
ON SCALABLE COLLECTIVE I/O FOR HIGH

PERFORMANCE COMPUTING

A Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Vishwanath Venkatesan

December 2013

ON SCALABLE COLLECTIVE I/O FOR HIGH

PERFORMANCE COMPUTING

Vishwanath Venkatesan

APPROVED:

Edgar Gabriel, Chairman
Dept. of Computer Science

Barbara Chapman
Dept. of Computer Science

Jaspal Subhlok
Dept. of Computer Science

Shishir Shah
Dept. of Computer Science

Emmanouil Doxastakis
Dept. of Chemical and Biomolecular Engineering

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgments

First and foremost I would like to thank my advisor Dr. Edgar Gabriel for providing

me with the opportunity and guidance to achieve this goal. Without his constant en-

couragement and support, completing this dissertation would have not been possible.

I owe a major part of my success to him.

My committee members Jaspal Subhlok, Shishir Shah, Barbara Chapman and Mano-

lis Doxastakis; I can best describe them as very friendly and easily approachable.

Not only did they serve on my thesis committee but were also available whenever I

needed their help.

I would like to thank Quincey Koziol, Mohamad Chaarawi from HDF5 and Bryon

Nietzel from Intel for having given me an opportunity to contribute on the Exascale

Fast Forward Project, which is now a part of this thesis. Thanks to Jerome, Peter,

Johnathan and Frank for the interesting ping-pong sessions which was definitely a

highlight of my summer at HDF Group.

I would also like to thank all my friends from Intel, for providing an excellent summer

of 2012. Special thanks to Nitin, Nagesh, and Ravindra for giving me an opportunity

to work in their exciting team which provided valuable experience.

I thank Sunil Thulasidasan from LANL, for not only providing an opportunity to

work in his group but also providing letters of recommendations when needed. Special

thanks to Lukas Kroc, Shiva Kashiviswanath and Christian Sommer for their words

of wisdom, which really inspired me to take up PhD again.

It would not be out of place to thank my friends from Columbia, Nalini, Ravindra,

iii

Karthik TJ, David, Noah, Jayanth, Baradhwaj, Chinmay, Rohit, Abhinav, Sam-

budhho, Sarfaraz, Raghu, Aaron, Ruchika, Sumit Sharma, Nipun, Tarun, Neethi,

Ashwath, Srikanth for making my tough times at Columbia feel lighter.

My friends from Pratham made my time at UH fun and exciting. Special mention to

Pranav, Charu, Kinjal, Darel, Abhi, Nirja, Jinal, Simer, Arshad, Radhika, Chintan,

Joseph and Deepa. It was a lot of fun working with you all.

My cricket group at UH for the midnight cricket sessions which were a real stress

buster. Thanks to Pankaj, Akshay, Satish, Soham, Nishant, Lakhan and others.

My lab mates at Parallel Software Technologies Lab, who made my everyday fun-

filled and eventful. Special thanks to Kshitij Mehta, for listening to my talk and

providing invaluable advise. Thanks to Peggy Lindner, for the words of encourage-

ment before the talk. All my lab mates Shailesh, Shwetha, Youcef, Hadi, Mohamad,

Saber, Sarat, Jyoti. Thank you for all your support.

I would also like to thank Prof. N. Venkateswaran for igniting the idea of doing

a PhD and my friends from WARFT, Karthik Ganesan, Haswath Narayanan and

Viswanath Krishnamurthy for all the fun-filled conversations.

My family who have always been with me in my lows and highs. Savithri Venkatesan,

P. K. Venkatesan, Badrinath Venkatesan and Viswadhara Meenakshi, thank you for

being there for me. This would not be possible without you guys!

I would like to dedicate this dissertation to my Mom and Dad: Mrs. and Mr.

Venkatesan.

iv

Humility, unostentatiousness, harmlessness, forbearance, uprightness, service to the

guru, purity, steadiness and self-control - all this is called knowledge.

- Bhagavan Sri Krishna, Bhagavat Gita - Jnana Yoga

v

ON SCALABLE COLLECTIVE I/O FOR HIGH

PERFORMANCE COMPUTING

An Abstract of a Dissertation

Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

By

Vishwanath Venkatesan

December 2013

vi

Abstract

The increasing number of cores per node has propelled the performance of leadership-

scale systems from teraflops to petaflops. On the other hand, bandwidth of I/O

subsystems have almost been stagnant. This has created a huge gap between the

computation and I/O time, making I/O a major bottleneck. Furthermore, the real-

ized I/O bandwidth in such systems is in general far lower compared to the theoret-

ical peak bandwidth. The Message Passing Interface (MPI) has been the de facto

standard for parallel computing in the past couple of decades. MPI-I/O, which is

a part of the MPI specification, not only offers a clean approach to access the file

system from the application but also acts as a middle-ware between the application

and the file system to specify a variety of enhancements. Specifically, collective I/O

has proven to be very effective for I/O in large scale systems and helps to bridge

the gap between the theoretical and sustained I/O bandwidth. This dissertation

aims at developing approaches to improve parallel I/O at this level. In particular,

this dissertation provides methods to utilize data-layout-aware rank assignment to

improve I/O performance, overlap collective I/O with computation and finally use

the principles of collective I/O on staging based I/O architectures.

vii

Contents

1 Introduction 1

1.1 Parallel I/O Infrastructure . 3

1.2 Parallel I/O and Challenges . 4

1.2.1 Sequential I/O . 4

1.2.2 Parallel I/O . 5

1.2.3 Challenges . 6

1.3 Parallel I/O in Parallel Programming Models 10

1.4 Preamble to MPI - I/O . 13

1.4.1 MPI File View . 13

1.4.2 Collective I/O Operations . 15

1.4.3 Asynchronous I/O operation 15

1.5 MPI I/O Implementations . 16

1.5.1 ROMIO . 16

1.5.2 OMPIO . 18

1.5.3 The Adaptable IO System (ADIOS) 20

1.5.4 Data Format Libraries . 21

viii

1.6 Scalability Challenges . 23

1.7 Goals . 26

2 Background and Related Work 29

2.1 Collective I/O . 29

2.1.1 Two Phase I/O . 30

2.1.2 Optimizations for Collective I/O Operations in ROMIO 32

2.1.3 Dynamic Segmentation Algorithm 35

2.1.4 Static Segmentation Algorithm 37

2.1.5 Process Placement Discussion 38

2.2 Non-blocking I/O operations . 41

2.2.1 Non-blocking Collective Communication Operations 42

2.3 I/O Delegation Approaches . 44

3 Data Locality Aware Process Placement for Collective I/O Opera-

tions 47

3.1 Design and Implementation . 49

3.1.1 Architecture Matrix . 49

3.1.2 Application Matrix . 50

3.1.3 Mapping Algorithm . 52

3.1.4 Implementation . 57

3.2 Evaluation . 58

3.2.1 Tile I/O . 60

3.2.2 Modified Tile I/O . 66

3.2.3 BT-I/O . 71

ix

4 Non-Blocking Collective I/O Operations 73

4.1 LibNBC . 74

4.1.1 Collective Schedule . 74

4.1.2 Progressing Non-blocking Instance 76

4.2 Nonblocking Collective I/O Operation 77

4.2.1 Schedule Caching . 79

4.3 Experimental Evaluation . 80

4.3.1 An Application Scenario . 83

5 Compactor: Collective I/O Optimizations using I/O Delegates 87

5.1 Exascale Fast Forward I/O . 88

5.1.1 The Virtual Object Layer (VOL) 90

5.1.2 Mercury: Function Shipper 91

5.1.3 Asynchronous Execution Engine 92

5.2 Compactor: Design and Implementation 94

5.3 Optimization Approaches . 97

5.3.1 Collective Buffering . 97

5.3.2 Write Morphing . 100

5.3.3 Write Stealing . 101

5.4 Evaluation . 103

5.4.1 FFBench . 104

5.4.2 Flash I/O . 108

6 Summary and Future Work 112

6.1 Summary of Contributions . 112

x

6.2 Research Perspective and Future Work 114

Bibliography 118

xi

List of Figures

1.1 Parallel I/O architecture for a distributed memory system 3

1.2 Non-contiguous access and its mapping to disk 7

1.3 Example of 4 Processes defining a non-overlappable file view 14

1.4 Example of 4 Processes accessing a 2D matrix 14

1.5 Overview of the OMPIO component and its frameworks [1] 18

1.6 Illustration of data organization in HDF5 to improve flexibility 22

1.7 Today’s typical IO Software Stack of a HPC system 24

1.8 Recent Developments lead to the inclusion of an I/O forwarding layer

to handle scalability challenges of I/O in HPC systems 26

2.1 Simple Example of Two Phase I/O read figure source [2] 31

2.2 A sketch of dynamic segmentation I/O write (figure source [3]). . . . 36

2.3 A sketch of static segmentation I/O write (figure source [3]). 37

2.4 Comparison between non-blocking I/O and blocking I/O in an ideal

case . 41

3.1 Inter and Intra node bandwidth for systems used in study. 60

xii

3.2 Communication time for different mapping strategies in the dynamic

segmentation algorithm on crill. 61

3.3 Bandwidth comparison for different mapping strategies using the dy-

namic segmentation algorithm on crill. 62

3.4 Communication time for different mapping strategies in the two-phase

I/O algorithm on crill. 63

3.5 Average communication time for 48 and 32 processes per node using

the byslot mapping with the two-phase I/O algorithm. 64

3.6 Bandwidth comparison for different mapping strategies using the two-

phase algorithm on crill. 65

3.7 Communication time for different mapping strategies using the two-

phase algorithm for the modified Tile I/O test. 66

3.8 Bandwidth for different mapping strategies using the two-phase algo-

rithm for the modified Tile I/O test. 67

3.9 Communication time for different mapping strategies using the dy-

namic segmentation algorithm for the modified Tile I/O test. 68

3.10 Bandwidth for different mapping strategies using the dynamic seg-

mentation algorithm for the modified Tile I/O test. 69

3.11 Avg communication time comparison for different mapping strategies

on dynamic segmentation algorithm on Atlas 70

4.1 Example of collective schedule MPI Bcast (figure source [4]) 76

4.2 I/O times for 8k × 8k image for 64 and 96 MPI processes. 85

4.3 I/O times for 12k × 12k image (right) for 64 and 96 MPI processes. . 86

xiii

5.1 Exascale I/O Storage Software Stack [5] 89

5.2 General Architecture of HDF5 library with VOL [6] 91

5.3 An example of an AXE task graph with a barrier task 93

5.4 Original State of the I/O Forwarding Server 94

5.5 Modified I/O Forwarding Server with the Compactor 95

5.6 Example scenario for collective buffering 98

5.7 Example scenario for write morphing 100

5.8 A Scenario where we have a partial overlap with writes 102

5.9 FFBench test for collective buffering 105

5.10 Total Write I/O requests (vs) Requests Merged 105

5.11 Write Morphing: Write to overlapping regions from one client 106

5.12 Write Stealing: Reads to overlapping write regions from multiple clients107

5.13 Write Stealing: Percentage of time spent in read/write for the test 5.12108

5.14 Flash I/O results for writing checkpoint files 109

5.15 Flash I/O: Merged vs Non-merged writes 110

5.16 Flash I/O results for writing Plot files - with corners 110

5.17 Flash I/O results for writing Plot files - without corners 111

xiv

List of Tables

3.1 I/O time and total execution time of BT I/O using two-phase I/O

algorithm. 71

3.2 I/O time and total execution time of BT I/O using dynamic segmen-

tation algorithm. 72

4.1 Performance comparison of blocking vs. nonblocking collective I/O

algorithm. 81

4.2 Evaluating the overlap potential of nonblocking collective I/O opera-

tions. 82

5.1 Rough translation of figure 5.7 to offset ranges and expected merged

offset ranges . 101

xv

Chapter 1

Introduction

A supercomputer is a device for turning compute-bound prob-

lems into I/O-bound problems

– Ken Batcher

Emeritus Professor at Kent State University

IEEE Seymour Cray Computer Engineering Award Recipient

In the past two decades the main focus of scientific computing has been to improve

the computational capability of HPC systems. This has lead to the development of

faster processors, memory and increased disk capacity. But the rate at which the disk

drives can read and write has not improved with the same pace. For example, the

CPU speeds have been increasing 50-100% every year in comparison to disk access

time which has decreased to about one third in ten years [7] [8]. This has created a

huge gap between the CPU performance and the I/O access time and is in general

1

termed as the I/O bottleneck. Also, new application areas such as visualization, im-

age processing and grand challenge problems, are creating ever-increasing demands

for I/O. Some examples of such applications are, high performance aircraft simula-

tion, computational fluid and combustion dynamics, simulation of human proteins

and their folding and air quality modeling [9]. Such applications will have significant

slow-downs despite the use of cutting-edge processors due to the limitations of the

I/O subsystem.

Furthermore, with petascale systems in existence and exascale systems to come in

future, complexity of systems are bound to increase dramatically thereby decreas-

ing the average time to failure, for example, a hundred-thousand-nodes Blue Gene

(BG L) supercomputer has a failure once in every 8 hrs [10]. This necessitates fre-

quent application check-pointing. Moreover, with increasing number of nodes the

amount of data that needs to be written for every checkpoint can also increase sig-

nificantly. This makes I/O a major concern. In fact, authors in [11] argue that the

performance of supercomputers should ultimately be measured by how fast they can

move data both within the system and across a network, rather than using floating

point computation rate. Since Amdahl’s law stipulates that scalability of a parallel

application is limited by its least scalable section, its fair to say that improving I/O

can no longer be treated as an afterthought [12].

2

Figure 1.1: Parallel I/O architecture for a distributed memory system

1.1 Parallel I/O Infrastructure

Parallel and distributed architectures with the help of some hardware and software

enable servicing of concurrent I/O requests to the file system. In particular, parallel

I/O on large scale systems largely depends on the utilization of hundreds of I/O

servers with tens of thousands of magnetic hard disks [13]. These I/O nodes serve as

servers for the parallel file system also holding the meta-data (bookkeeping for each

file) information. A parallel file system typically provides a global namespace and

stripes files across multiple I/O nodes, disks or RAIDs. A file is generally split into

multiple smaller units called striping units, where the striping units are distributed

across disks in a round-robin fashion. Striping provides higher bandwidth and allows

multiple processes to access distinct portions of a file concurrently. Some of the

3

popular file systems are PVFS [14], Lustre [15], and GPFS [16]. Many leadership-

scale installations use similar settings for their parallel file systems. For example,

Japanese supercomputer, K-computer has a Lustre based file system with 864 Object

Storage Targets [17], the Jaguar system from Oak Ridge National Labs also uses

Lustre filesystem with 672 OSTs [18], and the Chinese supercomputer Tianhae-

2 [19, 20] has upto 128 Object Storage Servers (OSS ’s). In general, it is advised to

have I/O servers dedicated for I/O but it is not mandatory. Figure 1.1 [21] shows

an example of a typical parallel I/O architecture in a distributed memory system.

1.2 Parallel I/O and Challenges

Utilization of a parallel file system from the application can be done using different

approaches. We will discuss each of them and look at the advantages and disadvan-

tage of using each approach in a parallel system in this section.

1.2.1 Sequential I/O

Sequential I/O refers to the uniprocess file I/O operations in applications. Applica-

tions written in C or Fortran have traditionally used sequential I/O for file operations,

for example fwrite, fread, pwritev, preadv. POSIX (Portable Operating System In-

terface) [22] provides a standard API for serial file access by a single process. There

is no explicit support for specifying parallelism using POSIX I/O API. The primary

advantage of using this approach is that it is relatively simple to use and a lot of

legacy codes could be used directly. But, if only one process performs I/O in a par-

allel system it will lead to serious load imbalance issues and the process involved in

4

the file operations can become a huge performance bottleneck. This is a fundamen-

tal limitation and has triggered a lot of research activity to overcome limitations of

POSIX I/O with parallel systems [23].

1.2.2 Parallel I/O

Parallel I/O as discussed earlier can be performed in two different scenarios:

• Individual File Parallel I/O : One approach to have parallel I/O using POSIX

I/O is by making each individual process access its own file. The primary ad-

vantage of this approach is that it is simple, easy and will possibly result in good

bandwidth. One problem with this approach it requires complex and expensive

pre-processing and post-processing steps for splitting and merging the files. If

we do not use any such processing, then this approach

– loses fault tolerance (in case of node failure we need the same amount of

processes are needed to restart the application)

– will not be able support varying the number of processes between runs, for

example if the result of an n process run is the input for an m process run,

where m 6= n.

Moreover, having one file for each process is not really a scalable approach as it

can overwhelm the metadata server, which contains information about data on

I/O nodes, very soon.

• Shared File Parallel I/O : In this approach, multiple processes can access the

same file simultaneously and efficiently. Unlike individual I/O which is sequential

I/O performed independently by a number of processes, this represents true

5

parallel I/O. In other words, the I/O should be parallel from the applications

perspective [21]. This approach overcomes almost all the problems associated

with individual file based parallel I/O approach. Since this approach necessitates

coordination between processes accessing the same file to ensure consistent result,

there are various other factors that come into picture which make it hard to

extract the same I/O bandwidth as the individual I/O method. We will look at

the challenges posed by this approach in detail in the next section. In the rest

of the document all references to shared file parallel I/O are simply referred to

as parallel I/O.

1.2.3 Challenges

Shared file parallel I/O, as discussed in the previous section, is the ideal approach

to perform I/O in a parallel system. But making shared file parallel I/O performant

can be challenging and we will discuss some of those challenges in this section.

• Application Programming Interface (API):

Most parallel file systems have evolved out of uniprocessor file systems [21] and

retain the same API, namely the POSIX I/O API. As discussed earlier, the

POSIX I/O API is not an appropriate API for parallel I/O for two main reasons.

1. No support for non-contiguous file accesses.

Typically in a parallel system, applications have a tendency to access large

amounts of small, non-contiguous chunks of data. Most parallel file systems

provide higher performance with contiguous access patterns in comparison

to non contiguous access patterns [2] [24] [25]. But it is not uncommon to

6

Figure 1.2: Non-contiguous access and its mapping to disk

have such access patterns. For example, consider a two-dimensional matrix

stored in a row-major storage format as shown in fig 1.2 [23]. Assuming a

two-dimensional data decomposition, each process will have to read/write a

2D sub-block of the matrix. An interface like that provided by POSIX, there

is no way to specify the global access pattern to the I/O system. In such a

case each process must seek to a particular location in a file, read or write a

small contiguous piece, then seek to the next location and repeat the same

steps. This will result in numerous number of small I/O requests which can

potentially result in poor performance. This necessitates that the API have

the potential to specify access pattern of all the processes.

2. No support for collective I/O

When there are non-contiguous requests from multiple processes as in fig-

ure 1.2, it can result in a large number of small requests arriving in any

7

order from multiple processes resulting in poor performance. This is not

only because the I/O latency for these accesses is high but also due to the

poor utilization of the file system cache. So it is necessary for the processes

to work in collaboration. If an I/O API allows the user to specify the entire

access information of each process as well as the fact that the processes need

access to the file simultaneously, the implementation can read the entire file

and the send the right pieces of data to the right processes [21]. This type of

optimization is called as collective I/O. In case of write operations, the con-

tiguous offsets could be grouped by data exchange through communication

and the write operation could be carried out to the according offsets. Such

optimizations can provide significant performance improvements.

3. Portability

Some file system vendors support variations of the POSIX API, and, there-

fore programs written in these API are not portable. Having a API that

has the potential to abstract this information can increase portability of

applications

Thus, API plays a critical role in performing I/O efficiently.

• Network:

Network plays an important role in deciding the performance of the I/O opera-

tions. A typical parallel system can contain different types of network used for

different purposes, namely, the message passing network between the compute

nodes and the I/O network which connects to the I/O nodes. Some popular

8

networks available are InfiniBand [26], Myrinet [27], Quadrics [28], Dolphin [29].

