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ABSTRACT

The diffraction of a plane wave by a large semicircular
cylindrical boss on a plane of infinite extent has been

studiéd by application of the Watson Transformation. Three

cases are considered: plane ground wave incidence, vertical-
ly polarized oblique plane wave incidence, and horizontally
polarized oblique plane wave incidence. The transformed
solutions give physical meaning to the diffraction process
by isolating each contribution. The results show the dif-
fraction to be composed of three primary terms: ‘'creeping
waves", waves reflected from the boss, and waves reflected
from the ground plane., Numerical calculations are made com-
paring the classical "harmonic series" with the transformed
solution. These calculations show good agreement with the
classical results, Some plots of the normalized magnetic

or electric field are given for the three cases. An approx-
imate method for studying the imperfectly conducting boss

and ground plane is suggested.
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CHAPTER 1

INTRODUCTION

The problem of diffraction by a semlcircular cylindrical
boss on a flat, perfectly conducting ground plane of infinite
extent has been solved by many authors. These solutions have
been used to study the influence of a ridge or 1island on VLF
communication ( e.g., Wait and Murphy; 1957, 1958). They
have also been used as the elements in rough surface scatter-
ing studies (Twersky; 1952, 1957). In general,. these "har-
monic series" solutions are useful for electrically small
bosses, i.e., long-wavelength low frequency limits. For
electrically large bosses, they are of little value because
of their very slow convergence.,

The "harmonic series" may be transformed into a more
rapldly convergent series by application of the Watson

Transformation (Franz, 1957, 1960; Tyras 1969; et. al.).

This transformation, applied to cylinders, yields the "residue
serles” representation. This solution 1s highly convergent
for large cylindrical radii. Also, the "residue series"”
solution is of particular value because it gives insight into
the physical nature of the diffractlion process, -This solution
has been shown to be important in the space shadowed by the

cylinder.
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For the illuminated region, a closed form approximatlon
to the solution can be obtained. This solution 1s known as
the "geometrical optics" approximation. Its accuracy depends
primarily on the radial size of the cylinder. This results
from the higher order terms of the approximation varyling in-
versely with the electrical radius of the cylinder (Franz,
1957). For large cylinders, it is highly accurate.

The "residue series" solution and "geometrical optics”
approximation have not been applied to a semicircular boss on
an infinite ground plane. Therefore, the primary purpose of
this thesis 1s the transformation of the slowly convergent
"harmonic series" into the more convergent form for large
bosses.

Three cases are considered. The first studies plane
ground wave diffraction. The second and third cases study
obliquely incident vertically and horizontally polarized
plane wave diffraction. Fdr these cases, each diffracted
wave 1s lsolated and discussed. Numerical calculatlons are
then made comparing the results of 1) the transformed series
with those of the "harmonic series" for plane ground wave
diffraction, 2) oblidue incidence vertically polarized plane
wave diffraction with plane ground wave diffraction, and
3) horizontally polarized plane wave diffraction with ver-
tically polarized plane wave diffraction.

An approximate method for extending the solution ob-
tained from perfectly conducting boundaries to handle the

imperfect case 1s suggested.



CHAPTER 2
FIELD EVALUATION FOR PLANE GROUND WAVE INCIDENCE

General Problem Development
The problem of the diffractlion by a large seml-

2.1

cylindrical boss, shown in Figure 1, 1is approached and

solved in the classical manner,

R
field point I(...;e-.'mt

(d l:ine

E=o0 P’  Sovrce
&/ g
\ 9’
[ 3t Y- -4 S=00
Figﬁre 1. Semicircular cylindrical boss on an

infinite ground plane.

In terms of the Hertzian magnetic vector, the wave equation

and assoclated electromagnetic flields are given by

2 2) Jrm — it 5w
(VE + k) T T . : (1)

(2)

E = Wl V¥ x T,
(3)

_ koz ﬁ(m} + v ( v- ﬁlm)) o

x|

To generate the axlally invariant vertically polarized wave,

the magnetic current denslty, jwmﬂ 1s expressed as a line

current by
f(m) = Jm S(P'P')P (A -d’) a‘z




where p and 4 represent the field coordinates and p'and g’
the source coordinates, A gréund wave can be obtalned by
setting ¢'equal to zero. A plane wave 1s obtalned by
allowing p' to approach infinity.

Since the current density 1is axial, only the z-
component of the Hertzlan magnetic vector will be nonzero.

Thus (1) may be written as a scalar equation,

12 ) 1 a2 mem = -i I 5(p-p') S(@-9°) N
P aP(P P)+ g v ke T WM P e

Also, since the plane and boss are perfectly conducting,

the boundary conditions are gilven by

{m)
22 =0 at p=a
' _ (5)
{m) :
2‘; =0 at @=0,T

The solution to (4) 1is well known and is obtained by
separation of variables techniques (Jones,1964). The

solution is given as

m o I » T tked) |
Tsz,, = Zw’u,;fm cosmq cosma’ Hylkof') {Jm(kop) - HE"(’:;G) HO%q )} (6)

where the primes denote derivatives with respect to the
Bessel function argument. Setting @' equal to zero and

allowing p' to approach infinity, (6) becomes

S S 1_"‘ i(kop'~ /4 T (ko) | e
M e = o NThe € ke )Ze,,.cosmm-c)'"{.r..(k,p) TRk Hrm(k )} (7)

Substituting -(7) into (3), the magnetic field intensity is



obtained as

Hz = H,) €m ("l.)m cosm@ {Jm(kop) JIm (ko)

- ¢)
) ~ THlge) m el }

(8)

where o _I™ we, itkep'-TT/4)

Noting a well-known additlon theorem in Bessel functlons

(Watson, 1944), the incident wave 1ls glven by

e 2 HS €m (~1)COSMP Tmlkop) = Ho e kP OS?

mz0

Thus, the magnetic field 1ntensity.for ground wave incidence

may be wrlitten as

= ~ikopcosad < _iym Jm“‘oa) o)
He = Hfe ...Z:f"" O™ e Hm ke >} (9)

The solution given by (8) or (9) can be used to cal-
culate the field amplitudes for any size cylindrical boss.
However, the series in (9) is very slowly convergent when
koa > 1. Hence many terms are required for accuracy. The
field given by (9) has previously been evaluated for bosses
as large as three wavelengths (Wait & Murphy, 1958; Webster,
1966). The convergence of the series in (8) can be improved

by application of the Watson Transformation.

