AN APPROACH TO THE REDUCTION OF MULTIVARIABLE SYSTEMS
WITH VARIOUS NUMBERS OF INPUTS AND OUTPUTS

> A Thesis
> Presented to
> the Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment
of the Requirements for the Degree Master of Science in Electrical Engineering

by
Hung Ching Lue August 1975

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisor, Dr. L. S. Shieh, for his advice and guidance, and to Mr. Y. J. Wei for his helpful discussion. He gratefully acknowledges the support of the Electrical Engineering Department of the University of Houston and the efforts of Lockheed Electronic Company in typing this manuscript. Finally, the author thanks his wife, Cynthia, for her assistance and encouragement.

AN APPROACH TO THE REDUCTION OF
MULTIVARIABLE SYSTEMS
WITH VARIOUS NUMBERS OF INPUTS AND OUTPUTS

> An Abstract of a Thesis
> Presented to
the Faculty of the Department of Electrical Engineering University of Houston

In Partial Fulfillment
of the Requirements for the Degree Master of Science in Electrical Engineering

> by
> Hung Ching Lue
> August 1975

ABSTRACT

The analysis and synthesis of high-order systems are computationally difficult and cumbersome. Accordingly, there is a need for obtaining reduced models for the high-order system so that an analogue or digital simulation of the system is possible. An algebraic method is proposed in the frequency domain to obtain the reduced models of singlevariable systems as well as multivariable systems. The method of matrix-continued fraction and the mixed method, which utilizes both the dominant-eigenvalue concept and matrix-continued fraction approach, are extended to obtain the reduced models. The reduced model is always stable and it retains the dominant performance of the original system. A complete computer-oriented algorithm is established for the simplification.

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION 1
II. SYSTEM REDUCTION WITH EQUAL NUMBERS OF INPUTS AND OUTPUTS 4

1. Single-Input Single-Output System. 4
2. Multivariable System 18
III. SYSTEM REDUCTION WITH UNEQUAL NUMBERS OF INPUTS AND OUTPUTS 52
3. Case for the Number of Outputs less than the Number of Inputs. 53
4. Case for the Number of Outputs greater than the Number of Inputs. 73
IV. ILL-CONDITIONED CASES. 89
V. CONCLUSION 102
BIBLIOGRAPHY 103
APPENDIX 106

LIST OF FIGURES

1. Unit Impulse Response for Example 1. 15
2. Unit Step Response for Example 1 16
3. Unit Impulse Response for Example 2. 19
4. Unit Step Response for Example 2 20
5. Block Diagram Representation of Second Cover Matrix Form. 24
6. Unit Step Response for Example 3 38
7. Unit Step Response for Example 4 41
8. Unit Step Response for Example 5 45
9. Unit Step Response for Example 6, First Curve 49
10. Unit Step Response for Example 6, Second Curve 50
11. Unit Step Response for Example 7 59
12. Unit Step Response for Example 8, First Curve 66
13. Unit Step Response for Example 8, Second Curve 67
14. Unit Step Response for Example 9, First Curve. 71
15. Unit Step Response for Example 9, Second Curve 72
16. Unit Step Response for Example 10. 78
17. Unit Step Response for Example 11, First Curve 86
18. Unit Step Response for Example 11, Second Curve 87
FIGURE PAGE
19. Unit Step Response for Example 11, Third Curve. 88
20. Unit Step Response for Example 12, First Curve. 100
21. Unit Step Response for Example 12, Second Curve 101

CHAPTER I

INTRODUCTION

In general, the practical systems are highly dimensional, heavily coupled, and have a multiplicity of inputs and/or outputs. Exact analysis and synthesis of such a high-order multivariable system are tedious and costly processes. It is always desirable to research for a reduced model, so that an analogue or digital simulation of the system is possible. The technique of system reduction has been recently investigated by numerous authors. ${ }^{1-8}$ The principle of model reduction is to discard the unimportant terms and retain the significant terms of interest. It has been recognized ${ }^{9}$ that the most powerful method for system reduction of a high-order transfer function was developed by Chen and Shieh. ${ }^{2,4}$ This method has been extended to simplify a high-degree transfer-function matrix, using the matrix-continued fraction as a basis.

The matrix-continued fraction can be summarized: the denominator and numerator polynomials in the transferfunction matrix are arranged in the ascending order in powers of S. After expanding into matrix-continued fraction, it has been shown ${ }^{6}$ that the matrix quotients in the expansion are in the order of decreasing significance as far
as their contribution to the system response is concerned. Thus, we can truncate the least significant matrix quotients and obtain the desired reduced mode1; however, this method has a disadvantage in that the reduced model may be unstable even though the original system is stable.

Another popular technique for handing the reduction problem is the dominant-pole approach proposed by Davison ${ }^{1}$ and Chidambara. ${ }^{3}$ This method is based on the concept that the poles of the original system that are far away from the $j w-a x i s$ in the $S-p l a n e$ can be neglected. Thus, a reduced model can be constructed by retaining the dominant poles of the original system. The most important feature of this approach is that the reduced model is always stable and dominant performance of the original system may be maintained. However, this method involves complicated linear transformation, steady-state value matching, and matrix diagonalization. The computational procedures are very cumbersome when the order of a multivariable system is high. Moreover, the existing methods ${ }^{5-7}$ in the frequency domain only deal with multivariable systems with an equal number of inputs and outputs and the transfer-function matrix has no ill-conditional numerical elements. In this research, the matrix-continued fraction and the mixed method are extended to obtain reduced models of the general singlevariable systems, as well as multivariable systems. The proposed methods can be applied to the approximation of
multivariable systems with various numbers of inputs and outputs; a technique is also established for dealing with ill-conditioned cases. The procedure proposed in this research is simple in theory and flexible in practice. The entire process can be performed by a digital computer.

CHAPTER II

SYSTEM REDUCTION WITH EQUAL NUMBERS OF INPUTS AND OUTPUTS

To demonstrate the principles and procedures of system reduction, we will review and extend some of the existing methods as follows:

Section 1. Single-Input Single-Output System
a) The Second Cauer Form

In this research, system reduction is performed in the frequency domain. Obviously, the expression of the control system is the transfer function in the S-domain. Consider the following single-variable system:

$$
\begin{equation*}
T(S)=\frac{A_{21}+A_{22} S+A_{23} S^{2}+\ldots+A_{2, n} S^{n-1}}{A_{11}+A_{12} S+A_{13} S^{2}+\ldots+A_{1, n+1} S^{n}} \tag{1}
\end{equation*}
$$

where $A_{i, j}$ are constants and $A_{1, n+1=1}$. This equation can be expanded into the second Cauer form as follows ${ }^{4}$:

$$
T(S)=\frac{1}{\frac{A_{11}}{A_{21}}+\frac{A_{21} A_{12}-A_{11} A_{22}}{A_{21}}+\frac{A_{21} A_{13}-A_{11} A_{23}}{} S^{2}+\ldots .} \begin{align*}
& A_{21}+A_{22} S+A_{23} S^{2}+\ldots+A_{21 n} S^{n-1}
\end{align*}
$$

where

$$
\begin{align*}
& A_{31}=\frac{A_{21} A_{12}-A_{11} A_{22}}{A_{21}} \\
& A_{32}=\frac{A_{21} A_{13}-A_{11} A_{23}}{A_{21}} \tag{3}
\end{align*}
$$

Then Eq. (2) becomes

$$
\begin{equation*}
T(S)=\frac{1}{A_{11}} \frac{A_{31} S+A_{32} S^{2}+A_{33} S^{3}+\cdots}{A_{21}}+\frac{A_{21} S+A_{22} S+A_{23} S^{2}+\ldots}{} \tag{4}
\end{equation*}
$$

Performing the division again,

$$
\begin{equation*}
T(S)=\frac{1}{\frac{A_{11}}{A_{21}}+\frac{S}{A_{21}} \frac{\frac{A_{22 A^{A} 31}-A_{32} A_{21}}{A_{31}}+\frac{A_{31}}{A_{31}+A_{32} S}+\ldots}{}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{41}=\frac{A_{22} A_{31}-A_{32} A_{21}}{A_{31}} \tag{6}
\end{equation*}
$$

Eq. (5) is written

$$
\begin{equation*}
T(S)=\frac{1}{\frac{1}{\frac{A_{11}}{A_{21}}+\frac{1}{\frac{A_{21}}{A_{31}}}+\frac{1}{\frac{A_{31}}{A_{41}}+\frac{1}{\ddots}}}} \tag{7}
\end{equation*}
$$

If we set

$$
\begin{align*}
& h_{1}=\frac{A_{11}}{A_{21}}, \\
& h_{2}=\frac{A_{21}}{A_{31}}, \\
& h_{3}=\frac{A_{31}}{A_{41}}, \text { etc. } \tag{8}
\end{align*}
$$

Then the continued-fraction expansion of the second caver form is

$$
\begin{equation*}
T(S)=\frac{1}{h_{1}+\frac{1}{\frac{h_{2}}{S}+\frac{1}{h_{3}+\frac{1}{\ddots}}}} \tag{9}
\end{equation*}
$$

The general formula to evaluate the scaler quotients in Eq. (9) can be obtained by the following Routh algorithm. ${ }^{10}$

$$
\begin{align*}
& h_{1}=\frac{A_{11}}{A_{21}}<{ }^{A_{11}}{ }^{A_{12}}{ }^{A_{13}} A_{14} A_{1}{ }^{A_{21}}{ }^{A_{22}}{ }^{A_{23}} \cdots \\
& h_{2}=\frac{A_{21}}{A_{31}}<{ }^{A_{31}}{ }^{A_{32}} \cdots \\
& h_{3}=\frac{A_{31}}{A_{41}}<{ }^{A_{41}} \cdots \tag{10}
\end{align*}
$$

$$
\begin{gathered}
\text { where } A_{i, j}=A_{i-2, j+1}-h_{i-2} A_{i-1, j+1} ; \begin{array}{l}
i=3,4, \ldots, 2 n+1 ; \\
j=1,2, \ldots, n
\end{array} \\
h_{i}=\frac{A_{i, 1}}{A_{i+1,1}} ; \quad i=1,2, \ldots, 2 k \text { and } k \leq n
\end{gathered} \quad \begin{aligned}
& \operatorname{det}\left(A_{i+1,1}\right) \neq 0
\end{aligned}
$$

If the quotients are given and the corresponding transfer function is required, then this process is called continued-fraction inversion. Considering that four scaler quotients $h_{i}, i=1, \ldots, 4$ are given, the continued fraction inversion of Eq. (9) is:

$$
\begin{equation*}
T(S)=\frac{h_{2} h_{3} h_{4}+\left(h_{2}+h_{4}\right) S}{h_{i} h_{2} h_{3} h_{4}+\left(h_{i} h_{2}+h_{1} h_{4}+h_{3} h_{4}\right) S+s^{2}} \tag{11}
\end{equation*}
$$

In general, the transfer function of Eq. (1) can be obtained by the following inverse process of the Routh algorithm ${ }^{10}$

$$
\begin{align*}
& A_{2 n+1,1}=1 \\
& A_{i, 1}=h_{i} A_{i+1,1} ; i=2 n, 2 n-1, \ldots, 2,1 \\
& A_{j-2, \ell+1}=A_{j, \ell}+h_{j-2} A_{j-1, \ell+1} ; \quad \begin{array}{l}
j=2 n+1,2 n, \ldots, 3 ; \\
\ell=1,2, \ldots, n
\end{array}
\end{align*}
$$

It is observed that the first several quotients are dominant ones. This can be verified by again considering Eq.

$$
\begin{equation*}
T(S)=\frac{C(S)}{R(S)}=\frac{\left(h_{2}+h_{4}\right) S+h_{2} h_{3} h_{4}}{S^{2}+\left(h_{1} h_{2}+h_{i} h_{4}+h_{3} h_{4}\right) S+h_{i} h_{2} h_{3} h_{4}} \tag{11}
\end{equation*}
$$

Applying the final value theorem to Eq. (13) and allowing $R(S)=\frac{1}{S}$, it is found that

$$
\begin{equation*}
\left.C(t)\right|_{t \rightarrow \infty}=\frac{1}{h_{1}} \tag{14a}
\end{equation*}
$$

Similarly, applying the initial value theorem and allowing $R(S)=1$,

$$
\begin{equation*}
\left.C(t)\right|_{t \rightarrow 0}=h_{2}+h_{4} \tag{14b}
\end{equation*}
$$

The results obtained in Eqs. (14a) and (14b) imply that the quotient h_{1} dominates the final or steady-state value of the behavior of the system. In other words, the second Cauer form influences very heavily the steady-state part of the system response. It should be noted that the most dominant term is h_{1} and the second influence term is h_{2}. When the quotients in the continued fraction are well-distributed and lower and lower in position, they are less and less important as far as the influence to the performance of the system is concerned. This observation is the general basis for the simplification technique developed in this research for both the continued-fraction method and the mixed method.
b) Mixed Method

It is well known that the reduced model obtained by applying Eqs. (9) and (13) may be unstable, even though the original system is stable. Hence, the approximation by continued fraction does not necessarily yield a stable model. To overcome this deficiency, the mixed method ${ }^{7}$ is extended
for the reduction of both single-variable and multivariable systems. The approach involved in the mixed method follows. The denominator of Eq. (1) can be factorized as

$$
\begin{equation*}
\Delta(S)=\left(S-\lambda_{1}\right)\left(S-\lambda_{2}\right) \cdots\left(S-\lambda_{n}\right) \tag{15}
\end{equation*}
$$

If p dominant poles are chosen as the dominant eigenvalues of the reduced model, then the new denominator polynomial of a reduced model is

$$
\begin{align*}
\Delta p(S) & =\left(S-\lambda_{1}\right)\left(S-\lambda_{2}\right) \cdots\left(S-\lambda_{p}\right) \\
& =\sum_{j=1}^{p+1} d_{j} S^{j-1}, d_{p+1}=1 \\
b_{1, j} & =d_{j} \quad, \quad j=1,2, \ldots, p \tag{16}
\end{align*}
$$

and p is the degree of reduced model and $b_{1}, p+1=1$.
The scaler gquotients $h_{i}, i=1,2, \ldots \ell$, can be evaluated by the algorithm shown in Eq. (10). When the coefficients $b_{i, j}$ of the reduced model in $E q$. (16) and the dominant quotients h_{i} in $E q$. (10) are found, the coefficients $b_{2, j}$ of the numerator polynomial can be evaluated by the following new Routh aigorithm ${ }^{10,}$

$$
\begin{align*}
b_{i+1,1} & =\frac{b_{i, 1}}{h_{i}}, i=1,2, \ldots, p \text { and } p \leq n \\
b_{i+1, j+1} & =\frac{b_{i, j+1}-b_{i+2, j}}{n_{i}} \quad, \quad \begin{array}{l}
i=1,2, \ldots, p-j ; \\
b_{1, p+1}
\end{array} \quad \begin{array}{ll}
j=1,2, \ldots, p-1
\end{array}
\end{align*}
$$

There is an alternative Routh algorithm that yields identical results. ${ }^{4}$ Considering Eq. (10) as follows:

it is seen that

$$
\begin{align*}
& \mathrm{h}_{1}=\frac{\mathrm{b}_{11}}{\mathrm{~b}_{21}}, \\
& \mathrm{~h}_{2}=\frac{\mathrm{b}_{21}}{\mathrm{E}_{12}-\mathrm{h}_{1} \mathrm{~b}_{22}}, \\
& \mathrm{~h}_{3}=\frac{\mathrm{b}_{12}-\mathrm{h}_{1} \mathrm{~b}_{22}}{\mathrm{~b}_{22}-\mathrm{h}_{2}\left(\mathrm{~b}_{13} \mathrm{~h}_{1} \mathrm{~b}_{23}\right)}, \\
& \mathrm{h}_{4}=\frac{\mathrm{b}_{22}-\mathrm{h}_{2}\left(\mathrm{~b}_{13}-\mathrm{h}_{1} \mathrm{~b}_{23}\right)}{\mathrm{b}_{13}-\mathrm{h}_{1} \mathrm{~b}_{23}-\mathrm{h}_{3}\left[\mathrm{~b}_{23} \mathrm{~h}_{2}\left(\mathrm{~b}_{14}-\mathrm{h}_{1} \mathrm{~b}_{24}\right)\right]} \tag{19}
\end{align*}
$$

A matrix expression for Eq. (19) can be formulated as follows:

$$
\begin{align*}
& {\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & \ldots \\
0 & h_{2} & 0 & 0 & \ldots \\
0 & 1 & h_{2} h_{3} & 0 & \ldots \\
0 & 0 & h_{2}+h_{4} & h_{2} h_{3} h_{4} & \ldots \\
. & . & . & . & \ldots
\end{array}\right]\left[\begin{array}{l}
b_{11} \\
b_{12} \\
b_{13} \\
b_{14} \\
.
\end{array}\right]} \\
& =\left[\begin{array}{lllll}
h_{1} & 0 & 0 & 0 & \ldots \\
1 & h_{1} h_{2} & 0 & 0 & \ldots \\
0 & h_{1}+h_{3} & h_{1} h_{2} h_{3} & 0 & \ldots \\
0 & 1 & \left(h_{1} h_{2}+h_{1} h_{4}+h_{3} h_{4}\right) & h_{1} h_{2} h_{3} h_{4} & \ldots \\
. & . & . & . & \ldots
\end{array}\right]\left[\begin{array}{l}
b_{21} \\
b_{22} \\
b_{23} \\
b_{24} \\
.
\end{array}\right] \tag{20}
\end{align*}
$$

Eq. (20) can be factored in an alternate form:

where p is the degree of reduced model and $b_{1, p}=1$.
Eq. (21) can be written in the form

$$
\begin{equation*}
\mathrm{H}_{\mathrm{e}} \overrightarrow{\mathrm{~b}}_{1}=\mathrm{H}_{\mathrm{r}} \overrightarrow{\mathrm{~b}}_{2} \tag{22a}
\end{equation*}
$$

where H_{e} and H_{r} are both the product of the corresponding bidiagonal matrices. Both H_{e} and H_{r} are nonsingular, provided $h_{i} \neq 0$. If $A_{1, j}$ and $h_{j, j=1,2, \ldots, p}$ are given in Eq. (21), $A_{2, j}$ can be computed as

$$
\begin{equation*}
\overrightarrow{\mathrm{t}}_{2}=\mathrm{Hb}_{1} \tag{22b}
\end{equation*}
$$

where $\mathrm{H}=\mathrm{H}_{\mathrm{r}}^{-1} \mathrm{H}_{\mathrm{e}}$.
The method of continued fraction for the reduction of the single-variable systems has been well exploded by Chen and Shieh. ${ }^{2}$ The following examples are used to illustrate the advantages of the mixed method.

Example 1

$$
\begin{align*}
& S^{6}+848 \cdot 5246 S^{5}+33147 \cdot 6926 S^{4}+200543 \cdot 1225 S^{3} \\
& T(S)=\frac{+398977 \cdot 6385^{2}+226104 \cdot 43475+23407 \cdot 25497}{6.675^{7}+299 \cdot 905 S^{6}+8534 \cdot 0506 \mathrm{~S}^{5}+63508 \cdot 04115^{4}} \tag{23}\\
& +2339639526 \mathrm{~S}^{3}+4117309385 \mathrm{~S}^{2}+2272751388 \mathrm{~S} \\
& +23407 \cdot 25497
\end{align*}
$$

The eigenvalues of the characteristic equation, $\Delta(S)$, is

$$
\begin{align*}
\Delta(S)= & (S+0 \cdot 13247484)(S+0 \cdot 70408738)(S+2 \cdot 49655724+j 2 \cdot 69364548) \tag{24}\\
& (S+2 \cdot 49655724-j 2 \cdot 69364548)(S+3 \cdot 01673794) \\
& (S+18 \cdot 05841064+j 24 \cdot 46449279)(S+18 \cdot 05841064-j 24 \cdot 46449279)
\end{align*}
$$

Expanding the above transfer function according to Eq. (10), we have 14 quotients, the first eight being:

$$
\begin{align*}
& h_{1}=1.0 \\
& h_{2}=19.9942 \\
& h_{3}=-0.0405282 \\
& h_{4}=-15.6876 \\
& h_{5}=0.476296 \\
& h_{6}=0.282881 \\
& h_{7}=-25.6977 \\
& h_{8}=1.31265 \tag{25}
\end{align*}
$$

If the method of continued fraction is applied and $h_{i, i=1, \ldots, 8}$, are used. Therefore, Eq. (23) becomes

$$
\mathrm{T}_{4}(\mathrm{~S})=\frac{1}{1.0+\frac{1}{\frac{19.0042}{S}+\frac{1}{-0.0405282+\frac{1}{\frac{-15.6876}{S}+\frac{1}{0.476296}}}}}
$$

$$
\begin{equation*}
+\frac{1}{\frac{0.282881}{S}+\frac{1}{-25.6977+\frac{1}{\frac{1.31265}{S}}}} \tag{26}
\end{equation*}
$$

converting Eq. (26) into a regular transfer function by applying Eq. (12), it is found that

$$
T_{4}(S)=\frac{5 \cdot 902194 S^{3}-140 \cdot 12299 S^{2}-430 \cdot 98636 S-57 \cdot 775278}{S^{4}-26 \cdot 498854 S^{3}-165 \cdot 24465 S^{2}-433 \cdot 87596 S-57 \cdot 775278}
$$

Obviously the reduced model is unstable, even though the original system is stable. The approximation by continued fraction does not necessarily give a stable model.

If the mixed method is applied and $h_{i, i=1, \ldots, 4}$, are used, then the four dominant poles used are

$$
\begin{align*}
\Delta_{4}(S)= & (S+0 \cdot 13247484)(S+0 \cdot 70408738)(S+2 \cdot 49655724 \\
& +j 2 \cdot 69364548)(S+2 \cdot 49655724-j 2 \cdot 69364548) \\
= & S^{4}+5 \cdot 8296802 S^{3}+17 \cdot 758865 S^{2}+11 \cdot 749763 S+1 \cdot 2581257 \tag{28}
\end{align*}
$$

To obtain the simplified transfer function, we can apply either Eq. (17) or Eq. (22). A fourth-order approximation of the original seventh-order system is found to be:

$$
\begin{equation*}
\mathrm{T}_{4}(\mathrm{~S})=\frac{4 \cdot 2523635 \mathrm{~S}^{3}+18 \cdot 421032 \mathrm{~S}^{2}+11 \cdot 686839 \mathrm{~S}+1 \cdot 2581257}{\mathrm{~S}^{4}+5 \cdot 8296802 \mathrm{~S}^{3}+17 \cdot 758864 \mathrm{~S}^{2}+11 \cdot 759763 \mathrm{~S}+1 \cdot 2581257} \tag{29}
\end{equation*}
$$

The impulse responses of the original and approximated systems are shown in Fig. 1. As expected, there is a small error in the initial-state portion of the approximated response curve. With a unit step input, the response of the original system and the fourth-order simplified system of Eq. (29) is shown in Fig. 2.

Examp1e 2

Consider the following system

$$
\begin{align*}
\mathrm{T}(\mathrm{~S})= & \frac{1464 \cdot 786701 \mathrm{~S}^{3}+79582 \cdot 5474 \mathrm{~S}^{2}+533760 \cdot 7473 \mathrm{~S}+617497 \cdot 375}{\mathrm{~S}^{7}+112 \cdot 04 \mathrm{~S}^{6}+3755 \cdot 92 \mathrm{~S}^{5}+39736 \cdot 62 \mathrm{~S}^{4}+363650 \cdot 56 \mathrm{~S}^{3}} \\
& +759894 \cdot 19 \mathrm{~S}^{2}+583656 \cdot 25 \mathrm{~S}+617497 \cdot 375 \tag{30}
\end{align*}
$$

Figure 1. Unit Impulse Response for Example 1.

Figure 2. Unit Step Response for Example 1.
for which a third-order simplified model is desired.
Rewriting the numerator and denominator polynomials of
Eq. (30) in ascending order and expanding according to
Eq. (10), we again have 14 quotients, with the first three being:

$$
\begin{aligned}
& \mathrm{h}_{1}=1.0 \\
& \mathrm{~h}_{2}=4.119519 \\
& \mathrm{~h}_{3}=-0.0660683
\end{aligned}
$$

Factorize the characteristic equation, $\Delta(S)$, of Eq. (30) as:

$$
\begin{align*}
\Delta(S)= & (\mathrm{S}+1 \cdot 89715385)(\mathrm{S}+0 \cdot 27276689+\mathrm{j} 1 \cdot 04293823) \\
& (\mathrm{S}+0 \cdot 27276689-\mathrm{j} 1 \cdot 04293823)(\mathrm{S}+3 \cdot 85106564+\mathrm{j} 9 \cdot 65270519) \\
& (\mathrm{S}+3 \cdot 85106564-\mathrm{j} 9 \cdot 65270519)(\mathrm{S}+49 \cdot 37869263) \\
& (\mathrm{S}+52 \cdot 51646423) . \tag{3}
\end{align*}
$$

Then the characteristic equation of the desired reduced model is:

$$
\begin{align*}
\Delta_{4}(S)= & (S+1 \cdot 89715385)(S+0 \cdot 27276689+j 1 \cdot 04293823) \\
& (\mathrm{S}+0 \cdot 27276689-j 1 \cdot 04293823) \tag{32}\\
= & S^{3}+2 \cdot 442688 \mathrm{~S}^{2}+2 \cdot 1970838 \mathrm{~S}+2 \cdot 204724 .
\end{align*}
$$

Applying again either Eq. (17) or Eq. (22), one can obtain the third-order reduced model

$$
\begin{equation*}
T(S)=\frac{C(S)}{R(S)}=\frac{0 \cdot 072886 S^{2}+1 \cdot 6618942 S+2 \cdot 204724}{S^{3}+2 \cdot 442688 S^{2}+2 \cdot 1970838 S+2 \cdot 204724} \tag{33}
\end{equation*}
$$

The impulse responses of the original and approximated systems are shown in Fig. 3, and the unit step responses are shown in Fig. 4. It is noted that the simplification by the mixed method gives very close approximations.

For finding the integral square value (I.S.V.) of a response function $T(S)$, Katz's method ${ }^{11}$ can be app1ied. Following Katz's formula, we calculated the integral square values of examples 1 and 2 and obtained the fcllowing results:

Example 1	I.S.V.
Original model	3.413495
Fourth-order model	3.739678
Example 2	
Original mode1	1.269873
Third-order mode1	1.239319

From Eq. (34), we see that the mixed method reductions are satisfactory.

System 2. Multivariab1e System
In Section 1, the model-reduction techniques have been investigated for the single-input single-output systems. However, the single-variable system is a special case of a multivariable system. In general, control systems and other practical systems are high dimensional and with multi-input, multi-output. In this section, we shall concentrate on the reduction of multivariable systems. The model-reduction techniques developed in the previous section can be extended

Figure 3. Unit Impulse Response for Example 2.

Figure 4. Unit Step Response for Example 2.
to multivariable system after some justification, such as replacing scaler variables by vector variables.
a) The Second Cauer Form

Consider the following transfer-function matrix of a multivariable system, $T(S):$

$$
\begin{align*}
{[T(S)]=} & {\left[A_{21}+A_{22} S+A_{23} S^{2}+\ldots+A_{2, n} S^{n-1}\right] } \\
& {\left[A_{11}^{\prime}+A_{12} S+A_{13} S^{2}+\ldots+A_{1, n+1} S^{n}\right]^{-1} } \tag{35}
\end{align*}
$$

Where each $A_{i, j}$ is a real and constant m by matrix. $A_{i j}=A_{j}[1], j=1,2, \ldots, n+1$ where A_{j} is a coefficient of the characteristic polynomial or $\Delta(S)=\sum_{j=1}^{n+1} A_{j} S^{j-1}$ and $[1]$ is an identity matrix.

When the numbers of inputs equal that of the outputs, we can obtain the matrix quotients of Eq. (35) by means of the following matrix Routh algorithm:

The elements of the first and second rows of Eq. (36) are the matrix coefficients of the matrix transfer function of Eq. (35), and the elements of the third, fourth and subsequent rows can be evaluated by the following matrix Routh algorithm. ${ }^{5,6}$
$A_{i, j}=A_{i-2, j+1}-{ }^{\prime} H_{i-2} A_{i-1, j+1} ; i=3,4, \ldots j=1,2, \ldots$ $H_{i}=A_{i, 1}\left(A_{i+1,1}\right)^{-1} \quad ; i=1,2, \ldots, 2 k$ and $k \leq n$ $\operatorname{det}\left(A_{i+1,1}\right) \neq 0$

The complete matrix Routh array is:

$$
\begin{align*}
& H_{1}=A_{11} A_{21}^{-1}<\begin{array}{lllll}
A_{11} & A_{12} & \ldots & A_{1, n} & A_{1, n+1} \\
A_{21} & A_{22} & \cdots & A_{2, n} &
\end{array} \\
& H_{2}=A_{21} A_{31}^{-1}<A_{31} \quad A_{32} \quad \ldots \quad A_{3, n} \\
& H_{3}=A_{31} A_{41}^{-1}<_{A_{41}} \quad A_{42} \quad \ldots \\
& H_{4}=A_{41} A_{51}^{-1}<_{A_{51}} \quad A_{52} \quad \ldots \\
& \text {... } \tag{38}
\end{align*}
$$

Assumptions have been made that the first several dominant matrix quotients H_{i} exist, or $\operatorname{det}\left[A_{i+1,1}\right] \neq 0$, and a stable reduction can be obtained. These restrictions linit the applications of the methods of the matrix-continued fraction and the mixed method. The method proposed in Chapter IV will serve to eliminate these restrictions.

