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Abstract

Determining the phases of a diffraction pattern is crucial since the diffraction pattern

of a protein crystal yields only the magnitude of the Fourier transform of the electron

density. In order to invert the diffraction pattern to get the protein structure, the phase

problem must be solved.

An iterative transform method is proposed for solving the phase problem in pro-

tein crystallography. In each iteration, a weighted average electron-density map is con-

structed to define an estimated protein mask. Density modifications are then imposed

through the histogram matching technique in the protein region, and the hybrid in-

put–output algorithm in the solvent region. Starting from random initial phases, after

thousands of iterations the calculated protein mask evolves into the correct shape and

the phases converge to the correct values with an average error of 30◦ ∼ 40◦ for high-

resolution data for several protein crystals with high solvent content. With the use of

non-crystallographic symmetry and other density constraints, the method could poten-

tially be extended to phase protein crystals with less than 50% solvent fraction. The

new phasing algorithm can supplement and enhance the traditional refinement tools.
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Chapter 1

Introduction to protein X-ray

crystallography

1.1 Introduction

X-ray crystallography can be essentially treated as a form of very high resolution mi-

croscopy . It enables us to view the protein structures at the atomic level and enhances

our understanding of the protein functions. For example, we can study the interaction

between proteins and other molecules, the conformational changes of proteins, and the

catalysis mechanisms in the case of enzymes.

Figure 1.1: Schematic diagram of protein X-ray crystallography.
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Workflow for solving the structure of a protien by X-ray crystallography is shown in

Figure 1.1[1–3]. Protein can be expressed by messenger RNA which translates genetic

information from DNA and protein has to be purified before crystallization. Protein X-

ray crystallography includes protein crystallization, X-ray diffraction, solving the phase

problem, model building, model refinement, and interpretation. Protein crystallization is

the most challenging part in protein X-ray crystallography. After crystallization, a pro-

tein crystal is mounted onto a goniometer head for X-ray diffraction experiment. When

the crystal on the goniometer head rotates, series of diffraction patterns are recorded and

indexed until the entire diffraction data have been collected. On a diffraction pattern

only the magnitudes of the structure factors are recorded, the phases of the structure

factors are lost. This is called the phase problem, which constitutes another challenge in

protein X-ray crystallography. After solving the phase problem, model structure could

be built into the calculated electron density map. Refinement makes the model structure

more accurate.

This chapter is organized as follows. In Section 1.2, a short introduction is given

about gene cloning, DNA expression, and protein purification. In Section 1.3, protein

crystallization is described. In Section 1.4, X-ray diffraction, data collection, and in-

dexing are introduced. In Section 1.5, protein model building and model refinement

are discussed. The last section is a short summary of protein X-ray crystallography.

X-ray diffraction theory will be introduced in Chapter 2 and the phasing methods will

be discussed in Chapter 3.
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1.2 Gene cloning, DNA expression, and protein purifica-

tion

Protein expression is important in drug discovery. For example, proteins can be screened

as biological targets or as potential drugs. Protein expression also has significant appli-

cations in industry, such as the manufacture of enzymes and the production of human

insulin to treat diabetes. In order to produce a large amount of proteins, gene cloning

is required.

Gene cloning can provide unlimited quantity of a gene of interest[4]. Gene cloning

needs a gene of interest and a vector which will carry the gene of interest. DNA con-

taining the gene of interest is taken from its cell. Small circular DNA molecules called

plasmids are removed from bacterial cells. These plasmids serve as vectors and they will

carry the gene of interest.

A restriction enzyme can recognize the specific restriction sites on the DNA se-

quence. It can locate the gene of interest from its DNA. It can also open the circular

plasmids. The gene of interest gets included into some of the opened plasmids, form-

ing the recombinant plasmids. DNA ligase makes the combination permanent. The

recombinant plasmids are mixed with the becteria. Some of them take up the plasmids

in a process called transformation. Those bacteria with recombinant plasmids can be

identified and be allowed to reproduce. The gene of interest on the recombinant plasmid

is cloned.

Proteins are expressed from cloned DNA, as shown in Figure 1.2. First, the cloned

DNA is transcribed to a messenger RNA. Then the messenger RNA is translated into
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Figure 1.2: The central dogma of gene expression from DNA to mRNA to protein.

polypeptide chains. The polypeptide chains are ultimately folded into protein molecules.

The protein peptide sequences are available in FASTA format in the Protein Data Bank,

in which amino acids are represented by single-letter codes.

There are many ways to get the cloned DNA expressed in a host cell. Various host

cells can be used for DNA expression. Expression systems are referred to by the host and

the cloned DNA sources. Common hosts include bacteria, yeast, and eukaryotic cells.

Common DNA sources include plasmids, viruses, bacteriophage, and artificial chromo-

somes. Since large amounts of protein molecules are needed for protein crystallization,

bacterial expression is often used.

Protein purification is vital for the characterization of protein structure and func-

tion. The purification methods can be roughly divided into analytical and preparative

methods. Preparative methods aim to produce large quantities of proteins which are

commonly used in structural biology. The presence of impurities can affect the protein

crystal growth. Generally, the purer the protein is, the easier to grow crystals.
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1.3 Protein crystallization

Protein crystallization is the process of growing a protein crystal[1–3]. Protein molecules

can form crystals when the solution in which they are dissolved gets supersaturated.

Individual molecules can pack into a periodic array by noncovalent interactions.

Before crystallization, protein is dissolved in solvent. The solvent should be suit-

able for the protein to be dissolved and precipitated in crystalline form. The solvent

is usually a water-buffer solution containing little or no salt. Sometimes, the solvent

is a water-organic solution, with 2-methyl-2,4-pentanediol (MPD) added. Membrane

proteins require water-detergent solution.

The precipitant solution is then added to a concentration that a precipitate does not

develop. The precipitant solution is usually water-salt solution or water-polyethyleneglycol

(PEG) solution. The most popular salt is ammonium sulfate which has a high solubility

in water.

Figure 1.3: Phase diagram for protein crystallization mediated by a precipitant, and
the ideal strategy (the dash line) for growing big crystals.
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The ideal strategy for growing protein crystals is shown in Figure 1.3. Slowly in-

crease the concentration of the precipitant such as salt, PEG, or organic solvent to make

the protein solution reach supersaturation. When supersaturation reaches high level,

spontaneous formation of protein nuclei is best achieved. High supersaturation may

create too many small nuclei and therefore too many tiny crystals. In order to get big

crystals, the crystals should grow slowly to obtain a best degree of order. After nuclei

are formed, the supersaturation should be reduced to a lower level to make the nuclei

slowly grow to big crystals. In practice, by changing the pH or the temperature, the

supersaturation level of the protein solution can be changed.

A great number of trial experiments should be carried out at the same time in order

to find the best crystallization conditions. A reasonable size of a protein crystal is about

0.3mm× 0.3mm× 0.3mm.

Protein crystals include protein and some solvent. The average electron density in

the protein region is about 0.43e/A3 while the average electron density in the solvent

region ranges from 0.33e/A3 for pure water to 0.41e/A3 for salt, such as 4M ammonium

sulphate.

In practice, several crystallization methods are used, such as vapor diffusion and

microdialysis. Protein solution and precipitant solution are separated. Water molecules

come out from the protein solution and go to the precipitant solution. Hence the protein

solution becomes supersaturated and nucleation occurs.
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Figure 1.4: Growing protein crystals by the hanging-drop and the sitting-drop meth-
ods.

Vapor diffusion is often used to grow protein crystals. It includes the hanging-drop

and the sitting-drop methods. The purified protein is dissolved into a buffer containing

precipitant, such as salt or polyethyleneglycol (PEG). A drop of protein and precipitant

solution is suspended to the downside of a cover slip or sits on the top of a small island

inside a container, as shown in Figure 1.4. The container is filled with a reservoir

of precipitant solution which has an optimal precipitant concentration for producing

crystals. The droplet hangs on top of the precipitant reservoir or sits on the island in

the reservoir. The container is sealed. Water vapor comes out from the droplet which

becomes supersaturated and protein nucleation occurs. Because the container is sealed,

as nucleation occurs, the protein concentration in the droplet decreases. The nucleation

stops and the existing nuclei grow into small crystals which can be used as seeds to grow

big crystals that are large enough for diffraction experiment.

Microdialysis is another method used in protein crystal growth. A membrane is used

to separate the protein solution and the precipitant solution, as shown in Figure 1.5.
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Figure 1.5: Growing protein crystals by the microdialysis method.

The membrane is semi-permeable. Small molecules such as water molecules can pass

the membrane while protein molecules can’t cross the membrane. Because of the higher

concentration of the precipitant solution, water molecules come out from the protein

solution and go to the precipitant solution. The protein solution becomes supersaturated

and protein nuclei are prompted to grow.

1.4 X-ray diffraction, data collection, and indexing

The diffraction from a single molecule is too weak to be measurable. Protein crystal

has a repeating formation of protein molecules. The observed diffraction pattern is

a superposition of many diffractions from identical protein molecules. The observed

intensities become strong when the crystal is big. In order to introduce the X-ray

diffraction pattern, real space and reciprocal space lattices should be introduced first.

A crystal can be described in terms of its unit cell. The crystal lattice can be

thought of as an array of unit cells by translation. A diffracted beam can be treated

as a reflection from a set of equivalent, parallel planes of atoms. In particular, a family
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of lattice planes is denoted by three integers h, k, and l, the Miller indices. They are

written as (hkl) and represent the family of parallel planes orthogonal to ha∗+kb∗+lc∗,

where a∗, b∗, and c∗ are the basis of the reciprocal lattice vectors. The reciprocal lattice

corresponding to the crystal lattice can be defined in the reciprocal space.

a∗ = 2π
b× c

a · (b× c)

b∗ = 2π
c× a

b · (c× a)

c∗ = 2π
a× b

c · (a× b)

(1.1)

a, b, and c are the three lattice vectors that define the crystal unit cell.

Figure 1.6: Construction of reciprocal lattice (gray) from real lattice (black).

According to its definition, a reciprocal lattice can be constructed from the real-

space crystal lattice, which is shown in Figure 1.6. O is the origin of the reciprocal
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lattice. Reciprocal space vectors ha∗+kb∗+ lc∗ are perpendicular to the parallel planes

denoted by the Miller indices h, k, and l.

Figure 1.7: Ewald’s sphere and a diffraction in reciprocal space.

In reciprocal space, a diffraction can be described by the Ewald sphere with a radius

1/λ . In Figure 1.7, O is the origin of the reciprocal lattice. P is a point on reciprocal

lattice and the length of OP is 1/dhkl .

sin θ =
OP

OB
=

1/dhkl
2× 1/λ

(1.2)

2dhkl sin θ = λ (1.3)

Equation 1.3 is Bragg’s law. Ewald’s sphere can be used to find the maximum

resolution available for a given X-ray wavelength and the unit cell dimensions.

The crystal is mounted on the head of a goniometer. When the crystal rotates in

the X-ray beam, various reciprocal-lattice points come into contact with the surface of
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Figure 1.8: When a reciprocal-lattice point intersects the Ewald sphere, a diffraction
ray emerges from the protein crystal as a reflection.

the Ewald sphere, and lots of diffracteded rays are produced in the direction of lines

from the center of the Ewald sphere through the reciprocal-lattice points, as shown in

Figure 1.8. These rays are recorded on the detector as a diffraction pattern. When

the reciprocal-lattice point Phkl is in contact with the Ewald sphere, the diffraction spot

produced is called the hkl reflection, because it can be represented as a reflection by a set

of equivalent, parallel, real-space planes with Miller indices (h, k, l) according to Bragg’s

law. The directions of diffracted rays only depend on the dimensions of the real-space

unit cell and the wavelength of the incident beam. The electron density distribution

inside the unit cell determines the diffraction intensities.

Figure 1.9 shows a picture of X-ray diffraction system used in the lab. It consists of

X-ray source, goniometer head, diffraction pattern detector, beam stop, and N2 stream

channel. The X-ray source is a conventional X-ray tube and it provides the incident

beam. The crystal is mounted on the goniometer head and cooled by the N2 stream. The
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Figure 1.9: X-ray diffraction instrument used in the lab.

goniometer head can rotate in three angles. When the crystal rotates, the corresponding

reciprocal lattice also rotates. Various reciprocal-lattice points get contact with the

surface of the Ewald sphere and diffracted rays are recorded on a diffraction pattern by

the area detector. Each rotation of the crystal gives a diffraction pattern. The entire

set of diffraction data is the combination of all diffraction patterns.

A beam stop is always needed to stop the intense incident beam that has not been

diffracted by the crystal. Otherwise, the detector might be damaged. Usually the beam

stop can be completely impenetrable to the X-ray. The beam stop results in the absence

of some diffraction spots with small diffraction angles on the diffraction pattern.

In addition to the conventional X-ray tubes, synchrotron light sources are also used

in X-ray crystallography. The synchrotron light source is a source of electromagnetic

radiation. It is usually produced by a storage ring and specialized particle accelerators
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Figure 1.10: Schematic diagram of the synchrotron light source.

(Figure 1.10). The synchrotron light source is notable for its high brilliance, high level of

polarization, high collimation and wide tunability in wavelength by monochromatization.

The high brilliance makes it possible to collect the diffraction pattern of big protein

molecules with large unit cells. The wide tunability is also required for anomalous

dispersion.

Figure 1.11: X-ray diffraction pattern and diffraction-spot indexing.
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A typical diffraction pattern contains thousands of diffraction spots. A diffraction

pattern and its indexed diffraction spots are shown in Figure 1.11. Each diffraction spot

can be referred to as a reflection. The geometrical arrangement of the reflections gives the

information about the cell dimensions and the symmetry of the crystal. The intensities

of the reflections yield the information about the content in a unit cell. Each diffraction

spot corresponds to a reciprocal-lattice point. There are three integers associated with

each reciprocal-lattice point. Indexing is to find the cell parameters, the space group and

the three integers for each diffraction spot on each diffraction pattern. Some software

packages are available for auto indexing.

A space group can be determined from the Laue symmetry and the reflection condi-

tions obtained from the diffraction patterns. Space group determination starts with the

assignment of a Laue class to the weighted reciprocal lattice, and the determination of

the cell geometry. The conventional cell is selected that the basis vectors can coincide

with the highest symmetry directions. The Laue class determines the crystal system.

On the diffraction pattern, sets of reflections can be systematically absent. These extinc-

tions imply the presence of a centered cell or the presence of symmetry elements with

glide or screw components. Usually Laue class plus reflection conditions can’t uniquely

determine the space group. In this case, other information such as the presence or ab-

sence of an inversion center in the crystal unit cell should be examined to overcome the

ambiguities.
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1.5 Protein model building and model refinement

From the geometrical arrangement of the reflections on the diffraction pattern, the cell

parameters, the space group and the Miller indices of each reflection can be determined.

From the intensity of the reflections, the electron density function of the unit cell can

be determined by solving the phase problem which will be discussed in Chapter 3.

The process to build an atomic model structure into a calculated electron density

map is called model building. A good electron-density map should be interpretable.

Secondary structures clearly show up, such as alpha helices and beta sheets. The main

chain can be located and traced. An atomic model structure can be fitted into the

calculated electron density map by hand or some auto-building software packages, as

shown in Figure 1.12.

Figure 1.12: Calculated electron density map (green) and the built-in model (blue).

The initial model is often not complete or accurate. Iterative adjustments on the

model are necessary. New structure factors can be calculated from the model. Model

refinement is to minimize the discrepancy between the calculated structure factors of the

model and the experimental observed structure factors. Several parameters are defined

to monitor the accuracy of the model.
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R-factor is defined to measure the difference between the calculated structure factor

and the observed structure factor.

R =

∑∣∣|Fobs| − k|Fcal|
∣∣∑

|Fobs|
(1.4)

k is a scale factor. For a random model structure, the value of the R-factor is about

0.59. For a good refined model structure, R should be less than 0.30.

Rfree and Rwork are another two parameters used to measure the deviation between

the calculated structure factors and the observed structure factors[5]. At the beginning

of the phase retrieval, some reflections in the observed data can be randomly selected

and are not used for phasing and refinement. Generally, 5% observed reflections can be

randomly selected and set aside. These reflections are called free data set or test data

set. The remained 95% observed reflections are called working data set and are used to

retrieve phases and refine the model. Rfree is calculated from the free data set. Because

the free data set is not used during phase retrieval and model refinement, Rfree is more

convincing to show the accuracy of the model structure. Rwork is calculated from the

working data set. For a random model or random electron density map, both Rwork and

Rfree are close to 0.59. For an accurate model or correct eletron density map, Rfree and

Rwork should be less than 0.30.

Rfree =

∑
hkl∈free

∣∣|Fobs| − k|Fcal|
∣∣∑

hkl∈free |Fobs|
(1.5)

Rwork =

∑
hkl∈work

∣∣|Fobs| − k|Fcal|
∣∣∑

hkl∈work |Fobs|
(1.6)
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R factors defined above can only show the overall accuracy of the model structure.

The model may contain some local errors and they can’t be located by those R factors

defined above. In order to find some local errors of the model structure, a new R factor

in real space can be defined as follows.

Figure 1.13: Real-space R factor for each residue.