2.2 Transformation of the Classical Harmonic Series,

Shadow Region. The classical "harmonic series” solution

for ground wave incidence is given by (8). However, it is

not in a form which can be readily transformed. Examining



the serles and using some well-known trigonometric and

Bessel function identities, (8) may be recast as

_ oo cum o oma@ J,,'q(koa) '(,)
He = Hoy (<07 €77 {Imthop) ~ i oy HE (hop)} (10)

The series given by (10) is exactly the same solutlon
as obtained for a cylinder with an incident plane wave at
zero degrees (Jones, 1964). The solution is, howevei.
subject to a slightly different interpretation. That 1s,
for the bvoss, os¢d< 1 while for the cyl;nder. 0 < <2,

The "harmonic series" given by (10) has been trans-
formed previously (Franz, 1957; Tyras, 1969). The high-
lights of that transformation are given below.

Consider the integral

ew(c? m o
Hz = 25{ sSinyir B dv ’ (11)
where
" e v/ " ' '
By = HOW{H”(k,a) Jythep) = Ji (e®) H(kop)}

(m) . Ho e-w” ) (z) 2)s w :
B - 2 Hll)l(k a) '{H (kaa) (kop) - H( (’QO)H (k.P)}

and the contour C is taken, as shown in Figure 2, to include

the poles due to the zeroes of sin V.

W
V- plane smyYIT =0 C

S /‘/I
Dy

. _&_ T ,/5237)’ i
—_:—_m,-.f'-:::: —p 2%

F ¢ ~& -3 -2~y L ne nt o n
s — <

Figure 2, Contour for integral representation of the
"harmonic series” solution.,
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By the theory of residues, (il) may be shown to equal
the "harmonic series", (10), provided that By does not have
singularities on the real axls., In addition, since By 1s an

even function, i.e., By = B.y , (11) becomes

: o0ete

. cos Y (@ -1T)

H, = cf BS™ dy (12)
* ~oo+ié sinym g s

where € ralses the integration path slightly above the real
axis.

The integral given by (12) is then evaluated by closing |
the contour in the upper half y-plane. The poles due to
sinymr have now been excluded. However, the poles due té the
zeroes of H&})Qkoa) are captured in the process (Tyras, 1969).

Thus, the contour is taken as shown in Figure 3.

V- plane He k) = 0

or
HY (k,a) =0

§¢ e S YT =0, = | -
» =‘|"I\( SRS S A Y- —— '\,—:—-p—-—»y’
. La

Figure 3. Deformed contour for integral representation
‘of the "harmonic serles" solution.
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Applying the theory of residues to (12) and the contour

in Figure 3,

wei€ ) . :
. COS M(A=T) _(m - : -y =
Lf Sin o1 B,)” dV 2m E residves @ V=Y, =0,

Zooeit flog

provided the contribution of the contour paths P; and P2
vanish at infinity. By application of the infinite » -plane,
Debye asymptotic forms to Bi™ (Franz; 1957, 1960) and allow-
ing |Y|—=o00 , the contributions of P; and P, will vanish for

field angles greater than /2,

Thus,
20 H"‘:’?k a) cos V! (CY-TT) .,
H, = HTTE we (Ko n -iM /2 a) '3
i LS %;,—H{,‘"(k,a) yeyr sIin V4T e Hyi (kop) (13)
n

h

s
where.vﬁ is the nt zero of H(ﬁ)(koa) as obtalned from the

Alry function representation of the Hankel function. In
(2)’ 2
addition, HJ4 (koa) and £, yeyt

their Alry function representations (Tyras, 1969). So that

H(g)(koa) can be expressed by

(13) becomes

_ Ho -in/e ( ka V3<Zcos v (@-1r) T2
Hz =3¢ 2) ;:cz;,fAz(a,;)J2 s k) (14)

where a\/z -
Yo = kea — Q (——-k; ) lgTin
and aﬁ are the zeroes of the first derivative of the Alry
function with respect to its argument.
The solution given by (14) is known as the residue

series representatlon. Since this series converges for field
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angles greater than 90 degrees, i1t is applicable only in the '
shadow region of the cylindrical boss. It ls, however, of
no value for fleld calculations in the illuminated region.

Illuminated Region. A representation which allows
field evaluation in the 1lluminated region may be obtalned
by suitable transformation of the original integral repre-

sentation, (12). Noting the relationship .

cos v(g-m) = €Tcosvg -ie™? sin ¥
(12) bvecomes '
aovie W . .
_ o o VD . € cosy@ w} (1
H, = / {8re™ + i Sy B v 5)

00
The second term in the braces in (15) is of the same form
as (12) and is evaluated in the same manner. Thus, (15)

becomes

. ] ax3 ’ _‘yln/a 0"6 .
e koa) By cosvide e f ) V8 ,
+
(2 Lsa; [Ai @aJZ SinyT Hyz (kep) By e dy (16)

“oorié

Hy= —2e

Substituting B;” into the remalning integral, one obtains

e s e L¥(4-T12) HPlka) _ivca-mr)
Y t ? t
ey = f(H,,/z) HP(up) € dy - H"’( )€
[wie Zoovie P 2 -~ coeit k’P ,lk"a) (17)

It is noted that the first integral in (17) is zero,
since H(E)(kop) has no poles in the upper half ¥-plane. The
second integral is equal to the contribution of contour P3
and is evaluated by the method of stationary phase to be to

the first order
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oo i€

[B‘,'.’"e“’"av = H,{e‘“‘-f’w‘P . (18)

-oo¢ie

4 |Qcos@ ) eik, pt-a'sin*p - zacosp)}
2\/p1 - dtsinig - gcosg y

where g 1s as shown in Figure 4. This solution 1is known as

the geometrical optics approximation for the solution in the

1lluminated reglon.
Ff't“ poin"

in;denf ray

Figure 4, The geometrical definition of g for the
illuminated zone.

Collecting all the ternms,

_ -ikop cos P ' qcosp " iklJp®-atsin®s - 2acosp)
Hz = H°{e + \/2 p*-aisin3p - acosp e (19)
. ie-in/6<kod)'/3°° cosyg e H [ )}
2 2 / Ly oA sinym v (K P7 1.

To the first order, (19) is the new representation of the

magnetic field intensity in the 1lluminated zone.

/
2.3 Physical Interpretation of the Solution.

