the sensor. In ACM SIGARCH Computer Architecture News, volume 43, pages

92–104. ACM, 2015.

[15] Xuda Zhou, Zidong Du, Qi Guo, Shaoli Liu, Chengsi Liu, Chao Wang, Xuehai Zhou,

Ling Li, Tianshi Chen, and Yunji Chen. Cambricon-S: Addressing Irregularity in

Sparse Neural Networks through A Cooperative Software/Hardware Approach. In

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), pages 15–28. IEEE, 2018.

[16] Mostafa Mahmoud, Kevin Siu, and Andreas Moshovos. Diffy: a Déjà vu-Free Differen-

tial Deep Neural Network Accelerator. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 134–147. IEEE, 2018.

[17] Youngeun Kwon and Minsoo Rhu. Beyond the Memory Wall: A Case for Memory-

Centric HPC System for Deep Learning. In 2018 51st Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pages 148–161. IEEE, 2018.

[18] Youjie Li, Jongse Park, Mohammad Alian, Yifan Yuan, Zheng Qu, Peitian Pan, Ren

Wang, Alexander Schwing, Hadi Esmaeilzadeh, and Nam Sung Kim. A Network-

Centric Hardware/Algorithm Co-Design to Accelerate Distributed Training of Deep

Neural Networks. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 175–188. IEEE, 2018.

83

[19] C Deng, S Liao, Y Xie, KK Parhi, X Qian, and B Yuan. Permdnn: Efficient com-

pressed deep neural network architecture with permuted diagonal matrices. In MI-

CRO, 2018.

[20] Sepp Hochreiter and Jürgen Schmidhuber. LSTM can solve hard long time lag prob-

lems. In Advances in neural information processing systems, pages 473–479, 1997.

[21] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine Translation. arXiv preprint

arXiv:1406.1078, 2014.

[22] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma,

Technische Universität München, 91:1, 1991.

[23] cuDNN 5.1. https://developer.nvidia.com/cudnn/.

[24] Tesla M40 Product Brief. http://images.nvidia.com/content/tesla/pdf/tesla-

m40-product-brief.pdf/.

[25] Tegra X1 Product Brief. http://www.nvidia.com/object/tegra-x1-processor.

html/.

[26] Aryan Mobiny and Hien Van Nguyen. Fast capsNet for lung cancer screening. In

International Conference on Medical Image Computing and Computer-Assisted Inter-

vention, pages 741–749. Springer, 2018.

84

[27] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders.

In International Conference on Artificial Neural Networks, pages 44–51. Springer,

2011.

[28] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between

capsules. In Advances in neural information processing systems, pages 3856–3866,

2017.

[29] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM

routing. 2018.

[30] Edgar Xi, Selina Bing, and Yang Jin. Capsule network performance on complex data.

arXiv preprint arXiv:1712.03480, 2017.

[31] Sai Samarth R Phaye, Apoorva Sikka, Abhinav Dhall, and Deepti Bathula. Dense

and diverse capsule networks: Making the capsules learn better. arXiv preprint

arXiv:1805.04001, 2018.

[32] Sasu Tarkoma, Matti Siekkinen, Eemil Lagerspetz, and Yu Xiao. Smartphone energy

consumption: modeling and optimization. Cambridge University Press, 2014.

[33] Jose Maria Arnau Montañés. Energy-efficient mobile GPU systems. 2015.

[34] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to Forget: Continual

Prediction with LSTM. 1999.

[35] Theano Neural Network Optimizations. http://deeplearning.net/software/

theano/library/tensor/nnet/nnet.html/.

85

[36] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-

ral networks with pruning, trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[37] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. PyTorch: Tensors

and Dynamic neural networks in Python with strong GPU acceleration, 2017.

[38] Baidu DeepBench. https://svail.github.io/DeepBench/.

[39] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.

Analyzing CUDA workloads using a detailed GPU simulator. In Performance Analysis

of Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on,

pages 163–174. IEEE, 2009.

[40] cuBLAS. http://docs.nvidia.com/cuda/cublas/index.html.

[41] NVidia Jetson-TX1 development board. http://www.nvidia.com/object/

embedded-systems-dev-kits-modules.html/.

[42] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,

and Christopher Potts. Learning Word Vectors for Sentiment Analysis. In Proceed-

ings of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011.

Association for Computational Linguistics.

[43] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment

categorization with respect to rating scales. In Proceedings of the ACL, 2005.