Rreal =

∑∣∣ρobs − ρcal
∣∣∑∣∣ρobs + ρcal
∣∣ (1.7)

Rreal is a parameter defined in real space and can be calculated for each amino acid

residue (Figure 1.13) [6]. The observed electron density map is the Fourier transform

of the observed structure-factor magnitudes combined with the phases calculated from

the model. The calculated electron density map is directly computed from the model

structure by a Gaussian distribution of electron density around the average position of

17



each atom in the model.

In addition to R factors, a Ramachandran plot or Ramachandran diagram is usually

employed to check the accuracy of the model structure[7]. Ramachandran plot is used to

visualize the empirical distribution of the backbone dihedral angles ψ against ϕ of amino

acid residues observed in the model structure in usage for structure validation. The defi-

nition of the protein backbone dihedral angles are shown in Figure 1.14. Ramachandran

plot shows the possible confirmations of ψ and ϕ angles for a polypeptide. The angle ω

of the peptide bond is usually 180◦. The ψ and ϕ angles in the model structure should

fall into the correct regions on the Ramachandran plot. If some angles fall outside of the

correct regions, the local structure corresponding to those angles should be adjusted.

The dihedral angle or torsion angle is the angle between two planes. For four

consecutively bounded atoms A-B-C-D, atoms A-B-C define the first plane and atoms

B-C-D define the second plane. The angle between these two planes is called a dihedral

angle.

In Figure 1.14, the dihedral angles on the backbone are defined as follows. The ψ

dihedral angle for residue i is defined by Ni–Cαi–Ci–Ni+1. The ϕ dihedral angle for

residue i is defined by Ci−1–Ni–Cαi–Ci and the ω dihedral angle for residue i is defined

by Cαi−1–Ci−1–Ni–Cαi.

18



Figure 1.14: Protein backbone dihedral angles.

We assume atoms can be treated as hard spheres with van der Waals radii. In Figure

1.15, the white regions are disallowed because they correspond to conformations that

atoms in the polypeptide become closer than their van der Waals radii. The red regions

are favored and there are no steric clashes. They correspond to conformations such as

alpha helices and beta sheets. The yellow regions are allowed, because they correspond

to slightly shorter van der Waals radii. Amino acids can’t form left-handed helix, but

individual residues, such as glycine, occasionally take left-handed conformation.
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Figure 1.15: Ramachandran plot and the distribution of the dihedral angles of alpha
helix and beta sheet. The red regions are favored, the yellow regions are allowed and

the white regions are disallowed.

During model refinement, if the dihedral angles of a residue fall into the white region,

the local conformation of that residue on the model should be adjusted.

1.6 Summary

In this chapter, an introduction about protein X-ray crystallography is described. Pro-

tein X-ray crystallography needs a large amount of protein molecules which can be

produced by gene cloning and DNA expression. Purified proteins are dissolved into

water-buffer solvent and precipitant solution. When the protein solution gets supersat-

urated, protein nucleation occurs. By changing the solution conditions, the nuclei can

grow into big crystals. Protein crystallization is still a big challenge for biochemists.

The crystal is mounted to a goniometer head. When the crystal rotates with the head
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of the goniometer around three axes, reciprocal-lattice points contacts with the surface

of the Ewald sphere and diffracted rays occur. Each rotation of the crystal gives a

diffraction pattern. The combination of all diffraction patterns gives the entire diffrac-

tion data. The space group and the cell parameters are derived from the geometry of

the diffraction pattern. Each diffraction spot on the diffraction pattern is indexed with

three Miller indices. The magnitudes of structure factors are computed directly from

the intensities of diffraction spots on the diffraction pattern, but the phases are lost.

This phase problem is still a challenge for physicists. In Chapters 3, 4, 5 and 6, we will

focus on the phase problem.

When the phase problem is solved, the calculated electron density becomes inter-

pretable. A model structure can be built into the calculated electron density map. This

model structure is not accurate at the beginning and further refinement is necessary.

Several R factors and a Ramachandran plot can be used to monitor the accuracy of the

model during the refinement.
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Chapter 2

Principles of protein X-ray

crystallography

2.1 Introduction

The resolution of a microscopy is limited by the wavelength of the electro-magnetic

radiation used. In order to see the atomic structure of proteins, the wavelength of the

electron-magnetic radiation used should be around one angstrom which is X-ray.

X-rays are diffracted by electrons in a protein crystal which behaves like a three-

dimensional diffraction grating. There are both constructive and destructive interference

effects on the diffraction pattern which give discrete diffraction spots known as Bragg

reflections. The diffraction pattern is the Fourier transform of the electron density of

the protein crystal[1–3, 8–10]. The temperature factor or Debye-Waller factor has to be

considered for X-ray diffraction.

In a protein crystal, there are both protein molecules and solvent molecules. The
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protein molecules are arranged but the solvent molecules are disordered. The solvent

molecules also contribute to the observed diffraction data. Bulk solvent correction is

taken into consideration. The synthetic diffraction data with bulk solvent correction is

important for better understanding the observed data and testing new phase-retrieval

methods.

This chapter is organized as follows. In Section 2, X-ray scattering by electrons is

described. In Section 3, X-ray diffraction by a crystal is discussed. In section 4, we talk

about the Fourier transform of the diffraction pattern which gives the electron density

in the unit cell. In Sections 5 and 6, temperature factor and atomic radius are analyzed.

In Section 7, we discuss the calculation of synthetic diffraction data of a protein crystal.

The last section is a summary.

2.2 X-ray scattering by electrons

Figure 2.1: X-ray scattering by electrons.
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Suppose there are two electrons at point O and point P, respectively, as shown in

Figure 2.1. The displacement between the two electrons is r. The incident rays, indicated

by a wave vector S0 with a magnitude of 1/λ, are scattered by the two electrons. The

lower ray passing along point O follows a longer path than the upper ray which passes

point P. The path difference between the two scattered rays in S1 direction depends on

the displacement between the two electrons and the direction of the scattered rays. The

path difference can be written as follows.

QP −OR = r · S0λ− r · S1λ = r · (S0 − S1)λ (2.1)

With respect to the phase of the lower ray, the phase difference between the scattered

rays is

− 2π
QP −OR

λ
= −2π

r · (S0 − S1)λ

λ
= 2πr · (S1 − S0) = 2πr · S (2.2)

where S = S1 − S0.

The scattered ray in S1 direction can be regarded as a reflection on a group of

parallel planes perpendicular to vector S.

24



Figure 2.2: The scattered ray can be regarded as being reflected against a plane.

Figure 2.3: Bragg’s law which is the condition to produce strong diffracted rays.

2dhkl sin θ = nλ (2.3)

Equation 2.3 is Bragg’s law.

Suppose we make a translation of the origin which is shown in Figure 2.4. The

upper scattered ray has phase 2πr2 · S and the lower scattered ray has phase 2πr1 · S.

If we add the two scattered rays, the sum is as follows.

e2πir2·S + e2πir1·S = (e2πir·S + 1)e2πir1·S (2.4)
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Figure 2.4: A shift of the origin causes a shift of the phase.

Translation of the origin results in the same phase difference for all scattered rays.

Translation does not affect the magnitude of the scattered rays.

2.3 X-ray diffraction by a crystal

The atomic scattering factor of an atom with an electron density distribution ρ(r) can

be written as follows.

f(S) =

∫
ρ(r)e2πir·Sd3r (2.5)

The origin is located at the center of the nucleus.

In a unit cell, suppose there are N atoms and the jth atom is located at rj. The

scattering factor of the unit cell can be written as a summation of the scattering factors

of all atoms.

F (S) =
N∑
j=1

Fj =
N∑
j=1

fje
2πirj·S (2.6)

fj is the atomic scattering factor of the jth atom.
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In a crystal, suppose there are N1 × N2 × N3 unit cells. The scattering factor of

other unit cells can be written as the scattering factor of one unit cell times a phase due

to the unit-cell translation. The total scattering factor of a crystal can be written as a

summation of the scattering factors of all unit cells.

Figure 2.5: A crystal contains a great number of identical unit cells. Any two unit
cells can be related by a translation.

K(S) =

N1∑
q1=1

N2∑
q2=1

N3∑
q3=1

F (S)e2πiq1a·Se2πiq2b·Se2πiq3c·S

= F (S)

N1∑
q1=1

e2πiq1a·S
N2∑
q2=1

e2πiq2b·S
N3∑
q3=1

e2πiq3c·S

(2.7)

Because the summation is over all unit cells in the crystal, the summation
∑N1

q1=1 e
2πiq1a·S

and the other two summations over q2 and q3 are almost always zero. In order to get a

none zero K(S), Laue conditions should be satisfied.

a · S = h

b · S = k

c · S = l

(2.8)
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Therefore, for a large crystal the scattering factor of the crystal is the same as the

scattering factor of the unit cell with the satisfaction of the Laue conditions.

2.4 Fourier transform of the diffraction pattern

When a monochromatic X-ray diffracts off a crystal, it performs part of a mathemat-

ical operation, the Fourier transform. When the incidence angle is varied by rotating

the crystal, the complete transform is produced and the whole diffraction data can be

recorded on a set of diffraction patterns. The flaw of this perfect transform is that people

can’t measure the phase of the diffracted wave. Otherwise the entire protein structure

can be computed by an inverse Fourier transform.

If ρ(r) is the electron density function of all atoms in the unit cell, the structure

factor of the unit cell can be represented as an integral of ρ(r).

F (S) =

∫
unitcell

ρ(r)e2πir·Sdv (2.9)

r = xa+ yb+ zc, where x, y and z are fractional coordinates.

r · S = (xa+ yb+ zc) · S = xa · S+ yb · S+ zc · S = hx+ ky + lz (2.10)

dv = adx · bdy × cdz = V dxdydz (2.11)

We can transfer the integral from orthogonal coordinates to fractional coordinates.

F (h, k, l) = V

∫ 1

x=0

∫ 1

y=0

∫ 1

z=0
ρ(x, y, z)e2πi(hx+by+lz)dxdydz (2.12)

28



If we divide the unit cell into a grid of regularly spaced points, the density on each grid

point is denoted as ρj(xj , yj , zj). Then the integral can be written as a summation over

all grid points inside the unit cell.

F (h, k, l) =
V

NxNyNz

Nx∑
j1=1

Ny∑
j2=1

Nz∑
j3=1

ρ(xj , yj , zj)e
2πi(hxj+byj+lzj) (2.13)

where dxdydz = 1
NxNyNz

. Nx, Ny and Nz are the number of grid points in the x, y and

z directions.

Since the integral format of the structure factor is the Fourier transform of the elec-

tron density function in the unit cell, the inverse Fourier transform of the structure factor

gives the electron density function. Because of Laue conditions, the reciprocal space is

discretized. The integral over reciprocal space should be replaced by a summation over

all Miller indices.

ρ(xj , yj , zj) =
1

V

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

F (h, k, l)e−2πi(hxj+byj+lzj) (2.14)

Because F (h, k, l) is complex which consists of a magnitude and a phase. The magnitude

is proportional to the square root of the diffraction intensity on the diffraction pattern

which can be recorded in the experiment. However, the phase is lost.

ρ(xj , yj , zj) =
1

V

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

∣∣F (h, k, l)∣∣e−2πi(hxj+byj+lzj)+iα(h,k,l) (2.15)

In order to find the electron density function of the unit cell, the phase for each reflection

should be found out first. This is called the phase problem.
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2.5 Temperature factor

In the X-ray diffraction experiment, the temperature of the crystal is not zero even

the crystal is cooled with nitrogen stream. A temperature factor can blur the electron

density function in the unit cell. Therefore, the temperature factor should be considered

into the scattering factor of the unit cell. Here we consider isotropic temperature factor.

Temperature factor can cause vibrations of the electron density. These vibrations can

be decomposed as parallel and perpendicular components to the reflecting plane. The

parallel component does not contribute to the scattering factor. But the perpendicular

component does affect the scattering factor.

F (S) =

N∑
j=1

fje
2πirj·Se−

B
4
S2

(2.16)

The temperature factor B is also known as Debye-Waller factor. B factor is positive

and it reduces the magnitude of the structure factor. The temperature factor has a

bigger effect on higher-resolution reflections than lower-resolution reflections. But the

temperature factor does not affect the phase of the structure factor. It can be shown

that the thermal parameter B is related to the mean square displacement u2 of the

atomic vibration.

B = 8π2u2 (2.17)
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2.6 Atomic radius

Suppose all atoms in the unit cell are the same and each atom can be represented by a

Gaussian sphere with density ρ(r).

ρ(r) =
Z

a30
√
π3
e
− |r|2

a20 (2.18)

where Z is the atomic number and a0 is the radius of the Gaussian sphere. The atomic

scattering factor is the Fourier transform of the Gaussian function which gives another

Gaussian function in reciprocal space.

f(S) = Ze−π2a20S
2

(2.19)

Then the structure factor of the unit cell can be written as F (S) =
∑N

j=1 fje
2πirj·S. If

the atomic radius increases from a0 to aP , then the new structure factor becomes

G(S) = F (S)e−π2(a2P−a20)S
2

(2.20)

Increasing atomic radius has a similar effect as increasing the temperature factor.

Both affect only the magnitude of the structure factor. Higher-resolution structure

factors can be attenuated much more than the lower-resolution structure factors. The

phase of the structure factor does not change.
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2.7 Synthetic diffraction data of a protein crystal

After model building, synthetic diffraction data should be calculated during the refine-

ment. Synthetic data includes the diffraction contributions from the protein molecules

and the solvent molecules. The atomic model of a protein often includes thousands of

atoms. Different kinds of atoms have different atomic scattering factors. Each atom

should have its own temperature factor. The electron density in the bulk solvent region

is basically treated as a constant. A solvent mask has to be defined for calculating the

diffraction contribution of the bulk solvent[11].

The total structure factor used in refinement can be written as follows.

Ftotal = koveralle
−SUcrystalS

T
(Fprotein model + Fbulk solvent) (2.21)

In our calculation, for simplicity, we suppose koverall equals 1, and ignore the anisotropy

factor e−SUcrystalS
T
. Fprotein model is the structure factor calculated from the protein

model. It includes the contributions of all atoms in the model. Fbulk solvent is the

structure factor contributed by the bulk solvent.

Fprotein model is the structure factor calculated from the protein model which contains

thousands of atoms. Different atoms have different scattering factors. Each atom should

have a temperature factor. For simplicity, a single Gaussian function can be used as the

atomic scattering factor. However, in practice, the atomic scattering factor is much more

complicated than a single Gaussian function. A linear combination of several Gaussian

functions should be used as the atomic scattering factor. Generally, the atomic analytical

scattering factor can be expressed as a linear combination of five Gaussian functions and
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a constant term[12].

f(S) =
5∑

i=1

aie
−biS

2
+ c (2.22)

where ai and bi are parameters specific to atom type.

The protein model contains all the non-hydrogen atoms. The sum of all scattering

factors with proper phases over all atoms in the unit cell gives the calculated structure

factor of the protein model denoted as Fprotein model. In practice, this summation can

be written as a sum over all atoms in the asymmetric unit and their corresponding

equivalent-position atoms in the unit cell.

Fprotein model(S) =

N∑
j=1

qjfje
2πirj·Se−

Bj
4
S2

(2.23)

where qj , Bj , and rj = (xj , yj , zj) are atomic occupancy, isotropic temperature factor,

and fractional coordinates of the jth atom. The occupation number is the fraction of

unit cells that contain the atom in this particular location. The temperature factor has

to be considered in the atomic structure factor. It can be different for different atoms.

Generally, atoms buried in the protein have smaller temperature factors. Atoms near

the protein surface often have big temperature factors. These atoms can move a little

bit around their equilibrium positions.

In addition to the protein model, bulk solvent correction should also be included into

the synthetic data calculation. In the solvent region of the protein crystal, the solvent

molecules are disordered. This is an important difference between the traditional crystal

and the protein crystal. In traditional crystal, all atoms have the same orientation in

different crystal unit cells. However, in protein crystal, only protein molecules and
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some attached solvent molecules have the same orientation in different crystal unit cells.

Therefore, an average electron density in the solvent region can be employed to stand

for the solvent molecules.

Fbulk solvent = ksole
−BsolS

2

4 Fsolvent mask (2.24)

Fsolvent mask is the structure factor calculated from the solvent mask with a unit density.

ksol is the average solvent density. Bsol is the average temperature factor of the solvent.

Before an average electron density is used to represent the solvent molecules, the

exact solvent region should be identified inside the unit cell. Generally, solvent molecules

are water molecules. Each water molecule can be approximately treated as a sphere

with a radius rsolvent or rprobe. This radius is used to find the solvent-accessible surface

which is a surface accessible to the solvent molecules. The solvent-accessible surface is

typically designed by the ’rolling ball’ method. This method uses a sphere of solvent

with a particular radius to probe the surface of the protein molecule, as shown in Figure

2.6.

Solvent probe is a sphere that approximates the effective size of the solvent molecule.

Solvent probe rolls over the model molecular surface. Path of the center of the solvent

sphere gives the solvent-accessible surface. It is larger (more external) than the protein

surface. Protein surface is defined by all atoms with van der Waals radius corresponding

to atom type. After we find the solvent-accessible surface, a contact and reentrant

surface can be defined. Any grid points between the accessible surface and the protein

molecule should be tested. If the distance between this grid point and the nearest
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Figure 2.6: Accessible surface of the protein molecule.

accessible surface is less than a shrink radius, this grid point will be filled with solvent.

