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ABSTRACT

The diffraction of a plane wave by a. large semicircular 

cylindrical boss on a. plane of infinite extent has been 

studied by application of the Watson Transformation. Three 

cases are considered: plane ground wave incidence, vertical­

ly polarized oblique plane wave incidence, and horizontally 

polarized oblique plane wave incidence. The transformed 

solutions give physical meaning to the diffraction process 

by isolating each contribution. The results show the dif­

fraction to be composed of three primary terms: "creeping 

waves", waves reflected from the boss, and waves reflected 

from the ground plane. Numerical calculations are made com­

paring the classical "harmonic series" with the transformed 

solution. These calculations show good agreement with the 

classical results. Some plots of the normalized magnetic 

or electric field are given for the three cases. An approx­

imate method for studying the imperfectly conducting boss 

and. ground plane is suggested.

v



TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ....................................... 1

2. FIELD EVALUATION FOR PLANE GROUND WAVE INCIDENCE . 3

2.1 General Problem Development ...............  . 3
2.2 Transformation of the Classical Harmonic

Series...............    . 5
Shadow Region .................................  5
Illuminated Region.....................   . . . 9

2.3 Physical Interpretation of the Solution . . . 10
Shadow Zone ...............  ......... 10
Illuminated Zone . ..................  14

3. FIELD EVALUATION FOR OBLIQUE PLANE WAVE INCIDENCE . 19

3.1 Polarization with the Magnetic Field in the
Horizontal Plane ........ ......... . . 19
Shadow Zone .......... ............. 20
Illuminated Zone . ......................   . . . 22

3.2 Physical Interpretation of Vertical
Polarization Case ........... ........ 23
Shadow Zone ......... ...............  23
Partially Illuminated Zone .................... 2?
Illuminated Region ........ ........... 29

3.3 Polarization with the Electric Field in the
Horizontal Plane ........... ......... 3^
Shadow Zone ...............  33
Illuminated Zone.............    35

3.4 Physical Interpretation of Horizontal
Polarization Case...................   . . . . 3?
Shadow Zone ............. .......... 38
Partially Illuminated Zone .................... 39
Illuminated Zone .................  ...... 39

4. NUMERICAL FIELD EVALUATION ........................ 41

4.1 Comparison with Previous Ground Wave Data . . 41
4.2 Comparison of Oblique Incidence with Ground

Wave Incidence . .................................. 44
4.3 Comparison of Vertical and Horizontal

Polarization Diffraction . . . .............   . 49
4.4 Concluding Discussion . . . . ...............   53

BIBLIOGRAPHY ............. ...... ...............  55

vl



LIST OF FIGURES

Figure Page

1. Semicircular cylindrical boss on an infinite
ground plane ............. ......... . 3

2. Contour for integral representation of the
"harmonic series" solution . . . .  ..........   . 6

3. Deformed contour for integral representation
of the "harmonic series" solution .................. 7

U-. The geometrical definition of p for the 
illuminated zone ........... .......... 10

5. Lines of constant phase and propagation vectors
for the term +yn(<$-Trit-arccos . . . . . 12

6. Lines of constant phase and propagation vectors
for the term e «■ tKoVp'-o1' * yn(3n/e. - <$ - arccos a/p) J . . . . 12

7. Shadow region creeping waves and geometry in
ray form .  ............... 13

8. Lines of constant phase and propagation vectors 
for the terms e - i-k., p cos <$> (incident plane wave)
and e ikeV^-a^s/ziV - 2o cos (boss reflected wave) . . . 15

9. Lines of constant phase and propagation vectors
for the term e + vA (sn/z -d> - arccos a/p)l . . . . 16

10. Lines of constant phase and propagation vectors
for the term e + >*A(3tt/z ♦<$ - arccos a/p)"! . . . 17

11. Illuminated region waves in ray form ........ 18

12. Geometrical presentation of the regions around
the semlcyllndrical boss ............................. 21

13. The geometrical definition of (a) and (b)
for the illuminated zone solution ......... 23

1^4-. Shadow region creeping waves and geometry in ray 
form for the terms, (a) -tt/z - arccosaip)!
and (b) -d *<P'- arccos a/p)l . . . . 25

vll



vlli

Figure Page

15. Shadow region creeping waves and geometry In ray 
form for the terms, (a) eiLko/pI^a1'orccos o/p)J
and (b) ^iUkeVpl-a*-' - 4 - qpccos atp)3............26

16. The graphical superposition of creeping wave terms
In the shadow region.............      . . 2?

17. Partially Illuminated zone creeping waves and
geometry In ray form for the terms eiVn(4*4'-n/t-arccos<i/p)
and glVnOrr/z orccos a/p).........  28

18. Partially Illuminated zone creeping waves and
geometry In ray form for the terms e i.Vn(aTTiz-4*4>-<ifca>so^)
and giyA (37r/a + tp-^'-arccos dip) e.. ......... 28

19. Partially Illuminated zone waves In ray form that
are plane Incident and boss reflected............. 29

20. Illuminated zone waves In ray form 30

21. Normalized magnetic field amplitude In the vicinity
of the boss for koa = 3.............    43

22. Normalized magnetic field amplitude In the vicinity
of the boss for koa. = 5 . . . ....................... 46

23• Normalized magnetic field amplitude In the vicinity 
of the boss for koa = 10....................... 4?

24. Normalized magnetic field amplitude In the vicinity
of the boss for koa = 15............................  48

25. Interference patterns of terms Isolated In the
solution for koa = 10, kop = 20 and <$>' = 30° .... 51

26. Normalized field amplitude at koz>= 20 for koa = 10
and <7'= 30°.....................  52



CHAPTER 1

INTRODUCTION

The problem of diffraction by a semicircular cylindrical 

boss on a flat, perfectly conducting ground plane of infinite 

extent has been solved by many authors. These solutions have 

been used to study the Influence of a ridge or island on VLF 

communication ( e.g., Walt and Murphy; 1957t 1958)* They 

have also been used as the elements In rough surface scatter­

ing studies (Twersky; 1952» 1957)• In generalthese "har­

monic series" solutions are useful for electrically small 

bosses, l.e., long-wavelength low frequency limits. For 

electrically large bosses, they are of little value because 

of their very slow convergence.

The "harmonic series" may be transformed Into a more 

rapidly convergent series by application of the Watson 

Transformation (Franz, 1957. I960; Tyras 1969; et. al.). 

This transformation, applied to cylinders, yields the "residue 

series" representation. This solution Is highly convergent 

for large cylindrical radii. Also, the "residue series" 

solution Is of particular value because It gives Insight Into 

the physical nature of the diffraction process. This solution 

has been shown to be Important in the space shadowed by the 

cylinder.