Both, message passing and I/O networks have a significant impact on the per-

formance of I/O operations. With multi-core processors gaining popularity, the

intra-node network also starts to play a major impact. When a collective I/O

operation is performed it is very important that the data-exchange is performed

on the network which has the highest bandwidth and the lowest latency. Such

an optimization can in turn result in significant improvements to the I/O per-

formance.

• Interference:

Accessing shared files in parallel I/O also poses other forms of challenges. When

many processes attempt to write to a same file simultaneously they tend to

fill up the write caches quickly thereby stalling the application. This is called

internal interference [18]. Collective I/O helps us to overcome such interferences

by providing the concept of aggregators (representative processes accessing a

shared file) which reduces contention at the file system.

• Scalability & Irregular data:

With increasing size and complexity of high-performance systems, periodic check-

pointing of data to handle failures has gained importance. Most of such check-

pointing data is dynamically created and irregularly partitioned. To handle such

scenarios, independent I/O becomes crucial. In addition, the strict data consis-

tency semantics adopted by filesystems constricts the scalability of I/O subsys-

tems. In such scenarios it is seen that using a forwarding layer to aggregate and

delegate I/O requests to storage systems has proven to be beneficial [30–33]

9

This dissertation will focus on addressing some of these challenges through col-

lective I/O.

1.3 Parallel I/O in Parallel Programming Models

In the past couple of decades there have been a number of parallel programming mod-

els introduced. Parallel programming models/languages could be broadly classified

into three different categories [3] namely, message passing models, shared memory

models and partitioned global address space languages. We will look at some of them

in detail.

Shared Memory Models

In this section we discuss some of the popularly used shared memory programming

models and their support for I/O.

• OpenMP (Open multi-processing) [34] [35] is an Application Programming In-

terface (API) that has been developed to enable portable and scalable shared

memory application. It supports parallelization with a specified set of compiler

directives, environment variables, and library routines. OpenMP can be used

for parallelizing applications for platforms ranging from desktops to supercom-

puters. OpenMP based on [36] provides I/O support for parallel applications

in shared memory platforms. This library provides interfaces which have the

capability to perform collective I/O with multiple threads. It does not provide

any asynchronous interfaces. Since this is based on a shared memory model,

there is a fundamental scalability limitation with this library as more number

10

of threads writing to the file system can saturate the network bandwidth. The

OpenMP I/O is not a part of the OpenMP standard.

• POSIX threads (pthreads) [37] is a standard API for creating and manipulat-

ing with threads created in 1995. Although more complex in comparison to

OpenMP, pthreads are still used with certain applications and are present in a

lot of legacy applications. But pthreads does not provide any explicit support

for parallel I/O.

• Threading Building Blocks (TBB) [38] is a library which supports parallel pro-

gramming using standard C++ templates. Although a lot restricted compared

to OpenMP, TBB is good for specifying parallelism with tasks instead of raw

threads. Also TBB support complete compatibility with OpenMP. TBB does

not provide any explicit support for parallel I/O, but some work on performing

I/O using overlapping with parallel for construct has been performed in [39].

Message Passing Models

Message Passing Interface (MPI) which is the most widely used message passing

model and contains a specification for parallel-I/O in version 2.0. MPI-I/O will be

discussed in detail in the upcoming sections. The other message passing models such

as PVM [40] or P4 [41] do not provide any specification for parallel I/O.

11

Partition Global Address Space Models

PGAS (Partition Global Address Space) models provide a global view of the logical

address space where a portion of it is local to each processor. It combines the pro-

gramming convenience of shared memory with the locality and performance control

of message passing [42]. Two popular languages in this model are:

• Unified Parallel C [43] is an extension to the C programming language for high

performance computing on large scale machines. It supports both shared and

distributed memory platforms. UPC provides an API for parallel I/O. UPC

I/O [44] offers very similar functionalities like MPI I/O such as collective I/O,

blocking, non-blocking I/O and shared file access. The main difference is that

UPC I/O does not have any concept of file-view or derived data-types.

• Co-array Fortran [45] is an extension to Fortran 95. It uses Fortran like notation

to express data decomposition as in message passing models. Co-Array Fortran

I/O [46] is only a minor extension to Fortran 95 I/O. It provide flexibility to be

implemented using either thread-based images or process-based images. It also

gets rid of the portability problems associated with Fortran 95 I/O on multiple

images. A detail list of the extensions has been shown in [46]. Coarray fortran

at present does not provide support for parallel I/O, although Eachampati, et

al., discuss different approaches [47] that could be used to provide parallel I/O

in co-array fortran [48] as a part of the OpenUH complier [49]. In particular,

the authors discuss about using global arrays as I/O buffers and asynchronously

manage the data transfer between the buffer and the storage.

12

1.4 Preamble to MPI - I/O

Message Passing Interface (MPI) [50] is a message-passing library interface specifica-

tion. It has almost been de facto standard for distributed and parallel programming

in the last couple of decades. MPI provides a variety of standard interfaces for

message passing which are efficient, flexible and portable. MPI itself is a specifica-

tion [50] and not an implementation. There are multiple implementations available

for MPI, some of the popular implementations are Open MPI [51] [52], MPICH [53]

and Intel MPI [54]. MPI-I/O was introduced in MPI specification version 2 [55] to

handle files in parallel and distributed systems which leverages concepts from MPI

specification version 1 [56] [3]. It provides a rich set of parallel I/O interfaces that

allows application developers to express complex I/O access patterns with a single

I/O request. Also, MPI-I/O provides the implementation the potential to optimize

accesses to the underlying file system. In this section we will look at some of the

interesting features that MPI-I/O provides along with an introduction to the existing

I/O implementations.

1.4.1 MPI File View

A file view maps the relationship between the regions of a file that a process will

access to the way those regions are laid out in the disk [23]. In MPI-I/O each process

has its own file view. A process can access only regions present in its file view. A

simple example for a file view is shown in fig 1.3. In this example, each process

has a non-overlapping repeating file view. File views of different processes can be

overlapping but that is restricted to read accesses. Setting a file view in MPI is a

13

collective operation, which means that all processes that share accesses to a given file

must participate in this operation. Having the file view set beforehand gives the MPI-

I/O implementation valuable information about the offsets for subsequent accesses

from processes which could be used to significantly improve the I/O performance.

For example, by using pre-calculated offsets, the underlying implementation could

potentially pre-fetch data items for read operations.

Figure 1.3: Example of 4 Processes defining a non-overlappable file view

Figure 1.4: Example of 4 Processes accessing a 2D matrix

14

1.4.2 Collective I/O Operations

MPI I/O provides both individual and collective I/O operations. Individual I/O is

similar to POSIX I/O in the sense that each process performs I/O for its own portion

of the file view. Unlike individual I/O operations, collective I/O operations require

the participation of all the processes in the operation. This provides a huge potential

to improve I/O performance of an application, such as merging I/O requests from

multiple processes and choosing the aggregators(writers/readers). Such optimiza-

tions can provide significant improvement in performance. For example, consider

the following scenario shown in fig 1.4. In this scenario, four processes access the

same input file which holds a two-dimensional matrix stored in a row major format.

Assuming a 2D data decomposition, each process will work on a subset of the matrix.

This means each process would require a large number of small I/O requests to be

satisfied which in turn would lead to moving disk head back and forth to access data

of all processes. This could be optimized with collective I/O where a large num-

ber of these small I/O requests could be merged to create few contiguous requests.

This reduces disk latency and avoids unnecessary rewinds of the disk head. In this

dissertation the focus would be mostly on optimizing collective I/O operations.

1.4.3 Asynchronous I/O operation

Asynchronous operations allows the user to overlap the computation with I/O such

that I/O cost could be hidden behind computation. The application can introduce

additional function calls to check or wait for completion of the I/O operations. This

can be advantageous in comparison to the blocking version where the processes have

15

to wait until the I/O operation is complete which might leave system resources idle.

MPI offers non-blocking variants for individual I/O operations but not for collective

I/O operations. This dissertation will introduce a non-blocking variant for collective

I/O and discuss in detail the challenges involved in designing them.

1.5 MPI I/O Implementations

1.5.1 ROMIO

The first and the most popularly used MPI implementation is ROMIO [2]. ROMIO

has been implemented as a part of MPICH [53] and also is basis for many I/O li-

braries used in commercial MPI implementations. ROMIO’s portability comes from

the the layer called ADIO (Abstract Device Interface for Parallel I/O) [57] upon

which ROMIO implements the MPI-IO interface. ADIO abstracts file-system fea-

tures from the I/O API’s and provides support for popular file systems like PVFS [14],

Lustre [15], GPFS [16] and PanasasFS [58].

ROMIO offers two key optimizations

• Data Sieving :

Data Sieving [2] [59] is a technique that ROMIO uses to handle non-contiguous

requests from one process. It is known fact that it is critical to make as few

requests as possible to reduce the effect of high I/O latency. To avoid this

scenario, ROMIO tries to read single contiguous chunk of data from the first

requested byte to the last requested byte. It then updates the user buffer with

the according parts from the temporary buffer. The main disadvantage with this

16

approach is that if the size of the temporary buffer has to be matched with that

of the user’s request. But the extent of the user’s request can be quite large. So

to avoid this ROMIO specifies a maximum amount of contiguous data that could

be read. The same technique could also be used in the case of writing data, but

a read-modify-write must be performed to avoid overwriting the data already

present in the holes between the contiguous data segments. Furthermore the

portion of the file being modified must also be locked during the read-modify-

write to prevent concurrent updates by other processes.

• Collective I/O :

ROMIO offers a client-side collective I/O implementation based on the two-

phase [60] [61] I/O strategy. This algorithm is used to handle non-contiguous

requests from multiple processes. In the first phase the processes distribute the

view information between each other based on which determine the extent of

the users request and perform access with one large contiguous chunk. In the

second phase this chunk is redistributed across the processes in their according

offsets. A detailed discussion of two-phase I/O has been done in the upcoming

chapters.

The selection criteria which ADIO module shall be used as of today is based on the

file system only [3]. But, storage solutions demand that the I/O library allows for the

easy deployment of a site specific configuration file, allowing system administrators

to pre-tune modules and provide the optimal parameters for modules. This requires

ability to switch between modules without having to recompile the entire library or

17

the application [3]. So a new flexible architecture called OMPIO [1] was developed.

We will look at OMPIO in detail in the upcoming section.

1.5.2 OMPIO

Figure 1.5: Overview of the OMPIO component and its frameworks [1]

The OMPIO [1] module is an implementation of the I/O framework of Open

MPI [52]. This implementation coexists with ROMIO, which is the parallel I/O

library used in all published versions of . There are several reasons that we have

chosen to utilize OMPIO in this research, including:

• It increases the modularity of the parallel I/O library by separating functionality

into distinct sub-frameworks.

• It allows frameworks to utilize different run-time decision algorithms to deter-

mine which module to use in a particular scenario, enabling non-file system

18

specific decisions

• It improves the integration of parallel I/O functions with other components of

Open MPI, most notably the derived data type engine and the progress engine

The integration with the Open MPI progress engine allows for seamless progress of

non-blocking I/O operations. The integration with the derived data type engine has

multiple advantages, most notably faster decoding of derived data types and the

usage of optimized data type to data type copy operations [1]. The architecture of

OMPIO with its various components and frameworks has been shown in fig 1.5. The

different frameworks in OMPIO are [3]

• file system framework (fs):

Different file systems have different file manipulation functions that are specific

and optimized for a corresponding file system. For example, though PVFS sup-

ports standard POSIX I/O operations, it has PVFS specific functions which are

optimized for the file system. For example, MPI File open a collective call in

PVFS is more optimal when one process resolves the filename and broadcasts it

to the other processes. This framework abstracts out these file system specific

manipulation functions like open, close and delete.

• file byte transfer layer(fs):

The fbtl framework provides implementation for individual read and write op-

erations. Even this framework allows to exploit filesystem specific functionality.

It abstracts the byte-level read/write operations such that it could be adapted

based on the underlying file-system.

• collective I/O framework(fcoll):

19

This framework provides interfaces for the collective file I/O operations. The

interfaces of this framework provides a collection of different collective I/O read-

/write algorithms. This framework allows the deployment of site-specific collec-

tive I/O algorithm, without having to modify any aspect of the collective file

operation.

• shared file pointer framework (sharedfp)

This framework provides the functionality required to manage the shared file

pointer, allowing for generic and architecture specific optimizations.

1.5.3 The Adaptable IO System (ADIOS)

ADaptable IO System (ADIOS) [62], is an I/O API, that provides a simple POSIX

IO like API and an external XML configuration file. Since I/O performance on HPC

machines strongly rely on machine characteristics and configuration, it is important

to tune I/O libraries and make good use of appropriate library APIs. Efficient code

execution for scientific codes running on different platforms depend primarily on

three factors namely [63],

• Select the appropriate I/O method:

The external XML file allows the users to specify I/O description and config-

uration. The I/O description from the XML file helps in runtime selection of

potentially different I/O methods suitable for the underlying hardware with min-

imal effort from the user.

• Stored in desired file formats:

20

A new file format BP is introduced by authors in [62] [63] designed for min-

imal required coordination, compact metadata storage, and resilience in cases

of failures. It can also be converted at low cost to standard file formats like

NetCDF [64] or HDF5 [65].

• Identify data for analysis

With the file format BP are associated multiple efficient methods for data char-

acterization. These compute attributes that can be use to identify data sets

without having to analyze the entire data for large files and helps users to han-

dle flood of data generated.

The authors in [63] demonstrate sufficient performance improvements with ADIOS

and claim that the level of abstractions that ADIOS provides are quite important

for extracting good performance from scientific codes running on different HPC ma-

chines.

1.5.4 Data Format Libraries

In addition to MPI I/O there are other higher level data format APIs available

which are used widely in the scientific community. Libraries like HDF [65] and

NetCDF [64] have been developed to provide higher level I/O support to applications.

For example, they can directly read/write grids and meshes.

HDF5

Hierarchical Data Format (HDF5) [65] is a portable file format library developed

by the HDF Group for storing, retrieving and analyzing data. HDF5 can handle

21

up to 32 dimensional data and saves the information along with the metadata in a

file, which helps in the portability of data. The library also supports hierarchical

file structures enabling the users to specify a variety of datatypes. As shown in

fig 1.6 [66], dataset is mapped to file and its memory description and layout is stored

in the metadata information. This helps the user to organize data in a variety of

different ways including hierarchical formats wherein the actual mapping is taken

care of by the library. HDF5 also supports parallel file access with the help of MPI

I/O underneath the hood [67].

Dataset
Header

Datatype

Dataspace

Attributes

…
…
…

Metadata Cache

Dataset!Data!File

Dataset Data

Figure 1.6: Illustration of data organization in HDF5 to improve flexibility

NetCDF

The Network Common Data Format (NetCDF) [64] was initially developed to sup-

port the requirements for Unidata applications (atmospheric and meteriological ap-

plications). This format similar to HDF supports Self-describing and portable way for

22

representing scientific data. NetCDF uses direct access to data rather than sequen-

tial access. This can prove to be efficient when the order in which data is accessed

is different (i.e., reading and writing data in different order). NetCDF-4 still uses

HDF file-format to support multiple dimensionality, although the overhead of this

is comparatively very high. Like HDF5, NetCDF also provides support for parallel

I/O with MPI I/O [68].

Both these libraries try to maintain the same format as that of the serial access

and still provide parallel I/O. But these libraries unlike ADIOS are not yet self-

optimizing, in the sense, they do not have the ability to chose the best method based

on the underlying file-system and hardware characteristics.

1.6 Scalability Challenges

One of the main challenges facing I/O researchers today is that the improvements/op-

timizations developed should not only provide maximum I/O throughput but also

show scalability with larger number of processes. A typical I/O stack of current HPC

systems look like as shown in figure 1.7. It consists of serial and parallel high-level

I/O libraries (eg: HDF5, Parallel HDF5, NetCDF, Parallel NetCDF); MPI I/O (eg:

ROMIO or OMPIO) and POSIX implementations in the next level; parallel file sys-

tems which finally write the actual data to the storage infrastructure [31]. To satisfy

the scalability challenges imposed by the increasing number of compute nodes, we

need to choose the right layer in the stack to improve.

• File systems, can be a good target for improvements, but most file systems on

23

`	
 `	

`	

Figure 1.7: Today’s typical IO Software Stack of a HPC system

leadership class machines like PanasasFS [58], Lustre [15], PVFS [14], GPFS [16]

were not designed envisioning scalability challenges in the order of hundreds

of thousands of processes[31, 69, 70]. In addition, different HPC machines use

different file systems and optimizing one file system would not completely address

the problem.

• In the layers above file systems, there are programming models such as MPI-I/O,

POSIX I/O or parallel HDF and NetCDF interfaces. Making improvements to

any one interface, might not address all the applications.

• In addition, some HPC systems use stripped down operating systems (minimal-

istic) to reduce system noise which can have adverse impact on the performance

of applications [71, 72]. General features of operating systems such as multitask-

ing, process preemption and context switching, ensure faster response time for

applications, but they also introduce significant noises in the form of context

switches, cache poisoning and interrupts [31]. For a system to be scalable its

24

important to have minimal OS noise. There has been a number of efforts to de-

velop and deploy lightweight Linux kernels [73–75]. Also file system components

contribute to this noise. File system components can initiate asynchronous com-

munication to handle dirty data or cache locks which can hamper sychronicity of

applications. Parallel machines like Blue Gene/P use a stripped down version of

the OS kernel without multiprocessing and POSIX I/O system calls on compute

nodes to eliminate operating system noise [76]

Recent research suggests that having a staging area or an I/O forwarding layer

can help mitigate the above discussed challenges imposed by scalability requirements.

To incorporate this, the software stack architecture from figure 1.7 changes to the

stack as shown in figure 1.8. Having a forwarding layer or a staging area, aids the

application in using asynchronous approaches which in-turn facilitate to reduce I/O

overheads on applications’ total processing time.

Although this is a fairly recent development, there have been many approaches

and frameworks designed in recent times to incorporate forwarding in I/O subsys-

tems. Abbasi, et al., discuss about a project called DataStager [77] which provides

scalable data staging services with ADIOS [78] framework. ZOID [30] is another

project from Iskra, et al., which also provides a architecture design with support for

I/O forwarding. This project also provides a request scheduler where optimizations

can be performed on requests from the same handle at the staging I/O nodes. There

is also another work from Nisar, et al., which discusses about a delegation based I/O

mechanism which was built on top of ROMIO [79] by assigning a set of compute

25

nodes as I/O staging/server nodes [80]. This work uses a plugin to intercept I/O

calls and send them to the I/O nodes for request handling. One of the most recent

projects was the Exascale Fast Forward I/O [5] project which is part of the Exascale

Fast Forward initiative of the DOE. This project focuses on the development of the

ideal stack for I/O at the Exascale level. Chapters 2, 5 will discuss about these

projects in detail.

`	
 `	

`	

Figure 1.8: Recent Developments lead to the inclusion of an I/O forwarding layer to
handle scalability challenges of I/O in HPC systems

1.7 Goals

From the discussions in the previous sections, its clear that to get performance im-

provements in the current petascale era and the future exascale era, there is a need to

reduce the number of accesses to the storage structures and also try to hide the I/O

26

cost from applications as much as possible. To accomplish this both collective I/O

and asynchronous I/O style optimizations are needed. This dissertation focuses on

exploring optimizations using both collective I/O and asynchronous I/O to mitigate

challenges of the current and future parallel applications.