In practice, the solvent mask is defined as follows. The unit cell is divided into a

grid of regularly spaced points. A map is defined inside an asymmetric unit and the

value of the map is restricted to zero and one. Grid points on the map have an initial

value one. All grid points on the map within a distance of rprobe + rrvan der Waals from

atom i is set to zero. rprobe is the radius of the solvent molecule. rrvan der Waals is the

van der Waals radius of the protein atom. Those grid points with value one defines

the solvent-accessible region. A shrink radius is employed to extend the solvent access

region. All grid point marked zero is tested to see if there is a grid point marked one

within a distance rshrink. If this happens, the tested grid point is set to one. After

solvent extension, the bulk solvent is in close contact with the surface of the protein

molecule. All grid points marked one defined the solvent mask which can be used to

calculate Fsolvent mask.

The probe radius or the solvent radius is about 1.4Å. The shrink radius is about

0.8Å. Sometimes, we adopt rprobe = 1.11Å and rshrink= 0.9Å[13]. In order to find a pair
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of good numbers for rprobe and rshrink, one can check the volume of the solvent mask.

When the volume of the solvent mask is several percent less than the calculated solvent

volume of the crystal, better results can be obtained.

On the solvent mask, all grid points are set to one. Grid points outside the solvent

mask are set to zero. Because the electron density of the solvent should be less than one,

a scale factor ksol is used to scale the electron density on the solvent mask. ksol represents

the average electron density of the solvent (or crystallization buffer) that ranges from

0.33e/Å3 for pure water to 0.41e/Å3 for 4M ammonium sulphate. In experiment, the

solvent always has a certain finite temperature. A temperature factor Bsol is employed

to smooth the electron density between the solvent mask and the protein surface. The

temperature factor Bsol can be from 15Å2 to 200Å2.

ksol and Bsol can be determined by progressively minimizing a target function

G(p, k)[11]. G(p, k) measures the difference between the calculated structure factor

and the observed structure factor.

G(p, k) =

∑
h,k,l(|Fobs| − kscale|Ftotal|)2∑

h,k,l |Fobs|2
(2.25)

kscale =

∑
h,k,l |Fobs||Ftotal|∑

h,k,l |Fobs|2
(2.26)

Typically, the initial values of ksol = 0.40e/Å3 and Bsol = 200Å2 are chosen. When Bsol

is being refined, ksol is fixed. When ksol is being refined, Bsol is fixed. This process is

repeated until a pair of ksol and Bsol are reached with a minimum value of G(p, k).

After the optimized ksol and Bsol are found, Fbulk solvent is calculated. The total

synthetic structure factor is the sum of Fbulk solvent and Fprotein model. The bulk solvent
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correction is very important. Take the observed data of a protien structure as an exam-

ple. The protein is a formaldehyde-activating enzyme (Fae) with PDB ID 1Y5Y[14] R

value defined by Equation 1.4 is calculated to show the difference between the magnitudes

of the calculated and the observed structure factors. Without bulk solvent correction,

the calculated R value is very big, especially for low resolution shells. However, after the

bulk solvent correction, R value is dramatically reduced, because the bulk solvent has

an average electron density which obviously contributes to the observed magnitudes.

Figure 2.7: R values before and after bulk solvent correction.

2.8 Summary

In this chapter we have introduced the principles of protein X-ray diffraction. We have

discussed X-ray scattering by electrons, X-ray diffraction by a crystal, the Fourier trans-

form between the structure factor and the electron density, the temperature factor, and
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the atomic radius. For a real protein crystal, a bulk solvent correction must be consid-

ered, because the solvent region has a constant density which obviously contributes to

the observed diffraction data.
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Chapter 3

Methods for solving the phase

problem

3.1 Introduction

In order to find the protein structure, the phase problem needs to be solved first. There

are various means to retrieve the phases.

Heavy-atom method is often used in experimental phasing, such as single isomor-

phous replacement (SIR), multiple isomorphous replacement (MIR), single anomalous

dispersion (SAD) and multiple anomalous dispersion (MAD). For these methods, a na-

tive protein crystal and its heavy-atom derivative crystal should be prepared. The dif-

ference between the diffraction patterns of the native protein crystal and its heavy-atom

derivative crystal gives the diffraction contribution of the heavy atoms alone. Heavy

atoms are located by analyzing Patterson maps. Structure factors of the heavy atoms
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alone is calculated. Since the structure factor of the heavy-atom derivative is the alge-

braic sum of the structure factors of the native protein and the heavy atoms, the phase

of the structure factor of the native protein crystal is derived by solving some algebraic

equations.

Molecular replacement is another method used to find the structure of a target

molecule. The amino acid sequence of the target molecule is available before structure

determination. Molecules with similar amino acid sequences are selected from the Pro-

tein Data Bank. These molecules serve as models of the target molecule. The model

molecule is assigned a proper orientation and location in the asymmetric unit in order

to reach a maximum overlap with the target molecule. The phases calculated from the

model molecule are good estimates for the target molecule.

In addition to the heavy-atom method and the molecular replacement method, there

are some direct phasing methods[15–26]. Direct method tries to retrieve the phase

directly from the observed data. Different constraints in real space and reciprocal space

have been used by direct methods. According to the constraints, direct methods are

classified as real-space, reciprocal-space and dual-space direct methods. Generally, the

dual-space direct method has better performance.

In all cases, the obtained phases are good estimates of the true phases and they are

improved by standard phase-improvement techniques.

3.2 Patterson function

The electron density function in the unit cell is the Fourier transform of the structure

factors. The magnitude of the structure factor is proportional to the intensity of the

40



reflection on the diffraction pattern. Patterson function is the Fourier transform of the

reflection intensity[27].

P (u, v, w) =
1

V

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

|F (h, k, l)|2e−2πi(hu+kv+lw) (3.1)

It has been proved that Patterson function can be alternatively written as follows.

P (u) =

∫
r
ρ(r)ρ(r+ u)dv (3.2)

When both ρ(r) and ρ(r+ u) are nonzero, P (u) will show a peak on the Pattern map.

Pattern function gives a map of the vectors between atoms. A Patterson peak corre-

sponds to the displacement between two atoms.

Figure 3.1: Structure of a unit cell containing three atoms and construction of the
Patterson map.

If there are only a few atoms inside the unit cell,it is possible to work out the

locations of the atoms in the unit cell that give the observed Patterson peaks. But

if there are hundreds or thousands of atoms in the unit cell, it becomes impossible to

deconvolute the Patterson map. However, Patterson function is still very useful for other

methods such as isomorphous replacement and anomalous dispersion.
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3.3 Isomorphous replacement method

Heavy atoms have more electrons which obviously affect the magnitudes of reflections.

Some small molecules already have big atoms such as sulfur. For protein molecules, in

order to get strong perturbations on the diffraction pattern, people usually add heavy

atoms to the molecule. Addition one or more heavy atoms to a protein molecule is called

isomorphous replacement.

Isomorphous replacement method needs at least two diffraction patterns. One is

from the native crystal without the addition of heavy atoms. The other is from the

derivative crystal which contains heavy atoms and the native molecular structure. The

native protein crystal is soaked into a heavy-atom solution, such as solutions with mer-

cury, lead, or gold, which gives a derivative crystal with some heavy atoms attached to

the native protein structure. The introduction of heavy atoms should not change the

dimensions of the unit cell. The derivative crystal must be isomorphous with the native

protein crystal. At least two and often more heavy-atom derivatives are required in

isomorphous replacement method.

Heavy atoms of the derivative crystals should be located first. Diffraction pattern

of the native crystal gives the structure factor of the protein, |FP|. Diffraction pattern

of the heavy-atom drivative crystal gives the structure factor of the protein plus heavy

atoms, |FPH|. The difference between the two diffraction patterns gives the contribution

of heavy atoms alone. The diffraction pattern of the heavy atoms alone is |FPH|−|FP|. A

difference Patterson function is constructed, which is the Fourier transform of |∆F|2 =
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(|FPH| − |FP|)2.

∆P (u, v, w) =
1

V

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

|∆F (h, k, l)|2e−2πi(hu+kv+lw) (3.3)

Because the difference Patterson function corresponds to the heavy atoms alone, the

locations of the heavy atoms are found by analyzing the peaks on the difference Patterson

map. Once the locations of heavy atoms are figured out, the structure factors of the

heavy atoms FH are computed. FH corresponds to the structure factor of a unit cell

which contains heavy atoms only.

Figure 3.2: A structure factor for the heavy atom derivative is the sum of contribu-
tions from the native structure and the heavy atom.

The structure factor is a complex number and is represented as a vector on the

complex plane. The structure factor of the native crystal is denoted as FP. The structure

factor of the heavy-atom derivative is denoted as FPH. The relationship between FP

and FPH is written as
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FP = FPH − FH (3.4)

Figure 3.3: One heavy-atom derivative indicates two possible phases for the structure
factor of the native protein

This relationship is illustrated on the complex plane with the Harker construction

or Harker diagram which is shown as two circles in Figure 3.3. One is centered at the

origion with a radius |FP|. The other is centered at the head of −FH with a radius

|FPH|. From the Harker construction, two possible solutions of FP are found. There are

two possible phases for each structure factor of the native crysal. If the two phases are

very close, the average of the two phases can be used as an estimate. With the help of

phase improvement methods, all phases of the structure factors of the native crysal may
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be solved by only one derivative. In this case, the native structure is said to be solved

by a single isomorphous replacement (SIR).

Figure 3.4: Two heavy-atom derivatives can fix the phase of the structure factor of
the native protein.

Most of the time, the two solutions of FP are not close. In order to remove the

ambiguity in phases, a second derivative crystal is needed. Using the second derivative,

another two possible phases are found for each structure factor of the native crysal, and

one of the two phases should be close to one of the previous phases got from the first

derivative crystal. In this case, the phase of each structure factor of the native crysal

is uniquely determined by two derivative crystals and we call it multiple isomorphous

replacement (MIR). Sometimes, in order to completely remove the ambiguity of the

phase, more than two derivative crystals are employed.
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3.4 Anomalous dispersion method

Heavy atoms absorb X-rays of special wavelength and re-emit X-rays with altered phase,

which breaks the Friedel’s law. Fh,k,l and F−h,−k,−l will not have opposite phases and

their magnitudes may be different. This is called anomalous dispersion (AD) or anoma-

lous scattering. If one crystal with anomalous scatters is used to solve the structure, it

is called single anomalous dispersion (SAD). If more crystals with different anomalous

scatters are used, it is called multiple anomalous dispersion (MAD).

Anomalous scattering is obvious when the wavelength of the X-ray is close to the

characteristic emission wavelength of the element. The absorption edges of light atoms,

such as carbon oxygen and nitrogen, are far away from the wavelength of X-rays used in

diffraction experiment. Only heavy atoms contribute to obvious anomalous scattering

on the diffraction pattern. For synchrotron light source, the wavelength of X-rays is

tunable, so the abortion edge of different heavy atoms can be reached. If anomalous

Figure 3.5: The anomalous scattering term alters the magnitude and the phase of
the atomic scattering factor

dispersion occurs, the total atomic scattering factor consists of three terms.

f(λ) = f0 + f ′(λ) + if ′′(λ) (3.5)
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f0 is the normal term which is independent of the wavelength. f ′ and f ′′ are anomalous

scattering factors which depend on the wavelength. f ′ is usually negative and f ′′ is

usually positive. f ′ and f ′′ are negligible when the wavelength is long or short. The

Figure 3.6: Schematic experimental values of f ′ and f ′′ as a function of X-ray wave-
length.

absorption of X-rays drops suddenly at wavelength λ3, just below the characteristic

emission wavelength of the element λ2. This change in absorption is called absorption

edge. At λ2, f
′′ has the maximum value. At λ3, f

′ reaches its minimum value. Because

f ′′ is responsible for anomalous dispersion, we can tune the wavelength to λ2 to get a

maximal anomalous signal.

Since the diffractive contributions of atoms are additive vectors, the structure factor

for the heavy-atom derivative is the vector sum of the structure factors of the protein

alone and the heavy atoms alone. F′
H has been absorbed into FH. F′′

H corresponds to

the heavy-atom anomalous dispersion, which is perpendicular to the normal structure

factor FH. FP and FH are independent of the wavelength, while F′′
H depends on the

wavelength.

FPH,λ = FP + FH + F′′
H,λ (3.6)
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Figure 3.7: The structure factor of the anomalous-dispersion derivative breaks
Friedel’s law under anomalous scattering.

When the wavelength is at λ1 , which is far away from the absorption edge, heavy

atoms have only normal scattering. The structure factor of the heavy-atom derivative

FPH,λ1 follows Friedel’s law. When the wavelength is at λ2 , which is at the absorption

edge, heavy atoms have strong anomalous scattering. The structure factor of the heavy-

atom derivative does not follow Friedel’s law. Subscripts (+) and (−) are used to identify

positive Miller indices and negative Miller indices.

At wavelength λ1 , there is no anomalous dispersion. Anomalous dispersion appears

at wavelength λ2. The relationship between FPH(+),λ1
and FPH(+),λ2

is very clear in
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Figure 3.8: Vector relationship for Equation 3.7.

Figure 3.8.

FPH(+),λ1
= FPH(+),λ2

− F′′
H(+),λ2

(3.7)

The anomalous scattering contribution can be treated as a constant for a given

element and roughly independent of reflections. The magnitude of F′′
H is known. The

phase of F′′
H depends on the positions of heavy atoms in the unit cell. The locations of

heavy atoms can be solved from the peaks on the difference Pattern map obtained from

the diffraction pattern of the native protein crystal and the diffraction pattern of the

heavy-atom derivative crystal at wavelength λ1 . So the phase of F′′
H is known.

The vector solution of Equation 3.7 can be found from the Harker diagram in Figure

3.9. We place the vector −F′′
H(+),λ2

at the origin and draw a circle of radius |FPH(+),λ2
|

centered at the head of vector −F′′
H(+),λ2

. All vectors on this circle equal FPH(+),λ2
−
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Figure 3.9: Vector solution of Equation 3.7. Two possible phases are indicated.

F′′
H(+),λ2

. The head of FPH(+),λ1
lies somewhere on this circle. Then we add another

circle of radius |FPH(+),λ1
| centered at the origin. The intersections of the two circles

give the two possible solutions of FPH(+),λ1
.

From the anomalous dispersion diagram in Figure 3.10, another equation is con-

structed as follows.

FPH(+),λ1
= F∗

PH(−),λ2
− (−F′′

H(+),λ2
) (3.8)

The mirror image of FPH(−),λ2
gives the conjugate vector F∗

PH(−),λ2
which has the

same magnitude with FPH(−),λ2
. The mirror image of F′′

H(−),λ2
gives the conjugate

vector F′′∗
H(−),λ2

which equals −F′′
H(+),λ2

. The three vectors FPH(+),λ1
, −F′′

H(+),λ2
, and

F∗
PH(−),λ2

form a triangle.
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Figure 3.10: Vector relationship for Equation 3.8.

In Figure 3.11, a diagram has been drawn to solve Equation 3.8. We place the vector

F′′
H(+),λ2

at the origin and draw a circle of radius |FPH(−),λ2
| centered at the head of

vector F′′
H(+),λ2

. All vectors on this circle equal F∗
PH(−),λ2

− (−F′′
H(+),λ2

). The head of

FPH(+),λ1
lies somewhere on this circle. Then we add another circle of radius |FPH(+),λ1

|

centered at the origin. The intersections of the two circles give the another two possible

solutions of FPH(+),λ1
. Combined with the two possible soluitons got previously, the

ambiguity in the phase of FPH(+),λ1
is removed.
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Figure 3.11: Vector solution of Equation 3.8. Another two possible phases are indi-
cated. The ambiguity of the phase is removed.

3.5 Molecular replacement method

A known molecular structure is used as a model to estimate the phases of the structure

factors of a target molecule when the two molecular structures are similar. This is called

molecular replacement[28, 29]. It is the most preferable phasing method, because only

the native protein crystal is needed for the X-ray diffraction experiment.

The amino acid sequence of the target protein molecule is available after protein

expression. Structures with similar amino acid sequences can be found by searching

Protein Data Bank. The same symmetry operations and cell parameters of the target

structure should be used for the model structure.

Although the selected structure can serve as a model of the target structure, the

orientation and location of the model in the asymmetric unit still need to be found.

There are six degrees of freedom to find the correct orientation and location of the
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model structure inside the asymmetric unit. Three degrees of freedom correspond to

rotation and three degrees of freedom correspond to translation.

Figure 3.12: Illustration of the rotation and translation functions applied to super-
impose a probe and target structure in molecular replacement.

X ′ = RX + T (3.9)

The orientation and location are searched separately. If the orientation and location

are searched at the same time, there are a lot of possible combinations and it requires too

much time to compute all possible combinations. Patterson map is used to determine

the correct orientation of the model structure in the asymmetric unit. If the orientation

of the model structure is correct, there will be maximum overlap between the Patterson
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map of the target structure and the Patterson map of the model structure. An overlap

function or rotation function is defined as

R(φ, ψ, χ) =

∫
u,v,w

Ptarget(u, v, w)Pmodel(u, v, w, φ, ψ, χ)dudvdw (3.10)

At each set of rotation angles, the value of the rotation function is an integral of the

product of two Patterson functions. When the orientation of the model molecule is

correct, the peaks on the two Patterson maps will reach maximum overlap and the

rotation function will obtain a maximum value.