Shadow_Zone. The solutions obtained are of particular

value because physical insight into the diffraction by the

cylindrical boss may be obtained.
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Returning to (14), the magnetic field intensity in the
shadow reglon, and noting the asymptotilc form of H(l)(kop)
for kop > Van ~ koa (Tyras,1969) and the trigonometric ldentity

Cos V! (@ -T1) @ iT/2 - giva(@-"T2) eiv.-.(BW/z -&)

stn Vi 1T 1 - ehar

(14) becomes

_ He'™? Ko w{ oiLkoyPT-at + Va(d-T/2-arccos a/p)]
Hz = 2rk,ypr-ar ( ) ZD‘ ){et '

nxd (20)
+ et[ko‘/ i-a% + i (3W/e - - arccos a/p)]}
where

(m) __ i
n T (1-eem)arlAi(an)]?

Examining (20), 1t is noted that the series 1is rapidly
convergent for @> /2 + arccos a4o. since ¥, has a rapidly
increasing positive imaginary part. In addition, since

v, ~ k,a, the phase féotors of (20) may be expressed respec-

tively as

2,

ko[\pE-dZ -+ a(a -m/2 -arccos a/p)]

and _
¢, = k[pP-a® + a(an/z - - arccos a/p)]
Plots of the lines.of c9nstant phase, Q§= constant and
@z = constant, are given in Figure 5 and Figure 6. From
these plots, it 1is clear that the first terms of the serles
in (20) represent the direct diffracted waves, while the
" second terms represent the diffracted waves which are re-

flected from the shadow region ground plane.



incident

/ @=T/2 + arccos a/p plane wave
-

Figure 5. Lines of constant phase and propagation vectors for the term
e ‘L&Vp'—oz + Yy (f-T/2-0rccos d/f)]'

constant phase lines,-—«—————propagation vectors.

incident
planﬁ wave
| !

7‘ -

1|
-‘—r—{——e

Y ' .

| o

¢

Figure 6. Lines of constant phase and propagation vectors for the term
eilk, Vpi-a® + Yi(3n/2~@- arccos G/p)]' _________

constant phase lines,~—————propagation vectors.
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More specifically, the rays which arrive tangent to the
cylindrical boss, = TI/2 in this case, travel along the
cylindrical surface through an arc distqnce of 4~ w/2 -
arccos a/p and 3n/2 - § ~ arccos a/p radlans, The surface
currents induced by the tangential magnetic field then radi-
ate the energy into the shadow region through a distance of
ﬁ;:T;?. The ray which travels the arc of 4 - 7I/2 - arccos a/p
radlates directly to the field point; while the ray which
travels through 3m/2 - 4 - arccos a/p radians radliates toward .
the image of the field point in the ground plane, and is re-
flected by the ground plane to the field point, as shown in

Figure 7.

@-1/2 - arccos a/p
3n/2 ~-@-arccos alp

“/ncident ray

field.
{Pol nt

Filgure 7. Shadow region creeping waves and'geometry in
ray form.,

The imaginary part of 3, 1s proportional to the atten-
uation factor of the wave traveling on the cylindrical
surface., In addition, since the real part of yg is actﬁally
a little larger than kpa, the veloclity of the wave propa-
gating along the cylinder's surface 1s lower than the free

space velocity. Hence, this wave has been designated as a
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"creeping wave"”

Illuminated zone. Investigating the solution for the

magnetic field intensity in the 1illuminated region, (19),
it 1s noted that the first term represents the incident
plane wave. The second term represents the direct reflection
from the boss surface. The lines of constant phase and prop-
agation vectors for these terms are plotted in Figure 8.

Now turning attention to the series term of (19), and
applying the asymptotic form for H&&)(kop) and the trigono=-

metric ldentity

COS Vn@ o-ivimie _ _; giw@n/iz va)  ivileniz - )
SinV,’,'[T - { - eul.',er

the series beconmes

H eiT/i2 (k a) m [ ailknfPT-@% + 14 (3n/2 + & - arccos ajp’]
Bkt -aT Zd {6

+ el[ko\/ p*i-a* + Vi(3N/2 — & — arccos a/p)]}

As was done for the shadow region, the lines of constant
phase are plotted for Vj, ~k,a in Figure 9 and Figure 10.
From the previous discussibn, 1t 1s clear that four
terms exist i1n the illuminated region. The first is the
incldent wave. The second 1id the wave reflected from the
cylindrical surface. The third term is the wave which
struck the cylinder at 90 degrees, traveled along the
cylinder surface to 180 degrees, and was reflected back
along the surface directly to the field point. The fourth

term travels a path similar to the third, but radiates



N

incident
plane wave

!

"
g
)
—,
e
p—
*

d_ht_. —

Figure 8, Lines of constant phase and propagation vectors for
(incident plane wave) and eiblh*-asinis'~2ac0sh) (boss reflected wave).

——————— lines of constant phase, - propagation vectors.,

the terms e-ikpcosd

ST



Figure 9. Lines of constant phase and propagation vectors for the term

eilk¥p™aT + V(3w/2 - @ - arccos a/p)]'
vectors,

lines of constant phase, <————— propagation

97



Figure 10, Lines of constant phase and propagation vectors for the term

P tLkaVP¥T-0% + i (3m/2 + 4 -arccosa/pll,

vectors.

lines of constant phase, <————— propagation

A
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toward the image of the field point and is reflected by the
ground plane in the 1lluminated region. The third and

fourth terms are "creeping wave" terms.

Figures 11 (a) and (b) illustrate these four terms in

ray form.

field point

Sl ,

incident
ra
A Y
(a) Incident and reflected rays
i‘n cident
ro ]

(b) Creeping wave rays

Figure 11, Illuminated reglion waves ln ray form.



CHAPTER 3
FIELD EVALUATION FOR OBLIQUE PLANE WAVE INCIDENCE

The ﬁrevious discussion involved plane ground wave dif=-
ffaction. It is the simplest problem to approach and solve.
The interpretation of 1its solutions 1s relatively straight-
forward. This, the simpler problem, has allowed familiariza-
tion with both the mathematics and the physical interpretation
techniques. It has provided the foundation for approaching
the problem of diffraction by a semicylindrical boss with

oblique plane wave incldence,

3.1 Polarization with the Magnetic Field in the Horizontsal
Plane, :

The problem of a vertically polarized plane wave oblique=-
ly incident on the boss is merely a generalization of the
ground wave problem. In the ground wave problem the incidence
angle, @', is set at zero degrees. In the problem at hand,
it remains as a variable,.

