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ABSTRACT

The analysis and synthesis of high-order systems are 

computationally difficult and cumbersome. Accordingly, there 

is a need for obtaining reduced models for the high-order 

system so that an analogue or digital simulation of the 

system is possible. An algebraic method is proposed in the 

frequency domain to obtain the reduced models of single

variable systems as well as multivariable systems. The 

method of matrix-continued fraction and the mixed method, 

which utilizes both the dominant-eigenvalue concept and 

matrix-continued fraction approach, are extended to obtain 

the reduced models. The reduced model is always stable and 

it retains the dominant performance of the original system. 

A complete computer-oriented algorithm is established for 

the simplification.



TABLE OF CONTENTS

CHAPTER PAGE

I. INTRODUCTION ..................................... 1

II. SYSTEM REDUCTION WITH EQUAL NUMBERS OF
INPUTS AND OUTPUTS ............................. 4

1. Single-Input Single-Output System. . . . 4

2. Multivariable System ...................... 18

III. SYSTEM REDUCTION WITH UNEQUAL NUMBERS
OF INPUTS AND OUTPUTS..............  . . . . 52

1. Case for the Number of Outputs less
than the Number of Inputs................. 53

2. Case for the Number of Outputs greater
than the Number of Inputs.................. 73

IV. ILL-CONDITIONED CASES........................... 89

V. CONCLUSION....................................... 102

BIBLIOGRAPHY ..................................... 103

APPENDIX......................................... 106



LIST OF FIGURES

FIGURE PAGE

1. Unit Impulse Response for Example 1............. 15

2. Unit Step Response for Example 1.............. 16

3. Unit Impulse Response for Example 2............. 19

4. Unit Step Response for Example 2.............. 20

5. Block Diagram Representation of Second
Cover Matrix Form...............................  . 24

6. Unit Step Response for Example 3............... 38

7. Unit Step Response for Example 4 . ............. 41

8. Unit Step Response for Example 5............... 45

9. Unit Step Response for Example 6,
First Curve......................................... 49

10. Unit Step Response for Example 6,
Second Curve ...................................... 50

11. Unit Step Response for Example 7.............. 59

12. Unit Step Response for Example 8,
First Curve......................................... 66

13. Unit Step Response for Example 8,
Second Curve ...................................... 67

14. Unit Step Response for Example 9,
First Curve......................................... 71

15. Unit Step Response for Example 9,
Second Curve ...................................... 72

16. Unit Step Response for Example 10.............. 78

17. Unit Step Response for Example 11,
First Curve......................................... 86

18. Unit Step Response for Example 11,
Second Curve ...................................... 87



FIGURE PAGE

19. Unit Step Response for Example 11,
Third Curve......................................... 88

20. Unit Step Response for Example 12,
First Curve......................................... 100

21. Unit Step Response for Example 12,
Second Curve ...................................... 101



CHAPTER I

INTRODUCTION

In general, the practical systems are highly dimen

sional, heavily coupled, and have a multiplicity of inputs 

and/or outputs. Exact analysis and synthesis of such a 

high-order multivariable system are tedious and costly proc

esses. It is always desirable to research for a reduced 

model, so that an analogue or digital simulation of the 

system is possible. The technique of system reduction has 
1-8 been recently investigated by numerous authors. The 

principle of model reduction is to discard the unimportant 

terms and retain the significant terms of interest. It has 
9 

been recognized that the most powerful method for system 

reduction of a high-order transfer function was developed 
2 4 by Chen and Shieh. ’ This method has been extended to 

simplify a high-degree transfer-function matrix, using the 

matrix-continued fraction as a basis.

The matrix-continued fraction can be summarized: the 

denominator and numerator polynomials in the transfer

function matrix are arranged in the ascending order in 

powers of S. After expanding into matrix-continued frac
tion, it has been shown^ that the matrix quotients in the 

expansion are in the order of decreasing significance as far

1
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as their contribution to the system response is concerned. 

Thus, we can truncate the least significant matrix quotients 

and obtain the desired reduced model; however, this method 

has a disadvantage in that the reduced model may be unstable 

even though the original system is stable.

Another popular technique for handling the reduction 
problem is the dominant-pole approach proposed by Davison^ 

and Chidambara. This method is based on the concept that 

the poles of the original system that are far away from the 

jw-axis in the S-plane can be neglected. Thus, a reduced 

model can be constructed by retaining the dominant poles of 

the original system. The most important feature of this 

approach is that the reduced model is always stable and 

dominant performance of the original system may be main

tained. However, this method involves complicated linear 

transformation, steady-state value matching, and matrix 

diagonalization. The computational procedures are very 

cumbersome when the order of a multivariable system is high.
5-7Moreover, the existing methods in the frequency 

domain only deal with multivariable systems with an equal 

number of inputs and outputs and the transfer-function 

matrix has no ill-conditional numerical elements. In this 

research, the matrix-continued fraction and the mixed method 

are extended to obtain reduced models of the general single

variable systems, as well as multivariable systems. The 

proposed methods can be applied to the approximation of 
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multivariable systems with various numbers of inputs and 

outputs; a technique is also established for dealing with 

ill-conditioned cases. The procedure proposed in this 

research is simple in theory and flexible in practice. The 

entire process can be performed by a digital computer.



CHAPTER II

SYSTEM REDUCTION WITH EQUAL NUMBERS

OF INPUTS AND OUTPUTS

To demonstrate the principles and procedures of system 

reduction, we will review and extend some of the existing 

methods as follows:

Section 1. Single-Input Single-Output System

a) The Second Ciuer Form

In this research, system reduction is performed in the 

frequency domain. Obviously, the expression of the control 

system is the transfer function in the S-domain. Consider 

the following single-variable system:

(1)
+ Al,n+lSn

2 Trq. _ A21 + A22S + A23S 
1 (.D) -

A11 + A12S + A13S

T(S)

(2)

A11
^Tl S11"1 

n
2A71 + A7?S + A?tS A. Z« Zi Z» O

1
A21A12 " A11A22c x A21A13 ' AllA23q2 --------  -------- b s 

a21----------------a21

where A. . are constants and A, ., , . This equation can i,j l,n+l=l
4

be expanded into the second Cauer form as follows :

4
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where

(3)

Then Eq. (2) becomes

(4)

Performing the division again.

1

(5)
S + .

where

(6)

Eq. (5) is written

1 (7)
1

1

A31

A =A32
A21A13

A21
^31

T(5) = t—A11
^21

A11A23
A21

A21A12 " A11A22
A21

T(S) = s---------
A11 + ___

A21 A21

A A - A A 2231 a32a21
A31

T(S) = ---
A11
^21

+ 1
D a31 .

1
2 3A^,S + A^7S + A,.S°

O -Li O M O O
A21^" + A22S + A23s2

S________
"A A Z A A 
a22a31 a32A21

A31
A31 + A32S +

A41
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If we set

h, = , etc.•5 A4i
(8)

Then the continued-fraction expansion of the second CSuer 

form is

(9)

The general formula to exraluate the scaler quotients in
Eq. (9) can be obtained by the following Routh algorithm.^

A12 A13 A14

A22 A23 ‘‘

(10)
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Ai,j Ai-2,j+l " hi-2 Ai-l,j+l; 1 3,4>•••>2n+l;

j=l,2,. .. ,n
Ai 1

h. = -r—!— ; i=l,2,...,2k and k < n
1 i+l,1

det <Ai+l,P * 0

If the quotients are given and the corresponding trans

fer function is required, then this process is called 

continued-fraction inversion. Considering that four scaler 

quotients h^, i-l,...,4 are given, the continued fraction 

inversion of Eq. (9) is:

T(S)
_________ h2h3h4 + (h2 + h4)S___________ 

hih2h3h4 + (hih2 + hlh4 + h3h4)S + (11)

In general, the transfer function of Eq. (1) can be 

obtained by the following inverse process of the Routh 
algorithm"*"®

A2n+l,l = 1

Aj, j ~ h^ A^+j i—2n,2n-1,...,2,1

Aj-2,£+l = Aj,Jt + hj-2 Aj-1,£+1’ j = 2n+1>2n> • • •

£=1,2,...,n (12)

It is observed that the first several quotients are dominant 

ones. This can be verified by again considering Eq. (11)

T(S) = C(S) = ________ (h2 + h4)S + h2h3h4___________
" " s2 + (h1h2 + hih4 + h3h4)s + hih2h3h4 (13)
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Applying the final value theorem to Eq. (13) and allowing 

R(S) = g-, it is found that

C(t) (14a)

Similarly, applying the initial value theorem and allowing

R(S) = 1,

C(t) = h? + h. (14b)
t^O z 4

The results obtained in Eqs. (14a) and (14b) imply that 

the quotient h^ dominates the final or steady-state value of 

the behavior of the system. In other words, the second 

Cauer form influences very heavily the steady-state part of 

the system response. It should be noted that the most domi

nant term is h-^ and the second influence term is h^. When 

the quotients in the continued fraction are well-distributed 

and lower and lower in position, they are less and less 

important as far as the influence to the performance of the 

system is concerned. This observation is the general basis 

for the simplification technique developed in this research 

for both the continued-fraction method and the mixed method, 

b) Mixed Method

It is well known that the reduced model obtained by 

applying Eqs. (9) and (13) may be unstable, even though the 

original system is stable. Hence, the approximation by con

tinued fraction does not necessarily yield a stable model.
7

To overcome this deficiency, the mixed method is extended 
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for the reduction of both single-variable and multivariable 

systems. The approach involved in the mixed method follows.

The denominator of Eq. (1) can be factorized as

A(S) = (S - a1) (S - X2) ... (S - Xn) (15)

If p dominant poles are chosen as the dominant eigen

values of the reduced model, then the new denominator poly

nomial of a reduced model is

Ap(S) = (S - (S - X2) ... (S - Xp)

p+1= 2; dj -1
j=l

bl i = d. , j=l,2,...,p (16)
-L»J J

and p is the degree of reduced model and b^, p+1 = 1.

The scaler gquotients h^, i=l,2,...£, can be evaluated 

by the algorithm shown in Eq. (10). When the coefficients

b. • of the reduced model in Eq. (16) and the dominant 1 > J
quotients h4 in Eq. (10) are found, the coefficients b7 - of 

the numerator polynomial can be evaluated by the following 
new Routh algorithm"^"®,

bi J 
bi+l 1 = “h1- ’ and P 1 n

b- -..n - b.,.- .b = 1+2’J i=l 2 D-i •i+l,j+l IT ’ 1>Z,---»P
•’ i

j=l,2,...,p-l
bl,p<-l * 1 (17)
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There is an alternative Routh algorithm that yields
4 

identical results. Considering Eq. (10) as follows:

it is seen that

bll b12 b13 • • •

b21 b22 b23 • . •

b12"hlb22 b13"hlb23 b14"hlb24 • . •

b22‘h2(b13"hlb23) b23"h2(b14"hlb24) • • •

(18)

b22"h2 (b13"hlb23) 
b13"hlb23"h3 [b23"h2 (b14"hlb24)J

A matrix expression for Eq. (19) can be formulated as

follows:

h

h (19)
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1 0 0

0 h2 0

0 1 h2h3

0 0 h2+h4

r

0 0

i ^1^2 0

= 0 hl+h3 hlh2h3

0 1 (h1h2+h

0

0

0

h2h3h4

bll

b12

b13

b14

0

0

0

. . .

^21 

b22 

b23 

b24

(20)

Eq. (20) can be factored in an alternate form:

L 0 0 ...00 100 ...00 1 0 0 ... 0 0 rbn ■

) h2 0 ...00 010 ...00 0 10 . . . 0 0 b12

) 1 h3 . .. 0 0 0 0 h2 ... 0 0 • • . 0 0 1 ... 0 0 b13

• • e e • • • • • • • • e •
• • e • • e • • • • . . • •
• • • • • • • • • • • • • •

3 0 0 . . . 1 h 000 ... 1 h J 0 0 0 ... 0 h2 b,1, P
_ —— - — __

h-!^ 0 . .. 0 0 1 0 ...00 1 0 ... 0 0 b21

1 h2 ... 00 0 h1 ...00 0 1 .. . 0 0 b22

= • • • • • • • • • • • • • • • •
e e • • • • • • • • • • •
• • • • • • • • • • • • •

0 ... 1 h p 0 0 1 h „ 1L P"±J 00 ... 0 h1 bo_2, p_

(21)
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where p is the degree of reduced model and = 1.

Eq. (21) can be written in the form

Hebl = Hzb2 (22a)

where He and Hr are both the product of the corresponding 

bidiagonal matrices. Both He and H are nonsingular, pro

vided h- t 0. If A, . and h. . , o . are given ini J,3=1,2,..., p
Eq. (21), A7 . can be computed as

b2 = (22b)

where H = H’1 H .
r e

The method of continued fraction for the reduction of 
r

the single-variable systems has been well exploded by Chen 
2and Shieh. The following examples are used to illustrate 

the advantages of the mixed method.

Example 1

T(S)

S6+848*5246S5+33147*692684+200543-1225S3
2+398977-6385^+226104-43475+23407-25497

= -7 = j (ZD J
6.675'+299•905S°+8534•05065°+63508-04115^

3 2+233963 9526S°+411730 93855^+227275 13885
+23407-25497

The eigenvalues of the characteristic equation, A(5), is

A(S) = (5+0-13247484)(5+0-70408738)(5+2-49655724+j2-69364548) 
(S+2-49655724-j2-69364548)(5+3-01673794)
(5+18-05841064+j24-46449279)(5+18-05841064-j24-46449279)

(24)
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Expanding the above transfer function according to Eq. (10), 

we have 14 quotients, the first eight being:

h1 = 1.0

h2 = 19.9942

h3 = -0.0405282

h4 =-15.6876

h5 = 0.476296

hA = 0.282881 o

h? =-25.6977

h8 - 1.31265 (2S)

If the method of continued fraction is applied and

hi g, are used. Therefore, Eq. (23) becomes

t4(S) - ---------------------------------------------------------------------------------------
1-° + 19.0042 ; ' 1.............. - .................. ......... —

5 -0.0405282 + .15^876-------- j---

------ S----- + 0.476296

+ ....1............................
0T2"8"2"m-"; i- +

-25-6977 + TT^
S (26)

converting Eq. (26) into a regular transfer function by 

applying Eq. (12), it is found that

T 5-902194S3-140-12299S2-430-98636S-57-775278
-------------- w--------------2---------------------------4 S -26-498854S<165-24465S -433-87596S-57-775278

(27)



14

Obviously the reduced, model is unstable, even though the 

original system is stable. The approximation by continued 

fraction does not necessarily give a stable model.

If the mixed method is applied and h. - , are1,1 — 1, • • • , 4

used, then the four dominant poles used are

' A.(S) = (S+0e13247484)(S+0•70408738)(S+2•49655724
+j2*69364548)(S+2•49655724-j2•69364548)

= S4+5*8296802S3+17-758865S2+ll‘749763S+l«2581257

(28) 

To obtain the simplified transfer function, we can apply 

either Eq. (17) or Eq. (22). A fourth-order approximation 

of the original seventh-order system is found to be:

t rc'i - 4-2523635S3+18‘421032S2 + ll-686839S+l*2581257
- —T- W =

4 S4+5*8296802S-)+17-7 588 64Sz+11- 759763S+1-25812 57

(29)

The impulse responses of the original and approximated 

systems are shown in Fig. 1. As expected, there is a small 

error in the initial-state portion of the approximated 

response curve. With a unit step input, the response of the 

original system and the fourth-order simplified system of 

Eq. (29) is shown in Fig. 2.

Example 2

Consider the following system

2T/-q> _ 1464-786701Sd+79582- 5474S^+533760-7473S+617497-3751 ID j - - 7 F J =---
S' + 112 •04S°+37 55 • 92S°+39736 • 62S +363650 ‘56S15 
+759894«19S2+683656*255+617497-375

(30)





Figure 2. Unit Step Response for Example 1.
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for which a third-order simplified model is desired.

Rewriting the numerator and denominator polynomials of

Eq. (30) in ascending order and expanding according to

Eq. (10), we again have 14 quotients, with the first three 

being:

h]^ = 1.0

h2 = 4.119519

h3 = -0.0660683

Factorize the characteristic equation, A(S), of

Eq. (30) as:

A(S) = (S+l•89715385)(S+0•27276689+j1•04293823) 
(S+0-27276689-j1*04293823)(8+3•85106564+j9*65270519) 
(8+3*85106564-j9*65270519)(8+49*37869263) 
(8+52*51646423) .

(31)

Then the characteristic equation of the desired reduced 

model is:

A. (8) = (8+1*89715385)(8+0*27276689+j1*04293823)
4 (8+0*27276689-jl-04293823)

= S3+2*442688S2+2*1970838S+2*204724 . (32)

S3+2*442688S2+2 *19708388+ 2* 204724

Applying again either Eq. (17) or Eq. (22) , one can 

obtain the third-order reduced model

7T(S) = C(S) = 0*0728868 +1*66189428+2*204724
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The impulse responses of the original and approximated 

systems are shown in Fig. 3, and the unit step responses 

are shown in Fig. 4. It is noted that the simplification by 

the mixed method gives very close approximations.

For finding the integral square value (I.S.V.) of a 
response function T(S), Katz's method^ can be applied. Fol

lowing Katz's formula, we calculated the integral square 

values of examples 1 and 2 and obtained the following 

results:

Example 1 I.S.V.

Original model 3*413495

Fourth-order model 3*739678

Example 2

Original model 1*269873

Third-order model 1*239319 (34)

From Eq. (34), we see that the mixed method reductions are 

satisfactory.

System 2. Multivariable System

In Section 1, the model-reduction techniques have been 

investigated for the single-input single-output systems. 

However, the single-variable system is a special case of a 

multivariable system. In general, control systems and other 

practical systems are high dimensional and with multi-input, 

multi-output. In this section, we shall concentrate on the 

reduction of multivariable systems. The model-reduction 

techniques developed in the previous section can be extended



Figure 3. Unit Impulse Response for Example 2.



Figure 4. Unit Step Response for Example 2.
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to multivariable system after some justification, such as 

replacing scaler variables by vector variables.

a) The Second Cauer Form

Consider the following transfer-function matrix of a 

multivariable system, T(S):

[T(S)j [a21 + A22S + A23S + ... + A2,nSn

[All + A12S + A13s2 + + Al,n+lSn] t35)

Where each A. . is a real and constant m by m matrix. 
1 > J

A^j = Aj[1], j = l,2,...,n+l where Aj is a coefficient of 
n+1

the characteristic polynomial or A(S) = X A.S^and [1] 
j=l 3

is an identity matrix.