1
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For the illuminated, region, a closed form approximation 

to the solution can be obtained. This solution is known as 

the "geometrical optics" approximation. Its accuracy depends 

primarily on the radial size of the cylinder. This results 

from the higher order terms of the approximation varying In­

versely with the electrical radius of the cylinder (Franz, 

1957)• For large cylinders, It Is highly accurate.

The "residue series" solution and "geometrical optics" 

approximation have not been applied to a semicircular boss on 

an infinite ground plane. Therefore, the primary purpose of 

this thesis is the transformation of the slowly convergent 

"harmonic series" into the more convergent form for large 

bosses.

Three cases are considered. The first studies plane 

ground wave diffraction. The second and third cases study 

obliquely incident vertically and. horizontally polarized 

plane wave diffraction. For these cases, each diffracted 

wave is Isolated and discussed. Numerical calculations are 

then made"comparing the results of 1) the transformed series 

with those of the "harmonic series" for plane ground wave 

diffraction, 2) oblique incidence vertically polarized plane 

wave diffraction with plane ground wave diffraction, and 

3) horizontally polarized, plane wave diffraction with ver­

tically polarized plane wave diffraction.

An approximate method for extending the solution ob­

tained from perfectly conducting boundaries to handle the 

Imperfect case is suggested.



CHAPTER 2

FIELD EVALUATION FOR PLANE GROUND WAVE INCIDENCE 

2.1 General Problem Development

The problem of the diffraction by a large seml- 

cylindrical boss, shown in Figure 1, Is approached and

solved In the classical manner.

Figure 1. Semicircular cylindrical boss on an 
infinite ground plane.

In terms of the Hertzian magnetic vector, the wave equation 

and associated electromagnetic fields are given by

(V2 4- koz) TT<m) = (1)

E" - i u)JUo V x TTW , (2)

H = koTft,n) + v ( . (3)

To generate the axially invariant vertically polarized wave, 
the magnetic current density, T<m^, is expressed as a line 

current by
J(W) _ J cm) 6(p-p'> 5(4-d")

3
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where p and d) represent the field coordinates and p* and 4>' 

the source coordinates. A ground wave can be obtained by- 

setting 4’’equal to zero. A plane wave Is obtained by 

allowing p* to approach Infinity.
Since the current density Is axial, only the z- 

component of the Hertzian magnetic vector will be nonzero. 

Thus (1) may be written as a scalar equation.

Id/ 3 t 
------( P--- 1 4-P dp\M 3p/

i a2 
P2

k^J nr -i d(p-p9 S(4-<?9 
u>/>o p

Also, since the plane and boss are perfectly conducting,

the boundary conditions are given by

- ‘— = o
9 p

at P»a

nlm> _
d4> ' at = 0 , TT

(5)

The solution to (4) Is well known and Is obtained by 

separation of variables techniques (Jones,1964). The 

solution Is given as

C05-"#"5"1*' H'M H&m] (6)

where the primes denote derivatives with respect to the 

Bessel function argument. Setting 4>* equal to zero and 

allowing p* to approach Infinity, (6) becomes

Substituting (7) Into (3), the magnetic field Intensity Is 
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obtained as

HZ = HoTiew(-i),w cosmcp \jm<kop) -

(8) 
where u __ - ];<"•) u)€o ^Kk.p' -ir/4)

Ho •“ r** V"1 “tj 2nkop

Noting a well-known addition theorem In Bessel functions 

(Watson, 19^-4), the Incident wave Is given by

Hj”‘= H„g=m(-()”cosm<)> = H.e"ik-|,cos', .
m«o

Thus, the magnetic field Intensity for ground wave Incidence 

may be written as

Hz = H<,{e"ik•|,co5‘, -?.£«•(-i)m(9)

The solution given by (8) or (9) can be used to cal­

culate the field amplitudes for any size cylindrical boss. 

However, the series In (9) Is very slowly convergent when 

koa > 1. Hence many terms are required for accuracy. The 

field given by (9) has previously been evaluated for bosses 

as large as three wavelengths (Walt & Murphy, 1958} Webster, 

1966). The convergence of the series In (8) can be Improved 

by application of the Watson Transformation.

2.2 Transformation of the Classical Harmonic Series,

Shadow Region. The classical "harmonic series" solution 

for ground wave Incidence Is given by (8). However, It Is 

not In a form which can be readily transformed. Examining 
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the series and. using some well-known trigonometric and.

Bessel function Identities, (8) may be recast as

Hz = , (10)

The series given by (10) Is exactly the same solution 

as obtained, for a cylinder with an Incident plane wave at 

zero degrees (Jones, 196^), The solution Is, however, 

subject to a slightly different Interpretation. That Is, 

for the boss, os<p<TTi while for the cylinder, o^4,<2TT.

The "harmonic series" given by (10) has been trans­

formed previously (Franz, 1957$ Tyras, 1969)» The high­

lights of that transformation are given below.

Consider the Integral 

where

, , p-tVTT/a _ , . "i
By = Ho ^(,<„p) - j;(koa; (kop)}

u p-i.yTr/2. _
z ~ HS?”(k-a> hMp)}

and the contour C Is taken, as shown In Figure 2, to Include

Figure 2. Contour for Integral representation of the 
"harmonic series" solution.

the poles due to the zeroes of sin Vn.
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By the theory of residues, (11) may be shown to equal 

the •’harmonic series”, (10), provided that By does not have 

singularities on the real axis. In addition, since By is an 

even function, l.e., By = B.y , (11) becomes

H, = if 005 (12)

where € raises the integration path slightly above the real 

axis.
The integral given by (12) is then evaluated by closing 

the contour in the upper half y-plane. The poles due to 

sinj/TT have now been excluded. However, the poles due to the 
zeroes of H^^^koa) are captured in the process (Tyras, 1969). 

Thus, the contour is taken as shown in Figure 3.

Figure 3* Deformed contour for Integral representation 
of the "harmonic series" solution.
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Applying the theory of residues to (12) and the contour

In Figure 3,

ree*tecos y(4-n) 
sin VTr

dV
CO

-STT^ residues @ - O ,
n°i

provided the contribution of the contour paths and P2 

vanish at infinity. By application of the Infinite y -plane, 
Debye asymptotic forms to By"*1 (Franz $ 1957» I960) and allow­

ing |j^|—»-oo , the contributions of P^ and Pg will vanish for 

field angles greater than 17/2.