After the matrix quotients are found by applying Eq. (38), the second Caver matrix of Eq. (35) can be expanded according to Eq. (9) by replacing (h_{i}) with $\left[H_{i}\right]$ and using the matrix inversion rather than division. The resulting expansion of the matrix-continued fraction of the second Caker matrix form is:

$$
\begin{equation*}
[\mathrm{T}(\mathrm{~S})]=\left[\mathrm{H}_{1}+\left[\mathrm{H}_{2} \frac{1}{\mathrm{~S}}+\left[\mathrm{H}_{3}+\left[\mathrm{H}_{4} \frac{1}{\mathrm{~S}}+[\ldots]^{-1}\right]^{-1}\right]^{-1}\right]^{-1}\right]^{-1} \tag{39}
\end{equation*}
$$

where each $\left[H_{i}\right]$ is a matrix quotient of real and constant, m by m matrix. The block diagram corresponding to Eq. (39) is shown in Fig. 5.

The reduced model can be obtained by discarding the low performance matrix quotients located in the inner position of Eq. (39). The reduced models are

$$
\begin{align*}
\mathrm{T}_{\mathrm{d}}(\mathrm{~S}) \cong & {\left[\mathrm{H}_{1}+\left[\mathrm{H}_{2} \frac{1}{\mathrm{~S}}+\left[\mathrm{H}_{3}+\left[\mathrm{H}_{4} \frac{1}{\mathrm{~S}}\right]^{-1}\right]^{-1}\right]^{-1}\right]^{-1} } \\
= & {\left[\left(\mathrm{H}_{2}+\mathrm{H}_{4}\right) \mathrm{S}+\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}\right]\left[\mathrm{S}^{2} \mathrm{I}+\left(\mathrm{H}_{1} \mathrm{H}_{2}+\mathrm{H}_{1} \mathrm{H}_{4}\right.\right.} \\
& \left.\left.+\mathrm{H}_{3}+\mathrm{H}_{4}\right) \mathrm{~S}+\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}\right]^{-1} \\
\cong & {\left[\mathrm{H}_{1}+\left[\mathrm{H}_{2} \frac{1}{\mathrm{~S}}\right]^{-1}\right]^{-1} } \\
= & {\left[\mathrm{H}_{2}\right]\left[\mathrm{SI}+\mathrm{H}_{1} \mathrm{H}_{2}\right]^{-1} } \tag{39a}
\end{align*}
$$

This reduced model gives a satisfactory approximation in the steady-state response.

If the matrix quotients, $H_{i, i=1,2, \ldots, 2 k}$, are given,
Eq. (39) can be expressed by the following state equations.

$$
\begin{align*}
& {[\mathrm{X}]=[\mathrm{A}][\mathrm{X}]+[\mathrm{B}][\mathrm{U}]} \\
& {[\mathrm{Y}]=[\mathrm{C}]^{\mathrm{T}}[\mathrm{X}]} \tag{40}
\end{align*}
$$

Figure 5. Block Diagram Representation of Second Cauer Matrix Form.
where

$$
\begin{gather*}
\begin{array}{c}
r \times m \\
{[B]=[I, I, \ldots, I]^{T}} \\
{[C]^{T}=\left[H_{2}, H_{4}, \ldots H_{2 K}\right]} \\
r \times x] \\
{[X]=\left[X_{11}, X_{12}, \ldots, X_{1 K}\right]^{T}} \\
X_{11}=\left[X_{1}, X_{2}, \ldots X_{m}\right]^{T} \\
X_{12}=\left[X_{m+1}, X_{m+2}, \ldots X_{2 m}\right]^{T} \\
X_{1 K}=\left[X_{(k-1) m+1}, X_{(K-1) m+2}, \ldots, X_{K m}\right]^{T}
\end{array} \tag{40b}
\end{gather*}
$$

The matrix $\mathrm{rxr}_{\mathrm{A}}$ is a matrix with dimension rxr where $\gamma=k x m$, and K is an proper integer. The characteristic equation is $\Delta(S)=\prod_{i=1}^{r}\left(S-\lambda_{i}\right)$, where λ_{i} is the poles, is an m by m dimensional-identity matrix, $[C]^{T}$ is an m by (kxm) matrix, [X] is an (Kxm]-dimensional state vector,
[U] and [Y] are m-dimensional input and output vector, respectively.

After substituting the matrix quotients into Eq. (40), the corresponding matrix transfer function can be obtained by applying the Leverrier algorithm. ${ }^{12}$ The transfer functicn matrix has the form

$$
\begin{equation*}
T(S)=C^{T}(S I-A)^{-1} B=\frac{1}{\Delta(S)}[\Phi(S)] \tag{41}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta(S) & =S^{r}+d_{1} S^{r-1}+d_{2} S^{r-2}+\ldots+d_{r-1} S+d_{r} \\
{[\Phi(S)] } & =S^{r-1} C^{T} B+S^{r-2} C^{T} R_{1} B+\ldots+C^{T} R_{r-2}{ }^{B+C^{T} R_{r-1}}{ }^{B}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{d}_{1}=-\operatorname{tr}(\mathrm{A}) & \mathrm{R}_{1}=\mathrm{R}_{0} \mathrm{~A}+\mathrm{d}_{1} \mathrm{I}, \\
\mathrm{~d}_{2}=-\frac{1}{2} \operatorname{tr}\left(\mathrm{R}_{1} \mathrm{~A}\right) & \mathrm{R}_{2}=\mathrm{R}_{1} \mathrm{~A}+\mathrm{d}_{2} \mathrm{I} \\
\ldots & \ldots \\
\mathrm{~d}_{\mathrm{r}-1}=-\frac{1}{\mathrm{r}-\mathrm{I}} \operatorname{tr}\left(\mathrm{R}_{\left.\mathrm{r}-2^{A}\right)}\right. & \mathrm{R}_{\mathrm{r}-1}=\mathrm{R}_{\mathrm{r}-2^{A+d_{r-1}} \mathrm{I}} \\
\mathrm{dr}=-\frac{1}{\mathrm{r}} \operatorname{tr}\left(\mathrm{R}_{\mathrm{r}-1} \mathrm{~A}\right) & \mathrm{R}_{\mathrm{r}}=\mathrm{R}_{\mathrm{r}-1} \mathrm{~A}+\mathrm{d}_{\mathrm{r}} \mathrm{I}=0
\end{aligned}
$$

$t_{r}(A)$ is the trace of the matrix $A ; A, B, C$, and R are constant, real matrices of compatible dimensions.

An alternate approach to obtain the matrix-continued fraction inversion or the corresponding matrix-transfer function can be evaluated from the following matrix Routh algorithm ${ }^{10}$,

$$
\mathrm{A}_{2 \mathrm{r}+1,1}=[\mathrm{I}]
$$

$$
\begin{align*}
& A_{i, 1}=H_{i} A_{i+1,1} ; i=2 r, 2 r-1, \ldots, \ldots, 2,1 \\
& A_{j-2, \ell+1}=A_{j, \ell}+H_{j-2} A_{j-1, \ell+1} ; j=2 r+1,2 r, \ldots, 3 ; \\
& \ell=1,2, \ldots r \tag{42}
\end{align*}
$$

The matrix coefficients of Eq. (35) $A_{1 i}, A_{2 i}$ are the elements of the first and second rows of the matrix Routh array generated by Eq. (42).
b) Mixed Method

As shown in Section 1, the reduced model in Eq. (39a) may be unstable, even if the original system is stable. The mixed method is presented for the reduction of multivariable systems which guarantees that the reduced model is stable and the dominant performance of the original system is maintained.

Let the multivariable system with m inputs and ℓ outputs be described by the matrix equation,

$$
\begin{equation*}
Y_{0}(S)=[T(S)] \quad U_{0}(S) \tag{43}
\end{equation*}
$$

The transfer-function matrix is,

$$
\begin{equation*}
[T(S)]=\frac{1}{\Delta_{0}(S)}[Q(S)] \tag{44}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta_{0}(s)=\sum_{i=1}^{n+1} a_{i} s^{i-1}=\prod_{i=1}^{n}\left(s-\lambda_{i}\right) ; & a_{1} \neq 0 \\
& a_{n+1}=1 \\
& \lambda_{i} \neq 0 \text { and }
\end{aligned}
$$

$$
[Q(S)]=\sum_{i=1}^{n} Q_{i} S^{i-1}
$$

In this section, we consider the case $\ell=\mathrm{m}$. The steps involved in the mixed method for the multivariable system reduction can be summarized as follows.

Step 1. Determine the characteristic polynomial of the matrix [T(S)] by applying Gilbert's method. ${ }^{13}$ The characteristic polynomial of the matrix [T(S)] is

$$
\begin{equation*}
\Delta(s)=\left(s-\lambda_{1}\right)^{\gamma_{1}}\left(s-\lambda_{2}\right)^{\gamma_{2}} \cdots\left(s-\lambda_{n}\right)^{\gamma_{n}} \tag{45}
\end{equation*}
$$

If p dominant poles which have $\gamma_{i}=m$ repeated power are chosen as the dominant eigenvalues of the reduced model, then the least common-denominator polynomial $\Delta \mathrm{p}(\mathrm{S})$ and the characteristic polynomial Δ^{C} p.(S) are written:

$$
\begin{gather*}
\Delta p(S)={\underset{i=1}{p}\left(S-\lambda_{i}\right)=\sum_{j=1}^{p+1} d_{j} S^{j-1}, d_{p+1=1}}_{\Delta_{p}^{c}(S)={\underset{i=1}{\pi}}_{p}\left(S-\lambda_{i}\right)^{m}} . \tag{46}
\end{gather*}
$$

Step 2. Use the dominant matrix quotients $H_{i, i=1,2, \ldots,}$ obtained by Eq. (37) and apply the following algorithm to fit the numerator dynamics

$$
\begin{align*}
& \left(B_{2, j}, j=1,2, \ldots, p\right) \text { of the reduced model. } \\
& B_{1, j}=d_{j}[I], j=1,2, \ldots, p \\
& B_{1, p+1}=[I]
\end{aligned} \begin{aligned}
& B_{i+1,1}=H_{i}^{-1} B_{i, 1} ; i=1,2, \ldots, p \text { and } p \leq n \\
& B_{i+1, j+1}=H_{i}^{-1}\left[B_{i, j+1}-B_{i+2, j}\right]: \begin{array}{l}
i=1,2, \ldots, p-j ; \\
j=1,2, \ldots, p-1
\end{array}
\end{align*}
$$

The reduced model is:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{d}}(\mathrm{~S}) & =\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]\left[\mathrm{U}_{0}(\mathrm{~S})\right] \\
& \simeq\left[\mathrm{Y}_{0}(\mathrm{~S})\right]=[\mathrm{T}(\mathrm{~S})]\left[\mathrm{U}_{0}(\mathrm{~S})\right] \tag{49}
\end{align*}
$$

where

$$
T_{d}(S)=\frac{1}{\Delta_{p}(S)}\left[\sum_{j=1}^{p} B_{2, j} S^{j-1}\right]
$$

Again there is an alternative Routh algorithm for the multivariable system which yields identical results.

Replacing $h_{i}, b_{1 j}$ and $b_{2 j}$ by $H_{i}, B_{1 j}$ and $B_{2 j}$, respectively, in Eq. (18) yields

B_{11}	$\mathrm{~B}_{12}$	$\mathrm{~B}_{13}$	\ldots
$\mathrm{~B}_{21}$	$\mathrm{~B}_{22}$	$\mathrm{~B}_{23}$	\ldots
$\mathrm{~B}_{12}-\mathrm{H}_{1} \mathrm{~B}_{22}$	$\mathrm{~B}_{13}-\mathrm{H}_{1} \mathrm{~B}_{23}$	$\mathrm{~B}_{14}-\mathrm{H}_{1}$	24
$\mathrm{~B}_{22}-\mathrm{H}_{2}\left({ }^{\mathrm{B}} 13-\mathrm{H}_{1} \mathrm{~B}_{23}\right)$	$23-\mathrm{H}_{2}\left(\mathrm{~B}_{14}-\mathrm{H}_{1} \mathrm{~B}_{24}\right)$	\ldots	\ldots

It is observed that
$H_{1}=B_{11} B_{21}^{-1}$
$\mathrm{H}_{2}=\mathrm{B}_{21} \mathrm{~B}_{12}-\mathrm{H}_{1} \mathrm{~B}_{22}{ }^{-1}$
$\mathrm{H}_{3}=\left[\mathrm{B}_{12}-\mathrm{H}_{1} \mathrm{~B}_{22}\right]\left[\mathrm{B}_{22}-\mathrm{H}_{2}\left(\mathrm{~B}_{13}-\mathrm{H}_{1} \mathrm{~B}_{23}\right)\right]^{-1}$
$\mathrm{H}_{4}=\left[\mathrm{B}_{22}-\mathrm{H}_{2}\left(\mathrm{~B}_{13}-\mathrm{H}_{1} \mathrm{~B}_{23}\right)\right]\left[\mathrm{B}_{13}-\mathrm{H}_{1} \mathrm{~B}_{23}-\mathrm{H}_{3}\left[\mathrm{~B}_{23}-\mathrm{H}_{2}\left(\mathrm{~B}_{14}-\mathrm{H}_{1} \mathrm{~B}_{24}\right)\right]\right]^{-1}$

After some manipulation of Eq. (51), the following matrix expression can be formulated:

$$
\left[\begin{array}{lllll}
\mathrm{I} & 0 & 0 & 0 & \ldots \\
0 & \mathrm{H}_{2} & 0 & 0 & \ldots . \\
0 & \mathrm{I} & \mathrm{H}_{3} \mathrm{H}_{2} & 0 & \ldots . \\
0 & 0 & \mathrm{H}_{2}+\mathrm{H}_{4} & \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} & \ldots . \\
. & . & . & . & \ldots
\end{array}\right]\left[\begin{array}{l}
\mathrm{B}_{11} \\
\mathrm{~B}_{12} \\
\mathrm{~B}_{13} \\
\mathrm{~B}_{14} \\
.
\end{array}\right]
$$

$=\left[\begin{array}{lllll}\mathrm{H}_{1} & 0 & 0 & 0 & \ldots \\ \mathrm{I} & \mathrm{H}_{2} \mathrm{H}_{1} & 0 & 0 & \ldots \\ 0 & \mathrm{H}_{1}+\mathrm{H}_{3} & \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{1} & 0 & \ldots \\ 0 & \mathrm{I} & \mathrm{H}_{2} \mathrm{H}_{1}+\mathrm{H}_{4} \mathrm{H}_{1}+\mathrm{H}_{4} \mathrm{H}_{3} & \mathrm{H}_{4} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{1} & \ldots \\ . & \cdot & . & . & \ldots\end{array}\right]\left[\begin{array}{l}\mathrm{B}_{21} \\ \mathrm{~B}_{22} \\ \mathrm{~B}_{23} \\ \mathrm{~B}_{24} \\ .\end{array}\right]$

The factored form of Eq. (52) is shown in Eq. (53)
where p is the number of dominant poles chosen for the desired reduced model and $\mathrm{B}_{1}, \mathrm{p}=[\mathrm{I}]$. [I] is an identity matrix with compatible dimension.

Eq. (53) can be written as:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{L}} \mathrm{~B}_{1}=\mathrm{H}_{\mathrm{R}} \mathrm{~B}_{2} \tag{54}
\end{equation*}
$$

where H_{L} and H_{R} are the product of bidiagonal matrices. If $H_{i \neq 0}, i=1,2, \ldots, \rho$, both H_{L} and H_{R} are nonsingular. Eq. (54) can be further simplified as:

$$
\begin{equation*}
\mathrm{B}_{2}=\mathrm{HB}_{1} \tag{55}
\end{equation*}
$$

where $H=H_{R}^{-1} H_{L}$. By using Eq. (55), $B_{2, j}$ can be computed if $\mathrm{B}_{\mathrm{i}, \mathrm{j}}$ and H_{j} are given.

It should be noted ${ }^{6}$ that Eq. (40) is a minimal realization of $T(S)$ and the minimal dimension of the system matrix is $\gamma=K X M$, where K is the smaller integer and m is the dimension of the matrix quotients. This observation can be easily verified by Gilbert's theorem. ${ }^{13}$ For example, starting from the innermost loop of the block diagram shown in Fig. 5, we find that the subsystem in the forward path $\frac{1}{S}\left[\mathrm{H}_{2 \mathrm{~K}}\right]$ has minimal dimension m if and only if $\operatorname{det}\left[\mathrm{H}_{2 \mathrm{~K}}\right] \neq 0$. The subsystem in the feedback path $\left[\mathrm{H}_{2 \mathrm{~K}-1}\right]$ and the forward subsystem $\frac{1}{S}\left[\mathrm{H}_{2 \mathrm{~K}}\right]$ form a composite feedback system. It is completely controllable and observable if det $\left[\mathrm{H}_{2 \mathrm{~K}}\right] \neq 0$ and $\operatorname{det}\left[\mathrm{H}_{2 \mathrm{~K}-1}\right] \neq 0$ because $\operatorname{det}\left[\mathrm{H}_{2 \mathrm{~K}-1} \mathrm{H}_{2 \mathrm{~K}}\right]=\operatorname{det}\left[\mathrm{H}_{2 \mathrm{~K}} \mathrm{H}_{2 \mathrm{~K}-1}\right]=$ $\operatorname{det}\left[\mathrm{H}_{2 \mathrm{~K}}\right]$ det $\left[\mathrm{H}_{2 \mathrm{~K}-1}\right]$. The minimal dimension of this feedback system is m. Furthermore, this composite feedback subsystem and the other feedforward path $\frac{1}{S}\left[\mathrm{H}_{2 \mathrm{~K}-2}\right]$ form a parallel connection. If det $\left[\mathrm{H}_{2 \mathrm{~K}-2}\right] \neq 0$, then the parallel
subsystems, which have no common pole at $S=0$, form an irreducible subsystem with minimal dimension 2 M . By extending this approach to the whole system, we can conclude that the system of Eq. (40) is completely controllable and observable with minimal dimension $\gamma=K X M$ if $\operatorname{det}\left[H_{i}\right] \neq 0$, $\mathrm{i}=1,2, \ldots, 2 \mathrm{~K}$ and $\mathrm{K} \leq \mathrm{n}$.

From this conclusion, we obtain a sufficient condition that when 2 K matrix quotients are available, the minimal dimension of the realization is KXM. On the other hand, if the rank of a transfer-function matrix equals to $K X M$ where K is the smaller integer, then a complete set of matrix quotients can be obtained.

In short, for a system with rank $=\gamma$, dimension of $H_{i}=m$ then $\frac{\gamma}{m}=K \Rightarrow 2 K$ matrix quotients are expected. Before proceeding, we make the following definition ${ }^{12}$: The characteristic polynomial of a proper rational matrix $\mathrm{T}(\mathrm{S})$ is defined to be the least common denominator of all minors of $T(S)$. The degree of the characteristic polynomial of $T(S)$ is equal to the rank of $T(S)$.

It is noted that the common denominator polynomial is not necessarily the characteristic polynomial. The absolute stability of a multivariable system can be determined by applying the Routh criterion ${ }^{14}$ to the characteristic equation obtained.

A method for computing the correct rank of a given matrix-transfer function for the purpose of constructing the state variable representation is contained in an important theorem by Gilbert ${ }^{13}$.

Theorem: Given a rational, proper matrix transfer function, $T(S)$, whose elements have a finite number of simple poles, $S_{i}, i=1,2, \ldots, n$. The partial fraction expansion of $T(S)$ can be expressed as

$$
\begin{equation*}
T(S)=\sum_{i=1}^{n} \frac{D_{i}}{S-S_{i}}+R \tag{56}
\end{equation*}
$$

where

$$
\begin{aligned}
D_{i} & =\underset{S \rightarrow S_{i}}{L_{i m}}\left[\left(S-S_{i}\right) T(S)\right] \\
R & =\underset{S \rightarrow \infty}{L_{i m}} T(S)
\end{aligned}
$$

Let the rank of matrix D_{i} be denoted by γ_{i}, then $T(S)$ can be represented by a system of differential equation, Eq. (40), whose rank is

$$
\begin{equation*}
\gamma=\sum_{i=1}^{n} \gamma_{i} \tag{57}
\end{equation*}
$$

The following examples illustrate the power of the mixed method proposed in this research.

Example 3

Consider the transfer-function matrix

$$
T(S)=\frac{\left[\begin{array}{lr}
15 \cdot 0(S+1 \cdot 7)(S+100) & 95200 \cdot 0(S+1 \cdot 898)(S+10) \tag{58}\\
85 \cdot 0(S+1 \cdot 44)(S+100) & 124000 \cdot 0(S+2 \cdot 037)(S+10)
\end{array}\right]}{(\mathrm{S}+1 \cdot 338354)(\mathrm{S}+1 \cdot 886647)(\mathrm{S}+10 \cdot 0)(\mathrm{S}+100 \cdot 0)}
$$

The above matrix equation is written in the form of a partial fraction expansion to check the rank.

$$
\begin{equation*}
T(S)=\sum_{i=1}^{4} \frac{D_{i}}{\left(S-S_{i}\right)} \tag{59}
\end{equation*}
$$

where D_{i} is the $i^{\text {th }}$ residue matrix given by Eq. (56) and S_{i}, the poles of the matrix elements in $T(S)$, are

$$
\begin{array}{ll}
S_{1}=-1.338354 & S_{2}=-1.886647 \\
S_{3}=-10 \cdot 0 & S_{4}=-100 \cdot 0
\end{array}
$$

and

$$
\begin{align*}
& D_{1}=\left[\begin{array}{cc}
535 \cdot 20886 & 461477 \cdot 71 \\
852 \cdot 42777 & 750376 \cdot 53
\end{array}\right] \equiv \operatorname{rank} \text { two } \\
& D_{2}=\left[\begin{array}{cc}
-274 \cdot 68846 & 8768 \cdot 9573 \\
-3724 \cdot 8732 & 151263 \cdot 5
\end{array}\right] \equiv \operatorname{rank} \text { two } \\
& D_{3}=\left[\begin{array}{cc}
-11205 \cdot 0 & 0 \\
-65484 \cdot 0 & 840537930 \cdot 0 \\
0 & 1093267000 \cdot 0
\end{array}\right] \equiv \operatorname{rank} \text { one }
\end{align*}
$$

The system is obviously of rank six, with

$$
\begin{array}{ll}
S_{1}=\lambda_{1}=-1.338354 & \equiv \text { pole of order two } \\
S_{2}=\lambda_{2}=-1.886657 & \equiv \text { pole of order two } \\
S_{3}=\lambda_{3}=-10.0 & \equiv \text { pole of order one } \\
S_{4}=\lambda_{4}=-100 \cdot 0 & \equiv \text { pole of order one } \tag{61}
\end{array}
$$

It is noted that $K=\frac{Y}{m}$ where $m=2$ for this particular system. Hence $K=\frac{6}{2}=3$ and $2 \times 3=6$ matrix quotients are expected. Eventually, a yield of six matrix quotients are obtained by applying Eq. (37).

$$
\begin{align*}
& H_{1}=\left[\begin{array}{ll}
-0.40686947 & 0.29105532 \\
0.0019716227 & -0.41075473
\end{array}\right], H_{2}=\left[\begin{array}{ll}
1.2684087 & 941.97892 \\
7.1738115 & 1240.9788
\end{array}\right] \\
& H_{3}=\left[\begin{array}{ll}
3.124612 & -2.1961065 \\
-0.14323896 & 0.025205154
\end{array}\right], H_{4}=\left[\begin{array}{ll}
2.4259475 & 6048.3932 \\
-1.4945432 & 8901.132
\end{array}\right] \\
& H_{5}=\left[\begin{array}{ll}
5.9614921 & -4.1304099 \\
-0.00286802 & 0.00201857
\end{array}\right], H_{6}=\left[\begin{array}{ll}
-3.6943562 & -6990.3771 \\
-5.6792683 & -10142 \cdot 111
\end{array}\right] \tag{62}
\end{align*}
$$

The reduced model of this system is found by computing the approximated denominator polynomial

$$
\begin{align*}
A_{2}(S) & =(S+1 \cdot 338354)(S+1 \cdot 886647) \\
& =S^{2}+3 \cdot 225 S+2 \cdot 525 \tag{63}
\end{align*}
$$

Only the first two matrix quotients are used to evaluate the approximate numerator. Substituting the $B_{1, j}$ and H_{i} into Eq. (48) or Eq. (55) yields $\mathrm{B}_{2, \mathrm{j}}$. The reduced model is

$$
\left[\mathrm{T}_{2}(\mathrm{~S})\right]=\frac{1}{\Delta_{2}(\mathrm{~S})}\left[\begin{array}{l}
935 \cdot 17604 \mathrm{~S}+1809 \cdot 446 \\
1222 \cdot 0172 \mathrm{~S}+2538 \cdot 12
\end{array}\right]
$$

The unit-step response curves of the original system and the reduced model are compared in Fig. 6. The I.S.V. of the original system and the second-order approximated model are:

	I.S.V.
First curve of original model	$337408 \cdot 375$
Second curve of original model	$628904 \cdot 5$
First curve of reduced model	$336624 \cdot 0625$
Second curve of reduced model	$627075 \cdot 0625$

demonstrating that the approximation is very satisfactory. Example 4

Slightly modify the matrix transfer function in example 3 as:

$$
T(S)=\frac{\left[\begin{array}{lr}
15 \cdot 0(\mathrm{~S}+1 \cdot 7)(\mathrm{S}+100 \cdot 1) & 95200 \cdot 0(\mathrm{~S}+1 \cdot 898)(\mathrm{S}+10 \cdot 0) \tag{66}\\
85 \cdot 0(\mathrm{~S}+1 \cdot 44)(\mathrm{S}+100) & 124000 \cdot 0(\mathrm{~S}+2 \cdot 037)(\mathrm{S}+10 \cdot 1)
\end{array}\right]}{(\mathrm{S}+1 \cdot 338354)(\mathrm{S}+1 \cdot 886647)(\mathrm{S}+10 \cdot 0)(\mathrm{S}+100 \cdot 0)}
$$

Applying the same procedures as in example 3 shows that the rank of the system is now eight instead of six, meaning that each pole is of order two. It should note again that

Figure 6. Unit Step Response for Example 3.
$K=\frac{8}{2}=4=2 \times 4=8$ matrix quotients. Rearranging
Eq. (66) in ascending order of the form Eq. (44)
$T(S)=\frac{\left[\begin{array}{ll}2552 \cdot 55 & 1306896 \cdot 0 \\ 12240 \cdot 0 & 2551138 \cdot 8\end{array}\right]+\left[\begin{array}{lll}1527 \cdot 0 & 1132689 \cdot 6 \\ 8622 \cdot 4 & 1504988 \cdot 0\end{array}\right] S+\left[\begin{array}{lll}15 \cdot 0 & 95200 \cdot 0 \\ 85 \cdot 0 & 124000 \cdot 0\end{array}\right] S^{2}}{2525 \cdot 0+43502 \cdot 75 S+1357 \cdot 275 S^{2}+113 \cdot 225 S^{3}+S^{4}}$

The required $H_{i}, i=1,2, \ldots, 8$ can be evaluated by applying Eq. (37) to Eq. (67). The eight matrix quotients are

$$
\begin{align*}
& H_{1}=\left[\begin{array}{ll}
-0.41280569 & 0.29237804 \\
0.0019805828 & -0.00041303
\end{array}\right], H_{2}=\left[\begin{array}{ll}
1.2595779 & 942.01771 \\
7 \cdot 1757979 & 1251.1633
\end{array}\right] \\
& H_{3}=\left[\begin{array}{ll}
3.3877287 & -2.2360282 \\
-0.14705349 & 0.025832816
\end{array}\right], H_{4}=\left[\begin{array}{ll}
1.1284751 & 2561.2092 \\
-3.0552006 & 3993.504
\end{array}\right] \\
& H_{5}=\left[\begin{array}{ll}
3.4149102 & -2.3468879 \\
-0.0013859 & 0.00113316
\end{array}\right], H_{6}=\left[\begin{array}{ll}
-2.3979783 & -3671.6249 \\
-4.1203335 & -5463.4547
\end{array}\right] \\
& H_{7}=\left[\begin{array}{ll}
778453.35 & -599165.77 \\
0.24001049 & -0.14767886
\end{array}\right], H_{8}=\left[\begin{array}{ll}
-0.0000746 & 168.398 \\
-0.0002638 & 218.78744
\end{array}\right] \tag{68}
\end{align*}
$$

If a second order of reduction is desired, then the approximated denominator polynomial is

$$
\begin{align*}
\Delta_{2}(S) & =(S+1 \cdot 338354)(S+1 \cdot 886647) \\
& =S^{2}+3 \cdot 225 S+2 \cdot 525 \tag{69}
\end{align*}
$$

Substituting $B_{1,1}, B_{1,2}, B_{1,3}$ and H_{1}, H_{2} Into Eq. (48) or Eq. (55), the approximate numerator is

$$
T_{2}(S)=\frac{\left[\begin{array}{ll}
1 \cdot 2462196 & 933 \cdot 93105 \tag{70}\\
7 \cdot 276 & 1224 \cdot 3628
\end{array}\right] S+\left[\begin{array}{ll}
2 \cdot 55255 & 1806 \cdot 896 \\
12 \cdot 24 & 2551 \cdot 1388
\end{array}\right]}{S^{2}+3 \cdot 225 S+2 \cdot 525}
$$

If we expand the original matrix equation into scaler input-output expressions, the unit step responses are:

$$
\begin{align*}
& \mathrm{T}_{1}(\mathrm{~S})=\frac{95215 \cdot 0 \mathrm{~S}^{2}+1134216 \cdot 6 \mathrm{~S}+1809448 \cdot 55}{\mathrm{~S}^{4}+113 \cdot 225 \mathrm{~S}^{3}+1357 \cdot 275 \mathrm{~S}^{2}+3502 \cdot 75 \mathrm{~S}+2525 \cdot 0} \cdot \frac{1}{\mathrm{~S}} \tag{71a}\\
& \mathrm{~T}_{2}(\mathrm{~S})=\frac{124085 \cdot 0 \mathrm{~S}^{2}+1513610 \cdot 4 \mathrm{~S}+2563378 \cdot 8}{\mathrm{~S}^{4}+113 \cdot 225 \mathrm{~S}^{3}+1357 \cdot 275 \mathrm{~S}^{2}+3502 \cdot 75 \mathrm{~S}+2525 \cdot 0} \cdot \frac{1}{\mathrm{~S}} \tag{71b}
\end{align*}
$$

and the unit step responses of the reduced model are:

$$
\begin{align*}
& \mathrm{T} \alpha_{1}(\mathrm{~S})=\frac{935 \cdot 17726 \mathrm{~S}+1809 \cdot 4485}{\mathrm{~S}^{2}+3 \cdot 225 \mathrm{~S}+2 \cdot 525} \cdot \frac{1}{\mathrm{~S}} \tag{72a}\\
& \mathrm{~T} \alpha_{2}(\mathrm{~S}) \quad \frac{1231 \cdot 6388 \mathrm{~S}+2563 \cdot 3788}{\mathrm{~S}^{2}+3 \cdot 225 \mathrm{~S}+2 \cdot 525} \cdot \frac{1}{\mathrm{~S}} \tag{72b}
\end{align*}
$$

The comparison of $T(t)$ and $T \alpha(t)$ are shown graphically in Fig. 7. The steady-state responses are reproduced exactly, while the initial responses of the original model and the reduced model are also very close. Numerically, I.S.V. are:

	I.S.V.
First curve of original mode1	$337409 \cdot 25$
Second curve of original mode1	$640235 \cdot 0$
First curve of reduced mode1	$336625 \cdot 0$
Second curve of reduced mode1	$638647 \cdot 25$

From the above two examples, we see that the characteristic polynomial of $T(S)$ is in general different from the common denominator polynomial of the determinant of $T(S)$

Fj.gure 7. Unit Step Response for Example 4.
[if $T(S)$ is a square matrix]. If $T(S)$ is scaler (a 1×1 matrix), the denominator of $\mathrm{T}(\mathrm{S})$ and the characteristic polynomial of $T(S)$ would be the same.