When the numbers of inputs equal that of the outputs,

we can obtain the matrix quotients of Eq. (35) by means of

the following matrix Routh algorithm:

A11 A12 A13 A14

A21 A22 A23

A31 A32

A^ . . . (36)

The elements of the first and second rows of Eq. (36) are 

the matrix coefficients of the matrix transfer function of 

Eq. (35), and the elements of the third, fourth and subse

quent rows can be evaluated by the following matrix Routh 
algorithm.3’
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Ai,j = Ai-2,j+l " Hi-2 Ai-l,j+l; J 1,2,...

(Ai + 1 1)"^ ’ 1=1,2, • • •, 2k and k <_ n

det (Ai+l,l) * 0 C37)

The complete matrix Routh array is:

H1 = A11A211

H2 = A21A311

H3 = A31A411

H4 A41A511

A22

A32

A42

Al,n Al,n+1

A2,n

(38)

Assumptions have been made that the first several domi

nant matrix quotients exist, or det [A^+j j] / 0, and a 

stable reduction can be obtained. These restrictions limit

the applications of the methods of the matrix-continued

fraction and the mixed method. The method proposed in

Chapter IV will serve to eliminate these restrictions.

After the matrix quotients are found by applying

Eq. (38), the second Caver matrix of Eq. (35) can be expanded 

according to Eq. (9) by replacing (hp with [H|] and using 

the matrix inversion rather than division. The resulting 

expansion of the matrix-continued fraction of the second 

Caver matrix form is:
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[T(S)1 - [H1 + [h2| ♦ [h3 * [h4J * [...J"1]"1]"1]"1]"1

(39) 

where each [IL] is a matrix quotient of real and constant, 

m by m matrix. The block diagram corresponding to Eq. (39) 

is shown in Fig. 5.

The reduced model can be obtained by discarding the low 

performance matrix quotients located in the inner position of 

Eq. (39). The reduced models are

r r 1 r r 1T1T1T1T1,Td(S) + [H2| * [Hj + [H4|J J J ]

- [(H2 + H4) s + H2H3H4][s2I + (HXH2 * H1H4 

+ H3tH4) S .

* LH2] [SI + H1H2] '39a’

This reduced model gives a satisfactory approximation in the 

steady-state response.

If the matrix quotients, 2k’ are S^-Ven>

Eq. (39) can be expressed by the following state equations.

[X] = [A] [X] + [B] [U]
[Y] = [C]T [X] (40)



Figure 5. Block Diagram Representation of Second Cauer Matrix Form.
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where

H1H4 H1H6 ... H1H2K

(H1+Hs)H4 (H1+Hs)H6 ••• (H1+H3)H2K

(HltH3)H4 (H1+VH5)H6 (Hl+H3tHs)H2K

_H1H2 (H1+H3)H4 (H1‘H3*Hs)H6 ••• (Hl+H3+’ •-+H2K-1)H2K_ 

(40a)

rxm T[B] = [1,1,...J]1 (40b)

t r ~i[C]1 = ^H2,H4,...H2KJ (40c)

H1H2

H1H2 
rxr
[A] = H1H2

rxl T
[X] = * * * ,X1k]

[-iTX1,X2, .. .xj

r iTY = I Y Y Y I 1
a12 |JSn+l,Am+2’ee*A2mJ

[nTX(k-l)m+l’X(K-l)m+2’•* *’XKmJ (40d)

rxr 
The matrix A is a matrix with dimension rxr where

Y=kxm, and K is an proper integer. The characteristic 
r

equation is A(S) = it (S-A.), where A- is the poles, [I] 
i=l 1 T

is an m by m dimensional-identity matrix, [C] is an m by

(kxm) matrix, [X] is an (Kxm]-dimensional state vector,
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[U] and [Y] are m-dimensional input and output vector, 

respectively.

After substituting the matrix quotients into Eq. (40), 

the corresponding matrix transfer function can be obtained 
12by applying the Leverrier algorithm. The transfer func

tion matrix has the form

T(S) - CT (SI - A)"d * * * * * * * 1 B = ($(S)] (41)

dr-l = " r^T tr(Rr-2A) Rr-1 = Rr-2A+dr-lI

dr = - 1 trCR^ ,A) R^ = Rv 1A+dT.I = 0
r v r-1 J r r-1 r

tr(A) is the trace of the matrix A; A, B, C, and R are con

stant, real matrices of compatible dimensions.

An alternate approach to obtain the matrix-continued

fraction inversion or the corresponding matrix-transfer

function can be evaluated from the following matrix Routh

algorithm ,

where

A(S) = Sr+d1Sr-1+d2Sr-2+...+dr_1S+dr

(4(S)] = Sr"1CTB+Sr-2CTR1B+...+SCTRr_2B+CTRr_1B

and dj^ = -tr(A) R1 = RpA+d^I,

d2 = - 2 tr(R^A) R2 = RjA+d2I
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A2r+l,l =

Ai#1 = ^iAi+l,l’ = 2r,2r-12,1

Aj-2,£+l = Aj,£ 4 Hj-2Aj-1,£+!’ j=2r+1»2r>•••»3;

£=1,2,...r (42)

The matrix coefficients of Eq. (35) A^, are the 

elements of the first and second rows of the matrix Routh 

array generated by Eq. (42).

b) Mixed Method

As shown in Section 1, the reduced model in Eq. (39a) 

may be unstable, even if the original system is stable. The 

mixed method is presented for the reduction of multivariable 

systems which guarantees that the reduced model is stable 

and the dominant performance of the original system is 

maintained.

Let the multivariable system with m inputs and £ out

puts be described by the matrix equation,

Y0(S) = [T(S)] U0(S) (43)

The transfer-function matrix is,

[HS)] - sXy [Q(S)J (44)
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where
n*l n

Ao(s) =E ^s1"1 - (s - xi); a?°> 

i=l 1-1

p i=l \ 1

an+l=1’

X^/0 and

n
[Q(S)] = Z Q.s1’1 

i=l 1

In this section, we consider the case £=m. The steps 

involved in the mixed method for the multivariable system 

reduction can be summarized as follows.

Step 1. Determine the characteristic polynomial of the
13 matrix [T(S)] by applying Gilbert’s method. The character

istic polynomial of the matrix [T(S)] is

/ \^1 / \^2 / \YnA(S) = (S - X1) 1 (S - X2) Z ... (S - Xn) n (45)

If p dominant poles which have y^=m repeated power are 

chosen as the dominant eigenvalues of the reduced model, 

then the least common-denominator polynomial Ap(S) and the 
characteristic polynomial Acp.(S) are written:

Ap(S) = ? (S - Aj) - 5) djSj "1, dp+1=1 (46)

1"1 j-1

c p /A^(S) = 7T (s - x. (47)
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Step 2. Use the dominant matrix quotients

obtained by Eq. (37) and apply the following algorithm to fit 

the numerator dynamics

^2 j, j=l,2,...,p) of the reduced model.

B1 i = d-[I], j=l,2,...,p 
x»J J

B1,P+1 = [I]

Bi+l,l = Hi1 Bi,l ’ i=l,2,...,p and p < n

Bi+l,j+l = Hi1 [Bi,j+1 " Bi+2,j] : i=l,2,...,p-j;

j=l,2,... ,p-l

The reduced model is:

Yd(S) - [Td(S)J [UO(S)]

~ [Y0(S)] = [T(S)1 [u0(S)]

where

(48)

(49)

TdCS)

Again there is an alternative Routh algorithm for the 

multivariable system which yields identical results.

Replacing h^, b^j and b2j by H^, and , respectively, 

in Eq. (18) yields
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(50)

B11 B12 B13 • • .

B21 B22 B23 • « •

B12"H1B22 B13"H1B23 614-^ 24 • • •

B22'H2(B13"H1B23) 23"H2(B14"H1B24) • • • • • •

It is observed that

H1 B11B21

H2 = B21 B12"H1B22

H3 ’ [B12-H1B22][B22-H2(B13-H1B23)] 1

H4 = [B22-H2(B13-H1B23)J [B13-H1B23-H3 [B23-H2 (B14-H1B24)]]

(51)
After some manipulation of Eq. (51), the following matrix 

expression can be formulated:

"i o o o .. 7

o h2 0 0

0 I H3H2 0

o o h2+h4 h4h3h2 ...

* H
 

C
M 

tn
rH

 
r~

< 
rH

 
rH

|pq 
pq 

pq 
pq
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where number of dominant chosen foris the thepolesP

desired [I]. [I] is an identityreduced model and B-. „ =1, P 
matrix with compatible dimension.

(53)

The

I

0

0

0

H1 0

i h2H1

0 H1+H3

0 I

? factored

0

0

H3H2H1

h2h1+h4h1+h4h3

form of Eq. (52)

0

0

0

H4H3H

is shown

.00

. 0 0

. 0 0

• 1 H p-1

2H1

in Eq.

I 0

0 I

0 0

0 0

®21

B22

B23

B24

(53)

0

0

0

0

o“

0

0

h2

(52)

pll '0

H2

I

0

0 . . .

0 ...

H3 ...

0 . . .

0

0

0

I

0 ”

0

0

HP

10 0 ..

0 10 ..

0 0 H2 ..

0 0 0 ..

• • •

0

0

I

0

. . .

P.I 
C

M 
bQ 

*
M

 
PQ ... 

pg 
|

=

«1

I

0 . ..

H2 ...

0

0

0 -

0

10 . . .

0 H2 ...

0 0

0 0
. .

I 0 .

0 I .

• 0 0

0 0

H
 

C
*J

C
sl 

C
M

|cg 
pg________

•

0 0 .. . I HP 0 0 . . . 1HP-1 0 0 . • 0

[ to 
• • - 

ts
> P
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Eq. (53) can be written as:

HLB1 = HRB2 (54)

where and are the product of bidiagonal matrices. If 

Hi^o>i=l,2,..., p, both and are nonsingular. Eq. (54) 

can be further simplified as:

B2 = H B1 (55)

where H = HR 1 HL. By using Eq. (55) , B2 j can be computed 

if B| j and Hj are given.
It should be noted^ that Eq. (40) is a minimal realiza

tion of T(S) and the minimal dimension of the system matrix 

is y = KXM, where K is the smaller integer and m is the 

dimension of the matrix quotients. This observation can be
13 easily verified by Gilbert's theorem. For example, start

ing from the innermost loop of the block diagram shown in

Fig. 5, we find that the subsystem in the forward path

S [H2K1 has minimal dimension m if and only if det [h2K] / 0.

The subsystem in the feedback path 

subsystem [H2^] form a composite 

[H2k_i1 and the forward 

feedback system. It is

completely controllable and observable if det [H2^] + 0 and

det [H2r_^] + 0 because det = det tH2K H2K-J "

det [H2K] det [H2K_11• The minimal dimension of this feed

back system is m. Furthermore, this composite feedback sub

system and the other feedforward path g- t^2K- 2-^ ^orm a 

parallel connection. If det / 0, then the parallel 
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subsystems, which have no common pole at S = 0, form an 

irreducible subsystem with minimal dimension 2M. By extend

ing this approach to the whole system, we can conclude that 

the system of Eq. (40) is completely controllable and observ

able with minimal dimension y = KXM if det [H^J / 0, 

i=l, 2,. .., 2K and K <_ n.

From this conclusion, we obtain a sufficient condition 

that when 2K matrix quotients are available, the minimal 

dimension of the realization is KXM. On the other hand, if 

the rank of a transfer-function matrix equals to KXM where 

K is the smaller integer, then a complete set of matrix 

quotients can be obtained.

In short, for a system with rank = y, dimension of 

= m then = K *> 2K matrix quotients are expected.

12 Before proceeding, we make the following definition : 

The characteristic polynomial of a proper rational 

matrix T(S) is defined to be the least common 

denominator of all minors of T(S). The degree of 

the characteristic polynomial of T(S) is equal to 

the rank of T(S).

It is noted that the common denominator polynomial is 

not necessarily the characteristic polynomial. The absolute 

stability of a multivariable system can be determined by 
14applying the Routh criterion to the characteristic equa

tion obtained.
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A method for computing the correct rank of a given 

matrix-transfer function for the purpose of constructing 

the state variable representation is contained in an impor- 
13tant theorem by Gilbert

Theorem: Given a rational, proper matrix transfer 

function, T(S), whose elements have a finite num

ber of simple poles, S^, i=l,2,...,n. The partial 

fraction expansion of T(S) can be expressed as

T(s) R

R - Llln T(S) 
S-»-°o

Let the rank of matrix be denoted by then T(S) 

can be represented by a system of differential equation. 

Eq. (40), whose rank is

(57)

The following examples illustrate the power of the 

mixed method proposed in this research.

(56)

where

Di • Lim [(S - si)T(s)l 

s»si

nY = £ Yi 
i=l T
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Example 3

Consider the transfer-function matrix

15-0(S+l-7) (S+100) 95200-0(S+l-898)(S+10)
85-0(S+l*44) (S+100) 124000-0(S + 2-037) (S + 10)_

= (S+l-338354)(S+l-886647)(S+10-0)(S+100-0) (58)

The above matrix equation is written in the form of a partial 

fraction expansion to check the rank.

. A Di
T(S) - - Sj,) t59)

where is the iin residue matrix given by Eq. (56) and S^, 

the poles of the matrix elements in T(S), are

S1 = -1*338354 S2 = -1-886647

s3 = -10-0 s4 = -100-0 (60a)

and

D1 -
" 535-

L 852-

20886

42777

-274- 68846
D2 -

-3724- 8732
’-11205 •0

D3 ’
-65484 •0

0
D4 "

0

461477*71"

750376-53
rank two

8768-9573

151263-5
rank two

= rank one

840537930-0

1093267000-0
= rank one (60b)
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The system is obviously of rank six, with

= Xj = - 1*338354 = pole of order two

^2 = ^2 = ‘1’886657 = pole of order two

53 = X3 = -10*0 = pole of order one

54 = X4 = =100*0 = pole of order one (61)

It is noted that K = where m=2 for this particular 

system. Hence K = = 3 and 2x3=6 matrix quotients are

expected. Eventually, a yield of six matrix quotients are 

obtained by applying Eq. (37).

‘-0*40686947 0*29105532 "1*2684087 941*97892
H1 -

0*0019716227 -0*41075473_
H2 *

,7*1738115 1240*9788 .

"3*124612 -2*1961065 "2*4259475 6048*3982
«3 =

-0*14323896 0*025205154
H4 *

-1*4945432 8901*132

"5*9614921 -4*1304099 -3*6943562 -6990*3771
HS *

-0*00286802 0.00201857
> H6 *

-5*6792683 -10142*111

(62)

The reduced model of this system is found by computing 

the approximated denominator polynomial

A2(S) = (5+1*338354) (S+l-886647)

2SZ+3*225S + 2*525 (63)
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Only the first two matrix quotients are used to evaluate 

into Eq. (48) or Eq. (55) yields B7 ..
13

the approximate numerator. Substituting the B1 . and H-

The reduced model is

[T2tS)] -
"935*17604S +

1222-0172S +

1809-446"

2538-12

The unit-step response curves of the original system 

and the reduced model are compared in Fig. 6. The I.S.V. 

of the original system and the second-order approximated 

model are:

I.S.V.

First curve of original model 337408-375

Second curve of original model 628904-5

First curve of reduced model 336624-0625

Second curve of reduced model 627075-0625 (65)

demonstrating that the approximation is very satisfactory. 

Example 4

Slightly modify the matrix transfer function in 

example 3 as:

15-0(S+l-7) (S+100-1) 95200-0(5+1-898) (S+10-0)'
85-0(5+1-44)(S+100) 124000-0(5+2-037)(S+10-1)

T(:S) = ----- (S+'l-33'83S4)XS"+l-^8"6"6"4"7T(^+r0"-"0r(S+100-0)-------

(66)

Applying the same procedures as in example 3 shows that 

the rank of the system is now eight instead of six, meaning 

that each pole is of order two. It should note again that



Figure 6. Unit Step Response for Example 3.
w 00
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(66) in ascending order of the form Eq. (44)Eq.

S+
T(S)

(67)

The can be evaluated by applying

(37)Eq. matrix quotients are

r-0-41280569 0-29237804 1-2695779 942-01771

0-0019805828 -0’00041303 7-1757979 1251-1633

3-3877287 -2-2360282 1-1284751 2561-2092

-0-14705349 0-025832816 -3-0552006 3993*504

3-4149102 -2-3468879 -2-3979783 -3671-6249
6 "-0-0013859 0-00113316 -4-1203335 -5463-4547

778453-35 -599165-77 -0-0000746 168-398

0-24001049 -0-14767886 -0-0002638 218-78744

(68)

If a second order of reduction

approximated denominator polynomial is

(S+l-338354)(S+l-886647)

(69)

Into Eq. (48)

(70)

15* 0 95200*0 
85*0 124000*0

1527- 0 1132689*6
8622* 4 1504988*0

2*55255
12*24

1806*896 
2551-1388

2552-55 1806896-0
12240-0 2551138-8

H4 =

H2 =

1-2462196 933-93105
7-276 1224-3628

A2(S)

T2(S)

S2+3-225S+2-525

H3 =

required H. i=l,2 1 •

2525•0+43502.75Stl357-275S2+113.225S3+S4

S2

H5

H3

H1

H7

SZ+3 -2255+2 -525

to Eq. (67). The eight

is desired, then the

g
K = -2-=4 = 2x4:=8 matrix quotients. Rearranging

Substituting 2, Bj j and H^, H2

or Eq. (55), the approximate numerator is
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If we expand the original matrix equation into scaler

are:

1

(71b)

and the unit step responses of the reduced model are:

(72a)

(72b)

1
S’

1 
S’

1 
S’Ta2(S)

T2(S)

T^S)

S2+3*225S+2-525

input-output expressions, the unit step responses

Tct (S) = 935-17726S+1809-4485

7124085-05^+1513610-45+2563378-8
—- - _
5^+113-225SD+1357•2755^+3502•755+2525-0

295215*05 +1134216-65+1809448-55 
S4+113-225S3+1357-275S2+3502-755+2525-0

1231-63885+2563-3788
S2+3-225S+2-525

The comparison of T(t) and Ta(t) are shown graphically 

in Fig. 7. The steady-state responses are reproduced 

exactly, while the initial responses of the original model 

and the reduced model are also very close. Numerically,

I.S.V. are:
I.S.V.