Thus,

Hz cos y; (d-n) 
Sin Vn TT

H<0(kop) (13)

where is the n^^1 zero of (koa) as obtained from the

Airy function representation of the Hankel function. In

addition H(y/(koa) and * (koa)
y=yA

can

their Airy function representations (Tyras,

be expressed by

1969). So that

(13) becomes
- Ho p'iTT/6 ( y/3y^cos (cp-tr) e'tp,,7T/2 (». 

z - 2 \ 2/ (dA)]z SJUJ^TT ? (1M

where y„' = k.a - a; (-M.J/3eW3

and a^ are the zeroes of the first derivative of the Airy 

function with respect to its argument.

The solution given by (14) is known as the residue 

series representation. Since this series converges for field 
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angles greater than 90 degrees, It is applicable only in the 

shadow region of the cylindrical boss. It is, however, of 

no value for field calculations in the illuminated region.

Illuminated Region. A representation which allows 

field evaluation in the illuminated region may be obtained 

by suitable transformation of the original Integral repre­

sentation, (12). Noting the relationship -

cos y(<?-Tr) = ell,7rcos s'm ptr

(12) becomes

OO*i4 
hz = / { 

-ootit

. elJ,w Cosy4> (m)-)
+ 1 bHTir J (15)

The second term in the braces in (15) is of the same form 

as (12) and is evaluated in the same manner. Thus, (15)

becomes

Ho p-iv/e / kpoWay^1 CoS e'lVnn/a
(16)

Substituting into the remaining Integral, one obtains
oo *ie ao*it eo.iS

f = fwo/2) Htv8)(k6p)e1'y<4'n,l)dy - 
-••♦it -oo.it '-w.ie (17)

It is noted that the first Integral in (17) is zero, 
since H yV(kop) has no poles in the upper half y-plane. The 

second integral is equal to the contribution of contour P3 

and is evaluated by the method of stationary phase to be to 

the first order
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ikepcos<P (18)

1 a cos P 1 - 2ace>i.
a^p1- d^sin1^1 - acosp c

where p Is as shown In
approximation for the solution In thethe geometrical optics

Illuminated, region
Field point

incident **a<j

geometrical definition of p for the

Collecting all the terms,

Figure h-. This solution Is known as 

Figure 4-e The 
Illuminated zone.

- lkop cos <$> + /ZZZZZZ5Z£5ZZZZZZZZ?o‘^^5^^^,'*i?c,co9^ 
\j2 ^px-q8S//7a<8‘ - acosp

+ ae \”) Z^aitAw^sin^n HW(k»PV.

To the first order, (19) Is the new representation of the 

magnetic field Intensity In the illuminated zone.

/
2.3 Physical Interpretation of the Solution.

Shadow Zone. The solutions obtained, are of particular 

value because physical Insight Into the diffraction by the 

cylindrical boss may be obtained.
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Returning to (14), the magnetic field Intensity in the 
shadow region, and noting the asymptotic form of H(l)(kop) 

for kop > Vn' ~ koa (Tyras,1969) and the trigonometric identity

COS m (4> - TT) giVn(3ir/2 -<$9
Sm^TT - -L i - €iX$2TT

(14) becomes

U Heet7r/,a ( kea \l/3 V'p.cm)C_i[koVpa-ax' + m (4 - "n/e. -arccos a/p)3
z ) 2.D" te (20)

i[k6Vp*-aa' * Mn (3ir/a - 4 - arccos a/p)3 *) + 6 j
where

n(,w^ — _________ _________ 5—Un - (i- etV"2IT)d'fAKa;)?

Examining (20), it is noted that the series Is rapidly 

convergent for 4>TT/2 + arccos a/p, since has a rapidly 

increasing positive imaginary part. In addition, since 
y/ koa, the phase factors of (20) may be expressed respec­

tively as
= ko[Vpx - a2' + a(c? -tt/2 - arccos a/p)j 

and
$2 = kofV/02 * a8-' + a(3tt/2 - - arccos a/p)}

Plots of the lines of constant phase, ^>t= constant and 
($2 = constant, are given in Figure 5 and Figure 6, From 

these plots, it is clear that the first terms of the series 
In (20) represent the direct diffracted waves, while the 

second terms represent the diffracted waves which are re­

flected from the shadow region ground plane.



Incident 
plane wave

Figure 5« Lines of constant phase and propagation vectors for the term 
g*LkoVp"-Qt ♦ y;(4-7T/2-orccota/p)!^--------- constant phase lines,-*-------- propagation vectors

4 » 7772 + arccos a/p

Figure 6. Lines of constant phase and propagation vectors for the term
e itk, Vp*-a»* r y^(3n)2-4-arcccs a/p)],---------------------constant phase lines,-*---------propagation vectors
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More specifically, the rays which arrive tangent to the 

cylindrical boss, d? = TT/2 In this case, travel along the 
cylindrical surface through an arc distance of 4 “ ”

arccos a/p and 3tt/2 - - arccos a/p radians. The surface

currents Induced by the tangential magnetic field then radi­

ate the energy Into the shadow region through a distance of 
^pa- a2'. The ray which travels the arc of 6) - n/2 - arccos a/p 

radiates directly to the field pointi while the ray which 

travels through 3n/2 - <$ - arccos a/p radians radiates toward 

the Image of the field point In the ground plane, and is re­

flected by the ground plane to the field point, as shown In 

Figure ?.

Figure 7« Shadow region creeping waves and geometry in 
ray form.

The Imaginary part of Is proportional to the atten­

uation factor of the wave traveling on the cylindrical 

surface. In addition, since the real part of Is actually 

a little larger than koa, the velocity of the wave propa­

gating along the cylinder's surface Is lower than the free 

space velocity. Hence, this wave has been designated as a
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"creeping wave".
Illuminated zone. Investigating the solution for the 

magnetic field intensity in the Illuminated region, (19)♦ 

it is noted that the first term represents the Incident 

plane wave. The second term represents the direct reflection 

from the boss surface. The lines of constant phase and prop­
agation vectors for these terms are plotted in Figure 8.

Now turning attention to the series term of (19)« and 
applying the asymptotic form for H^^(kop) and the trigono­

metric identity

COS +
sin^ne ~l i -

the series becomes
Hn et'7r/12 / koq \l/3 r2*pym) rccosd/p)]

V2nkeVpx-d»r\ 2 /
. ^i[koVpx-<3l‘ ♦ Mifnr/a - 4> - arccos d/p)3 "I •re j

As was done for the shadow region, the lines of constant 

phase are plotted for ^koa in Figure 9 and Figure 10.