Figure 3.13: The model in green and the final structure in red.

After the orientation and the location of the model are determined, the model is

placed into the asymmetric unit. Phases are calculated from the model.

The overall agreement between the reflection magnitude of the model and the re-

flection magnitude of the target can serve as a criterion to identify the correct location
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of the model structure in the asymmetric unit. After each translation, the synthetic

structure factor of the model is calculated. R factor is defined to calculate the difference

between the calculated structure factors of the model and the observed structure factors

of the target.

R =

∑∣∣|Fobs| − |Fcal|
∣∣∑

|Fobs|
(3.11)

For each reflection, the absolute difference between the observed magnitude and the

calculated magnitude is calculated. The sum of the absolute difference is calculated

over all reflections and then it is divided by the sum of all observed magnitudes. If the

location of the model structure is correct, the calculated magnitudes will agree well with

the observed magnitudes and R will reach its minimum value.

The standard linear correlation coefficient CC is also used.

CC =

∑
h,k,l

(
|Fobs|2 − |Fobs|2

)
×
(
|Fcal|2 − |Fcal|2

){∑
h,k,l

(
|Fobs|2 − |Fobs|2

)2∑
h,k,l

(
|Fcal|2 − |Fcal|2

)2}1/2
(3.12)

The advantage of this correlation coefficient is that it is scaling insensitive.

3.6 Direct method

Methods which solve the phase problem directly from the observed diffraction inten-

sities are called direct methods[27, 30–49]. The methods generally exploit constraints

or statistical correlations between the phases of different reflections. In small molecule

crystallography, direct methods are standard techniques for determining the phase an-

gles of the structure factors. The basic assumptions of the direct methods include: the

electron density is always positive and the molecular structure consists of discrete atoms.
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Phase relations based on probability theory have been formulated and these relations

are applied to suitably selected cluster of structure factors. Although direct methods

work very well for small molecule crystals, they have not been successfully applied to

protein crystals which contain thousands of atoms.

Direct methods are roughly divided into reciprocal-space direct methods and real-

space direct methods. Reciprocal-space direct methods focus on the relationships be-

tween the phases of different reflections. Real-space direct methods try to use the

electron-density constraints.

Reciprocal-space direct methods for small molecule crystals make use of the rela-

tionships between phases. Sayre’s equation gives us the relationships between the phases

of structure factors. Suppose all atoms are the same.

ρ(x, y, z) =
1

V

∑
h,k,l

F (h, k, l)exp
[
−2πi(hx+ ky + lz)

]
(3.13)

F (h, k, l) = f

N∑
j=1

exp
[
2πi(hxj + kyj + lzj)

]
(3.14)

f is the atomic scattering factor which is the same for all atoms. If the electron density

function is squared, the new structure factor is denoted as G(h, k, l).

ρ2(x, y, z) =
1

V

∑
h,k,l

G(h, k, l)exp
[
−2πi(hx+ ky + lz)

]
(3.15)

G(h, k, l) is the structure factor of the squared electron density function. It can be proved

that G(h, k, l) is the sum of the products of pairs of structure factors whose indices sum
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to the desired values of (h, k, l).

G(h, k, l) =
1

V

∑
h′,k′,l′

F (h′, k′, l′)F (h− h′, k − k′, l − l′) (3.16)

If we assume that the electron density of neighbor atoms do not overlap with each other,

the squared electron density function of the unit cell ρ2(x, y, z) can be treated as the

sum of squared atoms. The structure factor of squared atoms is written as follows.

G(h, k, l) = g

N∑
j=1

exp
[
2πi(hxj + kyj + lzj)

]
(3.17)

g is the form factor of the squared atom, which is the same for all atoms. So G(h, k, l)

can be expressed by F (h, k, l).

G(h, k, l) =
g

f
F (h, k, l) (3.18)

Then we got Sayre’s equation:

F (h, k, l) =
f

gV

∑
h′,k′,l′

F (h′, k′, l′)F (h− h′, k − k′, l − l′) (3.19)

A structure factor is calculated as the sum of the products of pairs of structure factors

whose indices sum to the desired values of Miller indices.

|F (h, k, l)|exp(iϕh,k,l)

=
f

gV

∑
h′,k′,l′

∣∣F (h′, k′, l′)∣∣∣∣F (h− h′, k − k′, l − l′)
∣∣exp[i(ϕh′,k′,l′ + ϕh−h′,k−k′,l−l′

)]
(3.20)
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Weak reflections contribute a little to the sum. If |F (h, k, l)| is large, F (h, k, l) approxi-

mately has the same phase as the terms with large |F (h′, k′, l′)||F (h− h′, k− k′, l− l′)|.

This method is a powerful way of finding the phases of related strong reflections.

ϕh,k,l = ϕh′,k′,l′ + ϕh−h′,k−k′,l−l′ (3.21)

It can be written as a triplet relation[50].

ϕ−h,−k,−l + ϕh′,k′,l′ + ϕh−h′,k−k′,l−l′ ≈ 0 (3.22)

There is an important assumption in Sayre’s equation. The assumption is that the

electron densities of neighbor atoms do not overlap. It means atoms should be clearly

separated. In practice, the electron densities of neighbor atoms always overlap. But

Sayre’s equation can still serve as a good approximation[51].

For small molecule crystals, the well-known tangent formula is often used for phase

refinement.

tan
(
ϕ
)
=

∑
h′,k′,l′

∣∣E(h′, k′, l′)
∣∣∣∣E(h− h′, k − k′, l − l′)

∣∣ sin(ϕh′,k′,l′ + ϕh−h′,k−k′,l−l′
)∑

h′,k′,l′

∣∣E(h′, k′, l′)
∣∣∣∣E(h− h′, k − k′, l − l′)

∣∣ cos(ϕh′,k′,l′ + ϕh−h′,k−k′,l−l′
)

(3.23)

E is the normalized structure factor.

In addition to reciprocal-space direct methods, there are also some famous dual-

space direct methods which are used to solve small crystals, such as Shake-and-Bake

(SnB) method[52–59] which alternates phase refinement in reciprocal space with density

modification in real space, as well as SHELX-D (also called ’Half-Baked’ method).
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At present, direct methods are used to solve small-molecule crystals. For protein

crystals, because of large amount of atoms in the unit cell, in most cases direct methods

can’t solve the phase problem. However, there are still some real-space direct methods

which can be used to locate the protein molecule or even secondary structures in the

unit cell.

The real-space approach is a scheme of generating approximate density maps directly

from the diffraction intensities[46, 60]. The unit cell is discretized into grid points. On

each grid point, one can assign one or zero corresponding to a point scatterer or none.

For any given on figuration of the lattice (the pattern of zero’s and one’s) and a selected

diffraction data set, the R value is calculated. By flipping the zero and one into each

other on each grid point, one can optimize the R value of the configuration. In essence,

this is a construction of optimal binary maps directly from the diffraction intensities.

More details can be found in Su (2008), where examples of protein envelopes constructed

from real diffraction data can be found.

Initially, some of the grid points are randomly selected to have the value one. The

remaining grid points have value zero. The structure factor is calculated and R factor

is defined to show the difference between the calculated structure factor and observed

structure factor.

R =

∑(
|Fobs| − k|Fcal|

)2∑
|Fobs|2

(3.24)

The scale factor k is analytically derived from ∂R/∂k = 0.

k =

∑
|Fobs||Fcal|∑
|Fobs|2

(3.25)
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Initially R is very large. A grid point is randomly selected, if flipping its value

between zero and one reduces R value, the value of this grid point will be updated.

After thousands of flipping, R is dramatically reduced. When R is reduced, those grid

points with value one are capable of showing the location and the envelope of the protein

molecule inside the unit cell. Sometimes, the secondary structures can be identified.

Figure 3.14: Simple flowchart of the iterative transform method.

In Chapter 4, a new direct method will be proposed to solve the phase problem

for protein crystals. The new method is an iterative transform method. Because the

average density in the protein region is higher than the average density in the solvent

region, a weighted average density map is used to locate the protein region directly from

the observed diffraction intensities. The density in the solvent region is modified by the

hybrid input-output algorithm which contains a negative feedback term. The calculated

protein-density histogram is modified to match a reference protein-density histogram.

After tens of thousands of iterations, the phase problem can be solved for protein crystals

with high solvent content directly from the observed intensities. This new direct method
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is roughly a real space method at present. Phase improvment techniques such as Sayre’s

equation will be employed in the future.

3.7 Summary

Some experimental phasing methods have been introduced, including SIR, MIR, SAD

and MAD. Experimental phasing methods often need biochemists to prepare several

heavy-atom derivative crystals which are time and effort consuming.

Molecular replacement becomes very popular when a similar structure is available

to serve as the initial model[61]. If a similar structure is not available, experimental

phasing methods are often the only choice.

Direct methods seek to retrieve the phases directly from the observed magnitudes.

In this case, biochemists do not need to prepare heavy-atom derivative crystals. They

only need to prepare the native protein crystal. The phases are retrieved directly from

the diffraction pattern of the native crystal.

In a word, the phase problem can be solved by the application of either isomorphous

replacement or molecular replacement or multiple wavelength anomalous dispersion. For

small molecular crystallography, direct methods are the standard techniques to deter-

mine the phases. However, for protein crystallography, the traditional direct methods

have not been successfully applied because of large amounts of atoms in the structure.

In the next chapter, we are going to introduce our new phasing method which is

an iterative transform method and it has been successfully tested to solve the phase

problem of several protein crystals with high solvent content.
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Chapter 4

Iterative transform method

4.1 Introduction

Finding the phases of diffracted X-rays is an important step in protein structure de-

termination. Although the use of selenomethionine and multiple anomalous dispersion

(MAD) has rendered the procedure almost routine, the time and resources involved can

still be substantial for many large proteins, not to mention the difficulty of expressing

some selenomethioninesubstituted proteins in eukaryotic hosts [62]. Alternate techniques

that reduce the experimental and investigator demands are therefore still of considerable

importance.

Recently, an iterative transform algorithm has been proposed by Liu et al. (2012)[63]

to retrieve the phases. An envelope of the region occupied by the protein inside the

unit cell is assumed. In each iteration, Fourier refinement (replacing calculated Fourier

amplitudes by observed ones) is combined with a density modification in real space,

which is essentially a gradual solvent flattening through the hybrid input–output (HIO)
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algorithm [64]. For a peculiar choice of the protein boundary, Liu et al. were able to

recover several high-resolution structures with high solvent content. As such, that work

constitutes important progress in solving the phase problem. It is obviously desirable

to eliminate the requirement of a prior knowledge of the protein region. As will be

demonstrated below, it is possible to do so and therefore possible to directly phase

protein crystals with high solvent content.

We have followed basically Liu et al.’s algorithm except that we allow the protein

boundary to evolve with iteration[65]. In each iteration cycle, a weighted average density

map is constructed to define the protein region. Thus the protein boundary is not

assumed beforehand; rather it is dynamic and becomes accurate only at the end of

successful calculations. Therefore, our procedure is ab initio phasing. A very similar

idea has been pursued by Millane & Stroud (1997)[66] and by van der Plas & Millane

(2000)[67] in their reconstruction of icosahedra virus images from Fourier intensities.

Also the related idea of a dynamic support has been studied in the field of coherent

diffraction imaging[68, 69].

Although our primary interest is in ab initio phasing, our method can also be used

for phase extension. Prior knowledge of low-resolution phases (say 10Å) leads to fast

convergence of high-resolution structures.

In this chapter, methodology and techniques are discussed. In Section 2, the over-

sampling condition is described. In Section 3, the flow chart of the iterative transform

method is given. In Section 4, symmetry operations, equivalent positions and origin

choices are discussed. In Section 5, fast Fourier transform method is introduced. In

Section 6, weighted average electron-density map is defined to locate the protein mask.
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In Section 7, histogram matching is shown as a standard density modification technique.

In Section 8, hybrid input-output method (HIO) is employed to modify the electron den-

sity in the solvent region. In Section 9, traditional solvent flattening is introduced. In

Section 10, strategies to reconstruct missing reflections are discussed. In Section 11, R

factors used to monitor the calculated results are given. The last section is a summary

of this chapter.

Several examples will be presented in Chapter 5.

4.2 Oversampling condition

In X-ray crystallography, Miao et al.[70] suggest that, given the magnitude of a Fourier

transform sampled at the Bragg density, the phase problem is underdetermined by a

factor of 2 for three-dimensional crystals. Thus oversampling the magnitude of a Fourier

transform by a factor of 2 is required in order to retrieve the phases.

The diffraction pattern with N1×N2×N3 reflections in h, k, and l directions can be

observed in reciprocal space. According to Friedel’s law, the magnitudes of the structure

factors have central symmetry. Therefore, the number of independent reflections drops

to N1 × N2 × N3/2. If the phases of these reflections are solved, the electron density

can be calculated on N1 ×N2 ×N3 points along the x, y, and z directions in real space.

Generally speaking, we have to solve the electron densities on a N1 ×N2 ×N3 grid, but

we only have N1×N2×N3/2 independent intensities measured in experiment. However,

if the solvent content in the crystal is greater than 50%, only less than N1 ×N2 ×N3/2

unknown electron densities have to be determined for the protein region. In this case,

the number of independent intensities measured in experiment can exceed the number of
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unknown electron densities in a unit cell. Therefore, oversampling condition is satisfied

and the phase problem becomes overdetermined.

In the iterative transform method, we deal with crystals with solvent content greater

than 50% in order to satisfy the oversampling condition.

In Chapter 6, we will discuss that there are many density constraints and phase

constraints which can be employed to reduce the degrees of freedom of the electron

density. Therefore, low-solvent-content crystals can satisfy the oversampling condition.

4.3 Flowchart of the iterative transform method

An iterative transform method has been proposed to directly solve the phase problem

from the X-ray diffraction intensities. This method starts from random density in an

asymmetric unit of the unit cell. By backward fast Fourier transform, the calculated

phases are combined with observed magnitudes to form new structure factors. The

forward fast Fourier transform of these assembled structure factors gives a new electron

density map in the unit cell. A weighted average electron-density map is calculated from

the new electron density map. A cutoff value can be searched on the weighted average

electron density map to divide the unit cell into protein region and solvent region.

Inside the protein region, histogram matching is employed to modify the calculated

electron density. In the solvent region, hybrid input-output method is used to modify the

calculated electron density. After thousands of iterations, the final calculated electron

density becomes interpretable for a successful run.

Our iterative transform algorithm is represented by the flowchart in Figure 4.1. The

unit cell is divided into a grid with regularly spaced points. At the beginning of the

65



iterative transform method, the electron density on each grid point in an asymmetry

unit is given a random value between zero and one.

Figure 4.1: Flow chart of the iterative transform method.

Each iteration begins with a real space density which comes from the previous

round of calculation. By a backward fast Fourier transform of the electron density, the

Fourier magnitudes and phases can be calculated. The calculated phases are kept, but

the calculated Fourier magnitudes are replaced by the observed Fourier magnitudes.

Sometimes this is called Fourier refinement. The calculated phases can also be modified

according to constraints in Fourier space such as Sayre’s equation. The calculated phases

are combined with the observed Fourier magnitudes to produce the new electron density

via a forward fast Fourier transform.

Initially, the calculated density in the unit cell is almost random. It is difficult to tell

the boundary between the protein and the solvent. However, the average density in the

protein region should be a little higher than the average density in the solvent region.
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This information is about the overall density distribution in the unit cell and it can be

retrieved directly from the observed magnitudes based on my experience. In order to

find the boundary between the protein and the solvent, a weighting function is defined.

This function does not focus on the density of any local grid point. Actually it focuses

on the density distribution in a big region. Therefore, the weighted average density

can locate the protein region in the unit cell directly from the observed magnitudes

assembled with nearly random phases.

A weighted average density map described above is computed on the calculated

electron density map. Because the protein region has higher density than the solvent

region, the protein region should have higher weighted average density and the solvent

region should have lower weighted average density. A cutoff value of the weighted average

density can be found by try and error method to agree with the solvent content of the

crystal. The cutoff weighted average density divides the unit cell into two regions. One

is the protein region and the other is the solvent region. Both of these two regions are

connected regions due to the property of the weighted average density function. The

connectivity constraint of the protein region is satisfied. The initial protein boundary is

only an estimate. The accuracy of the protein boundary can be realized after thousands

of iterations.

There are different density constraints in the protein region and the solvent region.

Density constraints are applied via density modification to two regions, respectively.

In the protein region, histogram matching is used to modify the electron density.

Although different molecules have different structures, the electron density distributions

in the molecular region always look similar at the same resolution. This property can

67



be used to modify a poor electron density map and push it toward a good electron

density map. Histogram matching can be done in 1D which is the density-histogram

matching. The gradient or first order derivative of the electron density function can also

be matched. This is called gradient-histogram matching. The combination of density-

histogram matching and gradient-histogram matching is called 2D histogram matching.

Higher order derivatives of the electron density function can also be matched. However,

due to the resolution limit and the effect of temperature factor, higher order histogram

matching are not used in practice.

In the protein region, if there is non-crystallographic symmetry (NCS), NCS aver-

aging can be a powerful density modification tool. In some crystals, there are several

copies of molecules inside an asymmetric unit. Different copies can be related by rota-

tion and translation non-crystallographic symmetry operations. The electron densities

for different copies of the molecule in an asymmetric unit can be averaged. The exis-

tence of NCS reduces the degrees of freedom of the protein electron density. In other

words, it increases the ratio of the solvent volume to the independent protein volume.