In specific, this dissertation looks at achieving the following:

• Develop data-layout aware ranking strategy to optimize collective I/O operations

• Develop non-blocking collective I/O operations

• Develop a framework in a I/O staging node to use collective I/O principles for

optimization

The first goal of this dissertation focuses on optimizing collective algorithm by

using the data layout information in resource mapping. In this approach, the knowl-

edge about the algorithms communication pattern for a given data layout is used

to decide the resource mapping of MPI processes. A new module in the resource

mapping engine of Open MPI is designed for this purpose, which will be able to use

this information and the communication bandwidth(s) of the underlying network

link(s) in the system to create an optimal mapping. The work will be evaluated with

benchmarks such as Tile I/O [81] and BT I/O [82]

The second goal of this dissertation will look at developing a approach to overlap

computation with I/O using non-blocking collective I/O operations. This work fo-

cuses on combining the benefits of collective I/O with asynchronous I/O. This is the

first effort to create such operations and we are not aware of any other programming

model offering such operations. Since it does not also exist in the MPI specifica-

tion, this work will be done as a part of libNBC [4]. This work will be evaluated on

27

our PVFS [14] with a micro-benchmark and a real-world application to measure the

potential for overlap.

The final part of the dissertation focuses on designing an optimization framework

for a staging I/O node (or) I/O server capable of performing collective I/O style

optimizations. This work will be done as a part of the Exascale Fast Forward project.

The idea of the work will be to focus on reducing the number of I/O accesses to

the underlying file system. Optimizations will be explored which are specific to

I/O staging node style architectures. The work will be evaluated with synthetic

benchmarks and applications scenarios.

The following chapters in the dissertation are divided as follows. Chapter 2

discusses about the relevant background and the related work done in the literature.

Chapter 3 explains the design of the approach to process placement for collective

I/O operations and evaluates its performance. Chapter 4 explains in detail about

the design and evaluation of non-blocking collective I/O operations. Chapter 5 talks

about the work done with optimizing I/O operations at I/O staging nodes using

collective I/O principles as a part of the Exascale Fast Forward project. Finally

Chapter 6 summarizes the work and presents the conclusion.

28

Chapter 2

Background and Related Work

Chapter 1 discussed about the importance of Collective I/O and Non-blocking I/O

to improve performance of I/O operations in HPC applications. Collective I/O helps

to reduce contention at the file systems, provides an abstraction to application users

for a well-optimized machine specific implementation, and further increases overall

I/O bandwidth obtained from the I/O subsystem. Non-blocking I/O, on the other

hand, helps the application to hide the time consumed in I/O operations from the

application. Both these approaches have been widely researched in the literature.

This section will focus on discussing some of the background works done in the past,

which are relevant and related to this dissertation.

2.1 Collective I/O

The concept of collective I/O was derived from the usage of collective communica-

tion operations, to facilitate group based I/O operations. Blocking collective I/O

29

operations currently defined in MPI, provide a higher level abstraction to the user.

This provides important advantages such as programmability, safety (with regards

to programming errors) and performance [4]. This also insulates the user from im-

plementation details and provides the MPI developer with the freedom to provide

optimizations.

2.1.1 Two Phase I/O

ROMIO [2] which is one of the widely used MPI I/O implementations, provides a

client-side collective I/O implementation based on the two-phase algorithm. The

algorithm assumes that file systems handle large contiguous requests much better

than small non-contiguous ones. As the name suggests the algorithm is divided into

two-phases [2], for example, in a collective read operation:

• In the first phase, processes are prompted to make a single, large, contiguous

access assuming a distribution in memory.

• In the second phase, processes redistribute data among themselves to the desired

data distribution in the file. This phase will add an overhead on communication

between processes, but this overhead is small compared to the time saved in

I/O [2].

Figure 2.1 shows a simple example of a two-phase I/O based read algorithm. Initially

the entire information about the data distribution is communicated with all the

processes. Then the entire access region is divided into non-overlapping, contiguous

sub-regions denoted as file domains and each file domain is assigned to a unique

30

Figure 2.1: Simple Example of Two Phase I/O read figure source [2]

process. Each process creates a lists of offsets, lengths that they hold and that they

require from other processes and broadcast the information to all the processes. One

process makes the read/write operations on behalf of all processes for the requests

located in its file domain. These representative processes are called aggregators.

Each aggregator also does actual I/O operations in multiple cycles based on a value

called the cycle buffer size. The parameters number of aggregators and cycle

buffer size are provided to be configurable. Two-phase I/O was implemented as

a part of ROMIO and is the default choice for collective I/O. Over the years there

were many approaches that were developed to optimize collective I/O operations in

ROMIO. We will look at a couple of them here.

31

2.1.2 Optimizations for Collective I/O Operations in ROMIO

• View-based Collective I/O

The View-based collective I/O [83] provides a file system independent collective

I/O implementation within ROMIO. This approach reduces the access overheads

by using a “declare once, use several times” strategy. In other words the mapping

is created between the view (contiguous memory region) and the file layout. This

mapping can be used to boost performance, when the access pattern and the

actual physical distribution matches. The results in [83] show that view based

I/O can be useful in improving execution time of data-intensive applications.

• File Domain Partitioning based on file system locking

The authors in [84] propose and discuss three new file domain partitioning tech-

niques to support the two-phase I/O algorithm. Locking in parallel file systems

has a greater impact on the I/O performance obtained. Different file systems

have different locking protocols. GPFS [16] uses a distributed-token based lock-

ing whereas Lustre [15] uses a distributed-server based locking. In the former

a token handler has the authority of authorizing locks for the neighboring byte

ranges and in the latter I/O servers take care of locking for the stripes of files

it stores. But both these file systems use an extent-based locking scheme. This

means, the file system provides the lock to the entire file for the first process

that accesses it (for example, a write call). When a second write arrives from an-

other process, the first process will relinquish a part of the file for the requesting

32

process. The main advantage of this locking protocol is if a process has suc-

cessive requests within a region where it has been already granted a lock, then

there is no lock request needed. In their work, Liao and Choudhary [84] use this

knowledge, and partition the file-domains generated in the two-phase algorithm

such that domain sizes match the nearest lock boundaries. This minimizes the

re-acquisition of locks due to ill-aligned partitioning of file-domains. They use

the striping factor of the file system to determine the lock boundaries.

• Resonance I/O

In the work done in Resonance I/O [85] the authors use the striping informa-

tion provided by parallel file systems and rearrange I/O requests from processes

to match the data layout on the disks of the I/O nodes in order to turn non-

sequential access of disk data into sequential ones. The authors also implement

this in ROMIO and see a significant performance improvement with this ap-

proach.

• List I/O

Thakur et al [86], in their work on making MPI I/O portable argue that the stan-

dard POSIX I/O interface are not suitable for non-contiguous access and provide

a new I/O interface called the list I/O interface. This work was extended and

there was support added to these interfaces in ROMIO by developing a driver for

PVFS [14] which improved the performance of these interfaces significantly [87].

But, the performance benefit starts to disappear as the size of the list become

larger.

33

• Listless I/O

Another work [88] focused on the overheads of List I/O for non-contiguous file

access, including creation of lists, reading through the list before every copy

operation. An on-the-fly flattening approach was suggested in this work to han-

dle non-contiguous file access, which identifies and copies large chunks of evenly

spaces, non-contiguous data using scatter-gather operations. The performance

benefits were dependent on the actual access pattern. Since vector machines

natively support scatter/gather operations, best performance benefits were ob-

served here.

The main drawback with two-phase is that there is an all-to-all style communica-

tion in the beginning where all the processes exchange information with each other.

Moreover each process can have a chance to communicate with all the aggregators.

This can become performance prohibitive as the number of processes scales up. In

addition, in one of the recent works Sehrish et al., [89] state that with increasing

there is a change in behavior of the two-phase algorithm, wherein there is upto 60%

of time spent on communication and the rest on I/O. In their work they try to

mitigate this problem by pipelining non-blocking communication requests and I/O

requests, with the use of double buffering.

To overcome this limitation of two-phase algorithm two other algorithms were

introduced in [90] as a part of OMPIO [1]. The first algorithm, called dynamic seg-

mentation, is based on the two-phase collective I/O algorithm described above. The

34

fundamental difference between the two algorithms is that dynamic segmentation al-

gorithm has the ability to group processes internally thereby varying the number of

processes participating in communication. The static segmentation algorithm is sim-

ilar to dynamic segmentation except that it optimizes the communication occurring

during the shuffle operation by keeping it uniform.

2.1.3 Dynamic Segmentation Algorithm

This algorithm follows mostly the two-phase collective I/O algorithm described

above. The primary goal of this algorithm is to combine data from multiple pro-

cesses in order to minimize the number of I/O operations presented to the file system

and avoid rewinds on the disk if possible. The first step is similar to the two-phase

algorithm, wherein all the processes perform an MPI Allgather operation to share

the list of file offsets and number of elements to be written with each other within

the given collective operation. This enables every process to have the knowledge of

the operations to be performed by every other process. All processes can sort these

lists in ascending order and divide them into cycles of operation, wherein there are

fixed number of bytes written in each cycle.

There can be more than one aggregator process depending the number of aggre-

gators specified and like in two-phase each aggregator will be responsible to handle

I/O for a certain number of processes. The aggregator and its group of processes

are partitioned into a subgroup and communication occurs only within this group.

The groups of processes is decided based on 1) number of aggregators and 2) data

35

Figure 2.2: A sketch of dynamic segmentation I/O write (figure source [3]).

layout. The process groups are created such that each aggregator could have as

large a contiguous chunk as possible. This is the fundamental difference between the

two-phase and the dynamic segmentation algorithm. The advantage of partitioning

the processes into subgroups is that we could reduce the amount of communication

involved within the collective operation without compromising too much on the con-

tiguity of the data. This algorithm can prove to be effective as we scale the number

of processes as the communication costs can go up significantly in those cases. A

sketch of the dynamic segmentation for a single writer has been shown in figure 2.2.

Here three processes are writing collectively with a cycle size of five bytes using a

single writer process, namely rank zero.

The dynamic segmentation algorithm has been used for the prototype implemen-

tation of nonblocking collective I/O operations.

36

2.1.4 Static Segmentation Algorithm

The static segmentation algorithm mostly follows the dynamic segmentation algo-

rithm except that the data is always written in fixed size chunks. Since the algorithm

ensures that each process contributes the same amount of data in every cycle, it

makes a better use of the communication resources

Figure 2.3: A sketch of static segmentation I/O write (figure source [3]).

Figure 2.3 shows a scenario where three processes are writing collectively with

cycle buffer size of two bytes [90]. The algorithm currently supports multiple writers

and multiple cycles similar to the dynamic segmentation algorithm.

This algorithm focuses on keeping the communication pattern uniform for effec-

tive use of communication resources and completely neglects irregular access pattern

to the file system. This is counter-intuitive to the common knowledge which states,

that file access operations are the most time consuming part of collective operations.

However many large scale installations provide huge caches on the I/O nodes, which

effectively decouples the compute cluster from the storage devices and thus show -

37

from the applications perspective - virtually no sensitivity to irregular or strided file

access patterns [91]. In addition, solid state drives which have gained significant pop-

ularity in recent times have a distinct feature that they are not sensitive to random

accesses in file. For these two scenarios, static segmentation focuses on optimizing

the second most time consuming part.

2.1.5 Process Placement Discussion

Form the discussions in the previous sections it is clear that communication be-

tween processes in collective I/O algorithms has become a major concern. But any

optimization we perform from the S/W end does not benefit if the processes them-

selves are connected through an interconnect with relatively poor performance. In

the past, when applications had a certain pattern of communication, mapping al-

gorithms were used to map processes (ranks) to processors (physical nodes/cores)

such that the pattern of communication used in the applications always happen with

the maximum bandwidth that could be achieved from that system. This is done

by considering both the communication characteristics of the application and under-

lying network topology. For instance, two processes which communicate frequently

should be mapped close to each other, thereby minimizing the communication cost,

hence reducing the overall execution time of an application. In a heterogeneous envi-

ronment, requirement of an efficient process placement strategy becomes even more

important. Some of the related work in the area is discussed in this section

MPIPP [92] is a library designed to map parallel processes to processors such that

38

the total communication cost is minimized. In this framework, first the Application

communication graph is obtained from the traces collected by Intel Trace Collector

or Intel MPI library [54]. System topology graph is generated using a simple ping

pong benchmark. In order to optimize the communication cost, MPIPP adopts a

heuristic approach based on the k-way graph partitioning algorithm suggested in

[93]. The algorithm starts with a randomized mapping of processes to the nodes,

changes iteratively the assignment of one pair of processes and calculates the esti-

mated performance improvement recursively. The algorithm stops when no further

improvement could be obtained. MPIPP deals as of today with Symmetric Multi

Processor (SMPs) and clusters, and does not consider at this point replicated MPI

processes.

Mercier, et al., [94] propose a new strategy to process placement. Similar to

MPIPP, they also use topology and application information to generate the opti-

mal mapping. They propose to use a topology discovery mechanism based on the

PM2 runtime system [95], which provides information about the CPU architecture,

but does not provide any information regarding the underlying network topology.

Further they modify the MPI implementation to collect information about the com-

munication characteristics of the application. Now the actual mapping itself is done

using the SCOTCH software [96], which implements a dual recursive bi-partitioning

algorithm to compute the static mapping for the graphs.

39

The authors have extended their work in [97] by using the TREEMATCH algo-

rithm, which calculate a near-optimal mapping of processes to resources on NUMA

architectures. The hardware information in this work is gathered using the HWLOC

library [98]. Application communication characteristics are expressed as a commu-

nication matrix where the global amount of data exchanged between each pair of

processes is stored. The TREEMATCH algorithm is a graph algorithm which works

recursively on each level of the memory hierarchy and groups processes such that the

cost of remaining communication is minimized. Since it works with multiple levels

of hierarchy, the algorithm is also well suited for heterogeneous architectures.

In his work Traff [99] formulates the topology optimization problem as a graph

embedding problem and shows that topology optimizations for a hierarchical net-

work, could be handled as a graph partitioning problem. In their work Hoefler, et

al., [100] show how topology mapping gains importance with the increase in size of

the network and also show how their proposed mapping strategies are capable of

improving performance for special kinds of networks like fat-tree and torus. They

also show that these approaches minimize network congestion. There have also been

similar work done focused on specific networks like mesh and torus in [101, 102]

All the approaches discussed above, focus on optimizing the execution time using

the application’s communication pattern. But none of the above mentioned ap-

proaches focus on using I/O access pattern used in the application. This could be

critical as for data-intensive applications can consume the maximum amount of time.

40

Chapter 3 discusses how data access pattern could be used for process placement and

how collective I/O algorithms can benefit from that.

2.2 Non-blocking I/O operations

Non-blocking I/O was introduced in the MPI specification v2.0. The main idea

of these routines was to provide a non-blocking variant of the regular write and

read operations which can return immediately and could be progressed later with

an MPI Test or MPI Wait. This provides an opportunity to hide the I/O cost, in

the event of having an equally large computation part. Let us assume an example

program which

• Has access to non-blocking I/O operations

• Produces data iteratively

• Does not perform write operations on the data for a while

In the ideal scenario, the non-blocking version of the write should be able to hide

the I/O operation completely as shown in figure 2.4. In their work Buettner, et

Figure 2.4: Comparison between non-blocking I/O and blocking I/O in an ideal case

al. [103] show that non-blocking I/O has the potential to reduce execution times of

41

applications in high performance computing.

Currently the MPI specification only supports non-blocking operations only with

individual I/O. Although this is beneficial, it lacks the benefits that could be ob-

tained by using collective I/O.

However, MPI specification offers to express collective MPI file operations as split

collective interface. But, split collective interfaces have a couple of limitations:

• There must only be a single split collective active on a file handle at any time

• No other collective file I/O operations can be issued on a file handle when a split

collective is active.

The first limitation prevents optimization techniques such as pipelined communi-

cations for communication/communication overlap [104] and the second limitation

reduces programmability. The MPI-2.2 standard also allows to perform a global syn-

chronization in the begin call of a split collective. This limits certain usage patterns.

Non-blocking collective operations did not exist even for communication opera-

tions also until Hoefler, et al. [4] introduced the specification for non-blocking collec-

tive communication operations. We will discuss about this in the following section.

2.2.1 Non-blocking Collective Communication Operations

Many applications benefit from overlapping communication and computation using

non-blocking MPI point-to-point operations. Non-blocking collective operations to

overlap communication and computation are not supported in the MPI standard

42

version 2. It combines the advantages provided of both non-blocking communica-

tion [105] and collective communication [106]. The approach used to emulate this

functionality is to perform the blocking collective operation in a separate thread on

a duplicate communicator. This approach would require an MPI implementation

with the MPI THREAD MULTIPLE support without a “big lock” and there are

not many implementations that offer this feature. In addition, managing threads is

a very complex task for programmers. To overcome these issues a specification for

non-blocking collective operations were introduced [4]. These collective operations

offer the possibility of overlapping communication and computation for collective

operations and also reduce the effect of pseudo synchronization. Pseudo synchro-

nization occurs due to data dependencies in the communication pattern (receivers

have to wait for senders). A non-blocking collective operation helps to move the

pseudo-synchronization to the background. This provides some tolerance to process

skew from the applications perspective.

A portable prototype implementation for non-blocking collective communication

operations has been provided in LibNBC [107]. LibNBC is based on MPI-1 and

written in ANSI C to enable high portability to many different parallel systems.

This library uses so called collective schedules to save the necessary operations to

complete a MPI collective communication. These schedules are built with helper

functions and executed by the scheduler to perform the operation.

From the discussions above it is logical to say that combining non-blocking

43

I/O and collective I/O will prove to be beneficial. Chapter 4 of this dissertation

presents the design and implementation of non-blocking collective I/O operations

using LibNBC and evaluates the merits of using them in HPC applications.

2.3 I/O Delegation Approaches

Section 1.6 discussed the importance of ensuring scalability with increasing number

of compute nodes. In the recent years, there has been significant effort invested in

creating delegation based I/O architectures. Some of these approaches were intro-

duced and discussed in chapter 1. The basic idea of these approaches is to reduce

the overhead at the I/O servers by adding an additional layer in-between the com-

pute nodes and the file-system’s I/O servers called the forwarding layer to handle

the stream of requests coming in from the various compute nodes. Although this

kind of I/O architecture inherently provides support for asynchronous progress, but

lack the benefits obtained from collective I/O optimizations, that client side parallel

I/O functions benefit from. This section discusses some of the recent works which

focus on applying collective I/O style optimization at staging I/O nodes/ forwarding

layers.

DataStager [77] was one of the earliest efforts to provide support for staging I/O

with ADIOS. This attempt focused on providing complete asynchronous I/O sup-

port by ensuring the completion of transfer when the function call returns. The work

focused on increasing the I/O bandwidth by using RDMA operations to buffers in

the staging nodes. Requests in the staging node are handled using different types of

schedulers including a rate limiting scheduler, which also facilitates processing more

44

than one request simultaneously. This work does not use any collective I/O style

optimizations at the I/O forwarding layer as the requests received are already in

POSIX I/O format

ZOID [30] is another project providing an architecture with I/O forwarding layer

support. This project also had similar kind of architecture as that of datastager

with scheduling policies to handle requests, but has support for MPI-I/O request

at the staging nodes, in contrary to having just POSIX I/O requests. In addition,

this project also provides support for merging requests from different compute nodes

going to the same file at the staging node by matching file handles and grouping

requests in a queue [31].

Another project which uses delegation based [108] architecture for I/O is built on

top of the MPI I/O implementation ROMIO [79]. In this architecture a handful of

nodes are selected from the compute nodes and made exclusively as staging nodes.

I/O requests are intercepted by a plugin implemented in ROMIO and sent to IO

delegate nodes. These nodes further optimize I/O requests into a smaller number

of large and contiguous requests. To perform such optimizations the authors use a

complete cache page management system at the I/O delegate nodes. This is based

on the client side caching work described in [109, 110]. The upper bound on the

memory size was kept at 1GB, beyond which page eviction is done to cache other

incoming requests.

One of the very recent initiatives to create a I/O software stack which incorporates

45

I/O delegation style architectures is the Exascale Fast Forward project [5]. This

project uses multiple layers, aiming to support scalability requirements of the future

without compromising on the I/O bandwidth. Chapter 5 of this dissertation talks

about the EFF stack in detail and also introduces a optimization framework called

compactor which has been designed for providing collective I/O style optimizations

in this stack.