From the previous discussion, it is clear that four 

terms exist in the illuminated region. The first is the 

incident wave. The second id the wave reflected from the 

cylindrical surface. The third term is the wave which 

struck the cylinder at 90 degrees, traveled along the 

cylinder surface to 180 degrees, and was reflected back 

along the surface directly to the field point. The fourth 

term travels a path similar to the third, but radiates



1

Figure 8, Lines of constant phase and propagation vectors for the terms e-Lkef>cos4> 
(Incident plane wave) and '2a<:o&^ (boss reflected wave).
---------------- lines of constant phase, -<---------------- propagation vectors.



' )

Figure 9» Lines of constant phase and propagation vectors for the 
- <$ - arc cos a/p)l ,, . " • —---- lines of constant phase,”4--------vectors. F *

term 
propagation

o\



Figure 10. Lines of constant phase and propagation vectors for the term 
giEke/p^-o*'*Vntair/a ^d-oi-ccoso/pjj,------- ---- lines of constant phase,-*--------- propagation
vectors,
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toward, the image of the field point and is reflected by the 

ground plane in the illuminated region. The third and 

fourth terms are "creeping wave" terms.
Figures 11 (a) and (b) illustrate these four terms in 

ray form.

Figure 11. Illuminated region waves in ray form.



CHAPTER 3

FIELD EVALUATION FOR OBLIQUE PLANE WAVE INCIDENCE

The previous discussion Involved plane ground wave dif­

fraction. It Is the simplest problem to approach and solve. 

The Interpretation of Its solutions Is relatively straight­

forward. This, the simpler problem, has allowed familiariza­

tion with both the mathematics and the physical Interpretation 

techniques. It has provided the foundation for approaching 

the problem of diffraction by a semlcyllndrlcal boss with 

oblique plane wave Incidence.

3-1 Polarization with the Magnetic Field In the Horizontal 
Plane.

The problem of a vertically polarized plane wave oblique­

ly incident on the boss Is merely a generalization of the 

ground wave problem. In the ground wave problem the Incidence 
angle, <?', Is set at zero degrees. In the problem at hand, 

It remains as a variable.

Returning to (6) and allowing p*to approach Infinity, 

the magnetic field intensity Is found to be

H v22!Hz = 6.m(- L),W 2 cos m<y cos •

£ Jm <kep) - H^'tkeC) H (k»J ? ( 21

19
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where u —__ I(w,,)a>£0 _ i.Ckep'- tt/*)

Ho “ Vankop'-’ 6

Noting the fact that the series Is even and applying the 

relationship,
#a'.wt4-<P') 

cos md> cos Yn<?' = ------- —i_e--------------+e--------------
4- »

(21) is recast as

Hz= H”(k.p)'} (22)
ma--* •

Notice that when <f'ls set equal to zero In (22), the 

solution becomes Identical to the solution for ground waves 

given by (10).

Splitting (22) Into two series,
Hz = S',”’ + S*' (23)

where sT= ^gei”"’-‘,',(-i)"{jm(k.P>-

s,m,= ^elm‘4*4W£j„k.P> - H"(k.p)}

It Is observed that and Sg1’ have exactly the same form as 

(10). Since the transformation of (10) was completed In 

Chapter 2, the results may be applied to each of these series.
Shadow zone. In applying the results of (10) to S^ 

and S^, It Is found that the two series have different con­

vergence requirements. That Is, for S^the contribution of 

the large semicircular arc, path Pt and Pa In Figure 3, 
vanishes for field angles greater than 90 +4'degrees. For 

the latter series, convergence Is assured only for field
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angles greater than 90 - (/degrees. Thus, the convergence 

of (23) is assured only when <5 > TT/2 + (f. This is the 
shadow region on the boss, as shown in Figure 12(a).

(a) Shadow region.

(b) Partially illuminated region.

Figure 12. Geometrical presentation of the regions 
around the semlcylinderical boss.

(c) Illuminated region.
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Following the procedure for the ground wave shadow zone 

outlined in section 2.2, the residue series solution may be 

written

u - Ho ^-i'T/e/k.dV/J HvA(k-P)rco5^(4*<!f,-7T) -f COS ,
Hz“ 4- 6 (2/ 2-. aACAifo;)]2-1 sin ^tt J.

where and a^ are given in (14).

Illuminated zone. In (23). the illuminated region for 
includes a portion of the shadow zone of , 1 .e. 9o*e-<p<<p. 

Thus, the illuminated region must be divided into two sub­
regions, as shown in Figures 12(b) and (c). Region one con­

tains the illuminated zone solution for plus the shadow 

zone solution for . This is the partially illuminated 

zone. Region two contains the illuminated region solutions 

for both of the series in (23). This is the illuminated

zone.

In keeping with the previous statements and following 

the procedure outlined in section 2.2, the solution in the

partially illuminated zone is given as

- Hof1 r-tff/6(k»o\,/3^e"u,An/2‘ COS V4(<P»^-TD Uu)
a \2.e \2/ anLAdak)llsin Mvjl

1 p-in/6 fJ^oOWa CQS^(O-<?') a,
' 2 ' <7A£Ai(a^)]2 sin HITT

(25)

-ikopeos(<f-49 / acos^ ' i.keUp‘--ats/naA'-2aco5&')‘
6 y2 Vp2-02szn2/9/ - eicosa _i

where is shown in Figure 13(a).
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Now writing the solution for the Illuminated zone,

-Lkopcasl^^f?'.

u - ^of -tkopcostO-^) 
Mz ” 2 I G

< a cos /$, ■* gik^p^d^in’A1-gacos^j)
e-yp’-a’sin2^- acosft (26)
O cos^e, "* pi. - d’sin2^' - 2qcos pa)

- a4S/r? aPi - dcospt e

+ y e ‘rAi^^n x'k'[cos + tos
c. X a. / QnLAilClwJ *«'• *• »

where pa is shown in Figure 13(b). Note that in the limit

as p becomes large, ^-e-(pM'Va and

Figure 13. The geometrical definition of (a) 
and (b) pt for the illuminated zone solution.

3.2 Physical Interpretation of Vertical Polarization Case.

Shadow zone. Since S^ and S^ are superposed to obtain 

the total field, the physical explanation of each series 
yields the total. Considering S^ first,

=
-iiry® e~MTr/2 cos

4 e I 2 / QA[Ai.(a^7 sm wit 
n=i

HS!(k.p) (27)
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Recalling that

sir? PA ir ""L i - eLkll27r

and the asymptotic form of ^or ^oP * ^oa
(Tyras ,£969) » (27) becomes

etm) __ Ho etir/l2- fkoaf3^'wwnCrii^p‘-ap'#-PA(<?-4-ir/2'drccosd/p3 
~ a£2Tnqp»-aA a )

* Hl(3iT/2 -4*<p'-- drccosa/pW
+ o * 3

(28) 
where

D<nW) = ^[AKd^Ci-e1^;"

It can be noted that since vA has rapidly increasing 

positive imaginary terms, (28) is rapidly convergent for 
7T/2 + cp' + arccos a/p. This is the shadow region as shown 

in Figure 12(a).