Oversampling condition can thus be satisfied for low-solvent-content crystals.

In the solvent region, hybrid input-output (HIO) method is used to modify the

electron density. Because most water molecules have different orientations in different

unit cells, the electron density in the solvent region is flat and equals a constant. If

we let F000 float, the expected solvent density can be set to zero. In order to push

the calculated electron density towards zero in the solvent region, the hybrid input-

output method introduces a negative feedback density. This negative feedback density

can modify the calculated electron density in the solvent region and push it slowly
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towards zero. The speed can be controlled by the feedback parameter. HIO connects the

calculated electron density in the current iteration with the calculated electron density

in the previous iteration. It is very capable to overcome the stagnation problem.

In addition to hybrid input-output method, solvent flattening is another density

modification technique used in the solvent region. Solvent flattening pushes the electron

density in the solvent region directly to zero or a constant. There is a disadvantage that

the calculated electron density in the solvent region has no time to evolve. Realizing

this disadvantage, I suggest a limited HIO method.

4.4 Symmetry operations, equivalent positions, and origin

choices

The iterative transform method starts from random density in the asymmetric unit and

all density modification techniques are applied inside the asymmetric unit. The electron

density in the asymmetric unit can be extended to the whole unit cell according to the

symmetry operations of the specific space group.

Fractional coordinates are often used by symmetry operations. There are two kinds

of coordinates commonly used in crystallography. Orthogonal coordinates are often used

to show the calculated results in Cartesian system, for example, the atomic coordinates

in the pdb file. Fractional coordinates are always used in calculations, because fractional

coordinates are independent of cell parameters. The transformation between these two

coordinates can be realized by two transformation matrices. Morth−to−frac is the matrix
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used to go from orthogonal coordinates to fractional coordinates.

Morth−to−frac =



1/a −
cos γ

a sin γ

cosα cos γ − cosβ

aµ sin γ

0
1

b sin γ
−

cosα− cosβ cos γ

bµ sin γ

0 0
sin γ

cµ



where µ =
√

1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ. a, b, c, α, β and γ are

cell parameters. Mfrac−to−orth is the matrix used to go from fractional coordinates to

orthogonal coordinates.

Mfrac−to−orth =



a b cos γ c cosβ

0 b sin γ
c(cosα− cosβ cos γ)

sin γ

0 0
cµ

sin γ



Different protein crystals may belong to different space groups which have different

symmetry operations. Each symmetry operation can be expressed as a combination

of a rotation and a translation. The rotation can be mathematically written as a 3 ×

3 matrix while the translation is a three component vector. A complete unit cell is

obtained by applying the rotation matrix and the translation matrix onto the fractional

coordinates of the protein atoms in an asymmetric unit. The number of symmetry

operations determines the number of equivalent positions inside the unit cell.

Let’s take the space group P212121 as an example to show the symmetry operations[71].
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P212121 is the most popular space group in Protein Data Bank (PDB). More than 23%

crystals in PDB fall in this space group. There are four symmetry operations which can

generate four equivalent positions in the unit cell. Therefore the asymmetric unit only

occupies a quarter of the unit cell. For example, the asymmetric unit can be chosen at

0 < x < 0.5, 0 < y < 0.5 and 0 < z < 1.0. The four symmetry operations are expressed

as four matrices. Each of them includes a 3×3 rotation matrix and a translation column

vector.


1 0 0 0

0 1 0 0

0 0 1 0




−1 0 0 0.5

0 −1 0 0

0 0 1 0.5




−1 0 0 0

0 1 0 0.5

0 0 −1 0.5




1 0 0 0.5

0 −1 0 0.5

0 0 −1 0



They correspond to four equivalent positions in the unit cell. (x, y, z); (−x+0.5,−y, z+

0.5); (−x, y + 0.5,−z + 0.5); (x+ 0.5,−y + 0.5,−z)

For example, a human thyroid hormone receptor with PDB ID 3ILZ[72] is in space

group P212121 . The unit cell is shown in Figure 4.2.

Now we pick another space group P43212 as another example to show the symmetry

operations. P43212 ranks as the seventh popular space group in Protein Data Bank.

There are eight symmetry operations which produce eight equivalent positions in the

unit cell. The asymmetric unit only occupies one eighth of the unit cell. The asymmetric

unit is chosen at 0 < x < 0.5, 0 < y < 0.5 and 0 < z < 0.5. The eight symmetry
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Figure 4.2: Stereogram of a unit cell in P212121 space group, containing four equiv-
alent positions.

operations are expressed as matrices.


1 0 0 0

0 1 0 0

0 0 1 0




−1 0 0 0

0 −1 0 0

0 0 1 0.5




0 −1 0 0.5

1 0 0 0.5

0 0 1 0.75




0 1 0 0.5

−1 0 0 0.5

0 0 1 0.25



−1 0 0 0.5

0 1 0 0.5

0 0 −1 0.75




1 0 0 0.5

0 −1 0 0.5

0 0 −1 0.25




0 1 0 0

1 0 0 0

0 0 −1 0




0 −1 0 0

−1 0 0 0

0 0 −1 0.5


They correspond to eight equivalent positions in the unit cell. (x, y, z); (−x,−y, z+

0.5); (−y + 0.5, x + 0.5, z + 0.75); (y + 0.5,−x + 0.5, z + 0.25) (−x + 0.5, y + 0.5,−z +

0.75); (x+ 0.5,−y + 0.5,−z + 0.25); (y, x,−z); (−y,−x,−z + 0.5)
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As another example, a photosynthetic reaction center structure with PDB ID 2UXJ[73]

is crystalized in space group P43212. Eight equivalent molecules are generated via sym-

metry operations to form a complete unit cell, as shown in Figure 4.3.

Figure 4.3: Stereogram of a unit cell in P43212 space group, containing eight equiv-
alent positions.

To apply the iterative transform method, the unit cell has to be divided into a grid.

The approximate density for each grid interval should be sampled at the center of that

grid interval. In this case, when we apply symmetry operations, the whole unit cell will

be properly sampled. For example, we divide the unit cell into a 4 × 4 grid. Suppose

each grid unit is occupied by an atom. The space group is P212121. In Figure 4.4, the

red atoms are located at the center of each grid unit in the asymmetric unit. The green,

blue and yellow atoms occupy the equavelant positions in the unit cell. The unit cell is

properly sampled after we apply symmetry operations.

However, if the approximate density for each grid interval is sampled at the corner

of that grid interval, after applying symmetry operations, the whole unit cell will not
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Figure 4.4: Stereogram to show the density sampled at the center of each grid interval.

be properly sampled. In Figure 4.5, red atoms are located at a corner of each grid unit

in the asymmetric unit. The green, blue and yellow atoms occupy equivalent positions.

After symmetry operations, some grid units are doubly sampled, while some grid units

are empty. This is obviously not a uniform sampling.

Figure 4.5: Stereogram to show the density sampled at the corner of each grid interval.

The unit cell should be divided into a grid and the number of grid units in each
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dimension should be divisible by 1, 2, 3, 4, etc., which depends on the symmetry op-

erations of the specific space group. It helps to extend the electron density from an

asymmetric unit to the whole unit cell. For example, the unit cell should be divided

into even number of grid units in three orthogonal directions if the unit cell has P212121

symmetry.

Origin choice arises from the fact that the measured intensities are the same for

several permissible origin choices of the unit cell[9]. Difference origin choices give dif-

ferent unit cells, but they correspond to the same diffraction pattern. If the protein

crystal belongs to a non-centrosymmetric space group, its inverse image gives rise to an

identical diffraction pattern. The inverse image is referred to as an enantiomorph. If the

enantiomorph exists, the number of origin choices will be doubled. Because all origin

choices have the same measured intensities, the calculated electron density can be in

any origin choice.

There are sixteen origin choices for crystals in P212121 space group. The first eight

origin choices are (0.5, 0, 0), (0, 0.5, 0), (0, 0, 0.5), (0.5, 0.5, 0), (0.5, 0, 0.5), (0,

0.5, 0.5) and (0.5, 0.5, 0.5). P212121 space group is non-centrosymmetric. There is no

inversion center in the unit cell. Under a coordinate inversion, the magnitudes of the

structure factors do not change at all. Therefore, there are another eight origin choices

corresponding to enantiomorphs.

There are eight origin choices for crystals in P43212 space group. The first four

origin choices are (0, 0, 0), (0, 0, 0.5), (0.5, 0.5, 0) and (0.5, 0.5, 0.5). Crystals in P43212

space group are non- centrosymmetric. There are another four origin choices due to

enantiomorph.
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4.5 Fast Fourier Transform

Fast Fourier Transform (FFT) can dramatically reduce the computing time of each

iteration cycle. There are several packages that can be used for FFT, such as the Fast

Fourier Transform in the West (FFTW) and the Intel Fast Fourier Transform in Intel

Math Kernel Library (MKL). Intel MKL FFTs include many optimizations and support

a broad variety of FFTs, such as three-dimensional complex-to-complex, real-to-complex

and real-to-real transforms of arbitrary length.

Take Intel FFT three-dimensional complex-to-complex transform as an example.

The unit cell is divided into a grid with Nx×Ny ×Nz regularly spaced points. Electron

densities on grid points are stored in a Nx×Ny ×Nz matrix. Because electron densities

are real, their imaginary parts should be zero. Structure factors are stored in a Nh ×

Nk ×Nl matrix. Structure factors are complex numbers including both magnitudes and

phases.

In the manual of Intel FFT, the general form of a d-dimensional discrete Fourier

transform is

Zk1,k2,···,kd = σ

nd−1∑
jd=0

· · ·
n2−1∑
j2=0

n1−1∑
j1=0

Wj1,j2,··· ,jdexp

(
δ2πi

d∑
l=1

jlkl/nl

)
(4.1)

for kl = 0, · · ·nl−1(l = 1, · · · , d), where σ is an arbitrary real-valued scale factor, and the

sign in the exponent is δ = −1 for the forward transform and δ = +1 for the backward

transform.

Take a two-dimensional unit cell as an example to demonstrate Intel FFT. The unit

cell does not have any symmetry and is divided into a 4× 4 grid.
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Figure 4.6: A two-dimensional example showing the Intel FFT calculation.

According to the previous section, the density for each grid unit is picked at the

center of that grid interval. The density of each grid unit has been listed in Figure

4.6. After fast Fourier transform, the calculated Fourier series are stored in a 4 × 4

matrix. The graph has shown how Fourier series are stored in the matrix. The unique

structure factors, which have non-negative indices, only occupy a quarter of the matrix.

Other structure factors are derived from the unique structure factors by reciprocal-space

symmetry operations and Friedel’s law.

Following the general form of the discrete Fourier transform in the manual of Intel

FFT, we have to use a backward FFT to transform the electron density in the unit cell

77



to structure factors. The backward scale factor is V/(NxNyNz).

F (h, k, l) =
V

NxNyNz

Nx−1∑
jx=0

Ny−1∑
jy=0

Nz−1∑
jz=0

ρ(jx, jy, jz)exp
[
2πi(hx+ ky + lz)

]
(4.2)

The calculated magnitudes of the structure factors will be replaced with observed

magnitudes. Then we have to use a forward FFT to transform the assembled structure

factors to an electron density map in the unit cell. The forward scale factor is 1/V .

ρ(jx, jy, jz) =
1

V

Nh/2−1∑
h=−Nh/2

Nk/2−1∑
k=−Nk/2

Nl/2−1∑
l=−Nl/2

F (h, k, l)exp
[
−2πi(hx+ ky + lz)

]
(4.3)

Nh = Nx;Nk = Ny;Nl = Nz. (4.4)

The sizes of those two matrices are the same. The observed data has a resolution.

The grid size used to divide the unit cell should be properly chosen so that all observed

unique structure factors can be fit into the matrix. Generally, the distance between two

nearest grid points is selected from dcutoff/4 to dcutoff/2. Therefore, for orthogonal space

groups,

Nh = Nx =
a

dcutoff/2

Nk = Ny =
b

dcutoff/2

Nl = Nz =
c

dcutoff/2

(4.5)
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Each diffraction spot or structure factor has a nominal resolution. The higher the

diffraction angle of the spot, the higher is its resolution. In real space, resolution means

the distance corresponding to the smallest observable feature. According to Bragg equa-

tion

d =
λ

2 sin θ
=

1

Sh,k,l
(4.6)

where λ is the X-ray wavelength, and d is the smallest distance between parallel

crystal-lattice planes with Miller indices (h, k, l). The resolution is given by d. For a

diffraction spot or a structure factor indexed by (h, k, l), its resolution can be calculated

as follows.

Sh,k,l =
1

V

√
h2S1 + k2S2 + l2S3 + 2hkS4 + 2hlS5 + 2klS6

S1 = b2c2 sin2 α

S2 = a2c2 sin2 β

S3 = a2b2 sin2 γ

S4 = abc2(cosα cosβ − cos γ)

S5 = ab2c(cos γ cosα− cosβ)

S6 = a2bc(cosβ cos γ − cosα)

V = abcµ

(4.7)

V is the volume of the unit cell and µ =
√

1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ

a, b, c, α, β and γ are cell parameters.

After backward FFT, the magnitudes of the calculated structure factors should be

replaced by the observed ones. Generally, only unique reflections are recorded in the
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experimental data. Hence the assembled structure factors consist of unique structure

factors and they have to be extended to the whole reciprocal space by reciprocal space

symmetry operations and Friedel’s law. The reciprocal space symmetry operations can

be derived from the real space symmetry operations. One can also check the tables in

the book “International tables for X-ray crystallography Volume I”.

4.6 Weighted average density

Inside the unit cell of a protein crystal, there are two regions. One is the protein region

occupied by the protein molecule. The other is the solvent region filled by solvent

molecules.

Figure 4.7: A unit cell can be divided into protein region and solvent region.

The average density in the protein region should be higher than the average density

in the solvent region. Every reflection includes the diffractive contributions from the

protein region and the solvent region. In other words, every reflection encodes the

information of the protein region and the solvent region and there are tens of thousands of

unique reflections. It should be possible to retrieve the protein region from the observed

data despite some missing low-resolution reflections. A weighted average density is

defined to facilitate this retrieval.
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A Gaussian function can be used to serve as a weighting function.

w(dij) = exp

(
−
d2ij

2σ2

)
(4.8)

The subscript i or j represents a grid point in the unit cell. Parameter σ measures the

width of Gaussian function which can be used to control the convergence of the solvent

region. The initial value of σ can be so big that almost all grid points in the unit cell

contribute to the average density on a specific grid point. σ is slowly reduced to an

appropriate value during the iterations.

We can also use a pyramid function to calculate the weighted average density.

w(dij) =


1− dij/d0 dij ≤ d0;

0 dij > d0.

(4.9)

dij is the distance between two grid points. Parameter d0 characterizes the width of

the pyramid function which again can be used to control the convergence of the solvent

region. The initial value of d0 can be as big as half of the unit-cell dimension. During

the iterations, d0 is gradually reduced to an appropriate value.

The weighted average electron density can be calculated in real space.

ρave(jx, jy, jz) =
∑

ix,iy ,iz

w(dij)ρ(ix, iy, iz) (4.10)

Take the pyramid weight as an example. From the weighting function we can see

that the closer the grid point is, the bigger weight it has. If a grid point is very far away,
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Figure 4.8: Schematic diagram to show the calculation of the weighted average density
on a grid point in real space.

its weight goes to zero. When we calculate the weighted average density of a grid point,

we draw a sphere centered at that grid point. Grid points outside the sphere have zero

weight. Different weights are assigned to the grid points inside the sphere. The weights

depend on the distance from these grid points to the center of the sphere. If a grid point

is closer to the center of the sphere, it has a bigger weight. Otherwise, it has a smaller

weight.

If we calculate the weighted average electron density in real space, it will be time

consuming. According to the convolution theorem, the weighting can be easily performed

in the Fourier space. The Gaussian weighting function can be written as follows.

w(r) = exp

(
−
r2

2σ2

)
(4.11)

The Fourier transform of the Gaussian weighting function is another Gaussian function.

g(S) = (
√
2πσ2)3exp(−2π2σ2S2) (4.12)
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The pyramid weighting function can be written as

w(r) =


1− r/d0 r ≤ d0;

0 r > d0.

(4.13)

The Fourier transform of the pyramid weighting function can be written as

g(S) =
3
[
sin(2πd0S)− 2πd0S cos(2πd0S)

]
(2πd0S)3

−
3
{
4πd0S sin(2πd0S)−

[
(2πd0S)

2 − 2
]
cos(2πd0S)− 2

}
(2πd0S)4

(4.14)

Upon convolution in Fourier space, each Fourier coefficient gets multiplied by a

weight g(S) which only depends on the resolution of the corresponding reflection. After

forward fast Fourier transform, the weighted average density on each grid point can be

achieved.

ρave(jx, jy, jz) =
1

V

Nh/2−1∑
h=−Nh/2

Nk/2−1∑
k=−Nk/2

Nl/2−1∑
l=−Nl/2

g(S)F (h, k, l)exp
[
−2πi(hx+ ky + lz)

]
(4.15)

It is very clear that g(S) can weaken high frequency terms of the Fourier series.