It should be pointed out that the rank of Eq. (44) must first be known; otherwise it is possible for the denominator of the reduced model to be of a higher order than the given system.

The following example will show that the accuracy of approximation by the mixed method depends upon the numbers of dominant-matrix quotients used.

Example 5

Consider that a reduced model of the following highorder transfer-function matrix is required:

$$
[\mathrm{T}(\mathrm{~S})]=\frac{1}{\Delta(\mathrm{~S})}\left[\begin{array}{ll}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) \tag{74}\\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S})
\end{array}\right]
$$

where $\Delta(S)=S^{7}+0.258656 \times 10^{3} S^{6}+0.43096293 \times 10^{6} S^{5}+0 \times 48281779$

$$
\begin{aligned}
& \times 10^{8} S^{4}+0 \cdot 18443232 \times 10^{10} S^{3}+0 \cdot 25036464 \times 10^{11} S^{2} \\
& +0 \cdot 5465822 \times 10^{11} S+0 \cdot 11861872 \times 10^{11}
\end{aligned}
$$

$$
\mathrm{T}_{11}(\mathrm{~S})=-0.12413777 \times 10^{2} \mathrm{~S}^{5}+0.12124793 \times 10^{5} \mathrm{~S}^{4}-0.28814104 \times 10^{7} \mathrm{~S}^{3}
$$

$$
-0.33688681 \times 10^{9} S^{2}-0 \cdot 65066826 \times 10^{10} S-0 \cdot 34016025 \times 10^{11}
$$

$$
\mathrm{T}_{12}(\mathrm{~S})=0.5208 \times 10^{2} \mathrm{~S}^{6}+0.10758478 \times 10^{5} \mathrm{~S}^{5}+0.21869383 \times 10^{8} \mathrm{~S}^{4}
$$

$$
+0 \cdot 13737148 \times 10^{10} S^{3}+0 \cdot 218624 \times 10^{11} S^{2}+0 \cdot 16562047
$$

$$
\times 10^{11} \mathrm{~S}+0 \cdot 25930241 \times 10^{11}
$$

$$
\begin{aligned}
\mathrm{T}_{21}(\mathrm{~S})= & 0.20045556 \mathrm{~S}^{6}+0.4786274 \times 10^{2} \mathrm{~S}^{5}+0.39267902 \times 10^{5} \mathrm{~S}^{4} \\
& +0.51539505 \times 10^{7} \mathrm{~S}^{3}+0.23138407 \times 10^{9} \mathrm{~S}^{2}+0.34829993 \times 10^{10} \mathrm{~S} \\
& +0.55723265 \times 10^{10} \\
\mathrm{~T}_{22}(\mathrm{~S})= & 0.74534552 \times 10 \mathrm{~S}^{5}+0.27013426 \times 10^{5} \mathrm{~S}^{4}+0.86810946 \times 10^{6} \mathrm{~S}^{3} \\
& -0.16222221 \times 10^{8} \mathrm{~S}^{2}-0.63230209 \times 10^{9} \mathrm{~S}-0.84962741 \times 10^{10}
\end{aligned}
$$

The eigenvalues of the original system are

$$
\begin{align*}
& \lambda_{1}=-0.24374787, \lambda_{2}=-2 \cdot 3731406 \\
& \lambda_{3}=-27.890472, \lambda_{4}=-36 \cdot 71703 \\
& \lambda_{5}=-48.848372, \lambda_{6}=-71.291619-j 636.28052 \\
& \lambda_{7}=-71.291619+\mathrm{j} 636.28052 \tag{75}
\end{align*}
$$

By selecting various combination of dominant eigenvalues, we have the following approximated denominator polynomials.
(i) If $p=3$ and λ_{1}, λ_{2} and λ_{3} are used as dominant eigenvalues, then the simplified denominator polynomial is

$$
\begin{equation*}
\Delta_{3}(S)=S^{3}+30 \cdot 50736047 S^{2}+73 \cdot 56470257 S \div 16 \cdot 13318683 \tag{76}
\end{equation*}
$$

(ii) If $p=4$ and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} are used, we have

$$
\begin{align*}
\Delta_{4}(S)= & S^{4}+67 \cdot 22439047 S^{3}+1193 \cdot 704373 S^{2}+2717 \cdot 210578 \mathrm{~S} \\
& +592 \cdot 3627048 \tag{76a}
\end{align*}
$$

The rank of [T(S)] is 15. The ratio of the rank and the dimension of this modified system is $\frac{14}{2}=7=K$, an integer. We have $2 \mathrm{~K}=14$ matrix quotients. The required
$H_{i}, i=1,2, \ldots, p$ can be evaluated by applying Eq. (37) to Eq. (74). The first four matrix quotients are

$$
\begin{array}{ll}
H_{1}=\left[\begin{array}{ll}
-0.69742845 & -2.1285198 \\
-0.4574532 & -2.7922526
\end{array}\right], & H_{2}=\left[\begin{array}{ll}
-0.65449285 & 0.53927311 \\
0.11563255 & -0.16002077
\end{array}\right] \\
H_{3}=\left[\begin{array}{lll}
6.7166039 & -12.832236 \\
-0.6360288 & 20.365442
\end{array}\right], & H_{4}=\left[\begin{array}{ll}
0.44788433 & 1.4644699 \\
0.027248267 & 0.15292068
\end{array}\right] \tag{77}
\end{array}
$$

Substituting the $A_{1, j}$ and H_{i} obtained in Eqs. (76) and (77) into Eq. (48) yields $A_{2, j}$. The reduced models are

$$
\mathrm{T}_{3}(\mathrm{~S})=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{lll}
-0 & 11309 \mathrm{~S}^{2}-662642 \mathrm{~S} & , 286{\mathrm{k} 34 \mathrm{~S}^{2}+2083107 \mathrm{~S}}_{-46} 26478 \tag{78}\\
\hline 10019 \mathrm{~S}^{2}+437295 \mathrm{~S} & +352674 \\
+75795 & -075984 \times 10 \mathrm{~S}^{2}-030462 \mathrm{~S} \\
-715557
\end{array}\right]
$$

The unit-step response curve of the original system and the reduced models are compared in Fig. 8, and again the approximation is very satisfactory. Note that the higher the order of the reduced model, the better is the approximation.

Figure 8. Unit Step Response for Example 5.

The I.S.V. of this problem are stated below:

First curve of original model
Second curve of original model
First curve of third-order model
Second curve of third-order model 10.7634×10^{-2}
First curve of fourth-order model 23.82907
Second curve of fourth-order model 10.7667×10^{-2}

Example 6

Consider another high-order multivariable system -

$$
[T(S)]=\frac{1}{\Delta(S)}\left[\begin{array}{ll}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) \\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S})
\end{array}\right]
$$

where $\Delta(S)=S^{8}+67 \cdot 8 S^{7}+1285 \cdot 4 S^{6}+8976 \cdot 1 S^{5}+38697 \cdot 4 S^{4}$

$$
+105846 \cdot 1 \mathrm{~S}^{3}+159414 \cdot 8 \mathrm{~S}^{2}+114239 \cdot 1 \mathrm{~S}+30208 \cdot 2
$$

$$
=(S+0.69302487)(S+0 \cdot 86648517)(S+1 \cdot 2965031
$$

$$
+\mathrm{j} 3 \cdot 49839115)(\mathrm{S}+1 \cdot 296503-\mathrm{j} 3 \cdot 49839115)
$$

$$
(S+1 \cdot 81142425)(S+2 \cdot 73775863)(S+17 \cdot 53158569)
$$

$$
(S+41 \cdot 56671142)
$$

$$
\begin{aligned}
\mathrm{T}_{11}(\mathrm{~S})= & -4 \cdot 3 \mathrm{~S}^{7}-260 \cdot 7 \mathrm{~S}^{6}-4192 \cdot 2 \mathrm{~S}^{5}-16306 \cdot 1 \mathrm{~S}^{4}-50607 \cdot 4 \mathrm{~S}^{3} \\
& -175765 \cdot 0 \mathrm{~S}^{2}-275707 \cdot 3 \mathrm{~S}-120832 \cdot 8 \\
\mathrm{~T}_{21}(\mathrm{~S})= & 4 \cdot 6 \mathrm{~S}^{7}+262 \cdot 8 \mathrm{~S}^{6}+4150 \cdot 6 \mathrm{~S}^{5}+14351 \cdot 3 \mathrm{~S}^{4}+36379 \cdot 9 \mathrm{~S}^{3} \\
& +137523 \cdot 8 \mathrm{~S}^{2}+233691 \cdot 8 \mathrm{~S}+105728 \cdot 7 \\
\mathrm{~T}_{12}(\mathrm{~S})= & \mathrm{S} \cdot 6 \mathrm{~S}^{7}+299 \cdot 3 \mathrm{~S}^{6}+6184 \cdot 7 \mathrm{~S}^{5}+22998 \cdot 3 \mathrm{~S}^{4}+38672 \cdot 3 \mathrm{~S}^{3} \\
& +106422 \cdot 8 \mathrm{~S}^{2}+191676 \cdot 4 \mathrm{~S}+90624 \cdot 6
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{T}_{22}(\mathrm{~S})= & -1 \cdot 85^{7}-237 \cdot 1 \mathrm{~S}^{6}-6116 \cdot 2 \mathrm{~S}^{5}-22123 \cdot 3 \mathrm{~S}^{4}-26739 \cdot 9 \mathrm{~S}^{3} \\
& -69280 \cdot 1 \mathrm{~S}^{2}-149660 \cdot 9 \mathrm{~S}-75520 \cdot 5
\end{aligned}
$$

If $p=4$ and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} are used as dominant eigenvalues, then the simplified denominator polynomial is

$$
\begin{align*}
\Delta_{4}(S)= & (S+0 \cdot 69302487)(S+0 \cdot 86648517)(S+1 \cdot 2965031+j 3 \cdot 49839115) \\
& (S+1 \cdot 2965031-j 3 \cdot 49839115) \\
= & S^{4}+4 \cdot 1525171 S^{3}+18 \cdot 563875 S^{2}+23 \cdot 264936 S \\
& +8 \cdot 3586945 \tag{81}
\end{align*}
$$

The rank of $[\mathrm{T}(\mathrm{S})]$ is 16 ; the ratio of the rank and the dimension is $\frac{16}{2}=8=\mathrm{K}$, an integer. As expected, $2 \mathrm{~K}=16$ matrix quotients were yielded. The first four matrix quotients obtained after applying Eq. (37) to Eq. (80) are

$$
\begin{align*}
& H_{1}=\left[\begin{array}{ll}
5.0 & 6.0 \\
7.0 & 8.0
\end{array}\right] \quad H_{2}=\left[\begin{array}{ll}
-2 & 1 \\
1.5 & -0.5
\end{array}\right] \\
& H_{3}=\left[\begin{array}{rr}
25 & 20 \\
4 & 1
\end{array}\right] \quad H_{4}=\left[\begin{array}{rr}
-2.0 & 2.0 \\
2.5 & -1.0
\end{array}\right] \tag{82}
\end{align*}
$$

Substituting the $A_{1, j}$ and H_{i} in Eq. (81) and (82) into Eq. (48) yields A_{2}, j. The reduced models are
$T(S)=\frac{1}{\Delta(S)}\left[\begin{array}{ll}-4.9858528 & 7.9484098 \\ 5.1678608 & -8.4619989\end{array}\right) S^{3}+\left(\begin{array}{ll}3.4797767 & -5.4656713 \\ -5.4605697 & 7.1425118\end{array}\right)$

$$
\left.S^{2}+\left(\begin{array}{ll}
42.907577 & 28.001335 \tag{83}\\
35.454456 & -20.54822
\end{array}\right) S+\left(\begin{array}{ll}
-33.434778 & 25.076084 \\
29.255431 & -20.896736
\end{array}\right)\right]
$$

Applying a unit-step input to the original system as in the previous example yields
$T(S)=\left[\begin{array}{l}Y_{1}(S) \\ Y_{2}(S)\end{array}\right]=\frac{1}{\Delta(S)}\left[\begin{array}{l}-0 \cdot 7 S^{7}+38 \cdot 58 S^{6}+1992 \cdot 5 S^{5}+6692 \cdot 2 S^{4} \\ -11935 \cdot 1 \mathrm{~S}^{3}-69342 \cdot 2 S^{2}-84030 \cdot 9 \mathrm{~S}-30208 \cdot 2 \\ 2 \cdot 8 S^{7}+25 \cdot 7 S^{6}-1965 \cdot 6 S^{5}-7772 \cdot 0 S^{4} \\ 9640 \cdot 1 \mathrm{~S}^{3}+68243 \cdot 7 \mathrm{~S}^{2}+84030 \cdot 9 \mathrm{~S}+30208 \cdot 2\end{array}\right]$
where $\Delta(S)=S^{9}+678 S^{8}+1285 \cdot 4 S^{7}+8976 \cdot 1 S^{6}+38697 \cdot 4 S^{5}$

$$
\begin{equation*}
+105846 \cdot 1 \mathrm{~S}^{4}+159414 \cdot 8 \mathrm{~S}^{3}+114239 \cdot 1 \mathrm{~S}^{2}+30208 \cdot 2 \mathrm{~S} \tag{84}
\end{equation*}
$$

With the same input, the approximated system outputs are
$T_{4}(S)=\left[\begin{array}{l}Y_{1}{ }^{*}(\mathrm{~S}) \\ Y_{2}{ }^{*}(\mathrm{~S})\end{array}\right]=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{l}2 \cdot 962557 \mathrm{~S}^{3}-1 \cdot 9858946 \mathrm{~S}^{2}-14 \cdot 906242 \mathrm{~S} \\ -8 \cdot 358694 \\ -3 \cdot 2941381 \mathrm{~S}^{3}+1 \cdot 6819421 \mathrm{~S}^{2}+14 \cdot 906241 \mathrm{~S} \\ +8 \cdot 358695\end{array}\right]$
where $\Delta_{4}(S)=S^{5}+4 \cdot 152517 \mathrm{~S}^{4}+18 \cdot 563875 \mathrm{~S}^{3}+23 \cdot 264936 \mathrm{~S}^{2}$

$$
\begin{equation*}
+8 \cdot 3586945 \tag{85}
\end{equation*}
$$

The unit-step responses of the original and approximated systems are shown in Figs. 9 and 10. The corresponding I.S.V. are:

	I.S.V.
First curve of original system	2.491544
Second curve of original system	2.976267
First curve of fourth-order model	3.098814
Second curve of fourth-order model	3.573341

Figure 9. Unit Step Response for Example 6, First Curve.

Figure 10. Unit Step Response for Example 6, Second Curve.

Note that if m, the dimension of [T(S)], is an even number and the methods of Chen ${ }^{5}$ and Shieh ${ }^{6}$ are applied, reduced models of odd degree, p, do not exist. The proposed mixed method ${ }^{7}$ can overcome this disadvantage.

CHAPTER III

SYSTEM REDUCTION WITH UNEQUAL NUMBERS OF INPUTS AND OUTPUTS

The model-reduction algorithms developed in the previous chapters deal only with multivariable systems having an equal number of inputs and outputs, and having a transfer-function matrix with no ill-conditioned numerical elements. However, in general, the transfer-function matrix of a practical system is not a square transferfunction matrix and often contains ill-conditioned constants. Under these circumstances, the model reduction by either continued fractions or mixed method would fail. To overcome these deficiencies, an effective method is developed in this chapter for the simplification of multivariable systems with an unequal number of inputs and outputs.

Since the proposed methods depend heavily upon the dimensions of transfer-function matrices, it is convenient to present the approach by the following case studies. ${ }^{15}$

Section 1. Case for the Number of Outputs Less Than the Number of Inputs ($\ell<m$)

Let a multivariable system with m inputs and \mathcal{L} outputs be described by the matrix equation

$$
\begin{equation*}
\left[Y_{0}(S)\right]=\left[G_{0}(S)\right]\left[U_{0}(S)\right] \tag{87}
\end{equation*}
$$

and the transfer-function matrix

$$
\begin{equation*}
\left[G_{0}(S)\right]=\frac{1}{\Delta_{0}(S)}[Q(S)] \tag{88}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta_{0}(S) & =\sum_{i=1}^{n+1} a_{i} S^{i-1}=\sum_{i=1}^{n}\left(S-\lambda_{i}\right), a_{1} \neq 0, a_{n+1}=1, \\
\lambda_{i} & \neq 0
\end{aligned}
$$

and

$$
[Q(S)]=\sum_{i=1}^{n} Q_{i} S^{i-1}=\left[Q_{1} S^{n-1}+Q_{2} S^{n-2}+\ldots+Q_{n-1} S+Q_{n}\right]
$$

Consider the rank of $\left[G_{o}(S)\right]=r_{o}$, which is required to modify the rectangular matrix $\left[\mathrm{G}_{\mathrm{o}}(\mathrm{S})\right]$ and to construct a new square transfer-function matrix $\left[T_{0}(S)\right]$ with rank $r=$ Kxm. The matrix $\left[T_{0}(S)\right]$ can be obtained by adding another square matrix $\left[G_{2}(S)\right]$ whose rank is $r-r_{0}$ to the modified $\left[\mathrm{G}_{\mathrm{O}}(\mathrm{S})\right]$. The modified system is:

$$
\begin{equation*}
[Y(S)]=\left[T_{0}(S)\right]\left[U_{0}(S)\right] \tag{89}
\end{equation*}
$$

where

$$
[Y(S)]=\left[\begin{array}{c}
(\ell \times 1) \\
Y_{0}(S) \\
\hdashline\left(\begin{array}{c}
(\mathrm{m}-\ell) \times 1) \\
\mathrm{Y}_{1}(\mathrm{~S})
\end{array}\right]
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[T_{0}(S)\right]=\left[G_{1}(S)\right]+\left[G_{2}(S)\right]} \\
& {\left[\mathrm{G}_{1}(\mathrm{~S})\right]=\left[\begin{array}{c}
(\ell \times m) \\
\mathrm{G}_{\mathrm{o}}(\mathrm{~S}) \\
\hdashline((\mathrm{m}-1) \mathrm{lm}) \\
0
\end{array}\right]=\frac{1}{\Delta_{\mathrm{O}}(\mathrm{~S})}\left[\begin{array}{c}
(\mathrm{\ell xm}) \\
\mathrm{Q}(\mathrm{~S}) \\
\hdashline((\mathrm{m}-.-\mathrm{rm}) \\
0
\end{array}\right]} \\
& {\left[G_{2}(S)\right]=\left[\begin{array}{c}
(\ell \times m) \\
0 \\
\hdashline((m-l) \times--1 \\
R(S)
\end{array}\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c}
(\ell \times m) \\
0 \\
\hdashline((m-l) \times-- \\
R
\end{array}\right]} \\
& {\left[T_{0}(S)\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c}
(l \times m) \\
Q(S) \\
\hdashline((\mathrm{m}-\ell) \times \mathrm{lm}) \\
R
\end{array}\right]}
\end{aligned}
$$

The elements in the constant matrix [R] should be chosen so that the rank of $\left[\mathrm{T}_{\mathrm{O}}(\mathrm{S})\right]=\mathrm{Kxm}$ where K is an integer. Since $\left[\mathrm{T}_{0}(\mathrm{~S})\right]$ is a square matrix with rank $\left[\mathrm{T}_{\mathrm{O}}(\mathrm{S})\right]=\mathrm{Kxm}$, the methods proposed in Chapter II can be applied to obtain the reduced mode1. The reduced model for the modified system [$\mathrm{T}_{\mathrm{o}}(\mathrm{S})$] is

$$
\begin{equation*}
\left[\mathrm{Y}_{\mathrm{d}}(\mathrm{~S})\right]=\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]\left[\mathrm{U}_{\mathrm{o}}(\mathrm{~S})\right] \tag{90}
\end{equation*}
$$

where

$$
\left[\mathrm{Y}_{\mathrm{d}}(\mathrm{~S})\right]=\left[\begin{array}{c}
(\ell \times 1) \\
\mathrm{Y}_{\mathrm{d} 1}(\mathrm{~S}) \\
\hdashline((\mathrm{m}-\ell) \times 1) \\
\mathrm{Y}_{\mathrm{d} 2}(\mathrm{~S})
\end{array}\right]
$$

and

$$
\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]=\left[\begin{array}{c}
(\ell \times m) \\
\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S}) \\
\left.\hdashline\left(\mathrm{Cm}_{\mathrm{L}} \mathrm{l}\right) \mathrm{xm}\right) \\
\mathrm{T}_{\mathrm{d} 2}(\mathrm{~S})
\end{array}\right]
$$

The reduced model for the original system $\left[G_{0}(S)\right]$ can be obtained by partitioning the matrix in Eq. (90), or

$$
\begin{align*}
{\left[\mathrm{Y}_{\mathrm{d} 1}(\mathrm{~S})\right] } & =\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]\left[\mathrm{U}_{\mathrm{o}}(\mathrm{~S})\right] \\
& \simeq\left[\mathrm{Y}_{\mathrm{o}}(\mathrm{~S})\right]=\left[\mathrm{G}_{\mathrm{o}}(\mathrm{~S})\right]\left[\mathrm{U}_{\mathrm{o}}(\mathrm{~S})\right] \tag{91}
\end{align*}
$$

Example 7

To illustrate the techniques stated above, consider the following transfer-function matrix $\left[G_{o}(S)\right]$ with $\ell=1$ and $m=2$

$$
\begin{equation*}
\left[G_{0}(S)\right]=\frac{[S+1.5,4]}{(S+1)(S+2)(S+100)} \tag{92}
\end{equation*}
$$

The characteristic polynomial of the matrix is

$$
\begin{aligned}
\Delta(S) & =(S+1)(S+2)(S+100) \\
& =S^{3}+103 S^{2}+302 S+200
\end{aligned}
$$

These procedures are performed to obtain a new modified transfer-function matrix:

$$
\begin{align*}
& {\left[\mathrm{T}_{\mathrm{o}}(\mathrm{~S})\right]=\left[\mathrm{G}_{1}(\mathrm{~S})\right]+\left[\mathrm{G}_{2}(\mathrm{~S})\right]} \\
& =\frac{\left[\begin{array}{cc}
S+1.5 & 4 \\
\hdashline 0 & 0
\end{array}\right]}{\overline{S 3+103 S} 2+302 S+200}+\frac{\left[\begin{array}{cc}
0 & 0 \\
\hdashline-1 & 0
\end{array}\right]}{S 3+103 S 2+302 S+200} \\
& \frac{\left[\begin{array}{cc}
S+1.5 \\
\hdashline 0.1 & -\frac{4}{0}
\end{array}\right]}{S^{3}+103 S^{2}+302 S+200} \tag{93}
\end{align*}
$$

The rank of $\left[T_{0}(S)\right]$ is 6 . The ratio of the rank and the dimension of this modified system is $\frac{6}{2}=3=K$, an integer. Using Eq. (37), we have $2 \mathrm{~K}=6$ matrix quotients:

$$
\begin{align*}
& \mathrm{H}_{1}=\left[\begin{array}{ll}
0.0 & 0.2 \times 10^{4} \\
0.5 \times 10^{2} & -0.75 \times 10^{3}
\end{array}\right] \\
& \mathrm{H}_{2}=\left[\begin{array}{ll}
0.71597737 \times 10^{-2} & 0.13245 \times 10^{-1} \\
0.33112583 \times 10^{-3} & 0.0
\end{array}\right] \\
& \mathrm{H}_{3}=\left[\begin{array}{ll}
0.0 & -0.885475 \times 10^{4} \\
-0.221368 \times 10^{3} & -0.23805 \times 10^{3}
\end{array}\right] \\
& \mathrm{H}_{4}=\left[\begin{array}{ll}
0.239697 \times 10^{-2} & -0.136331 \times 10^{-1} \\
-0.34082797 \times 10^{-3} & 0.0
\end{array}\right] \\
& \mathrm{H}_{5}=\left[\begin{array}{ll}
-0.355512 \times 10^{-12} & 0.10314005 \times 10^{8} \\
0.25785012 \times 10^{6} & 0.25381463 \times 10^{9}
\end{array}\right] \\
& \mathrm{H}_{6}=\left[\begin{array}{ll}
-0.95567532 \times 10^{-2} & 0.38808577 \times 10^{-3} \\
0.97021442 \times 10^{-5} & 0.0
\end{array}\right] \tag{94}
\end{align*}
$$

If the mixed method is applied and $\mathrm{H}_{1}, \mathrm{H}_{2}$ are used, the reduced model for this modified $\left[T_{0}(S)\right]$ is

$$
\begin{aligned}
& {\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]=\frac{1}{\Delta_{2}(\mathrm{~S})}\left[\begin{array}{cc}
0.00985 \mathrm{~S}+0.015 & -0.0004 \mathrm{~S}+0.04 \\
-0.00001 \mathrm{~S}+0.001 & 0.0
\end{array}\right]} \\
& \text { where } \Delta_{2}(\mathrm{~S})
\end{aligned}=(\mathrm{S}+1)(\mathrm{S}+2) \mathrm{C} .
$$

and the reduced model for the original system $\left[\mathrm{G}_{\mathrm{O}}(\mathrm{S})\right.$] is

$$
\begin{equation*}
\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]=\frac{[0.00985 \mathrm{~S}+0.015,-0.0004 \mathrm{~S}+0.04]}{\mathrm{S}^{2}+3 \mathrm{~S}+2} \tag{96}
\end{equation*}
$$