Applying the knowledge obtained from section 2.3, 
Figures 5 and 6, the first term in the series in (28) 

represents a wave which enters the boss surface at C? = 
71/2 + <?'• This wave travels at a reduced speed along the boss 

surface through an arc of 6? - Tl/2 - 4>'~ arccos a/p radians, 

leaves the boss and arrives at the field point. This wave 
is shown in ray form in Figure iMa).

The second series represents a wave which enters the 
boss surface at 4 = TT/2 - d?’, the image point of <5 = 3TT/2 + £?', 

and travels through an arc of 3^/2 - <9 + <?'- arccos a/p. 

This ray then leaves the boss traveling toward the image of 

the field point in the ground plane. It is reflected accord-
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Ing to Snell’s law onto the field point. This ray is shown 

In Figure 1U(b).

(a) (b)
Figure 1^-. Shadow region creeping waves and geometry in 

ray form for the terms, (a) -<y- n/a-orccos a/p)l an(^
(b) elLkeVpt-ae + Vn (3tt/2 orccos a/p)1

Now considering the interpretation of S^, one may write

Ho /ko-a1'n/a-orccosa/pB 
= 'TVznkoVpx—^l 2 / 2_Pn te

+ glCkoVp8"^1' + yA(3H/2 - <5 -<$* - avccos a/p)l^ (29,

where D^m) is given in (28).

From the discussion of SCJ"\ the first term in (29) re­

presents a wave which enters the boss surface at = 1T/2 - d’/» 

travels along the surface through d?1- 1T/2 - arccos a/p 

radians, leaves the boss and propagates to the field point. 
This wave is shown in Figure 15(a).

The second term in (29) yields a wave which enters at 
c? = 7T/2 + Cf\ the image of dj » 3TT/2 - tf'. This wave travels 

along the surface through 3TT/2 * df* - <$ - arccos a/p radians. 

It then radiates toward the image of the field point, is
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reflected and arrives at the field point. This ray Is shown

In Figure 15(b).

Figure 15. Shadow region creeping waves and geometry In 
ray form for the terms, (a) e^'-n/a-orccoso^Sand 
(b) g a*' ■#-orccos a/(SQ

Notice that each series contributes one creeping wave 

from the Incident wave and one from the wave reflected from 

the ground plane. This results from the fact that the ori­

ginal waves, because of Imaging, see the boss as a complete 
cylinder. Series S^ contains solutions from the original 

waves, while S^ has the results of the Imaging.waves.

Superposition of Figure 1U and Figure 15 yields the 

total solution in the shadow region. This superposition Is 

Illustrated In Figure 16. Of course, the phase of the Indi­

vidual waves is very Important In finding the numerical 

result.

These waves are creeping waves and have the same 

characteristics as those discussed In section 2.3.
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Figure 16, The graphical superposition of creeping 
wave terms In the shadow region. Each Incident ray takes 
both paths In the shadow region.

Partially Illuminated zone. In the partially Illumin­

ated region, the concern Is with the shadow region solution 
of and the Illuminated zone solution of S^m) . Returning 

to (25) and performing the transformation discussed before, 

_ H<, elTT/ia /A,£rY/31r2i_<m)^iko%/p^arC,iyn(d>*<y,-TT/2-orcco5o/p)
Mz ”2 ^2nk0>fpt-a«-'\ 2 / 2_jUn e

giV^(3n/z-4,-^'-drccos a/p) + giyA(3TF/2 + arccos a/p)

IV„(3tt/2 - <$ * <9* - arccos Ho f p-tAppcos (.4-d') 
2 L

acos^i________
J2 -qasin8^,1 - a cos p,

, \.ko\4p* - a*sin*A * 2a cos (30)
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where is given in (28) and Pi in Figure 13(a). The first 

two terms of the series in (30) are illustrated in Figure 17*

Figure I?. Partially Illuminated zone creeping waves 
and geometry in ray form for the terms,  
g i 4 (?•- ir/2 - arccoso!f>)  ___ _ Qi>'n(3n/2 -<p-<$>•- arccos o/p)

The second two terms of the series are shown in Figure

18.

Figure 18. Partially illuminated zone creeping waves 
and geometry in ray form for the terms, -------:---------
giynfen/z -<9 *<y,*-orceos alp) g t>rt (3ir/a *4-<?• - arccos a)p)
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The last two terms of (30) represent the Incident field 

and the direct reflection from the boss, as shown In Figure

.Jrtcideni

Field 
point

Figure 19* Partially Illuminated waves In ray form 
that are plane Incident and boss reflected.

Figures 1? and 18 show the "creeping waves".

Illuminated region. The Illuminated region solution 

has eight terms. Four of these are "creeping waves" given 

by the series In (26). Two result from the Incident wave as 

shown In Figure 20(a). The other two result from the Image 

wave In the ground plane. These waves are shown In Figure 
20(b).

The first two terms of (26) represent the direct incident 

wave and the direct wave reflected from the ground plane. 
These are shown In Figure 20(c).

The last two terms represent the reflections from the 

boss Itself, as shown In Figure 20(d).



(a)

(c)

Figure 20, Illuminated zone waves In ray form, (a) creep­
ing wave terms ——____ ♦d-d-oftcosolp) 
(b) creeping wave terms ^n-d^'-aTCtts^r--

(c) plane wave terms one incident, one reflected from ground 
plane, (d) waves reflected from the boss.
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It should be noted that an Illuminated region exists 

behind the boss as shown In Figure 12(c). This Is a result 

of having an Illuminated region for 4* > 3^/2 - 

arccos a/p .

A complete picture of the wave fronts of each term 
could be obtained by making plots like Figures 5« 6, 8, 9« 

and 10. This was felt to be unnecessary In this case since 

the ray diagrams presented give sufficient Insight Into the 

physical phenomena.

The effect of on the solutions Is the same as dis­

cussed in section 2.3. Notice that there are apparently 

several creeping wave modes. The first mode corresponds to 

)//, the second toy2', etc. The higher order modes are, how­

ever, attenuated quite rapidly. For large bosses, kQa > 1, 

the real part of changes very little from mode to mode. 

Thus, the propagation velocity Is nearly equal for each mode. 