86

[44] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van

Merriënboer, Armand Joulin, and Tomas Mikolov. Towards AI-Complete Question

Answering: A Set of Prerequisite Toy Tasks. arXiv preprint arXiv:1502.05698, 2015.

[45] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.

A large annotated corpus for learning natural language inference. arXiv preprint

arXiv:1508.05326, 2015.

[46] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a

large annotated corpus of English: The Penn Treebank. Computational linguistics,

19(2):313–330, 1993.

[47] Tatoeba. https://tatoeba.org.

[48] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Au-

tomatic differentiation in pytorch. 2017.

[49] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,

Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning.

arXiv preprint arXiv:1410.0759, 2014.

[50] Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs.

https://devblogs.nvidia.com/new-optimizations-accelerate-deep-

learning-training-gpu/.

87

[51] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

[52] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Technical report, Citeseer, 2009.

[53] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an

extension of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[54] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y

Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[55] Nvidia Profiler. https://docs.nvidia.com/cuda/profiler-users-guide/index.

html.

[56] I Mario, M Chacon, D Alma, and S Corral. Image Complexity Measure: A Hu-

man Criterion Free Approach. In NAFIPS 2005-2005 Annual Meeting of the North

American Fuzzy Information Processing Society, pages 241–246. IEEE, 2005.

[57] Rinat Mukhometzianov and Juan Carrillo. CapsNet comparative performance evalu-

ation for image classification. arXiv preprint arXiv:1805.11195, 2018.

[58] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new DRAM architecture in-

creases density and performance. In 2012 symposium on VLSI technology (VLSIT),

pages 87–88. IEEE, 2012.

[59] Salessawi Ferede Yitbarek, Tao Yang, Reetuparna Das, and Todd Austin. Exploring

specialized near-memory processing for data intensive operations. In 2016 Design,

88

Automation & Test in Europe Conference & Exhibition (DATE), pages 1449–1452.

IEEE, 2016.

[60] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-enabled in-

structions: a low-overhead, locality-aware processing-in-memory architecture. In

2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture

(ISCA), pages 336–348. IEEE, 2015.

[61] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A scal-

able processing-in-memory accelerator for parallel graph processing. ACM SIGARCH

Computer Architecture News, 43(3):105–117, 2016.

[62] Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong Li, and Jishen Zhao. Processing-

in-memory for energy-efficient neural network training: A heterogeneous approach. In

2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), pages 655–668. IEEE, 2018.

[63] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal

Mukhopadhyay. Neurocube: A programmable digital neuromorphic architecture with

high-density 3D memory. In 2016 ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA), pages 380–392. IEEE, 2016.

[64] HMC Specification 2.1. http://hybridmemorycube.org/files/SiteDownloads/

HMC-30G-VSR_HMCC_Specification_Rev2.1_20151105.pdf.

[65] Dong-Ik Jeon, Kyeong-Bin Park, and Ki-Seok Chung. HMC-MAC: Processing-

in Memory Architecture for Multiply-Accumulate Operations with Hybrid Memory

89

Cube. IEEE Computer Architecture Letters, 17(1):5–8, 2018.

[66] Davide De Caro, Nicola Petra, and Antonio GM Strollo. High-performance special

function unit for programmable 3-D graphics processors. IEEE Transactions on Cir-

cuits and Systems I: Regular Papers, 56(9):1968–1978, 2009.

[67] Johannes Partzsch, Sebastian Höppner, Matthias Eberlein, Rene Schüffny, Christian

Mayr, David R Lester, and Steve Furber. A fixed point exponential function acceler-

ator for a neuromorphic many-core system. In 2017 IEEE International Symposium

on Circuits and Systems (ISCAS), pages 1–4. IEEE, 2017.

[68] Chris Lomont. Fast inverse square root. Tech-315 nical Report, 32, 2003.

[69] Matthew Robertson. A brief history of invsqrt. Department of Computer Science &

Applied Statistics, 2012.

[70] Andreas Zoglauer, Steven E Boggs, Michelle Galloway, Mark Amman, Paul N Luke,

and R Marc Kippen. Design, implementation, and optimization of MEGAlib’s im-

age reconstruction tool Mimrec. Nuclear Instruments and Methods in Physics Re-

search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,

652(1):568–571, 2011.

[71] Lars Middendorf and Ch Haubelt. A programmable graphics processor based on

partial stream rewriting. In Computer Graphics Forum, volume 32, pages 325–334.