In signal processing, they are called Gaussian filter and pyramid filter. They can be

classified as low-pass filters, because low frequencies are passed and high frequencies are

attenuated. High frequency terms in Fourier series or high resolution structure factors

have been attenuated. The pyramid filter attenuates high frequency terms but not as

cleanly as what the Gaussian filter does. Basically, Gaussian filter and the pyramid filter
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have similar effect.

The protein mask is basically a low-resolution characteristic. Although every reflec-

tion memorizes the protein mask in the unit cell, the low-resolution reflections play the

most important role. For the synthetic data, we can calculate the exact magnitudes of

all reflections. It is very easy and very fast to retrieve an accurate protein mask from

the synthetic reflections.

However, some low-resolution reflections are always missing in the experimental data

due to the beam stop. Low-resolution reflections have very small diffraction angles. In

experiment, the beam stop blocks some low-resolution reflections. We need to rebuild

the low-resolution missing reflections in order to locate the protein mask correctly. Dif-

ferent means can be taken to build up the missing reflections. All of them make use of

the calculated magnitudes of those missing reflections. For the observed data, because

low-resolution diffraction spots have small diffraction angles which can lead to big mea-

surement errors. Those observed low-resolution reflections with big measurement errors

should also be rebuilt from the calculated magnitudes.

The protein region inside a unit cell should be connected[74, 75]. However, on the

calculated electron density map, those grid points with higher electron density are often

separated. The weighted average electron-density map can render the higher-electron-

density region connected, as shown in Figure 4.9.

A cutoff value Wcutoff can be found by adjusting it such that the calculated solvent

content agrees with the expected solvent fraction. Suppose the solvent content is given

at the beginning of iterations. The number of grid points in the solvent region can be

computed which is the product of solvent content and the total grid points in a unit cell.
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Figure 4.9: Electron density map and the corresponding weighted average electron
density map. Green regions represent high values. White regions represent small values.

The original protein structure has been superimposed in strands.

The cutoff value Wcutoff is determined by a half-interval searching algorithm. Let ρ2

be the maximum weighted average density in the unit cell and let ρ1 be the minimum

weighted average density in the unit cell. Suppose Wcutoff equals the average of ρ2 and

ρ1. The number of grid points with weighted average density greater thanWcutoff can be

counted. If this number is greater than the number of grid points in the protein region,

set ρ1 equal to the current value of Wcutoff and ρ2 does not change. If this number is

less than the number of grid points in the protein region, let ρ2 be equal to the current

value of Wcutoff and ρ1 does not change. This process is repeated until a proper Wcutoff

is found.

The initial parameter in the weighting function can be as big as half of the unit

cell dimension. We can’t find an exact protein mask in several iterations. Generally,
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hundreds or thousands of iterations are needed and the protein region emerges progres-

sively. The initial calculated protein mask looks like a sphere. The parameter in the

weighting function decreases with the iterations. Some details gradually show up on

the updated protein mask. After thousands of iteration, the calculated protein mask or

protein envelope converges to a fixed profile.

The final value of the parameter in the weighting function should be greater than

zero. On the electron density map, there is a small gap between the protein atoms

and their neighbor solvent molecules. In this region, the electron density can be less

than the average electron density in the solvent region. This region is quite close to the

protein surface. They can be treated as part of the protein region. The weighted average

density in this region can be less than the one in the solvent region if a small radius

in the weighting function is used. The final value of the parameter in the weighting

function should be at least several angstroms. If the final value is too big, the calculated

protein mask will not be precise enough to give the exact protein shape. If the final

value is too small, the protein mask will not be connected and it can’t completely cover

the protein region. In a word, the final value of the parameter in the weighting function

should be properly selected.

4.7 Histogram matching

The frequency distribution of electron density is fairly independent of specific protein

structures at the same resolution. The density histogram of a known structure can be

used to scale the histogram of a calculated poor density map. This process can improve

the calculated density map[76, 77].
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The frequency distribution of a reference structure is calculated. The frequency

distribution plot is divided into several hundred bins which have equal number of grid

points. Suppose the number of bins is N . There are N + 1 boundaries, starting from

1 to N + 1. The boundaries of the ith bin is denoted as ρ′i and ρ′i+1 for the reference

histogram. Following the same process, ρi and ρi+1 are calculated for the poor density

map. With a scaling factor ai, bin width of the poor map can be mapped onto the

corresponding bin width of the reference histogram. After a translation, each bin of the

poor density map is moved to the correct position on the reference histogram. ρi should

be moved to ρ′i , and ρi+1 should be moved to ρ′i+1 .


ρ′i = aiρi + bi

ρ′i+1 = aiρi+1 + bi

(4.16)

ai =
ρ′i+1 − ρ′i

ρi+1 − ρi
(4.17)

bi =
ρi+1ρ

′
i − ρiρ

′
i+1

ρi+1 − ρi
(4.18)

where i ranges from 1 to N . Each bin should have their own ai and bi . The calculated

electron density on a grid point is located in a bin. The corresponding ai and bi of that

bin should be used to modify the calculated density.

In practice, the frequency distribution plot is uniformly divided into millions of tiny

bins ranging from low electron density to high electron density. In each tiny bin, there

are only one or two grid points. It means only one or two grid points are located in

the tiny density interval. Starting from the first tiny bin which has minimum density,
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Figure 4.10: The reference histogram, the poor histogram and the modified his-
togram after histogram matching. Histograms are calculated in the protein region at

2Å resolution level.

the number of grid points is counted. The boundaries for each bin as mentioned in the

previous paragraph can be easily found. Because the total number of grid points may

not be divisible by the total number of bins, the number of grid points in each bin may

have a little difference.

Density histogram matching can be applied to the whole unit cell or to the protein
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region only. In the iterative transform method, the solvent density is modified by hybrid

input-output method which makes the solvent density vibrate around its equilibrium

value zero. If density histogram matching is applied in the solvent region, it may be in

conflict with HIO. Therefore, histogram matching is only applied to the protein region

in the iterative transform method.

4.8 Hybrid input-output

Hybrid input-output (HIO)[64, 78] is a density modification method. Suppose the equi-

librium density on a grid point is zero. The calculated density on that grid point often

deviates from its equilibrium value. Hybrid input-output method can be employed to

drive the calculated density towards its equilibrium value by introducing a negative

feedback term. HIO correlates the calculated density in the current iteration with the

one obtained in the previous iteration. In protein crystal, the equilibrium density in

the solvent region is flat and equals a constant. In the iterative transform method, F000

is allowed to change. The equilibrium density in the solvent region can be selected as

zero. Therefore, HIO method can be used to modify the calculated density in the solvent

region.

In the iterative transform method, suppose g(n) is the electron density at the end

of the nth iteration cycle. The (n + 1)th iteration cycle starts from a backward fast

Fourier transform of g(n) . Calculated phases are assembled with observed magnitudes.

Then a forward fast Fourier transform is applied onto the assembled structure factors

which gives a new electron density ρ(n+1). A weighted average electron-density map is

calculated from ρ(n+1) and a cutoff value on the weighted average electron-density map is
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found to divide the unit cell into protein region and solvent region. In the protein region,

hybrid input-output keeps the density ρ(n+1). In the solvent region, hybrid input-output

method introduces a negative feedback density.

g(n+1) =


ρ(n+1) in protein region;

g(n) − ερ(n+1) in solvent region.

(4.19)

ε is a feedback parameter which can be used to optimize the convergence of the algorithm.

Empirically, ε is chosen to be around 0.9.

Hybrid input-output method can cause a significant change the calculated electron

density in the solvent region. Sometimes, this is not good. We want to control the

modified density in the solvent region. A limited hybrid input-output scheme is proposed

as follows.

g(n+1) =



ρ(n+1) in protein region

g(n) − ερ(n+1) if |g(n) − ερ(n+1)| < ρ0 in solvent region

ρ0 if g(n) − ερ(n+1) > ρ0 in solvent region

−ρ0 if g(n) − ερ(n+1) < −ρ0 in solvent region

(4.20)

ρ0 is a positive parameter which can be used to control the modified density in the

solvent region. ρ0 can be updated during the iterations. For example, the initial value

can be set to 1.0 e/Å3 and the final value can be set to 0.2 e/Å3 .
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4.9 Solvent flattening

Solvent flattening is a traditional density modification technique[79–81]. It is based on

the fact that the electron density in the solvent region should be a constant. If the

solvent region can be identified in the asymmetric unit, the calculated electron density

in the solvent region can be directly set to zero. Let F000 be free to vary. The solvent

flattening scheme can then be expressed as follows.

g(n+1) =


ρ(n+1) in protein region

0 in solvent region

(4.21)

Solvent flattening pushes the solvent density directly to zero. In practice, the ex-

perimental data contains noise, temperature factors and measurement errors. The real

electron density in the solvent region may not be exactly constant. Based on my ex-

perience, the limited hybrid input-output method has better performance than simple

solvent flattening when the parameter ρ0 is given a small value, for example 0.2 e/Å3 .

4.10 Missing reflections

In X-ray diffraction experiment, a beam stop is always needed to stop the intense incident

beam that has not been diffracted by the crystal. Otherwise, the detector might be

damaged. Those missing reflections have very small diffraction angles and they should

be around the center of the diffraction pattern shown in Figure 4.11.

The missing low-resolution reflections are very important for the determination of

the protein mask and they have to be rebuilt during the calculations. There are several
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Figure 4.11: Some low-resolution diffraction spots on the diffraction pattern are
missing due to the beam stop.

means to build up the missing reflections. All of them make use of the calculated

structure factors. Suppose regions E represent the observed data. E′ stands for the

missing regions including the near-forward missing reflections due to the beam top. The

missing reflections can be reconstructed from their calculated value by multiplying by a

scale factor which is the sum of |Fobs(h, k, l)| divided by the sum of |Fcal(h, k, l)| in the

regions E[63].

|Fobs(h, k, l)|hkl∈E′ = |Fcal(h, k, l)|hkl∈E′

∑
hkl∈E |Fobs(h, k, l)|∑
hkl∈E |Fcal(h, k, l)|

(4.22)

In addition to the previous scale factor, some other scale factors may be used.

|Fobs(h, k, l)|hkl∈E′ = ξ|Fcal(h, k, l)|hkl∈E′ (4.23)
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Sometimes, for some crystals, the scale factor is not needed.

|Fobs(h, k, l)|hkl∈E′ = |Fcal(h, k, l)|hkl∈E′ (4.24)

In phase improvement and model refinement, usually 5% observed data are used to

calculate the free R factor. These reflections should also be rebuilt from their calculated

structure factors.

4.11 R factor

The traditional measure of the accuracy of the model, is the R factor, sometimes called

residual factor or reliability factor. During phase improvement, R factor is used to mea-

sure the agreement between the calculated data and the observed data. It is possible to

overfit or misfit the diffraction data. In model refinement, an incorrect model sometimes

can be refined to a fairly good R value. In order to solve the over-fitting problem, Rfree

has been introduced[5].

At the beginning of phase retrieval, about 5% observed reflections are randomly

selected as free data set and they will not be used for phase retrieval. All other observed

reflections are in work data set. Rfree is calculated from the free data set. Rwork is

calculated from the working data set. If the calculated electron-density map is correct,

it should predict all the observed data with uniform accuracy. Both Rwork and Rfree

decrease to a value close to zero. When over-fitting happens, Rwork decreases to a small

value, but Rfree is still big. Therefore, Rwork and Rfree can help us identify an over-fitting

density map. A correct density map should have good Rwork and Rfree at the same time.
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Rfree =

∑
hkl∈free

(
|Fobs| − k|Fcal|

)∑
|Fobs|

(4.25)

Rwork =

∑
hkl∈work

(
|Fobs| − k|Fcal|

)∑
|Fobs|

(4.26)

For a random electron-density map, both Rwork and Rfree are close to 0.59. For a

correct electron density map, Rfree and Rwork should be less than 0.30 depending on the

resolution of the observed data.

4.12 Summary

In this chapter, an iterative transform method has been introduced. It is a direct

phasing method. No prior knowledge of the protein is required. In principle, when the

oversampling condition is satisfied, the phase problem can be solved directly from the

diffraction pattern of the native protein crystal.

It is crucial to retrieve an accurate protein mask progressively from the diffraction

intensities. Weighted average density is employed to locate the protein mask. The

initial protein mask is almost a random mask. In each iteration cycle, the protein mask

is updated. After thousands of iterations, the final protein mask can be very accurate.

Some techniques used in the iterative transform method have been described, such as

fast Fourier transform, histogram matching, hybrid input-output and solvent flattening.

Fast Fourier transform makes it possible to complete tens of thousands of iterations in

several hours for a large protein molecule. Histogram matching reduces the freedom of

the electron density in the protein region. Hence oversampling condition can be better
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satisfied. Hybrid input-output method has been proved to be a very effective density

modification technique. By introducing a negative feedback parameter, it correlates the

calculated density of current iteration with the one of previous iteration. Therefore, it

is very capable of overcoming the stagnation problem. Solvent flattening is a traditional

density modification technique. It pushes the density in the solvent region directly to

zero[82].

Experimental data contains measurement errors and missing central reflections due

to the beam stop. Those reflections with big measurement errors and the missing re-

flections should be reconstructed from the calculated values. Several means have been

given to rebuild these reflections.

Limited hybrid input-output method is a new density modification technique which

takes the advantages of both HIO and solvent flattening. The density modification in

the solvent region by HIO is limited by an adjustable parameter. It is not surprising

that the limited HIO has better performance than both HIO and solvent flattening.

In Chapters 5 and 6, we will show that the limited HIO method is a better choice for

protein crystals with a solvent content close to 50%. The iterative transform method

has been successfully applied to solve the phase problem for five protein crystals with

high solvent content. Examples will be given in Chapters 5 and 6.
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Chapter 5

Direct phasing of protein crystals

with high solvent content

5.1 Introduction

In this chapter, the results described in Sections 5.2 and 5.3 have been published1.

In Chapter 4 we have introduced our iterative transform method. The method

starts from a random density map. Each iteration cycle begins with a real-space density

map from the previous round of calculation. A backward fast Fourier transform of

the density yields phases which are combined with the observed Fourier magnitudes to

produce (via a forward fast Fourier transform) the new electron density. A weighted

average density map can be derived from the electron density map and a proper cutoff

value can be found by adjusting it such that the calculated solvent content agrees with

1Hongxing He and Wu-Pei Su, Acta Crystallographica Section A: Foundations and Advances,
71(1):92–98, 2015[65]. According to the copyright of that Journal, the article can be re-used in my
thesis as long as a full reference to the paper is given.
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the expected solvent fraction. The unit cell has been divided into protein region and

solvent region. Histogram matching and hybrid input-output are employed to modify

the calculated electron density in the protein region and the solvent region, respectively.

After density modification, the next round of iteration begins with the modified electron

density. During the iterations, the estimated protein mask is dynamically updated and

gradually converges to the correct shape. The correct electron density inside the protein

region emerges progressively.

In this chapter, we focus on trial calculations carried out for five structures on their

experimental observed data. The crystals of these structures have solvent content greater

than 50% where oversampling condition is satisfied. Our method can be easily applied

to different space groups. Crystals in two popular space groups P43212 and P212121 are

tested to give five examples.

In space group P43212, three structures are tried. One is a photosynthetic reaction

center structure with PDB ID 2UXJ[73]. The solvent content of this crystal is 76.56%.

The resolution of the observed data is 2.25Å. The second structure is a formaldehyde-

activating enzyme (Fae) structure with PDB ID 1Y5Y[14]. The solvent content of this

crystal is 68.0%. The resolution of the observed data is 2.0Å. The third structure is a

flavor protein WrbA from Escherichia coli, with PDB ID 3B6I[83]. The solvent fraction

of this crystal is 73.71% and the resolution of the observed data is 1.66 Å.

In space group P212121, two structures are tried. One is a human thyroid hormone

receptor with PDB ID 3ILZ[72]. The solvent content of this crystal is 69.43%. The

resolution of the observed data is 2.25Å. The other is a pig pancreatic alpha-amylase

with PDB ID 1WO2[84]. The solvent content of this crystal is 70.00%. The crystal
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diffracts to 2.01Å.

This chapter is organized as follows. From Section 2 to Section 6, the calculated

results of 2UXJ, 1Y5Y, 3ILZ, 1WO2 and 3B6I are presented, respectively. Discussions

and conclusions are given in Sections 7 and 8, respectively.

5.2 A photosynthetic reaction center structure with PDB

ID 2UXJ

The first structure is a photosynthetic reaction center structure with PDB ID 2UXJ[73].

The space group is P43212. The cell dimensions are a = 139.376Å , b = 139.376Å

and c = 235.041Å. There are 848 amino acids in the asymmetric unit. The number of

non-hydrogen atoms in the asymmetric unit is 7707, including 6487 protein atoms, 817

heterogen atoms and 403 fixed solvent atoms. The solvent content is 76.56%. The crystal

diffracts to 2.25Å, with lowest resolution at 27.12Å. There are 103, 927 observed unique

reflections. The completeness of the observed data is 94%, with an overall R value of

0.195. It is a good data set, but just like any typical set, there are reflections missing

including 92 reflections below 27.12Å. The magnitudes of missing reflections below 2.25Å

including F000 are automatically reconstructed during the iterations. In other words,

the intensities of missing reflections are calculated from the estimated density function

in each iteration. The unit cell is discretized into a 140× 140× 236 grid for fast Fourier

transform. The distance between two nearby grid points is 1Å. The density function is

defined only on the grid points.
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In principle, we can choose a tight mask for the protein region (i.e. 23% of the unit-

cell volume) during each iteration step. But we have found that a somewhat different

choice seems to be more effective. We have chosen a loose mask which includes 31% of

the unit-cell volume, i.e. the volume of the protein plus 8% solvent. Correspondingly,

the solvent region computed from the average density map occupies 69% of the unit-

cell volume. This choice is motivated by the thinking that during the iterations, the

computed boundary might not match the surface of the protein tightly.