First curve of original model 337409-25

Second curve of original model 640235-0

First curve of reduced model 336625-0

Second curve of reduced model 638647-25 (73)

From the above two examples, we see that the character

istic polynomial of T(S) is in general different from the 

common denominator polynomial of the determinant of T(S)



Figure 7. Unit Step Response for Example 4.
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[if T(S) is a square matrix]. If T(S) is scaler (a 1 x 1 

matrix), the denominator of T(S) and the characteristic 

polynomial of T(S) would be the same.

It should be pointed out that the rank of Eq. (44) must 

first be known; otherwise it is possible for the denominator 

of the reduced model to be of a higher order than the given 

system.

The following example will show that the accuracy of 

approximation by the mixed method depends upon the numbers 

of dominant-matrix quotients used.

Example 5

Consider that a reduced model of the following high- 

order transfer-function matrix is required:

[T(S)]
Tn(S)

T21(S)

t12(S)

T22(S)
(74)

where A(S) = S7+0*258656xl03S6+0•43096293xl06S5+0x48281779 

xl08S4+0-18443232xl010S3+0-25036464xl011S2 

+0*5465822xl011S+0-11861872xl011

Tll(s) = -0*12413777xl02S5+0-12124793xl05S4-0-28814104xl07S3 

-0*33688681xl09S2-0-65066826xl010S-0-34016025xl011

T12(S) = 0-5208xl02S6+0-10758478xl05S5+0*21869383xl08S4 

+0-13737148xl010S3+0*218624xl011S2+0’16562047 

xl011S+0-25930241xl011
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T21(S) = 0*20045556S6+0*4786274x102S5+0*39267902x105S4 

+0*51539505x107S3+0-23138407x109S2+0-34829993x1010S 

+0*55728265xl010

T22(S) = 0«74534552xl0S5+0’27013426xl05S4+0-86810946xl06S3 

-0-16222221x108S2-0-63230209x109S-0-84962741x1010

The eigenvalues of the original system are

X1 = -0*24374787 , X2 = -2*3731406

X3 = -27*890472 , X4 = -36*71703

X5 = -48*848372 , X6 = -71•291619-j636•28052

X? = -71*291619+j636*28052 (75)

By selecting various combination of dominant eigenvalues, 

we have the following approximated denominator polynomials.

(i) If p = 3 and X^, X2 and X^ are used as dominant 

eigenvalues, then the simplified denominator polynomial is

A3(S) = S3+30*50736047S2+73*56470257S+16*13318683 (76)

(ii) If p = 4 and X^, X2, X3 and X4 are used, we have

A4(S) = S4+67*22439047S3+1193*704373S2+2717*210578S 

+592*3627048 (76a)

The rank of [T(S)] is 15. The ratio of the rank and 

the dimension of this modified system is = 7 = K, an 

integer. We have 2K = 14 matrix quotients. The required
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H^, i=l,2,...,p can be evaluated by applying Eq. (37) to

Eq. (74). The first four matrix quotients are

■-0*69742845 -2*1285198"

-0*4574532 -2*7922526]’

6*7166039 -12*832236 1
H3 =

-0*6360288 20*365442
H4

■-0*65449285 0*53927311

0*11563255 -0*16002077_
"0*44788433 1*4644699

.0*027248267 0*15292068_

(77)

Substituting the A, . and H- obtained in Eqs. (76) and 
-*■»J 1

(77) into Eq. (48) yields A7 .. The reduced models are
> J

-0 11309S2-6 62642S

T3(S)
-46 26478
0 10019S2+4 37295S

+7 5795

28 6k34S2+20 83107S

+35 2674
•3 2-0 75984x10 S4-0 30462S

-11 5557

T4(S)

(78)

""o*84x10 S3-0*1078x102S2,0*462x102S2+0*1075x104S2

=^J
-0*28956x103S-0*16987x104+0*8001x103S+0*12949x104

-It 2 20*88x10 S:>+0*8052xl0SS 0*51x10 S -0*333Sz

_+0*168x103S+0*278x103 -0*227x102S-0*424x103

(79)

The unit-step response curve of the original system

and the reduced models are compared in Fig. 8, and again

the approximation is very satisfactory. Note that the higher 

the order of the reduced model, the better is the 

approximation.
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The I.S.V. of this problem are stated below:

I.S.V.

First curve of original model 25*9255

Second curve of original model 10*7755xl0"2

First curve of third-order model 13*74108

Second curve of third-order model 10*7634xl0"2

First curve of fourth-order model 23*82907

Second curve of fourth-order model 10*7667xl0"2

Example 6

Consider another high-order multivariable system

EHS)] -

"Tn(S) t12(S)'

[T21^
T22(S)

where A(S) = S8+67•8S7+1285-4S6+8976-lS5+38697•4S4

+105846-lS3+159414-8S2+114239*lS+30208-2

= (5+0*69302487)(5+0*86648517)(5+1*2965031

+j3*49839115)(5+1•296503-j3•49839115) 

(5+1*81142425)(5+2*73775863)(5+17*53158569) 

(5+41*56671142)

T11(S) = -4*3S7-260*7S6-4192*2S5-16306*154-50607*4S3

-175765*OS2-275707*35-120832*8

T21(S) = 4*6S7+262*8S6+4150*6S5+14351*3S4+36379*9S3 

+137523*8S2+233691*85+105728*7

T12(S) = S*6S7+299*3S6+6184*7S5+22998*3S4+38672*3S3 

7+106422*85^+191676*45+90624*6
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eigenvalues, then the simplified denominator polynomial is

(5+0*69302487)(5+0*86648517)(5+1•2965031+j3•49839115)

(81)+8*3586945

quotients obtained after applying Eq (37) to Eq (80) are

6.05.0 1-2

8.07.0 1.5 -0.5

25 20 -2.0 2.0

-1.0 (82)2.54 1

Eq. (81) and (82) intoSubstituting the and

reduced models are

<-4.9858528 -5.4656713'

<-5-4605697 7.1425118,5.1678608

(83)

in

H2 =H1 =

a4(s)

-69280*15^-149660*95-75520*5

(5+1*2965031-j3*49839115)
S4+4-152S171S3+18- 563875S2<-23-264936S

H3 H4

Al,j

TheEq. (48) yields A7,-
J

T22(S) = -1*857 * *-237*1S6-6116*2S5-22123*3S4-26739*9S3

7 /42.907577 28.001335\ /-33.434778 25* 076084 '
SZ +( 5 +

\35.454456 -20.54822/ \29*255431 -20*896736

matrix quotients were yielded. The first four matrix 

If p = 4 and X2, X^ and X^ are used as dominant 

The rank of [T(5)] is 16; the ratio of the rank and the 

dimension is = 8 = K, an integer. As expected, 2K = 16

7.9484098\  /3.4797767
IS15

-8.4619989,T(S) - 5T5J
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Applying a unit-step input to the original system as in the 

previous example yields

-0*7S7+38.58S6+1992.5S5+6692.2S4

-11935•IS3-69342•2S2-84030•9S-30208-2

2-8S7+25-7S6-1965*6S5-7772*0S4

_9640*lS3+68243*7S2+84030 -95+30208 -2

where A(S) = S9+678S8+1285-4S7+8976-lS6+38697-4S5

+105846-lS4+159414-8S3+114239«lS2+30208-2S

(84)

the approximated system outputs areWith the same input.

2-962557S3-l-9858946S2-14-906242S

t4(S) =

¥^(8)
1 -8-358694

_y2*(s).

a4(S) -3-2941381S3+l-6819421S2+14-906241S

+8-358695

where A4(S) = S5+4-152517S4+18-563875S3+23-264936S2 

+8-3586945 (85)

The unit-step responses of the original and approximated 

systems are shown in Figs. 9 and 10. The corresponding I.S.V. 

are:
I.S.V.

First curve of original system 2-491544

Second curve of original system 2-976267

First curve of fourth-order model 3-098814

Second curve of fourth-order model 3-573341 (86)





Figure 10. Unit Step Response for Example 6, Second Curve.
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Note that if m, the dimension of [T(S)], is an even 
number and the methods of Chen^ and Shieh^ are applied, 

reduced models of odd degree, p, do not exist. The proposed
7

mixed method can overcome this disadvantage.



CHAPTER III

SYSTEM REDUCTION WITH UNEQUAL NUMBERS 
OF INPUTS AND OUTPUTS

The model-reduction algorithms developed in the 

previous chapters deal only with multivariable systems 

having an equal number of inputs and outputs, and having 

a transfer-function matrix with no ill-conditioned numer

ical elements. However, in general, the transfer-function 

matrix of a practical system is not a square transfer

function matrix and often contains ill-conditioned 

constants. Under these circumstances, the model reduction 

by either continued fractions or mixed method would fail. 

To overcome these deficiencies, an effective method is 

developed in this chapter for the simplification of 

multivariable systems with an unequal number of inputs 

and outputs.

Since the proposed methods depend heavily upon the 

dimensions of transfer-function matrices, it is convenient 

to present the approach by the following case studies.
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Section 1. Case for the Number of Outputs Less Than the 

Number of Inputs (l<m)

Let a multivariable system with m inputs and outputs 

be described by the matrix equation

[Y0(S)] = [G0(S)][U0(S)J (87)

and the transfer-function matrix
[Co(S)] - j-^yCQCS)] (88)

where

n+1 . n
Ao (S) = = 77 CS-A-i) >a-]_ / 0,3-n+l =

i=l i=l

Xi 0 

and

n
[Q(S)] - J QiS1"1 = [Q1Sn-1+Q2sn-2+...+Qn.1S+Qn] 

i=l

Consider the rank of [G0(S)] = r0, which is required 

to modify the rectangular matrix [G0(S)J and to construct 

a new square transfer-function matrix [T0(S)] with rank 

r = Kxm. The matrix [T0(S)J can be obtained by adding 

another square matrix [G2CS)] whose rank is r-r0 to the 

modified [G0(S)]. The modified system is:

[Y(S)] = [T0(S)][U0(S)J (89)

where

(£xl)
Y0(S)

((m-Jl)xl)
Yi(S)

[Y(S)J =
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[T0(S)] =

[GxCS)] =

[G1(S)] + [G2(S)]

(JZxm) 
, 1

((m-l)xm) Ao(S)
0

[T0(S)J

(J2.xm)
Q(S)

((m-^)xm) 
R

C£xm)
Q(S)

((m-. )xm) 
0

(j^xm) 
0

((m-£)xm) 
R

The elements in the constant matrix [R] should be chosen

so that the rank of [T0(S)] = Kxm where K is an integer. 

Since [T0(S)] is a square matrix with rank [T0(S)] = Kxm, 

the methods proposed in Chapter II can be applied to obtain

the reduced model. The reduced model for the modified

system [T0(S)] is

[Yd(S)J = [Td(S)][U0(S)] 

where

[Yd(S)] =

(£xl) 
Ydl(S)

((m-£)xl)LYd2(S) J

and

[Td(S)] =

(£xm) 
_Tdl_(S)__ 

((m-£)xm) . Td2CS> J

(90)
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The reduced model for the original system [G0(S)] can 

be obtained by partitioning the matrix in Eq. (90), or

[YdiCS)J = [Tdl(S)][U0(S)]

1 [Y0(S)] = [G0(S)][U0(S)] (91)

Example 7

To illustrate the techniques stated above, consider 

the following transfer-function matrix [G0(S)J with = 1 

and m = 2
[G0(S)] = ISjJLAdJ--------

0 (S+l)(S+2)(S+100)
(92)

The characteristic polynomial of the matrix is

A(S) = (S+l)(S+2)(S+100)

= S3+1O3S2+3O2S+2OO

These procedures are performed to obtain a new modified 

transfer-function matrix:

[T0(S)J = [G1(S)] + [G2(S)]
S+l. 5 4"] |"0 O'

= _ 0 0 + 0.1 0
S5+103S2+302S+200 S3+103S2+302S+200

S+1.5___4
.0.1 0 _________
S3+103S2+302S+200 (93)

The rank of [T0(S)J is 6. The ratio of the rank and the 

dimension of this modified system is = 3 = K, an integer. 

Using Eq. (37), we have 2K = 6 matrix quotients:
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• 0.0 0.2xl04
Hi = O.SxlO2 -0.75X103

0.71597737X10-2 0.13245X10"1
h2 =

- 0.33112583x10"^ 0.0

0.0 -0.885475X104
H3 = 0.221368X103 -0.23805X103 -

0.239697X10"2 -0.136331X10"1
h4 = 0.34082797X10"3 0.0

0.355512X10"12 0.10314005X108
h5 =

-
0.25785012X106 0.25381463X109

0.95567532X10"2 0.38808577x10" 3"
H6 = 0.97021442X10"5 0.0 (94)

If the mixed method is applied and are used, the

reduced model for this modified [T0(S)] is

0.00985S+0.015 -0.0004S+0.04"
-0.00001S+0.001 0.0 J(95)

where A2(S) = (S+l) (S+2)
= S2+3S+2

and the reduced model for the original system [G0(S)] is

(96)
S2+3S+2

[Tdl(S)] = [0-00985S+0.015, -0.0004S+0.04]

In examining the effect of the value of (m-l)xm matrix

R in Eq. (89), consider the transfer-function matrix in

Eq. (92)

[G0(S)] = tSU-5- 41-------
(S+l)(S+2)(S+100) 

(97)
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and obtain another new modified transfer-function matrix

as:

[T*(S)J = [G^sn + EG^ (S)]
"S+I.5 4* To o'
L 0 0. + b-OO 0.

S3+103S2+302S+200 S3+103S2+302S+200

'S+1.5 4"
= L 100 0 _

S3+103S2+302S+200 C98)

The rank of Tq(S) is also 6, K = — =4=3: hence six 
m 2

matrix quotients are expected:

0.0 0.2x10
Hi = O.SxlO2 -0.75

0.71597737x10" 2 0.13245033X10"1
H2 =

0.33112583 0.0
—

0.0 -0.88547573x10
H3 = 0.2213689X103 -0.23805024

—
0.23969795x10" 2 -0.13633119X10"1

H4 =
0.34082797 0.0

-
0.0 0.10314005xl05

Hs = 0.25785012X106 0.25381463X106
- 0.95567532x10" 2 0.38808577X10"3

H6 =
0.97021442x10" 2 0.0 J (99)

Again the mixed method is applied and H^, H2 are used.

The reduced model for [Tq(S)] is
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[T* (S)] d.
1 

a2(S)

0.00985S+0.015

-0.01S+1

-0.0004S+0.04

0.0 J(100)
2 where A2(S) = S +3S+2. The reduced model for the original

system [ GQ(S)] is

S2+3S+2
CT^CS)] = C 0- 009855+0.015, - 0.0004S+0.04 ] (101)

Observe that CTj^(S)] = CT^j(S)J; it can be concluded 

that the values of the (m-£)x£ matrix R do not affect the 

final values of the reduced model. We can choose a con

venient (m-£)xj2. R matrix for ease in computation, provided 

•that the rank of CT0(S)] is Kxm, where K is a proper integer.

Applying a unit-step input to the original system and 

the reduced model yields

S+5.5 . 1G«(S) = ------ 3----------- ~~J S3+103S2+302S+200 S

T (s-) = 0.009455+0.055 . 1
dl S2+3S+2 S (102)

The unit-step responses are shown in Fig. 11; the ap

proximation by this procedure is very satisfactory. The 

integral square value of the original system is 

0.26821228x10 and that of the reduced model is 

0.26696687xl0~3. Note that the integral square value of 

the original system is very close to that of the reduced 

model.

Example 8

The power of the mixed method and the modified matrix- 

continued fraction approximations for a multivariable
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Figure 11. Unit Step Response for Example 7.
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systems where the number of inputs exceed the number of 

outputs may be illustrated by considering this following 

transfer-function matrix CG0(S)] with m = 3 and / = 2.

Gn(S) G12(S) G13(S) [GO(S)]=_1_ -1 12 15
A0(S) G21(S) g22(s) g23(s) (103)

where
A0(S) = S8+30.41S7+358.4295S6+2913.8638S5+18110.567S4

67556.983S3+173383.58S2+149172.19S+37752.826

= (S+0.35+J6.8)(S+0.35-J6.8)(S+0.46)

(S+0.75)(S+2.2+j3.6)(S+2.2-j3.6)(S+8.5)

(S+15.6)
Gn(S) = 19.82S7+429.252S6+4843.8072S5 + 45575.952S4

+ 241544.69S3+905812.05S2 + 1890443. IS

+842597.95
G12(S) = 6.6S7+157.749S6+3039.363S5+15736.191S4

+89601.204S3+317009.53S2+732817.47S

+312000.5
G13(S) = 23.6S7+651.76S6+8867.5939S5+62029.838S4

+ 336313.03S3+1316700.5S2 + 2987484.2S

+1671748.9
G21(S) = 2.96S7+65.31S6+828.7689S5+6956.6746S4

+33445.715S3+111211.67S2+136814.3S

+33487.533
G22(S) = 15.8S7+397.818S6+3871.993S5+30696.33S4

+140696.69S3+475842.89S2+937588.71S

+405193.11
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G23(s) = 4.4S7+101.161S6+1404.1517S5+10855.522S4

+65863.554S3+236964.75S2+495290.54S 

+204527.34

The characteristic polynomial of the matrix [G0(S)J

is A(S) = {aq(S)}2. The following procedures are performed 

to obtain a new modified transfer-function matrix:

[T0(S)J = [G1(S)] + [G2(S)]

1
A0(S)

Gn(S) G12(S) G13(S)

G (S) G (S) G (S)X to Z> to o

1. 0. 0. (104)

The rank of [T0(S)J

the dimension of (T0(S)]

is 24. The ratio of the rank to 

is -y = 8 = K, an integer. By

using Eq. (37), we have 2K = 16 matrix quotients. The

First four quotients are:

" 0. 0. 0.37752826X105 "

[Hi] = -0.12584553X10"1 0.10286259 0.71591038X104

_ 0.24931503X10"1 -0.19197368X10"1 -0.20364361X105

" 0.11480738X102 0.51266112x10 0.20667866X102

[H2] = 0.83229395 0.65556553x10 0.34686103x10
. 0.67036624X10"5 0. 0.
‘-0.9476532X10-16 0.6317688X10"6 -0.12834169X106

[h3] = -0.79448967x10 0.49349865x10 -0.19437105X107

0.15729226X102 -0.84312433x10 0.39432597X107 _

0.32055347x10 0.93388214 0.47820585

[H4] = 0.13836121x10 0.16462128x10 0.85234565
-0.10084175xl0"4 -0.21698973xl0"21 -0.89141847xl0"22.
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If the method of the matrix-continued fraction is 

applied and and H2 are used, then (by applying Eq. (48) 

or Eq. (55)) the reduced model for the modified system

[T0(S)j is
‘Tn (S) Ti2(S) Ti3(S) -

t2i(S) t22(5) T23(S)( d) A(S)

. t31(s) T32(S) 133(8) _ (106)

where

A (S) = The characteristic polynomial of the reduced 

model
= S3+1.3115805S2+0.54131967S+0.069200278

= (S+0.2530821524)(S+0.4475236322)(S+0.6109847154 
T11(S) = 0.11480738xl02S2+0.94441257x105+0.15444675x10 

Ti2(s) = 0.51266112xl0S2+0.35571607x105+0.57189153 
T13(S) = 0.20667866xl02S2+0.17338541xl02S+0.30642869x10 

T21(S) = 0.83229395S2+0.488401855+0.6138207X10-1 

T22(S) = 0.65556553xl0S2+0.45937866x105+0.74271197 

T23(S) = 0.34686103xl0S2+0.2359161x105+0.37489508 

T31(S) = 0.67036624xl0'552+0.70958826xl0"5S 

+0.18329827X10"5

T32(S) = 0.

t33(s) = 0.