Wiley Online Library, 2013.

[72] William Kahan. IEEE standard 754 for binary floating-point arithmetic. Lecture

Notes on the Status of IEEE, 754(94720-1776):11, 1996.

90

[73] Nvidia Tesla P100 Whitepaper. https://images.nvidia.com/content/pdf/tesla/

whitepaper/pascal-architecture-whitepaper.pdf.

[74] NVIDIA-smi. https://developer.nvidia.com/nvidia-system-management-

interface.

[75] John D Leidel and Yong Chen. Hmc-sim: A simulation framework for hybrid memory

cube devices. Parallel Processing Letters, 24(04):1442002, 2014.

[76] Gate-Level Simulation Methodology - Cadence. https://www.cadence.com/

content/dam/cadence-www/global/en_US/documents/tools/system-design-

verification/gate-level-simulation-wp.pdf.

[77] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse,

Lifan Xu, and Michael Ignatowski. TOP-PIM: throughput-oriented programmable

processing in memory. In Proceedings of the 23rd international symposium on High-

performance parallel and distributed computing, pages 85–98. ACM, 2014.

[78] Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. Eager pruning: algorithm

and architecture support for fast training of deep neural networks. In Proceedings of

the 46th International Symposium on Computer Architecture, pages 292–303. ACM,

2019.

[79] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason

Mars, and Lingjia Tang. Neurosurgeon: Collaborative Intelligence Between the Cloud

and Mobile Edge. In Proceedings of the Twenty-Second International Conference on

91

Architectural Support for Programming Languages and Operating Systems, pages 615–

629. ACM, 2017.

[80] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan

Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally.

SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks. In

Proceedings of the 44th Annual International Symposium on Computer Architecture,

pages 27–40. ACM, 2017.

[81] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural networks. IEEE Jour-

nal of Solid-State Circuits, 52(1):127–138, 2017.

[82] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and

William J Dally. EIE: Efficient Inference Engine on Compressed Deep Neural Network.

In Proceedings of the 43rd International Symposium on Computer Architecture, pages

243–254. IEEE Press, 2016.

[83] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos. Cnvlutin: ineffectual-neuron-free deep neural net-

work computing. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual

International Symposium on, pages 1–13. IEEE, 2016.

[84] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun Kwon, and

Stephen W Keckler. Compressing DMA Engine: Leveraging Activation Sparsity

for Training Deep Neural Networks. In High Performance Computer Architecture

(HPCA), 2018 IEEE International Symposium on, pages 78–91. IEEE, 2018.

92

[85] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,

and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters

and¡ 0.5 MB model size. arXiv preprint arXiv:1602.07360, 2016.

[86] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,

Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks. Min-

erva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators. In

Proceedings of the 43rd International Symposium on Computer Architecture, pages

267–278. IEEE Press, 2016.

[87] Parker Hill, Animesh Jain, Mason Hill, Babak Zamirai, Chang-Hong Hsu, Michael A

Laurenzano, Scott Mahlke, Lingjia Tang, and Jason Mars. DeftNN: addressing bottle-

necks for DNN execution on GPUs via synapse vector elimination and near-compute

data fission. In Proceedings of the 50th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 786–799. ACM, 2017.

[88] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,

and Scott Mahlke. Scalpel: Customizing DNN pruning to the underlying hardware

parallelism. In Proceedings of the 44th Annual International Symposium on Computer

Architecture, pages 548–560. ACM, 2017.

[89] Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring

sparsity in recurrent neural networks. arXiv preprint arXiv:1704.05119, 2017.

[90] Sharan Narang, Eric Undersander, and Gregory Diamos. Block-Sparse Recurrent

Neural Networks. arXiv preprint arXiv:1711.02782, 2017.

93

[91] Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski, Adam Coates,

Erich Elsen, Jesse Engel, Awni Hannun, and Sanjeev Satheesh. Persistent rnns: Stash-

ing recurrent weights on-chip. In International Conference on Machine Learning,

pages 2024–2033, 2016.

[92] Feiwen Zhu, Jeff Pool, Michael Andersch, Jeremy Appleyard, and Fung Xie. Sparse

Persistent RNNs: Squeezing Large Recurrent Networks On-Chip. arXiv preprint

arXiv:1804.10223, 2018.