In examining the effect of the value of (m-1) xm matrix R in Eq. (89), consider the transfer-function matrix in Eq. (92)

$$
\begin{equation*}
\left[G_{o}(S)\right]=\frac{[S+1.5,4]}{(S+1)(S+2)(S+100)} \tag{97}
\end{equation*}
$$

and obtain another new modified transfer-function matrix as:

$$
\begin{align*}
{\left[\mathrm{T}_{0}^{\prime}(\mathrm{S})\right] } & =\left[\mathrm{G}_{1}(\mathrm{~S})\right]+\left[\mathrm{G}_{2}^{\prime}(\mathrm{S})\right] \\
& =\frac{\left[\begin{array}{l}
\mathrm{S}+1,5 \\
\hdashline 0 \\
\mathrm{~S}^{3}+103 \mathrm{~S}^{2}+302 \mathrm{~S}+200
\end{array}\right]}{\mathrm{S}^{3}+103 \mathrm{~S}^{2}+302 \mathrm{~S}+200} \\
& =\frac{\left[\begin{array}{l}
0 \\
100 \\
\hline \mathrm{~S}+1.5 \\
\hdashline-100
\end{array}\right]}{\mathrm{S}^{3}+103 \mathrm{~S}^{2}+302 \mathrm{~S}+200} \tag{98}
\end{align*}
$$

The rank of $\mathrm{T}_{\mathrm{O}}^{\prime}(\mathrm{S})$ is also $6, \mathrm{~K}=\frac{\mathrm{r}}{\mathrm{II}}=\frac{6}{2}=3$; hence six matrix quotients are expected:

$$
\begin{align*}
& \mathrm{H}_{1}=\left[\begin{array}{ll}
0.0 & 0.2 \times 10 \\
0.5 \times 10^{2} & -0.75
\end{array}\right] \\
& \mathrm{H}_{2}=\left[\begin{array}{ll}
0.71597737 \times 10^{-2} & 0.13245033 \times 10^{-1} \\
0.33112583 & 0.0
\end{array}\right] \\
& \mathrm{H}_{3}=\left[\begin{array}{ll}
0.0 & -0.88547573 \times 10 \\
-0.2213689 \times 10^{3} & -0.23805024
\end{array}\right] \\
& \mathrm{H}_{4}=\left[\begin{array}{ll}
0.23969795 \times 10^{-2} & -0.13633119 \times 10^{-1} \\
-0.34082797 & 0.0
\end{array}\right] \\
& \mathrm{H}_{5}=\left[\begin{array}{ll}
0.0 & 0.10314005 \times 10^{5} \\
0.25785012 \times 10^{6} & 0.25381463 \times 10^{6}
\end{array}\right] \\
& \mathrm{H}_{6}=\left[\begin{array}{ll}
-0.95567532 \times 10^{-2} & 0.38808577 \times 10^{-3} \\
0.97021442 \times 10^{-2} & 0.0
\end{array}\right] \tag{99}
\end{align*}
$$

Again the mixed method is applied and $\mathrm{H}_{1}, \mathrm{H}_{2}$ are used. The reduced model for [$\mathrm{T}_{\mathrm{o}}^{\prime}(\mathrm{S})$] is

$$
\left[T_{d}^{\prime}(S)\right]=\frac{1}{\Delta_{2}(S)}\left[\begin{array}{ll}
0.00985 \mathrm{~S}+0.015 & -0.0004 \mathrm{~S}+0.04 \\
-0.01 \mathrm{~S}+1 & 0.0
\end{array}\right]_{(100)}
$$

where $\Delta_{2}(S)=S^{2}+3 S+2$. The reduced model for the original system $\left[\mathrm{G}_{\mathrm{o}}(\mathrm{S})\right]$ is

$$
\begin{equation*}
[\mathrm{Tg} 1(\mathrm{~S})]=\frac{[0.00985 \mathrm{~S}+0.015,-0.0004 \mathrm{~S}+0.04]}{\mathrm{S}^{2}+3 \mathrm{~S}+2} \tag{101}
\end{equation*}
$$

Observe that $\left[T_{d 1}(S)\right]=\left[T_{d 1}^{\prime}(S)\right]$; it can be concluded that the values of the ($m-\ell$) $\mathrm{x} \ell$ matrix R do not affect the final values of the reduced model. We can choose a convenient ($m-\ell$) $x \ell$ R matrix for ease in computation, provided that the rank of $\left[T_{0}(S)\right]$ is $K x m$, where K is a proper integer.

Applying a unit-step input to the original system and the reduced model yields

$$
\begin{align*}
& \mathrm{G}_{\mathrm{o}}(\mathrm{~S})=\frac{\mathrm{S}+5.5}{\mathrm{~S}^{3}+103 \mathrm{~S}^{2}+302 \mathrm{~S}+200} \cdot \frac{1}{\mathrm{~S}} \\
& \mathrm{~T}_{\mathrm{d} 1}(\mathrm{~S})=\frac{0.00945 \mathrm{~S}+0.055}{\mathrm{~S}^{2}+3 \mathrm{~S}+2} \cdot \frac{1}{\mathrm{~S}} \tag{102}
\end{align*}
$$

The unit-step responses are shown in Fig. 11; the approximation by this procedure is very satisfactory. The integral square value of the original system is $0.26821228 \times 10^{-3}$ and that of the reduced model is $0.26696687 \times 10^{-3}$. Note that the integral square value of the original system is very close to that of the reduced model.

Example 8

The power of the mixed method and the modified matrixcontinued fraction approximations for a multivariable

Figure 11. Unit Step Response for Example 7.
systems where the number of inputs exceed the number of outputs may be illustrated by considering this following transfer-function matrix $\left[G_{O}(S)\right]$ with $m=3$ and $\mathcal{L}=2$.

$$
\left[G_{0}(S)\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{lll}
G_{11}(S) & G_{12}(S) & G_{13}(S) \tag{103}\\
G_{21}(S) & G_{22}(S) & G_{23}(S)
\end{array}\right]
$$

where

$$
\begin{aligned}
\Delta_{0}(S)= & S^{8}+30.41 S^{7}+358.4295 S^{6}+2913.8638 S^{5}+18110.567 \mathrm{~S}^{4}+ \\
& 67556.983 \mathrm{~S}^{3}+173383.58 \mathrm{~S}^{2}+149172.19 \mathrm{~S}+37752.826 \\
= & (\mathrm{S}+0.35+j 6.8)(\mathrm{S}+0.35-j 6.8)(\mathrm{S}+0.46) \\
& (\mathrm{S}+0.75)(\mathrm{S}+2.2+j 3.6)(\mathrm{S}+2.2-j 3.6)(\mathrm{S}+8.5) \\
& (\mathrm{S}+15.6) \\
\mathrm{G}_{11}(\mathrm{~S})= & 19.82 \mathrm{~S}^{7}+429.252 \mathrm{~S}^{6}+4843.8072 \mathrm{~S}^{5}+45575.952 \mathrm{~S}^{4} \\
& +241544.69 \mathrm{~S}^{3}+905812.05 \mathrm{~S}^{2}+1890443.1 \mathrm{~S} \\
& +842597.95 \\
\mathrm{G}_{12}(\mathrm{~S})= & 6.6 \mathrm{~S}^{7}+157.749 \mathrm{~S}^{6}+3039.363 S^{5}+15736.191 \mathrm{~S}^{4} \\
& +89601.204 \mathrm{~S}^{3}+317009.53 \mathrm{~S}^{2}+732817.47 \mathrm{~S} \\
& +312000.5 \\
\mathrm{G}_{13}(\mathrm{~S})= & 23.6 \mathrm{~S}^{7}+651.76 \mathrm{~S}^{6}+8867.5939 \mathrm{~S}^{5}+62029.838 \mathrm{~S}^{4} \\
& +336313.03 \mathrm{~S}^{3}+1316700.5 \mathrm{~S}^{2}+2987484.2 \mathrm{~S} \\
& +1671748.9 \\
\mathrm{G}_{21}(\mathrm{~S})= & 2.96 \mathrm{~S}^{7}+65.31 \mathrm{~S}^{6}+828.7689 \mathrm{~S}^{5}+6956.6746 \mathrm{~S}^{4} \\
& +33445.715 S^{3}+111211.67 \mathrm{~S}^{2}+136814.3 \mathrm{~S} \\
& +33487.533 \\
\mathrm{G}_{22}(\mathrm{~S})= & 15.8 \mathrm{~S}^{7}+397.818 \mathrm{~S}^{6}+3871.993 \mathrm{~S}^{5}+30696.33 S^{4} \\
& +140696.69 \mathrm{~S}^{3}+475842.89 \mathrm{~S}^{2}+937588.71 \mathrm{~S} \\
& +405193.11
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{G}_{23}(\mathrm{~S})= & 4.4 \mathrm{~S}^{7}+101.161 \mathrm{~S}^{6}+1404.1517 \mathrm{~S}^{5}+10855.522 \mathrm{~S}^{4} \\
& +65863.554 \mathrm{~S}^{3}+236964.75 \mathrm{~S}^{2}+495290.54 \mathrm{~S} \\
& +204527.34
\end{aligned}
$$

The characteristic polynomial of the matrix $\left[\mathrm{G}_{\mathrm{o}}(\mathrm{S})\right.$] is $\Delta(S)=\left\{\Delta_{0}(S)\right\}^{2}$. The following procedures are performed to obtain a new modified transfer-function matrix:

$$
\begin{align*}
{\left[\mathrm{T}_{0}(\mathrm{~S})\right] } & =\left[\mathrm{G}_{1}(\mathrm{~S})\right]+\left[\mathrm{G}_{2}(\mathrm{~S})\right] \\
& =\frac{1}{\Delta_{0}(\mathrm{~S})}\left[\begin{array}{ccc}
\mathrm{G}_{11}(\mathrm{~S}) & \mathrm{G}_{12}(\mathrm{~S}) & \mathrm{G}_{13}(\mathrm{~S}) \\
\mathrm{G}_{21}(\mathrm{~S}) & \mathrm{G}_{22}(\mathrm{~S}) & \mathrm{G}_{23}(\mathrm{~S}) \\
\hdashline-\ldots & 0 & 0 .
\end{array}\right] \tag{104}
\end{align*}
$$

The rank of $\left[\mathrm{T}_{\mathrm{o}}(\mathrm{S})\right]$ is 24 . The ratio of the rank to the dimension of $\left[T_{0}(S)\right]$ is $\frac{24}{3}=8=K$, an integer. By using Eq. (37), we have $2 \mathrm{~K}=16$ matrix quotients. The First four quotients are:

$$
\begin{aligned}
& {\left[\mathrm{H}_{1}\right]=\left[\begin{array}{lll}
0 . & 0 . & 0.37752826 \times 10^{5} \\
-0.12584553 \times 10^{-1} & 0.10286259 & 0.71591038 \times 10^{4} \\
0.24931503 \times 10^{-1} & -0.19197368 \times 10^{-1} & -0.20364361 \times 10^{5}
\end{array}\right]} \\
& {\left[\mathrm{H}_{2}\right]=\left[\begin{array}{lll}
0.11480738 \times 10^{2} & 0.51266112 \times 10 & 0.20667866 \times 10^{2} \\
0.83229395 & 0.65556553 \times 10 & 0.34686103 \times 10 \\
0.67036624 \times 10^{-5} & 0 . & 0 .
\end{array}\right]} \\
& {\left[\mathrm{H}_{3}\right]=\left[\begin{array}{lll}
-0.9476532 \times 10^{-16} & 0.6317688 \times 10^{-6} & -0.12834169 \times 10^{6} \\
-0.79448967 \times 10 & 0.49349865 \times 10 & -0.19437105 \times 10^{7} \\
0.15729226 \times 10^{2} & -0.84312433 \times 10 & 0.39432597 \times 10^{7}
\end{array}\right]} \\
& {\left[\mathrm{H}_{4}\right]=\left[\begin{array}{lll}
0.32055347 \times 10 & 0.93388214 & 0.47820585 \\
0.13836121 \times 10 & 0.16462128 \times 10 & 0.85234565 \\
-0.10084175 \times 10^{-4} & -0.21698973 \times 10^{-21} & -0.89141847 \times 10^{-22}
\end{array}\right]}
\end{aligned}
$$

If the method of the matrix-continued fraction is applied and H_{1} and H_{2} are used, then (by applying Eq. (48) or Eq. (55)) the reduced model for the modified system [$\left.T_{0}(S)\right]$ is

$$
\left[\left(\mathrm{T}_{\mathrm{d}}\right)\right]=\frac{1}{\Delta(\mathrm{~S})}\left[\begin{array}{lll}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) & \mathrm{T}_{13}(\mathrm{~S}) \tag{106}\\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S}) & \mathrm{T}_{23}(\mathrm{~S}) \\
\hdashline------1 \mathrm{-} & -\mathrm{O} \\
\mathrm{~T}_{31}(\mathrm{~S}) & \mathrm{T}_{32}(\mathrm{~S}) & \mathrm{T}_{33}(\mathrm{~S})
\end{array}\right]
$$

where

$$
\begin{aligned}
\Delta(\mathrm{S})= & \text { The characteristic polynomial of the reduced } \\
& \text { model } \\
= & \mathrm{S}^{3}+1.3115805 \mathrm{~S}^{2}+0.54131967 \mathrm{~S}+0.069200278 \\
= & (\mathrm{S}+0.2530821524)(\mathrm{S}+0.4475236322)(\mathrm{S}+0.6109847154 \\
\mathrm{T}_{11}(\mathrm{~S})= & 0.11480738 \times 10^{2} \mathrm{~S}^{2}+0.94441257 \times 10 \mathrm{~S}+0.15444675 \times 10 \\
\mathrm{~T}_{12}(\mathrm{~S})= & 0.51266112 \times 10 \mathrm{~S}^{2}+0.35571607 \times 10 \mathrm{~S}+0.57189153 \\
\mathrm{~T}_{13}(\mathrm{~S})= & 0.20667866 \times 10^{2} \mathrm{~S}^{2}+0.17338541 \times 10^{2} \mathrm{~S}+0.30642869 \times 10 \\
\mathrm{~T}_{21}(\mathrm{~S})= & 0.83229395 \mathrm{~S}^{2}+0.48840185 \mathrm{~S}+0.6138207 \times 10^{-1} \\
\mathrm{~T}_{22}(\mathrm{~S})= & 0.65556553 \times 10 \mathrm{~S}^{2}+0.45937866 \times 10 \mathrm{~S}+0.74271197 \\
\mathrm{~T}_{23}(\mathrm{~S})= & 0.34686103 \times 10 \mathrm{~S}^{2}+0.2359161 \times 10 \mathrm{~S}+0.37489508 \\
\mathrm{~T}_{31}(\mathrm{~S})= & 0.67036624 \times 10^{-5} \mathrm{~S}^{2}+0.70958826 \times 10^{-5} \mathrm{~S} \\
& +0.18329827 \times 10^{-5} \\
\mathrm{~T}_{32}(\mathrm{~S})= & 0 . \\
\mathrm{T}_{33}(\mathrm{~S})= & 0 .
\end{aligned}
$$

The reduced model for the original system $\left[G_{o}(S)\right]$ is

$$
\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})=\frac{1}{\Delta(\mathrm{~S})}\left[\begin{array}{lll}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) & \mathrm{T}_{13}(\mathrm{~S}) \tag{107}\\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S}) & \mathrm{T}_{23}(\mathrm{~S})
\end{array}\right]
$$

The zeros of $\Delta(S)=0$ in Eq. (107) are the equivalent dominant poles of the original system $\left[G_{0}(S)\right]$.

If the mixed method is applied and $H_{i}, i=1, \ldots, 4$ are used, then the reduced model for the modified system [$\left.\mathrm{T}_{0}(\mathrm{~S})\right]$ is

$$
\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{lll}
\mathrm{T}_{11}^{*}(\mathrm{~S}) & \mathrm{T}_{12}^{*}(\mathrm{~S}) & \mathrm{T}_{13}^{*}(\mathrm{~S}) \tag{108}\\
\mathrm{T}_{21}^{*}(\mathrm{~S}) & \mathrm{T}_{22}^{*}(\mathrm{~S}) & \mathrm{T}_{23}^{*}(\mathrm{~S}) \\
\hdashline \mathrm{T}_{31}^{*}(\mathrm{~S}) & \mathrm{T}_{32}^{*}(\mathrm{~S}) & \mathrm{T}_{33}^{*}(\mathrm{~S})
\end{array}\right]
$$

where $\Delta_{4}(S)=$ The least common-denominator polynomial

$$
\begin{aligned}
&=((S+0.35+j 6.8)(S+0.35-j 6.8)(S+0.46)(S+0.75) \\
&=S^{4}+1.91 \mathrm{~S}^{3}+47.5545 \mathrm{~S}^{2}+56.340125 \mathrm{~S} \div 15.9950625 \\
& \mathrm{~T}_{11}^{*}(\mathrm{~S})=-0.11487882 \times 10 \mathrm{~S}^{3}+0.67114913 \times 10^{2} \mathrm{~S}^{2} \\
&+0.64781099 \times 10^{3} \mathrm{~S}+0.35699068 \times 10^{3} \\
& \mathrm{~T}_{12}^{*}(\mathrm{~S})= 0.40355433 \times 10 \mathrm{~S}^{3}+0.11092337 \times 10^{2} \mathrm{~S}^{2} \\
&+0.25377828 \times 10^{3} \mathrm{~S}+0.13218792 \times 10^{3} \\
& \mathrm{~T}_{13}^{*}(\mathrm{~S})= 0.13009015 \mathrm{~S}^{3}+0.6829685 \times 10^{2} \mathrm{~S}^{2}+0.96192116 \times 10^{3} \mathrm{~S} \\
&+0.70828415 \times 10^{3} \\
& \mathrm{~T}_{21}^{*}(\mathrm{~S})=-0.16371447 \times 10 \mathrm{~S}^{3}+0.23321667 \times 10^{2} \mathrm{~S}^{2} \\
&+0.51879505 \times 10^{2} \mathrm{~S}+0.14187951 \times 10^{2} \\
& \mathrm{~T}_{22}^{*}(\mathrm{~S})= 0.34420703 \times 10 \mathrm{~S}^{3}+0.44147724 \times 10^{2} \mathrm{~S}^{2} \\
&+0.32359929 \times 10^{3} \mathrm{~S}+0.17167163 \times 10^{3} \\
& \mathrm{~T}_{23}^{*}(\mathrm{~S})= 0.842381165^{3}+0.16914937 \times 10^{2} \mathrm{~S}^{2} \\
&+0.17267462 \times 10^{3} \mathrm{~S}+0.86653849 \times 10^{2} \\
& \mathrm{~T}_{31}^{*}(\mathrm{~S})= 0.93739989 \times 10^{-6} \mathrm{~S}^{3}+0.31920638 \times 10^{-4} \mathrm{~S}^{2} \\
&-0.18173293 \times 10^{-3} \mathrm{~S}+0.4236785 \times 10^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{32}^{*}(\mathrm{~S})=0 \\
& \mathrm{~T}_{33}^{*}(\mathrm{~S})=0
\end{aligned}
$$

The reduced model for the original system $\left[G_{o}(S)\right]$ is

$$
\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{lll}
\mathrm{T}_{11}^{*}(\mathrm{~S}) & \mathrm{T}_{12}^{*}(\mathrm{~S}) & \mathrm{T}_{13}^{*}(\mathrm{~S}) \tag{109}\\
\mathrm{T}_{21}^{*}(\mathrm{~S}) & \mathrm{T}_{22}^{*}(\mathrm{~S}) & \mathrm{T}_{23}^{*}(\mathrm{~S})
\end{array}\right]
$$

The characteristic polynomial of $\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]$ is $\Delta(\mathrm{S})=\left\{\Delta_{4}(\mathrm{~S})\right\}^{2}$.
Note that the reduced model retains the dominant poles of the original system. The unit-step response curves of the original system and the reduced models in Eq. (103), (107), and (109) are compared in Figs. 12 and 13. The reduced models are stable and have a good approximation in steadystate responses but a slight discrepancy in the transient response.

The I.S.V. of this system are stated below:

> I.S.V.

First curve of original system $0.166396557 \times 10^{4}$
Second curve of original
system $\quad 0.125646808 \times 10^{3}$
First curve of the fourth order (mixed method) reduced model
$0.256096679 \times 10^{4}$
Second curve of the fourth order (mixed method) reduced model 0.23946464×10^{3}

First curve of the third order (second Caver form) reduced model

$$
0.140070385 \times 10^{4}
$$

Second curve of the third order (second Caver form)
reduced model
$0.1100467834 \times 10^{3}$
(110)

Observe that the second Caver form approximation is better than that of mixed method in this particular example.

Example 9

For another illustration, consider the following transferfunction matrix $\left[G_{o}(S)\right]$ with $m=3$ and $\ell=2$

$$
\left[G_{0}(S)\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{lll}
G_{11}(S) & G_{12}(S) & G_{13}(S) \tag{111}\\
G_{21}(S) & G_{22}(S) & G_{23}(S)
\end{array}\right]
$$

where

$$
\begin{aligned}
\Delta_{0}(S)= & S^{8}+86.487 \mathrm{~S}^{7}+2587.496 \mathrm{~S}^{6}+32845.65 \mathrm{~S}^{5}+171583.354 \mathrm{~S}^{4} \\
& +313189.964 \mathrm{~S}^{3}+245116.102 \mathrm{~S}^{2}+83400.489 \mathrm{~S} \\
& +11309.76782 \\
= & (\mathrm{S}+0.2996+\mathrm{j} 0.1655)(\mathrm{S}+0.2996-\mathrm{j} 0.1655) \\
& (\mathrm{S}+0.9776+\mathrm{j} 0.1661)(\mathrm{S}+0.9776-\mathrm{j} 0.1661) \\
& (\mathrm{S}+7.448)(\mathrm{S}+14.998)(\mathrm{S}+22.61)(\mathrm{S}+38.888) \\
\mathrm{G}_{11}(\mathrm{~S})= & -3.217 \mathrm{~S}^{7}+19.627 \mathrm{~S}^{6}+1146.549 \mathrm{~S}^{5}+3716.882 \mathrm{~S}^{4} \\
& +223.874 \mathrm{~S}^{3}-1729.049 \mathrm{~S}^{2}=40283.116 \mathrm{~S}+6280.031 \\
\mathrm{G}_{12}(\mathrm{~S})= & -1.693 \mathrm{~S}^{7}+8.993 \mathrm{~S}^{6}+934.667 \mathrm{~S}^{5}+1079.064 \mathrm{~S}^{4} \\
& -701.762 \mathrm{~S}^{3}-34910.78 \mathrm{~S}^{2}+4858.702 \mathrm{~S}-8803.412
\end{aligned}
$$

Figure 13. Unit Sté Response for Example 8, Second Curve.

$$
\begin{aligned}
\mathrm{G}_{13}(\mathrm{~S})= & 3.465 \mathrm{~S}^{7}+11.861 \mathrm{~S}^{6}+233.666 \mathrm{~S}^{5}+3896.727 \mathrm{~S}^{4} \\
& -876.014 \mathrm{~S}^{3}-41992.207 \mathrm{~S}^{2}-31967.676 \mathrm{~S} \\
& -7900.486 \\
\mathrm{G}_{21}(\mathrm{~S})= & 7.632 \mathrm{~S}^{7}+12.031 \mathrm{~S}^{6}-501.74 \mathrm{~S}^{5}-6360.227 \mathrm{~S}^{4} \\
& +9070.185 \mathrm{~S}^{3}+36795.67 \mathrm{~S}^{2}+160754.791 \mathrm{~S} \\
& +4797.452 \\
\mathrm{G}_{22}(\mathrm{~S})= & -2.951 \mathrm{~S}^{7}+7.313 \mathrm{~S}^{6}-882.113 \mathrm{~S}^{5}-769.914 \mathrm{~S}^{4} \\
& +4416.643 \mathrm{~S}^{3}+2416.532 \mathrm{~S}^{2}+29642.495 \mathrm{~S} \\
& +2497.208 \\
\mathrm{G}_{23}(\mathrm{~S})= & -1.212 \mathrm{~S}^{7}+13.305 \mathrm{~S}^{6}-692.829 \mathrm{~S}^{5}-1872.906 \mathrm{~S}^{4} \\
& -2846.545 \mathrm{~S}^{3}+34630.529 \mathrm{~S}^{2}+342405.841 \mathrm{~S} \\
& +5335.73
\end{aligned}
$$

The characteristic polynomial of the matrix $\left[G_{0}(S)\right]$ is $\Delta(S)=\left\{\Delta_{0}(S)\right\}^{2}$. Obtain the new modified transfer-function matrix

$$
\begin{align*}
{\left[T_{0}(S)\right] } & =\left[G_{1}(S)\right]+\left[G_{2}(S)\right] \tag{112}\\
& =\frac{1}{\Delta(S)}\left[\begin{array}{ccc}
G_{11}(S) & G_{12}(S) & G_{13}(S) \\
G_{21}(S) & G_{22}(S) & G_{23}(S) \\
\hdashline 1.0 & 0 & 0 .
\end{array}\right]
\end{align*}
$$

The rank of $\left[T_{0}(S)\right]$ is 24 , hence the ratio of the rank to the dimension is $\frac{24}{3}=8=K$, an integer. Again applying Eq. (37), the first four of the $2 \mathrm{~K}=16$ matrix quotients are:

$$
\begin{align*}
& {\left[\mathrm{H}_{1}\right]=\left[\begin{array}{ccc}
0.38318984 \times 10^{-16} & 0.38318984 \times 10^{-16} & 0.11309768 \times 10^{5} \\
-0.22150578 \times 10 & -0.32797824 \times 10 & 0.29645231 \times 10^{5} \\
0.10366829 \times 10 & 0.36546202 \times 10 & -0.24043266 \times 10^{5}
\end{array}\right]} \\
& {\left[\mathrm{H}_{2}\right]=\left[\begin{array}{lll}
0.45116321 \times 10^{-1} & -0.92898212 \times 10^{-1} & -0.79173271 \times 10^{-1} \\
0.45319024 \times 10^{-1} & 0.22768179 \times 10^{-1} & 0.16408817 \times 10^{-1} \\
0.11990337 \times 10^{-4} & 0.18578757 \times 10^{-22} & -0.10846143 \times 10^{-21}
\end{array}\right]} \\
& {\left[\mathrm{H}_{3}\right]=\left[\begin{array}{lll}
-0.30038726 \times 10^{-15} & -0.5362692 \times 10^{-16} & -0.28376926 \times 10^{5} \\
0.45986809 \times 10 & 0.33347733 \times 10 & -0.59570614 \times 10^{5} \\
-0.11817562 \times 10 & -0.3404811 \times 10 & 0.33386715 \times 10^{5}
\end{array}\right]} \\
& {\left[\mathrm{H}_{4}\right]=\left[\begin{array}{lll}
-0.2560898 & 0.10830943 & -0.71889798 \times 10^{-1} \\
0.63462792 & 0.87967091 \times 10^{-1} & 0.139994 \times 10 \\
-0.21212193 \times 10^{-4} & -0.15744114 \times 10^{-21} & -0.15088878 \times 10^{-2 I}
\end{array}\right]} \tag{113}
\end{align*}
$$

Using the mixed method with H_{i}, $i=1, \ldots, 4$, the reduced model for the modified system [$\mathrm{T}_{\mathrm{o}}(\mathrm{S})$] is

$$
\text { where } \begin{align*}
\Delta_{4}(S)= & (S+0.2996+j 0.1655)(S+0.2996-j 0.1655) \tag{114}\\
& (S+0.9776+j 0.1661)(S+0.9776-j 0.1661) \\
= & S^{4}+2.5545 S^{3}+2.2721 S^{2}+0.81822 S+0.11519 \\
T_{11}(S)= & -0.14279847 \times 10^{-1} S^{3}+0.96772826 \times 10^{-1} S^{2} \\
& -0.42761604 S+0.63962127 \times 10^{-1}
\end{align*}
$$

$$
\begin{aligned}
\mathrm{T}_{12}(\mathrm{~S})= & 0.92769451 \times 10^{-1} \mathrm{~S}^{3}-0.37346816 \mathrm{~S}^{2} \\
& +0.73782622 \times 10^{-1} \mathrm{~S}-0.89662764 \times 10^{-1} \\
\mathrm{~T}_{13}(\mathrm{~S})= & 0.91633318 \times 10^{-1} \mathrm{~S}^{3}-0.34349318 \mathrm{~S}^{2}-0.30378618 \mathrm{~S} \\
& -0.80466461 \times 10^{-1} \\
\mathrm{~T}_{21}(\mathrm{~S})= & 0.72275578 \times 10^{-1} \mathrm{~S}^{3}-0.66460835 \times 10^{-1} \mathrm{~S}^{2} \\
& +0.16240473 \times 10 \mathrm{~S}+0.48862054 \times 10^{-1} \\
\mathrm{~T}_{22}(\mathrm{~S})= & 0.53136006 \times 10^{-1} \mathrm{~S}^{3}-0.55925154 \times 10^{-1} \mathrm{~S}^{2} \\
& +0.29501683 \mathrm{~S}+0.25434067 \times 10^{-1} \\
\mathrm{~T}_{23}(\mathrm{~S})= & 0.49534084 \times 10^{-1} \mathrm{~S}^{3}-0.58958648 \mathrm{~S}^{2} \\
& +0.34726783 \times 10 \mathrm{~S}+0.54344417 \times 10^{-1} \\
\mathrm{~T}_{31}(\mathrm{~S})= & -0.12341126 \times 10^{-6} \mathrm{~S}^{3}+0.51027315 \times 10^{-6} \mathrm{~S}^{2} \\
& -0.27599242 \times 10^{-5} \mathrm{~S}+0.10185001 \times 10^{-4} \\
\mathrm{~T}_{32}(\mathrm{~S})= & 0.87362005 \times 10^{-19 \mathrm{~S}^{3}-0.28584778 \times 10^{-20} \mathrm{~S}^{2}} \\
& -0.57618962 \times 10^{-20} \mathrm{~S}+0.3902789 \times 10^{-21} \\
\mathrm{~T}_{33}(\mathrm{~S})= & 0.76839590 \times 10^{-19} \mathrm{~S}^{3}+0.43080259 \times 10^{-19} \mathrm{~S}^{2} \\
& -0.2555777 \times 10^{-19} \mathrm{~S}+0.0
\end{aligned}
$$

The reduced model for the original system [$G_{0}(S)$] is

$$
\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{lll}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) & \mathrm{T}_{13}(\mathrm{~S}) \tag{115}\\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S}) & \mathrm{T}_{23}(\mathrm{~S})
\end{array}\right]
$$

The characteristic polynomial of $\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]$ is $\Delta(S)=\left\{\Delta_{4}(S)\right\}^{2}$.