Returning to (6) and allowing p' to approach infinity,

the magnetic field intenslity 1is found to be

’ Ho 2 .
Hy = == En(-1)" 2COS M@ cos m@' o
m=o
_‘ J-nl)(kaa) D) ,
{\Tm(kop) HE " (k,0) Hm (koP)}, (21)
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where Hy = — I we, ilkep’ - T1/4)

Vark, p’ .
Noting the fact that the series 1is even and applyling the
relatlionship,

e u.m(d+4’) -u.mloo @) eimt4-4")+ e-im(d-cp')

cos mag'’
mao cosmag’ = x

(21) is recast as

Hy = > Ee im -4 ‘"’“""”]{-t)’”{.)’,,.(k,p) -:r(r:”“:fa’) “’(kap)} - (22)

mza-e
Notice that when ¢'is set equal to zero in (22), the
solution becomes identical to the solution for ground waves
given by (10).

Splitting (22) into two series,

Hz = S("') + S(m) (23)
where omy_ Ho im(a- 4) m I (ko) 0
s= 53 e (-0 Tt~ ey Hitp )

sg”= "Z,e“”“”" 1™ Tnlap) = el )

it 1s observed that ST”and S have exactly the same form as
(10). Since the transformation of (10) was completed in

Chapter 2, the results may be applied to each of these serlies,

Shadow zone. In applying the results of (10) to Sq”

and S¢

v 1t is found that the two serles have different con-
vergence requirements. That 1s, for ST”the contribution of
the large semiclrcular arc, path P; and P, in Figure 3,

vanishes for field angles greafer than 90 + 4’ degrees. For

the latter series, convergence is assured only for fleld
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angles greater than 90 - @' degrees. Thus, the convergence
of (23) is assured only when @ > T/2 + @, This is the

shadow region on the boss, as shown in Figure 12(a).,

~ / incident plane
7 / wave

(a) Shadow region.

4)/[/

® 37W/2 ~4’-arccos Alp

(b) Partially illuminated region.,

@P= /e ~@’'+ arccos alp '_'Z./r'

= /2 +p! + arccos alp

4= 3m/2 -P'- arccos ajp

(¢) Illuminated region.

Figure 12, Geometrical presentation of the reglons
around the semicylinderical boss. :
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Following the procedure for the ground wave shadow zone
outlined in section 2.2, the residué¢ series solution may be

written

H. = Ho gimve _k_,_g_)'/s =, g iRme H"’(k.p) CoS Wa(d+d'-T) + COS y..(a—a"-n)} (2)
- 4 (2 a,,[AL(a,.)j Sin ya .

where ¥, and a) are given in (14),

Illuminated zone., In (23), the illuminated region for

ST includes a portion of the shadow zone of S%" , i.e.s90*@<4.
Thus, the illuminated region must be divided into two sub-
regions, as shown in Figures 12(b) and (c). Reglion one con-
tains the illuminated zone solution for S“” plus the shadow
zone solution for Sg“). This is the partially illuminated-:
zone, BRegilon two contalns the illuminated region solu;ions
for both of the series in (23). This 1is the illuminated
zone,

In keeping with the previous statements and following
the procédure outlined in section 2,2, the solution in the

partially illuminated zone is given as

H, = He e-irr/s(ﬁ)“—’ 2,12 cog yi(9+d-TT) H
LI 1 2 ¢ anlAu@NEsinyam v (keP)
+ L grinve ( koo)"3 e~ "2 cos vi(d - @) HEY
z € ,,Z: dn[AilaR)]? sinyaT i (ko) (25)
+ 6-i.k°p cos(4-4") + acos B, ;k,c/ -a‘sm’,e,' 2acosp,i}
: 2 Jp? - azsmzp, - acosp,

where @, is shown in Figure 13(a).
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Now writing the solution for the illuminated zone,

_ H -ikpcos(@-4) [ acos B, O ikdpt-a*sin'p, - 2acasp,)
H, = 2 {6 +\/24p‘-a’sin‘p?- acosg, € (26)

+e—£kopcosld+d') +\/ acos Be jeikﬂp‘-azsin‘pg-zacosg,_)
2VPL- Q%SINE, ~aCO03B,

. i/3 02 p-iVATT/2 U
. e-m/s(kzd) 3 e Hy (ko) [cos Vil@-4) + cos v:.cma')]}
b 4

i
2 £ da[Auan)]® sinyam

where g, is shown 1n Figure 13(b). Note that in the limit
as pP becomes large, p‘_»-(d-d")/z and lsa-—(cp.cp'}/a.

field
A 7 field
point ,epoi nt

incident
Y‘qy -z,

(a) (b)

Figure 13, The geometrical definition of (a) By
and (b) B, for the illuminated zone solution.

3.2 Physical Interpretation of Vertical Polarization Case.

Shadow_2zone, Since S?” and SZ@ are superposed to obtain

the total field, the physical explanation of each serles

yilelds the total. Considering S‘l"") first,

. I/3 00 A~ iVATT/2 e A
(m) _ Ho e vIT/8 ( k.a) e Cos Vn(d 4 TT) H(;')" (koP) (27)

T 4 2] & arfAi@u® sinvam
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Recalling that

€ RTTI2 rpg i (- ' TT) ’ eav4(¢-4’—n/a)+ eiw,{(31r/z -PeP)
SiN Uam ==t 1 — eomen

and the asymptotic form of H(l)(kop) for kop > Vn ~~ k,2

n

(Tyras,1969), (27) becomes

g™ = - Ho ei/12 ( Ko a)"-‘ZDm, e Fnfp*-a*T +vp(@-@-T/2 —arccasa/p)]

' 2122nk,, pa-az
+ e"[ko‘/Pa az + Yi(3w/iz —-@+ @'~ d"CCOSd/P)?
(28)

nai

where
i

an [AiL(@i)J2(1 - etvazm)

It can be noted that since‘m;has rapidly increasing
positive imaginary terms, (28) is raplidly convergent for .
@> T/2 + @'+ arccos a/p. Thls is the shadow region as shown
in Figure 12(a)., | |

Applyling the knowledge obtalned from section 2.3,
Figures 5 and 6, the first term in the series in (28)
represents a wave which enters the boss surface at @ =
/2 + @', This wave travels at a reduced speed along the boss
surface through an arc of @ - /2 - @'~ arccos a4o radians,
leaves the boss and arrives at the field point. This wave
is shown in ray form in Figure 14(a).