46

Chapter 3

Data Locality Aware Process

Placement for Collective I/O

Operations

The complexity of modern micro-processors and the utilization of hierarchical net-

works makes process placement, i.e., the decision on where to place each MPI process,

an increasingly difficult but important task. Various projects aim to map the com-

munication pattern of the application to the underlying hardware such that process

pairs with high communication volume are close to each other from the hardware

perspective [92, 97], often focusing on specific network topologies such as torus or

mesh networks [101, 102], hierarchical networks [99] or by minimizing network con-

gestion [100]. A detail description of these approaches has also been provided in

section 2.1.5.

An often overlooked component in the process placement research is the I/O

47

occurring in the application. The time spent in I/O operations dominates the overall

execution time for an increasing number of data intensive applications since the

communication and computational components of high-end systems evolve at a faster

rate than the storage components. MPI I/O as discussed in section 1.4 has been

shown to be beneficial for the I/O performance of many application due to features

such as the fileview – which allows registering the I/O access pattern of processes in

advance – and collective I/O operations, which represent the counterpart of group

communication operations for file I/O. In most applications the logical organization

of the processes within the fileview, i.e., the order in which processes access the file

based on their offset into the file, is unique, since it is tightly coupled to the data

distribution strategy used by the application.

This section presents an approach to optimize the process placement of a parallel

application based on their I/O access pattern, specifically focusing on optimizing the

communication occurring in collective I/O operations. This section also presents the

SetMatch algorithm which calculates a near-optimal process placement at minimal

cost that minimizes communication time in collective I/O operations. This work

makes a significant contribution towards the solution of the general problem, and

also presents a simplified approach for commonly occurring data access patterns

such as 2-D and 3-D data distributions and process topologies.

Two collective I/O algorithms were considered in this work, two-phase [2] and

dynamic segmentation [90]. Both these algorithms have been explained in detail in

sections 2.1.1, 2.1.3 respectively.

48

3.1 Design and Implementation

For the subsequent discussion, the process placement problem can be formally de-

scribed as follows. Given an architecture matrix P , where each element of the matrix

Pij is the bandwidth capacity between processors i and j; and an application matrix

R, where each element of the matrix Rij is the amount of data communicated be-

tween processes i and j. The goal is to find a mapping of processes onto processors

which optimizes the total communication costs, where the costs between a pair of

processes i, j is Rij/Pij.

From the technical perspective, the problem can be broken down into three com-

ponents:

• Generating the architecture matrix

• Generating a description of the communication pattern to create the application

matrix

• Map application processes to underlying node architecture such that communi-

cation cost is minimized. In the following, we discuss the most relevant aspects

of our work in more details.

3.1.1 Architecture Matrix

The architecture matrix is generated by providing a description of the hardware

used for the application and is based, within the context of this work, on bandwidth

values between pairs of processors. The bandwidth values are determined by using a

ping-pong benchmark between cores on the same node, and cores on different nodes.

Based on the bandwidth the value for the architecture matrix is determined. Larger

49

the bandwidth, smaller is the value chosen for the matrix.

3.1.2 Application Matrix

The application matrix contains the amount of data communicated between each

pair of processes. The fundamental assumption in the work is, that MPI processes

reading/writing neighboring portions of a file communicate with the same aggregator

processes during the collective I/O operations.

To support arbitrary access patterns, the order in which processes access the

file based on the offset into the file has to be recorded. This can be done dur-

ing MPI File set view and written into a separate file, that can be used when re-

executing the same problem/application. For applications not setting the file view,

the offsets of each file access can be recorded during the MPI File read/write op-

erations, although this is not supported in the current implementation. To minimize

the size of the output file during the record operation, a compressed row storage

(CRS) format is used to record the matrix. In the following, we illustrate how the

application matrix is constructed based on the file I/O access pattern.

Consider an application in which the file view is set such that processes access

the file in the following order:

0; 4; 1; 0; 4; 1; 5; 2; 3; 4; 1; 3; 2; 5; 4; 2; 5; 4; 0; 4; 1

with each number representing the rank of the process accessing the next portion of

the file. Every time two processes have a neighboring region in the file, i.e. they are

adjacent in the list shown above, the value representing the amount of communication

50

between those processes is increased by one in the application matrix. For example,

processes 0 and 4 have four neighboring file regions in the sequence shown above and

consequently have a value of 4 in the matrix, while the processes 1 and 5 only have

one common boundary. This results in the following matrix:

0 1 0 0 4 0

1 0 0 1 4 1

0 0 0 2 1 3

0 1 2 0 1 0

4 4 1 1 0 2

0 1 3 0 2 0


While creating the application matrix by recording the file view works for arbi-

trary access patterns, it requires running the application to build the application ma-

trix. Note, that the same problem occurs in many other projects working on process

placement problems [92, 97], and is therefore not specific to our approach. However,

we also developed a significantly simplified methodology to generate the application

matrix for certain common data distributions. The most important scenario covered

by this simplified approach are applications using a 2-D data distribution and a 2-

D cartesian process topology. In this particular scenario, the vast majority of the

communication in the collective I/O operation will occur between processes having

the same coordinate in the outermost dimension of the cartesian process topology,

assuming that one process per row will act as an aggregator in the collective I/O

operation. collective I/O operation. This feature has been already exploited when

forming the groups for the dynamic segmentation algorithm [111]. It is however also

correct for the two-phase I/O algorithm, assuming that

51

• processes with the same coordinate in the outermost dimension of the cartesian

process topology are located on the same node

• each node has (at least) one aggregator, a strategy used for example by ROMIO [2].

The application matrix can be created in this case by assigning process pairs with

the same coordinate in the outermost dimension of the cartesian grid a larger value

than between process pairs in different rows of the cartesian process topology. This

scenario will be referred to as the special case for the remainder of this section. For

example, the application matrix could look as follows for a 2x4 topology:

4 4 4 4 0 0 0 0

4 4 4 4 0 0 0 0

4 4 4 4 0 0 0 0

4 4 4 4 0 0 0 0

0 0 0 0 4 4 4 4

0 0 0 0 4 4 4 4

0 0 0 0 4 4 4 4

0 0 0 0 4 4 4 4


3.1.3 Mapping Algorithm

Generally speaking, once the architecture and the application matrix are available,

any graph mapping algorithm from literature could be used for the mapping step.

The initial focus was on the algorithm used by the MPIPP toolset [92].

This algorithm uses the heuristic k-way graph partitioning algorithm [93] as the

basis with a new objective function. This algorithm uses a random mapping of pro-

cesses to available cores as a starting point, swaps a pair of processes and recalculates

52

an objective function for each new mapping. In case the new configuration processes

shows benefits, i.e. a lower value of the objective function, the modified configuration

is kept, otherwise it is undone. The algorithm stops if no improvement can be made

over multiple iterations.

The main drawback of this algorithm is the time it takes to run to completion for

large process counts. In experiments conducted during the course of this study we

found that for the 256 processes test case the algorithm can take up to 90 minutes on

a typical desktop system to compute the mapping with two passes, and still produces

suboptimal mapping due to the low number of passes.

Therefore, a much simpler algorithm called SetMatch was developed which is a

simplified version of the Treematch [97] algorithm for these type of communication

and architecture matrices. Similarly to Treematch, this algorithm first partitions the

application and architecture matrix into smaller, independent sets. For the architec-

ture matrix this can be achieved by grouping all processors/cores on the same node.

For the application matrix, this is typically achieved by grouping all processes with

high communication volumes. In the second step of the algorithm, each subgroup of

processes that resulted from subdividing the application matrix is mapped to sub-

groups of the architecture matrix.

There are two main differences between the SetMatch and the Treematch algo-

rithm: first, SetMatch only uses one level of hierarchy; second, insignificant values

were chosen to be ignored in the application matrices by replacing them them with

a value of 0. Specifically, any value that falls within a certain percentage of the

53

maximum value found (e.g. 10%) in the application matrix is used for creating in-

dependent application sets while other values are ignored. This reduces the cost

involved in creating the independent groups of the application matrix, which is the

main cost of the Treematch [97] algorithm. Pseudo-code for the SetMatch algorithm

is provided in Algorithm 1.

Algorithm 1 SetMatch

Input: num procs, comm matrix, arch matrix, min value
Output: ranklist
1: procedure map SetMatch
2: make sets . app sets
3: merge sets . remove interleaving
4: make sets . Independent arch sets
5: match sets . generate ranklist

The algorithm subdivides the available resources from the architecture matrix as

well as the application processes into independent sets. The decision to create a set

of processes is based on communication volumes for the application matrix, and on

communication bandwidth for the architecture matrix. In case of the architecture

matrix, group of processes that have intra-node communication cost can form an

independent architecture set.

In case of the of the generalized application matrix, the min value is chosen to be

10% from the maximum number of contiguous accesses in the matrix. For the spe-

cialized application matrix described earlier, the min value is chosen as the product

of the outer dimensions of the cartesian topology. In case of the architecture matrix

the ’min value’ is selected to be the value representing intra-node communication

54

Algorithm 2 : Creating Initial Sets

Input: num procs, matrix, matrix type, min value
Output: num sets, sets
1: function make sets
2: availList[1..—N];Boolean, numsets, sets
3: Initialize availList
4: for i=0 to N do
5: if availList then
6: continue
7: numsets + +
8: Allocate new set of size N and initialize
9: for j=0 to N do
10: if matrix type = APP MATRIX then
11: if matrix[i][j] ≤ min value then
12: Add process to the current app set
13: Update Availability List

14: if matrix type = ARCH MATRIX then
15: if matrix[i][j] ≤ min value then
16: Add this process to the current arch set
17: Update Availability List

Algorithm 3 : Merging Interleaved Sets

Input: set, numSets, numProcs
Output: finalSets, final set
1: function merge sets
2: Allocate and initialize final set and finalSets
3: copy (final set[0], set[0])
4: num final sets++
5: for i ← 1 to numSets do
6: setFound ← false
7: for j ← 0 to finalSets do
8: if groups interleave(final set[j], set[i]) then
9: copy (final set[j], set[i])
10: setFound ← true
11: break
12: if ¬setFound then
13: finalSets++
14: copy (final set[finalSets - 1], set[i])

55

Algorithm 4 : Match application and architecture sets

Input: app set, arch set, archSets, appSets, numProcs
Output: ranklist
1: function match sets
2: while mappedProcs 6= numProcs do
3: for i ← 0 to appSets do
4: archFragment ← false
5: for j ← 0 to archSets do
6: if (arch set[j].nprocs is higher) then
7: archFragment ← true
8: map(ranklist, archSet[i], appSet[j])

9: if ¬archFragment then
10: map(ranklist, archSet[j], appSet[i])

11: sort(appSet)
12: sort(archSet)

cost. This has been shown in algorithm 2.

Once the initial sets are created, they are checked for interleaving, to ensure that

they are completely independent. In case of the specialized application matrix this

approach will result in independent sets. This cannot be guaranteed however for the

generalized application matrix scenario, and necessitates a merging of interleaved

sets. This is shown in algorithm 3. Once all sets are independent, each application

set has to be matched to an architecture set. The goal is always to fit an entire

application set into an architecture set.

To accomplish this, the algorithm locates the largest possible architecture set to

match the application set. Once the architecture processes are matched, the exist-

ing architecture set is fragmented to be used for another application set. If there

56

are no architecture sets found that could match the application sets, the algorithm

fragments the application matrix and maps it to the next biggest architecture set

available. This process continues until all application sets are mapped to architecture

sets. This is shown in algorithm 4.

3.1.4 Implementation

This work has been implemented in OMPIO [1], a parallel I/O framework in Open

MPI [51]. While the implementation is specific to OMPIO, the conceptual aspects

of this work can easily be extended and transferred to other implementations. A

new component of the rank mapping framework (rmaps) has been created, the

Data Locality Aware Mapping (DLA) component. In general, an rmaps compo-

nent retrieves information about the allocated resources, the number of processes

requested, and creates a mapping for them. The output is an array of ranks which

is used to associate application processes to actual nodes. The new dla rmaps

component takes an additional input file, which allows to specify either the carte-

sian topology or the actual application matrix generated from the fileview as an

input, or direct list of ranks once calculated. The module is available for free

download at http://www2.cs.uh.edu/~venkates/OpenMPI-dla.tar.gz, and will

be contributed to the Open MPI source code in the near future.

57

3.2 Evaluation

The efficiency of the approach discussed in previous section is evaluated for several

scenarios. The platform used is the crill cluster at the University of Houston which

consists of 16 nodes with four 12-core AMD Opteron (Magny Cours) processors each

(48 cores per node, 768 cores total), 64 GB of main memory and two dual-port

InfiniBand HCAs per node. The cluster has a PVFS2 (v2.8.2) parallel file system

with 15 I/O servers and a stripe size of 1 MB. The file system is mounted onto the

compute nodes over the second InfiniBand network interconnect of the cluster. The

cluster utilizes slurm as a resource manager.

The second platform is the MEGWARE PC Farm Atlas at TU Dresden. This

cluster has a total of 92 nodes, each node having two AMD Opteron 6274 Bulldozer

multicore chips with 64 cores total, and between 12GB and 512GB of main memory

per node. A QDR InfiniBand connection is provided for the communication and

the I/O infrastructure. The Lustre filesystem utilized on the cluster has a total 11

Object Storage Targets(OSTs).

Six different mapping approaches were taken into consideration for evaluation

1. Byslot: Linear mapping on available slots

2. Bynode: Round robin based mapping

3. MPIPP: MPIPP with cartesian topology

4. MPIPPG: Generalized MPIPP using the application matrix generated by recording

the fileview

5. SetMatch: SetMatch algorithm with cartesian topology

58

6. SetMatchG: SetMatch algorithm using the application matrix generated by record-

ing the fileview

A pre-release version of OpenMPI v1.7 was used for the measurements, includ-

ing support for KNEM [112] to extract higher intra-node bandwidth. A simple

point-to-point benchmark from the OSU micro-benchmark suite [113] was used to

determine the intra-node and inter-node bandwidth for the architecture matrix. The

intra-node bandwidth obtained with these tests in the crill system were peaking at

around 5800MB/s – although the bandwidth dropped for larger message lengths to

around 3500MB/s. The inter-node bandwidth using the DDR InfiniBand network

interconnect is up to 2100 MB/s. The bandwidth for the Atlas system, was calcu-

lated similarly using the OSU benchmark. But the Opteron 6274 cpus in the Atlas

cluster have a peculiar problem, wherein selecting neighboring cores can lead to sub-

optimal intra-node bandwidth as they share the same L1 instruction cache [114].

This means, in case two processes get spawned on adjacent cores, there would be

a lot of cache misses, leading to suboptimal performance. To mitigate his problem,

processes need to be mapped in a way such that two processes do not share the same

L1 instruction cache. For the default mapping strategies such as Bynode and Byslot

this was done using the Locality Aware Mapping Algorithms (LAMA) [115] devel-

oped for Open MPI [116]. For all the other approaches, an additional feature was

added to the DLA component which could be triggered by an mca parameter. The

inter-node bandwidth using the QDR InfiniBand network interconnect network was

around 2100 MB/s and the intra-node bandwidth was a little above 5000MB/s for

both the LAMA and the DLA based approaches. The chart 3.1 shows the bandwidth

59

across different message length on the systems discussed above.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1k 2k 4k 8k 32k 128k 512k 1m 2m

B
a
n
d
w

id
th

 (
M

b
yt

e
s/

se
c)

Message Length (Bytes)

Crill inter-node
Crill intra-node

Atlas inter-node
Atlas intra-node lama

Atlas intra-node dla

Figure 3.1: Inter and Intra node bandwidth for systems used in study.

3.2.1 Tile I/O

The MPI Tile I/O benchmark is widely used to study performance of MPI-IO for

tiled accesses to a two-dimensional dense dataset [117]. The benchmark uses a carte-

sian communicator to access the file which makes it an ideal benchmark to study the

effectiveness of our mapping strategies. For the measurements used in this chapter,

the number of tiles in the x and y dimension was selected based on the number of

processes. Two different tile sizes (1KB, 1MB) were used with (768x800, 40x15) ele-

ments respectively. All tests were executed three times and the maximum achieved

bandwidth across those runs is selected.

60

Tests were executed using 128 processes on four nodes and 256 processes on eight

20

30

40

50

60

70

80

90

100

110

120

bynode byslot mpipp mpippg setmatch setmatchg

A
v
e
ra

g
e
 C

o
m

m
u

n
ic

a
ti

o
n

 T
im

e
 [

s
]

Mapping Method

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3.2: Communication time for different mapping strategies in the dynamic
segmentation algorithm on crill.

nodes on the crill cluster. Note, that 128 processes could be executed on three nodes

of this cluster, and 256 processes on six nodes. However, a slightly larger number

of nodes were allocated due to performance considerations of the parallel file system

used in the crill cluster. This leads in most scenarios to a higher number of cores be-

ing available for the process placement algorithm than actually requested by mpirun.

In case of the Atlas cluster tests were performed using 128 processes.In addition, the

number of aggregators used in the collective I/O algorithms was kept constant and

same as the number of nodes used for all the tests. Figures 3.2 and 3.4 show the

61

 0

200

400

600

800

1000

bynode byslot mpipp mpippg setmatch setmatchg

W
ri

te
 B

a
n

d
w

id
th

 [
M

B
/s

]

Mapping Method

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3.3: Bandwidth comparison for different mapping strategies using the dy-
namic segmentation algorithm on crill.

average communication time in the communication step of the dynamic segmenta-

tion and the two-phase I/O algorithm with the different mapping strategies, since

the variance in these measurements was negligible.

The mapping methods developed in this dissertation show significant reduction in

communication times compared to the standard bynode and byslot mapping strate-

gies of Open MPI with the dynamic segmentation algorithm, except for the 256

processes case with the MPIPP algorithm. Analysis of the degraded performance

for this scenario revealed a suboptimal mapping by the MPIPP algorithm, since the

number of internal iterations had to be limited to two due to the exceeding amount

of time spent in the mapping algorithm. The SetMatch algorithm provides the best

62

 0

50

100

150

200

250

bynode byslot mpipp mpippg setmatch setmatchg

A
v
e
ra

g
e
 C

o
m

m
u

n
ic

a
ti

o
n

 T
im

e
 [

s
]

Mapping Method

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3.4: Communication time for different mapping strategies in the two-phase
I/O algorithm on crill.

performance in comparison to all other methods at significantly lower costs for the

mapping step: calculating the process placement for the 256 process scenario took

around 100 ms on this platform. Fig 3.3 shows the resulting I/O bandwidth for Tile

I/O benchmark using the dynamic segmentation algorithm. The results indicate a

significant improvement in the write bandwidth along the lines of what is expected,

based on the savings in the communication time. Trends are mostly similar with the

two-phase I/O algorithm, with some interesting deviations as shown in figure 3.4.

The first difference is evident when comparing the communication times obtained

with the default bynode and byslot mappings. Based on the analysis of the data

access and communication pattern of the benchmark, the byslot mapping should

63

50

100

150

200

250

300

byslot byslotr

A
v
e
ra

g
e
 C

o
m

m
u

n
ic

a
ti

o
n

 T
im

e
 [

s
]

Mapping Method

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3.5: Average communication time for 48 and 32 processes per node using the
byslot mapping with the two-phase I/O algorithm.

lead to lower communication times compared to the bynode mapping, similar to the

results obtained using dynamic segmentation algorithm. This is however not the

case in this test. The reason for this behavior is that the byslot mapping in Open

MPI will fill up all the 48 cores on an individual node before assigning processes to

another node, which increases the memory pressure on each node dramatically and

negates the performance benefits of the intra-node communication.

Fig. 3.5 shows a slightly modified version of the same test, in which comparison is

done between the default byslot mapping of Open MPI to a byslot mapping restrict-

ing the maximum number of processes per node to 32, which is the number of MPI

64

 0

200

400

600

800

1000

bynode byslot mpipp mpippg setmatch setmatchg

W
ri

te
 B

a
n

d
w

id
th

 [
M

B
/s

]

Mapping Method

128 procs 1K tiles

128 procs 1M tiles

256 procs 1K tiles

256 procs 1M tiles

Figure 3.6: Bandwidth comparison for different mapping strategies using the two-
phase algorithm on crill.

processes per node in the bynode scenario. In this case, byslot clearly outperforms

bynode for the two-phase I/O algorithm as expected.