The unit-step response curves of the original system and the reduced mode1 in Eqs. (111) and (115) are compared in Figs. 14 and 15. The approximation for this multivariable system is very satisfactory. The model-reduction by the

Figure 14. Unit Step Response for Example 9, First Curve.

Figure 15. Unit Step Response for Example 9, Second Curve.
matrix-continued fraction for this particular system is not given, because its third order approximation is unstable and the sixth order approximation is far from satisfactory. The numerical comparison by the I.S.V. is:
I.S.V.

First curve of original 0.3814428
system
Second curve of original $0.113688755 \times 10^{2}$
system
First curve of the 0.27033925
reduced mode1
Second curve of the $\quad 0.111731157 \times 10^{2}$
reduced model

Section 2I Case for the Number of Outputs Greater Than the Number of Inputs ($\ell>m$)

Restating the m inputs and 1 outputs multivariable system:

$$
\begin{equation*}
\left[Y_{0}(S)\right]=\left[G_{0}(S)\right]\left[U_{0}(S)\right] \tag{117}
\end{equation*}
$$

The transfer-function matrix

$$
\begin{equation*}
\left[G_{0}(S)\right]=\frac{1}{\Delta_{0}(S)}[Q(S)] \tag{118}
\end{equation*}
$$

Assume that the rank of $\left[G_{o}(S)\right]$ is r_{0}. A new square matrix $\left[T_{0}(S)\right]$ with rank $\left[T_{O}(S)\right]=K x \ell$ where K is an integer is to be constructed by modifying the matrix $\left[G_{O}(S)\right]$ and by adding another matrix $\left[\mathrm{G}_{2}(\mathrm{~S})\right]:$

$$
\begin{equation*}
\left[T_{0}(S)\right]=\left[G_{1}(S)\right]+\left[G_{2}(S)\right] \tag{119}
\end{equation*}
$$

where

$$
\left[G_{1}(S)\right]=\left[\begin{array}{c:c}
(\ell x m) & (\ell x(\ell-m)) \\
G_{0}(S) & 0
\end{array}\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c:c}
(\ell \times m) & (\ell \times(\ell-m)) \\
Q(S) & 0
\end{array}\right]
$$

and

$$
\begin{aligned}
& {\left[G_{2}(S)\right]=\left[\begin{array}{c:c}
(\ell \times m) & (\ell x(\ell-m)) \\
0 & R(S)
\end{array}\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c:c}
(\ell x m) & (\ell \times(\ell-m)) \\
0 & R
\end{array}\right]} \\
& {\left[T_{0}(S)\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c:c}
(\ell \times m) & (\ell \times(\ell-m)) \\
Q(S) & R
\end{array}\right]}
\end{aligned}
$$

The elements in the constant matrix [R] should be chosen in such a way that rank of $\left[T_{0}(S)\right]=K x \ell$, where K is an integer. Applying the proposed procedures in Chapter II yields the reduced model for the modified system [$\mathrm{T}_{\mathrm{O}}(\mathrm{S})$]

$$
\begin{equation*}
\left[Y_{d}(S)\right]=\left[T_{d}(S)\right]\left[U_{d}(S)\right] \tag{120}
\end{equation*}
$$

where

$$
\begin{aligned}
& {\left[Y_{d}(S)\right]=\left[\begin{array}{c}
(\ell \times 1) \\
Y_{d 1}(S)
\end{array}\right]+\left[\begin{array}{c}
(\ell \times 1) \\
Y_{d 2}
\end{array}\right]} \\
& {\left[U_{d}(S)\right]=\left[\begin{array}{c}
(m \times 1) \\
U_{0}(S) \\
\hdashline((\ell-m) \times 1) \\
U_{1}(S)
\end{array}\right]} \\
& {\left[T_{d}(S)\right]=\left[\begin{array}{l:c}
(\ell \times m) & (\ell \times(\ell-m)) \\
T_{d 1}(S) & T_{d 2}(S)
\end{array}\right]}
\end{aligned}
$$

The reduced model for the original system $\left[G_{0}(S)\right]$ can be obtained by partitioning the matrix in Eq. (120);

$$
\begin{align*}
{\left[\mathrm{Y}_{\mathrm{d} l}(\mathrm{~S})\right] } & =\left[\mathrm{T}_{\mathrm{d} l}(\mathrm{~S})\right]\left[\mathrm{U}_{\mathrm{o}}(\mathrm{~S})\right] \tag{121}\\
& \simeq\left[\mathrm{Y}_{\mathrm{o}}(\mathrm{~S})\right]=\left[\mathrm{G}_{\mathrm{o}}(\mathrm{~S})\right]\left[\mathrm{U}_{\mathrm{o}}(\mathrm{~S})\right]
\end{align*}
$$

Example 10

To illustrate these proposed procedures and to examine the effect of the matrix R, consider this simple system with $m=1$ and $\ell=2$

$$
\left[G_{0}(S)\right]=\frac{\left[\begin{array}{c}
S+1.5 \tag{122}\\
4
\end{array}\right]}{(S+1)(S+2)(S+100)}
$$

The characteristic polynomial of the matrix $\left[G_{o}(S)\right]$ is $\Delta_{0}(S)=(S+1)(S+2)(S+100)$. The new modified transfer-function matrix is

$$
\begin{align*}
{\left[\mathrm{T}_{0}(\mathrm{~S})\right] } & =\left[\mathrm{G}_{1}(\mathrm{~S})\right]+\left[\mathrm{G}_{2}(\mathrm{~S})\right] \\
& =\frac{1}{\Delta_{0}(\mathrm{~S})}\left[\begin{array}{cc}
\mathrm{S}+1.5 & 0 \\
4 & 0.1
\end{array}\right] \tag{123}
\end{align*}
$$

The rank is 6 , and the ratio of rank to dimension is $\frac{6}{2}=3=K$, an integer; hence we have a yield of $2 \mathrm{~K}=6$ matrix quotients. The first two matrix quotients are:

$$
\begin{align*}
& H_{1}=\left[\begin{array}{ll}
0.13333333 \times 10^{3} & 0.27755576 \times 10^{-14} \\
-0.53333333 \times 10^{4} & 0.2 \times 10^{4}
\end{array}\right] \\
& H_{2}=\left[\begin{array}{ll}
0.88932806 \times 10^{-2} & 0.50821977 \times 10^{-20} \\
0.13245033 \times 10^{-1} & 0.33112583 \times 10^{-3}
\end{array}\right] \tag{124}
\end{align*}
$$

Applying the mixed method and using $\mathrm{H}_{1}, \mathrm{H}_{2}$, then the reduced model for the modified system [$\mathrm{T}_{0}(\mathrm{~S})$] is

$$
\begin{align*}
{\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]=} & \frac{1}{\Delta_{2}(\mathrm{~S})}\left[\begin{array}{l}
0.98499999 \times 10^{-2} \mathrm{~S}+0.15 \times 10^{-1} \\
-0.4 \times 10^{-3} \mathrm{~S}+0.4 \times 10^{-1} \\
0.11564823 \times 10^{-19} \mathrm{~S}-0.135525 \times 10^{-19}
\end{array}\right. \\
& -0.99999 \times 10^{-5} \mathrm{~S}+0.1 \times 10^{-2}
\end{align*}
$$

where $\Delta_{2}(S)=$ The least common-denominator polynomial

$$
\begin{aligned}
& =(S+1)(S+2) \\
& =S^{2}+3 S+2
\end{aligned}
$$

The reduced model for the original system $\left[G_{0}(S)\right]$ is

$$
\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]=\frac{1}{\Delta_{2}(\mathrm{~S})}\left[\begin{array}{l}
0.98499999 \times 10^{-2} \mathrm{~S}+0.15 \times 10^{-1} \tag{126}\\
-0.4 \times 10^{-3} \mathrm{~S}+0.4 \times 10^{-1}
\end{array}\right]
$$

The characteristic polynomial of $\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]$ is $\Delta_{2}(S)=(S+1)(S+2)$.

Now remodel the same system as:

$$
\begin{align*}
{\left[\mathrm{T}_{\mathrm{o}}^{\prime}(S)\right] } & =\left[\mathrm{G}_{1}(\mathrm{~S})\right]+\left[\mathrm{G}_{2}^{\prime}(\mathrm{S})\right] \\
& =\frac{1}{\Delta_{\mathrm{o}}(S)}\left[\begin{array}{c:c}
\mathrm{S}+1.5 & 0 \\
4 & 100
\end{array}\right] \tag{127}
\end{align*}
$$

The rank is also 6, and the ratic of rank to dimension is $\frac{6}{2}=3=K$, an integer; hence we have a yield of $2 \mathrm{~K}=6$ matrix quotients. The first two matrix quotients are:

$$
\begin{align*}
& H_{1}^{\prime}=\left[\begin{array}{ll}
0.0 & 0.5 \times 10^{2} \\
0.2 \times 10^{1} & -0.75
\end{array}\right] \\
& \mathrm{H}_{2}^{\prime}=\left[\begin{array}{ll}
0.71597737 \times 10^{-2} & 0.35112583 \\
0.13245033 \times 10^{-1} & 0.0
\end{array}\right] \tag{128}
\end{align*}
$$

Applying the mixed method and using $\mathrm{H}_{1}, \mathrm{H}_{2}$, then the reduced model for the modified system [T: (S)] is

$$
\begin{align*}
{\left[T_{d}^{\prime}(S)\right]=\frac{1}{\Delta_{2}(S)}\left[\begin{array}{l}
0.985 \times 10^{-2} S+0.15 \times 10^{-1} \\
-0.4 \times 10^{-3} S+0.4 \times 10^{-1} \\
\\
-0.99999 \times 10^{-2} S^{2}+0.1 \times 10 \\
0.0
\end{array}\right] }
\end{align*}
$$

where $\Delta_{2}(S)=S^{2}+3 S+2$.
The reduced model for the original system $\left[G_{0}(S)\right]$ is

$$
\left[\mathrm{T}_{\mathrm{d} 1}^{\prime}(\mathrm{S})\right]=\frac{1}{\Delta_{2}(\mathrm{~S})}\left[\begin{array}{l}
0.985 \times 10^{-2} \mathrm{~S}+0.15 \times 10^{-1} \tag{130}\\
-0.4 \times 10^{-3} \mathrm{~S}+0.4 \times 10^{-1}
\end{array}\right]
$$

Examining results obtained in Eqs. (126) and (130), the conclusion can be drawn that the values of the constant matrix R can be chosen arbitrarily without affecting the final approximation of the original system.

Applying the unit-step input to Eqs. (122) and (130) yields

$$
\begin{align*}
& \mathrm{G}_{\mathrm{o} 1}(\mathrm{~S})=\frac{\mathrm{S}+1.5}{\mathrm{~S}^{3}+103 \mathrm{~S}^{2}+302 \mathrm{~S}+200} \cdot \frac{1}{\mathrm{~S}} \\
& \mathrm{G}_{\mathrm{o} 2}(\mathrm{~S})=\frac{4}{\mathrm{~S}^{3}+103 \mathrm{~S}^{2}+302 \mathrm{~S}+200} \cdot \frac{1}{\mathrm{~S}} \\
& \mathrm{~T}_{\mathrm{d} 11}(\mathrm{~S})=\frac{0.00985 \mathrm{~S}+0.015}{\mathrm{~S}^{2}+3 \mathrm{~S}+2} \cdot \frac{1}{\mathrm{~S}} \\
& \mathrm{~T}_{\mathrm{d} 12}(\mathrm{~S})=\frac{-0.000 \mathrm{~S}+0.04}{\mathrm{~S}^{2}+3 \mathrm{~S}+2} \cdot \frac{1}{\mathrm{~S}} \tag{131}
\end{align*}
$$

The unit=step responses are shown in Fig. 16. The steady-state responses are reproduced exactly, while the initial responses of the original model and the reduced

Figure 16. Unit Step Response for Example 10.
model are also very close. Numerically, we can also examine the accuracy of the approximation by comparing the integral square value:
I.S.V.

First Curve of original
system
$0.349244219 \times 10^{-4}$

Second curve of original
system
$0.133307446 \times 10^{-3}$
First curve of reduced model
$0.349204055 \times 10^{-4}$
Second curve of reduced model $0.13335999 \times 10^{-3}$

Example 11
To illustrate the application of the above proposed procedures for model simplification of multivariable system when the number of outputs exceeds the number of inputs, consider the following transfer-function matrix $\left[G_{o}(S)\right]$ with $\mathrm{m}=2$ and $\ell=3$

$$
\left[G_{o}(S)\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{ll}
G_{11}(S) & G_{12}(S) \tag{132}\\
G_{21}(S) & G_{22}(S) \\
G_{31}(S) & G_{32}(S)
\end{array}\right]
$$

where

$$
\begin{aligned}
& \Delta_{o}(S)=S^{8}+218.893 S^{7}+17913.599 S^{6}+634530.95 S^{5} \\
& +8585434.107 \mathrm{~S}^{4}+15973802.35 \mathrm{~S}^{3}+14969803.56 \mathrm{~S}^{2} \\
& \text { +7841305.39S+1543146.7 } \\
& =(S+0.395)(S+0.405+j 0.703)(S+0.405-j 0.703) \\
& (S+0.808)(S+33.32)(S+37.44)(S+73.06+j 23.46) \\
& \text { (S+73.06-j23.46) } \\
& G_{11}(S)=-0.23931 \times 10^{-1} S^{5}+0.24787 S^{4}-0.43675 \times 10^{4} S^{3} \\
& -0.45974 \times 10^{6} \mathrm{~S}^{2}-0.107847 \times 10^{6} \mathrm{~S}-0.740371 \times 10^{4} \\
& G_{12}(S)=0.5208 \times 10^{-2} S^{6}+0.158711 S^{5}+0.346191 \times 10^{2} S^{4} \\
& +0.23055 \times 10^{4} \mathrm{~S}^{3}+0.255857 \times 10^{5} \mathrm{~S}^{2}-0.148485 \times 10^{6} \mathrm{~S} \\
& -0.165375 \times 10^{4} \\
& G_{21}(S)=S^{7}-0.23931 \times 10^{-1} S^{6}+0.24787 \times 10 S^{5}-0.436752 \times 10^{3} S^{4} \\
& -0.45974 \times 10^{5} S^{3}-0.107848 \times 10^{7} S^{2}-0.74037 \times 10^{6} S \\
& +0.14226 \times 10^{2} \\
& G_{22}(S)=0.5208 \times 10^{-3} S^{7}+0.15871 \times 10^{-1} S^{6}+0.34619 \times 10^{2} S^{5} \\
& +0.23055 \times 10^{3} \mathrm{~S}^{4}+0.25586 \times 10^{4} \mathrm{~S}^{3}-0.14848 \times 10^{5} \mathrm{~S}^{2} \\
& -0.16537 \times 10^{6} \mathrm{~S}-0.14265 \times 10^{2} \\
& G_{31}(S)=0.2699 \times 10^{-4} S^{7}+0.49139 \times 10^{-2} S^{6}+0.14447 \times 10 S^{5} \\
& +0.10672 \times 10^{3} \mathrm{~S}^{4}+0.22932 \times 10^{4} \mathrm{~S}^{3}+0.148882 \times 10^{7} \mathrm{~S}^{2} \\
& +0.23291 \times 10 \xi^{6}+0.289138 \times 10^{3} \\
& G_{32}(S)=0.1297 \times 10^{-3} S^{7}+0.12278 \times 10^{-1} S^{6}+0.264899 \times 10^{2} S^{5} \\
& +0.259459 \times 10^{3} S^{4}+0.637956 \times 10^{5} S^{3}+0.37376 \times 10^{6} \mathrm{~S}^{2} \\
& +0.67494 \times 10^{6} \mathrm{~S}+0.360133 \times 10^{4}
\end{aligned}
$$

The characteristic polynomial of the matrix $\left[G_{0}(S)\right]$ is $\Delta(S)=\left\{\Delta_{0}(S)\right\}^{2}$. The following procedures are performed to
obtain a new modified transfer-function matrix:

$$
\begin{align*}
{\left[T_{0}(S)\right] } & =G_{1}(S)+\left[G_{2}(S)\right] \\
& =\frac{1}{\Delta_{0}(S)}\left[\begin{array}{ll:l}
\mathrm{G}_{11}(S) & G_{12}(S) & 0 \\
\mathrm{G}_{21}(S) & \mathrm{G}_{22}(\mathrm{~S}) & 0 \\
\mathrm{G}_{31}(\mathrm{~S}) & \mathrm{G}_{32}(\mathrm{~S}) & 1
\end{array}\right] \tag{133}
\end{align*}
$$

The rank of $\left[T_{0}(S)\right]$ is 24 . The ratio of the rank and the dimension of this modified system is $\frac{24}{3}=8=\mathrm{K}$, an integer. By using Eq. (37), we have $2 \mathrm{~K}=16$ matrix quotients. The first four matrix quotients are:

$$
\begin{align*}
& H_{1}=\left[\begin{array}{lll}
0.0 & 0.10039151 \times 10^{6} & 0.39765446 \times 10^{3} \\
0.0 & -0.80600783 \times 10^{4} & 0.39656729 \times 10^{3} \\
0.15431467 \times 10^{7} & 0.7299403 \times 10^{9} & 0.35999415 \times 10^{3}
\end{array}\right] \\
& H_{2}=\left[\begin{array}{lll}
-0.93675833 \times 10^{-3} & -0.11630684 \times 10^{-3} & 0.12752979 \times 10^{-6} \\
0.566187 \times 10^{-8} & 0.6761924 \times 10^{-7} & 0.67457074 \times 10^{-28} \\
-0.11086398 \times 10^{-5} & -0.13630286 \times 10^{-4} & -0.10907614 \times 10^{-25}
\end{array}\right] \\
& H_{3}=\left[\begin{array}{lll}
0.18925893 \times 10^{-16} & -0.10040056 \times 10^{6} & -0.39963943 \times 10^{3} \\
-0.3713575 \times 10^{-16} & 0.80677805 \times 10^{4} & -0.38428994 \times 10^{3} \\
-0.41073398 \times 10^{7} & -0.72966072 \times 10^{9} & -0.39622133 \times 10^{7}
\end{array}\right] \\
& H_{4}=\left[\begin{array}{lll}
-0.28310922 \times 10^{-1} & -0.41689233 \times 10^{-2} & -0.28914324 \times 10^{-6} \\
-0.10361655 & -0.96124859 \times 10^{-2} & -0.34176715 \times 10^{-21} \\
0.10004233 & 0.58568629 \times 10^{-1} & 0.22997037 \times 10^{-21}
\end{array}\right] \tag{134}
\end{align*}
$$

The mixed method is applied for the approximation and $H_{i}, i=1, \ldots 4$ are used; then the reduced model for the modified system [$\mathrm{T}_{\mathrm{o}}(\mathrm{S})$] is

$$
\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{ll:l}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) & \mathrm{T}_{13}(\mathrm{~S}) \tag{135}\\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S}) & \mathrm{T}_{23}(\mathrm{~S}) \\
\mathrm{T}_{31}(\mathrm{~S}) & \mathrm{T}_{32}(\mathrm{~S}) & \mathrm{T}_{33}(\mathrm{~S})
\end{array}\right]
$$

where $\Delta_{4}(S)=(S+0.395)(S+0.405+j 0.703)(S+0.405-j 0.703)$ $(S+0.808)$
$=S^{4}+2.013 S^{3}+1.952 S^{2}+1.0504 S+0.21008$
$\mathrm{T}_{11}(\mathrm{~S})=0.44851083 \times 10^{-2} \mathrm{~S}^{3}-0.61364882 \times 10^{-1} \mathrm{~S}^{2}$ $-0.14596779 \times 10^{-1} \mathrm{~S}-0.1007922 \times 10^{-2}$
$\mathrm{T}_{12}(\mathrm{~S})=-0.55124746 \times 10^{-4} \mathrm{~S}^{3}+0.51334301 \times 10^{-2} \mathrm{~S}^{2}$ $-0.20195333 \times 10^{-1} \mathrm{~S}-0.22513723 \times 10^{-3}$
$\mathrm{T}_{13}(\mathrm{~S})=-0.29165322 \times 10^{-9} \mathrm{~S}^{3}+0.59350573 \times 10^{-9} \mathrm{~S}^{2}$ $-0.110780014 \times 10^{-7} \mathrm{~S}+0.13613741 \times 10^{-6}$
$T_{21}(S)=0.45855403 \times 10^{-2} S^{3}-0.13832512 S^{2}-0.10079229 S$ $+0.19366969 \times 10^{-5}$
$T_{22}(S)=0.17702483 \times 10^{-3} S^{3}-0.1237636 \times 10^{-3} \mathrm{~S}^{2}$ $-0.22512904 \times 10^{-1} \mathrm{~S}-0.19420003 \times 10^{-5}$
$\mathrm{T}_{23}(\mathrm{~S})=0.57635563 \times 10^{-20} \mathrm{~S}^{3}-0.25594053 \times 10^{-20} \mathrm{~S}^{2}$ $-0.80537956 \times 10^{-22} \mathrm{~S}+0.0$
$\mathrm{T}_{31}(\mathrm{~S})=-0.16290698 \times 10^{-1} \mathrm{~S}^{3}+0.20001136 \mathrm{~S}^{2}$ $+0.3170455 \times 10^{-1} S+0.393625 \times 10^{-4}$
$T_{32}(S)=0.49174273 \times 10^{-2} S^{3}+0.43387104 \times 10^{-1} S^{2}$ $+0.9184469 \times 10^{-\frac{1}{S}}+0.49027575 \times 10^{-3}$
$\mathrm{T}_{33}(\mathrm{~S})=-0.10947895 \times 10^{-20} \mathrm{~S}^{3}+0.14815543 \times 10^{-20} \mathrm{~S}^{2}$ $+0.79338464 \times 10^{-22} \mathrm{~S}+0.34754821 \times 10^{-24}$

The reduced model for the original system $\left[\mathrm{G}_{\mathrm{o}}(\mathrm{S})\right]$ is

$$
\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{ll}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) \tag{136}\\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S}) \\
\mathrm{T}_{31}(\mathrm{~S}) & \mathrm{T}_{32}(\mathrm{~S})
\end{array}\right]
$$

The characteristic polynomial of $\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right.$] is $\Delta(S)=\left\{\Delta_{4}(S)\right\}^{2}$. Expand the original matrix equation into scaler input-output expressions and the unit-step responses are as follows:

$$
\begin{aligned}
& G_{o 1}(S)=\frac{\left[\begin{array}{l}
0.5208 \times 10^{-2} S^{6}+0.13478 S^{5}+0.3486697 \times 10^{-2} S^{4} \\
-0.2062 \times 10^{4} S^{3}-0.4341543 \times 10^{6} S^{2} \\
-0.2563325 S-0.905746
\end{array}\right]}{\Delta_{O}(S)} \cdot \frac{1}{S} \\
& G_{02}(S)=\frac{\left[\begin{array}{l}
0.5208 \times 10^{-3} \mathrm{~S}^{7}-0.0806 \times 10^{-1} \mathrm{~S}^{6} \\
+0.370977 \times 10^{2} \mathrm{~S}^{5}-0.206202 \times 10^{3} \mathrm{~S}^{4} \\
-0.434154 \times 10^{5} \mathrm{~S}^{3}-0.1093328 \times 10^{7} \mathrm{~S}^{2} \\
-0.90574 \times 10^{6} \mathrm{~S}-0.00039 \times 10^{2}
\end{array}\right]: \frac{1}{\mathrm{~S}} \mathrm{\Delta O}(\mathrm{~S})}{} \\
& G_{03}(S)=\frac{\left[\begin{array}{l}
0.15669 \times 10^{-3} S^{7}+0.171919 \times 10^{-1} S^{6} \\
+0.279346 \times 10^{2} S^{5}+0.366179 \times 10^{3} S^{4} \\
+0.66088 \times 10^{5} \mathrm{~S}^{3}+0.186258 \times 10^{7} \mathrm{~S}^{2} \\
+0.90785 \times 10^{6} \mathrm{~S}+0.3890468 \times 10^{4}
\end{array}\right]}{\Delta_{0}(\mathrm{~S})} \cdot \frac{1}{\mathrm{~S}}
\end{aligned}
$$

The unit-step responses of the reduced model are

$$
\begin{align*}
& 0.4429984 \times 10^{-2} \mathrm{~S}^{3}-0.5623145 \times 10^{-1} \mathrm{~S}^{2} \\
& T_{d 11}(S)=\frac{-0.347921 \times 10^{-1} S-0.1233059 \times 10^{-2}}{\Delta 4(S)} \cdot \frac{1}{S} \\
& 0.4762564 \times 10^{-2} \mathrm{~S}^{3}-0.1384488 \mathrm{~S}^{2} \\
& \mathrm{~T}_{\mathrm{d} 12}(\mathrm{~S})=\frac{-0.1233052 \mathrm{~S}-0.5309 \times 10^{-8}}{44(\mathrm{~S})} \cdot \frac{1}{\mathrm{~S}} \\
& -0.1137327 \times 10^{-1} S+0.2433984 S \\
& \mathrm{~T}_{\mathrm{d} 13}(\mathrm{~S})=\frac{+0.12354924 \mathrm{~S}+0.5296382 \times 10^{-3}}{\Delta_{4}(\mathrm{~S})} \cdot \frac{1}{\mathrm{~S}} \tag{137}
\end{align*}
$$

The comparisons of the responses of the original system and reduced model are shown graphically in Figs. 17, 18, and 19. Again, the accuracy of approximation by mixed method may be examined numerically. The corresponding integral square values are:
I.S.V.

First curve of original

$$
\text { system } \quad 0.13386961 \times 10^{-2}
$$

Second curve of original

$$
\text { system } \quad 0.12036692 \times 10^{-1}
$$

Third curve of original system
$0.21931316 \times 10^{-1}$
First curve of reduced mode1
0.1347451×10^{-2}
Second curve of reduced mode1

$$
0.11968612 \times 10^{-1}
$$

Third curve of reduced

$$
\text { mode1 } \quad 0.22000029 \times 10^{-1}
$$

The model simplification by the method of matrix-continued fraction is far from satisfactory for this particular system. A study of the previous examples reveals that when the poles of the original system are located close to each other in the S-plane, the second Cauer form approximation yields better results. However, if some poles are far from the $j w$-axis of the $S-p l a n e$ while others are close to the $j w$-axis, the mixed method gives a better approximation than the second Cauer form. The success of these approaches depends upon the numbers of dominant-matrix quotients used.

Figure 17. Unit Step Response for Example 11, First Curve.

Figure 18. Unit Step Response for Example 11, Second Curve.

Figure 19. Unit Step Response for Example 11, Third Curve.