The second serles represents a wave which enters the
boss surface at @ = /2 - 4', the image point of ¢ = 3T/2 + @,
and travels through an arec of 3mM/2 - 4 + qf- arccos a/p.

This ray then leaves the boss traveling toward the image of

the field point in the ground plane.' It is reflected accord-
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ing to Snell's law onto the field point. This ray 1s shown

in Figure 14(b).

P~ /2 -g’ -arccos djp 3mwiz @+ P’'-arccos ajp
4 incident '
ray-z, incident  ro
reflected frém grovnd
plone
N~y 9’
field 4
point Pucld

roln
P m

(a) (o)
Figure 14, Shadow reglon creeping waves and geometry in

ray form for the terms, (a) @Ue/F=o¥ +)a(@-g'-niz-orccos alpll gng
(b) @ilkeVpE=G¥ + ) (3n/2 - @ + @'~ Orccos a/p)].

)

Now considering the interpretation of S; » One may write

qom o _Ho___€™i® ( ) ZD«"; kP =0% + Vi (d+a’-Ti/2- arccosa/p}]
2 = 2\/21Tk°\[p=-at -

+ ettkdp_—a—z‘ + yN3n/2 - @ q - arccos a/p)]} (29)

where Dém) is given in (28).

From the discussion of S ). the first term in (29) re-
presents a wave which enters the boss surface at 4§ = T/2 - @',
travels along the surface through §+ &'~ M/2 - arccos a/p
radlans, leaves the boés and propagates to the fleld pqint.
This wave is shown in Figure 15(a). |

The second term in (29) yilelds a wave which enters at
d=T/2 + 4, the image of 4  31/2 - f+» This wave travels
along the surface through 3m/2 + ¢'- @ - arccos a/p radians.,
It then radiates toward the image of the field point, is
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reflected and arrives at the fileld point. This ray is shown

in Figure 15(b).

3n/e = &P -P'- grecos alp

P~ @'~ 1T/e - arceos a/p

incident
r‘ay

incident ray Fierd
reflected from . faini’
ground plane '

(a) (b)

Figure 15. Shadow region creeping waves and geometry in
ray form for the terms, (a) eilk/p?™-a¥ +y,(@+ @’ ~W/2-arccos opll ang
(b) e ilke/pi-a% +y,(3an/2 - -’ orccos d/p):l

Notice that each series contributes one creeping wave
from the incident wave and one from the wave reflected from
the ground plane., This results from the fact that the ori-
ginal waves, because of imaging, see the boss as a complete
cylinder. Series S?” contains solutions from the original
waves, while S¢® has the results of the imaging.waves.

Superposition of Figure 14 and Figure 15 ylelds the
total solution in the shadow region. This superposition is
illustrated in Figure 16. Of course, the phase of the indi-
vidual waves is very important in finding the numerical
result.

These waves are creeping waves and have the same

characteristics as those discussed in section 2.3,
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incident

"y

incident

ray
field
point ©

VFigure 16. The graphical superposition of creeping
wave terms in the shadow region. Each incident ray takes
both paths in the shadow region,

Partially 1lluminated zone. In the partially illumin-

ated reglon, the concern is with the shadow region solution

of ng and the llluminated zone solution of Sim’. Returning

to (25) and performing the transformation discussed before,

H, = _Ho gimhe k°a)’/3fD‘"” eik.,lp'-a" ew,;(d’+d'-rr/z ~arccos alp)
z 2 Jenk, fpt-af\ 2 n

n=¢

iVn(3w/2 ~® ~q'- drccos alp) iva(3W/2 +d-a'- arceos a/p)

+ e + €

+ etv,'.(an/z-cﬂd"-—arccos a/p)} + %{e-ikofcos (@-a')

acos g, ' o iklor - a‘sln'}s," - 2acos g,)
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where Dém) is given in (28) and p, in Figure 13(a). The first

two terms of the series in (30) are illustrated in Figure 17.

&~ incident

field point . ,/‘-";\
A’

incident

ra j

Figure 17, Partially 1llumlinated zone creeping waves
and geometry in ray form for the terms,

e LWl(@+@'-1/2 -arccos afp) , ei¥n(3n/2 -@-@'~ arccos afp),

The second two terms of the serlies are shown in Figure

18.

,"incidenf
ray

incident

Figure 18, Partially illuminated zone creeping waves

and geometry in ray form for the terms, : .
e i¥p(3m/2 -@ + @'~ orceos d/p)' ___________ ei*h(an/a +q@ @' - arccos ojp)
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The last two terms of (30) represent fhe incident field

and the direct reflection from the boss, as shown in Figure
19,

Pl'e-ld

point 2

Figure 19. Partially illuminated waves in ray form
that are plane incident and boss reflected.

Figures 17 and 18 show the "creepling waves".

Illumlinated region. The 1illuminated reglon solution

has eight terms. Four of these are "creeping waves" given
by the series in (26). Two result from the incident wave as
shown in Figure 20(a). The other two result from the image
wave in the ground plane. These wavés are shown 1in Figure
20(v).

The first two terms of (26) represent the direct incident
wave and the direct wave reflected from the ground plane,
These are shown in Figure 20(c).

The last two terms represent the reflections from the

boss itself, as shown in Figure 20(d).



~* incident

\3, 4 -ray | | 30

field incident
point r@- —
.
~os” - /‘/d,
(b) ~ incident
raj &,
field 4’

point

incident ray
reflected from
grou nd Pla ne

(e)

Figure 20, Illuminated zone waves in ray form, (a) creep-
ing wave terms —— _ givalom/z=ded-orccosop) et¥i(3n/2 +d-9™-arccos ojp)
(b) creeping wave terms (3n/2-0- 4" arcs g™ === eivs(3n/2 +®+ 4~ arceos ap)

(¢c) plane wave terms one incident, one reflected from ground
plane, (d) waves reflected from the boss.
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It should be noted that an illuminated reglon exlists
behind the boss as shown in Figure 12(¢). This is a result
of Sgﬁ having an 1lluminated region for 4 > 3n/2 - ¢’'-
arccos a/p.