The reduced model for the original system [G0(S)J is 

= 17I)
Tn(s)

T2i(S)

T12(S) T13(S)

T22(S) T23(S) (107)
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The zeros of A(S) = 0 in Eq. (107) are the equivalent 

dominant poles of the original system [G0(S)].

If the mixed method is applied and i = 1,..., 4 

are used, then the reduced model for the modified system 

[T0(S)] is

Tj^CS) Tj^CS) 1^(5) "

T21(S) T23(S)
^sr^csr^cs? ] (108)

where 44(8) = The least common-denominator polynomial

= (S+0.35+J6.8)(S+0.35-J6.8)(S+0.46)(S+0.75)
= S4+1.91S3+47.5545S2+56.3401255+15.9950625

T]^(S) = -0.11487882x10S3+0.67114913x102S2

+0.64781099x103S+0.35699068x103

T^CS) = 0.40355433x10S3+0.11092337x102S2 

+0.25377828x103S+0.13218792x103

t1*3(s) = 0.13009015S3+0.6829685x102S2 + 0.96192116x103S 

+0.70828415x103

t2*1(s) = -0.16371447x10S3+0.23321667x102S2

+0.51879505x102S+0.14187951X102

T2*2(S) = 0.34420703x10S3+0.44147724x102S2

+0.32359929x103S+0.17167163x103

T2*3(S) = 0.8423811653+0.16914937xl02S2 

+0.17267462xl035+0.86653849xl02

T^CS) = 0.93739989x10"6S3+0.319 20638xl0"4S2

-0.18173293x10-3S+0.4236785x10"3

[Td(S)] = _A_ 
A4(S)
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T3*2(S) = 0.

T* (S) =0.

The reduced model for the original system [Go(S)] is 

T^CS)

T2*3(S)

T^CS)

t2*2(5)
[Td (S)] = -A_
dl A4(S)

" (S)

T21(S) (109)
The characteristic polynomial of [T^^fS)] is A(S) = {A4(S)}2.

Note that the reduced model retains the dominant poles of

the original system. The unit-step response curves of the 

original system and the reduced models in Eq. (103), (107), 

and (109) are compared in Figs. 12 and 13. The reduced 

models are stable and have a good approximation in steady

state responses but a slight discrepancy in the transient 

response.

The I.S.V. of this system are stated below:

I.S.V.
First curve of original system 0.166396557x10^

Second curve of original
system 0.125646808x10^

First curve of the fourth

order (mixed method)
reduced model 0.256096679x10^

Second curve of the fourth

order (mixed method) 
3 

reduced model 0.23946464x10
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First curve of the third

order (second Caver form)

reduced model 0.140070385X104

Second curve of the third

order (second Caver form)

reduced model 0.1100467834x10^ (110)

Observe that the second Caver form approximation is 

better than that of mixed method in this particular example.

Example 9

For another illustration, consider the following transfer

function matrix [G0(S)] with m = 3 and £ = 2

Gn(S) G12(S) G13(S) 

^21(5) ^22^^ ^23^^
[G0(S)] = _A—

A0(S) (111)

where
A0(S) = S8+86.487S7+2587.496S6+32845.65S5+171583.354S4 

3 2+313189.9645+245116.1025^+83400.4895

+11309.76782

= (5+0.2996+j0.1655) (5+0.2996-j0.1655)

(5+0.9776+j0.1661)(5+0.9776-j0.1661)

(5+7.448)(5+14.998)(5+22.61)(5+38.888)
G11(S) = -3.217S7+19.627S6+1146.549S5+ 3716.882S4 

+223.874S3-1729.04952=40283.1165+6280.031

G12(S) = -1.693S7+8.993S6+934.667S5+1079.064S4

-701.7625-34910.785^+4858.7025-8803.412
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g13(5) = 3.465S7+11.861S6+233.666S5+3896.727S4

- 876.014S3-41992.207S2-31967.676S

-7900.486
G21(S) = 7.632S7+12.031S6-501.74S5-6360.227S4 

+9070.185S3+36795.67S2+160754.791S 

+4797.452
G22(S) = -2.951S7+7.313S6-882.113S5-769.914S4 

+4416.643S3+2416.532S2+29642.495S 

+2497.208
G23(S) = -1.212S7+13.305S6-692.829S5-1872.906S4

-2846.545S3+34630.529S2+342405.841S

+5335.73

The characteristic polynomial of the matrix [G0(S)J is 

A(S) = {A0(S)} . Obtain the new modified transfer-function 

matrix

[T0(S)] = [G1(S)] + [G2CS)]

G12(S)

G22(S)

G13(S)"

G23tS)

(112)

= _1__
A(S)

" G11(S)

G21(S)

. 1.0 0. 0. .

The rank of [TQ(S)] is 24, hence the ratio of the rank 

to the dimension is = 8 = K, an integer. Again applying 

Eq. (37), the first four of the 2K=16 matrix quotients

are:
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(113)

" 0.38318984xl0-16 0.38318984X10’16 0.11309768X105

[Hj] = -0.22150578x10 -0.32797824x10 0.29645231X105

_ 0.10366829x10 0.36546202x10 -0.24043266X105 .

" 0.45116321X10"1 -0.92898212x10*1 -0.79173271X10"1"

[H2] = 0.45319024X10"1 0.22768179X10*1 0.16408817X10’1

0.11990337X10"4 0.18578757X10"22 -0.10846143X10"2!

’-0.30038726X10-15 -0.5362692xl0*l6 -0.28376926x10s

[h3] = 0.45986809x10 0.33347733x10 -0.59570614xl0S

,-0.11817562x10 -0.3404811x10 0.33386715xl0S .

‘-0.2560898 0.10830943 -0.71889798x.10"1"

[h4] = 0.63462792 0.87967091X10*1 0.139994x10
-0.21212193X10"4 -0.15744114xl0*21 -0.15088878X10*2!

Using the mixed method with H^, i = 1,..., 4, the reduced

model for the modified system [T0(S)J is 

[Td(S)] - -J— 
a4(S)

'Tll(s) T12(S) T13(S)"

t21(S) t22(S) T23(S)

_T31(S) WS’ T33<S\ (114)

where A4(S) = (S+0.2996+j0.1655)(S+0.2996-j0.1655)

(S+0.9776+j0.1661)(S+0.9776-j0.1661)
= S4+2.5545S3+2.2721S2+0.81822S+0.11519

T1;l(S) = -0.14279847x10"1S3+0.96772826x10'1S2

-0.42761604S+0.63962127xl0-1
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_1 7 7T12(S) = 0.92769451x10 S -0,37346816SZ
+0.73782622xl0-1S-0.89662764xl0‘1

T13(S) = 0.91633318x10"1S3-0.34349318S2-0.30378618S

-0.80466461X10-1

T21(S) = 0.72275578x10"1S3-0.66460835x10"1S2

+0.16240473x105+0.48862054x10-1

T22(S) = 0.53136006x10"1S3-0.55925154x10"1S2

+0.29501683S+0.25434067X10"1

T23(S) = 0.49534084x10"1S3-0.5895864852

+0.34726783x105+0.54344417x10"1

T31(S) = -0.12341126x10"653+0.51027315x10"6S2

-0.27599242x10'5S+0.10185001X10"4

T32(S) = 0.87362005x10"19S3-0.28584778x10-20S2

-0.57618962x10"20S+0.3902789x10"21

T33(S) = 0.76839590xl0"1953+0.43080259xl0"19S2

-0.2555777x10"195+0.0

The reduced model for the original system [G0(S)] is

[Tdl(S)] =
44(S)

The characteristic
ACS) = {A4(S)}2.

T11(S) T12(S) T13(S) 

. T21CS) T22(S) T23(S).

polynomial of [T^j(S)] is

(115)

The unit-step response curves of the original system 

and the reduced model in Eqs. (Ill) and (115) are compared 

in Figs. 14 and 15. The approximation for this multivariable 

system is very satisfactory. The model-reduction by the
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Figure 14. Unit Step Response for Example 9, First Curve .



Figure 15. Unit Step Response for Example 9, Second Curve.
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matrix-continued fraction for this particular system is 

not given, because its third order approximation is unstable 

and the sixth order approximation is far from satisfactory.

The numerical comparison by the I.S.V. is:

I.S.V.

First curve of original 0.3814428

system
Second curve of original 0.113688755xio2

system

First curve of the 0.27033925

reduced model
Second curve of the 0.111731157xio2 (116)

reduced model

Section 21 Case for the Number of Outputs Greater Than 

the Number of Inputs (J2>m)

Restating the m inputs and 1 outputs multivariable 

system:

[Y0(S)] = [G0(S)][U0(S)] (117)

The transfer-function matrix

[Go(s)1 = rTsT tQ(s)] (I18)
Assume that the rank of [Go (S)] is r0. A new square 

matrix [To (S)J with rank [To(S)] = Kx£ where K is an integer 

is to be constructed by modifying the matrix [G0(S)] and by 

adding another matrix [G2(S)]:
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[T0(S)J = [G1(S)]+{G2(S)] (119)

where 

[Gi(S)] =
" C£xm) (-2x (£ -m))

= 1
(Ixm)

_G0(S) 0 A0(S) Q(S)

and 

The elements in the constant matrix [R] should be chosen

(G2(S)] =
(£xm) ! (£x(4-m))

i _ 1
t

Q2xm) 1

0 ! R(s) ( S) L ° i
IT (S)l = 1

(£xm) ] (£x(^-m))
1t oJ J Z! o(S) Q(S) I BL i

(lx(£-in) ) 

0

(£x(£-m))

R

in such a way that rank of [T0(S)J = Kx£, where K is an 

integer. Applying the proposed procedures in Chapter II 

yields the reduced model for the modified system [T0(S)]

[Yd(S)] = [Td(S)][Ud(S)]

where

[Yd(S)] =
CSxl)

Ydl(S)

Uxl)

Yd2

(120)

[Ud(S)] =

[Td(S)J =

(mxl)
U0(S)

((£-m)xl) 
Ui(S)

QCxm) } C2x(£-m)) 

. Tdl(S) ' Td2(S)

The reduced model for the original system [G0(S)] can be 

obtained by partitioning the matrix in Eq. (120);
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[Ydl(S)l = [Tdl(S)][U0(S)J (121)

[Y0(S)] = [G0(S)][U0(S)]

Example 10

To illustrate these proposed procedures and to examine 

the effect of the matrix R, consider this simple system with 

m = 1 and J0 = 2

’S+1.5 '

[G0(S)] =■ ------L 4 .--
(S+l) (S+2) (S+100) (122)

The characteristic polynomial of the matrix [G0(S)] is

AqCS) = (S+l)(S+2)(S+100). The new modified transfer-function 

matrix is

[T0(S)] = [G1(S)] + [G2(S)]

S+1.5 0
= 1

A0(S) |_ 4 0.1 (123)

The rank is 6, and the ratio of rank to dimension is

— = 3 = K, an integer; hence we have a yield of 2K = 6. 
2
matrix quotients. The first two matrix quotients are:

0.13333333x10^ 0.27755576xl0"14

-0.53333333X104 0.2xl04

0.88932806X10"2 0.50821977xl0"20

0.13245033X10"1 0.33112583xl0‘3 (124)

Applying the mixed method and using Hi, H2, then the 

reduced model for the modified system [T0(S)J is
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0.98499999x10"2S+0.15xl0-1

-0.4x10’3S+0.4x10-1

0.11564823x10-19S-0.135525x10-19

-0.99999x10-5S+0.1x10-2 (125)

where A2(S) = The least common-denominator polynomial

is

(126)

[Tdl(S)] is

the same system. as:

[Ti(S)] =

0

(127)4 100

The rank is also 6, and the ratio of rank to dimension is

we have a yield of 2K = 6

0.0
0.2x101 -0.75

0.33112583

(128)0.0

Applying the mixed method

reduced model for the modified

H'
2

S2+3S+2

[G1(S)] + [G’(S)]

S+1.5

0.71597737x10-2

0.13245033X10"1

A2(S) = (S+l)(S+2).

Now remodel

£ = 3 = K, an integer; hence 
2
matrix quotients. The first

A2(S) |_-0.4x10’3S+0.4x10_1

The characteristic polynomial of

and using H|, then the 

system [1^(5)] is

[Td(S)J = _J_
A2(s)

1 
A0(S)

two matrix quotients are:
O.SxlO2

The reduced model for the original system [G0(S)J

0.93499999x10"2S.0.15x10"1 "
[Tdl(S)] = 1
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(129)

(130)

where £2(8) = S^+SS+Z.

The reduced model

O.OSSxlO^S+O.lSxlO"1

-0.4x10‘3S+0.4x10"1

-0.99999xl0"j+0.1xl0

0.0

[T* (S)] =
d A2(S)

for the original system [G0(S)] is 

0.985x10"2S+0.15x10-1

A2(S) -0.4x10~3S+0.4x10"1
[1^(5)] - 1

Examining results obtained in Eqs. (126) and (130), 

the conclusion can be drawn that the values of the constant 

matrix R can be chosen arbitrarily without affecting the 

final approximation of the original system.

Applying the unit-step input to Eqs. (122) and (130) 

yields

G (s) = S+1-5 • I
ol S3+103S2+302S+200 S

_________ 4_________ . 1
G02Cs) " s3+103S2+302S+200 S

0.00985S+0.015 1
Tdll^ = --- 2------------- 5
a11 Sz+3S+2

-0.000S+0.04 1
Tdi2Cs) = —----------- -

S2+3S+2 S (131)

The unit=step responses are shown in Fig. 16. The 

steady-state responses are reproduced exactly, while the 

initial responses of the original model and the reduced



Figure 16. Unit Step Response for Example 10.

00
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model are also very close. Numerically, we can also examine 

the accuracy of the approximation by comparing the integral 

square value:

I.S.V.

First Curve of original
system 0.349244219x10"^

Second curve of original
system 0.133307446x10"^

First curve of reduced
model 0.349204055X10"4

Second curve of reduced
model 0.13335999X10"3 (131a)

Example 11

To illustrate the application of the above proposed

procedures for model simplification of multivariable system

when the number of outputs exceeds the number of inputs, 

consider the following transfer-function matrix [G0(S)] with 

m = 2 and fi, = 3

Gn(S)
[G (S)J = -1— G21(S)

° A0(S) 21
L631(8)

612(S)

622(8)

632(8) (132)

where
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AO(S) = S8+218.893S7+17913.599S6+634530.95S5 

4 3 2+8585434.107S*+15973802.35SJ+14969803.56S^

+7841305.39S+1543146.7

= (S+0.395)(S+0.405+j0.703)(S+0.405 -j0.703) 

(S+0.808)(S+33.32)(S+37.44)(S+73.06+j23.46) 

(S+73.06-J23.46)
G11^S) = -0.23931xl0"1S5+0.24787S4-0.43675xl04S3 

-0.45974x106S2-0.107847x106S-0.740371x104

G12(S) = 0.5208x10"2S6+0.158711S5+0.346191x102S4 

+0.23055x104S3+0.255857x105S2-0.148485x106S 

-0.165375X104

G21(S) = S7-0.23931x10"1S6+0.24787x10S5-0.436752x103S4 

-0.45974x105S3-0.107848x107S2-0.74037x106S
2 +0.14226x10

G22(S) = 0.5208x10"3S7+ 0.15871x10"1S6+ 0.34619x102S5 

+0.23055x103S4+0.25586x104S3-0.14848x105S2 

-0.16537x106S-0.14265x102

G31(S) = 0.2699x10"4S7+0.49139x10"2S6+0.14447x10S5 
•z 4 43 72

+0.10672x10 S +0.22932x104S +0.148882x10zS 

+0.23291x10^+0.289138x103

G32(S) = 0.1297x10"3S7+0.12278x10-1S6+0.264899x102S3 

+0.259459x103S4+0.637956x105S3+0.37376x106S2 

+0.67494x106S+0.360133x104

The characteristic polynomial of the matrix [G0(S)] is 
2A(S) = {A0(S)} . The following procedures are performed to
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obtain a new modified transfer-function matrix:

[T0(S)J = G1(S) + [G2(S)]

"gu(S)

= _1— G21(S)
A0(S)

G31

G12(S) : 0 "

G22(S) J 0

G32(s) l 1 (133)

The rank of [T0(S)] is 24. The ratio of the rank and
24the dimension of this modified system is — = 8 = K, an

integer. By using Eq. (37), we have 2K = 16 matrix quotients

The first four matrix quotients are:

0.0 0.10039151X106 0.39765446X103

Hl = 0.0 -0.80600783X104 0.39656729xl0,:’