Second, there is no significant difference in the bandwidth observed using the

two-phase I/O algorithm for any mapping approach as shown in figure 3.6.

Two reasons have been identified for contributing to this behavior. First, the

overall bandwidth achieved was in the range of 800 MB/s, which is close to the

peak bandwidth supported by this parallel file system. Second, an additional file

synchronization call was added using MPI File sync to the benchmark to avoid

65

caching effects, which was originally not part of the Tile I/O benchmark. Removing

this call led to bandwidth improvements up to 45% in the write bandwidth, although

the improvement can be attributed mostly to caching effects on the server side.

Ultimately, it is clear that the results observed in this test are an artifact of the

parallel file system in crill, since expected improvements in the communication time

using the two-phase I/O algorithm was observed as well.

3.2.2 Modified Tile I/O

 0

50

100

150

200

250

300

bynode byslot byslotr mpipp mpippg setmatch setmatchg

A
v
e
ra

g
e
 C

o
m

m
u

n
ic

a
ti

o
n

 T
im

e
 [

s
]

Mapping Method

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3.7: Communication time for different mapping strategies using the two-phase
algorithm for the modified Tile I/O test.

In addition to the normal Tile-IO benchmark a new version version was also

created where the communicator used in the benchmark was modified to reorder

66

200

400

600

800

1000

1200

bynode byslot mpipp mpippg setmatch setmatchg byslotr

W
ri

te
 B

a
n

d
w

id
th

 [
M

B
/s

]

Mapping Method

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3.8: Bandwidth for different mapping strategies using the two-phase algorithm
for the modified Tile I/O test.

ranks internally and thus create a more irregular scenario. In the previous tests,

the byslot mapping would have provided ’accidentally’ a correct mapping, except

for the fact that it overloads each node with processes. For the modified Tile I/O

test, neither byslot nor bynode provides the correct mapping. The goal therefore

is to demonstrate that the SetMatch algorithm provides the optimal mapping also

for this irregular scenario. Fig. 3.7 shows that only the SetMatch algorithm with

the generalized application matrix is able to provide consistently low communication

times across all scenarios which reflects in the write bandwidth observed also as shown

in figure 3.8. The improvement is not as significant as the improvement obtained

with the communication time due to an artifact of the parallel file system used as

67

discussed in the previous section.

20

40

60

80

100

120

140

bynode byslot mpipp mpippg setmatch setmatchg byslotr

A
v
e
ra

g
e
 C

o
m

m
u

n
ic

a
ti

o
n

 T
im

e
 [

s
]

Mapping Method

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3.9: Communication time for different mapping strategies using the dynamic
segmentation algorithm for the modified Tile I/O test.

The version of the MPIPP and SetMatch using the cartesian topology as an

input can not correctly map in this scenario, since the cartesian topology is not

created from MPI COMM WORLD, but from a different communicator. The generalized

MPIPP algorithm can correctly describe the application matrix, but still produces

a suboptimal mapping, especially for 256 processes. Also shown in this graph are

numbers for a restricted byslot mapping, i.e. the mapping which limits the number

of processes per node to 32. Neither bynode nor any version of the byslot produces

a configuration leading to similar improvements in the communication time as the

68

200

400

600

800

1000

1200

bynode byslot mpipp mpippg setmatch setmatchg byslotr

W
ri

te
 B

a
n

d
w

id
th

 [
M

B
/s

]

Mapping Method

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3.10: Bandwidth for different mapping strategies using the dynamic segmen-
tation algorithm for the modified Tile I/O test.

generalized SetMatch algorithm. Similar performance has been observed in our ex-

periments with even the dynamic segmentation algorithm as shown in figure 3.9.

Similar improvements have also been observed in the bandwidth obtained as shown

in figure 3.10.

The graph in figure 3.2.2 shows the communication times of the different ap-

proaches discussed on the Lustre file system at the Atlas cluster. It is seen that

in the vast majority of cases the setmatch algorithm with the generalized matrix

performs better than all the other approaches. This result is presented to show the

benefit of our approaches in a different machine. The inconsistency in the results can

69

10

20

30

40

50

60

70

80

90

100

bynode byslot mpipp mpippg setmatch setmatchg

A
v
e
ra

g
e
 C

o
m

m
u

n
ic

a
ti

o
n

 T
im

e
 [

s
]

Mapping Method

128 procs 1K tiles

128 procs 1K tiles - modified

128 procs 1M tiles

128 procs 1M tiles - modified

Figure 3.11: Avg communication time comparison for different mapping strategies
on dynamic segmentation algorithm on Atlas

be attributed to the fact that the Atlas system was a shared resource and measure-

ments were performed without exclusive access unlike the Crill system. Between

runs, the systems state could change or additional noise could be introduced into

the system through other jobs running in the same system. This could have a big

impact on the measurements. This was more pronounced with the two-phase algo-

rithm, were the results had huge variance between runs. Further investigation on

this system was not performed due to its unavailability.

70

3.2.3 BT-I/O

BT-I/O is a part of the NAS parallel benchmarks (NPB) suite [118]. It has been

developed based on one of the kernels of the BT computational kernels. The class D

of the BT-I/O benchmark used in this study writes 135 GB data over 250 iterations,

i.e. around 600MB of data per-iteration. Due to the smaller amount of data written

per function call, the communication times per iteration will also be low, which fun-

damentally limits the improvement per-iteration that can be achieved. Nevertheless,

the results shown in Table 3.2.3 for the two-phase I/O algorithm indicate that using

the setmatchg algorithm leads up to 30% reduction in I/O time in the benchmark

and 17% reduction in total application time. Similar performance was obtained

using the dynamic segmentation algorithm as shown in Table 3.2.3.

Mapping No.of Processes Avg Total Time
(s)

Avg I/O Time
(s)

Bynode 144 838.91 264.09
256 549.27 193.58

Byslot 144 1100.88 407.3
256 1020.7 637.75

mpipp 144 769.49 223.46
256 461.28 134.38

mpippg 144 819.25 228.01
256 493.84 151.96

setmatch 144 805.25 243.67
256 477.36 135.13

setmatchg 144 792.25 232.96
256 458.42 134.98

Table 3.1: I/O time and total execution time of BT I/O using two-phase I/O algo-
rithm.

In all, the results demonstrate significant improvements in the communication

time of collective I/O operations and the application scenarios overall due to the

71

Mapping No.of Processes Avg Total Time
(s)

Avg I/O Time
(s)

Bynode 144 920.83 335.54
256 587.95 257.28

Byslot 144 1287.45 580.95
256 901.79 433.94

mpipp 144 739.93 229.87
256 478.74 167.54

mpippg 144 878.37 297.99
256 526.61 211.16

setmatch 144 776.17 238.36
256 504.06 165.94

setmatchg 144 750.14 224.66
256 463.03 163.23

Table 3.2: I/O time and total execution time of BT I/O using dynamic segmentation
algorithm.

mapping strategy developed in this work. When applicable, the simplified approach

for 2-D and 3-D data distributions shows significant benefits without requiring to

record the file view of an application first. For generic and irregular scenarios, the

generalized SetMatch algorithm that was presented in this chapter was able to pro-

vide adequate performance for all scenarios used in this study. This work can be

expanded in multiple directions, including more and larger application scenarios and

platforms. It is also possible to support process placement approaches for cases with-

out fileview information. In addition, the special case that was demonstrated for the

2-D pattern can be extended to various other regular process distributions.

72

Chapter 4

Non-Blocking Collective I/O

Operations

Overlapping computation and communication is a standard technique to optimize

the performance of parallel applications. This technique allows to hide latencies

and improve bandwidth of data transfers to remote processes. This functionality is

offered to the user through a special nonblocking interface, which allows to start oper-

ations and check for completions later. Benefits of nonblocking operations have been

demonstrated for point-to-point [119, 120] and nonblocking collective [4, 121] opera-

tions. The Message Passing Interface (MPI) standard specifies so called “immediate”

versions of some operations. MPI-2.2 offers immediate versions of all point-to-point

communication calls, individual file operations and MPI-3.0 has immediate versions

of all collective communication functions. These special functions return with a han-

dle before the operation is completed. The handle can be used to test and wait for

73

completion of the associated operations. Although non-blocking collective I/O oper-

ations are an obvious extension, there has been no significant work on this feature.

This chapter discusses about challenges associated with developing non-blocking col-

lective I/O operations, in-order to help hiding the costs of I/O operations.

4.1 LibNBC

The Non-Blocking Collective library (LibNBC) is a portable implementation of the

non-blocking collective communication operations defined in the MPI-3.0 [122] spec-

ification. LibNBC was written based on MPI-1.0 and using ANSI C to keep it

portable [107] across all platforms. Currently, LibNBC has been with integrated

most of the popular MPI implementations such as Open MPI [52] and MPICH2 [53].

LibNBC supports for immediate versions of all collective communication operations

defined in MPI-1 and easily extensible with new operations. The library uses collec-

tive schedules to save the necessary operations to complete a MPI collective opera-

tion.

4.1.1 Collective Schedule

A collective schedule is a process specific execution plan for a collective operation.

It consists of all necessary information to perform the operation These are designed

to support any collective communication scheme with arbitrary data dependencies.

There can be multiple rounds used in the schedule to model the data dependencies.

Operations in round r may depend on operations in round i ≤ r and are not executed

by the scheduler before all operations in rounds j < r have been finished. Each

74

collective operation can be represented as a series of point-to-point operations with

one operation per round. Some operations are independent of each other, and some

depend on previous operations, Independent operations can be in the same round and

dependent operations have to be in the right order in different rounds.Operations are

building blocks of a collective schedule. It is used to progress collective operations.

Operations are grouped in rounds and executed by the scheduler. An example of

a collective schedule for a tree-based MPI BCAST has been shown in figure 4.1 [4].

The left side of the figure 4.1 shows the broadcast tree and the right side shows the

pseudo code for the schedule. The vertices of the graph in figure 4.1 shows the rank

of the processes in the communicator and the edge numbers represent the ranks. The

schedule for rank 1 contains three rounds. In the first round there is only one receive

operations followed by the barrier which marks the completion of the operation.

This needs to be done to ensure correctness of the broadcast operation. The next

two rounds with a send each could be combined as one round, although the second

send is started only after the completion of the first send to reduce congestion in

the network. The schedule itself is stored as a linear-array in memory to ensure

cache-efficiency.

A handle is used to identify running collective operations, which are called in-

stances (an instance of a collective operation is a currently running operation which

has not been completed by Test or Wait). The handle identifies the current state,

the schedule and all necessary information to progress the collective operation. Each

handle is linked to a user communicator. Each communicator gets duplicated at

the first use into a so-called shadow communicator. All communications done by

75

Figure 4.1: Example of collective schedule MPI Bcast (figure source [4])

LibNBC is performed on the shadow communicator to prevent tag collisions on the

user communicator. The handle also holds all information related to outstanding

requests needed by the collective routines.

4.1.2 Progressing Non-blocking Instance

LibNBC currently uses two different kinds of progress. The first one is done inside

the library, for example MPI progress (either done synchronously with MPI TEST

calls or asynchronously depending on the implementation). The second progress is

the transition between the different rounds. The current implementation of LibNBC

provides only a synchronous option for this progress, which means that users should

call NBC TEST for the operation to progress in the background.

76

4.2 Nonblocking Collective I/O Operation

A major difference between collective communication and collective I/O operations

stems from the fact, that each process is allowed to provide different volumes of

data to a collective read or write operation, without having knowledge on the data

volumes provided by other processes. This is not the case for collective communica-

tion operations, where either each process provides exactly the same amount of data

(e.g. Bcast, Reduce, Allreduce, Gather, Scatter, Allgather, Alltoall etc.) or in case

of the vector version of the operations a process knows the communication volumes

of all processes communicating with him (Gatherv, Scatterv, Allgatherv, Alltoallv,

Alltoallw). This information is, however, essential to determine how much data a

process has to contribute within a cycle of the collective I/O operation.

Thus, the first step in most collective I/O algorithms is an Allgather(v) step

which determines the overall amount of data each process is contributing along with

the according offsets into the file. In the case of the dynamic segmentation algo-

rithm, this communication operation is within each group of an aggregator. This

allows every process to determine how much data it has to contribute in every cycle

of the algorithm. For nonblocking operations, the challenge is, that upon calling

MPI File iwrite all the according Allgather(v) operations can not be finished,

since this would result in a blocking communication operation when initiating the

nonblocking write-all. This is however not possible, since it could lead to a deadlocks.

Thus, the solution developed here consists of a two-step approach: while initi-

ating the nonblocking collective read/write operation, we generate first a schedule

which executes the nonblocking Allgather(v) communication step. Note, that the

77

operation is not exactly an MPI Allgatherv, but consists of multiple Gather(v) op-

erations executed on disjoint groups of processes in the same communicator. The

last step of the Allgather(v) schedule will be executed when the Allgather(v) op-

eration is finished, and creates a new schedule which executes the actual collective

I/O operations. This second schedule contains the data gathering at the aggregator

processes, the sorting based on the offsets into the file, and the asynchronous writing

to the file.

Associated with that are two further challenges: first, no temporary buffers used

within the collective I/O algorithm can be allocated upfront when posting the oper-

ation, since the overall amount of data and many of the according buffers are only

known at the end of the Allgather(v) step. Therefore, we extended the set of oper-

ations supported by the progress engine of LibNBC in addition to nonblocking read

and write by dynamic memory management functions, which allow to allocate and

free buffers as part of the LibNBC schedule. Second, due to the fact that the asyn-

chronous I/O operation are implemented using aio read and aio write operations

which have their own data structure to identify pending operations, the LibNBC

progress engine has been extended with the ability to progress multiple, different

handles simultaneously, e.g. MPI Requests for communication operations and the

internal aio-handles for asynchronous I/O operations.

78

4.2.1 Schedule Caching

One of the distinct features of LibNBC is its ability to cache a schedule of a collective

operation. This allows to speed up execution of operations which are posted repeat-

edly by an application. I/O operations generally fit the repetitive pattern required

for caching a schedule, e.g. in case an application writes periodic checkpoint files.

In this scenario an application has two options. The first option is to append the

most recent data that has to be written to the end of an existing file. The second

option would use a different file for every checkpoint. Both approaches post unique

challenges for caching a schedule.

For the first option, the challenge comes from the fact that every collective I/O

operation which appends data to an already existing file will lead to new offset values

into the file. Moreover, the MPI standard also allows for a process to mix individ-

ual and collective I/O calls, which makes predicting the current position of the file

pointer of a process impossible. Since the order in which data has to be written to

the file depends on the file view and the current position of the individual file pointer,

the actual amount of data that a process has to contribute to a particular cycle of the

collective I/O is not necessarily repetitive, even if the arguments passed to the MPI

function are identical to the previous instance. Thus, caching the schedule would

not help in this scenario. The second scenario where a separate file is used for every

checkpoint is equally challenging, due to the fact the schedules would be cached on

a per file handle basis. This is in equivalence to the collective communication oper-

ations, where the caching is being done on a per communicator basis, although the

MPI specification does not providing attribute caching functions on files as of today.

79

Transferring a schedule from one file handle to another file handle can theoretically

be done, the challenge being however how to keep a file handle around once a file

has been closed, without creating an unnecessary memory overhead.

4.3 Experimental Evaluation

The following section evaluates the impact of the nonblocking collective I/O opera-

tions. Evaluation results were obtained with a micro-benchmark and a parallel image

processing application.

The system used in these tests is the crill-cluster at the University of Houston,

which consists of 16 nodes with four 12-core AMD Opteron (Magny Cours) processor

cores each (48 cores per node, 768 cores total), 64 GB of main memory and two dual-

port InfiniBand HCAs per node. The parallel file system used is PVFS2 with 16 I/O

servers and a stripe size of 64 KB. The file system is mounted onto the compute

nodes over the Gigabit Ethernet network interconnect of the cluster. The current

implementation of nonblocking I/O collective operations is tied to OpenMPI and

its new parallel I/O framework (OMPIO), mostly for retrieving and maintaining file

handle related aspects and for decoding derived data types and the file view. The

version of Open MPI executed is equivalent to the Open MPI trunk revision 24640.

In the following analysis focuses on write operations only, for the sake of simplicity.

The first test executed is using the Latency-IO micro-benchmark developed as

part of the latency test suite [123], which is a micro-benchmark executing either

individual or collective I/O operations. Initially, comparison is made with the per-

formance obtained with the blocking version of the dynamic segmentation algorithm

80

vs. a sequence of NBC File iwrite all followed by NBC Wait. Table 4.1 presents the

bandwidth achieved in both scenarios for 64 and 128 MPI processes when using 32

aggregator processes and a 4 MB cycle buffer size. The overall file size written were

63 GB and 125 GB respectively (1000MB per process). All tests have been executed

three times, and the average bandwidth obtained over all three runs is presented.

Note that the variation in the individual performance numbers between different runs

very fairly small. The results indicate a small overhead for the 64 processes test case

of the nonblocking implementation, which achieved 94% of the bandwidth obtained

with the blocking version. For 128 processes the nonblocking version slightly out-

performed the blocking version, which is attributed however to measurement jitter.

All-in-all, the conclusion drawn from this analysis is that nonblocking implementa-

tion does not impose a significant, fundamental overhead compared to the blocking

version.

Table 4.1: Performance comparison of blocking vs. nonblocking collective I/O algo-
rithm.

No. of processes Blocking Bandwidth Nonblocking Bandwidth
64 703 MB/s 660 MB/s
128 574 MB/s 577 MB/s

The second test evaluates the ability to overlap collective I/O operations with

compute operations. For this, the same benchmark is executing a compute function

after posting the nonblocking collective write operation. The compute operation

is configured to take the equal amount of time as the I/O operation. Thus, the

expectation is, to observe an overall execution time equal or larger than the time

81

required to perform the I/O operation only for the according scenario, with the

upper bound being twice the amount of time required for the same test without the

compute operation in case I/O and computation cannot be overlapped. Table 4.2

presents the results achieved for the same test cases as outlined above, the first

column being the time spent in the I/O test without overlap, the second column

representing the time spent in writing the same amount of data and performing an

equally expensive compute operation, and the third column showing the time spent

in the compute operation for the overlap test.

Table 4.2: Evaluating the overlap potential of nonblocking collective I/O operations.

No. of processes I/O only time Overlapping time Time spent in computation
64 85.69 sec 85.80 sec 85.69 sec
128 205.39 sec 205.91 sec 205.39 sec

The results in this section indicate the ability to entirely hide the I/O opera-

tion under optimal circumstances. These optimal circumstances are represented by

the ability of libNBC to progress the operation either through a progress thread

or through inserting regularly NBC Test function calls into the compute operation.

Within the context of this analysis, the second approach chosen. Moreover, it was

also identified that the frequency and number of calls to NBC Test had a tremendous

influence on the overlap performance: calling it too often will introduce an additional

overhead, if there are to few calls to this function, the library will not be able to

progress the function. In our experimental results, the time required to execute one

cycle in the dynamic segmentation algorithm was identified as the optimal interval

82

between two subsequent calls to NBC Test.

4.3.1 An Application Scenario

Further tests have been executed with a parallel image processing application. This

application is used to analyze smear sample from fine needle aspiration cytology, with

the overall goal being to assist medical doctors in identifying cancer cells [124]. The

challenge imposed by this application is due to the high resolution of the microscopes

and the fact that images are captured at various wave-length to identify different

chemical properties of the cells. For a 1cm× 1cm sample with 31 spectral channels

the image can contain overall up to 50GB of raw data. The MPI version of the code

has furthermore the option to write the texture data into output files to facilitate

future processing steps in realizing a complete computer aided diagnosis (CAD)

solution. This makes the application compute and I/O intensive.