A complete picture of the wave fronts of each term
could be obtained by making plots like Figures 5, 6, 8, 9,
and 10, This was felt to be unnecessaiy in this case since
the ray dlagrams presented give sufficient insight into the
physical phenomena.

The effect of ), on the solutions is the same as dis-
cussed in section 2,3, Notice that there are apparently
several creeping wave modes., The first mode corresponds to
¥, , the second toy,, etc. The higher order modes are, how=-
ever, attenuated qulte rapidly. For large bosses, k,a > 1,
the real part of ) changes very little from mode to mode.
Thus, the propagation velocity is nearly equal for each mode.
On the other hand, smaller bosses, k,a -1, have the real
part of ) changing rapidly. This acts to produce large differ-
ences in phase velocity from mode to mode. It 1is important to
note that the transformed series does not apply for k,a < 1.

3.3 Polarization with the Electric Field in the Horizontal
Plane )

The problem of a horizontally polarized plane wave
obliquely incident on the eylindrical boss must first be
solved in the classical manner, In terms of the electric

Hertzlian vector, the wave equation and associated
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electromagnetic fields are given by

(Ve + k&) TT® = ——u‘}‘ee Je (31)
E = k2TT® + v(v-TT¥), (32)
H = -iwe, v x T7° (33)

The desired incident wave 1is obtained by expressing the

electric current density, E“ﬁ as a line current located at

(P', ¢l) by

O = qce) §(p-p)PS(4’-d) a,

and then allowing p’ to approach infinity.
As before, only the z-component of the electric Hertzlan

vector will exist. Thus, (31) becomes

4 3_( 6_) 1 2 z] ©_ il 5(p-p) 5(d-0)
[p ap\Pop) P age v ke | T2 =5 o , 8
with boundary conditions given by
‘n-ée) =0 ' at P=a; d=0,7 .,
The solution to (34) is well known and is given by,
(Jones, 1964)
R -1 & . Y ,
TTZP<P' wéo m-ls‘n my S'n'm4 H"’ (k"P) ¢
(35)

Jn (ko) .
{amtkpy = g Halthop) .
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The electric field intensity, (35), may be recast as

E, = ’5‘3 [ L (@-3")_ ""“’“’f’] i) {J’,,,(k.p) - i’?.ff:f) "’(k.p)} (36)

The series given in (36) is not in a form which readily
converges for k,a > 1. Thus, it will be applied to the

Watson Transformation.

Splitting (36) into two series,

Ez = 5‘,” S(C) . (37)
where
im(a-q°) m{ - I (ko @) ') }
2.C (U T (ky p) He o) Hm' (kop)
te) _ im@ra@’),;, ,.m Jm Im(ko0) a) H }
5¢) = ;c; CO™ { Tmllap) = BT HE )

Shadow_zone. Since S‘e) and S‘;) are similar, S‘f) will

be transformed and the results applied to S‘” + The trans-

formatlion of the electric case follows the same general pro-
cedure as the magnetic case., The difference lyling in the
term Jm(k,a)/Hél)(koa).

Writing ST’ in integral form

. V(P - F'-T1) '
@ _ _(_-_/ et . B (38)
> 2 /¢ sin YIT v, d¥ .
where @ £ -unﬂa .
B, = 4? HS (k,a) {H '(ka) Hy (k‘P ) = H'(ka) H w(k"P)}

te)

and C is the contour shown in Figure 2, Since B,’'= B‘y,'

(38) vecomes .
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aveik
s® - ‘./ cos y(@-@’'-T1)
T sin ym

B dy (39)
-00ié
The integral in (39) is evaluated by closing the con-
tour in the upper half Y- plane. In closing the contour,
the poles which result from the zeroes of Hs«k,a) are cap-
tured. These poles must be excluded from the contour. Thus,
-the contour 1is taken as shown in Figure 3.

Since the contribution of P; and P, vanishes as |V|—-o00

for > w/2 + @', the theory of residues may be applied to

obtailn,
s® = Eo (S H (k,0) COS M, (A -@-Tr) e »™2 (40)
T 2 2o Sin uT n (KoP)
n=L Qv H”‘k'a)L-V” n

where Y, 1s the nth zero of.Hg(k,a) as obtalned from 1lts Alry

function representation. Also, Hﬁkk.a) and %%JH?mm4 may be
n sy,

expressed by their Airy function forms ( Tyras,1969), so that

(40) becomes

- e T
' 4 2/ LoTACOnI® Sin v, ¥ (0P
1/
koQ ‘
where yn = koq - qn (_‘é_._.)c Lw/3

and a, are the zeroes of the Ailry function. The prime of the

Alry functlion denotes the derivative with respect to the Airy

function argument.

Performing the transformation of S‘? ’
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, -y TT/2
@ _ _ Eo o-inse _k_.,_a)”3 2. cos V,(@+@’-T) €™ W L2
S = "Z,‘e (a }":.-: CAi'(an)]2 Siny,TT Hyaliap)  (42)
Putting (41) and (42) back into (37),
e, = _Eo e—inle(koa)":si e nT2 o (kp)
L 4 2 L LAL(an)]2 SIN Y, TT
(43)
{cos Yo (@-@'-T) — COS v,,(ma‘—rr)}

This is the solution for the shadow region, @ > T/2 + &',
as shown in Figure 12(a).

Illuminated zone. As was done in the magnetic case,

the illuminated zone 1s divided into two reglilons as shown in
Figures 12(b) and (¢). The solution in the partially illu-

minated reglion includes the i1lluminated zone solution of

)

s , (37) and the shadow zone solution of S

P
The illuminated zone solution of S‘? is evaluated and
these results applied to S‘g’. Noting the relationship,
cos V(gq-q@'-11) = e¥Tcosv(a-0) -ie* Vsinyr
(39) may be recast as |

m'ié . i
© _ iv@-9) . e cosv(P-¢) (o
S, -f {e + 1 sin o }B, dy (44)

-ootie
The second term in the integral of (44) has been

evaluated previously. Thus, (44) becomes,
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| ' a=tVaTl/2
@ _ _ __o_ e-imnre (k a)//, cosy,(@-9e"" HE (kop)
' CAi'(ap)I2s51n Y, TT °
o€ ,
~meik °
oubstituting Bfﬂ into the remaining integral, one ob-
tains
0 (€ . acnéE
fB(e) ety(o'ﬂ’)dy = f Pt H (k,p)dy ) (ué)
Sootie orié 4'
weit | (3) o ,
_ Eo H,, (k.a) HE (kop) e‘y“"""”’a)dy

~eo+,€

4J . HP(Kka) 7 ' .