0.15431467X107 0.7299403X109 0.35999415xl03

- 0.93675833X10"3 -0.11630684X10'3 0.12752979X10"6

h2 = 0.566187x10-8 0.6761924xl0"7 0.67457074X10"28

- 0.11086398X10"5 -0.13630286X10"4 -0.10907614X10-25

0.18925893xl0"16 -0.10040056X106 -0.39963943X103

H3 - 0.3713575X10"16 0.80677805X104 X-0.38428994X10"3

0.41073398X107 -0.72966072X109 -0.39622133X107
- 0.28310922X10"1 -0.41689233X10"2 -0.28914324X10-6

h4 = - 0.10361655 -0.96124859X10"2 -0.34176715xl0-21

0.10004233 0.58568629xl0"l 0.22997037x10-21

(134)

The mixed method is applied for the approximation and 

Hj^, i = 1,...4 are used; then the reduced model for the 

modified system [TQ(S)] is
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’T11(S) Ti2(S) T13(S)'

[T, CS)] = —-—d A4(S) t2i(S) T22CS) T23(S)

_T31(S) T32(S) T33(S) (135)

where A (S) = (S+0.395)(S+0.405+j0.703)(S+0.405-j0.703)

(S+0.808)
= S4+2.013S3+1.952S2+1.0504S+0.21008

T11(S) = 0.44851083x10"2S3-0.61364882x10"1S2

- 0.14596779x10_1S-0.1007922x10’2

T12(S) = -0.55124746x10’4S3+0.51334301x10’2S2

-0.20195333x10-1S-0.22513723x10"3

t13(S) = -0.29165322x10’9S3+0.59350573x10’9S2

-0.110780014x10’7S+0.13613741x10"6

T21(S) = 0.45855403x10’2S3-0.13832512S2-0.10079229S

+0.19366969X10"5

T22(S) = 0.17702483x10"3S3-0.1237636x10-3S2

- 0.22512904xl0‘1S-0.19420003x10’5

T23(S) = 0.57635563x10"20S3-0.25594053x10"20S2

-0.80537956x10"22S+0.0

t31(S) = -0.16290698xl0-1S3+0.20001136S2 

+0.3170455xl0"1S+0.393625x10"4

T32(S) = 0.49174273x10"2S3+0.43387104x10"1S2

+ 0.9184469x10’^+0.49027575x10 "3

T33(S) = -0.10947895x10"20S3+0.14815543x10"20S2

+0.79338464x10"22S+0.34754821x10"24
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The reduced model for the original system [G0(S)J is

[Tdl(SJ] - _A_
A4 CS)

Tn(S) T12(S)

T21(S) t22(S)

T3i(S) T32(S) (136)

The characteristic polynomial of [T^j(S)] is
A (S) = {A^(S)}2. Expand the original matrix equation into 

scaler input-output expressions and the unit-step responses

are as follows:

•
0.5208x10"2S6+0.13478S5+0.3486697x10"2S4"

-0.2062x104S5-0.4341543x106S2

.-0.2563325S-0.905746 1
GO1CS) = A0(S) s

Go2(S) =

"0.5208x10-3S7-0.0806x10‘1S6 

+0.370977x102S5-0.206202x103s4

-0.434154x105S3-0.1093328x107S2

_-0.90574x106S-0.00039x102 : 1
Ao(S) S

go3(S) =

‘0.15669x10"3S7+0.171919x10"1S6 

+0.279346x102S5+0.366179x103S4 

+0.66088x105S3+0.186258x107S2 

+0.90785x106S+0.3890468x104 1
A0(S) s

The unit-step responses of the reduced model are
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0.4429984x10"2S3-0.5623145xlO"1S2

- 0.347921x10^S-0.1233059x10"2 . 1
Tdll(S) = A4(S) S

0.4762564x10"2S3-0.1384488S2

-0.1233052S-0.5309X10"8  . 1 
Tdl2Cs) = 44(-s-) s

-0.1137327xlO-1S +0.2433984S

+ 0.12354924S+0.5296382x10"3___________1
Tdl3^S) = A4(s) S (137)

The comparisons of the responses of the original system 

and reduced model are shown graphically in Figs. 17, 18, and 

19. Again, the accuracy of approximation by mixed method 

may be examined numerically. The corresponding integral 

square values are:.

I.S.V.

First curve of original 
system 0.13386961x10"2

Second curve of original 
system 0.12036692x10 1

Third curve of original
system 0.21931316x10"^

First curve of reduced
model 0.1347451X10"2

Second curve of reduced
model 0.11968612xl0~1
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Third curve of reduced
model 0.22000029X10"1 (138)

The model simplification by the method of matrix-con

tinued fraction is far from satisfactory for this particular 

system. A study of the previous examples reveals that 

when the poles of the original system are located close 

to each other in the S-plane, the second Cauer form approx

imation yields better results. However, if some poles are 

far from the jw-axis of the S-plane while others are close 

to the jw-axis, the mixed method gives a better approxi

mation than the second Cauer form. The success of these 

approaches depends upon the numbers of dominant-matrix 

quotients used.



Figure 17. Unit Step Response for Example 11, First Curve.



Figure 18. Unit Step Response for Example 11, Second Curve.



Figure 19. Unit Step Response for Example 11, Third Curve.



CHAPTER IV

ILL-CONDITIONED CASES

In the previous chapters, it has been shown that the 

realization of the matrix [G0(S)] is a completely con

trollable and completely observable system with minimal 

dimension Kxm if det [Hj] / 0, i = 1, 2,..., 2K and 

K<n. This means that the rank of [G0(S)] is Kxm and the 

degree of the characteristic polynomial of [G0(S)J (i.e., 

the least common denominator of all the minors of [G0(S)]) 

is Kxm. Whenever the rank of [G0(S)] is not equal to 

Kxm, the complete set of matrix quotients in Eq. (39) 

cannot be obtained. On the other hand, if the rank 

[G0(S)j = Kxm but det [Ap. 1] = 0, which may occur due 

to ill-conditioned constants in [Ap. 1], then the matrix 

Routh algorithm of Eq. (48) cannot be applied.

A method is therefore proposed in this chapter to 

overcome these ill-conditioned cases. When a system is 

ill-conditioned, a new transfer-function matrix [To (S)] 

shall be constructed by modifying the [G0(S)] and by 

adding another square transfer-function matrix [62(8)]. 

This can be expressed by

89
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[T0(S)J = [G1(S)] + [G2(S)],

where

[G^S)] =
(mxm)
G0(S)

! (mxl)
1 o

(Ixm) 
0

1

i (1X1) 
; o j

(mxm) j
Q(S) ;

(mxl) 
0

^o(S) (Ixm) *
0 1

(1x1) 
0

[g2(s)] - , 1__
(mxm) i 

o : 
1

(mxl) 
r12

Z!i0(s) (Ixm) } 
_ r21 ;

(1x1) 
r22

and

FT f'Q'l 1 - 1
(mxm) ।
Q(S) ]

■
(mxl) 
R12

L ioJ Z^o(S)
l-

(Ixm) I
R21 I

(1x1)
R22 .

(139)

[Rij] are constant matrices and the elements in [Rij] 

should be chosen such that the rank of [T0(S)] = Kx(m+1), 

where K is an integer. Applying the matrix Routh algorithm 

in Eq. (48) yields 2K matrix quotients (Hj^, i = 1,...,2K). 

Either the method of matrix-continued fraction or the mixed 

method can be applied to obtain the reduced model for the 

modified system [T0(S)]. The reduced model is

[Yd(S)] = [Td(S)][Ud(S)] (140)
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where

[Td(S)]

(mxm)
Tn(S)

(mxl)
t12(S)

(Ixm) 
T21(S)

(1x1)
T22 CS)

[ dCS)]
Yn(S)
(mxl) (mxl)

Y21(S)

(1x1)
Y2i(S)

(1x1)
Y22(S)

and

(mxl)
U0(S)

[Ud(S)]
(1x1)

_U1(S) _

The reduced model of the original system [G0(S)] can 

be obtained by partitioning the matrix in Eq. (140), or

[Yn(S)] = [Tn(S)][U0(S)]

1 [Yo(S)j = [G0(S)][U0(S)J (14L)

Example 12

To apply the matrix Routh algorithm in Eq. (48) effectively, 

consider the following simple multivariable system:

[Y0(S)] = [Go(S)][Uo(S)]

I^S)[Ql][Uo(S)] (142)

where A0(S) = (S+l) (S+2)

and

[Qil
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The rank of [G0(S)] = rQ = 2 and the dimension of [G0(S)] 
is 1 = m = 2. Since the ratio of rn and m is K = ^° = 1.

m
an integer, it is expected that the matrix Routh algorithm

can be applied to obtain 2K = 2 matrix quotients. However, 

the system has singular steady-state gain, or

det [A2j] = det [Qj] = 0. This is an ill-conditioned

case. The proposed method stated in Eq. (139) can be 

applied to evaluate the matrix quotients.

The new transfer-function matrix [T0(S)] in Eq. (139) 

can be constructed as:

(143)

The rank of (To(S)] is 6 = Kx(m+1), where m = 2. 

ratio = K is 2. Therefore, we have 2K = 4 matrix 

The

quotients as follows:

To check the result, we substitute Eq. (144) into

Eq. (39) and partition the resulting matrix in Eq. (140).

The original system matrix can be obtained from Eq. (141), 

or
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[T0(S)] = [(H2+H4)S+H2H3H4][S2I+(H1H2+H1H4+H3H4)S+H1H2H3H4]‘1

Tn(s)
t2iCS)

TizCS)

T22 CS) (145)

The original system matrix is

[G0(S)] = [Tn(S)]

(S+l)(S+2) i i (146)

It can be seen that Eq. (142) and Eq. (146) eventually 

become the same.

A demonstration of the techniques established in this 

chapter and an illustration of the power of this approach 

in approximating a multivariable system with an ill-con

ditioned numerical element is given by the following ex

ample .

Example 13

We desire to approximate a two-inputs and two-outputs

multivariable system

[Y0(S)] = [G0(S)][U0(S)] (147)

The transfer-function matrix

[G0(S)J - -A- [Q1(S)1 = _J_ 
4o(S)

Gji(S)

G2i(s)

gi2 (S)

G22(S) (148)

where
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A0(S) = S8+30.41S7+358.429SS6+2913.8638S5 

+18110.567S4+67556.983S3+173383.58S2 

+149172.19S+37752.826

= (S+0.35+J6.8)(S+0.35-J6.8)(S+0.46) 

(S+0.75)(S+2.2+J3.6)(S+2.2-J3.6)(S+8.5) 

(S+15.6)
GnCS) = 31.6S7+755.1355S6 + 9277.6041S5+76590.871S4 

+409701.2S3+1564162.3S2+3384185.255 

+1413173.6
G12(S) = 18.4S7+483.6325S6+7473.1599S5+46751.11S4 

+257757.71S3+975359.78S2+2226559.5S 

+1413173.6
G21(S) = 5.16S7+115.8905S6+1530.8447S5+12384.435S4 

+66377.492S3+229694.04S2+384459.57S 

+321603.99
G22(S) = 18.0S7+448.3985S6+4574.0688S5+36124.091S4 

3 2+ 173628.46S'd+ 594325.265^ + 1185 233.95 

+321603.99

Note that det [A2^] = 0. This is an ill-conditioned 

case and the matrix Routh algorithm of Eq. (37) cannot be 

applied. By using the proposed method in this chapter, 

the new transfer-function matrix [T0(S)] can be constructed:
! I" Q1(S) ; R12

[To^l = ------ "■■■A0(S) |_R21 ; R22_



95

Qll (S) Qj2(5) ] 1.
1 Q2i(s) Q22CS) ; 0.

uo . 1. 0. | 1. (149)

The rank of [T0(S)] is 24 = K(m+1), where m = 2, and 

the ratio = K is 8. Hence, the matrix Routh algorithm

can be applied to evaluate the 2K = 16 matrix quotients.

The first four matrix quotients are:
■-0.37752826x10s 0.16589128X106

H1 = 0.37752826xl0S -0.16589116X106

. 0.37752826xl0S -0.16589128X106

" 0.20196217X102 0.20196221X102

h2 = 0.4596169x10. 0.45961715x10
_ 0.67036624X10"5 0.25630793xl0"16

’ 0.37753022x10s -0.16589115X106

H3 = -0.37752769xl0S 0.16589141X106

_-0.37753022xl0S 0.16589115X106

0.6994176x10 -0.44283034x10

h4 -0.10486528x10 0.62444541x10
_-0.10084175xl0"4 0.45504833X10"15

0.37752826X105

-0.37752826X105

0.0
0.67036624X10'5'

0.0
0.67036624X10"5.

-0.37753022x10s

0.37752769X105

-0.90588671X105 .

-0.10084175X10"4 "

-0.57922887X10"16

-0.10084175X10-4

(150)

If the method of the matrix-continued fraction is applied

and Hj, and H2, are used, then the reduced model for this

new transfer-function matrix is
"th(S) T12<S) 1 t15(S)

FT/ifS')! = 1 T01CS) ToofS) 1 Tn,(S)L A (j. 1° J J 
a3(S) 1211 22l J 1 2 ■*

T3i(S) T32(S) ! T33CS) (151)
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where Aj(S) = The characteristic polynomial of the reduced 

model
= S3+0.7926229S2+0.136548295+0.29197843x10"7

= (S+0.53954056)(S+0.0000002138)(S+0.2530822157)
T11(S) = 0.20196217xl02S2+0.51113092x105

+0.10929473X10"5

T12(S) = 0.20196221xl02S2+0.51113083x105

+0.10929306X10"5

T13(S) = 0.67036624x10"552+0.36168993x10"5S

+0.77339491X10"12

T21(S) = 0.4596169xl0S2+0.11632095x105

+0.24872827X10"6

T22(S) = 0.45961715xl0S2+0.11632102x105

+0.24872446X10"6

T23(S) = 0.0

T31(S) = 0.67036624x10"552+0.36168993x10"5S

+0.77339491X10"12

T32(S) = 0.25630793x10"16S2+0.21175824x10"21S

+0.18528846X10"21

T33(S) = 0.67036624x10"552+0.36168993x10"5S

+0.77339491X10"12

The reduced model for the original system [G0(S)J is

Tdl(S) - -4^
"T11(S) T12(S)"

43(S) T21(S) T22(S) (152)
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If the mixed method is applied and fourth-order reduced 

model is required, then i = 1,...,4 are used. The re

duced model for the new modified transfer-function matrix

is 

[Td(S)J 1 
a4(S)

T^CS)

T2*1(S)

T * (S)

T1*2(S) T1*3(S)

t2*2(s) t2*3(S)

T3*2CS) T3*3(S)
(153)

where A4(S) = The least common-denominator polynomial

= (S+0.35+J6.8)(S+0.35-J6.8)(S+0.46)(S+0.75)
= S4+l.91S3+47.5545S2+56.340125S+15.9950625

Tj^CS) = 0.2272287x102S3+0.94651495x102S2

+0.10011058x104S+0.58570481x103

T^CS) = 0.22753554x102S3+0.9468806x102S2

+0.10011174x104S+0.58570481x103

T1*3^S) = 0.93723182x10"6S3+0.31920686x10"4S2

-0.18173293x10'3S+0.42367855x10"3

T^CS) = 0.51793219x10S3+0.21551644x102S2

+0.22783097x103S+0.13329219x103

T2*2(S) = 0.51593345x10S3+0.21527749x102S2

+0.22782415x103S+0.13329219x103

t2*3(s) = -0.97699626x10"12S3+0.47369516x10"12S2

- 0.47369516x10"12S-0.33870862x10"20

T^C5) = 0.9372305xl0"6S3+0.31920686xl0"4S2

-0.18173293x10"3S+0.42367855x10"3
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t3*2(5) = -0.68454686x10"11S3 + 0.28244629x10"11s2

-0.15788126xl0"11S+0.0

I3*3(S) = 0.93723611x10"6S3+0.31920683x10"4S2

- 0.18173293x10"3S+0.42367855x10"3

The reduced model for the original system [G0(S)] is

[Tdl(S)] 1 
a4(S)

1^(5)

T21<S)

T1*2(S)

T2*2<S) (154)

The comparison of the unit-step response curves of the 

original system and the reduced models in Eqs. (148), (152), 

and (154) are shown in Figs. 20 and 21. The reduced models 

are stable and have a good approximation in the steady-state 

responses.

The integral square values of the original system, 

second Cauer form approximation, and mixed method approxi

mation are obtained by applying Katz’s formula:

I.S.V.

First curve of original
system 0.16639655xl04

Second curve of original
system 0.125640808xl03

First curve of second

Caver form reduced
model 0.18585996X104
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Second curve of second

Caver form reduced 
model 0.962381744X102

First curve of mixed method 
reduced model 0.151197949219xl04

Second curve of mixed 

method reduced 
model 0.78306518X102 (155)

From Eq. (155), we see that the approximation, as a whole, 

is satisfactory.



Figure 20. Unit Step Response for Example 13, First Curve.
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Figure 21. Unit Step Response for Example 13, Second Curve.
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CHAPTER V

CONCLUSION

An algebraic method has been proposed in the frequency 

domain to obtain a stable reduced model of a high-degree 

multivariable system with m inputs and Si outputs, where m is 

not necessarily equal to £. The proposed mixed method uses 
i 

the advantages of both the matrix-continued fraction approach 

and the dominant-eigenvalue concept. Use of the matrix- 

continued fraction method for the simplification of multi

variable systems having an equal number of inputs and outputs 

has been extended to simplify high-degree multivariable 

systems with various numbers of inputs and outputs. The 

methods are simple in theory and flexible in practice. The 

reduced models provide a good approximation if all inputs 

are excited by the same signals. The success of these 

approaches depends on the numbers of dominant-matrix 

quotients used; therefore, the proposed approaches are 

particularly suitable for the reduction of high-degree multi

variable systems with small numbers of inputs and outputs. 

The whole process can be performed by a digital computer.
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APPENDIX 106

C C C c c c c c

lyi? THE RCGTS CF A POLYNOMIAL WITHREAL CCEFFICI ENTS.M ... DEGREE GF THE POLYNOMIAL.RCCTR ... REAL ROOT ARRAY.ROCTI ... IMAGINARY RCCT ARRAY.THE COEFFICIENTS ARE READ IN DESCENDING ORDER.