The following tests, focus on the code section which writes the texture data into

files. This code sequence contains a loop in which texture data for each of the twelve

Gabor filters is calculated and then written to a separate file. The computational

part within this loop consists of two parallel fast-fourier transforms (FFTs), which

are implemented using the FFTW library [125] version 2.1.5, and a convolution

operation. For the version using the non-blocking collective I/O functions, writing

the texture data in one iteration is overlapped with the execution of the FFTs and

the convolution of the next iteration. Progress of the non-blocking collective I/O

operation is implemented in two ways. The first one uses NBC Test function calls

in-between each FFT and the convolution operation. The second code version uses

83

a patched version of the FFTW library which contains further function calls to

NBC Test. Note, that the initial reading of the image and final writing of the cluster

assignments have not been modified and still use the blocking collective MPI I/O

version.

For evaluation purposes two separate images were used. The first image has 8192

× 8192 pixels and 21 spectral channels, writing 12 times 256 MB of texture data (3

GB total). The second image has 12281 × 12281 pixels and also 21 spectral channels,

writing 12 times 576 MB of data (6.75 GB total). Tests have been executed with

64 and 96 processes on the same cluster and file system as in the previous section.

Figure 4.2 show the times spent in I/O operations for the 8k image size. Figure 4.3

shows the time spent in I/O operation for the 12k image size. The average obtained

over three separate runs is presented in this result also. It was also ensured that both

blocking and non-blocking collective I/O operation use the same algorithm, with the

same number of aggregator processes and the same cycle buffer size.

The results indicate that the version of the code which uses the FFTW library

as a ’black box’, i.e. without any NBC Test function calls inserted, offers only little

benefit compared to the original version of the code which uses blocking, collective

MPI I/O operation. The main problem is the limited ability to progress the non-

blocking operations without a progress thread and with a very small number of calls

to NBC Test. On the other hand, using the patched version of the FFTW library

ensures more progress and demonstrates significant benefits of the non-blocking col-

lective I/O operations. The benefit is more obvious for the 64 processes test cases

compared to the 96 processes test cases due to the increased execution time of the

84

0!

5!

10!

15!

20!

25!

30!

64! 96!
Number of Processes!

MPI! NBC ! NBC w/ FFTW!

Ex
ec

ut
io

n	

Ti
m
e	

[s
ec
]	

!

Figure 4.2: I/O times for 8k × 8k image for 64 and 96 MPI processes.

FFTs and the convolution for the 64 process test cases, which offer therefore more

potential for overlapping computation and I/O operations. Hiding the entire costs

of the I/O operations for a real application is however very difficult, since :

• the application has to have compute intensive sections that can be used for

overlapping computation and I/O operations

• the timespan between two subsequent calls to NBC Test can not be controlled in

the similar manner as for the micro-benchmark.

Nevertheless, with additional NBC Test calls inserted into the FFTW library we

were able to reduce the time spent in I/O operation by up to 35% – which can be

highly significant for large scale applications.

Non-blocking Collective I/O operations has been recommended to MPI Forum to

85

0!

5!

10!

15!

20!

25!

30!

64! 96!
Number of Processes!

MPI! NBC ! NBC w/ FFTW!

Ex
ec

ut
io

n	

Ti
m
e	

[s
ec
]	

	
 Ex
ec

ut
io

n	

Ti
m
e	

[s
ec
]	

	

Figure 4.3: I/O times for 12k × 12k image (right) for 64 and 96 MPI processes.

be added to the MPI Specification. The approach discussed in this dissertation has

been provided as a prototype to support this proposal.

It is clear from section 2.2.1 that collective I/O can have issues with pseudo

synchronization. This can get more pronounced with increasing number of processes.

Since I/O can be the most expensive operation for data-intensive applications, it is

important to reduce the time consumed as much as possible. Non-blocking collective

I/O operations tries to hide the cost involved in I/O operations as much as possible.

But the way progress is made restricts the amount of overlap that could be obtained.

An ideal approach should be able hide the cost involved in I/O operations completely.

Chapter 5 discusses about a solution which aims at achieving this goal.

86

Chapter 5

Compactor: Collective I/O

Optimizations using I/O Delegates

I/O Delegate/staging node based I/O architectures have gained popularity in recent

years. Many large system installations at leadership scale facilities like the Blue Gene

series of supercomputers [126] are adapting staging areas for the following reasons.

• To reduce workload on compute nodes (i.e to reduce resource sharing)

• To reduce OS noise on compute nodes as discussed in detail in section 1.6.

• To provide true asynchronous I/O behavior for applications at compute nodes.

There has been some work done using staging node based architectures in [30,

31, 77, 80]. Section 1.6 discusses in detail about the benefits and some of the existing

approaches that use this type of architecture.

From the discussions in chapters 3, 4 so far, one could broadly summarize the

principles of collective I/O as follows:

87

• Combining contiguous requests: One of the key principles of collective I/O

is to merge neighboring accesses to files to a huge contiguous access. This ensures

that the requests are file system friendly.

• Optimizing accesses to the file system: Another important feature is to

have reduced number of accesses to the underlying file system. This reduces the

contention at the file system servers. Choosing the optimal number of accesses

becomes critical to ensure good performance.

Though, staging based I/O architectures provide benefits by shipping the I/O

operation to a staging node, these architectures lack the benefits that could be ob-

tained with collective I/O. This chapter discusses about how staging I/O nodes can

benefit from collective I/O style optimizations. There has been some relevant work

done in this area which has been discussed in detail in section 2.3. This work has

been done as a part of the Exascale Fast Forward (EFF) [5] I/O project.

5.1 Exascale Fast Forward I/O

The Exascale Fast Forward (EFF) [5] initiative is a program sponsored by Depart-

ment of Energy (DOE) for providing solutions to the next generation demands of

computing. Exascale Fast Forward I/O project aims at providing an I/O stack for

scalable and high performance I/O. The EFF I/O storage software stack contains

several components essential to the proper functioning and performance of the ap-

plication I/O. Figure 5.1 shows the entire architecture and software stack proposed

in the EFF I/O project.

Applications will run on the compute nodes and will use HDF5 [65] for their I/O

88

Figure 5.1: Exascale I/O Storage Software Stack [5]

needs. The HDF5 library will forward all data access operations to the I/O nodes

(IONs) using Mercury [127], a fast Remote Procedure Call (RPC) mechanism. The

HDF5 library asynchronously ships all operations to the server and tracks dependen-

cies between operations. This allows for a completely asynchronous behavior at the

client side. The Mercury server(s), running on the IONs, will insert the operations

received into an Asynchronous Execution Engine (AXE), (explained later), with the

required dependencies. When AXE schedules to execute those tasks , the HDF5

server module will translate each HDF5 call into I/O Dispatcher (IOD) call(s). IOD

is built on top of PLFS [128] (Parallel Log File system), which stores data in a burst

buffer (Non-Volatile RAM) and eventually migrates them to Distributed Applica-

tion Object Storage (DAOS) [129] which is a next generation file system based on

Lustre [130].

89

The work done in this chapter is limited to the HDF5 server components running

on the IONs, i.e. Mercury, AXE, and HDF5-FF server. The components of the

EFF I/O stack relevant to the work done in this chapter have been elaborated in the

following sections

5.1.1 The Virtual Object Layer (VOL)

The Virtual Object Layer (VOL) [131] is an abstraction layer implemented just below

the public HDF5 API, which intercepts HDF5 API calls that access objects in the file

and forwards those calls to a plugin object driver. The plugins could actually store

the objects in variety of ways. A plugin could, for example, have objects distributed

remotely over different platforms, provide a raw mapping of the model to the file

system, or even store the data in other file formats (like native netCDF or HDF4

format). The user still gets the same data model where access is done to a single

HDF5 container; however the plugin object driver translates from what the user sees

to how the data is actually stored. Figure 5.2 shows the general architecture of the

HDF5 library after the VOL is inserted.

For the EFF I/O stack, the application running at the Compute Nodes (CNs)

uses the HDF5 API for I/O and selects the IOD VOL Plugin for storing its data.

The VOL layer captures the HDF5 API calls that access objects in file and routes

them through the IOD plugin. These VOL operations are forwarded to the IONs

with the help of the function shipper (mercury).

90

Figure 5.2: General Architecture of HDF5 library with VOL [6]

5.1.2 Mercury: Function Shipper

Mercury [127] is an Remote Procedure Call (RPC) mechanism that forwards the

VOL calls made at Compute Nodes (CNs) on the client side to the IONs. Mercury

is generic so it can handle various types of operations and also has a framework for

extending support to other operations. Calling functions in mercury with relatively

small arguments results in using the short messaging mechanism exposed by the

network abstraction layer, whereas functions containing large bulk data arguments,

additionally use the RMA mechanism [127]. The API for mercury is completely

asynchronous. The asynchronous request objects received from mercury, are stored

and tracked in the IOD VOL plugin described above.

A server side mercury module operates at the IONs to receive VOL operations

from clients. VOL operations within the server side module initiate tasks that are

91

inserted into an asynchronous execution engine running on the ION, possibly with a

dependency on another VOL operation, as indicated by the client-side VOL plugin.

Each task in the asynchronous execution engine maps a VOL operation into one or

more IOD API calls.

5.1.3 Asynchronous Execution Engine

The Asynchronous Execution Engine (AXE) supports asynchronous execution of

tasks, which can have execution order dependencies. The AXE has several useful

features:

• It provides a rich and intuitive interface for specifying functions and their de-

pendency relationships

• An engine that asynchronously executes a function constrained to all its depen-

dencies.

• Also provides a mechanism to monitor the status and results.

• Provides ways to define data structures to be passed around and shared across

multiple function calls.

This is different from a typical non-blocking operation in the aspect that there is no

need for progressing on any of the operations. The asynchronous engine maintains

a thread pool from which it selects threads to progress tasks. AXE uses Directed

Acyclic Graphs (DAG) to represent the dependencies and tasks, wherein the nodes of

the DAG represent the tasks and the links between them represent a dependency. An

example of an AXE task graph is shown in figure 5.3. The dependency in figure 5.3

should be read as follows:

92

• Task T2 cannot be scheduled without the completion of task T1.

• Tasks T4 and T5 can be scheduled simultaneously after the the completion of

task T3.

• Task T11 can only be scheduled after either task T8 or T9 complete.

• BT13 (barrier-task) cannot be scheduled without the completion of tasks T1-T12

and so on.

Figure 5.3: An example of an AXE task graph with a barrier task

93

5.2 Compactor: Design and Implementation

!!

Incoming!I/O!requests!

I/O!Forwarding!!
Server!

T1!

T2! T3!

T4!

Figure 5.4: Original State of the I/O Forwarding Server

Since this work focuses on improving I/O performance at the I/O staging nodes,

the focus is primarily at the I/O Forwarding Server of the EFF stack as shown in

figure 5.1. As discussed in the previous sections, the primary purpose of this module

is to insert the shipped VOL operations into an asynchronous engine (AXE) running

on the ION, with possible dependencies on other VOL operations. These operations,

when they are assigned a thread and scheduled by the AXE to execute, translate the

94

VOL operations into I/O Dispatcher (IOD) API calls. At this point, a feature called

”Compactor” is developed to intercept I/O requests, before they are inserted into

the AXE and look of opportunities to optimize the same. Figure 5.4 shows how I/O

requests are handled originally by the I/O Forwarding Server, and figure 5.5 shows

the modification to incorporate the compactor feature.

Incoming(I/O(requests(

I/O(Forwarding((
Server(

Metadata&
Requests&

Request&&
Manager&

((

((
((Create&

&barrier&&
task&–&&
if¬&found&

Compactor!

Compactor
queue

T2
T3
T4

T1(

Figure 5.5: Modified I/O Forwarding Server with the Compactor

95

Applying optimizations to I/O requests mandates the need for accumulating as

many I/O requests as possible. To accomplish this, the raw I/O requests are de-

layed before the AXE schedules them. This will give enough time to accumulate

requests, possibly from multiple compute nodes, and determine if there could be any

possibility for optimizations. Fortunately, high-performance use of the EFF storage

stack already entails asynchronous execution of the raw data I/O tasks, and adding

a small bit of additional delay to the execution of those tasks should have minimal

effect on the application, while potentially having a large overall performance boost.

To create a delay in scheduling raw data I/O tasks, the following algorithm is

used. Whenever there is a raw data I/O request:

• The request is added to the compactor queue (this is where the optimizations

are applied).

• The request manager checks to see if there is a compactor task currently in the

AXE. If not, a compactor task (barrier-task) is created, with dependencies on

all the currently executing tasks in the AXE.

• When the compactor task is executed by the AXE, the requests in the compactor

queue are examined for optimizations (merging, short-circuiting, etc.) and the

resulting set of raw data I/O operations are executed by the compactor task.

• Then compactor queue is then cleaned out, and the compactor task is rescheduled

in the AXE, with dependencies on the raw data I/O operations just initiated

An important point to be noted is that the compactor currently focuses only on

raw I/O requests. It does not handle metadata operations/synchronous I/O requests.

96

The compactor task can accumulate raw asynchronous I/O requests in the queue

until the AXE schedules the compactor task. Alternatively, instead of depending on

I/O tasks in the AXE, this compactor task could depend on a delay task (one that

just sleeps for a certain amount of time), or a task that schedules only after a few

AXE tasks are queued (the optimal time-stamp/number-of-requests can be left as

a configurable parameter, passed in from the client side as a hint). Unfortunately,

both of these approaches have downsides:

• Having a delay task in the AXE would waste an otherwise useful thread

• Changing the AXE to schedule tasks in a different way would entail large changes

to its architecture.

In this work the compactor task is delayed depending on I/O tasks in the AXE.

5.3 Optimization Approaches

This project primarily focused on three different kinds of optimizations.

• Collective Buffering : Merging I/O requests from different compute nodes

• Write Morphing : Overlapping merge of I/O requests from one client

• Write Stealing : Stealing read data from writes in the same queue

5.3.1 Collective Buffering

This is the most typical form optimization used in collective I/O algorithms. In the

case of the EFF stack, the I/O requests from multiple clients enter the server. In

general, number of clients associated with each I/O server, can vary from hundreds

97

to thousands. So there is a huge opportunity for merging requests from multiple

clients, and this optimization takes advantage of this. Figure 5.6 shows an example

for a typical collective buffering style optimization scenario.

P1!

	
 	

Server!P2! P3! P4!

Figure 5.6: Example scenario for collective buffering

To accomplish this within the context of the compactor, the following steps have

to be employed. Once the I/O requests are collected in the compactor queue, it is

important to find out whether the I/O requests under consideration overlap.

• If the raw I/O requests overlap, then they are addressed as individual requests.

Merging with overlapping cannot be kept consistent if there is no temporal in-

formation available. Since with the current state of the stack, it is not possible

to provide temporal information from multiple clients, this scenario cannot be

handled.

• If requests do not overlap, which is the scenario with most collective style I/O

calls, these requests can be merged.

98

The main benefit of this optimization is to improve performance by reducing the

contention to the underlying layers of the stack or the file system. To perform the

merging, the HDF5 selection(filetype) information is extracted from each individual

I/O request. To merge the filetype the in-built HDF5 routines are used. These

routines work constructing span-trees for each filetype selection, where merging mul-

tiple selections would mean modifying the node count or adding a new node to an

existing tree. This allows HDF5 to support logical operations across two selections.

The main challenge is to match the memory buffers to the merged selections. The

following algorithms was adopted to accomplish this:

• Each selection is broken down into pairs of offsets and lengths

• The memory buffers are also converted into <offset, length> pairs, matching

each entry in the filetype <offset, length> list.

• The file type of the merged selection is also translated into <offset, length>

pairs.

• Both the unmerged and merged <offset, length> pair lists are compared such

that the memory address and length for each entry in the merged selection is

obtained.

• With a merged selection and the list of memory addresses and lengths, both raw

data HDF5 I/O or IOD I/O operations can be performed.

To establish this concept, the current version of the compactor implements this

optimization only for write I/O requests.

99

5.3.2 Write Morphing

Overlapping writes from multiple clients cannot be overlapped because of the lack

of availability of temporal information. But in case of overlapping writes from the

same client we will have both temporal and spatial information. In this case, writes

can be allowed to overlap. This provides interesting prospects for optimizations. An

example scenario where this can be useful is a multithreaded application trying to

write a file in an iterative loop, where subsequent writes overlap with the other. In

such scenarios, writes could be grouped as much as possible and the write buffers

could be morphed together to form one write. This kind of optimization will greatly

reduce the number of accesses to underlying file system/layers of the stack and in-

addition, reduce the redundancy in writes.

	
 	
 	
 	

Write I!

Write II!

Figure 5.7: Example scenario for write morphing

Let us consider the scenario as shown in Figure 5.7. Here Write I happens first

and Write II follows next. When these two write operations are merged, constructing

a merged file-type is straightforward and can be done with a similar approach as

100

discussed in section 5.3.1, but the challenge is in morphing the memory buffers with

data from the latest writes. Let us assume that the two writes depicted in figure 5.7

roughly translates to these offsets shown in Table 5.3.2. As you can see, when

Write I Write II Merged
0 - 32 16 - 64 0 - 16 (I)
48 - 96 16 - 64 16 - 64 (II)
96 - 128 112 - 160 64 - 80 (I)
160 - 256 176 - 208 80 - 96 (II)

96 - 112 (I)
112 - 160 (II)
160 - 176 (I)
176 - 208 (II)
208 - 256 (I)

Table 5.1: Rough translation of figure 5.7 to offset ranges and expected merged offset
ranges

we try to merge the offsets from the two writes, the memory buffer data needs to

come from different writes for different offset ranges. Furthermore, to add to the

complexity, there is also additional trouble with dynamically increasing size of the

list of offsets. For example, if there is an overlap between offset-length [1]: 0 → 64

and offset-length [8]: 16 → 32, then offset-length[1] will be broken into 0 → 16, 32

→ 64. which increases the size of the list and offset-length[8] will now be pushed

offset-length[9].

5.3.3 Write Stealing

The compactor is capable of intercepting both read and write requests. This presents

an unique opportunity for optimization. With read requests, its possible to compare

it with the existing writes. In a scenario, where matching read and the write requests

101

are in the same compactor queue, we can theoretically get the read data from the

write buffers directly without touching the file system.

If this optimization is applied, then there are three different ways a read I/O

request can run to completion.

• Read and write dont overlap : Read entirely from the file system (case I)

• Read and write overlap completely : buffers can be entirely copied (case II)

• Read and write partially overlap : Read buffer are partially copied from writes

and partially read from the file system (case III).

	
 	

Write I!

	
 	

	
 	

	
 	

Read I!

Write II!

Figure 5.8: A Scenario where we have a partial overlap with writes

An example of the third scenario has been shown in figure 5.8. To support all

three scenarios discussed, all the selections (filetypes) were translated to <offset,

length> pairs. With this approach, the compactor can support multiple dimensions.

The reads and writes are compared to check for overlaps. The parts of the filetype

which overlapped were copied directly from the write operations and the remainder

is serviced from the file system. Logical operations between filetypes were facilitated

102

by the HDF5 feature which was used in both collective buffering and write morphing

optimizations.

This optimization can be highly beneficial in case of visualization applications,

where one process writes to a file and the other process reads to visualize the data. In

such scenarios, if both the processes send their I/O requests to the same I/O staging

node, write-stealing can be performed to ensure faster response to the visualization

application.

Although this optimization can be very beneficial, there are couple of constraints

with this optimization

1. Writes should happen before reads

2. In case where there is a need for fault-tolerance, reads have to get committed

after writes. This can reduce the performance benefits.