The first integral of (46) is zero, since Hﬁ?k,p) has no
poles in the upper-half v-plane. The second integral 1is
evaluated by the method of statlonary phase to be to the

first order,
ol | , . o
Bif’e"‘“’“”dy - i,, { e tkop cos (g - ) (47)

-oo4ie
-~ gcos é, ' ot Rel(pT-aien B - ZdeB.)}
?

24/p® — atsin?g,” - acosg,

where g, is shown in Figure 13(a).

Collecting all the terms,

E, -iw/e/ k,a)lls 2, cos V. (P-&' ~VaM/2
t'e) = -t2g iw/i ) > Vn 6924’) e u)(kop) (48)
4 [ CA'(an) 1% SIN VaTl
+ ._E;‘! e"‘.- DPCOS (ﬂ'd’) Eo d Ccos ﬂ eik. P -a’s,ntpa "24003’,)
2 Z\IP"'Q'Sln‘p, ~ acosg, . .

Now applying the results of (48) and (42) to (37), th

solution for the partially illuminated zone is given as,
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E, = _%g{e-ikapcos(ef—d") | (49)

acos B, ! etkoﬁ' -a*sinig, - 2acosg,)

2\[p2-azsinzg ~ acosg,

-.,n/s(k a) iz e T2 L0 (k)

[A :(an)]z SNy, [COS Vn(¢-09 - CoS y"(d§dl_"ﬂ}
. A .

Next, the results of the solution for S| in the 1llu-

minated zone are applied to S to obtain,

(e) — { mls(k° )l/s 2. oS Y, (@e q') @112 HE (ko)
= 2 (2 CAi’(an)]2 sm YT ™
: (50)
. giopcoscara) _ O cos B2 'eiko(JP'-d'SIn’ﬂg - zacostsz)}
€ 2 \[p“- atsin®g; —acos B,

where g, is defined in Figure 13(b).
Putting (48) and (50) into (37), the illuminated zone

solution 1is given as

Ez = f&{e-ikopcosw-d") _ e-,.k.,pcosm-'-c?) (51)

_ \f a cos B, eck,(,/p* o0%sin?@, - 2acoss,)
7

-aisinzg,’ - acosg,

acos B, 'eiko(‘[p'—al.sm'ﬂz'-za cosf,)
+ \/2 JPE- 0233, ~ acosp,

1 _-im/6fk.a\/s e vnn/a H"’(k.p) { , }
-5€ (T/) ) TAT(@nTE 3N VTl COS Vp(@-@') = COS Vp(d+ @)

Figure 12(c) shows this region.

3.4 Physical Interpretation of Horizontal Polarization Case.

As before, the first step toward physical understanding
is the transformation of S‘,e) , (41), and S‘i_f) y» (42). The

interpretation of each series 1s then undertaken, and super-
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position 1is applied to obtain the total fleld., It 1s import-

ant to notice in (37) that S‘;’ 1s subtracted from S‘f).

e)

Shadow zone, The transformation of Sﬂ” , (41), and 8,7,

(QZ), combined with (37), ylelds

Ez= E, emlm____:‘_(k.a)'/:!i :'e) eik,,[p'-a' eivn(d-q”- n/2 - orccos alp)
22k Jpt-at\ 2 | b

iVn(am/2 — & + @'-orccos alp) ew,,(o +qQ'-m/2 - orceos a/p)

+ €
_ ei¥n(em/2 -a-q'-orccos d’P>} (52)
4
@ _ 1
where Pn’ = Tai(an12( 1 - eoner)

The only differences between this solution, (52), and
the magnetic case, (28) and (29), are the negative signs
preceding the last twd terms of (52). Recalling that a
horizontally polarized wave is phase shifted by 180 degrees
upon reflection from a perfectly conducting plane, the last
two terms evidently represent waves which have been reflect-
ed an odd number of times. The first two terms must, then,
represent waves which have been reflected an even number of
times.,

The ray diagrams for the first two terms of (52) are
shown in Figure 14(a) and Figure 14(b), respectively.

Notice that term one of (52) is a wave which is not reflected.
Therefore, it has a poslitive sign. Term two of (52) is a
wave which is reflected twice; once in front of fhe boss, and
once behind the‘boss. as shown in Figure 14(b). It, too,

has a positive sign.
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The ray diagrams for the last two terms of (52) are
shown in Figures 15(a) and (b). Notice that both of these
rays are reflected once before arriving at the field point.
Hence, the negative signs take care of the~180 degree phase
change upon reflection, |

Partially i1lluminated zone. In this zone, as in the mag-

netic case, the interest 1is in the shadow region solution of
s% and the illuminated zone solutlon of 8% ., Transforming
the desired solutions, (49),

E, = Ee{ g ikop cos(d’-,,y)_\/z‘lp acosg, 'egk,m-zqm 8,)

2 2-a%s1n?B,’ - acos B,

_emne (koa) 3 ZDce) pikeVp*=a%" |

21 k., p*-a
[ewn(anla + @ - @' - areeos a/p)

(53)

c‘.v,.(alrr/z -@ +q@'~arccos a/p)

nxg

+ €
_ ew,, (@ +@'-1/2 -arccos alp) _ ew..(zrr/z - -4’ - arccos d/p)J}

The ray dlagram for the last two terms 1in the serles
of (53) is shown in Figure 17. These two are reflected once.
The first terms of the series are shown in Figure 18. These
are rays reflected twlce,

The first term of (53) is the incidence wave, while the
second term 1s reflected directly off the boss surface. The
reflection from the boss produces the negative sign. These

terms are shown in Figure 19.

Illuminated zone. Transforming the series in (51), the

solution for the 1lluminated region may be recast as,



The
two
The

the

+€

Lo

E ~iko s(-@') - ikop cos(P+@’)
er = e -en e (54).

~-azsin*g, - 0cosg,
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The first two terms of (54) are shown in Figure 20(c).
second two terms are shown in Figure 20(d). The first
terms of the series in (54) are shown in Figure 20(a).
last two terms are given in Figure 20(b). In every case

negative sligns are assoclated wlth waves which are

reflected an odd number of times, while the positive terms

are

waves that are reflected an even number of times.