Figure 5.1: Density histogram inside a loose protein mask for 2UXJ (black) and 1Y5Y
(red) at 2.25Å resolution.

With the choice of a loose protein boundary, the density histogram inside the protein

mask is shown as the black curve in Figure 5.1. The corresponding density histogram

of a somewhat smaller formaldehyde-activating enzyme (Fae) structure with PDB ID

1Y5Y[14], in the same space group, with a smaller solvent fraction 68%, is shown as

the red curve in the same figure. There is a substantial difference between the two

histograms. It turns out that they lead to the same result. As a note, the density

histograms are calculated in the standard way. In the calculation of the reference density
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histogram, a choice of F000 is made so that the average density inside the protein mask

is about 0.05 e/Å3. This choice was found to work empirically. It partially reflects the

solvent contained within the protein mask.

Figure 5.2: Weighting functions used for calculating the weighted average density at
the beginning and end of an iterative run.

In Chapter 4, we have discussed several weighting functions. After some trial and

error, a good choice of the parameter σ of the Gaussian weighting function is found

to decrease linearly from 8Å to 4Å in 10,000 iterations. Alternatively, a pyramidal

weighting function can be used for which the parameter d0 decreases from 18Å to 9Å in

the same number of iterations, as shown in Figure 5.2. The initial and final values of

these parameters can be different for different crystals. Basically, it depends on the cell

dimensions and the completeness of the low-resolution data.

The feedback parameter in the hybrid input-output method is taken to be ε = 0.9.

This parameter is also used during the phase retrieval of several other crystals which will

be described in the following sections. 5% observed reflections are set aside to calculate

the free R factor.
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To monitor the evolution of the iteration, we compute the mean error in phase angle,

defined as follows.

∆ϕ =

∑
h,k,l arccos{cos[ϕtrue(h, k, l)− ϕcal(h, k, l)]}∑

h,k,l 1
(5.1)

With the above choice of parameters, a batch of 20 independent calculations, with

different random starting phases, are carried out. The phase error of the eight successful

runs and one unsuccessful run is depicted in Figure 5.3(a). In all the successful runs,

the error drops suddenly from 90◦ to about 50◦. After 8000 iterations, the hybrid input-

output scheme is gradually turned off and a complete solvent flattening is imposed after

9500 iterations. That leads to a further drop of the phase error to about 32◦ , whereas

for the unsuccessful run, the phase error remains at 90◦ which are almost random phases.

There are also some half-successful runs which have not been shown on the figure. For

the half-successful runs, the mean error in phase angles for low-resolution reflections

drops a little bit. It implies the calculated protein boundary is somewhat correct.

It is also very instructive to examine the evolution of the R value, which is calculated

after density modification in each iteration cycle. As is well known, Rfree is the R

value that correlates well with the phase error[5]. For the Rfree calculation, 5% of the

diffraction intensity data is set aside from the working set. If the completeness of the

observed data is not high, fewer reflections should be used as free set, for example 2%

reflections. For the same runs depicted in Figure 5.3(a), their Rfree values are shown in

Figure 5.3(b). Clearly, the Rfree value tracks the phase error in the sudden drop. After

solvent flattening, the successful runs all end up with a unique Rfree value of about 0.23.
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The Rwork value is actually quite informative too, as shown in Figure 5.3(c). When

a loose protein mask is used, a sudden drop of Rwork is observed on a successful run.

However, when a tight protein mask is used, there is no sudden drop on Rwork , but a

sudden drop on Rfree still shows up when a successful run has been reached. Turning off

HIO always makes Rwork decrease. For a successful run, after turning off HIO, Rwork is

still smaller than the value of the failed runs.

Since the sudden drop of the R value is a good indicator of a corresponding im-

provement in phase error, it is very useful for a new structure determination.

A phase error of 32◦ means the final density map is very accurate. Examples of

2.25Å maps are shown in Figure 5.4. Some of the water molecules are visible in the

map.

It is also of interest to have a look at the protein mask near the end of a successful

run (Figures. 5.5 and 5.6). There are still small parts of the protein sticking out of the

mask despite the accuracy of the calculated phases.
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Figure 5.3: Evolution of the phase error and R values for eight successful and one
unsuccessful runs of 2UXJ.

As an example of our ability to invert lower-resolution data, we cutoff the diffraction

data of 2UXJ at 3.5Å resolution and used them in a calculation. A loose protein mask

which occupies 31% of the unit-cell volume was updated in iterations. The reference

density histogram was computed from 1Y5Y at 3.5Å resolution. The evolutions of the

phase error and Rfree are shown in Figure 5.7. Among a batch of 20 runs, five are
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Figure 5.4: Two calculated 2.25Å electron-density maps (green) of 2UXJ from suc-
cessful runs in Figure 5.3. The protein structure of 2UXJ has been superimposed (blue

and red).

successful with a mean phase error of 34◦. Typical electron-density maps are shown in

Figure 5.8.
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Figure 5.5: Stereograms of the calculated protein mask (green) from a successful run
in Figure 5.3, compared with the atomic model of 2UXJ in strands (black).

5.3 A formaldehyde-activating enzyme (Fae) structure with

PDB ID 1Y5Y

The second structure is a formaldehyde-activating enzyme (Fae) structure with PDB

ID 1Y5Y[14]. The space group is P43212. The cell dimensions are a = 120.659Å ,
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Figure 5.6: Stereograms of the calculated protein mask (green) from a successful run
in Figure 5.3, compared with the atomic model of 2UXJ in wireframe (black).

b = 120.659Å and c = 205.947Å. The asymmetric unit has C5 non-crystallographic

symmetry. There are 845 amino acids in the asymmetric unit. The number of non-

hydrogen atoms in the asymmetric unit is 6864. The solvent content is 68.00%. The

crystal diffracts to 2.00Å , with lowest resolution at 19.89Å. The number of observed

unique reflections is 100,903. The completeness of the data set is 98%, with an overall R
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Figure 5.7: Evolution of average phase error and R value of 3.5Å calculations of
2UXJ.

value of 0.221. There are about 150 reflections below 19.89Å are missing due to the beam

stop. The magnitudes of missing reflections below 2.25Å including F000 are automatically

reconstructed during the iterations. The unit cell is discretized into a 120 × 120 × 208

grid for fast Fourier transform. The distance between two nearby grid points is 1Å. The

density function is defined only on the grid points. In each iteration cycle, a loose mask

107



Figure 5.8: Typical calculated electron-density maps (green) of 2UXJ at 3.5Å res-
olution from a successful run in Figure 5.7. The protein structure of 2UXJ has been

superimposed (blue and red).

for the protein region has been calculated which includes 40% of the unit-cell volume,

equivalent to the volume of the protein plus 8% solvent. Correspondingly, the solvent

region computed from the average density map occupies 60% of the unit-cell volume. The

calculated results are similar to those of 2UXJ. In particular, the average phase errors

are around 30◦ ∼ 40◦. The Fae (1Y5Y) has a fivefold non-crystallographic symmetry,
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which was not used in the calculations. Since we have used the density histogram of

1Y5Y to retrieve the phases of 2UXJ, one might expect that the histogram of 2UXJ can

be used to retrieve the phases of 1Y5Y. It turns out to be untrue for 2Å data. Instead,

the histogram of 1EJB[85] works.

The evolution of phase error and R values is displayed in Figure 5.9. 5% observed

reflections are set aside to calculate Rfree. More than 10, 000 iterations are needed for

some runs to converge. The final average phase error is about 38◦ for 2Å data. When

the mean error in phase angle decreases, Rfree suddenly drops. Because a loose protein

mask has been used, Rwork also has a sudden drop. R values can monitor the mean error

in phase angle. Hence they can indicate successful runs.
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Figure 5.9: Evolution of phase error and R values of 2Å data of 1Y5Y.

Typical electron-density maps are shown in Figure 5.10 and the final protein mask

is depicted in Figure 5.11. It should be noted that a phase error of 30◦ can be achieved

with the histogram of 1Y5Y itself. Therefore there are probably other structures whose
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Figure 5.10: Typical calculated electron-density maps (green) of 1Y5Y at 2Å reso-
lution from a successful run in Figure 5.9. The protein structure of 1Y5Y has been

superimposed (blue and red).

histograms match 1Y5Y better than 1EJB. Another note is that for 1Y5Y, a tight

protein mask actually works better than a loose mask in terms of success rate. Finally,

at 2.25Å, the histogram of 2UXJ can indeed be used to retrieve the phases of 1Y5Y.
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Figure 5.11: Stereograms of the calculated protein mask (green) for 1Y5Y from a
successful run in Figure 5.9, compared with the atomic model of 1Y5Y in wireframe

and strands (black).

The five-fold non-crystallographic symmetry has not been used during the iterative

calculations in this chapter. In Chapter 6, we will make use of non-crystallography

symmetry and will find NCS averaging can dramatically improve the calculated electron

density.
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5.4 A human thyroid hormone receptor with PDB ID 3ILZ

The third structure is a human thyroid hormone receptor with PDB ID 3ILZ[72]. The

space group is P212121. The cell dimensions are a = 59.914Å , b = 80.351Å and c

= 102.886Å. There are 267 amino acids in the asymmetric unit. The number of non-

hydrogen atoms in the asymmetric unit is 2671. The solvent content is 69.43%. The

crystal diffracts to 1.85Å , with lowest resolution at 31.47Å. The number of observed

unique reflections is 45, 966. The completeness of the data set is 100%, with an overall R

value of 0.152. There are only several reflections missing due to the beam stop. However,

we find when we use the calculated structure factors to rebuild the reflections below 20Å,

our method has better performance. For example the success rate actually increases.

The magnitudes of the missing reflections below 1.85Å (including F000 and about 47

observed reflections below 20Å) are automatically reconstructed during the iterations.

The unit cell is discretized into a 68 × 92 × 118 grid for fast Fourier transform. The

distance between two nearby grid points is about 0.9Å. The density function is defined

on the grid points. In each iteration cycle, a loose protein mask is calculated which

includes 38% of the unit-cell volume which is equivalent to the volume of the protein

region plus 7% solvent. Correspondingly, the solvent region computed from the weighted

average density map occupies 62% of the unit-cell volume.

The histogram of 1Y5Y at 1.85Å is used as a reference histogram. Histograms

from other structures also work sometimes. Histogram matching is only applied to the

protein region. In the solvent region, hybrid input-output method is used as a density

modification technique.

In order to monitor the calculated results, the mean error in phase angle and R
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values are calculated. 5% observed reflections are marked as free data set which is used

to calculate Rfree. In fact, fewer reflections can be used to calculate Rfree. In that case,

the working data set becomes more complete and a high completeness of data always

leads to a high success rate. In Figure 5.12, after 20,000 iterations, the mean error in

phase angle drops to 50◦ for successful runs at 1.85Å resolution. When the phase error

decreases, a sudden drop of Rfree occurs. Because a loose protein mask is used, a sudden

drop of Rwork is also observed.
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Figure 5.12: Evolution of the phase error and R values of 3ILZ.
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Figure 5.13: The calculated 1.85Å electron density maps (green) of 3ILZ from a
successful run in Figure 5.12. The protein structure of 3ILZ has been superimposed

(blue and red).

For successful runs, the final mean error in phase angle is about 50◦ for 1.85Å data.

If we calculate the mean error in phase angle for 2 Å resolution shell, it is much less than

50◦. The calculated electron density is shown in Figure 5.13. It looks very good. The

structure of the model can be traced. Most of the fixed water molecules can be located.
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Figure 5.14: Stereograms of the calculated protein mask (green) from a successful
run in Figure 5.12, compared with the atomic model of 3ILZ in cartoons (black).

The calculated protein mask for a successful run is shown in Figures 5.14 and 5.15.

The calculated protein mask can cover most of the protein region, but there are some

partial structures which still stay outside of the calculated protein mask. This is normal

because the missing reflections can’t be exactly rebuilt. The experimental data also

contains some measurement errors. When a little big weighting radius is used, the
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Figure 5.15: Stereograms of the calculated protein mask (green) from a successful
run in Figure 5.12, compared with the atomic model of 3ILZ in wireframe (black).

resulted protein mask may miss some residues near the protein surface. If most of the

protein region can be covered by the calculated protein mask, a successful run can often

be reached.
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5.5 A pig pancreatic alpha-amylase with PDB ID 1WO2

The fourth structure is a pig pancreatic alpha-amylase with PDB ID 1WO2[84]. The

space group is P212121. The cell dimensions are a = 70.090Å , b = 113.298Å and c

= 117.221Å. There are 496 amino acids in the asymmetric unit. The number of non-

hydrogen atoms in the asymmetric unit is 4822. The solvent content is 70.00%. The

crystal diffracts to 2.01Å , with lowest resolution at 20.00Å. The number of observed

unique reflections is 61,363. The completeness of the data set is 98.6%, with an overall

R value of 0.159. There are about 61 reflections missing due to the beam stop. The

magnitudes of missing reflections below 2.01Å including F000 are automatically rebuilt

during the iterations. The unit cell is discretized into a 70 × 114 × 118 grid for fast

Fourier transform. The distance between two nearby grid points is about 1.0Å. The

density function is defined on the grid points. In each iteration cycle, a loose mask

for the protein region has been calculated which includes 38% of the unit-cell volume,

equivalent to the volume of the protein plus 8% solvent. Correspondingly, the solvent

region computed from the average density map occupies 62% of the unit-cell volume.

Several histograms have been tried to serve as the reference histogram but they do

not work. At present the histogram of 1WO2 itself is used as a reference histogram. We

believe there are many histograms from various structures can be used as the reference

histogram.

The mean error in phase angle and R values are used to monitor the calculated result.

5% observed reflections are set aside from the working data set. If fewer reflections are

used to calculate Rfree , the success rate can be higher. The higher the completeness of

working data set is, the greater the success rate becomes.
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Figure 5.16: Evolution of the phase error and R values of 1WO2.

Successful runs have been indicated by sudden drops on the curves of Rfree. Because

a loose protein mask is used, Rwork also has a sudden drop for a successful run. After

20,000 iterations, the mean error in phase angle drops to 32◦ for a successful run. The

120



calculated electron density maps are shown in Figure 5.17. The model structure can be

clearly traced and fixed water molecules can be located.

Figure 5.17: The calculated 2.01Å electron density maps (green) of 1WO2 from a
successful run in Figure 5.16. The protein structure of 1WO2 has been superimposed

(blue and red).
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Figure 5.18: Stereograms of the calculated protein mask (green) from a successful
run in Figure 5.16, compared with the atomic model of 1WO2 in cartoons (black).

The calculated protein mask is shown in Figures 5.18 and 5.19. The calculated

protein mask covers the protein molecule very well. Almost all structures on the protein

are inside the protein mask. This can explain why the final phase error can be reduced

to as small as 32◦.
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Figure 5.19: Stereograms of the calculated protein mask (green) from a successful
run in Figure 5.16, compared with the atomic model of 1WO2 in wireframe (black).
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5.6 A flavor protein WrbA from Escherichia coli with PDB

ID 3B6I

The fifth structure is a flavor proteinWrbA fromEscherichia coli with PDB ID 3B6I[83].

The space group is P43212. The cell dimensions are a = 94.361Å , b = 94.361Å and

c = 175.363Å. The asymmetric unit has D2 non-crystallographic symmetry. There

are 396 amino acids in the asymmetric unit. The number of non-hydrogen atoms in

the asymmetric unit is 3609. The solvent content is 73.71%. The highest resolution

of the diffraction data is 1.66Å and the lowest resolution is 29.41Å. The number of

observed unique reflections is 86,954. The completeness of the data set is 97.5%, with an

overall R value of 0.170. There are about 31 reflections missing due to the beam stop.

The magnitudes of missing reflections below 1.66Å including F000 are automatically

reconstructed during the iterations. The unit cell is divided into a 114× 114× 212 grid

for fast Fourier transform, the distance between two nearest grid points is about 0.8Å.

The density function is defined on the grid points. In each iteration cycle, a loose mask

for the protein region has been calculated which includes 42% of the unit-cell volume,

equivalent to the volume of the protein plus 16% solvent. Correspondingly, the solvent

region computed from the average density map occupies 58% of the unit-cell volume.

A pretty loose protein mask has been calculated in order to make the calculated

protein mask cover the whole protein region. A loose protein mask means smaller solvent

region. Our method is based on the oversampling condition. Small solvent region is not

good and it always leads to more iterations and low success rate.

The histogram of 3B6I itself has been used to serve as the reference histogram when
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histogram matching is applied inside the calculated protein mask. 20,000 iterations are

taken on the working data set of 3B6I. Because the completeness of the observed data

is not very high, the free data set only contains 1% observed reflections.