CHAPTER IV

ILL-CONDITIONED CASES

In the previous chapters, it has been shown that the realization of the matrix $\left[\mathrm{G}_{\mathrm{O}}(\mathrm{S})\right.$] is a completely controllable and completely observable system with minimal dimension Kxm if $\operatorname{det}\left[\mathrm{H}_{\mathrm{i}}\right] \neq 0$, $\mathrm{i}=1,2, \ldots, 2 \mathrm{~K}$ and $K<n$. This means that the rank of $\left[G_{O}(S)\right]$ is $K x m$ and the degree of the characteristic polynomial of $\left[\mathrm{G}_{\mathrm{o}}(\mathrm{S})\right]$ (i.e., the least common denominator of all the minors of [$\left.\left.G_{o}(S)\right]\right)$ is Kxm. Whenever the rank of $\left[G_{o}(S)\right]$ is not equal to Kxm, the complete set of matrix quotients in Eq. (39) cannot be obtained. On the other hand, if the rank $\left[\mathrm{G}_{\mathrm{o}}(\mathrm{S})\right]=$ Kxm but $\operatorname{det}[A p .1]=0$, which may occur due to ill-conditioned constants in [Ap. 1], then the matrix Routh algorithm of Eq. (48) cannot be applied.

A method is therefore proposed in this chapter to overcome these ill-conditioned cases. When a system is ill-conditioned, a new transfer-function matrix [$\left.T_{0}(S)\right]$ shall be constructed by modifying the $\left[G_{o}(S)\right]$ and by adding another square transfer-function matrix $\left[G_{2}(S)\right]$. This can be expressed by

$$
\begin{equation*}
\left[\mathrm{T}_{0}(\mathrm{~S})\right]=\left[\mathrm{G}_{1}(\mathrm{~S})\right]+\left[\mathrm{G}_{2}(\mathrm{~S})\right], \tag{139}
\end{equation*}
$$

where

$$
\begin{aligned}
{\left[G_{1}(S)\right] } & =\left[\begin{array}{c:c}
(\mathrm{mxm}) & (\mathrm{mxl}) \\
\mathrm{G}_{0}(S) & 0 \\
\hdashline(1 \mathrm{xm}) & (1 \times 1) \\
0 & 0
\end{array}\right] \\
& =\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c:c}
(\mathrm{mxm}) & (\mathrm{mx1}) \\
\mathrm{Q}(\mathrm{~S}) & 0 \\
\hdashline(1 \times m) & (1 \times 1) \\
0 & 0
\end{array}\right] \\
{\left[G_{2}(S)\right] } & =\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c:c}
(\mathrm{mxm}) & (\mathrm{mxl}) \\
0 & R_{12} \\
\hdashline(1 \times m) & (1 \times 1) \\
R_{21} & R_{22}
\end{array}\right]
\end{aligned}
$$

and

$$
\left[T_{O}(S)\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c:c}
(m \times m) & (m \times 1) \\
Q(S) & R_{12} \\
\hdashline(1 \times m) & (1 \times 1) \\
R_{21} & R_{22}
\end{array}\right]
$$

[Rij] are constant matrices and the elements in [Rij] should be chosen such that the rank of $\left[T_{0}(S)\right]=K x(m+1)$, where K is an integer. Applying the matrix Routh algorithm in Eq. (48) yields 2 K matrix quotients ($H_{i}, i=1, \ldots, 2 K$). Either the method of matrix-continued fraction or the mixed method can be applied to obtain the reduced model for the modified system [$\mathrm{T}_{\mathrm{O}}(\mathrm{S})$]. The reduced model is

$$
\begin{equation*}
\left[\mathrm{Y}_{\mathrm{d}}(\mathrm{~S})\right]=\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]\left[\mathrm{U}_{\mathrm{d}}(\mathrm{~S})\right] \tag{140}
\end{equation*}
$$

where

$$
\begin{aligned}
{\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right] } & =\left[\begin{array}{c:c}
(\mathrm{mxm}) & (\mathrm{mx} 1) \\
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) \\
\hdashline(1 \times \mathrm{m}) & (1 \times 1) \\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S})
\end{array}\right] \\
{\left[\mathrm{d}_{\mathrm{d}}(\mathrm{~S})\right] } & =\left[\begin{array}{c}
(\mathrm{mx1)} \\
\mathrm{Y}_{11}(\mathrm{~S}) \\
\hdashline(1 \times 1) \\
\mathrm{Y}_{21}(\mathrm{~S})
\end{array}\right]+\left[\begin{array}{c}
(\mathrm{mx1)} \\
\mathrm{Y}_{21}(\mathrm{~S}) \\
\hdashline-(1 \times 1) \\
\mathrm{Y}_{22}(\mathrm{~S})
\end{array}\right]
\end{aligned}
$$

and

$$
\left[\mathrm{U}_{\mathrm{d}}(\mathrm{~S})\right]=\left[\begin{array}{c}
(\mathrm{mx1}) \\
\mathrm{U}_{\mathrm{o}}(\mathrm{~S}) \\
\hdashline(1 \times 1) \\
\mathrm{U}_{1}(\mathrm{~S})
\end{array}\right]
$$

The reduced model of the original system [$\mathrm{G}_{\mathrm{o}}(\mathrm{S})$] can be obtained by partitioning the matrix in Eq. (140), or

$$
\begin{align*}
{\left[\mathrm{Y}_{11}(S)\right] } & =\left[\mathrm{T}_{11}(S)\right]\left[\mathrm{U}_{0}(\mathrm{~S})\right] \\
& \simeq\left[\mathrm{Y}_{0}(\mathrm{~S})\right]=\left[\mathrm{G}_{\mathrm{o}}(\mathrm{~S})\right]\left[\mathrm{U}_{0}(\mathrm{~S})\right] \tag{141}
\end{align*}
$$

Example 12
To apply the matrix Routh algorithm in Eq. (48) effectively, consider the following simple multivariable system:

$$
\begin{align*}
{\left[Y_{0}(S)\right] } & =\left[G_{0}(S)\right]\left[U_{0}(S)\right] \\
& =\frac{1}{\Delta_{0}(S)}\left[Q_{1}\right]\left[U_{0}(S)\right] \tag{142}
\end{align*}
$$

where $\Delta_{0}(S)=(S+1)(S+2)$
and

$$
\left[Q_{1}\right]=\left[\begin{array}{ll}
1 . & 1 . \\
1 . & 1 .
\end{array}\right]
$$

The rank of $\left[G_{o}(S)\right]=r_{o}=2$ and the dimension of $\left[G_{o}(S)\right]$ is $1=m=2$. Since the ratio of r_{0} and m is $K=\frac{r_{0}}{m}=1$, an integer, it is expected that the matrix Routh algorithm can be applied to obtain $2 \mathrm{~K}=2$ matrix quotients. However, the system has singular steady-state gain, or $\operatorname{det}\left[A_{21}\right]=\operatorname{det}\left[Q_{1}\right]=0$. This is an ill-conditioned case. The proposed method stated in Eq. (139) can be applied to evaluate the matrix quotients.

The new transfer-function matrix $\left[\mathrm{T}_{\mathrm{O}}(\mathrm{S})\right]$ in Eq. (139)
can be constructed as:

$$
\begin{align*}
{\left[T_{0}(S)\right] } & =\frac{1}{\Delta_{0}(S)}\left[\begin{array}{c:c}
Q & R_{12} \\
\hdashline R_{21} & R_{22}
\end{array}\right] \tag{143}\\
& =\frac{1}{(S+1)(S+2)}\left[\begin{array}{cc:c}
1 . & 1 . & 1 . \\
1 . & 1 . & 0 \\
\hdashline 1 . & 0 & 1 .
\end{array}\right]
\end{align*}
$$

The rank of $\left[T_{0}(S)\right]$ is $6=K x(m+1)$, where $m=2$. The ratio $\frac{6}{m+1}=K$ is 2 . Therefore, we have $2 K=4$ matrix quotients as follows:

$$
\begin{array}{ll}
\mathrm{H}_{1}=2\left[\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right], & \mathrm{H}_{2}=1 / 3\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
\mathrm{H}_{3}=-9\left[\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right] \text { and } & \mathrm{H}_{4}=-1 / 3\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \tag{144}
\end{array}
$$

To check the result, we substitute Eq. (144) into
Eq. (39) and partition the resulting matrix in Eq. (140).
The original system matrix can be obtained from Eq. (141), or

$$
\begin{align*}
{\left[\mathrm{T}_{\mathrm{o}}(\mathrm{~S})\right] } & =\left[\left(\mathrm{H}_{2}+\mathrm{H}_{4}\right) \mathrm{S}+\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}\right]\left[\mathrm{S}^{2} \mathrm{I}+\left(\mathrm{H}_{1} \mathrm{H}_{2}+\mathrm{H}_{1} \mathrm{H}_{4}+\mathrm{H}_{3} \mathrm{H}_{4}\right) \mathrm{S}+\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}\right]^{-1} \\
& =\left[\begin{array}{l:c}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) \\
\hdashline \mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S})
\end{array}\right] \tag{145}
\end{align*}
$$

The original system matrix is

$$
\begin{align*}
{\left[\mathrm{G}_{\mathrm{O}}(\mathrm{~S})\right] } & =\left[\mathrm{T}_{11}(\mathrm{~S})\right] \\
& =\frac{1}{(\mathrm{~S}+1)(\mathrm{S}+2)}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \tag{146}
\end{align*}
$$

It can be seen that Eq. (142) and Eq. (146) eventually become the same.

A demonstration of the techniques established in this chapter and an illustration of the power of this approach in approximating a multivariable system with an ill-conditioned numerical element is given by the following example.

Example 13

We desire to approximate a two-inputs and two-outputs multivariable system

$$
\begin{equation*}
\left[Y_{0}(S)\right]=\left[G_{0}(S)\right]\left[U_{0}(S)\right] \tag{147}
\end{equation*}
$$

The transfer-function matrix

$$
\left[G_{0}(S)\right]=\frac{1}{\Delta_{0}(S)}\left[Q_{1}(S)\right]=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{ll}
G_{11}(S) & G_{12}(S) \tag{148}\\
G_{21}(S) & G_{22}(S)
\end{array}\right]
$$

where

$$
\begin{aligned}
\Delta_{0}(S)= & S^{8}+30.41 S^{7}+358.4295 S^{6}+2913.8638 S^{5} \\
& +18110.567 S^{4}+67556.983 S^{3}+173383.58 S^{2} \\
& +149172.19 S+37752.826 \\
= & (S+0.35+j 6.8)(S+0.35-j 6.8)(S+0.46) \\
& (S+0.75)(S+2.2+j 3.6)(S+2.2-j 3.6)(S+8.5) \\
& (S+15.6) \\
G_{11}(S)= & 31.6 S^{7}+755.1355 S^{6}+9277.6041 S^{5}+76590.871 S^{4} \\
& +409701.2 S^{3}+1564162.3 S^{2}+3384185.25 S \\
& +1413173.6 \\
G_{12}(S)= & 18.4 S^{7}+483.6325 S^{6}+7473.1599 S^{5}+46751.11 S^{4} \\
& +257757.71 S^{3}+975359.78 S^{2}+2226559.5 S \\
& +1413173.6 \\
G_{21}(S)= & 5.16 S^{7}+115.8905 S^{6}+1530.8447 S^{5}+12384.435 S^{4} \\
& +66377.492 S^{3}+229694.04 S^{2}+384459.57 S \\
& +321603.99 \\
G_{22}(S)= & 18.0 S^{7}+448.3985 S^{6}+4574.0688 S^{5}+36124.091 S^{4} \\
& +173628.46 S^{3}+594325.26 S^{2}+1185233.9 S \\
& +321603.99
\end{aligned}
$$

Note that $\operatorname{det}\left[\mathrm{A}_{2,1}\right]=0$. This is an $i 11$-conditioned case and the matrix Routh algorithm of Eq. (37) cannot be applied. By using the proposed method in this chapter, the new transfer-function matrix $\left[T_{0}(S)\right]$ can be constructed:

$$
\left[\mathrm{T}_{0}(\mathrm{~S})\right]=\frac{1}{\Delta_{0}(\mathrm{~S})}\left[\begin{array}{l:c}
\mathrm{Q}_{1}(\mathrm{~S}) & \mathrm{R}_{12} \\
\hdashline \mathrm{R}_{21} & \mathrm{R}_{22}
\end{array}\right]
$$

$$
=\frac{1}{\Delta_{0}(S)}\left[\begin{array}{cc:c}
Q_{11}(S) & Q_{12}(S) & 1 . \tag{149}\\
Q_{21}(S) & Q_{22}(S) & 0 . \\
\hdashline 1 . & 0 . & 1 .
\end{array}\right]
$$

The rank of $\left[\mathrm{T}_{\mathrm{O}}(\mathrm{S})\right]$ is $24=\mathrm{K}(\mathrm{m}+1)$, where $\mathrm{m}=2$, and the ratio $\frac{24}{\mathrm{~m}+1}=\mathrm{K}$ is 8 . Hence, the matrix Routh algorithm can be applied to evaluate the $2 \mathrm{~K}=16$ matrix quotients.

The first four matrix quotients are:

$$
\begin{align*}
& \mathrm{H}_{1}=\left[\begin{array}{lll}
-0.37752826 \times 10^{5} & 0.16589128 \times 10^{6} & 0.37752826 \times 10^{5} \\
0.37752826 \times 10^{5} & -0.16589116 \times 10^{6} & -0.37752826 \times 10^{5} \\
0.37752826 \times 10^{5} & -0.16589128 \times 10^{6} & 0.0
\end{array}\right] \\
& \mathrm{H}_{2}=\left[\begin{array}{lll}
0.20196217 \times 10^{2} & 0.20196221 \times 10^{2} & 0.67036624 \times 10^{-5} \\
0.4596169 \times 10 & 0.45961715 \times 10 & 0.0 \\
0.67036624 \times 10^{-5} & 0.25630793 \times 10^{-16} & 0.67036624 \times 10^{-5}
\end{array}\right] \\
& \mathrm{H}_{3}=\left[\begin{array}{lll}
0.37753022 \times 10^{5} & -0.16589115 \times 10^{6} & -0.37753022 \times 10^{5} \\
-0.37752769 \times 10^{5} & 0.16589141 \times 10^{6} & 0.37752769 \times 10^{5} \\
-0.37753022 \times 10^{5} & 0.16589115 \times 10^{6} & -0.90588671 \times 10^{5}
\end{array}\right] \\
& H_{4}=\left[\begin{array}{lll}
0.6994176 \times 10 & -0.44283034 \times 10 & -0.10084175 \times 10^{-4} \\
-0.10486528 \times 10 & 0.62444541 \times 10 & -0.57922887 \times 10^{-16} \\
-0.10084175 \times 10^{-4} & 0.45504833 \times 10^{-15} & -0.10084175 \times 10^{-4}
\end{array}\right] \tag{150}
\end{align*}
$$

If the method of the matrix-continued fraction is applied and H_{1}, and H_{2} are used, then the reduced model for this new transfer-function matrix is

$$
\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]=\frac{1}{\Delta_{3}(\mathrm{~S})}\left[\begin{array}{ll:c}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) & \mathrm{T}_{13}(\mathrm{~S}) \tag{151}\\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S}) & \mathrm{T}_{23}(\mathrm{~S}) \\
\hdashline \mathrm{T}_{31}(\mathrm{~S}) & \mathrm{T}_{32}(\mathrm{~S}) & \mathrm{T}_{33}(\mathrm{~S})
\end{array}\right]
$$

where $\Delta_{3}(S)=$ The characteristic polynomial of the reduced model

$$
=S^{3}+0.7926229 S^{2}+0.13654829 \mathrm{~S}+0.29197843 \times 10^{-7}
$$

$$
=(\mathrm{S}+0.53954056)(\mathrm{S}+0.0000002138)(\mathrm{S}+0.2530822157)
$$

$T_{11}(S)=0.20196217 \times 10^{2} \mathrm{~S}^{2}+0.51113092 \times 10 S$ $+0.10929473 \times 10^{-5}$
$T_{12}(S)=0.20196221 \times 10^{2} \mathrm{~S}^{2}+0.51113083 \times 10 \mathrm{~S}$ $+0.10929306 \times 10^{-5}$
$\mathrm{T}_{13}(\mathrm{~S})=0.67036624 \times 10^{-5} \mathrm{~S}^{2}+0.36168993 \times 10^{-5} \mathrm{~S}$ $+0.77339491 \times 10^{-12}$
$T_{21}(S)=0.4596169 \times 10 S^{2}+0.11632095 \times 10 S$ $+0.24872827 \times 10^{-6}$
$T_{22}(S)=0.45961715 \times 10 \mathrm{~S}^{2}+0.11632102 \times 10 S$ $+0.24872446 \times 10^{-6}$
$\mathrm{T}_{23}(\mathrm{~S})=0.0$
$T_{31}(S)=0.67036624 \times 10^{-5} S^{2}+0.36168993 \times 10^{-5} S$ $+0.77339491 \times 10^{-12}$
$\mathrm{T}_{32}(\mathrm{~S})=0.25630793 \times 10^{-16} \mathrm{~S}^{2}+0.21175824 \times 10^{-21} \mathrm{~S}$ $+0.18528846 \times 10^{-21}$
$\mathrm{T}_{33}(\mathrm{~S})=0.67036624 \times 10^{-5} \mathrm{~S}^{2}+0.36168993 \times 10^{-5} \mathrm{~S}$ $+0.77339491 \times 10^{-12}$

The reduced model for the original system $\left[G_{o}(S)\right]$ is

$$
\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})=\frac{1}{\Delta_{3}(\mathrm{~S})}\left[\begin{array}{ll}
\mathrm{T}_{11}(\mathrm{~S}) & \mathrm{T}_{12}(\mathrm{~S}) \tag{152}\\
\mathrm{T}_{21}(\mathrm{~S}) & \mathrm{T}_{22}(\mathrm{~S})
\end{array}\right]
$$

If the mixed method is applied and fourth-order reduced model is required, then $H_{i}, i=1, \ldots, 4$ are used. The reduced model for the new modified transfer-function matrix is:

$$
\left[\mathrm{T}_{\mathrm{d}}(\mathrm{~S})\right]=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{lll}
\mathrm{T}_{11}^{*}(\mathrm{~S}) & \mathrm{T}_{12}^{*}(\mathrm{~S}) & \mathrm{T}_{13}^{*}(\mathrm{~S}) \tag{153}\\
\mathrm{T}_{21}^{*}(\mathrm{~S}) & \mathrm{T}_{22}^{*}(\mathrm{~S}) & \mathrm{T}_{23}^{*}(\mathrm{~S}) \\
\mathrm{T}_{31}^{*}(\mathrm{~S}) & \mathrm{T}_{32}^{*}(\mathrm{~S}) & \mathrm{T}_{33}^{*}(\mathrm{~S})
\end{array}\right]
$$

where $\Delta_{4}(S)=$ The least common-denominator polynomial

$$
\begin{aligned}
& =(S+0.35+j 6.8)(S+0.35-j 6.8)(S+0.46)(S+0.75) \\
& =S^{4}+1.91 S^{3}+47.5545 \mathrm{~S}^{2}+56.340125 \mathrm{~S}+15.9950625
\end{aligned}
$$

$$
\mathrm{T}_{11}^{*}(\mathrm{~S})=0.2272287 \times 10^{2} \mathrm{~S}^{3}+0.94651495 \times 10^{2} \mathrm{~S}^{2}
$$ $+0.10011058 \times 10^{4} \mathrm{~S}+0.58570481 \times 10^{3}$

$$
T_{12}^{*}(S)=0.22753554 \times 10^{2} \mathrm{~S}^{3}+0.9468806 \times 10^{2} \mathrm{~S}^{2}
$$ $+0.10011174 \times 10^{4} \mathrm{~S}+0.58570481 \times 10^{3}$

$$
T_{13}^{*}(S)=0.93723182 \times 10^{-6} S^{3}+0.31920686 \times 10^{-4} S^{2}
$$ $-0.18173293 \times 10^{-3} \mathrm{~S}+0.42367855 \times 10^{-3}$

$T_{21}^{*}(S)=0.51793219 \times 10 S^{3}+0.21551644 \times 1 \theta^{2} S^{2}$ $+0.22783097 \times 10^{3} \mathrm{~S}+0.13329219 \times 10^{3}$

$$
T_{22}^{*}(S)=0.51593345 \times 10 S^{3}+0.21527749 \times 10^{2} \dot{S}^{2}
$$ $+0.22782415 \times 10^{3} \mathrm{~S}+0.13329219 \times 10^{3}$

$$
\mathrm{T}_{23}^{*}(\mathrm{~S})=-0.97699626 \times 10^{-12} \mathrm{~S}^{3}+0.47369516 \times 10^{-12} \mathrm{~S}^{2}
$$

$$
-0.47369516 \times 10^{-12} \mathrm{~S}-0.33870862 \times 10^{-20}
$$

$$
\mathrm{T}_{3_{1}^{*}}(\mathrm{~S})=0.9372305 \times 10^{-6} \mathrm{~S}^{3}+0.31920686 \times 10^{-4} \mathrm{~S}^{2}
$$ $-0.18173293 \times 10^{-3} \mathrm{~S}+0.42367855 \times 10^{-3}$

$$
\begin{aligned}
\mathrm{T}_{32}^{*}(\mathrm{~S})= & -0.68454686 \times 10^{-11} \mathrm{~S}^{3}+0.28244629 \times 10^{-11} \mathrm{~S}^{2} \\
& -0.15788126 \times 10^{-11} \mathrm{~S}+0.0 \\
\mathrm{~T}_{33}^{*}(\mathrm{~S})= & 0.93723611 \times 10^{-6} \mathrm{~S}^{3}+0.31920683 \times 10^{-4} \mathrm{~S}^{2} \\
& -0.18173293 \times 10^{-3} \mathrm{~S}+0.42367855 \times 10^{-3}
\end{aligned}
$$

The reduced model for the original system $\left[G_{o}(S)\right]$ is

$$
\left[\mathrm{T}_{\mathrm{d} 1}(\mathrm{~S})\right]=\frac{1}{\Delta_{4}(\mathrm{~S})}\left[\begin{array}{ll}
\mathrm{T}_{11}^{*}(\mathrm{~S}) & \mathrm{T}_{12}^{*}(\mathrm{~S}) \tag{154}\\
\mathrm{T}_{21}^{*}(\mathrm{~S}) & \mathrm{T}_{22}^{*}(\mathrm{~S})
\end{array}\right]
$$

The comparison of the unit-step response curves of the original system and the reduced models in Eqs. (148), (152), and (154) are shown in Figs. 20 and 21. The reduced models are stable and have a good approximation in the steady-state responses.

The integral square values of the original system, second Cauer form approximation, and mixed method approximation are obtained by applying Katz's formula:
I.S.V.

First curve of original
system

$$
0.16639655 \times 10^{4}
$$

Second curve of original
\qquad $0.125640808 \times 10^{3}$
First curve of second
Caver form reduced model
0.18585996×10^{4}

Second curve of second
Caver form reduced model $0.962381744 \times 10^{2}$

First curve of mixed method reduced model $0.151197949219 \times 10^{4}$

Second curve of mixed
method reduced
model
0.78306518×10^{2}
From Eq. (155), we see that the approximation, as a whole, is satisfactory.

Figure 20. Unit Step Response for Example 13, First Curve.

Figure 21. Unit Step Response for Example 13, Second Curve.

CHAPTER V

CONCLUSION

An algebraic method has been proposed in the frequency domain to obtain a stable reduced model of a high-degree multivariable system with m inputs and ℓ outputs, where m is not necessarily equal to ℓ. The proposed mixed method uses the advantages of both the matrix-continued fraction approach and the dominant-eigenvalue concept. Use of the matrixcontinued fraction method for the simplification of multivariable systems having an equal number of inputs and outputs has been extended to simplify high-degree multivariable systems with various numbers of inputs and outputs. The methods are simple in theory and flexible in practice. The reduced models provide a good approximation if all inputs are excited by the same signals. The success of these approaches depends on the numbers of dominant-matrix quotients used; therefore, the proposed approaches are particularly suitable for the reduction of high-degree multivariable systems with small numbers of inputs and outputs. The whole process can be performed by a digital computer.

BI BLIOGRAPHY

[1] E. J. Davison, "A Method for Simplifying Linear Dynamic Systems," Trans. IEEE Automatic Contro1, Vo1. AC-11, Jan. 1966, pp. 102-108.
[2]. C. F. Chen and L. S. Shieh, "A Novel Approach to Linear Model Simplifications," Int. J. Contr., Vol. 8, No. 6, 1968, pp. 561-570.
[3] M. R. Chidambara and E. J. Davison, "On a Method for Simplifying Linear Dynamic Systems," Trans. IEEE Automat. Contr., Vo1. AC-12, Feb. 1967, pp. 119-121.
[4] C. F. Chen and L. S. Shieh, "An Algebraic Method for Control System Design," Int. J. Control, Vol. 11, No. 5, 1970, pp. 717-739.
[5] C. F. Chen, "Model Reduction of Multivariable Control Systems by Means of Matrix Continued Fraction," Int. J. Control, Vol. 20, 1974, pp. 225-238.
[6] L. S. Shieh and F. F. Gaudiano, "Some Properties and Applications of Matrix Continued Fraction," to appear in IEEE Transections on Circuits and Systems, CAS-22, No. 9, Sept. 1975.
[7] L. S. Shieh and Y. J. Wei, "A Mixed Method for Multivariable System Reduction," Trans. IEEE Automat. Contr., System Reduction," Trans. IEEE Automat. Contr., Vol. AC-20, June 1975, pp. 429-432.
[8] Y. Shamash, "Stable Reduced-Order Models Using PadeType Approximations," IEEE Trans. Automat. Contr. (Corresp.), Vol. AC-19, Oct. 1974, pp. 615-616.
[9] D. A. Wilson, "Optimal Solution of Model Reduction Problems," Proc. IEEE, Vo1. 117, 1970, pp. 1161-1165.
[10] L. S. Shieh and F. F. Gaudiano, "Matrix Continued Fraction Expansion and Inversion by the Generalized Matrix Routh Algorithm," Int. J. Contr., Vo1. 20, No. 5, Nov. 1974, pp. 727-737.
[11] A. T. Fuller, "The Replacement of Saturation Constraints by Energy Constraint in Control Optimization Theory," Int. J. Contr., Vol. 6, No. 3, pp. 201-227.
[12] C. T. Chen, Introduction to Linear System Theory, New York, Holt, Rinehart and Winston, Inc., 1970, pp. 157-158.
[13] E. G. Gilbert, "Controllability and Observability in Multivariable Control Systems," SIAM J. Control, Vol. 6, No. 19, 1970.
[14] M. E. Van Valkenburg, Network Analysis, New Jersey, Prentice-Ha11, 1974.
[15] L. S. Shieh, Y. J. Wei, H. C. Lue, R. Yates and L. P. Leonard, "Two Methods for Simplifying Multivariable Systems With Various Numbers of Inputs and Outputs," to appear in INT. J. System Science, 1975.

THIS PRCGRAN FINDS THE RCOTS CF A POLYNOMIAL WITH REAL CCEFFICIENTS. M O CEGREE OF THE POLYNDMIAL. RCCiTR ... REAL RCCT ARRAY. ROCTI $\because \dot{\text { INAGI NARY RCCT ARRAY. }}$ THE COÉFFICIENTS ARE READ IN DE SCENDING CRDER.