3334

1005

5020
104030

DOUBLE PRECISION COEF( 10),WORK(10),R00TR(10) ,ROOTI( 10) RE AD(5t3 3 ) M N = M+ 1
READI5,34)(COEFII),1=1,N)FORMAT( 12 )FORMAT!(4F2U.R))DO 5 J=1,NWRITE(6,100) COEF(J)F0RMAT(F20.10)CONTINUECALL PROOTICOEF,WORK,M,ROOTR,ROOT I,IER) IF(IER.NE.0) GO TO 10 DO 20 1=1,M WRITE(6,5O) ROOTR(I),ROOTI(I) FORMATI//F20.10,10X,F20.10) CONTINUE GO TO 30WRITE(6,40)FORMAT!2X,* THERE IS NO SOLUTION*)STOP END

50

55

5960

4045

SUBROUTINE PROOT(COEF,WORK,M,ROOTR,ROOT I,IER) DOUBLE PRECISION COEF( 1 ),WORK(1),ROOTR(1),ROOT I( 1) IFIT=0 N = M IER=0 NX=N NXX=N+1 N2 = L KJ 1=N+1 DO 40 L=1,KJ1 MT=KJ1-L+1 WORK!MT)=COEF(L) XU=.00500101 Y0=.01000101 IN = O X=XO X0=-10.0*YO Y0=-10.0*X X=XO Y=YO IN=IN+1 GO TO 59 IFIT=1 XPR = X YPR = Y ICT=0 UX=0.0 UY=0.0 V = 0. 0 YT=O.0 XT=1.0 U=W0RK(N+l)



65

70

75

7880
8590
95
100

1'05

113115
120122125

130

135

140145150155

160

IF(U) 65,130,65 DO 70 1=1,N L=N-I+1XT2=X*XT-Y*YTYT2=X*YT+Y*XT U=U+W08K(L)*XT2 V=V+W0RK(L)*YT2 UX=UX+I*XT*wnRK(L) UY=UY-I*YT^riORK(L) XT=XT2YT=YT2SUMSQ=UX*UX+UY*UY IF (SU'^SQ) 75,110,75 DX=(V*UY-U*UXl/SUMSU X=X+DXDY=-(U*UY+V*UX)/SUMSQY=Y+DYIF(A8S(DY)+AES(DX)-1.0E-05) ICT=ICT+1IF ( ICT-500) 60, 85,85 IF(IFIT) 100,90,100IF(IN-5) 50,95,95

100,80,80

IER= 1GO TO 20DO 105 1=1,NXXMT = KJ1-L+ 1.TEMP=COEF(MT)COEF(MT)=WORK(L)WORK(L)=TEMPITEMP=NN = NX

Y = YPRIFIT = O 'IF(ABS(Y/X)-1.0E-04) 135,125,125ALPHA=X+XSUMSQ=X*X+Y*YN=N-2GO TO 140X=0. 0NX=MX-1NXX=NXX-1Y = 0. 0SUMSQ=O.0ALPHA=XN = N-1WORK(2)=WDPK(2)+ALPHA*WORK(1)DO 150 L = 2,;'4WORKIL+l)=WORK(L+1)+ALPHA»WORK(L)-SUMSO*WORK(L-l)ROOTRl02)=XR00TI(N2)=YN2=N2+1IF(SUMSQ) 160,165,160Y=-YSUMSQ=0.0GO TO 155IF ('!) 20,20,4 5RETURNEND



•40

c c c c c c c c c

2010

THIS PROGRAM FINDS THE LEAST SQUARE VALUE
K ... NO. OF TRANSFER FUNCTICN.N ... DEGREE OF DENOMINATOR.THE COEFFICIENTS ARE READ IN ASCENDING ORDER.

DDURLE PRFCTSIfJN L)(20),C(20)READ(5,10) KOn 5 J = l,'<wRITE (6, 30) JFORMAT!////10X,•LcAST SQUARE VALUE OF SET'DO 5 1 = 1,2RE AD(5,10) N‘ir.! = N+ 1
RlAD(5,2j) (?(L),L=1,ND)RE AU (5,20) (C (F*) ,N=1,N)FORMAF( (A 029.9) )FORMAT! I 2)CALL [SE(N,U,C)CONTINUEofTUPN •' • ' ----- - ■END

515U

&u

717.

Mj

u 9
8 r

90

SUHPOUTI'IE ISE (9,0,0)DOUBLE PRECISION A(29),2(20) 109(20,20) ,T (2,2*;) , F (20,29) 91='!+ 1WRITE(6,690) (D( I ) , 1 = 1,ND URITE(A,600) (C(I),I=1,N) NX=N00 50 1=1,2DO 51 J=1,NNJ=NX-2*(J-l)IF (’I J. LG. 9) TU,J)=0.IFtNJ.GT.^) T(I,J)=U(NJ)MX = ,N+ 1
DO 6C I=l,‘l DO 60 J=1,N DD(I , J ) =0 . D’K I , J) = j. L= )LL=OL J = 1DO 70 I=l,‘!L = L + 1IF(L.EC.DIF(L.FO.5) LJ=LJ+1L = 1DO 71 J = L J, J LL=LL+100(I, ))=T (L,LL) ONK I,J)=T(L,LL) LL= )•!? = 2*NDO 8 0 I = l,'!2 9(1)=C.L = 0

0(29),D(20)

LL=ODO 81 I=1,NDO 8 2 J=l,')L=LL+JG( L ) =C( J ) *(-l . )•-( J + l ) *C( I ) + 3(L )LL=LL+1DO 9 0 .)=l,*iJJ = 2=!-(N-J 1 + 1UN(1,J)=3(J J)

,3(AG),DD(20,20)



60 D601

CALL IMV’o (u'i,N,F ETM)CALL IWER ( OD,ri, F, 0,i) JTJ )XI = (-1. )/(?.*!)( Xfl ) )*DETN/OErCWHITE(6,600) XIFCJRVAr(//( FE? j.12///) )FORMAT(/1X,9E14.6/)9FTURNEND

57
17

i
l

I 13

438 3

?39

73

12
33

2 .109

2J5
6 6 52 34 7
21

8 9
1868 1*4 13 5 22?

SUERDUTI ME INVER ( A , N , B , *1 ,DE T)DOUBLE PRECISION A(20,20),8(20,20),IPVOT(20)1 PIVOT(20) ,DET,TF.'QUI VALEICE ( I R0<;, JROh) , ( ICOL,JCOL)DET= 1.DO 17 J=l,vIPVOTIJ)=uDO 135 I=1,NT=0.DO 9 J=1,NIF(IPVDT(J)-l) 13,9,13DO 23 K=1,NIF(IDVDT(K)-1) 43,23,81IF (l)ABS( T)-DAHS(A( J , K ) ) ) 83,23,23I RCw=JICf)L=KT=A(J,K)CGiNT INUECONT I MOEIPVOT(I COL) = IPVOT(I COL) + lIF(I ROW-1 COL) 7 3,109,7 3DET=-DETDO 12 t =i,r>T = A( IRr-w,L)A(IROrt,L)=A(ICGL,L)A( IC(;L,L)=TIFt.M) lu9,109,3 3DO 2 L=1,MT = 8( I^Oj,L)K IROW,L)=P(ICOL,L)I1 ( ICCL,L) =TIMDEXt I , 1 ) = P0wINDEX! 1,2 ) = ICOLPIVOTd)=A(ICCL,ICOL)DET=UET*PIVOT(1)A( ICOL, ICOL) = 1.DO 205 L=1,NA(ICOL,L)= A(I COL,L)/PI VO T(I)IF(M) 34 7, 34 7,66DO 5 2 L = 1,.ME(TCOL.L)=P(ICnL,L)/?IVOT(I)DO 134 LI=1,NIF (LJ-ICOL) 21, 134,21T=A(LI,ICnL)A(LI ,ICOL) = J.DO 89 L=1,NA(LI ,L)=A(LI,L)-A(ICOL,L)*TIF(M) 134,136,18DO 62 L=l,>'.F ( LI ,1. ) =8 ( LI ,L )-8( ICOL,L ) -TCONTINUECONTINUEDO 3 1=1,0

INDEX!20,2)



oo
on

oo
or

n
19

54 9
3

81

IF( INFEX(L,l)-nnEX(L,2) ) JROK=INDEX(L,1) JCDL = I'IUEX (L,2)IJ(J 549 K=1,N1 = M K , JRDVv ) 
ACK,JRnw)=A(K,JCCL) A(K,JCOL)=T CONTINUECONTINUE
RETURN 
END

19,3,19

SYSTEM1^™'' FINOS THE CUCTIEKTS OF » S 1NCLE-INPUT/S IFGL E-CUTPUT

REAC Ih

701

3

5 10

302033

DO 30 J=1,N
CONT INUE CONTINUE CONTINUESTOP END

DO 20 1=1,LLH(I)=A(I,1)/A(1+1,1)WRITEC6,701)1,H(I)F0RMATC//1QX,•H(•,12,’) =•,D20.6)IFCI.EQ.LL) GO TO 3 tu^u.b/
K = K+1IFCK.EQ.2) K=0IF(K.EQ.l) N=N-1CONTINUE

DOUBCE PRECISION A ( 20,20),H( 40) DU 1 1—1>20 DO 1 J=l,20 AC I,J)=0.0 READC 5,5)L N=L+1
READC5,10)(AC 1,I),1=1,N) READ(5,10)(A(2,I),I=l,L) F0RMATCI2)FORMAT((4D20.6)) K=0



cC THIS PROGRAM FINDS THE APPRCXINATED NUMERATOR POLYNOMIAL OF AC S INGLE-INPUT/SINGLE-OUTPUT SYSTEM.CC L ... DEGREE OF THE CHARACTERISTIC EGUATICN.C THE GUOTIENIS AND THE COEFFICIENTS OF THE DENOMINATOR POLYNOMIALC C C
ARE READ IN ASCENDING ORDER

DOUBLE PRECISION A(10,10)«H(10)READ!5,5)LREAD!5,10)(Hl I),1 = 1,L)LP1=L+1READ(5,10)(A(1,I),1=1,LP1)FORMAT!12)FORMATl(4020.6))DO 1 1=1,LA(I+1,1)=A(I,1)/H(I)

5 ID

L1=L-1DO 2 J=1,L1LJ=L-JDO 2 1=1,LJ2 Al 1 + 1,J + l) = (A(I,J + l)-A(I+2,J))/H(I)DO 200 1=1,L wRITE(6,105)1,A(2,I)105 FORMATl10X,'A12,•,12,* ) =*,D20.8)200 CONTINUE



C THIS PROGRAM WILL FIND THE MATRIX CONTINUED FRACTIONC EXPANSION AND INVERSION OF THREE CAUER FORMS. IT WILL C ACCEPT AS ITS INPUT, STATE ECLATICNS, TRANSFER FUNCTION C MATRICES OR MATRIX QUOTIENTS.DCUBLE PRECISION A(21,21),B(21,21),CT(21,21) ,AA(20 ), • h(3,33 ),

C

C

4
5

C

15

C

C C C C C C C C c

N M KAPPR IF IF IF IF IF IF

1412 _FORM B ARRAYDC 90 1 = 1,K2 JJ=(I-1)*M DO 9C J=1,M DO 90 K=1,M B(J+JJ,K)=O. . ,90 IF(J.EQ.KIBIJ+JJ,K)=1.GO TO (100,200,300),KK

DC 2 1 = 1,NREAD(5,1)(All,J),J=1,N) FORMAT!(4D20.8)) DO 4 1 = 1,N READ(5,1)(B(I,J)♦J=1,M) DO 5 1=1,M READ(5»1)(CT(I,J),J=1»N> CALL FADDV(M,N,M,A,B,CT,AA,E) 
FORM H ARRAYDO 11 I=1,MDC 11 J=1,MN111 H(I,J)=0.DO 12 J=1,M DO 12 K=1,N1 IJ=M»(K-1) I I=N1-K IF(II)15,15,14 

Hl J,J + IJ> = 1. GO TO 12HI J,J+IJ)=AA(II) 
CONTINUE

♦ E(3,33),HS(3,6C) ,HH(3,30) ,HP13,3O) ,DETN 1000 READ(5,3,END=99)N,M,KAPPR,K1,KK3 FORMAT(5I5) ORDER OF ORIGINAL SYSTEM DIMENSION OF MATRICES ORDER OF APPROXIMATION K1=1...READ STATE EQUATION K1=2...READ TRANSFER FUNCTION K1=3...READ MATRIX QUOTIENTS KK=1...FIRST CAUER EXPANSION AND INVERSION KK=2...SECOND CAUER EXPANSION AND INVERSION KK=3...THIRD CAUER EXPANSION AND INVERSION WRITE(6,13)13 FCRMAT(lHl) WRITE(6,10)N,M,KAPPR10 FORMATl' ORDER GF ORIGINAL SY STEM...• , 12 , / , • 
**^ES^. . * , I 2 */, * ORDER OF APPROXIMATION. I 2 ) 
N1=N+1 MN=M*N MN1=M*M1 MN2=MN/2 K2=KAPPR/2 KDIM=M*K2 FORM B ARRAYDC 6 1 = 1,K2 JJ=(I-1)*M DO 6 J=1,M DC 6 K=1,M B(J+JJ,K)=0.6 IF(J.EQ.K ) B(J +JJ,K) = 1. IF(K1.EQ.2)GO TO 8 IFIK1.NE.3)GC TO 30

READGINTSTATE1EQUAfioN>DX/DT=AX+BU AND Y=CTX 
30 ------
2 1

DIMENSION



C READ IN TRANSFER FUNCTION ROW BY ROW DENOMINATOR FIRSTC NUMERATOR IS MXM*(N+1)C DENOMINATOR IS MXM*(N+1)C NOTE: COEFFICIENT MATRICES ARE ARRANGED IN ASCENDING ORDER C S»*o S**Nt S**N COEFFICIENT IN NUMERATOR MUST BE INPUT C«AS ZEROES.

,2O(

20

111

333

26

,20(

♦ 20(

816

2725

243123

21 
1?

22C FORM CT ARRAY

DO 16 1=1,M READ(5,1)(H(I,J),J=1,MN1) DO 17 1=1,M READ(5,1)(E(I,J),J=1,MN1) GO TO (100,2CC,300),KKC FIRST CAUER EXPANSION AND INVERSION100 WRITE(6,1C1)101 FORMAT!//,IX,2C(«*1),» FIRST MATRIX CAUER FORM ♦)♦//)DC 18 1=1,N1 II=(I-1)*M IN=(N1-I)*M IN1=IN-M DC 19 J=1,M DO 19 K=1,ME(J,K+IN) = H(J,K + 11) IF(IN1)2O,21,21 H(J,K+II)=O.GO TO 19
£toI^En=E,J'Kt,,,n
CONTINUE 
CALL SCAUER(N,M,E,H,HS) UL IL Z3 WRITE(6,101) DO 24 1=1,MREAD(5,1)(HS(I,J),J=1,MN)WRITE(6,31)(HS(I,J),J=1,NN) FORMAT(//(1X,6E19.8) ) CALL MATG(M,KAPPR,HS,A ) 
^a.L^ .invre<a»kcim,ct,o,oetn)OOl22Kj=Gl!o?lS''’l<OIM’4’H’8’CTI 
DO 22 J=1,M CTU , J2=-CT( I , J)
CALL TCAUER(N,M,H,E,HH,HP) GO TO 25WRITE(6,301) DO 26 1=1,M READ(5,1)(HH( I , J ) ,J=1,MN2) WRITE(6,31HHH(I,J),J=1,MN2)
READ(5,1)(HP!I,J),J=1,MN2)WRITE(6,31)(HP(I,J),J=1,MN2) CALL FRANK(KAPPR,M,HH,HP,H,E) N * K 2GO TC 202

C oEXPANSION AND INVERSION ZUU nRirc(o,201) 
2O1a.EORMAT(//, 1X,2O (**'), • SECOND MATR IX CAUER FORM ****),//)DO 7 I=2,KAPPR,2 KK1=((I-2)/2)*M KK2=(I-1)»M DO 7 J=1,M DO 7 K=1,M

7 w8^^;^BriS(j’K+KK2)
goLtcFicoo(M,kcin,n’a,ct,b,a/1*h)

C 300*WRITE?6^301) EXPANSI0N AND INVERSION »»** 
3O1#^R^AT( //,1X,2C( **« ) ,« THIRD MATRIX CAUER FORM •



202 CALL SCAL'ER(N,N,H,E,HS)GO TO 28222 WRITE(6,201)DC 29 1=1,MREAD!5,1)(HS(I,J),J=1,MN)29 WRITE(6,31)(HS(I,J),J=1,MN)28 CALL MATG(M,KAPPR,HS,A)FORM CT ARRAYDO 7C I=2,KAPPR,2 KK1=((1-2)/2)*MKK2=(DO 7C J=1,MDO 70 K=1,M 70 CT(J,K+KK1)=HS(J,K+KK2) WRITE(6,13)CALL FADDV(M,KCIM,M,A,B,CT,AA,H) 1 GO TC 1000 99 STOPEND

C C c c c

THE LEVERRIER ALGORITHM

SUBROUTINE FADDV(L , N,M , A?B,CT,D,0) ,goy BL^ PR EC IS ION A(21,21),B(21,21),CT(21,21),R(21,21)
♦00(21,21),01(21,21),D(20),TRACE,FII,Q(3,33)**** THE LEVERRIER ALGORITHM♦•*»» INPUT IS DX/DT=AX+BU AND Y=CTX **** A MATRIX IS NXN***♦ B MATRIX IS NXM ♦*♦♦ CT MATRIX IS LXN

2
3 5
6
7
8
9

10

50

12

21

30

WRITE(6,2)FORMAT!SOX,1 THE A MATRIX IS’,///)DO 3 I=1,NWRITE(6,5)(A(I,J),J=1,N)FCRMAT(//(3X,(6E18.8) ) )WRITE(6,6)FORMAT!///,SOX,’THE B MATRIX IS',///)DC 7 I=1,NWRITE(6,5)(8(1,J),J=1,M)WRITE(6,8)FORMAT(///,SOX,’THE CT MATRIX IS’,///)DC 9 1=1,LWRITE(6,5)(CT(I,J),J=1,N)DO 10 1=1,NDC 10 J=1,NR(I,J)=0.IF(I.EQ.J)R(I,J)=1.CONTINUEKN=N*MDO SC 1=1,L DO SO J=1,M Q(I,J+KN)=0. DO 11 11=1.N CALL MALTR(N,N,R,N,A,DI) TRACE=O.DO 12 1=1,N TRACE=TRACE+DI(I,1) F I 1= I ID(II)=-TRACE/FIICALL MALTR(N,N,R,M,B,C)CALL MALTRlL,N,CT,M,C,DD) WRITE(6,21) IIFORMAT!//,5X,•THE Q(',I2,’) MATRIX IS') DO 14 1 = 1,LWRITE(6,20)(DD(I,J),J=1,M) FCRMAT(//(3X, (6E19.8) ) ) KN=(N-II)*M DO 3C 1 = 1,L DO 30 J=1,MG(I,J+KN)=C0(I,J)