On the other hand, smaller bosses, koa-*-l, have the real 

part of 3^ changing rapidly. This acts, to produce large differ­

ences in phase velocity from mode to mode. It Is Important to 

note that the transformed series does not apply for kQa < 1,

3,3 Polarization with the Electric Field In the Horizontal 
Plane.

The problem of a horizontally polarized plane wave 

obliquely Incident on the cylindrical boss must first be 

solved In the classical manner. In terms of the electric 

Hertzian vector, the wave equation and associated
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electromagnetic fields are given by

* koa) Tt(ti = j<» , (31)

E = k’n<e> -i- (32)

"FT = -tiveo v x Tr<e>. (33)

The desired Incident wave Is obtained by expressing the 

electric current density, as a line current located at 

( P' y <$>') by

j<e) = xte) S<P-P')

and then allowing p' to approach Infinity.

As before, only the z-component of the electric Hertzian

vector will exist. Thus, (31) becomes

1 l—(o 4. L 4- l21 n(eL- -Llte> s<e-p#) 
_p 3pV dp/ P2 3(pZ KoJ 2 (yt-o p , (3^)

with boundary conditions given by

TT“1 = O d-i- p = a ; <5 = o, TT ,

The solution to (3^) Is well known and is given by,

(Jones, 196^)

r P mB|

(35)
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The electric field, intensity, (35) » may be recast as

E. = (-0" f (36)
C L J ■®hi '"oQ* ■* #

The series given in (36) is not in a form which readily 

converges for koa > 1. Thus, it will be applied to the 

Watson Transformation,
Splitting (36) into two series, 

Ez = 5^ - Sf2e\ (37)

where

u m«-a» “m V*oO/

s;’=

Shadow zone. Since S|e> and Sg1 are similar, S^ will 

be transformed and the results applied to S 2 . The trans­

formation of the electric case follows the same general pro­

cedure as the magnetic case. The difference lying in the 
term Jm(kea)/H^1?(kea).

Writing S^ in Integral form

c<e> - _L f e ________  n<«) Axj (38)s- " ^JC sin yn dy ,

where ^-ivn/a r " .
B”)= V YHy(k-Q> ~ H^(kea)Ht,,(kep)}

rip XK^U/ L J
and C is the contour shown in Figure 2, Since 6^= 

(38) becomes
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s?> = i dV (39)

The Integral In (39) Is evaluated by closing the con­

tour In the upper half V- plane. In closing the contour, 
the poles which result from the zeroes of Hy’(kaa) are cap­

tured. These poles must be excluded from the contour. Thus, 

the contour Is taken as shown In Figure
Since the contribution of P, and P8 vanishes as |v|—*-oo 

for <? > rr/2 * the theory of residues may be applied to 

obtain,

<-(e) _ £<? 1 Hp„(ke,a) COS C u<i>. .
5- * "T77Z_ a-uco/.,.(I----------sin Mir---------- (kep) ( 0,

no 3i7Hp(keo)|Viyf| s>'n K,"

where Vn Is the n^^1 zero of Hy(kea) as obtained from Its Airy 
function representation. Also, Hp^k^a) and may be

oy

expressed by their Airy function forms ( Tyras,1969) » so that 

(40) becomes

w = _ EO p-WGfk^y/3 xf^COS e*‘tVw1t/8-lltn
4- c k 2 / /-.CAL'tOn)]2 sin yMir 

r>»l
(41)

where Vn - kea - Qn Ln/3

and an are the zeroes of the Airy function. The prime of the 

Airy function denotes the derivative with respect to the Airy 

function argument.
Performing the transformation of S^ ,
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<e) 
2

cos 6, .
EAi'(a„)J2 Siny„n Vn ep (W

Putting (41) and. (42) back Into (37) »

Eo -in/6 / ko a V^a A e-i-Vn^'a H^(k,p) e
4 e \ 2 / La la?(On)]2 Sin V„TT

(43)
£ cos yM (<$-o’-n) - cos

This is the solution for the shadow region, (p > tt/2 + <?', 

as shown in Figure 12(a).

Illuminated zone. As was done in the magnetic case, 

the illuminated zone is divided into two regions as shown in 

Figures 12(b) and (c). The solution in the partially illu­

minated region includes the illuminated zone solution of
• (37) and the shadow zone solution of S.

The illuminated zone solution of is evaluated and 

these results applied to S . Noting the relationship,
cos vccp-cp'-TT) = eL>,TT cos v(4-0') - u elV(*"*jsin vu 

(39) may be recast as

s"* = . I eb',rs=O:^,,} B? dv (W

The second term in the integral of (44) has been 

evaluated previously. Thus, (44) becomes,



(^5)

remaining Integral, one ob­

tains

H?(k.r)dy
*r

(46)

E.

evaluated, by the method of stationary phase to be to the

first order,
-Lkep cos (<$- 4*) (4?)

>

where is shown in Figure 13(a)

Collecting all the terms,

(48)

Now applying the results of (48) and (42) to (37)» the

The first Integral of (46) is zero, since H^kep) has no

poles In the upper-half y-plane. The second Integral Is

/fl)Substituting By Into the

Eo p-i-kep cos <<$-4') _ E, 
2 C 2

^-tn/6

g COS * Lke^p^-ctsin1^,' - 2dco»p,)

acosp.

[ e-'v,,",'>dv
-ee«ie

C<e) _ Eo -lTT/6/kedy/3^iCO5 yn(<$-<?') e-'l>,nTr/2 (l)/
S' ' Te (~a7 sm p„tt

a cos e, ‘ KoQp’-a’siw*^/
2 - a1 sml^t ‘ - acosp,

cosy„<#:o>9e-'-'"2 <„ 
krf CAi'tOnti^s/n J/On eP)

B«j etv(»-o')d), = 

:e
g^2Lrf;u.p)e;v“,-‘,'-’T,‘>d>-

Hy CKqO/

solution for the partially Illuminated zone Is given as,



Eo ^g-i.k,,peo3
37
(49)

/ <7005/8, ~'"' Ik<4>*-d®sfn1 (8/ -gacosp,)
\j2- •sjp* - a®sm2 fl,' - a cos fl,

1 e-^/6/j^£.),f3
2C la/ Z_,LAi'(an)]8sin^7r LCO5 ^n(4-<?*) * COS Mi<<$♦<$

Next, the results of the solution for In the Illu­

minated. zone are applied to to obtain,

e(e) —Da —
Eo ri -zn/6/k„g)'/3 V2-- 
ata6 la/ CAiVonij2 sin yM7T H^fkoP)

(50)
a cos /di-ike p costa* <$*) _ I 0 co%<3a,________ 1 ^.ke(.4p'-a'sir>tflt - aacosfl,.)")