[93] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie,

Hong Luo, Song Yao, Yu Wang, et al. ESE: Efficient Speech Recognition Engine with

Sparse LSTM on FPGA. In FPGA, pages 75–84, 2017.

[94] Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Delbruck. DeltaRNN:

A Power-efficient Recurrent Neural Network Accelerator. In Proceedings of the 2018

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages

21–30. ACM, 2018.

[95] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-parallel finite-

state machines. In ACM SIGARCH Computer Architecture News, volume 42, pages

529–542. ACM, 2014.

[96] Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. Parallelizing dynamic

programming through rank convergence. ACM SIGPLAN Notices, 49(8):219–232,

2014.

94

[97] Arun Subramaniyan and Reetuparna Das. Parallel automata processor. In Computer

Architecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium on,

pages 600–612. IEEE, 2017.

[98] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. Deep learn-

ing with dynamic computation graphs. arXiv preprint arXiv:1702.02181, 2017.

[99] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang,

and Yuan Xie. Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory. In ACM SIGARCH Computer Architec-

ture News, volume 44, pages 27–39. IEEE Press, 2016.

[100] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,

John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. ISAAC:

A convolutional neural network accelerator with in-situ analog arithmetic in cross-

bars. ACM SIGARCH Computer Architecture News, 44(3):14–26, 2016.

[101] Fan Chen, Linghao Song, and Yiran Chen. ReGAN: A pipelined ReRAM-based

accelerator for generative adversarial networks. In 2018 23rd Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 178–183. IEEE, 2018.

[102] Haiyu Mao, Mingcong Song, Tao Li, Yuting Dai, and Jiwu Shu. LerGAN: A Zero-

Free, Low Data Movement and PIM-Based GAN Architecture. In 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 669–681.

IEEE, 2018.

95

[103] Biresh Kumar Joardar, Bing Li, Janardhan Rao Doppa, Hai Li, Partha Pratim Pande,

and Krishnendu Chakrabarty. REGENT: A Heterogeneous ReRAM/GPU-based Ar-

chitecture Enabled by NoC for Training CNNs. In 2019 Design, Automation & Test

in Europe Conference & Exhibition (DATE), pages 522–527. IEEE, 2019.

[104] Hajar Falahati, Pejman Lotfi-Kamran, Mohammad Sadrosadati, and Hamid Sarbazi-

Azad. ORIGAMI: A Heterogeneous Split Architecture for In-Memory Acceleration of

Learning. arXiv preprint arXiv:1812.11473, 2018.

[105] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. Tetris:

Scalable and efficient neural network acceleration with 3d memory. In ACM SIGARCH

Computer Architecture News, volume 45, pages 751–764. ACM, 2017.

[106] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing CNN accelerator

efficiency through resource partitioning. In 2017 ACM/IEEE 44th Annual Interna-

tional Symposium on Computer Architecture (ISCA), pages 535–547. IEEE, 2017.

[107] Jianxin Guo, Shouyi Yin, Peng Ouyang, Leibo Liu, and Shaojun Wei. Bit-Width

Based Resource Partitioning for CNN Acceleration on FPGA. In 2017 IEEE 25th An-

nual International Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 31–31. IEEE, 2017.

[108] Siqi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj Pathania,

and Tulika Mitra. High-Throughput CNN Inference on Embedded ARM big. LITTLE

Multi-Core Processors. arXiv preprint arXiv:1903.05898, 2019.

96

[109] Chi Lo, Yu-Yi Su, Chun-Yi Lee, and Shih-Chieh Chang. A Dynamic Deep Neural

Network Design for Efficient Workload Allocation in Edge Computing. In 2017 IEEE

International Conference on Computer Design (ICCD), pages 273–280. IEEE, 2017.

[110] Swarnava Dey, Arijit Mukherjee, Arpan Pal, and P Balamuralidhar. Partitioning of

CNN Models for Execution on Fog Devices. In Proceedings of the 1st ACM Interna-

tional Workshop on Smart Cities and Fog Computing, pages 19–24. ACM, 2018.

[111] A Cristiano I Malossi, Yves Ineichen, Costas Bekas, and Alessandro Curioni. Fast

Exponential Computation on SIMD Architectures. Proc. of HIPEAC-WAPCO, Am-

sterdam NL, 2015.

[112] Federico Perini and Rolf D Reitz. Fast approximations of exponential and logarithm

functions combined with efficient storage/retrieval for combustion kinetics calcula-

tions. Combustion and Flame, 194:37–51, 2018.

97