5.4 Evaluation

The efficiency of the optimizations discussed in section 5.3 were evaluated on the

crill cluster at the University of Houston which consists of 16 nodes with four 12-

core AMD Opteron (Magny Cours) processors each (48 cores per node, 768 cores

total), 64 GB of main memory and two dual-port InfiniBand HCAs per node. The

cluster has a PVFS2 (v2.8.2) parallel file system with 15 I/O servers and a stripe

size of 1 MB. The file system is mounted onto the compute nodes over the second

InfiniBand network interconnect of the cluster. The cluster utilizes slurm as a re-

source manager. MPICH2 (v3.0.2) was used with multi threading support

103

Since the EFF stack is still under development and the lower layers of the stack

have not been completely developed, native HDF5 I/O operations were used from

the HDF5 server component to complete I/O requests. Although this approach has

some limitations, this was the only way to access real files from the stack in its cur-

rent state. Since the motivation for this evaluation was to study the effectiveness

of the Compactor, only one server was used. Moreover, modified usage of the stack

means that relative performance improvements in measurements have more mean-

ing than the actual performance values themselves. Measurements were performed

using a micro benchmark developed to test the newly designed optimization and an

application benchmark called Flash I/O.

5.4.1 FFBench

Fast Forward Benchmark (FFBench) suite consists of synthetically designed scenarios

to evaluate the performance and efficiency of the compactor. The benchmark takes

as input a configuration file to select between different benchmarks and input sizes.

104

0!

50!

100!

150!

200!

250!

300!

350!

400!

450!

16! 32! 64! 128!

Ti
m

e
(s

)!

Number of Processes!

Without Compactor!
With Compactor!

Figure 5.9: FFBench test for collective buffering

1!

10!

100!

1000!

10000!

16! 32! 64! 128!

Ti
m

e
(s

)!

Number of Processes!

Total Writes!
Merged Writes!

Figure 5.10: Total Write I/O requests (vs) Requests Merged

In the first test, the collective buffering optimization of the compactor was eval-

uated. In this test, each process writes to different rows of a 2 dimensional matrix.

105

The size of the matrix was kept at (np ∗ 512) × 65536. Measurements were made

with 16, 32, 64, 128 processes. The graph in figure 5.9 shows that the compactor is

able to accumulate write requests, and we see that there is upto 30% performance

improvement in comparison to the scenario without the compactor.

The performance improvement obtained comes from the requests that were merged.

0!

200!

400!

600!

800!

1000!

1200!

1400!

16! 32! 64! 128!

To
ta

l T
im

e
(s

)!

Number of Processes!

W/o Compactor!
W/Compactor!

Figure 5.11: Write Morphing: Write to overlapping regions from one client

As shown in figure 5.10, irrespective of the total number of requests, the merged

requests minimizes the number of writes between 16-32.

The second test focused on evaluating the write morphing optimization of the

compactor by creating multiple overlapping writes to a file. The writes were created

from one process as write morphing is not allowed across multiple clients. The size

of the 2-D matrix was varied to see benefits. As shown in figure 5.11 we can see

there is significant improvements obtained by using this approach. In the best case

we see close to 40% performance improvement obtained with this optimization.

106

0!

100!

200!

300!

400!

500!

600!

700!

800!

900!

1000!

16! 32! 64! 128!

Ti
m

e
(s

)!

Number of Processes!

Without Compactor!
With Compactor!

Figure 5.12: Write Stealing: Reads to overlapping write regions from multiple clients

The write-stealing optimization was evaluated by extending the benchmark used

for collective buffering with reads following the writes using similar selections (file-

types). The expectation is, if the reads and writes both land on the same compactor

queue, then ideally we should see no time spent on reads. The figure 5.12 shows

time spent in both the read and write operations. In majority of the cases the im-

provement obtained is close to 70%. This is because all the time spent in the read

operations have been completely saved by the write stealing feature. This is more

evident in the figure 5.13 which shows the percentage of time spent in the read/write

operations. It is clear that with the compactor all the time spent is only for the write

operation and the read time is completely amortized.

107

0%!
10%!
20%!
30%!
40%!
50%!
60%!
70%!
80%!
90%!

100%!

Without
Compactor!

With
Compactor!

Without
Compactor!

With
Compactor!

Without
Compactor!

With
Compactor!

Without
Compactor!

With
Compactor!

16! 32! 64! 128!

Pe
rc
en

ta
ge
	
 o
f	
 T

im
e	

Sp
en

t	

Number	
 of	
 Processes	

Read Time W/O Compactor! Write time W/O Compactor!
Read Time W/ Compactor! Write Time W/ Compactor!

Figure 5.13: Write Stealing: Percentage of time spent in read/write for the test 5.12

5.4.2 Flash I/O

The FLASH I/O benchmark suite [132] is an extracted I/O kernel from the FLASH [133]

application. The FLASH application is a lock-structured adaptive mesh hydrody-

namics code that solves fully compressible, reactive hydrodynamic equations, devel-

oped mainly for the study of nuclear flashes on neutron stars and white dwarfs [133] [108].

The benchmark produces a checkpoint file, a plotfile with centered data, and a plot-

file with corner data. The plotfiles have single precision data.

The results of this benchmark has been shown in 5.14. We see that there is sig-

nificant improvement in the performance obtained with the compactor. All these

benefits are mostly from the collective-buffering approach as there are no scenarios

where write-morphing or write-stealing can benefit. Despite that, we see that there is

close to 42% reduction in the time consumed. The amount of merging accomplished

by the compactor can be seen in the chart 5.15.

108

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

8! 16! 32! 48! 64! 96!

Ti
m

e
(s

)!

Number of Processes!

Without Compactor!
With Compactor!

Figure 5.14: Flash I/O results for writing checkpoint files

The results for generating plot files with corners has been shown in figure 5.16 and

the results for generating plot files without corners has been shown in figure 5.17.

Both these consume only a fraction of the time consumed by the check-pointing

operation. But we can see almost 50-55% decrease in time consumption with opti-

mizations from the compactor. Overall from the results we can conclude that having

a feature like the compactor can prove to be very beneficial for I/O stacks. It also

provides a couple of new optimizations which can improve I/O performance of ap-

plications in the future.

109

1!

10!

100!

1000!

10000!

8! 16! 32! 48! 64! 96!

N
um

be
r o

f W
rit

es
!

Number of Processes!

Total Writes!
Merged Writes!

Figure 5.15: Flash I/O: Merged vs Non-merged writes

0!

5!

10!

15!

20!

25!

8! 16! 32! 48! 64! 96!

Ti
m

e
(s

)!

Number of Processes!

Without Compactor!
With Compactor!

Figure 5.16: Flash I/O results for writing Plot files - with corners

110

0!

5!

10!

15!

20!

25!

8! 16! 32! 48! 64! 96!

Ti
m

e
(s

)!

Number of Processes!

Without Compactor!
With Compactor!

Figure 5.17: Flash I/O results for writing Plot files - without corners

111

Chapter 6

Summary and Future Work

This chapter summarizes the contributions of this dissertation towards improving col-

lective I/O for high performance computing. Future work and research perspectives

of this work are also outlined and elaborated.

6.1 Summary of Contributions

Increasing compute power of high performance systems further broadens the gap

between the I/O time and the compute time. In addition, the use of larger number of

nodes introduce significant scalability challenges such as frequent hardware crashes.

I/O becomes an important component in such scenarios fault tolerance issues nee to

be addressed through checkpointing. To mitigate I/O problems, various approaches

were developed in the past among which one of the most widely used approach was

MPI I/O. MPI I/O was introduced in v2.0 of the MPI specification. Amongst other

interesting features, MPI I/O offers features like collective I/O and asynchronous I/O.

112

Although these features were able to address challenges of the previous generation,

they are not sufficient for the next generation. This dissertation contributes by

designing approaches to improve collective I/O and asynchronous I/O to address

challenges of the future.

In the first contribution, a novel approach to improve collective I/O through

process placement was introduced. With this approach the data access pattern of

an application was used to create an ideal mapping of processes on a cluster, such

that communication time spent in a collective I/O algorithm is minimized. This is

critical to scalability because, as we increase the number of processes used for an

application, the time spent in communication in a collective I/O algorithm becomes

more than the time spent in the I/O operations. A new algorithm was developed

to generate faster mapping and two different approaches were employed to provide

data layout information. Majority of the results obtained showed that the approaches

developed resulted in significant reduction of communication time. In certain cases

there was close to 50% reduction in the time spent in communication in collective I/O

algorithms which can result in huge improvements in the overall I/O performance.

To further reduce the time spent in collective I/O operations, it is important to

overlap the time spent in I/O behind actual computation in the application. The

second contribution of this dissertation focuses on making the collective I/O opera-

tions non-blocking. Non-blocking I/O operations existed in MPI specification v2.0

and non-blocking collective communication was standardized into the MPI specifi-

cation v3.0. But non-blocking collective I/O operations, did not exist prior to this

work. This dissertation presents the design of the first non-blocking collective I/O

113

operation. The evaluation shows that there was significant potential to overlap com-

putation and I/O and there was up to 35% performance improvement in a real life

application given that there could be enough progress made.

The final contribution of this dissertation focused on an approach to provide com-

plete asynchronous support for applications to perform I/O and still benefit from

collective I/O style optimizations. In particular, this work focused on developing a

feature called ”Compactor” on the Exascale Fast Forward I/O stack to provide bene-

fits of collective I/O like contention reduction and I/O request compaction. Two new

optimizations were also introduced; namely, write morphing, which is the optimiza-

tion to merge overlapping write requests and write stealing, which is the optimization

where reads are serviced directly from write rather than from the file system. The

results showed that having a feature like the ”Compactor” can result in significant

improvement in performance. With optimizations like collective buffering we see

between 30% to 50% performance improvement. In case of the write stealing opti-

mization, we see close to 70% improvement in performance, which can be significant

in case of visualization applications.

6.2 Research Perspective and Future Work

In general, there are other possible approaches with which collective I/O operations

could be optimized. Collective I/O algorithms as we saw from chapters 4, 3 can

be very susceptible to changes in parameters (eg, aggregators, cycle buffer size)

associated with it. An optimal parameter combination can be different for each

system. To decide this, a dynamic tuning technique which capable of selecting the

114

best algorithm from the collection of algorithms for a given system can be critical.

The selection of the algorithm can also vary based on the pattern of data-access in the

file. Designing a generic solution, which is capable of selecting the right algorithm for

a given set of parameter can be an interesting future direction to optimize collective

I/O operations. In addition, the dynamic segmentation algorithm currently works

with an assumption of one aggreagator per group. But this might not be optimal. So

having multiple aggregators per-group would also be an interesting extension. This

also introduces additional research opportunities in determining the right size and

right number of aggregators for a group in the collective I/O operation. Parallel I/O

users sometimes require the use multiple fileviews usage within the same application.

But setting fileviews often can be performance prohibitive, and furthermore much of

the collective I/O optimizations depend on the knowledge obtained from fileviews.

To help address this problem, list collective I/O operations could be introduced and

this can also lead to interesting future research directions.

Apart from that, the work done in this dissertation can also be extended in several

ways. Some of them are discussed in this section.

Process placement approaches for collective I/O have proven to be very beneficial.

There are multiple ways in which this work could be extended. The current solution

provided, looks at one data-layout pattern/per application. But in reality, there can

be more than one data-layout for each application. To handle this a cumulative data

layout matrix could be generated and provided as input to the mapping algorithms.

This might have interesting effects and is a potential future direction. Another

possible future direction is to provide support for collective I/O operations without

115

fileview information. In addition, this work currently only support 2D scenarios, it

can also be extended to support multi-dimensional scenarios.

A good extension to the non-blocking collective I/O work would be to alter the

progress approach with the Asynchronous Execution Engine (AXE) to have com-

pletely asynchronous progress. This can have implications to the overall performance

obtained from the operation and is an interesting future direction for this work.

The work done with optimizing I/O requests at staging nodes can be extended

in multiple ways. Unlike traditional client side collective I/O operations, optimiza-

tions at staging node really depend on how many requests can be accumulated at

the server. Currently the existing approaches and approach discussed in this disser-

tation accomplish this with the help of a timed request manager. But this might

not be ideal at all circumstances and it would be beneficial to have deterministic re-

quest accumulation at the server end. If the user understands that certain requests

could be compacted, it can be set as a hint to the library such that, requests can be

accumulated based on number of requests rather than time. In addition, optimiza-

tions at staging nodes largely depend on the request being asynchronous, but even

if the user uses synchronous I/O requests there are opportunities to optimize those,

which could be a extension of this work. For synchronous raw data read I/O calls,

the write stealing optimization could be applied by matching them with pending

asynchronous writes. For synchronous raw data write I/O calls, could be merged

with an already en-queued asynchronous write I/O operation. Although, aggregat-

ing synchronous operations with pending asynchronous operations must be carefully

performed, because this aggregation could lead to degradation performance of the

116

synchronous operation in cases of a small synchronous I/O request aggregated with

a large asynchronous I/O request.

Although, the implementation for the work described in chapter 5 of this disser-

tation is specific to HDF5, it can easily be made generic to other I/O APIs such as

MPI I/O or netCDF, as the algorithms are dependent only on fundamental concepts

of I/O libraries. Trying to apply the algorithms discussed in chapter 5 to an I/O

library like OMPIO can lead to interesting prospects for future research.

117

Bibliography

[1] Mohamad Chaarawi, Edgar Gabriel, Rainer Keller, Richard L. Graham, George
Bosilca, and Jack J. Dongarra. Ompio: a modular software architecture for
mpi i/o. In Proceedings of the 18th European MPI Users’ Group conference on
Recent advances in the message passing interface, EuroMPI’11, pages 81–89,
Berlin, Heidelberg, 2011. Springer-Verlag.

[2] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Collective
I/O in ROMIO. In FRONTIERS 99: Proceedings of the The 7th Symposium
on the Frontiers of Massively Parallel Computation, page 182. IEEE Computer
Society, 1999.

[3] Mohamad Chaarawi. Optimizing Performance Of Parallel I/O Operations For
High Performance Computing. PhD thesis, The University of Houston, 2011.

[4] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation and Performance
Analysis of Non-Blocking Collective Operations for MPI. In Proc. of the 2007
Intl. Conf. on High Perf. Comp., Networking, Storage and Analysis, SC07.
IEEE Computer Society/ACM, Nov. 2007.

[5] Eric Barton. Exascale Fast Forward I/O Project:
https://users.soe.ucsc.edu/ ivo//blog/2013/04/07/the-ff-stack/, 2012.

[6] M. Chaarawi. Hdf5 virtual object layer. https://wiki.hpdd.intel.com/

download/attachments/12127153/Milestone%203.1%20Design%20HDF%

20IOD%20VOL.pdf?version=1&modificationDate=1364837670178&api=v2.

[7] John L. Hennessy and David A. Patterson. Computer Architecture - A Quan-
titive Approach. Morgan Kaufmann Publishers, 2003.

[8] David Kotz and Ravi Jain. I/O in parallel and distributed systems. In Allen
Kent and James G. Williams, editors, Encyclopedia of Computer Science and
Technology, volume 40, pages 141–154. Marcel Dekker, Inc., 1999. Supplement
25.

[9] J.M. del Rosario and A.N. Choudhary. High-performance I/O for massively
parallel computers: problems and prospects. Computer, 27(3):59 –68, march
1994.

118

[10] Robert Louis Cloud. Problems in modern high performance parallel i/o sys-
tems. CoRR, abs/1109.0742, 2011.

[11] J.E. Smith, W.-C. Hsu, and C. Hsiung. Future general purpose supercomputer
architectures. In Supercomputing ’90. Proceedings of, pages 796 –804, nov 1990.

[12] John M. May. Parallel I/O for high performance computing. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[13] Rajeev Thakur, Ewing Lusk, and William Gropp. I/O in parallel applications:
The weakest link. The International Journal of High Performance Computing
Applications, 12(4):389–395, Winter 1998.

[14] PVFS2 webpage. Parallel Virtual File System. http://www.pvfs.org, Last
accessed on April, 2011.

[15] Lustre webpage. http://www.lustre.org, Last accessed on April, 2011.

[16] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large
computing clusters. In In Proceedings of the 2002 Conference on File and
Storage Technologies (FAST), pages 231–244, 2002.

[17] Shinji Sumimoto. An overview of fujitsus lustre based file system. Technical
Report Technical Report, Fujistu, 2011.

[18] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Oldfield, Todd Korden-
brock, Karsten Schwan, and Matthew Wolf. Managing variability in the io per-
formance of petascale storage systems. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’10, pages 1–12. IEEE Computer Society, Washington,
DC, USA, 2010.

[19] Lu Yotong. Hpc system at nudt, 2013.

[20] China’s tianhae-2 caps top 10 supercomputer, 2013.

[21] Rajeev Thakur. Parallel i/o.

[22] The Open Group Base Specifications Issue 7. IEEE Std 1003. l-2008.

[23] Jeremy Logan. Improving Parallel I/O Performance Using Interval I/O. PhD
thesis, The University of Maine, 2010.

[24] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and
Michael L. Best. File-Access Characteristics of Parallel Scientific Workloads.
IEEE Trans. Parallel Distrib. Syst., 7(10):1075–1089, 1996.

[25] Sandra Johnson Baylor and C. Eric Wu. Parallel I/O Workload Character-
istics Using Vesta. In IPPS ’95 Workshop on Input/Output in Parallel and
Distributed Systems, pages 16–29, April 1995.

[26] OpenFabrics Alliance. OpenFabrics webpage http://www.openib.org, Last ac-
cessed on April, 2011.

119

[27] Myricom. Myrinet webpage http://www.myri.com/myrinet/overview/, Last
accessed on May, 2009.

[28] Quadrics. Quadrics webpage http://www.quadrics.com/, Last accessed on
May, 2009.

[29] Dolphin. Dolphin webpage http://www.dolphinics.com/, Last accessed on
May, 2009.

[30] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman. Zoid:
I/o-forwarding infrastructure for petascale architectures. In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, PPoPP ’08, pages 153–162, New York, NY, USA, 2008. ACM.

[31] Nawab Ali, Philip H. Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert
Latham, Robert B. Ross, Lee Ward, and P. Sadayappan. Scalable i/o forward-
ing framework for high-performance computing systems. In CLUSTER, pages
1–10. IEEE, 2009.

[32] Kazuki Ohta, Dries Kimpe, Jason Cope, Kamil Iskra, Robert Ross, and Yutaka
Ishikawa. Optimization techniques at the i/o forwarding layer. In Proceedings
of the 2010 IEEE International Conference on Cluster Computing, CLUSTER
’10, pages 312–321, Washington, DC, USA, 2010. IEEE Computer Society.

[33] Hasan Abbasi, Jay Lofstead, Fang Zheng, Scott Klasky, Karsten Schwan, and
Matthew Wolf. Extending i/o through high performance data services. In IN
CLUSTER COMPUTING. IEEE International, 2007.

[34] OpenMP Application Review Board. OpenMP Application Program Interface,
Ver. 2.5, May 2005.

[35] Barbara Chapman, Gabriele Jost, Ruud van der Pas, and Foreword by David
J. Kuck. Using OpenMP, Portable Shared Memory Parallel Programming. MIP
Press, Oct 2007.

[36] Kshitij Mehta, Edgar Gabriel, and Barbara Chapman. Specification and perfor-
mance evaluation of parallel i/o interfaces for openmp. In Proceedings of the 8th
international conference on OpenMP in a Heterogeneous World, IWOMP’12,
pages 1–14, Berlin, Heidelberg, 2012. Springer-Verlag.

[37] W. Richard Stevens and Stephen A. Rago. Advanced Programming in the UNIX
Environment. Addison-Wesley, 2005.

[38] Intel(R) Threading Building Blocks. Product Review: Intel Threading Building
Blocks, Dec 2006. http://www.devx.com/go-parallel/Article/33270/1763.

[39] Overlapping i/o and processing in a pipeline.
http://software.intel.com/en-us/blogs/2007/08/23/

overlapping-io-and-processing-in-a-pipeline/, 2007.

120

[40] PVM. Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/pvm home.html,
Last accessed on May, 2009.

[41] P4. Parallel Programming System. http://www.netlib.org/p4/, Last accessed
on May, 2009.