16
17
1819

DO 16 1=1,N DO 16 J=1,N Rd, J)=CI (I,J) IFd.EO. J) Rd ,J)=R(I ,J)+D(II) CONTINUE CCNTINUE WRITE(6,17)
' FORMAT(////,2X,'THE COEFFICIENTS OF THE CHAR. EC |kAKc * t / )DC 18 I=1,NWRITE(6,19)I,D(I )FORMATI2X,’A{ 12,’) = ’.E19 R) RETURN ftl9.8)
END

SUBROUTINE TCALER(N,M,A,B,HH,HP)DOUBLE PRECI SIGN A(3,3 3),B(3,33),C(3,27),E(3,3),F(3,3)-* ,H ( 3,3 ) ,

CM....DIMENSION OF MATRICES
£ A RATIONAL TRANSFER FUNCTION INTO ACCONTINLED FRACTION' EXPANSION OF THE THIRD MATRIX CAUER FORM.n K 1 I t I O y J I N f r

3«dimension12R,DER 0F characteristic EQUATION IS *,I3,//,«
♦ • OF MATRIX IS • ,13,/)MN1=M*(N+1)
MN2=M*N

46
79

20

30

8
409

50

10
61

DC 4 1=1,MWR I TE ( 6,6 ) ( A ( I , J ) t J=1 , MN1) 
DCR79TU{liX,6E19'811 
doiic»6!;-1!nii'ji'j=1’,'N21 
DO 20 1=1,M DC 20 J=1,MN1 Cd, J)=C. DO 30 1=1,M DC 30 J=1,M Ed,J)=A(I ,J) FtI,J)=B(I,J) 
CALL INVER(F,M,x,0,DETN) CALL MALTP(M,M,E,M,F,H) WRITE(6,8)K nrR?nTT/i* JHE h(’’I2»’) MATRIX IS*) UU *♦ U I •! f r WRITE(6,9)(H(I,J),J=1,M) FORMAT!//(1X,6E19.8)) LB=(N-K)*M LA = LB + M. DO 50 1=1,M DO 50 J=1,M E(I,J)=A( I,J + LA) Fd , J) =B( I , J+LE) CALL tNVER(F,M,X,O,DETN)

FORMAT(/,'THE H(',12,') PRIME MATRIX UU O 1 l-lfM 
WRITE(6,9)(P(I,J),J=1.M)

IS' )



60

80

400
5002501001

9070
12d
200

KL = (DO 60 1=1,M DO 60 J=1,M HH(I,J+KL)=H(I,J) HP( I,J+KL)=P(I,J) IF(K.EO.N)GO TO 1 LL=N-KDO 70 L=1,LL ML=M*LML1=(L-1)*M DO 80 1=1,M DO 80 J=1,ME (I , J ) =B ( I , J-fr^L ) F(I,J)=B(I,J+8L1)CALL MALTP(M,P,H,P,E,X) CALL MALTP(M,M,P,M,F,Y) DO 90 1=1,P DO 90 J=1,MC( I,J+ML1) = A< I,J+ML)-X(I,J)-Y(I,J) CONTINUEWRITE(6,120)FORMAT!//,10X,'THE ROUTH ARRAY IS') DO 200 1=1,PWRITE(6,9)(C(I,J),J=1,PL) DO 250 1=1,M DO 400 J=1,LA A(I,J)=B(I,J) DO 500 J=1,LB B(I,J) = C( I,J ) CONTINUE CONTINUE RETURN END

C

C c

20

30

SUBROUTINE FRANK(KAPPR,P,H,HP,D,E) lvJL^UTlNE FINCS THE INVERSION OF A THIRD MATRIX CAUER EXPANSION
■ /^cisicn h(3,30),hp(3,30),c(3,33),d(3,33),e(3
* j j ) y X( j , 3 I y

1Z*Y<^3) » XI ( 3,3 ) ,Y1(3,3) ,X2(3,3),Y2(3,3)KAPPR....NO. OF H'S PLUS NO. OF HP'SM....DIPENS ION OF H'S AND HP'SK2=KAPPR/2K22=(K2+1)*MDO 20 1 = 1, M.DO 20 J=1,K22D( I,J) = C.E( I,J) = 0.IFd.EQ. J)E(I,J) = 1.KL=(K2-1)*PDO 30 J=1,MDO 30 K=1,MD(J,K)=H(J,K+KL)D(J,K+M)=HP(J,K+KL)IF(K2.EQ. 1 1RETURNDC 40 1=2,K2KP2=(K2-I)*MKM1=( I-1)*MKN=I*M

50

DO 50 J=1,PDO 50 K=1,M
X(J,K)=H(J,K+KP2)Y(J,K)=HP(J,K+KP2) X1(J,K)=D(J,K) Y1(J,K)=D(J,K+KM1) CALL MALTP(M,P,X,M,X1,X2) CALL MALTP!P,P,Y,M,Y1 , Y2)



60

80

9070

92

DO 60 J=1,MDC 60 K=1,MC(J»K)=X2(J,K)C(J,K+KN)=Y2(J,K) KK1=1-1DC 70 11=1,KK1 KJ=II*MKJ1=(DC 80 J=1,M DO 8C K=1,MX1(J,K)=0(J,K+KJ 1)Y1(J,K)=D(J,K+KJ)CALL MALTPIN,XI,X2) CALL MALTP(M,N,X,M,Y1,Y2) DO 90 J=1,MDO 90 K=1,MC(J,K+KJ)=X2(J,K)+Y2(J,K)+E(J,K+KJ1)CONTINUEKN1=(1+1)»MDO 91 J=1,MDO 92 K=1,KN E(J,K)=D(J,K) DO 93 K=1,KN1
D(J,K)=C(J,K)CCNT INUE CCNTINUE RETURN END

939140

605

SUBROUTINE SCAUER(N,M,A,8,HH)DOUBLE PRECISION A{3,33),3(3,33),C(3,33),E(3,3),F{3,W,G(3,3) ,♦H(3,3),CETN,hh(3,60)WRITE(6,6C5)FORMAT! 10X,' N...',I2,* M...',I2)
N1=N+1 MN1=M»N1 N2=N*2KN=N KMN=MN1

3)

10 602
20

30

40

603

DO 10 I=1,N ... .kRITE (6, 602) (A(I,J),J=1♦MN 1) FORMAT (//(IX,6E19.8))DO 20 1=1 ,M , i tWRITE(6,6C2) ( B ( I , J) , J = 1, MM )

50

KS=1DC ICO K=1,N2DO 30 1=1,MDO 30 J=1,MN1C(I, J)=o.DO 40 1=1,M DO 40 J=1,M E( I,J)=A( I,J) F( I , J ) =B ( I, J) CALL INVER (F ,M,G ,0,DETN) CALL MALTP (M,M,E,M,F,H) WRITE (6,603) KFORMAT (///5X , 19HTHE REQUIRED KSS=(K-1)*M DO 50 1=1,M WRITE(6,6C2) (H(I,J),J=1,M) 
DO 50 J=1,M HF(I,J+KSS)=H{I,J) IF (K.EQ.N2)RETURN IF (KS.EQ.2) KN=KN-1 DO 200 L=1,KNML=M*L ML1=(L-1)»M

H ( ,12,5H ) IS//)



60

609
888606

70200

80

100

00 60 1=1,MDO 60 J=1,MF( I, J)=B( I, J + M )CALL MALTP ( M ,N., H , M ,F , E) 00 70 1=1,M DO 70 J=1,MC( I , J+ML1) = A( I , J+ND-Ell , J)CONTINUEWRITE (6,609)FORMAT (//10X,*THE ROUTH ARRAY DO 888 I=1,MWRITE(6,606) (C(I,J),J=1,ML) FORMAT (//2X,6E19.8) IF (KS.EQ.2) KMN=KMN-M DO 80 1=1,M DC 80 J=1,KMN A(I,J)=B(I,J) B( I,J )=C( I,J ) KKS=KS IF(KKS.EQ.2) KS=1 IF(KKS.EQ.l) KS=2 CENT INUE RETURN END

IS' )

70

51

52

SUBROUTINE MA TG ( N , M ,HS ,H A ) utt,-, it utc/iDOUBLE PRECISION HS(3,60),HA(21,21),HTT(3,3),HTS(3,3)
*,HT(3,3) NM=N*M/2 M2=M/2 DO 70 1=1,NM DC 70 J=1,NM HA(I , J)=0. DO 50 IT=1,M2 KL=(IT-1)*N KLL=(2*IT-1)*N DO 51 1=1,N DO 51 J=1,N HT(I,J)=HS(I,KLL+J) DO 53 K=1,IT KK=2*(K-1)*N DO 52 1=1,N DC 52 J = 1 ,N HTT(I,J)=HS(I,KK+J) CALL MALTP (N,N,HTT,N,HT,HTS) DC 55 L=K,M2 LL=(L-1)*N DO 54 1 = 1,N DO 54 J=1,NHA(LL+I,KL+J)=HA(LL+I,KL+J)-HTS(I,J)CONTINUE CCNT INUE CONTINUE RETURN END



SUBROUTINE INVER DOUBLE PRECISION 
*PIVOT(3),DET,T»

A‘3:3l®B<3?E3>!lPVOT<3>,INOEX<3,2),

♦ XXEQLIVALENCE DET=1. DC 17 J=1»N ’ IPVOT(J)=O DO 135 I=1»N

( IRCktJROW) (ICCL, JCOL)

13

73

12
33

205

21

89

4383

6652347

239

1868134135

2109

T = 0.
IFIIPVOTt J)-D 13,9»13DO 23 K=1»N

83,23,23
IROW=J ICCL=K T=A(J,K) CONTINUE
IPVCTUCOL) = IPVOT(ICOL) + 1 IF(IROW-ICCL) 73,1C9»73 
DET=-DET DO 12 L=1»NT = A( IROVitL) , .At IROW»L)=A(ICCL,L) A(ICCLtL)=T IF(M) 109,109t33 
DO 2 L=ltPT = B( IROWf L) , xB( IRCWtL)=B(ICCLtL) 
B(ICCL.L)=T INDEXtI,1)=IRCk INDEXt1*2)=ICOL PIVCT(I)=A(ICCL,ICCL) 
DET=DET*PIVOT(I) 
At ICCL, IC0L) = l.
MICCL,lT=A(ICCL,L)/PIVOT(I) 
IF(M) 347,347,66
BMCCL»L) »B( ICCL ,L)/PIVOT (I) 
DO 134 LI=1,N IF (LI-ICOL) 21,134,21 T=AtLI,ICCL) A(LI,ICCL)=O.
MLia^=AtLI,L)-AtICOL,L)*T 
IFtP) 134,134,18 
B?LUL\=BtLl,L)-BtICOL,L)+T 
CONTINUECONTINUE DO 3 1=1,N

19

100

549 3 81

IF(INDEX(L,1)-INOEXIL,2)) 19,3,19
JROW=INDEX(L,1JCCL=INDLX(L,2)
DO 549 K=1,NT=A(K,JROW)A(K,JROW)=AtK,JCOL)
A(K,JCOL)=TCCNTINUECONTINUE^T6O6B*s:DEniGT.XXlReTURN
FCrIaTU^20< WARNING, DETERMINANT
l.E-15 ’,

IS LESS THAN



♦20(•♦')} RETURN END

13

73

12
33

205

21

89

19

4383

6652347

1868134135

23 9

2 109

5493

ii^<INDEX(L,1)-[NDEX(L,2) ) 19,3,19JRCW= INDEX(L, 1 )JCCL=INDEX(L,2)DO 549 K=1,NT=A(K,JROW)
A(K,JRCW)=A(K,JCCL)A(K,JCOL)=TCONTINUECCNTINUE

SUBROUTINE INVRE JA,N,B,M,DET) DOUBLE PRECISION A(21,Z1),B(21,21)#
★INDEX(21,2),
♦PIVCT(21),DET,T,XX •EQUIVALENCE (IRCU,JROW),(ICOL,JCOL) DET=1.DC 17 J=1,N* IPVOT(J)=O DO 135 1=1,N T = 0.DO 9 J=1,N IFCIPVOKJ)-l) 13,9,13- DO 23 K=1,NIF(IPVCT(K)-1) 43,23,81 IF (DABS(T)-DAES(A(J,K))) 83,23,23. IROW=J ICCL=K T=A(J,K)I CONTINUE। CONTINUEIPVCTIICCL)=IPVOT(ICOL)+l IF(IROW-ICCL) 73,109,73i DET=-DET DO 12 L=1,N T=A(IRCW,L) A( IROW,L)=A(ICCL,L): A(ICCL,L)=T IF(M) 109,109,33I DO 2 L=1,M T = B( IROW.L) B( IRCW,L)=B(ICCL,L)! B(ICOL,L)=TI INDEX!I,l)=IRCkINDEX!1,2)= ICOL PIVCTd )=A( ICCL, ICCL) DET=DET*PIVOT!I) At ICCL, ICOL) = 1.DC 205 L=1,Ni A!ICCL,L)=A(ICCL,L)/PIVOT!I) IF(M) 347,347,66 DC 52 L=1,MB( ICCL,L)=B(ICCL,L)/PIVOT(I)DO 134 LI=1,N IF (LI-ICOL) 21,134,21 T=A(LI,ICCL) AILI ,ICCL)=C.DO 89 L=1,NA! LI ,L)=A(LI,L)-A!ICOL,L)*T IF!P) 134,134,18 DO 68 L=1,MB ( L I ,L)=B!LI,L)-B(ICOL,L)*T CONTINUE CONTINUE DO 3 1=1,N

IPVOT!21)



81 XX=10.**(-15)IF(DABS(DET).GT.XX)RETURN WRITE(6,100)100 FCRPAT(IX120(•* *)t1 WARNING,•*1.E-15 *,
♦2C())RETURNEND

DETERMINANT IS LESS THAN

SUBROUTINE MALTR(N,M,A,L,B,C) DOUBLE PRECISION A(21,21),B(21,21),C(21,21),SDC 10 1=1,N DO 1C J=1,L S = 0.DC 10 K=1,M S=S+A(I,K)*B(K,J)10 C(I,J)=SRETURNEND



c c c c c c
THIS PROGRAM USES THE VALUES OF MATRIX QUOTIENTS AND APPROXIMATED DENOMINATOR POLYNOMIAL TO DETERMINE THE APPROXIMATED NUMERATOR POLYNOMIAL . utitKriNu I HE

633601
632603

33

931

507

45

50

55

801

DO 45 L=1,J W(L,L)=1.0 IF(Kl.ST.N) 30 TO 56 DO 53 K=K1,N IND=K-J1W(K,K)-H(IND)IF(Kl.OT.M) 30 TO 56DO 55 K=K1,MHIK+l,K)=1.0DO 801 II=l,N 
rniurftifc7011 tk( H* JJ 1 CONT INUc

•• ^PROXIMATEC DENOMINATOR POLYNOMIAL.. DIMENSION OF THE MATRIX QUOTIENT. ,NH=3 .
DOUBLE PRECISION V(13.10),W(1u,13),H(13),DE(13)1REA0(5,10>N U.LLilOi.HMdU)
READ!5,20)(H(I),1=1,N)READ(5,23)(DE(I),I=1,N)F0RMAT(I2)FORMAT((4D23.6))00 601) I 1 = 1, NwRITE(5,601)I1,H(I 1)

' ’I2t* ) = ,’D2o.8)DO 632 I2=1,NWRITE(6,603)12,DEI 12)FORMAT(//10X,'DEI',I 2,') =',D20.8)M=N- 1DO 30 1=1,NDO 30 J=1,NV(I,J)=0.
IF(I.EQ.J) V(I,J)=1.3CONTINJEDO 901 I=1,N
CONTlte7O1"VII’J,’J-1’NI
DO 4 0 J = 1 ,NDO 507 15=1,10DO 507 35=1,10wI 15,35) = 0.031=3-1

»

55 soi-Vorii“i ,̂"'v’N’'i’Ni
43 CONTINUE^701 FORMAT!I/13X,4D20.6) )

60

509

83

CALL GMPRSIV,DE,DE,N) WRITE(6,701)(DEII),I=l,N) DO 60 1=1,N DO 60 3=1,N VI l,3)=0.IFII.EQ.3) V(I,3)=1.3CONTINUE DO 70 3=1,N DO 509 16=1,13 DO 509 35=1,10 k'l 16,361=0.0 Ll=3-1 31=3-1
IFIL1.EQ.0) GO TO 75 DO 80 L=1,L1 hl(L,L ) = 1.0



20

9J1

507

45

50

55

60

509

80

C c c c c c c

632603

633601

70243701 C

801 C 55

CONTINJEFORMAT((/10X,4D2 0.6) )
CALL GMPRS(V,IJE,DE,\|) WRITE(5,70l)(Dh(I),1=1,N) DO 60 I=1,N DO 60 J=1,NV(I,J)=o.IF(I.EQ.J) V(I,J)=1.3 CONTINUE DO 70 J=1,N DO 509 16=1,10 DO 509 35=1,10 k'( 16,361=0.0 
Ll=3-1 
31=3-1IHLl.EQ.O) GO TO 75 DO 80 L=1,L1

Th IS PROGRAM USES THE VALUES OF MATRIX QUOTIENTS AND APPRCXIMATEC CENCMINATOR POLYNOMIAL TC DETERMINE THE APPROXIMATED MMERATCR PCLYNCMAL . utitKriNE THE
N ... DEGREE CF APPROXIMATED DENOMINATOR POLYNOMIALM ... DIMENSION CF THt MATRIX QUOTIENT. ,Nh=3 .