2 ^px-a*s/naflgt - a cos fl g, J >

where flt Is defined. In Figure 13(b).

Putting (48) and. (50) Into (37) • the Illuminated zone 

solution Is given as

_ _ Eo r^-ikop cos -ikop cos <4>-»-<F9 , c, .cz — e c ij-i)

_ I a cos p, 1 ^IkoQp^-a^sin^fl,' -2acosp,)
'J 2//O2 -a’s/o *p«' - a cos Pt

I acos Pa "* iko(4p*-at»‘dftflt -2a cosfla")
J 2 xlpl-o2smafl1.1 - a cos pg.

[cos W) - COSM.^1

Figure 12(c) shows this region.

3.4 Physical Interpretation of Horizontal Polarization Case.

As before, the first step toward physical understanding 
Is the transformation of Sf,e> , (4j), and , (42). The 

Interpretation of each series Is then undertaken, and super-
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position is applied to obtain the total field. It Is Import­
ant to notice In (37) that Is subtracted from S^.

Shadow zone. The transformation of , (Ul), and S1^, 

(^•2), combined with (37) » yields
_ _ Eo etn/ia /koal'/a^ ikeJ^a*Y i^Cxf-ty'-n/a-orccosa/p) 
E« - ^Mpi-o-vrl 2_,0" e te

iPnCsn/g - 4 ♦ <?'-orccos o/p) _i-Vn(<> ♦ Cf’-TT/l. - orccos Q/p>•fr* e * e

_ e‘-Vn(3TT/& - 4-<?'- OVCCOS aip)") (52)
-* * 

n(C) _ _________ 1_______ ______where Dn - EA. -(an)p( 1 - el^Z7T)

The only differences between this solution, (52), and 

the magnetic case, (28) and (29), are the negative signs 

preceding the last two terms of (52). Recalling that a 

horizontally polarized wave Is phase shifted by 180 degrees 

upon reflection from a perfectly conducting plane, the last 

two terms evidently represent waves which have been reflect­

ed an odd number of times. The first two terms must, then, 

represent waves which have been reflected an even number of 

times.

The ray diagrams for the first two terms of (52) are 

shown In Figure iMa) and Figure 14(b), respectively. 

Notice that term one of (52) Is a wave which Is not reflected. 

Therefore, It has a positive sign. Term two of (52) is a 

wave which Is reflected twicej once In front of the boss, and 

once behind the boss, as shown In Figure 14(b). It, too, 

has a positive sign.
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The ray diagrams for the last two terms of (52) are 

shown in Figures 15(a) and (b)• Notice that both of these 

rays are reflected once before arriving at the field point. 
Hence, the negative signs take care of the 180 degree phase 

change upon reflection.
Partially illuminated zone. In this zone, as in the. mag­

netic case, the interest is in the shadow region solution of 
S(£ and the Illuminated zone solution of . Transforming 

the desired solutions, (^9). 
= —•(' Q _ I OCos^, 4 ikoQp^-a'sin^^-Zdcos^,)

Z 2 L - ocosp,
Ain/12 fk-aXUaxT2-!,^ .k-Joa-a*’

of 

The 

are

second term is reflected directly off the boss surface. The 

reflection from the boss produces the negative sign. These 

terms are shown in Figure 19.

Illuminated zone. Transforming the series ill (51) • the 

n

The ray diagram for the last two terms in the series

rays reflected twice
The first term of (53) is the incidence wave, while the 

(53) is shown in Figure I?. These two are reflected once

first terms of the series are shown in Figure 18. These

*tP'-"n/£ -arccos a/p) _ iVnCair/z. -4 -4* - arccos a/j

ko^fp^a^X 2
r^iPnCaTr/a + 4 - 4* ~ arccos a/p) eiv„(37r/2 - 4 * 4'-arccos o/p)

solution for the illuminated region may be recast as,
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_ Eof o-i-koP cosi^-tf') - Ckep co»(<?t<?')
i---2~"|_ e - e (5^)

__ / a cos 1 - i *e (xlf>a-aas/najB,' -Za cos p,)
J2 xjp1 - a1 sin’-p? - o cosp,

, I acos fin ' i.keUp»-a4sm,Pn - 2d cos Pn)
-r- /1 1 ' C Ty 2y/P1 * a^s<r?l^t * cicospz.
et,r//2 (koOV/3^‘ttt ikJ/?,-flt,r3iHl(’3TT/2 *4-<?'-orccos a/p)

l2- e Le

i.v„(3iT/g.-d*(?'-Qrccos a/e) ^yn(3n/a *0*0*-arccos alp) orctos a,

The first two terms of (54) are shown In Figure 20(c).

The second two terms are shown In Figure 20(d). The first 

two terms of the series In (54) are.shown in Figure 20(a), 

The last two terms are given in Figure 20(b). In every case 

the negative signs are associated with waves which are 

reflected an odd number of times, while the positive terms 

are waves that are reflected an even number of times



CHAPTER U-

NUMERICAL FIELD EVALUATION

The equations for the fields In all regions of the 

cylindrical boss have been found. They are, however, of 

little value If reasonable numerical results cannot be 

obtained. It Is then the purpose of this chapter to 

demonstrate their applicability. This Is done by comparing 

previous numerical solutions of the "harmonic series" with 

those presented here. This will be done for a plane ground 
wave Incident on a boss with koa = 3 (Walt and Murphy, 1958).

4.1 Comparison with Previous Ground Wave Data

The solution given In (14) Is the solution for the 

shadow region of the boss. This solution contains the factor 
Hy^(ko/7). Since our Interest Is In the fields very near the 

boss, two different asymptotic forms of Hy^(kop) are required. 

On the boss, p = a, we require the form for > kop. On the 

ground planes, p > a, < kQp Is used (Tyras, 1969).

Applying these forms to (14) and (19) and using the 

values of a^ and Al(a^).(Abramowltz and Stegun, 1964), yields 

the normalized field Intensities, Hz/Ho, near the boss. 

These values along with those of the "harmonic series" are 

plotted in Figure 21.

The shadow zone Is behind the boss and on the boss for 

41
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Cp >90°. In this region two terms, n = 2, of the series In 

(14) were used. It Is Immediately evident, therefore, that 

the transformed series Is rapidly convergent. Also, the 

close agreement with previous data Is obvious. Equally good 
agreement with previous data (Walt and Murphy, 1958) for 

koa = 1 and kQa = 2 was obtained. However, as the boss 

becomes smaller, more series terms are required. This Is a 

result of the fact that for the smaller bosses, the Imaginary 

part of does not Increase as rapidly. The series Is, 

therefore, not so rapidly convergent.
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(c) Amplitude of field to rear of boss (c? = 180°) •

Figure 21. Normalized magnetic field amplitude in the 
vicinity of the boss for koa = 3. ———- Harmonic series 
(Walt and Murphy, 1958) ---------- Transformed solution.