CHAPTER 4
NUMERICAL FIELD EVALUATION

The equations for the fields in all regions of the
cylindrical boss have been found. They are, however, of
little value if reasonable numerical results cannot be
obtalined. It is then the purpose of this chapter to
demonstrate thelr applicabllity. This 1s done by comparing
previous numerical solutions of the "harmonic series" with
those presented here. This will be done for a plane ground

wave incident on a boss with koa = 3 (Walt and Murphy, 1958).

4,1 Comparison with Previous Ground Wave Data

The solution given in (14) is the solution for the
shadow region of the boss. This solution contains the factor

Haﬁk p). Since our interest is in the fields very near the
Y3 o

boss, two different asymptotlc forms of Hﬁa(kop) are required.,
" On the boss, p = a, we require the form for V) > k,p. On the
ground planes, p > a, V) < Kk p is used (Tyras, 1969).

Applying these forms to (14) and (19) and using the
values of a, and Ai(aﬁ).(Abramowitz and Stegun, 1964), yields
the normalized field intensities, H,/H,, near the boss.

These values along with those of the "harmonic series" are

plotted in Figure 21.

The shadow zone 1s behind the boss and on the boss for

41
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@ > 90°, In this region two terms, n = 2, of the series in
(14) were used. It is immediately evident, therefore, that
the transformed series is rapidly convergent. Also, the
close agreement with previous data is obvious. Equally good
agreement with previous data (Wait and Murphy, 1958) for

koa = 1 and koa = 2 was obtalned. However, as the boss
becomes smaller, more serles terms are required. This 1is a
result of the fact that for the smaller bosses, the imaginary
‘part of Vﬁ does not increase as rapidly. The series 1is,

therefore, not so rapidly convergent.
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L,2 Comparison of Oblique Incidence with Ground Wave Incidence

The comparison of oblique plane wave incidence with
plane ground wave incldence 1is carried out for three boss
sizes, kq,a = 5, koa = 10, and k,a = 15. Incidence angles

° are used.

of @'= 0° (ground wave), d' = 30° and @' = 60
Figures 22, 23, and 24 show the normalized magnetic fleld
intensity for the three bosses.

In the shadow 2zone, for koa = §, two series terms are
required to be within one per cent of the limit value, For
koa = 10 and k,a = 15, only one term is required to ﬁeet the
one per cent criterion.

Upon examination, these curves glve further insight into
the diffraction by the boss. In the shadow.region, the fleld
increases toward its undisturbed amplitude, Hy/Hy, = 1. This
is a result of the radiation coming frem the primary creeping
wave which decays as it progresses around the boss, bn the
boss 1tself, the interference pattern in the shadow zone re-
sults frém the phase differences between the primary creeping
wave and the creéping wave reflected back along the boss,

The amplitude of the reflected creqping wave becomes smaller
and smaller as it progresses back toward the 1lluminated re- -
gion. Hence, the peaks and nulls of the interference pattern
become less and less pronounced.

Along the ground plane in the 11luminated region, the
observed pattern results from the wave reflecting off of the
boss and interfering with the 1lncident wave. Along the boss,

the interference pattern is caused primarily by the incident
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plane wave beating with the reflected plane wave.

In the partially 1lluminated region, the pattern results
from the interference of the lnclidént plane wave with the
creeping wave which enters the boss at 90 - @'degrees, Notice
that the interference 1s much more pronounced near the edge
of the fully illuminated zone, This is due to the diminish-
ing amplitude of the creeping wave as it progresses through

the partially illuminated zone,
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L,3 Comparison of the Horizontal and Vertical Polarization
Diffraction,.

The comparison of the horizontal and vertical bolariza-
tion is done for a boss of radius koa = 10, a fleld radius of
kOP = 20, and an incident angle of 4= 300. The interference
patterns which result from the plane waves, the waves reflect-
ed from the boss, and'the creepling waves are compared sep-
arately in Figure 25(a), (b) and (c), respectively. These are
then superposed to obtain the total field as plotted in
Figure 26, Notice that. the case considered does pot have a
shadow zone,

As expected, Figure 25(a) and (b) show that the horizon-
tally polarized field has nulls where the vertically polarized -
field has peaks. This is entirely due to the 180 degree phase

.shift that the horizontally polarized wave experiences upon

reflection., Figure 25(c) shows that the creeping waves from
the horizontal polarization are attenuated more than the ver-
tical polarization. Also, the velocity of the horizontal
creeping wave is slower. This results in a less répid change
in phase from point to point on the boss and hence, a much
less pronounced interferénce pattern,

In superposing the results for the horizontal polariza-
tion in the partially illuminated zone, the dominant terms
are the incident plane wave and the reflection off of the
boss. This, however, is not true for vertical polarization,

The creeping waves and the reflection from the boss are about

the same amplitude.
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In the illuminated region, the general character of the
plane wave interference pattern is altered by the reflections
from the boss. However, the location of the peaks and nulls

1s determined by the plane wave interference.
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L,4 Concluding Discussion

The problem solved was for pérfectly conducting bounde-
-afies. Its extension to imperfectly cpnductlng boundaries
is by no means simple. However, the imperfect case can be
approximated to stﬁdy the influence of a ridge or island.
This approximation is discussed in the'following paragraphs,

It can be shown that for an imperfectly conducting boss
with a high index of refractlon, n > 1, the creeping wave
terms are practically unchanged (Tyras, 1969)., The earth
meets this criterion. Thus, the ¢reepling wave terms remain
as given in the text.

All of the other terms in the solution result from
reflections off of the boss, the flat plane, or both. 1In
every case, the incident and reflected angles are known,

By multiplying the reflection coefficient, amplitude and
phase, with the appropriate terms, an approximation to the
imperfect case may be'obtained. Those terms which are re-
flected by both the flat plane and the boss require a pro=-
duct of reflectioﬁ coefficlents, one for the plane times one
for the boss.,

Curves of the reflectlon coefficient for a smooth earth
and sea have been plotted for various wavelengths (Beckmann
and Spizzichino, 1963). Application of this data with the
solutions presented should yleld a good approximation to the
diffraction by a ridge or 1slahd.

A further generallization of thls problem may be made by
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allowing the line source to be placed at a finite distance
from the origin. In this case, the term Hi?(kofﬁ. (6), must
be included in all of the analysis; Without question, it
will complicate the solution of the 1lluminated zone integrals
and alter the form of the creeping wave terms. In addition,

two solutions will result, one for F>P' and one for p« P'.
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