DOUBLF PRECISION COEF(10), WORK(1U),RODTR(10), ROOTI(10) READ 15,33$)^{M}$ $N=M+1$
REAO (5,34)(COEF(I), I=1,N)
33 FORMAT (12)
34 FORMAT((4F2U.R))
$005 \quad J=1, N$
WRITE (6,100) COEF(J)
100 FORMAT(F2D.10)
CALL PROOT (COEF, WORK, M,ROOTR, RUOTI, IER)
IF (IER.NE.O) GC TO 10
CO $20 I=1, M$
WRITE(6,50) POOTR(I), ROOTI(I)
50 FORMAT(//F20.10.10X,F20.10)
20 Cuntiluje
GO TO 30
10 WRITE $(6,40)$
40 FORMAT($2 X$, 'THERE IS NO SOLUTION')
30 STOP
30 STOP

SUBROUTINE POCOT(COEF, WORK,G, ROOTR,RECTI,IER)
UOUPLE PRFCISIO: COEF(1), WORK(1),ROOTR(1),RONTI(1)
IFIT=0
$N=M$
$I E R=0$
$N X=N$
$N X X=N+1$
$\mathrm{N} 2=1$
KJI $=N+1$
DO $40 \mathrm{~L}=1, \mathrm{KJJ}$
$M T=K J 1-L+1$
WORK (MT) = CDEF (L)
$\times 0=.00500101$
$Y O=-U 1000101$
IN=0
$\mathrm{IN}=0$
$\mathrm{x}=\mathrm{x}$
x
$\mathrm{XO}=-10.0 \% Y 0$
$Y O=-10.0 * X$
$x=x$ ก
$Y=Y O$
IN
50
IN
TO
59
IFIT=1
$\times P R=x$
$Y P R=Y$
59
$I C T=0$
$U X=0.0$
$U Y=0.0$
$V=0.0$
$Y T=0 . J$
$X T=1.0$
$1)=W O R K(N+1)$


```
    \(\mathrm{L}=\mathrm{N}-\mathrm{I}+1\)
    \(X T 2=X * X T-Y * Y T\)
    \(Y T 2=X * Y T+Y * X T\)
    \(\mathrm{U}=\mathrm{U}+\mathrm{WORK}(\mathrm{L}) \div \mathrm{XT} 2\)
    \(V=V+W O R K(L)=Y T 2\)
    \(U X=U X+I * X T * W \cap R K(L)\)
    UY \(=U Y-I * Y T *\) WORK (L)
    \(X T=X T 2\)
    \(Y T=Y T 2\)
    SUMSC \(=U X * U X+U Y * U Y\)
    If (SUMSQ) \(75,110,75\)
    \(0 x=(V * U Y-U * U X) /\) SUMS 0
    \(x=X+0 X\)
    \(D Y=-(U * U Y+V * U X) / S U M S Q\)
    \(Y=Y+O Y\)
        \(\operatorname{IF}(A E S(D Y)+A E S(D X)-1.0 E-05) 100,80,80\)
    \(80 \quad I C T=[C T+1\)
    IF (ICT-500) 60, 85,85
    IFIIFIT) \(100,90,100\)
    85
90
90
IF IF INFIT
95 - IER=1
    GOT TO 20
    DO \(105 \mathrm{~L}=1\), NXX
    \(M T=K J 1-L+1\).
    TENP = COEF(YT)
    COEF (MT) =WORK(L)
    WIRK (L) \(=\) TEMP
    ITEMP = N
    \(N=N X\)
    \(\mathrm{NX}=\mathrm{ITEMP}\)
    IF (IFIT) 120,55,120
110 IF(IFIT) \(115,50,115\)
\(115 \quad X=X P R\)
    \(Y=Y P R\)
    IFIT=0.
    IF (ABS \((Y / X)-1.0 F-04) 135,125,125\)
    ALPHA \(=x+x\)
    SUMSQ \(=X * X+Y * Y\)
    is \(=\mathrm{N}-2\)
    90 TO 140
    \(x=0.0\)
    \(N X=N X-1\)
    inXX=NXX-1
    \(Y=0.0\)
    SUMSO=0.0
    ALPHA=X
    \(\mathrm{N}=\mathrm{N}-1\)
    WIRK (2) \(=\) WחPK (2) + ALPHA*WORK (1)
    DO \(150 \mathrm{~L}=2\), \(\because\)
    WOPK (L+1)=WGRK (L + I) +ALPHA*WORK(L)-SUMSO*WORK (L-I)
    \(\operatorname{RODTR}(* 2)=x\)
    ROOTI(N2) \(=Y\)
    \(\mathrm{N}_{2}=\mathrm{N}_{2}+1\)
    [F(SUMSQ) 160,165,160
    \(Y=-Y\)
    SUMSQ=0.
    \(\begin{array}{ll}165 & \text { EOTC } 155 \\ 20 & \text { RETUPN } 20,20,45 \\ & t N D\end{array}\)
140
145
150
155
160
    END
```

```
ตกตดกตกดก
THIS PRCGRAM FINCS THE LEAST SQUARE VALUE
\(K \cdots\) NO: OF TRANSFER FUNCTICN.
N DEGREE OF UENDMINATOR
THE COEFFICIEATS ARE REAC IN ASCENCING CRDER.
DOUPLE PQECISIUAG \(0(20), C(20)\)
READ (5,1, \(K\)
in \(\quad J=1\),
```


सी
$2 F A O 15$
$11 I=N+1$

```

```

$\begin{array}{ll}20 & \text { FURMAT(140 } \\ 10 \text { FriRMAT(I?) }\end{array}$
5 CALL [SE(N,U,C)
5 CONTINUE

```

```

$1!\mathcal{U}(20,20), T(2,2), F(20,22)$
$+1=9+1$
wKITE(6, 6,90$)(心(I), 1=1, N 1)$
k:RITE(t, 600$) \quad(C(I), I=1, N)$
a $x=1$
$1,050 \quad 1=1,2$

```



```

 \(\operatorname{cif} 60, j=1, n\)
 $\operatorname{On}(1, J)=0$.
$L=$)
$L L=?$
$L . J=1$
if) $70 \quad 1=1,1$
$L=L+1$
IF (L. $F(\cdot) \quad L J=L J+1$
IF (L,F $B) \quad l=1$

```

```

 \(L I=L L+1\)
 Oi) \((I, J)=T(L, L L)\)
 $)^{\circ}:(I, J)=T(L, L L)$
71
$\therefore \quad \begin{array}{ll}L L & =? \\ \square & =2 *:\end{array}$
[7 $80 \quad 1=1$, $!2$
ガj
$亏(L)=C(J) \div(-1.1 \div \div(J+1) \div C(I)+弓(L)$
$L L=5$
$\begin{array}{lll}00 & 81 \\ 0 & I & I \\ 0 & 2 & J=1, ~ N\end{array}$
$L=L L+J$
$L L=L L+1$

```

```

SALL IVV=O(UN,N,F,N,OFTA)
XI=(-1.)*(N-1i/(2.*)(vi))*DETN/OETE
WRITE(6,0,0) xI
GOD F(jQuAT(//(refzj.12///))
6%1 FORM1T(/1x, 2E.L4.6/)
QFTUR:V
ENOT
SUERIUUTVE INVER (A,N,B, M,DET)

```


```

57 D:T=1.
i) $\mathrm{C} 17^{\circ} J=1,{ }^{\prime}$
17 [PVOT(J)=3
$00135 \quad I=1, N$
$T=0$
[F(IPVOTij
$1 ; 0023 K=1, ~ V$
$\operatorname{IF}(I P V O T(k)-1) 43,23,21$
43 IF (JABS(T)-1)AES(A(J,K))) 83,23,23

```

```

$I C O L=K$
23 CDint Ins IPVOT (ICOL) =IPVOT (ICOL) +1
IF(IRrJH-ICOL) 73.159,73
73
b0 $12 \quad t=1, ~ M$
$T=\Delta(1 R \Gamma \cdot \omega, L)$
$A(I R O N, L)=A(I C C L, L)$
$12 \mathrm{~A}(\mathrm{IC}(: L, L)=T$
IF(M) luy, 109, 33
$\mathrm{T}=\mathrm{E} \boldsymbol{2} \mathrm{L}=1, \mathrm{~N}$
$1=E(1+n, L)$
$F(I R O H, L)=R(I C O L, L)$
$2 \varepsilon([C-L, L)=$
[105X $(1,1)=12 \pi r$
INDEX $(I ; 2)=J C T I L$
PIVOT(I)=A(ICCL,ICOL)
HET=DET*PIVGT(1)
$A(I C D L, I C O L)=1$.
2J) A(ICRL,L)=A(IrCL,L)/PIVOT(I)
[F(A) $347,347,60$
65 00 5 $21=1,4$
347 (TCOL, L) =a (ICOL,L)/PIVOT (I
IF $(L I-I C L L$) $21,134,21$
$I F=A(L I-I C M L)$
$i C L$
$a(L I, I C T I L)=3$.
w,
gu A(LI,L)=A(LI, I)-A(ICクL,L) $+T$
IF(M) 154,1 24,19.
18 「O $6 ? 1=1, \therefore$
58 E(LI, !) = $9(L I, L)-9(I C \cap L, L) \div T$
174 CDNTIOE
135 Crjiltinum
$222 \quad\left[\begin{array}{l}\text { irs } 3 \\ L=N-I+1\end{array}\right.$

```
```

 17 IF(INEEX(L,1)-I'JNEX(L,2)) 19,3,17
 JROW=INEEX(L,1)
 JCOI= = VUEX (L,2)
 UO 54` K=1, 1
 T=A(K,JROL)
 A(K,J२\capH)=A(K,J\GammaOL)
 A(K,JC\capL)}=
 54.4 CONTINUF
\&l CrjNTIn|)E
\&l RETURV
5(10

```

SHIS PRCGRAM FINOS THE GUCTIENTS OF A SINGLE-INPUT/SIAGLE-CUTPUT BCTH CENCMINATCR TFE CHARACTERISTIC EQUATICN. ASCENUING ORSER. ANO NUNERATCR POLYNOMIALS ARE READ IN

OOUBLE PRECISION A(20,20), H(40)

1
\(A(I, J)=0.0\)
\(R E A D(5,5 i L\)
\(N=1+1\)
\(\mathrm{N}=\mathrm{L}+1\)
\(\operatorname{READ}(5,10)(A(1, I), I=1, V)\)
\(\operatorname{READ}(5,10)(A(2, I), I=1, L)\)
FORMAT \((12)\)
5 FORMAT(12)
\(10 \underset{\mathrm{~K}=0}{\mathrm{FORMAT}( }(4 \mathrm{D} 20.6))\)
\(L L=L+L\)
\(0020 \mathrm{I}=1\), LL
\(H(I)=A(I, 1) / A(I+1,1)\)
701


\(K=K+1\)
IF(K.EQ.2) \(K=0\)
IF (K.EQ.l) \(N=N-1\)
\begin{tabular}{l}
CONT \\
\(\mathrm{I}+2\) \\
I \\
\hline
\end{tabular}
DO \(30 \mathrm{~J}=1, \mathrm{~N}\)
\(A(M, J)=A(M-2, J+1)-H(M-2) * A(M-1, J+1)\)

\section*{3}

CONTINUE
CONTINUE
STOP
END
```

C THIS PROGRAM FINOS THE APPRCXINATED NUMERATOR PCLYNCNIAL OF A
C SINGLE-INPUT/SINGLE-CUTPUT SYSTEM.
C LHE. OUEGREE CF THE CHARACTERISTIC EGUATION.
C THE GUOTIENTS ANC IHE COEFFICIENTS OF THE DENONINATCR PCLYNOVIAL
nกの
DOUBLE PRECISION A(10,10),H(10)
$\operatorname{READ}(5,5) \mathrm{L}$
READ (5,1U)(H(I),I=1,L)
$\mathrm{LP} 1=\mathrm{L}+1$
$\operatorname{READ}(5,10)(A(1, I), I=1, L P 1)$
5 FORMAT(12)
10 FORMAT (14020.6)
$1 \quad \quad 001 \quad I=1, L$
1
$11=1-1$
DO $2 \quad J=1$, L1
$\mathrm{DO}=1=1, L J$
$2 \quad A(I+1, J+1)=(A(I, J+1)-A(I+2, J)) / H(I)$
DO $200 \mathrm{I}=1, \mathrm{~L}$

```

```

 200 CONTINUE
 STOP
 END

```
    C EXPANSION AND INVERSICN CF THREE CAUER FORNS IT WILL
\(C\) ACCEPT AS ITS INPCT, STATE ECLATICNS, TRANSFER FLNCTICN
\(C\) MATRICES
        RICES OR MATRIX QUOTIFNTS.
        DCLELE PRECISICN A 21,21 ), \(\mathrm{E}(21,21), C T(21,21), A A(20)\),
        - H(3, 23) ,
        *E \((3,33), H S(3,6 C), H H(3,30), H P(3,30), D E T N\)
    1000 REAC (5, 3, ENC=GGIN,M,KAPPR,KI,KK
        3 FORMAT(5I5)
    C N...ORCER OF ORIGINAL SYSTEM
    C M...DINEASICN CF MATRICES
KAPPRR..CRDER CF APPROXIMATICN
IF K1=i..READ STATE EQUATIDN
    C IF K1 = \(2 \ldots\) READ TRANSFER FUNCTION


        WRITE (6,13)
    13 FCRMAT(ILI)
    WRITE (6,10)N,N,KAPPR
        10 FQRMAII: ORDER GF CRIGINAL SYSTEM....I2.1,' DIMENSICN

        \(\mathrm{NI}=\mathrm{N}+\mathrm{I}\)
        \(M N=N * N\)
        \(M N 1=N+N 1\)
        MN2 \(=\mathrm{MN} / 2\)
        \(K 2=K \triangle P P R / 2\)
        \(K D I M=M * K 2\)
    C FORM B \(\triangle R R A Y\)
        \(D C 6\)
\(J J=(1-1) \neq N 2\)
        \(\begin{array}{lll}\mathrm{DO} & 6 & J=1, M \\ D C & 6 & \mathrm{~K}=1, \mathrm{M}\end{array}\)
    \(B(J+J J, K)=0\)
    6 IF \((J, E Q, K) B(J+J J, K)=1\).
        IF (K1.EQ. 2)GD TO 8
    GO TO (111,222,333),KK
    C READ IN STATE EQUATION DX/DT \(=A X+B U\) AND \(Y=C T X\)
    30 OE \(2,1=1, N\)
        2 READ \((5,1)(A(I, J), J=1, N)\)
            DORMAT(14020.8))
            \(4 \operatorname{READ}(5,1)(B(I, J), J=1, N)\)
            DO \(5 I=1\),
        5 REAC (5, I) (CT(I,J) , J=1,N)
CALL FADDV(M,N,M,A,B,CT,AA,E)
C FORM H ARRAY
                            \(0011 \quad I=1, M\)
\(D C 11, J=1, N N L\)
\(H(I, J)=0\).

        \(I J=N \neq(K-1)\)
        \(I I=N I-K\)
        IF(II) \(15.15,14\)
    \(15 H(J, J+I J)=1\).
        GO TO 12
    \(14 H(J, J+I J)=A A(I I)\)
    12 CONTINUE
C FORM
        DC \(90 \quad I=1, K 2\)
        \(J J=(1-1) * M\)
\(D O G C J=1\),
        \(0090 k=1\);
    90
        \(B(J+J J, K)=0\)
\(I F(J, E Q, K) B(J+J J, K)=1\).
```

 C READ IN TRANSFER FUNCTION ROW EY ROW DENOMINATOR FIRST
 C NUMERATOR IS NXNK(AA+1)
 OENOMINATOR IS MXN*(N+1)
 NOTE: CCEFFICIENT NATRICES ARE ARRANGED IN ASCENDING ORDER
 AS ZERCES.
 8 0O 16 I=1,
 16 READ(5,1)(H(I,J),J=1,MN1)
 DC 17 I=1,N
 17 READ(5,1)(E(I,J),J=1,MNI)
 C**** FIRST CAUER EXPANSION
 100 WRITEI6,1CI)
 101 FOPMAT(%/,IX,2C('*'),' FIRST MATRIX CAUER FORM ',20('*'
 DC18 I= 1,N1
 II=(I-1)*N
 IN=(N1-I)*M
 INl=IN-M
 OC 1G J=1,M
 E(J,K+IN)=H(J,K+II)
 20 IF(IN1)20,21,21
 20H(J,K+II)=0.
 21 GO1O 19
 21H(J,K+II)=EIJ,K+INI)
 18CCNTINLE
 CALL SCAUER(N,M,E,H,HS)
 111 GRITE (6,101)
 DO 24 I=1,M
 24 WEAD(5,1)(HS(I,J),J=1,MN)
 24 WRITE(G,31)(HS(I,J),J=1,NN)
 CALL MATGIM,KAPPPR;HS,AI
 CALL INVRE(A,KCIM,CT,O,DETN)
 CALL MALTR(KDIN,KCIM,A,M,B,CT)
 DO 22 1=1,KDIM
 UO 22 J=1;M
 22CM(I,J)=-CT(I,J)
 CALL TCAUER(N,M,H,E,HH,HP)
 GC IC 25
 333 HRITE(6,301)
 OQ 26 I=1,M
 REAC (5,1)(HHM(I,J),J=1,MN2)
 26 WRITE(G,31)(HH(I;J),J=1,NN2)
 UO 27 I=1,M
 REAC(5,1)(HP(1,J),J=1,MN2)
 27 WRITE(6,31)(HP(I,J),J=1,MN2)
 25 CALL FRANK (KAPPR,M,HH,HP,H,E)
 C **** SECCND CALER EXPANSICN ANC INVERSICN ****
200 WRITE(6,201)
201 FORMAT(/I,1X,20(1*'1,' SECOND MATRIX CAUER FORM ',20(
DO 7 T I= (I- KAPPR,2
KK1={(I-2)
DO7 }7=1,
DO }7\textrm{K}=1
7B(J,K+KK1)=HS(J,K +KK2)
WRITE(6,13)
CALL FADDVV(M,KCIN,N,A,CT,B,AA,H)
C **** THIRD CAUER EXPANSION AND INVERSION \#\#**
300 WRITE (6,301)
301 FORMAT(!;/,1X,2C('*!),' THIRD MATRIX CAUER FCRM, (, 201

```
```

 202 CALL SCALER(N,N,H,E,HS)
 GO TO 28
 222 WRITE(6,201)
 DC 29 I=1,M
 READ (5,1)(HS(I,J),J=1,MN)
 29 WRITE(6,3i)(HSiI,j),J=1,MN)
 28 CALL MATG(M,KAPPR,HS,A)
 C FORM CT ARRAY
MO 7C I=2,KAPPR,2
DO 7C J=1,M
70CT(J,K+KKI)=HS(J,K+KK2)
WRITE (6,13)
CALL FADDV(M,KEIM,M,A,B,CT,AA,H)
99 GOTC 1000
99 STCP

```

```

 00 it I= =1,N
 R(I,J)=CI(I,J)
 IF(I&EQ&J)R(I,J)=R(I,J)+D(II)
 16 CONTINUE
 WRITE(6,17)
 17 FORMATI////, 2X, THE COEFFICIENTS OF THE CHAR. EQ.
 8 WCIITE I =1,N
 18 WRITE(6;19)I,D(I)
 RETURN
 END
 SUBROUTINE TCALER(N,M,A,B,HH,HP)
 DCUBLE PRECISICN A(3,33),B(3,33),C(3,27),E(3,3),F(3,3)
 * ,H(3,3).
 *P(3,3),X(3,3),Y(3,3);CETN,FHI 3,30), HP(3,30)
 C A..DENOMINATCR NATRICES
C MHOO.ODIMFNSIUN OF MATRICES
CTHIS PRCGRAM EXPANCS A RATIONAL TRANSFER FUNCTICN INTO A
HRITE{6,3)N,M
3 FCRMATI ORDER OF CHARACTERISTIC EQUATION IS 1,I3,/%,'
* DINENSION',
*: CF NATRIX IS (,I3,/)
MN1=M*(N+1)
NN2=M*N
4 DRRITE (}61,6
6 FRITE(G;6)(A(I,J),J=1,NN1)
UC 79 I=1,MX,6E19.8))
79 WRITE (6,6)(E(I,J),J=1,NN2)
DO 1CO K=1,N
20
DO 2O I=1,M
UC 30 I=1,M
E([I,J)=A(I,N)
FAL;J)=BNER(F,M,X,O,CETN)
CALL MALTP(N,N,E,M,F,H)
WRITE(5,8)K
8
40 WRITE(6,9)(H(I,J),J=1,N)
9 FORMAT(//(1X.6E19.8))
LB=(N-K)*M
LA=LP+M
DO 50 I=1,M
DO 50 J=1,M
50F(I,J)=B(I,J+LE)
CALL INVER(F,N,X,O,DETN)
CALL MALYP(M,M,E,M,F,P)
WRITE (6,10)K
10 FORMAT(%,' THE H(',I2,') PRINE MATRIX 1S')
6 1 WRITE(6.9)(P(I.J).J=1.M)

```
```

 KL=(K-1) कM
 DO 60 I=1,M
 DO 60 J = 1;M
 HH(I,J+KL)=H(I,J)
 6 0
IF(K.EQ.N)GO TOI
LL=N-K
DO 7C L=1,LL
ML=M*L
MLI=(L-1)*M
MO \&C I=1,M
E(I,J)=E(I,J+NL)
80
CALL MALTP(M,M,H,N,E,X)
CALL MALTP(M,M,P,M,F,Y)
D0 90 I =1,N
90
CCNTINUE
WRITE(6,120)
120 FORMATI//,IOX, 'THE ROUTH ARRAY IS')
DO 200 I= I,M
DO 250 I=1,M
400 A(I, 400 J= = I,LA
00,500 J=1;LB
500 B(1,J00)= \=1,LB
250 CCNTINUE
1 RETURN

```
```

200
C THIS RURCUTINE FRANK (KAPPR,M, H, HP, D, E)
EXPANSICN
DCLELE PRECISICN H $(3,30), H P(3,30), C(3,33)$, D(3,33$), E(3$, ${ }_{*}^{*} Y^{3}(3), x(3,3)$,
KY(
C
KAPPR:
M
$K 2=K A P P R / 2$
$K 22=(K 2+1) * M$
$0020 \quad \mathrm{I}=1, \mathrm{M}$
DO $2 \mathrm{C} J=1, \mathrm{~K} 22$
U(I;J) =

```

```

$\begin{array}{ll}0 \\ 00 & 30 \\ 0 & J=1, M\end{array}$
$D(J, K)=H(J, K+K L)$
$30 \mathrm{D}(J, K+M)=H P(J, K+K L)$
IF (K2.EQ.I)RETURN
$\mathrm{DC} 4 \mathrm{C} \quad \mathrm{I}=2 ; \mathrm{K} 2$
$\mathrm{KN} 2=1 \mathrm{~K}-1)$
$K M 1=(1-1) \neq M$
KN $=1 * M$
$\begin{array}{ll}\text { DO } 50 & J=1, ~ M \\ 00 & 50 \quad K=1 ; M\end{array}$
$X(J, K)=H(J, K+K M 2)$
$Y(J, K)=H P(J, K+K N 2$
50 Y $1(J, K)=D(J, K+K M 1)$
CALL MALTP $(M, M, X, M, X 1, X 2)$
CALL MALTP $(N, N, Y, M, Y 1, Y 2)$

```
```

 \(\begin{array}{lll}00 & 60 & J=1, M \\ D C & 60 & K=1, M\end{array}\)
 \(C(J, K)=x 2(J, K)\)
 \(60 C(J, K+K N)=Y 2(J, K)\)
 \(K K 1=1-1\)
 DC 70 II \(I=1, K K 1\)
 \(K J=I I\) * \(M\)
 \(K J 1=(I I-1) * M\)
 \(\begin{array}{lll}\mathrm{DC} \\ \mathrm{DO} & 8 \mathrm{C} & \mathrm{K}=1, ~ \\ \mathrm{X} & =1\end{array}\)
 \(X \perp(J, K)=0(J, K+K J 1\)
 \(80 Y 1(J, K)=D(J, K+K J)\).
 CALL MALTP \((N, N, Y, N, X 1, X 2)\)
 CALL MALTP(M,M,X,M,YL,Y2)
 \begin{tabular}{lll}
 00 \& 90 \& J

0 \& 90 \& K

\hline
\end{tabular} M, M

 70
 70
 CONTINUE
 KNI $=(I+1$
$\begin{array}{lll}\text { DO } & 91 & J=1, N \\ \text { DO } & 9 & K=1, K N\end{array}$
$92 E(J, K)=C(J, K)$
DO $93 \mathrm{~K}=1, \mathrm{KNl}$
$93 \mathrm{D}(J, K)=C(J, K)$
91 CCNTINUE
CCNTINUE
RETLRN

```
    SUBROLTINE SCALER(N,M,A, \(B, H H)\)
    DOURLE PRECISION A 3,33\(), \mathrm{B}(3,33), C(3,33), E(3,3), F(3,3)\)
    * G \((3,3)\).
    *H(3,3), CETN,HF (3,60)

    \(\mathrm{N} 1=\mathrm{N}+1\)
    MN1 \(=\mathrm{N} \ddagger \mathrm{N} 1\)
    \(\mathrm{N} 2=\mathrm{N} * 2\)
    \(K N=N\)
    \(K M N_{i}=N N\)
                            DO \(1 \mathrm{C} I=1, N\)
                            WRITE \((6,602) \quad(A(I, J), J=1, M N 1)\)

                            \(\left.\begin{array}{l}\text { DG } 20 \\ \text { WRITE } \\ \text { K } \\ 6,6 \\ 6\end{array} \mathrm{M} 2\right) \quad(B(I, J), J=1, N N 1)\)
    \(K S=1\)
                CALL MALTP (M,M,E,M,F,H)
                    WRITE \((6,603) \mathrm{K}\)
FORNAT \((1 / 15 \mathrm{X}, 19 \mathrm{HTHE}\) REGUIRED H \((, 12,5 \mathrm{H}, \mathrm{IS} / 1)\)
            \(K S S=(K-1) \not\) * \(^{M}\)
            DO \(50 \quad I=1, \mathrm{M}\)
            WRITE(6,6C2) (H(I,J),J=1,M)
            DO \(5 \mathrm{C} \quad J=1, M\)
                    H

                \(J=1, M\)
\(J+K S S)=H(I, J\)
\(E Q . N 2) R E T U R\)
                50
                \(K S S)=H(I, J)\)
\(Q\) N2 \() R E T U R N\)
            \(L=N \neq L L=1, K N\)
            \(M L 1=(L-1) * N\)
```

60
$\begin{array}{lll}00 & 6 C & I=1, M \\ 00 & 60 & J=1, M\end{array}$
$F(I, J)=B(I, J+N L)$
CALL MALIP (M, N, H, M, F, E)
$0070 \quad I=1, M$
$0070 J=1, M$
$7 C \quad C(I, J+M L I)=A(I, J+M L)-E(I, J)$
200 CONTINUE
WRITE 16,609
603 FORMAT (//10X, THE RCUTH ARRAY IS')
888 WRITE 6,606) $(C(I, J), J=1, M L)$
606 FCRNAT (1/2X,6E19.8)
IF (KS.EQ. 2) KNN $=K M N-M$
DC $80 \quad J=1$, KMN
$A(I ; J)=B(I ; J)$
$B(I ; J)=C(I ; J)$
$K K S=K S$
IF (KKS.EQ.2) KS=1
100
IF KKS.EQ.1) KS=2
CCNTINUE
RETURN
SUBROLTINE MATG(N,M,HS,HA)
DOUBLE PRECISION HS 3,60$)$, HA $(21,21)$, HTT $(3,3), \operatorname{HTS}(3,3)$
*, H $\operatorname{T}(3,3)$
$N \mathrm{~N}=\mathrm{N} * \mathrm{~N} / 2$
$\mathrm{M} 2=\mathrm{N} / 2$
OO $70 \quad I=1, N M$
DC $70 \quad J=1, N M$
70
51
$52 \mathrm{~J}=1, \mathrm{~N}$
$2 \quad$ HTT(I,J) $=\mathrm{HS}(I, K K+J)$
CALL MALTP (N,N,HTT,N,HT,HTS)
OC $55 \mathrm{~L}=\mathrm{K}, \mathrm{N} 2$
$L L=(L-1) * N$
DO $54 \quad I=1, N$
$0054 \mathrm{~J}=1, \mathrm{~N}$
54
55
53
50
$H A(L L+1, K L+J)=H A(L L+I, K L+J)-H T S(I, J)$
54 HAELL+ 5
CCNTINUE
CCNTINUE
RETLRN
END

```
```

 SUBROUTINE INVER \((A, N, B, M, D E T)\), IPVOT(3), INDEX(3, 2),
 *PIVOT(3), DET, T,
 *XX
 EQLIVALENCE (IRCW,JROW), (ICCL,JCOL)
 DET=1• \(\mathrm{DC}=1, N\)
 \(17 \begin{aligned} & 1 \mathrm{IPVOT}_{1}(J)=0 \\ & 001351=1, N\end{aligned}\)
 \(T=0\).
 \(130023 \mathrm{~K}=1, N \mathrm{~N}, 43,23,81\)
 $43 \operatorname{IF}(\operatorname{IPABS}(T)-\operatorname{DAES}(A(J, K))) 83,23,23$
83 IRCW = J
ICCL =K
$T=A(J, K)$
23 CONTINUE
CONT NACOL) =IPVOT (ICOL) +1
IF(IROW-ICCL) 73,1C9,73
73 DET = -DET
$0012 \quad L=1, N$
A(IROW,L)=A(ICCL,L)
12 A(ICCL,L)=T
33
$002 L=1$, N
$T=B(I R O W, L)$
$B(I R C W, L)=B(I C C L, L)$
2 B(ICCL,L)=T
109 INCEX $(1,1)=1 R C h$
PIVCT(I $)^{2}=\triangle(I C C L, I C C L)$
OET=DETAPIVOT(I)
$A(I C C L, I C O L)=1$.
$A C 2 C 5 L=1, N$
$A(I C C L, L)=A(I C C L$
IF(M) $347,347,66$
66 DC $52 L=1$, M
52 B(ICCL, L) $=B(I C C L, L) / P I V O T(I)$
347
DO 134
$L=1, N$
$21 T=A(L I, I C C L)$
$A(L I, I C O L)=0$.
DO $89 \mathrm{~L}=1, \mathrm{~N}$
89 A(LI, L)=A(LI,L)-A(ICOL,L)*T
IF(N) $134,134,18$
18 DO 68 L $=1, M, L(L, B(I C O L, L) \neq T$
34 CONTINUE
135 CONTINUE
$\mathrm{DO} 3 \mathrm{I}=1, N$
IF(INDEX(L,1)-INDEXIL,2)) 19,3,19
$19 \begin{aligned} \text { JROW } & =I N Q E X(L, 1) \\ \text { JCCI } & =1 N C E X(L, 2)\end{aligned}$
$J C C L=I N C E X(L, 2)$

```