DOUBLE PRECISION V(13.10),W(1 J,13),H(13),DE(13),1REA0(5,l0>N D.LLllO),MMl10>
^EAD(5,20)(H(I),I=1,N)READI5,2.)(DE(I),I=1,N)FORMAT!12)FORMAT!(4020.6))DO 6'30 I 1 = 1,NWRITE!5,601)I1,H{II)
FlRR^AV«19X’ *H( * »12’’ ) = ,t 020.8) u 0 632 I 2 = 1,M kRITE(5,603)12,DE!12)FORMAT(//10X,* DE!•,12,*)=',D20.8) M = N- 1DO 3u 1=1,NDO 30 3=1,NV<I,3)=0.
IF(I.EQ.3) V(I,3)=1.3CONTINUEDO 901 1=1,NWRITE!6,701)(V!I,3),3=1,N)CONTINUEDO 40 3=1,NDU 507 15=1,10DO 507 35=1,10 w( Id,351 = 0.0 31=3-1
DO 45 L=l,3W(L,L)=].0IF(Kl.GT.N) GO TO 56DO 53 K=K1,N1ND=K-31W(K,K)=H(IND)IF(Kl.GT.M) GO TO 56DO 55 K=K1,MW(K+l,K)=1.0DO 801 II=l,N
?h(!iIVa11^701) (k( 1 JJ jj=1wN)CONTINUE



c

75 DO 85 K=J,N IND=K-J185 iHK,K} = H( IND) M=N-1 IF(J.GT.M) GO TO 95 DO 90 K=J,M93 W(K+1,K)=1.D95 CALL GMPRD ( V » Vi, V t N , N , N) DO 1001 11=1,NhRITE(6,701)(V(I I,JJ J,JJ=1,N) 1001 CONTINUE70 CONTINUE

130

105 200'i

CALL MInvR(V,N,10,D,LL,MM)WRITE(6,100) DFORMAT!///2uX,'********♦*WARN I NG *♦*»*♦***♦'//2OX *,02^.8///)CALL GMPRS(V,DE,DE,N) DO 200 1=1,NwRITE(6,105)1,UE(I) FORMAT(10X,'NU(’,12,') CONTINUE D20.8/7)
STOPEND

•0='

103
10<t
108

112
116

SUBROUTINE GMPRD(A,B,C,L,M,N) DOUBLE PRECISION A(13,10),B( 10, 13),C1 ADdOtlU) ,BD(1J,1O),CD(1O,13)DO 108 J=1,M DO 104 1=1,LAD(I,J)=A(I , J) DO 108 K=1,N BD(J,K)=8(J,K) DO 112 1=1,L DO 112 3=1,N CD( I ,J) = -j.O DO 112 K=1,M CD(I,J)=CD(I,J)+AD(I,K)*BD(K,J) DO 116 1=1,L DO 116 3=1,N C(I,3)=CD(I,3) RETURN

( 10,10)

END

»

SUBROUTINE GMPRS(A,BfC,N) DOUBLE PRECISION A(1 J,10),BI 10),C( 10),1 AD(13,10),BD(10),CD(13)DO 10 1=1,N DO 10 3=1,N10 ADI I,3)=AI1,3) DO 15 1=1,N15 BDII)=B(I) DO 20 1=1,N CD!I)=0.0 DO 23 3=1,N23 CD!I)=CDt I )+AD(1,3)*BD(3) DO 30 K=1,N30 CIK)=CD(K) RETURN END



1J15

20 ।

d

3035
38

4048
50
55

6062
65

7075

80
100
105
108

SUBROUTINE MINVR(A.N.ND,D,L,M) DOUBLE PRECISION 4(1),D,BI GA,HOLD DIMENSION L(1),M(1) D = l.NK=-NDDO 80 K=1,NNK=NK+NDL(K)=K M(K)=K KK=NK+K BIGA=A(KK) DO 20 J=K,N IZ=ND»J-ND DO 20 I=K,N
IF(DABS!BIGA)-DABS!At I J)))15,20,2 0 BIGA=A(IJ)L< K) =1M(K)=JCONTINUEJ=L(K)IF(J-K)35,35,25KI=K-NDDO 30 1=1,NKI=KI+NDHOLD=-A(KI)JI=KI-K+JA(KI)=A(J I)At JI)=HOLDI=M(K)IF(I-K) 38,48,38JP=ND*I-NDDO 40 J=1,NJK=NK<-JJI=JP+JHOLD=-AlJK)AtJK)=A(JI)At JI )=HOLDDO 55 1=1,NIF(I-K)50,55,50IK=NK+IAt IK)=A( IK)/(-BIGA)CONTINUEDO 65 1=1,NIK=NK+II J = I-NDDO 65 J=1,NIJ=IJ+NDIF(I-K)60,65,60IF(J-K)62,65,62KJ=IJ-I+KAt IJ) = A( IK)*AtKJHA( IJ)CONTINJEKJ=K-NDDO 75 J=L,NKJ=KJ+NDIF(J-K)70,75,70A(KJ)=4(KJ)/BIGACONTINJED=D*B IGAA(KK)=1./BIGACONTINUEK=NK —K—1IF(K)150,150,105I=L(K)IF(I-K)120,120,108JQ=ND*K-NDJR=NU*I-ND



nn
oo

n
DO 113 J=1,N JK=JQ*J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=M(K) IF(J-K)130,130,125 125 KI=K-ND 00 130 I=1,N KI=KI+ND HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=HOLO GO TO 100150 IF(DABS(D).LE.l.D-15) GO TO 160 IF(()A3S(D) .LT. 1.0<-L5) RETURN 163 WRITE(6,6uO) 0600 FORMAT(//1JX,20(’*•),• WARNIN♦20X,'DETERMINANT =',D20.10/) END

',20()//

THIS PROGRAM FINDS THE APPROXIMATED NUMERATOR POLYNOMIAL GF S INGLE-INPUT/SINGLE-CUTPUT SYSTEM BY ANOTHER APPROACH.

10 FORMAT(12)

DOUBLE PRECISION V(10,10),W(10,10),H(10),DE(10),1 D,LL(10),MM(10)READ(5,10)NREAD! 5,2'J) (H( I ) ,I = 1,N)READ(5,20)(DEC I),I = 1,N)
,20 FORMAT!(4D20.6)) DO 600 11 = 1, N603601 wR IT E(6,SOI)II,HI II)FORMAT(//10X,*H(',I2,,)=*,D20.8)DO 6u2 I2=1,N632603 WRITE(6,603)12,DEI 12)FORMAT I//10X,•DE I 1,12,') = ',D20.8)M=M-1DO 30 1=1,NDO 30 J=1,NVI I,J)=0.IFII.EQ.J) V(I,J)=1.033 CONTINUEDO 901 1=1,NWRITE!6,701)(V!I,J),J=1,N)931 CONTINUE DO 40 J=1,N CALL SETO(W) J1=J-1 K1=J+1 DO 45 L=I,J45 W(L,L)=1.0IF(Kl.GT.N) GO TO 56DO 50 K=K1,NIND=K-J153 W(K,K)=H(IND) IF(Kl.GT.M) GO TO 56 DO 55 K=K1,M55 W(K+l,K) = 1.0



DO 801 II=1»N kRITE(6,701)(W(IItJJ),JJ=1,N)801 CONTINUE
56 CALL GMPRDtV,W,V,N,N,N) DO 702 II=1,N riRITE(6,701)(V(11,JJ),JJ = lfN) 702 CONTINUE40 CONTINUE701 FORMAT!l/10X,4D20.6))

CALL 3MPRS(V,DE,IJE,N) WRITE(6,701)(UE(I),I=1,N) DO 60 I=1,N DO 60 J=1,NV( I , J)=0. IF(I.EO.J) V(I,J)=1.060 CONTINJE DO 70 J=1,N 
CALL SETO(w) L1=J-1 J1=J-1I FILI.ED.3) GO TO 75 DO 80 L=1,L183 W(L,L)=1.U75 DO 85 K=J,N IND=K-J185 HIKtK)=H(IND) M=N-1 IFIJ.GT.M) GO TO 95 DO 90 K=J,M90 W(K+l,K)=1.095 CALL GMPPxDl V,W,V,N,N,N) DO 1301 II=1,NWRITE I 6,701) (V(II,JJ)»JJ = 1»N) 1031 CONTINUE73 CONTINJE
CALL MINVRIV,N,10,D,LL,MM) WRITE(6,130) D100 FORMAT I///20X,1**********WARNING ***********//20X,'D 

*D20.8///)CALL GMPRSIV,DE,DE,N) DO 203 1=1,N WRITE(5,105)I,DE(I)105 FORMAT! 10X, ’ NU( ’ ,I 2,' ) =',D20.8//)200 CONTINUE STOP END

SUBROUTINE SETC(W) DIMENSION w(10,10) DO 10 1=1,13 DO 13 J=1,1u13 rt(I,J)=0.0RETURN END



100
104
138

112

116

10
15

23
33

13

20

25

1
SUBROUTINE GMPRD(A,8,C,L,M,N)DOUBLE PRECISION A(10,10),3(10,10),C(10,10) ADI 10,10)?BD(10,10), GDI 10,10)DO 108 3=1,MDO 104 1=1,LAD <I,J)=A(I,J)DO 108 K=1,N BD(J,K)=B(J,K) DO 112 1 = 1,LDO 112 3=1,NGDI 1,3) = 3.0DO 112 K=1,MCDII,3)=CD(I,3)+A0(I,K)*BD(K,3)DO 116 1=1,LDO 116 3=1,NG(I,3)=CD(I ,3)RETURNEND

1
SUBROUTINE GMPRSI A,B,C,N) DOUBLE PRECISION A(lu,10),B(10),C( 10) ,
DO 10 1 = 1, NDO 10 3=1,N AD(I,3)=A(1,3)DO 15 I=1,NBD(I) = B( I )

AD(10,13),BD(10),CD(13)

DO 20 I=1,NCD(I)=0.0DO 20 3=1,NCD(I)=CD<I)+AD(I,3)*BD(3)DO 30 K=1,N0(K)=G3(K)RETURN END

SUBROUTINE MINVR(A,N,ND,D,L,M) DOUBLE PRECISION A(1),D,BI GA,HOLD DIMENSION L(1),M(1 ) 3=1.NK=-NDDO 80 K=1,N NK=NK*ND L(K)=K M(K)=K KK=NK+K 9I3A=A(KK) JO 20 3=K,N IZ=ND*J-ND DO 20 I=K,N I3=IZ+I IF(DABS(BI3A)-DABS(A(13)1)15,20,20 BIGA=A(13) L(K)=IM(K)=3CONTINUE3=L(K) IF(3-K)35,35,25 KI=K-N3



DO 30 1=1,N 
ki=ki+nd HOLD=-A(KI) J I=KI-K + J

3035
<X<KI) = A<JI) A(JI)=HOLD I=M(K)

38 38,48,38 JP=ND*I-ND DO 40 J = 1,.M JK = NK<-J JI=JP+J r10LD = -A(JK)
4048

A(JK)=A(JI ) A(JI)=HOLD DO 55 I=lrN
50 IF(I-K)50,55,50IK=NK+I
55 A(IK)=A(IK)/(-BIGA) CONTINUEDO 65 1=1,NIK=NK+II J = I-NDDO 65 J = 1 , NI J = I J4-ND
6062

IF(I—K160,65,60 
■^-K>62.65,62

65 ^}Nj^,KI$4IKJ,t4,,JI
KJ=K-NDDO 75 J=1,NKJ=KJ+ND

7075
IF(J-K)70,75,70 A(KJ)=4(KJ)/EISA CONTINJE D=D*3IGA

80 A(KK)=1./3I3ACONTINUE
100 K = NK = K-1
105 IHKH50,150,105
108 IF(I-K)120,120,108 JQ=NO*K-.ND 

jr=nd*i-nd DO no J=1,N JK=JQ+J HOLD=A(JK) J I=JR + J
110120

A(JK)=-A(JI) A(JI)=HOLD J=M(K)
125 1F(J — K)1u 0,100,125 KI=K-NDDO 130 I=1,NKI=KI+NUHOLD=A(KI)JI=KI-K+J
13 J A(KI)=-A{JI) A(J I) = HOLD
150 GO TO 100

|E,(DA8S(D) .LE.l.D-15 ) GO TO 160
160 6u 3

RETURN 
¥§/R?,NG ’.20-'»'>//
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THIS PRCGRAP FINDS THE APPROXIMATED NUMERATOR POLYNOMIAL BY ANOTHER APPROACH.
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****** WARNING ♦*«*******»// 
8X,'O =',020.10///)DO 50 1=1,MNWRITE(6,55)(B(I,J),J=1,MN)FORMAT!(//IX,'BI ' ,2X,6019.8) )CALL riUL f ( B , 0 E ,UE , MN , MN , M)DO 60 11=1,NWRITE(6,65)IIFnRMAT(////5X,'THE Q(',I2,') MATRIX ISV)MI=M*( I I-D + LMI I = M*IIDO 70 I=MI,MIIWRITE(6,75) (L)E( I , J) , J = 1,M)FORMAH //( 5X, (6D19.8) ) )CONTINUESTOPEND

DOUBLE PRECISION A(20,20),B(20,20),C(20,20),* H(3,60) ,DE(20,3) ,DDIMENSION LL(20),MM(20)READ(5,5) N,MFORMAT! 21 5)NH=3NA=20NB = 20NC=20MN=M»NDO 10 I=1,MREAD!5,1)(H(I,J),J=1,MN)WRITE16,15)(H(I,J),J=1,MN)FORMAT((4D20.8))FORMAT!(//1X,'H',2X,6D19.8))DO 20 J=1,MREAD(5,1)(DE(K,J),K=1,MN)WRITE<6,25)(DE(K,J),K=1,MN)FORMAT!(//IX, 'DE•,2X,5D19.8))CALL FLO!M,N,H,NH,A,NA,B,MB,C,NC)DO TO 1=1,MNWRITE(6,35)(B(I,J),J=1,MN)FORMAT!(//IX,'LM',2X,6019.8))CALL MULT(B,DE,DE,MN,MN,M)
CALL FRO!M,N,H,NH,A,NA,B,MB,C,NC)CALL MINVR(B,MN,NB,D,LL,MM)
WRITE(6,40)DF0RMAT(/////10X*

SUBROUTINE IDEN(A,NA,N) DOUBLE PRECISION A(l) K = -NA DO 2 J=1,N K=K+NA DO 1 1=1, N KK=KfI1 A(KK)=O. KK=K+J2 A(KK)=1.RETURN END



100
104
108

112

116

SUBROUTINE MULT(AtB,C,L,M,N) DOUBLE PRECISION A(20,20),B(20,20),C(20,20),* AD(20,20),BD(20,20),CO(20,20)DO 1C8 J=1,M DO 104 1=1, LADI I,J)=A(I,J) DO 108 K=1,NBD(J,K)=B(J,K) DO 112 1=1,LDO 112 J=1,N GDI I,J)=C.O DO 112 K=1,MGDI I,J)=CD(I,J) + AD(I,K)*BD(K,J)DO 116 1=1,L DO 116 0=1,N C(I,J) = CD(I,J 1 RETURN END
SUBROUTINE MMR(L,M,N,RR,A,R,NRR,NA,NR) DOUBLE PRECISION RRI 1) ,A( 1) ,RI 1) 
DO 4 1=1,L KKI=I-NR KKA=-NA DO 4 0=1,N KKO=I-NRR KKA=KKA+NA KK I = KK I+NR RIKKI )=0. DO 4 K=1,M 
kkk=kka+k KKO=KKO+NRR R(KKI)=R(KKI)+RR(KKO)*A{KKK) 
RETURN END

SUBROUTINE PICKT(A,NA,B,NB,M,IR,IC) DOUBLE PRECISION AU),BID L=(IC*NA-NA+IR)*M-M-NA
LB=-NEDO 1 0=1,M L=L+NALB=LB+NB DO 1 1=1,M K = L + IN=LB+I BIN)=A(K)RETURN END

SUBROUTINE EQMI A,NA,B,NB,L, DOUBLE PRECISION AlD.BIl)
M)

K = -N8 KK=-NA DO 1 0=1,MK=K+NB KK=KK+NA DO 1 1=1,LN=K+I NN=KK+I BIN)=A(NN) RETURNEND
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SUBROUTINE FLO(M,N,H,NH,A.NA,B,N8,C,NC)DOUBLE PRECISION A ( 1) , B ( 1) , C ( 1) , H ( 1) , Y( 3,3) , Z ( 3,3)NZ=3KA=N-HMN=M»NCALL IDEM A, NA, MN)CALL IDEN(B,NB,MN)CALL IDEN(Y,MZ,M)DO 10 I=2,NIF(I-2)6,5,6 --- ---------  ---CALL PICKT(H,NH,Z,NZ,M,1,I)CALL STORE(A,NA,Z,NZ,M,N,N)GO TO 8K=KA-IDO 7 J=3,IK = K+1KK=K + 1 -- —CALL PICKT(A,NA,Z,NZ,M,KK,KK)CALL STORE ( A,NA, Z ,N'Z ,M,K ,K)CALL STORE(A,NA,Y,NZ,M,KK,K)DO TO 5CALL MMR(MN,MN,MN,A,3,C,NA,ND,NC)CALL EOM(C,NC,B,NB,MN,MN)CONTINUEEND

PICKT(A,NA,X,NX,M,KK,KK)STORE(A,NA,X,NX,M,K,K)STORE-: A,NA,Y,NX,M,KK,K )PICKT(H,NH,X,NX,M,1,I)STO^EIA,NA,X,NX,m,n,N)MMR(MN , MN,MN,A,B,C,NA,NB,NC)EQM(C,NC,B,NB,MN,MN)

SUBROUTINE FRO(M,N.H,NH,A,NA,B,NB,C,NC)DOUBLE PRECISION A(1),B( 1) ,C( 1) ,HI 1),X(3,3) ,Y(3,3) NX = 3 1=2KA = NMN=M*NCALL IDEM (A,r!A,MN)CALL IDEN(B,NB,MN)CALL IDENIY.NX.M)K=N-1CALL PICKT(H,MH,X,NX,M,1,1)CALL STORE(B,NB,X,NX,M,N,N)CALL STORE!A,NA,X,NX,M,K,K) CALL STORE!A,NA,Y,NX,M,N,K) GO TO 5
K=KA-I DO 4 J=2,I K = K+1 KK=K+l CALL
CALL CALL CALL CALL CALL IF!I-N)3,7,3 RETURN END



1

SUBROUTINE STORE(A,NA,B.NR DOUBLE PRECISION 
L=(IC*NA-NA+IR)*M-m-NA LB=-NBDO 1 J=1,M L=L+NALB=LB+NB DO 1 I=1,M K = L+IN=LB+ IA(K)=B(N) RETURNEND

»M,IR,IC)