4.2 Comparison of Oblique Incidence with Ground Wave Incidence 

The comparison of oblique plane wave Incidence with 

plane ground wave Incidence Is carried out for three boss 

sizes, kQa = 5. koa = 10, and koa = 15• Incidence angles 
of <?'= 0° (ground wave) , = 30° and Q = 60° are used.

Figures 22, 23» and 24 show the normalized magnetic field 

Intensity for the three bosses.
In the shadow zone, for koa = 5r two series terms are 

required to be within one per cent of the limit value. For 

koa = 10 and koa = 15. only one term Is required to meet the 

one per cent criterion.

Upon examination, these curves give further insight Into 

the diffraction by the boss. In the shadow region, the field 

Increases toward Its undisturbed amplitude, Hz/Ho = 1. This 

is a result of the radiation coming from the primary creeping 

wave which decays as It progresses around the boss. On the 

boss itself, the interference pattern in the shadow zone re­

sults from the phase differences between the primary creeping 

wave and the creeping wave reflected back along the boss. 

The amplitude of the reflected creeping wave becomes smaller 

and smaller as it progresses back toward the Illuminated re­

gion. Hence, the peaks and nulls of the interference pattern 

become less and less pronounced.

Along the ground plane in the illuminated region, the 

observed pattern results from the wave reflecting off of the 

boss and Interfering with the incident wave. Along the boss, 

the interference pattern is caused primarily by the incident 
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plane wave beating with the reflected plane wave.

In the partially Illuminated region, the pattern results 

from the Interference of the Incident plane wave with the 
creeping wave which enters the boss at 90 - df'degrees. Notice 

that the Interference Is much more pronounced near the edge 

of the fully Illuminated zone. This Is due to the diminish­

ing amplitude of the creeping wave as it progresses through 

the partially Illuminated zone.
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(a) Amplitude of field In front of boss ( = 0°).

(c) Amplitude of field to rear of boss . ( = 180°).

Figure 22, Normalized magnetic field amplitude In the 
vicinity of the boss for koa = 5» —-------- - <?' = Oe 9
— <p' = 30®, ------ o------ g----- H------- 4>' = 60®
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(a) Amplitude of field In front of boss (t? = 0°).

(b) Amplitude of field on boss.

(o) Amplitude of field to rear of boss (cP = 180°).

Figure 23. Normalized magnetic field amplitude In the 
vicinity of the boss for koa = 10. ---------------  <$' « o"
----- —     c?'= 30° ----------0—:-------- 0-------- 0--------- 4’,=‘60®
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(a) Amplitude of field In front of boss (<?= 0°).

(b) Amplitude of field on boss.

(c) Amplitude of field to rear of boss (<5? = 180°).

Figure 2^. Normalized magnetic field amplitude In the 
vicinity of the boss for koa = 15. -- ------------- ti?'aoes
---------- ---  ------------ - —e— ^'=30°, --------- 0-------------B----------- 0----------- - cV=60®
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U-.3 Comparison of the Horizontal and. Vertical Polarization 
Diffraction.

The comparison of the horizontal and. vertical polariza­

tion Is done for a boss of radius koa = 10, a field radius of 
kop = 20, and an Incident angle of = 30°• The Interference 

patterns which result from the plane waves, the waves reflect­

ed from the boss, and the creeping waves are compared sep­

arately in Figure 25(a), (b) and (c), respectively. These are 

then superposed to obtain the total field as plotted in 
Figure 26, Notice that.the case considered does not have a 

shadow zone.

As expected, Figure 25(a) and (b) show that the horizon­

tally polarized field has nulls where the vertically polarized 

field has peaks. This is entirely due to the 180 degree phase 

shift that the horizontally polarized wave experiences upon 

reflection. Figure 25(c) shows that the creeping waves from 

the horizontal polarization are attenuated more than the ver­

tical polarization. Also, the velocity of the horizontal 

creeping wave is slower. This results in a less rapid change 

in phase from point to point on the boss and hence, a much 

less pronounced interference pattern.

In superposing the results for the horizontal polariza­

tion in the partially illuminated zpne, the dominant terms 

are the incident plane wave and the reflection off of the 

boss. This, however, is not true for vertical polarization. 

The creeping waves and the reflection from the boss are about 

the same amplitude.
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In the Illuminated region, the general character of the 

plane wave Interference pattern is altered by the reflections 

from the boss. However, the location of the peaks and nulls 

is determined by the plane wave interference.
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(a) Plane wave Interference#

(b) Interference of waves reflected'from the boss.

Figure 25# Interference patterns of terms Isolated In 
the solution, for koa = 10, <f'= 30°. ——— Horizontal 
polarization, ---------  Vertical polarization. LosZO.



Figure 26, Normalized field amplitude at kop = 20 for koa = 10, = 30°.
----- Horizontal polarization, ----------- Vertical polarization.
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Concluding Discussion

The problem solved was for perfectly conducting bound­

aries. Its extension to Imperfectly conducting boundaries 

Is by no means simple. However, the Imperfect case can be 

approximated to study the Influence of a ridge or Island. 

This approximation Is discussed In the following paragraphs.

It can be shown that for an Imperfectly conducting boss 

with a high Index of refraction, n > 1, the creeping wave 
terms are practically unchanged (Tyras, 1969)* The earth 

meets this criterion. Thus, the creeping wave terms remain 

as given In the text.

All of the other terms In the solution result from 

reflections off of the boss, the flat plane, or both. In 

every case, the incident and reflected angles are known. 

By multiplying the reflection coefficient, amplitude and 

phase, with the appropriate terms, an approximation to the 

Imperfect case may be obtained. Those terms which are re­

flected by both the flat plane and the boss require a pro­

duct of reflection coefficients, one for the plane times one 

for the boss.

Curves of the reflection coefficient for a smooth earth 

and sea have been plotted for various wavelengths (Beckmann 

and Spizzlchino, 1963)* Application of this data with the 

solutions presented should yield a good approximation to the 

diffraction by a ridge or Island.

A further generalization of this problem may be made by 



Sh­

allowing the line source to be placed at a finite distance 
from the origin. In this case, the term Hy>(kop,)f (6) » must 

be Included In all of the analysis. Without question, It

will complicate the solution of the Illuminated zone Integrals 
and alter the form of the creeping wave terms. In addition, 
two solutions will result, one for p>p' and one for p< p*.
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