[42] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta,
Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands,
Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, and
Tong Wen. Productivity and performance using partitioned global address
space languages. In Proceedings of the 2007 international workshop on Parallel
symbolic computation, PASCO ’07, pages 24–32, New York, NY, USA, 2007.
ACM.

[43] UPC consortium. UPC language specification v1.2, 2005. Lawrence Berkeley
National Lab Tech Report LBNL-59208.

[44] Tarek El-ghazawi, Franois Cantonnet, Proshanta Saha, Rajeev Thakur, Rob
Ross, and Dan Bonachea. UPC-IO: A Parallel I/O API for UPC V1.0pre10.

[45] R. Numrich and J. Reid. Co-Array Fortran for Parallel Programming. In
ACM Fortran Forum 17(2), pages 1–31, 1998. http://citeseer.ist.psu.

edu/numrich98coarray.html.

[46] Co-array Fortran I/O webpage. http://www.co-array.org/caf io.htm/, Last
accessed on January, 2011.

[47] Deepak Eachempati, Alan Richardson, Terrence Liao, Henri Calandra, and
Barbara Chapman. A coarray fortran implementation to support data-intensive
application development. In The International Workshop on Data-Intensive
Scalable Computing Systems (DISCS), in conjunction with SC’12, November
2012.

[48] Deepak Eachempati, Hyoung Joon Jun, and Barbara Chapman. An open-
source compiler and runtime implementation for coarray fortran. In Proceedings
of the Fourth Conference on Partitioned Global Address Space Programming
Model, PGAS ’10, pages 13:1–13:8, New York, NY, USA, 2010. ACM.

[49] Barbara Chapman, Deepak Eachempati, and Oscar Hernandez. Experiences
developing the openuh compiler and runtime infrastructure. International
Journal of Parallel Programming, pages 1–30, 2012.

[50] Message Passsing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, Version 2.2.

[51] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and Design

121

of a Next Generation MPI Implementation. In Proceedings of the 11th Eu-
ropean PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary,
September 2004.

[52] Open MPI: Open Source High Performance Computing. http://www.open-
mpi.org/.

[53] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Com-
puting, 22(6):789–828, September 1996.

[54] Intel. Intel MPI Implementation. http://www.intel.com/cd/software/products/asmo-
na/eng/cluster/mpi/index.htm, Last accessed on May, 2009.

[55] Message Passing Interface Forum. MPI-2: Extensions to the Message Passing
Interface. http://www.mpi-forum.org/, Last accessed on April, 2011.

[56] Message Passing Interface Forum. MPI: A Message Passing Interface Standard,
June 1995. http://www.mpi-forum.org.

[57] Ewing Lusk Rajeev Thakur, William Gropp. An Abstract-Device Interface
for Implementing Portable Parallel-I/O Interfaces. In Proceedings of The 6th
Symposium on the Frontiers of Massively Parallel Computation , pages 180–
187. IEEE Computer Society Press, October 1996.

[58] PanFS webpage. Panasas File System, 2013. http://www.panasas.com/.

[59] Rajeev Thakur, William Gropp, and Ewing Lusk. A case for using mpi’s
derived datatypes to improve i/o performance. In Supercomputing ’98: Pro-
ceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM),
pages 1–10, Washington, DC, USA, 1998. IEEE Computer Society.

[60] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for
Accessing Sections of Out-of-Core Arrays. Sci. Program., 5(4):301–317, 1996.

[61] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved
parallel i/o via a two-phase run-time access strategy. SIGARCH Comput.
Archit. News, 21(5):31–38, 1993.

[62] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen
Jin. Flexible io and integration for scientific codes through the adaptable io
system (adios). In Proceedings of the 6th international workshop on Challenges
of large applications in distributed environments, CLADE ’08, pages 15–24,
New York, NY, USA, 2008. ACM.

[63] Jay Lofstead, Fang Zheng, Scott Klasky, and Karsten Schwan. Adapt-
able, Metadata Rich IO Methods for Portable High Performance IO. In
IPDPS ’09: Proceedings of the 2009 IEEE International Symposium on Par-
allel&Distributed Processing, pages 1–10, Washington, DC, USA, 2009. IEEE
Computer Society.

122

[64] S. A. Brown, M. Folk, G. Goucher, and R. Rew. Software for Portable Scientific
Data Management. Computers in Physics, 7(3):304–308, May/June 1993.

[65] Hierarchical Data Format Group. HDF5 Reference Manual, September 2004.
Release 1.6.3, National Center for Supercomputing Application (NCSA), Uni-
versity of Illinois at Urbana-Champaing.

[66] Jerome Sougmane. An In-situ Visualization Approach for Parallel Coupling
and Steering of Simulations through Distributed Shared Memory Files. PhD
thesis, University of Bordeaux, France, 2012.

[67] Hierarchical Data Format Group. Parallel HDF5.
http://www.hdfgroup.org/HDF5/PHDF5/.

[68] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur,
William Gropp, Rob Latham, Andrew Siegel, Brad Gallagher, and Michael
Zingale. Parallel netcdf: A high-performance scientific i/o interface. In Pro-
ceedings of the 2003 ACM/IEEE conference on Supercomputing, SC ’03, pages
39–, New York, NY, USA, 2003. ACM.

[69] PANASAS. PANASAS ActivStor Parallel Storage Clusters .
http://www.panasas.com/activestor.

[70] James H. Laros, Lee Ward, Ruth Klundt, Sue Kelly, James L. Tomkins, and
Brian R. Kellogg. Red storm io performance analysis. In Proceedings of the
2007 IEEE International Conference on Cluster Computing, CLUSTER ’07,
pages 50–57, Washington, DC, USA, 2007. IEEE Computer Society.

[71] Pete Beckman, Kamil Iskra, Kazutomo Yoshii, and Susan Coghlan. Operating
system issues for petascale systems. SIGOPS Oper. Syst. Rev., 40(2):29–33,
April 2006.

[72] Pete Beckman, Kamil Iskra, Kazutomo Yoshii, Susan Coghlan, and Aroon
Nataraj. Benchmarking the effects of operating system interference on extreme-
scale parallel machines. Cluster Computing, 11(1):3–16, March 2008.

[73] Suzanne M. Kelly and Ron Brightwell. Software architecture of the light weight
kernel, catamount. In In Cray User Group, pages 16–19, 2005.

[74] José Moreira, Michael Brutman, José Castaños, Thomas Engelsiepen, Mark
Giampapa, Tom Gooding, Roger Haskin, Todd Inglett, Derek Lieber, Pat Mc-
Carthy, Mike Mundy, Jeff Parker, and Brian Wallenfelt. Designing a highly-
scalable operating system: the blue gene/l story. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, SC ’06, New York, NY, USA, 2006.
ACM.

[75] Rolf Riesen, Ron Brightwell, Patrick G. Bridges, Trammell Hudson, Arthur B.
Maccabe, Patrick M. Widener, and Kurt Ferreira. Designing and implement-
ing lightweight kernels for capability computing. Concurr. Comput. : Pract.

123

Exper., 21(6):793–817, April 2009.

[76] IBM journal of Research and Development staff. Overview of the ibm blue
gene/p project. IBM J. Res. Dev., 52(1/2):199–220, January 2008.

[77] Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan,
and Fang Zheng. Datastager: scalable data staging services for petascale ap-
plications. In Procoeedings of the 18th ACM international symposium on High
performance distributed computing, HPDC ’09, pages 39–48, New York, NY,
USA, 2009. ACM.

[78] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata rich
io methods for portable high performance io. In In Proceedings of IPDPS’09,
May 25-29, Rome, Italy, 2009.

[79] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO
portably and with high performance. In Proceedings of the sixth workshop on
I/O in parallel and distributed systems, pages 23–32, 1999.

[80] Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Delegation-based i/o mech-
anism for high performance computing systems. IEEE Trans. Parallel Distrib.
Syst., 23(2):271–279, February 2012.

[81] R. Ross. Parallel I/O Benchmarking Consortium. http://www-unix.mcs.

anl.gov/rross/pio-benchmark/html/.

[82] P. Wong and R. F. Van der Wijngaart. NAS Parallel Benchmarks I/O Version
3.0. Technical Report NAS-03-002, Computer Sciences Corporation, NASA
Advanced Supercomputing (NAS) Division.

[83] Javier Garćıa Blas, Florin Isaila, David E. Singh, and J. Carretero. View-
Based Collective I/O for MPI-IO. In CCGRID ’08: Proceedings of the 2008
Eighth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID), pages 409–416, Washington, DC, USA, 2008. IEEE Computer So-
ciety.

[84] Wei-keng Liao and Alok Choudhary. Dynamically Adapting File Domain Par-
tioning Methods for Collective I/O Based on Underlying Parallel File System
Locking Protocols. In Proceedings of the Supercomputing Conference, 2008.

[85] Xuechen Zhang, Song Jiang, and Kei Davis. Making Resonance a Common
Case: A High-Performance Implementation of Collective I/O on Parallel File
Systems. In IPDPS ’09: Proceedings of the 2009 IEEE International Sympo-
sium on Parallel&Distributed Processing, pages 1–12, Washington, DC, USA,
2009. IEEE Computer Society.

[86] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing mpi-io
portably and with high performance. In Proceedings of the sixth workshop on

124

I/O in parallel and distributed systems, IOPADS ’99, pages 23–32, New York,
NY, USA, 1999. ACM.

[87] Avery Ching, Alok Choudhary, Kenin Coloma, Weikeng Liao, Robert Ross, and
William Gropp. Noncontiguous I/O Accesses Through MPI-IO. In CCGRID
’03: Proceedings of the 3st International Symposium on Cluster Computing and
the Grid, page 104, Washington, DC, USA, 2003. IEEE Computer Society.

[88] Joachim Worringen, Jesper Larsson Traff, and Hubert Ritzdorf. Fast Parallel
Non-Contiguous File Access. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 60, Washington, DC, USA, 2003. IEEE
Computer Society.

[89] Saba Sehrish, Seung Woo Son, Wei-keng Liao, Alok Choudhary, and Karen
Schuchardt. Improving collective i/o performance by pipelining request aggre-
gation and file access. In Proceedings of the 20th European MPI Users’ Group
Meeting, EuroMPI ’13, pages 37–42, New York, NY, USA, 2013. ACM.

[90] Mohamad Chaarawi, Suneet Chandok, and Edgar Gabriel. Performance Eval-
uation of Collective Write Algorithms in MPI I/O. In Proceedings of the In-
ternational Conference on Computational Science (ICCS), volume 5544, pages
185–194, Baton Rouge, USA, 2009.

[91] Doug Balog Stephen C. Simms, Gregory G. Pike. Wide Area Filesys-
tem Performance using Lustre on the TeraGrid. In Teragrid Confer-
ence, 2007. http://datacapacitor.researchtechnologies.uits.iu.edu/

lustre_wan_tg07.pdf.

[92] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn. Mpipp:
an automatic profile-guided parallel process placement toolset for smp clusters
and multiclusters. In Proceedings of the 20th annual international conference
on Supercomputing, ICS ’06, pages 353–360, New York, NY, USA, 2006. ACM.

[93] C.H. Lee, M. Kim, and C.I. Park. An efficient k-way graph partitioning
algorithm for task allocation in parallel computing systems. In Systems Inte-
gration, 1990. Systems Integration ’90., Proceedings of the First International
Conference on, pages 748–751, 1990.

[94] Guillaume Mercier and Jérôme Clet-Ortega. Towards an efficient process place-
ment policy for mpi applications in multicore environments. In Proceedings
of the 16th European PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Pass ing Interface, pages 104–115,
Berlin, Heidelberg, 2009. Springer-Verlag.

[95] Gabriel Antoniu, Luc Boug, and Raymond Namyst. Dsm-pm2: a generic,
multi-protocol dsm layer for the pm2 multithreaded runtime system.

[96] Franois Pellegrini and Jean Roman. Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture graphs.

125

In Heather M. Liddell, Adrian Colbrook, Louis O. Hertzberger, and Peter
M. A. Sloot, editors, HPCN Europe, volume 1067 of Lecture Notes in Computer
Science, pages 493–498. Springer, 1996.

[97] Guillaume Mercier and Emmanuel Jeannot. Improving mpi applications per-
formance on multicore clusters with rank reordering. In Recent Advances in the
Message Passing Interface, EuroMPI’11, pages 39–49. Springer-Verlag, 2011.

[98] Francois Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Fur-
mento, Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond
Namyst. hwloc: A generic framework for managing hardware affinities in
hpc applications. In Proceedings of the 2010 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing, PDP ’10, pages 180–186,
Washington, DC, USA, 2010. IEEE Computer Society.

[99] J.L. Traff. Implementing the MPI process topology mechanism. In Supercom-
puting, ACM/IEEE 2002 Conference, pages 28–28, 2002.

[100] T. Hoefler and M. Snir. Generic Topology Mapping Strategies for Large-scale
Parallel Architectures. In Proceedings of the 2011 ACM International Confer-
ence on Supercomputing (ICS’11), pages 75–85. ACM, Jun. 2011.

[101] Hao Yu, I-Hsin Chung, and Jose Moreira. Topology mapping for blue gene/l
supercomputer. In Proceedings of the 2006 ACM/IEEE conference on Super-
computing, SC ’06, New York, NY, USA, 2006. ACM.

[102] Abhinav Bhatele, Laxmikant V. Kale, and Sameer Kumar. Dynamic topol-
ogy aware load balancing algorithms for molecular dynamics applications. In
Proceedings of the 23rd international conference on Supercomputing, ICS ’09,
pages 110–116, New York, NY, USA, 2009. ACM.

[103] David Buettner, Julian Kunkel, and Thomas Ludwig. Using non-blocking I/O
operations in high performance computing to reduce execution times. In To
be Published in Proc. of the 16th European PVM/MPI User’s Group Meeting
(Euro PVM/MPI 2009), September 2009.

[104] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing bandwidth
limited problems using one-sided communication and overlap. In 20th Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 2006.

[105] Ron Brightwell and Keith D. Underwood. An analysis of the impact of mpi
overlap and independent progress. In Proceedings of the 18th annual interna-
tional conference on Supercomputing, ICS ’04, pages 298–305, New York, NY,
USA, 2004. ACM.

[106] Sergei Gorlatch. Send-receive considered harmful: Myths and realities of mes-
sage passing. ACM Trans. Program. Lang. Syst., 26(1):47–56, January 2004.

126

[107] T. Hoefler and A. Lumsdaine. Design, Implementation, and Usage of LibNBC.
Technical report, Open Systems Lab, Indiana University, Aug. 2006.

[108] Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Scaling parallel i/o perfor-
mance through i/o delegate and caching system. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08, pages 9:1–9:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[109] W. K. Liao, A. Ching, K. Coloma, Alok Choudhary, and L. Ward. An imple-
mentation and evaluation of client-side file caching for MPI-IO. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1–10, 2007.

[110] Wei-Keng Liao, Kenin Coloma, Alok Choudhary, and Lee Ward. Cooperative
Client-Side File Caching for MPI Applications. Int. J. High Perform. Comput.
Appl., 21(2):144–154, 2007.

[111] Mohamad Chaarawi and Edgar Gabriel. Automatically Selecting the Num-
ber of Aggregators for Collective I/O Operations. In Workshop on Interfaces
and Abstractions for Scientific Data Storage, IEEE Cluster, pages 428–437,
September 2011.

[112] Brice Goglin and Stéphanie Moreaud. KNEM: a Generic and Scalable Kernel-
Assisted Intra-node MPI Communication Framework.

[113] OSU benchmark homepage. http://mvapich.cse.ohio-state.edu/benchmarks/,
2002.

[114] AMD. Shared level-1 instruction-cache performance on amd fam-
ily 15h cpus. http://developer.amd.com/wordpress/media/2012/10/

SharedL1InstructionCacheonAMD15hCPU.pdf.

[115] Joshua Hursey, Jeffrey M. Squyres, and Terry Dontje. Locality-aware parallel
process mapping for multi-core HPC systems. In IEEE International Confer-
ence on Cluster Computing, Austin, TX, September 2011. (Poster).

[116] Joshua Hursey and Jeffrey M. Squyres. Advancing application process affinity
experimentation: open mpi’s lama-based affinity interface. In EuroMPI, pages
163–168, 2013.

[117] R. Ross. Parallel I/O Benchmarking Consortium. http://www-
unix.mcs.anl.gov/ross/pio-benchmark.html, Last accessed on April, 2011.

[118] P. Wong and R. F. Van der Wijngaart. NAS Parallel Benchmarks I/O Version
2.4. Technical Report. NAS-03-002, Computer Sciences Corporation, NASA
Advanced Supercomputing (NAS) Division.

[119] Ron Brightwell and Keith D. Underwood. An analysis of the impact of MPI
overlap and independent progress. In ICS ’04: Proceedings of the 18th annual

127

international conference on Supercomputing, pages 298–305, New York, NY,
USA, 2004. ACM Press.

[120] Francoise Baude, Denis Caromel, Nathalie Furmento, and David Sagnol. Op-
timizing metacomputing with communication-computation overlap. In PaCT
’01: Proceedings of the 6th International Conference on Parallel Computing
Technologies, pages 190–204, London, UK, 2001. Springer-Verlag.

[121] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm. Optimizing a Conju-
gate Gradient Solver with Non-Blocking Collective Operations. Elsevier Jour-
nal of Parallel Computing (PARCO), 33(9):624–633, 9 2007.

[122] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 3.0, 09 2012. Chapter author for Collective Communication, Process
Topologies, and One Sided Communications.

[123] Edgar Gabriel, Graham E. Fagg, and Jack J. Dongarra. Evaluating dynamic
communicators and one-sided operations for current MPI libraries. Inter-
national Journal of High Performance Computing Applications, 19(1):67–79,
2005.

[124] Edgar Gabriel, Vishwanath Venkatesan, and Shishir Shah. Towards High Per-
formance Cell Segmentation in Multispectral Fine Needle Aspiration Cytology
of Thyroid Lesions (accepted for publication). Computational Methods and
Programs in Biomedicine, page t.b.d., 2009.

[125] Matteo Frigo and Steven G. Johnson. The Design and Implementation of
FFTW3. Proceedings of IEEE, 93(2):216–231, 2005. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[126] H. Yu, R.K. Sahoo, C. Howson, G. Almasi, J.G. Castanos, M. Gupta, J.E.
Moreira, J.J. Parker, T.E. Engelsiepen, R.B. Ross, R. Thakur, R. Latham,
and W.D. Gropp. High performance file i/o for the blue gene/l supercomputer.
In High-Performance Computer Architecture, 2006. The Twelfth International
Symposium on, pages 187–196, 2006.

[127] Mercury: Enabling Remote Procedure Call for High-Performance Computing,
Indianapolis, IN, 2013.

[128] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski,
James Nunez, Milo Polte, and Meghan Wingate. Plfs: a checkpoint filesystem
for parallel applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 21:1–21:12, New
York, NY, USA, 2009. ACM.

[129] Eric Barton. Lustre - Fast Forward to Exascale.
http://www.opensfs.org/wp-content/uploads/2013/04/

LUG-2013-Lustre-Fast-Forward-to-Exascale.pdf.

128

[130] J. Lombardi. Lustre restructuring. https://wiki.hpdd.intel.com/

download/attachments/12127153/Milestone%202.3%20Solution%

20Architecture%20-%20Lustre%20Restructuring%202013-01-07.pdf?

version=1&modificationDate=1364839103314&api=v2.

[131] Mohamad Chaarawi. Virtual Object Layer. https://conuence.hdfgroup.

uiuc.edu/display/VOL/Virtual+Object+Layer.

[132] M. Zingale. Flash I/O Benchmark Routine parallel HDF5. http://www.

ucolick.org/~zingale/flash_benchmark_io/.

[133] B. Fryxell, K. Olson, P. Ricker, and et. al. Flash: An adaptive mesh hy-
drodynamics code for modeling astrophysical thermonuclear flashes. In The
Astrophysical Journal Supplement Series, pages 273–334, 2000.

129