```

 \(A(K, J R O W)=A(K, J C O L)\)
 \(A(K, J C \cap L)=T\)
 549 CCNTINUE
    ```


```

 100
    ```

* INDEX 21,2\()\),
*PIVCT(21), DET,T,XX
EQLIVALENCE (IRCW,JROW), (ICOL,JCOL)
DET=1.
17 PVOT
DO \(135 \mathrm{I}=1, \mathrm{~N}\)
\(1=0\).
\(009 \mathrm{~J}=1, \mathrm{~N}\)
IF(IPVOI(J)-1) 13,9,13
\(130023 \mathrm{~K}=1, \mathrm{~N}\)
IF(IPVCT(K)-1) 43,23,81
43 IF (DABS(T)-DAES(ACJ,KI)) \(83,23,23\)
83 IROW = J
ICCL=K
\(T=A(J, K)\)
23 CONTINUE
CONTINUE
IPVCT(ICCL)=IPVOT(ICOL)+1
IF(IROW-ICEL) \(73,109,73\)
73 DET=-DET
\(\mathrm{DO}=A\left(1 R C^{2}=1, N\right.\)
\(A(I R O W, L)=A(I C C L, L)\)
\(12 \mathrm{~A}(\mathrm{ICCL}, \mathrm{L})=\mathrm{T}\)
IF (M) 109,109,33
33
\(T=B(I R O W\), \(L\) )
B(IRCW,L) \(=8\) (ICCL,L)
109
\(\operatorname{INDEX}(1,1)=I R C h\)
INCEX (1; 2 ) =ICCL
PIVCT(I) =A(ICCL,ICCL)
DE \(=D E T \neq P I V O T\) (I
\(A(I C C L, I C D L)=1\).
DC \(2 \mathrm{C} 5 \mathrm{~L}=1, \mathrm{~N}\)
205 A(ICCL,L) \(=A([C C L, L) / P I V O T(I)\)
IF(M) 347,347,66
66 OC \(52 \mathrm{~L}=1\), M
\(52 \mathrm{~B}(I C C L, L)=\mathrm{B}(I C C L, L) / P I V O T(I)\)
347 DO \(134 \mathrm{LI}=1\), N
IF (LI-ICOL) 21,134,21
21 T=A(LICCL)
\(A(L I, I C C L)=C\).
89 A1LI,L)=ANI,L)-
\(180^{20} 68 L=1, M\)
68 B(LI,L)=B(LI,L)-B(ICOL,L)*T
134 CONTINUE
135 CONTINUE
\(\mathrm{L}=\mathrm{N}-\mathrm{I}+1\)
IF(INDEX(L,1)-INDEX(L,2)) 19,3,19
19 JRCW =INDEX \((L, 1)\)
\(\mathrm{JCCL}=[N L E X(L\),
\(D O S 49 \mathrm{~K}=1, \mathrm{~N}\)

\(A(K, J R C W)=A(K, J C C L)\)
\(A(K, J C O L)=T\)
549 CONTINUE

\section*{\(81 \times X=10\) ** \((-15)\)}

IF(DABS(DET).GT. \(X X\) )RETURN
WRITE(6:100)
100 FCRMAT(IX:2O(**): WARNING, DETERMINANT IS LESS THAN *1.E-15 .
*2C(**)
RET
```

 SUBRCUTINE MALTR (N,M,A,L,B,C)
 DCUBLE PRECISICN A \((21,21), B(21,21), C(21,21), S\)
 OC \(10 \quad I=1, N\)
 \(\mathrm{U}_{\mathrm{O}=0} 1 \mathrm{C} \quad \mathrm{J}=1 \mathrm{~L}\)
 \(S=0\) io \(K=1, N\)
 \(S=S+A(I, K) * B(K, J)\)
 \(10 C(I, J)=S\)
 RETURN
 END
    ```

```

 THIS PROGRAM USES THF VALUES OF MATRIX QUOTIENTS AND
 C APPRCXIMATEC CENCMINATOR PQLYNCMIAL TC DETERNINE THE
    ```

```

 DOUBLE PRECISIUN V(10, \(101, W(10,1 J), H(1 J), D E(1))\),
 1
 READ (5,10)N
 READ \((5,20)(H([), I=1, N)\)
 READ (\(5,2,2)(D E([), I=1, N)\)
 10 FORMAT(I2)
 20 FORMAT (14029.6\()\))
 \(00600, I 1=1, N\)
 603 WRITE(5, 601)IL,H(I1)
 601 FORMAT (\(\left./ 10 \mathrm{X}, \mathrm{H}^{\prime} \mathrm{H}(, 12,1)=1,020.8\right)\)
 602 WRITE(S,603)I2,0E(I2)
 603 FORMAT(//10X, UE (i, I 2,1\()=, 020.8)\)
 \(M=N-1\)
 UO \(30 \quad I=1, N\)
 \(V(I, J)=0, N\)
 \(\operatorname{IF}(I \cdot E Q \cdot J) \quad V(I, J)=1 . J\)
 3) CONTINJE
 \(00901 \quad I=1, N\)
 WRITE \((6,7 U 1)(V([, J), J=1, N)\)
 \(9 J 1\) CONTIVUE
 \(\begin{array}{lll}00 & 507 \\ 00 & 507 & 5 \\ 0 & =1,10 \\ 1020\end{array}\)
 \(507 \quad w(15, j 5)=0.5\)
 \(\begin{aligned} j & =j-1 \\ k & =j+1\end{aligned}\)
 OO \(45 \quad L=1, j\)
 \(45 \quad W(L, L)=1.0\)
 IF(K1. \(\mathrm{FT}, N) \quad 50 \quad 1056\)
 005 J \(K=K 1\) g \(N\)
 INO = K-JI
 \(50 \quad W(K, K)=H(I N D)\)
 IF (K1. 5 T.M) 50 TO 56
 WO \(55 \quad K=K 1, M\)
 \(55 W(K+1, K)=1.0\)
 DO 801 II =1, M
 NRITE(\(6 ; 701)(n(I I, J J), J J=1, N)\)
 801 CONTINUE
 55 SALL GMPRD(V,N,V,N,V,N)
 U0 702 II =1, N
 WRITE(S,701) (VIII,JJ), JJ=1,N)
 \(\begin{array}{ll}702 & \text { CONTINUE } \\ 43 & \text { CONTINJE }\end{array}\)
 C
FORMAT ($/ / 10 \mathrm{X}, 4020.6$) $)$
CALL GUPRS(V, DE,DE,V)
WRITE(S,70I) (UEII):I=1,N)
DO $601=1, N$
$0060 \quad J=1, N$
$V(I, J)=0$.
$\operatorname{IF}(1, E Q . J) \quad V(1, J)=1.0$
60 CONTINUE

```

```

 509
 \(W(16, j 6)=0.0\)
 J1=Jー1
 IF(LI.EQ.0) 501075
 8) \(\quad W(L, L)=1 . j\) L
    ```

```

 l
 READ (5,10)N
 {EAN(5,20)(HII),I=1,N)
 1) READ(5;2;)(DE(I),I=1,N)
 20 FORMAT(14D20.6))
 00 600 11=1,N
 6J WRITEI5,601)II,H(I1)
 6C1 FORMAT(//10X,'H(",I2,*)=, D20.8)
 UO 6J2 I 2=1,N
 6J2 WRITE(5,603)12,DE(I2)
 603 FORMAT(//10X,VUE(*,I2,')=*,020.8)
 M=N-1
 V(I,J)=0.
 3) CONTINQ:J) V(I,J)=1.J
 00 901 I=1,N
 9J1 CONTINUE
    ```

```

 507 w(15,j5)=0.0
 Jl=J-1
 00 45 L=1,J
 45 W(L,L)=1.0
 [F(Kl. JT.N) SO TO 56
 U0 5 K=K1,N
 50 W(K,K)=H(IND)
 IF(K1.こT.M)SO TO 56
 LO 55 K=K1,M
 W(K+1,K)=1-0
 DO 8OL II=1,M
 NRITE(6,70L)(n(II,JJ),JJ=L,N)
 801 CONTINUE
 55 SALL GMPRD(V,W,V,N,N,N)
 UO 702 II = I,N
 WRITE(G,7OI)(V(II,JJ),JJ=1,N)
 702 CONTINUE
 C
CALL GYPRS(V,UE,DE,V)
WRITE(S,7OL) (DE(I),I=1,N)
00 60 I=1,N
V(1,J)=0.
IF(I,EQ.j) V(I,J)=1.0
60 CONTINUE
U070 J=1,
U0 509 I6=1,10
509 W0(56, W, 56=1,10
LI=J,
J1=J-1
IF(Ll.EQ.O) GO TO 75
8J W(L,L)=1.G

```
```

 75 DO 85 K=J,N
 INO=K-JI
 85 N(K,K)=H(INO)
 M=N-1
 IF(J.GT.M) GO TO 95
 9) w(K+1,k)=1.]
 95 CALL SMPRDIV,W,V,N,N,N)
 UOIOOL,II=1, N
 wRITE(6,701)(VIII,JJ),JJ=1,N)
 1001 CONTINUE
 C
CALL MINVR(V,N,1O,U,LL,MM)
103
105
CALL MINVR(V,
* , U2..8///)
CALL GMPRS(V,DE,UE,N)
DO 200 I=1,N
WRITE(6,105)I,UE(I)
105 FORMAT(1
STOP

```
    SUBROUTINE GMPRD(A,B,C,L,M,N)
    DOUBLE PRECISIUV A(10,io), B \((10,10), ~ ᄃ(10,10)\),
    \(100^{1}\)

        \(00104 \mathrm{I}=1, \mathrm{~L}\)
    104 AD \((I, J)=A(I, J)\)
        \(10168 \quad K=1, N\)
    \(108 \quad B D(J, K)=3(J, K)\)
        UO \(112 \mathrm{I}=1, L\)
        CO (1, J) = =
        UO \(112 \mathrm{~K}=1\), M
    \(112 \quad C D(I, J)=C D(I, J)+A D(I, K) * \operatorname{CD}(K, J)\)
        UD \(116 \mathrm{~J}=1, \mathrm{~N}\)
    \(116 \quad \mathrm{C}(I, J)=\mathrm{CD}(I, J)\)
        RETURN
        END
        SUBRQUTINE GMPRS \((A, B, G, N)\)
    DOUBLE PRECISIOV A \((1 \cup, 10), B(10), 5(10)\),
    1
    UO \(10 \quad 1=1, N\)
    \(00 \quad 10 \mathrm{~J}=1, N\)
10 AD(I,J) \(=A(I, J)\)
    0 O \(15 \quad I=1, N\)
\(15 B D(I)=B(I)\)
    \(0020 I=1, N\)
    \(C D(1)=0 . U\)
\(U 01, ~ J=1, ~\)
\(23 \operatorname{CD}(I)=C D(I)+A D(I, J) * B D(J)\)
    \(0030 K=1, N\)
\(30 \quad C(K)=C J(K)\)
    KETURN
    END
```

 SUBRDUTINE MINVR(A,N,ND,D,L,M)
 DOUBLE PKECISIOV A(I), D, BIGA,HILD
 DIMENSION L(1),M(1)
 \(D=1\).
 \(\mathrm{NK}=-\mathrm{ND}\)
 DO \(80 \mathrm{~K}=1, \mathrm{~N}\)
 \(N K=N K+N D\)
 \(L(K)=K\)
 \(M(K)=K\)
 \(K K=N K+K\)
 BIGA=A(KK)
    ```

```

 \(12=N U * J-N D\)
 l \(J=12+1\)
 $10 \quad$ IF(DABS(BIJA)-DABS(A(IJ)))15,20,20
CONTINUE
$J=L(K)$
IF(J-K)35,35,25
DO $30 \quad I=1, N$
$K I=K 1+N D$
HOLD $=-A(K I)$
$J I=K I-K+J$
$A(K I)=A(J I)$
A(JI) $=$ HOLD


```
    \(0040 \mathrm{~J}=1\), N
    \(J K=N K+J\)
    \(J I=J P+J\)
    HOLD \(=-\mathrm{A}(\mathrm{JK})\)
    A (JK) = A (JI)
40
48
50

```

 LF(1-K)50,55,50
 IK=NK+I
 \(A(I K)=A([K) /(-B I G A)\)
 CONTINUE
 \(0065 \mathrm{I}=1, \mathrm{~N}\)
 \(I K=N K+I\)
 IJ \(=[-N D\)
 \(0065 \mathrm{~J}=1, \mathrm{~N}\)
 \([J=[J+V 0\)
 IF (I -K) 5., 65,60
 IF (J-K)62,65,62
 \(A(I J)=A(I K) \div A(K J)+A(I J)\)
 CONTIVJE
 \(K J=K-N D\)
 \(0075 \mathrm{~J}=\mathrm{I}, \mathrm{N}\)
 \(K J=K J+N D\)
 IF(J-K)70,75,70
 \(A(K J)=A(K J) / E I G A\)
 CONTINJE
 \(\mathrm{D}=\mathrm{D} \# \mathrm{~B}\) [GA
 \(A(K K)=1 . / B I 5 A\)
 CONTINUE
 \(K=N\)
 $100 \quad K=K-1$
$I F(K) 150,150,105$
lus
$108 \quad J Q=N O \neq K$-iND
$J O=N O * K-N D$
$J R=N U * I-N D$

```
```

 DO 11J J=1,N
 JK=JQ+J
 HOLD=A(JK)
 JI=JR+J
 A(JK)=-A(JI)
 110
A(JI)=HCLD
J=M(K)
IF(J-K)1JJ,1JU,125
125 KI=K-ND
DO 130 I=1,N
KI=KI+NO
HOLD=A(KI)
JI=KI-K+J
13O A(JI)=HOLD
GO TO 10J
150 IF(DABS(D).LE.1.D-15) GOTO 160
IF(DABS(D).LT:L.D+15) RETURN
160
6 0 0

```

```

*2OX,'DETERMINANT =:,D20.10/1
END
C
C
C
C
C
THIS PRCGRAN FINDS THE APPRCXINATED NUNERATCR PCLYNCNIAL GF SINGLE-INPUT/SINGLE-CUTPUT SYSTEM EY ANGTHER APPROACH. DOUBLE PRECISION V(10, 10), W(10,10), H(10), DE(10), READ (5,10)N
REAO (5,20) (H(I),I=1,N)
KEAO(5,20)(UE(I),I=1,N)
10 FURMAI(I2)
20 FORMAT((4020.6))
00 600 I 1=1,N
60J WRITE(S,SOL)[1,H1[1)
601 FORMAT(I/10X,1H(1,[2,')=1,020.8)
00 6し2 I2=1,v
5J2 WRITE(6,603)[2,DE(I2)
603 FORMAT(//10X,'UE(1,12,')=',D20.8)
M=N-1
DO 30 T= ,N
IF(I,EQ.j) V(I,J)=1.J
3u CONTINJE
WRITE(S,70:N(V(I,J),J=1,N)
931
0040 J=1,N
CALL SETO(W)
\ l=J-1
K1=J+1
0045 L=1,J
45 W(L,L)=1.0
IF(KI.GT.N) GO TO }5
DO 50 K=K1,N
IND=K-J1
5) W(K,K)=H(INU)
IF(KI.GT.M) NO TO 56
55 W(K+1,K)=1.0

```
```

 \(00801 \quad I I=1, V\)
 WRITE (6,70I) (W(II,JJ),JJ=1,N)
 EDNTINUE
 C 5
55 CALL GMPRO (V,W,V,N,N,N)
CO 702 II =1, N
WRITE(6,701)(V(II,JJ),JJ=1,N)
702 CONIINUE
$\begin{array}{ll}40 & \text { CONTINUE } \\ 701 & \text { FORMAT }(10 \mathrm{X}, 4020.6))\end{array}$
C
CALL SMPRS(V,DE,UE,N)
WRITE $(6,701)(U E(I), I=1, N)$
DO $60 \quad I=1$, iv
$0060 \mathrm{~J}=1, \mathrm{~N}$
$V(1, J)=0$.
$I F(I, E Q . J) \quad V(I, J)=1.0$
60 CONTINJE
DO $70 \mathrm{~J}=1 \mathrm{~N}$
CALL SETO(w)
$L=J-1$
$J 1=J-1$
IF(L1.EO.J) GO TO 75
UO $80 L=1, L L$
$W(L, L)=1 . j$
75 DO $85 \mathrm{~K}=\mathrm{J}, \mathrm{N}$
IND $=K-J 1$
$85 \quad W(K, K)=H(I N D)$
$M=N-1$
IF(J.GT. A) GO TO 95
DO $90 \quad K=J, M$
$W(K+1, K)=1.0$
CALL GUPPU(V,W,V,N,N,N)
DO 1001 i $I=1$, i
WRITE $(6,701)(V(I I, J J), J J=1, N)$
10J1 EONTINUE
[
こALL MINVR(V,N,10,D,LL,MM)
wRITE(6,100) L
100
* $020.8 / 1 /$
こALL GMPRS(V,UE, OE,N)
UO 20J $I=1, V$
WRITE (S, 105)I, DE (I)
105 FORMAT(LUX.'NU(',I2,') =',D20.8//)
20: CONTIVUE
STOP
END

```
        SURROUTINE SETC(h)
        DIMENSION w(10,10)
        UO \(10 \quad 1=1,10\)
13
    \(00 \quad 10 \quad 1=1,10\)
\(0015, j=1,10\)
    RETURN
    ENO
SUBROUTINE GMPRU(A,B,C,L,M,N)

- \(00104 \quad I=1, \mathrm{~L}\)
104 AD \((1, j)=a(1, J)\)
UC \(108 \mathrm{~K}=1\), \(v\)
\(1 כ B \quad B D(J, K)=B(J, K)\)
\(00112 \quad I=1, L\)
DO \(112 \mathrm{~J}=1, \mathrm{~N}\)
\(C D(I, j)=2.0\)
\(112 C D(I, J)=C D(I, j)+A D(I, K) * B D(K, J)\)
\(00116 \quad I=1\),
\(00116 \mathrm{~J}=1, \mathrm{v}\)
\(116 \quad C(I, J)=C D(I, J)\)
2ETURN
END
SURROUTINE GMPRS(A,B,C,N)
DOUBLE PRECISION A(1U,10),B(10), ©(10),


\(\mathrm{CO} 20 \quad I=1, V\)
\(C D(I)=0.0\)
2) \(C D(I)=C D(I)+A D(I, J) * B D(J)\)

RETURV
END
SUBROUTINE MINVR (A, V,ND, D,L, M)
SUBROUTINE MINVR (A, V,ND, D,L, M)
    DOUBLE PRECISIOU A(I),D, BIGA,HOLD
    DOUBLE PRECISIOU A(I),D, BIGA,HOLD
    DIMENSION L(I), M(1)
    DIMENSION L(I), M(1)
    \(\mathrm{J}=1\).
\(\mathrm{NK}=-\mathrm{ND}\)
    \(\mathrm{J}=1\).
\(\mathrm{NK}=-\mathrm{ND}\)
    \(0080 \quad K=1, N\)
    \(0080 \quad K=1, N\)
    \(N K=N K+N D\)
    \(N K=N K+N D\)
    \(L(k)=K\)
    \(L(k)=K\)
    \(M(K)=K\)
    \(M(K)=K\)
    \(K K=N K+K\)
    \(K K=N K+K\)
    GIJA=A(KK)
    GIJA=A(KK)
    \(3020 \quad j=k\), \(N\)
    \(3020 \quad j=k\), \(N\)
    \(I Z=N D * J-N D\)
    \(I Z=N D * J-N D\)
    DO \(20 \quad I=K, V\)
    DO \(20 \quad I=K, V\)
    I \(J=12+1\)
    I \(J=12+1\)
    IF(DABS(DIこA)-DABS(A(IJ)))15,20,20
    IF(DABS(DIこA)-DABS(A(IJ)))15,20,20
20 CONTINUE
    \(J=L(K)\)
    \(J=L(K)\)
    IF \((J-K) 35,35,25\)
\(K I=K-N)\)
    IF \((J-K) 35,35,25\)
\(K I=K-N)\)
```

 UO \(30 \quad \mathrm{I}=1, \mathrm{~V}\)
 \(K I=K I+N D\)
 HOLO \(=-4(K I)\)
 \(J I=K I-K+J\)
 $A(K I)=A(J$
$A(K I)=A(J I)$
$A(J I)=H O L D$
$I=N(K)$
$\left.{ }_{\mathrm{J}}^{\mathrm{I}} \mathrm{P}=\mathrm{ND}=\mathrm{I}-\mathrm{K}\right) \quad 38 \mathrm{I}-\mathrm{AD}, 48,38$
D 0
$J K=N K+J$
40
J
$J I=J P+J$
HOLD=-A (JK)
$A(J K)=A(J I)$
$A(J I)=H O L D$
$0055 \quad 1=1$, v
IF (I-K) 50,55,50
$\mathrm{I} K=\mathrm{NK}+\mathrm{I}$
$\Delta(I K)=\Delta(I K) /(-B I G A)$
CONTINUE
0065 I=1, v
$\mathrm{IK}=\mathrm{NK}+\mathrm{I}$
$\mathrm{IJ}=\mathrm{I}-\mathrm{ND}$
$0065 \mathrm{~J}=1$, N
$I J=I . J+v 0$
IF(I-K)6U, 65,60
IF $(J-K) 62,65,62$
$k J=1 J-1+K$
$\Delta(I J)=A(I K) * A(K J)+A(I J)$
CONT INJE
$K J=K-N D$
$\begin{array}{ll} \\ K J=K J \\ K \\ K & J=1, N\end{array}$
$K J=K J+V U$
IF(J-K) 70,75,70
$7 \frac{7}{7}$
$A(K J)=A(K J) / E I J A$
CONTINJE
$D=D K O S A$
CONTINJE
$D=0$ OKISA
$A(K K)=1 . / B I G A$
CONT I VUE
80
$K=N$
$K=k-1$
IF(K)150,150,105
$105 \quad I=L(K)$
$108 \quad J Q=N O * K-N O$
$105 \quad I=L(K)$
$108 \quad J Q=N O * K-V O$
$J R=N U \div I-v D$
DO $110 \mathrm{~J}=1$, is
$J K=J 2+J$
$40 L 0=A(J K)$
$J I=J R+J$
$A(J K)=-A(J I)$
110 A(JI) =HOLD
$120 \quad J=M(K)$
IF(J-K)1こ0,1 U O, 125
$\mathrm{KI}=\mathrm{K}-\mathrm{VD}$
DO $130 \quad \mathrm{I}=1$, M
$K I=K I+N U$
HOLD=A(KI)
$J I=K[-K+j$
13.J $\quad A(K I)=-A(J I)$
$\begin{array}{rlrl}13 . & A(K I) & =-A(J I) \\ A(J I) & =H O L D \\ G O T O & 105\end{array}$
150 IF (DARS(D). LE.1.D-15) GO TO 160
160 IF WRITES(6,000) LT: $1.0+15)$ RETURN

```


```

C
* DOUELE PRECISICN A(20,20), B(20,20),C(20,20),
DIMENSION LL(20),MM(20)
READ(5,5) N,M
5 FORMAT(2I5)
NH=3
NA=20
NB=20
NC=20
MN=M*N
DO 10 I=1,M
READ(5,1)(H(I,J),J=1,MN)
10 WRITE(S,15)(Hi(I;J),J=1,MN)
15 FORMAT((4020.8))
15 FORMAT((//1X,'H',2X,6019.8))
UO 20 J=1,M
REAO(5,1)(OE(K,J),K=1,NN)
20 WRITE(0,25)(DE(K,J),K=1,MN)
25 FORMAT((//IX, DEI,2X,GDIY.8))
CALL FLC(M,N,H,NH,A,NA,B,NB,C,NC)
DO 30 I =1,NN
30 WRITE (6,35)(B(I,J),J=1,MN)
35 FORMAT((//1X,'LA',2X,6019.8))
CALL MULT(B,DE,DE,NN,MN,M)
CALL FPO(M,N,H,NH,A,NA,E,NB,C,NC)
GALL MINVR(B,MN,NB,D,LL,MM)
WRITE(C,40)D
40 FORMAT(/////10X,'********** WARNING **********'//
* DO }50 I=1,M, 8X, '0 =',D20.1J////I
50 WRITE(6,55)(B(I,J),J=1,MN)
55 FORMAT((//1X,'EI:,2x,6019.8))
CALL MULT(B,OE,DE,MN,MN,M)
0O 60 1I=1,N
WRITE (6,55)[I
65 FORMAT(1/1/5X,'THE Q(',[2,') MATRIX IS'/)
MI=M*(II-1)+1
MII=M*II
00 70 I=MI,MII
70 WRITE (6,75)(0E (I,J),J=1,N)
75 FORMAT(//(5x,(6019.8)))
60 CCNTINUE
STHP
SURROUTINE IDEN(A,NA,N)
UOUBLE PRECISION A(1)
K=-NA
DO 2 J=1,N
K=K+NA
UO I I=1,N
KK=K+1
1 A(KK)=0.
A(KK)=
A(KK)=1.
RETURN
END

```
```

 SUBROUTINE MULT(A,B,C,L,M,N)
 DOUBLE PRECISION A(20,20),8(20,20),C(20,20),
 *
 DO 1C8 J=1,M
 104 AD(I,J)=A(I,j)
 0円 108 K=1,N
 108 BD(J,K)=B(J,K)
 DO 112 I= 1,L
 OO 112 J=1,N
 CD([,J)=E.E
 DO 112 K=1,M
 112CD(I,J)=CD(I,J)+AD(I,K)*BD(K,J)
 UO 116 I=1,L
 DO L1S J=L,N
 116 C(I;J)=CD(I;J)
 RETURN
 END
 SURROUTINE YNR(L,M,N,RR,A,R,NRR,NA,NR)
 OOUBLE PRECISION KR(I),A(I),R(I)
 DO4 I = I,L
 KKI=I-VR
 KKA=-NA
 0O4 J=1,N
 KKJ=I -NRR
 KKA=KKA+VA
 KKI=KKI +iNR
 R(KKI)=0.
 DO 4 K=1,M
 KKK=KKA+K
 KKJ=KKJ+NRR
 R(KKI)=R(KKI)+RR(KKJ)*A(KKK)
 RETLRN
 END
 SUBRCUTINE PICKT(A,NA,R,NB,M,IR,IC)
 DOURLF PRFCISION A(1),B(1)
 L=(IC*NA-NA+IR)*M-M-NA
 LP=-NE
 OO 1 J J = L,M
 LB=LE+NB
 UO 1 I =1,M
 K=L+I
 N=LE+I
l B(N)=A(K)
RETLRN
END
SURROUTINE EQN(A,NA,B,NB,L,M)
WOURLE PRECISION A(I),R(L)
K=-NE
KK=-NA
UO 1 J=1,M
K=K+NB
KK=KK+NA
OO1 I=1,L
N=K+I
NN=KK+I
1 R(N)=A(NN)
R(N)=A
END

```

```

SURRQUTINE FRO(4,N,H,NH,A,NA,B,NB, C,NC)
UUUBLE PRECISICN A (I),B(I),C(I),H(1), X(3,3),Y(3,3)
$N X=3$
$\mathrm{I}=2$
$K A=N$
$N=M * N$
CALL IDEN (A,HA,NN)
CALL IOEN(B,NB,MN)
$K=N-1$
CALL PICKT(H,NH,X,NX,N,I,1)
CALL STORE (B,NB, X,NX,M,N,N)
CALL $\operatorname{STORE}(A, N A, X, N X, M, K, K)$
CALL STORE(A,NA,Y,NX,N,N,K)
60 T0 5
[$=\mathrm{I}+1$
$K=K A-I$
DO $4 \mathrm{~J}=2$, I
$k=k+1$
$K K=K+1$
CALL PICKT(A,NA,X,NX,N,KK,KK)
4 CALL STORE:A,NA,Y,VX,M,KK,K)
CALL PICKT(H,NH, X,NX,M, 1,1)
CALL STORE(A,NA, X,NX, M,N,N)
CALL MMR (MIV,MN,MN,A,B,C,NA,NB,NC)
CALL EOM(C,NC,E, MB,MN,MN)
IF $([-N) 3,7,3$
RETURN
END

```

SUEROUTINE STGRE (A,NA, R, NB, M, IR, IC)
UOURLE PRECISICIN A UOURLE PRECISICIN A (1), B(1)
\(L=(I C * N A-N A+I R) \neq M-M-N A\)
\(L B=-N B\)
\(001 \quad J=1, ~ M\)
\(L=L+N A\)
\(L B=L B+N B\)
[1O I I \(=1, M\)
\(K=L+I\)
1
\(N=L B+I\)
\(A(K)=B(N)\)
RETURN
END```