The success rate is very low. In order to get a successful run, we let the calculated

protein mask evolve slowly during the iterations. For example, in each iteration cycle,

only 10% of the previous calculated protein mask is updated. Several schemes can be

used to control the update speed of the calculated protein mask. A slowly-updated

protein mask gives the calculated density inside the mask more time to evolve to the

correct value. However, for many other structures, a fast-updated protein mask means

few iteration cycles are needed to reach a successful run.
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Figure 5.20: Evolution of the phase error and R values of 3B6I.

The evolution of the mean error in phase angle and R values is shown in Figure 5.20.

A sudden drop of Rfree indicates a successful run. Because a pretty loose protein mask

is used, Rfree also drops suddenly to indicate a successful run. The final mean error in
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phase angle is about 35◦ for a successful run which leads to very good electron density

maps shown in Figure 5.21.

Figure 5.21: The calculated 1.66Å electron density maps (green) of 3B6I from a
successful run in Figure 5.20. The protein structure of 3B6I has been superimposed

(blue and red).
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Figure 5.22: Stereograms of the calculated protein mask (green) from a successful
run in Figure 5.20, compared with the atomic model of 3B6I in cartoons (black).

The calculated protein mask for a successful run is shown in Figures 5.22 and 5.23.

The calculated protein mask completely covers the whole protein molecule. Because the

protein mask is pretty loose, solvent regions inside the protein mask can be observed.
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Figure 5.23: Stereograms of calculated protein mask (green) from a successful run in
Figure 5.20, compared with the atomic model of 3B6I in wireframe (black).
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A pretty loose protein boundary is preferred for 3B6I. The solvent content used

in the iterations is 58% of the unit-cell volume. The small solvent region challenges

oversampling condition. It results in a very low success rate and tens of thousands of

iterations. In order to get a successful run within fewer iteration cycles, we use a two-step

strategy. The first step is to retrieve a protein mask directly from the diffraction data

within several thousand iterations. A good protein mask can be selected if it corresponds

to smaller R values. The second step is to keep the pre-calculated protein mask fixed

while retrieving the phases. A calculated protein mask is shown in Figures 5.24 and 5.25

after several thousand iterations. There are some small partial structures outside of the

protein mask. Although this pre-calculated protein mask is not very good, sometimes,

it can make our method find a solution faster which is shown in Figure 5.26. I have to

point out that this two-step scheme is not necessary for most crystals especially those

with high solvent content. But this two-step strategy indeed speeds up the convergence

in most cases.
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Figure 5.24: Stereograms of a pre-calculated protein mask (green) compared with the
atomic model of 3B6I in cartoons (black).
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Figure 5.25: Stereograms of a pre-calculated protein mask (green) compared with the
atomic model of 3B6I in wireframe (black).
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Figure 5.26: Evolution of the phase error and R values of 3B6I with a pre-calculated
protein mask shown in Figures 5.24 and 5.25.

The D2 non-crystallographic symmetry of the asymmetric unit has not been used

during the iterative calculations. In next chapter, non-crystallographic symmetry will be

used to calculate the average electron density in the asymmetric unit and the calculated

phases will be improved a lot.

133



5.7 Discussions

For protein crystals with 50% or higher solvent content, Liu et al. have provided strong

evidence that phasing through iterative transform is possible provided a protein envelope

is available. What we have shown through the trial calculations of 2UXJ and other

structures is that the assumption of an envelope is not necessary, and therefore ab initio

phasing is possible. The generality of our methodology strongly supports the claim that

direct phasing is possible for many high-solvent-content protein crystals.

Although our primary concern is direct phasing, the algorithm can be used to sup-

plement and enhance many existing refinement tools. Partial knowledge of some of the

phases, for example, can easily be incorporated in the iteration. Prior real-space in-

formation such as solvent region [86] or protein fragments can also be employed in the

density modification. The large number of iterations helps to eliminate the bias of initial

phases.

Although our ab initio iterative phasing algorithm resembles the conventional sol-

vent flattening[79] refinement, there are important differences. It is instructive to make

a comparison. First, the density modification in the solvent region via the HIO scheme

is much more powerful than simply setting the solvent density to a constant. It is well

known, for example, that HIO can overcome the stagnation problem and therefore it

makes the convergence toward the correct solution possible, whatever the initial start-

ing phases are. Secondly, the number of iterations matters. We have seen in the trial

calculations that tens of thousands of iterations are needed in general to retrieve the

phases correctly. Thirdly, the missing low-resolution central reflections (due to the beam

stop) are not included in the conventional refinement, but they are dominant terms in the
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Fourier expansion of the density function and they can greatly affect the construction of

the shape[87–89] of the protein. In our phasing scheme, they are reconstructed[63, 90]

from the calculated values; thus a very complete Fourier expansion of the density is

achieved, and therefore very accurate phases can be retrieved.

Finally, a most important new feature of our algorithm is the evolution of solvent

boundary or protein mask. It is true that the boundary could change in the traditional

solvent flattening cycles, but not to the extent that happens in our algorithm, where it

goes from a completely random boundary to a very accurate one. That is why we can

start from random phases and the traditional refinement requires a set of good phases

to start with. All of the above factors conspire to make ab initio phasing possible. For

the same reasons, our iterative scheme can greatly increase the chance of success of a

refinement job.

5.8 Conclusions

The traditional way of solving the phase problem starts by collecting the experimen-

tally determined phases, which are rarely accurate enough to yield an interpretable

electron density map. Phase improvement using a variety of density modification meth-

ods is generally required. Solvent flattening, histogram matching[76, 77], and non-

crystallographic averaging[91] are the main techniques. In general, it is believed[92]

that density-modification techniques will not turn a bad map into a good one, but they

will certainly improve a promising map that shows some interpretable features.

It has gradually been realized[63, 93] in very recent years that a general class of it-

erative projection algorithms[94, 95], which includes the HIO scheme, can considerably
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increase the radius of convergence over the conventional density-modification algorithms.

Those algorithms offer the possibility of protein structure determination starting with

only information on the molecular envelope[96] and low-order non-crystallographic sym-

metry.

It turns out that, as we have demonstrated, the convergence region of the iterative

projection algorithms can be so large that no prior knowledge of the molecular envelope

is needed at all, at least in high-solvent-content crystals. Almost any given initial density

or phases will iterate towards the correct density or phases, given a large enough number

of iterations. With modest NCS, the same thing can happen for low-solvent-content

crystals, shown in next chapter. Thus direct phasing is quite likely for most, if not all,

protein crystals.
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Chapter 6

Direct phasing of protein crystals

with low solvent content

6.1 Introduction

In this chapter, the results described in Section 6.2 have been published1.

In Chapters 4 and 5, an iterative transform method has been proposed and suc-

cessfully tested on several protein crystals with high solvent content. Oversampling

condition is satisfied when the solvent volume is greater than the protein volume[70].

The solvent content of the protein crystal has a sharp cutoff value at 26%, approx-

imately corresponding to the value for close packed atoms. The most frequent solvent

content of protein crystals in Protein Data Bank is about 47%, a little less than 50%. The

most frequent solvent contents of nucleic acid crystals and protein-nucleic acid complex

1Hongxing He and Wu-Pei Su, Acta Crystallographica Section A: Foundations and Advances,
71(1):92–98, 2015[65]. According to the copyright of that Journal, the article can be re-used in my
thesis as long as a full reference to the paper is given.
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crystals are about 64% and 60%, respectively[97, 98].

Non-crystallographic symmetry (NCS) arises when there are multiple copies of a

molecule within an asymmetric unit. Since this symmetry is local to the asymmetric

unit and does not extend to the whole crystal, it is referred to as non-crystallographic

symmetry. NCS is common in protein crystals. There are about 1/3 or more protein

structures have non-crystallographic symmetry in Protein Data Bank.

NCS enables low-solvent-content crystals to satisfy the oversampling condition. Take

the protein crystal with PDB ID 4NF2 as an example. The solvent content is about

45%. This protein has a 3-fold NCS axis. There are three copies of the protein in an

asymmetric unit. The independent protein volume is 1/3 of 55%. The solvent volume is

much greater than the independent protein volume. Oversampling condition is satisfied.

NCS averaging improves the calculated electron density. NCS copies of the molecule

should have the same electron density. Therefore, the average electron density is calcu-

lated among different NCS copies.

In addition to NCS, other constraints such as gradient-histogram matching is em-

ployed. Like traditional density-histogram matching, the frequency distribution of the

gradient of the electron density function is also fairly independent of molecular struc-

tures at the same resolution. The gradient histogram of a reference structure is used to

scale the gradient histogram of a calculated poor density map. This process improves

the poor density map especially when high-resolution data is available.

More density constraints will be employed in the future to reduce the freedom of

the protein density. For example, atomicity is another density constraint especially for

high-resolution observed data. Sayre’s equation can also be applied as a constraint to
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improve the calculated phases. The independent protein volume can exceed the solvent

volume for low-solvent-content crystals. Oversampling condition becomes satisfied.

This chapter is organized as follows. In Section 2, NCS averaging is described and

the calculated results of a protein crystal with NCS are presented. In Section 3, gradient-

histogram matching is discussed and the calculated results of a small artificial structure

are presented. Conclusions are given in the last section.

6.2 NCS averaging

An important criterion for iterative algorithms such as HIO to work is the requirement

that the number of independently measured data points exceeds the number of unknown

variables, as first pointed out by Miao et al. (1998)[70]. Thus it is not surprising that

with the use of non- crystallographic symmetry (NCS), our method may be extended to

phase protein crystals with less than 50% solvent fraction as the NCS reduces that num-

ber of unknown variables (the electron density within the protein mask). Liu (2012)[63]

has illustrated that by using an artificial structure possessing NCS, assuming that the en-

velope is available. Millane & Lo (2013)[93] have emphasized the same point. To further

demonstrate that possibility, we have studied the structure of a carbamoyltransferase

with PDB ID 4NF2 (Center for Structural Genomics of Infectious Diseases, unpublished

work). The space group is P212121 . The cell dimensions are a = 85.89 Å, b = 99.89 Å

and c = 118.99Å . The asymmetric unit has a C3 non-crystallographic symmetry. The

NCS axis is threefold. There are 1020 amino acids in the asymmetric unit. The number

of non-hydrogen atoms in the asymmetric unit is 8820. The solvent fraction is 44.79%.

The resolution range of the diffraction data extends from 29.23 to 1.74Å. The number of
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observed unique reflections is 104,782. The completeness of the observed data is 99.4%.

The R value for all observed reflections is 0.147.

Figure 6.1: Stereograms of 4NF2 with C3 non-crystallographic symmetry. There are
three copies of the molecule in an asymmetric unit.

As a first step in showing the possibility of an iterative phasing scheme, we assume

a given low-resolution envelope (calculated from phases at 30 Å resolution) and the

orientation and position of the threefold NCS axis. Synthetic diffraction data are used

instead of real data, but bulk solvent correction is taken into account. With those we

have carried out HIO iterations with the 1.74 Å data. A reference density histogram

was computed from 4NF2 itself at 1.74 Å resolution. Starting essentially from random

phases, the evolutions of the phase error at three resolution levels are shown in Figure 6.2.

The protein mask is kept fixed throughout the iterations, and the threefold symmetry

inside the protein envelope is enforced by conventional NCS averaging in updating the

density function. It is clear from Figure 6.2 that correct phases are retrieved after many

iterations despite the low solvent content.

The initial phases are almost random which has a mean error about 90◦ shown in

Figure 6.2. At 3Å resolution, the initial mean error in phase angle is a little less than
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Figure 6.2: Evolution of phase error of several resolution ranges of 4NF2 with a fixed
protein mask. Synthetic data with a bulk solvent correction has been used.

90◦ because an initial low-resolution protein mask has been used and fixed during the

iterations. After about 3000 iteration cycles, the true phases have been successfully

retrieved from the synthetic data. Phases corresponding to lower-resolution reflections

become correct ahead of those corresponding to high-resolution reflections. For example,

the green line begins to drop ahead of the red and the black lines.

The calculated phases of a successful run are presented in Figure 6.2. The final

mean error in phase angle at 1.74 Å resolution is about 58◦ and the corresponding mean

error at 3Å resolution is about 39◦ . The calculated density maps are shown in Figure

6.3. The density maps look very good due to high resolution data and small mean error

in phase angle. The protein structure can be traced on the density map and fixed water

molecules can also be located.
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Figure 6.3: Calculated density maps (green) of 4NF2.The protein structure of 4NF2
has been superimposed (blue and red).

An approximate NCS mask has been used during the iterative calculations. An

exact NCS mask is always preferred. In practice, it is not easy to obtain an exact NCS

mask directly from the observed data starting from random phases. The NCS mask

used in our calculation is computed from low-resolution data only. The mask is shown

in Figures 6.4 and 6.5. There are some small partial structures near the protein surface
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sticking out of the NCS mask.

Figure 6.4: Stereograms of NCS mask (green) compared with the atomic model of
4NF2 in cartoons (black). The NCS mask is supposed to be known and it is fixed

during iterations.
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Figure 6.5: Stereograms of the NCS mask (green) compared with the atomic model
of 4NF2 in wireframe (black). The NCS mask is supposed to be known and it is fixed

during iterations.

The protein mask is also given and fixed from the beginning of iterations. The

protein mask is calculated at 30Å resolution. It almost exactly overlaps with the NCS

mask. In other words, the NCS mask shown in Figures 6.4 and 6.5 is used as the protein

mask.

In our test, we have supposed the orientation of the NCS axis is known. The

orientation of the NCS axis can generally be found by the self-rotation Patterson map

and the native Patterson map. It is not clear how to calculate those entities progressively,

unlike the solvent boundary.
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6.3 Gradient-histogram matching

The electron density in protein region has similar distributions for different proteins at

the same resolution. Similarly, the gradient of the density in the protein region also has

similar distributions for different proteins at the same resolution. Gradient matching can

smooth the density in the protein region. Both density histogram and gradient histogram

are matched at the same time by a joint distribution, referred as two-dimensional or 2D

histogram[99, 100].

The experimental data always contain some missing reflections at very low resolution

with small diffraction angles. Aside from the missing reflections, measurement error and

thermal noise also exist in the observed data. Those factors can make the phase problem

complicated. In order to simplify the phase problem and to easily test our method, the

synthetic data is a better choice at the beginning.

In this section, synthetic data has been computed directly from the atomic model

without any bulk solvent correction. The synthetic data is complete in all resolution

shells. If our method works on the synthetic data, with some modifications and im-

provements, it should work on the real experimental data.

Gradient matching needs a standard gradient histogram. Gradient of the density

can be calculated numerically from the electron density map. For example, the density

difference in one angstrom gives the gradient at that location. However, this method

can only give approximate results. It can’t give the exact gradient on a grid point. An

analytical method should be exploited to calculate the gradient. The Fourier transform

of the electron density yields the structure factors. The gradient of the electron density

can also be calculated in the Fourier space.
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Gradient is a vector which has three components. Each component can be sepa-

rately evaluated in the Fourier space. Through an inverse Fourier transform, the three

components can be obtained in real space. The modulus of the gradient in real space

can also be obtained.

ρ(x, y, z) =
1

V

∞∑
h,k,l=−∞

F (h, k, l)e−2πi(hx+ky+lz) (6.1)

gx =
∂ρ(x, y, z)

∂x
= −

2πi

V

∞∑
h,k,l=−∞

hF (h, k, l)e−2πi(hx+ky+lz) (6.2)

gy =
∂ρ(x, y, z)

∂y
= −

2πi

V

∞∑
h,k,l=−∞

kF (h, k, l)e−2πi(hx+ky+lz) (6.3)

gz =
∂ρ(x, y, z)

∂z
= −

2πi

V

∞∑
h,k,l=−∞

lF (h, k, l)e−2πi(hx+ky+lz) (6.4)

which can be inverted as follows.

hF (h, k, l) = −
V

2πiN

∑
x,y,z

gxe
2πi(hx+ky+lz) (6.5)

kF (h, k, l) = −
V

2πiN

∑
x,y,z

gye
2πi(hx+ky+lz) (6.6)

lF (h, k, l) = −
V

2πiN

∑
x,y,z

gze
2πi(hx+ky+lz) (6.7)

where V is the volume of the unit cell and N is the total number of grid points in the
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unit cell. The summation is over all grid points in the unit cell. gx, gy and gz, are in

fractional coordinates. In practice, gradient-histogram matching is often done in the

general orthogonal coordinates. gx, gy and gz should be replaced by gu, gv and gw,

respectively, in the general orthogonal coordinates. Because the coordinate is in the

denominator, gradient transform uses the transpose of the inverse matrix.

Gorth−to−frac = [Mfrac−to−orth]
T =



a 0 0

b cos γ b sin γ 0

c cosβ
c(cosα− cosβ cos γ)

sin γ

cµ

sin γ


(6.8)

Gfrac−to−orth = [Morth−to−frac]
T =



1/a 0 0

−
cos γ

a sin γ

1

b sin γ
0

cosα cos γ − cosβ

aµ sin γ
−

cosα− cosβ cos γ

bµ sin γ

sin γ

cµ


(6.9)

Although the electron density has crystallographic symmetry, the gradient of the

density does not hold the crystallographic symmetry. In other words, the gradient does

not have any symmetry operations or equivalent positions and it should be calculated

throughout the whole unit cell.

Gradient histogram contains three component histograms and one modulus his-

togram. Firstly, gradient-histogram matching should be applied in the x, y and z di-

rections, respectively. Secondly, the modulus of the gradient should also be matched.

When the gradient-modulus matching is applied, three gradient components should be
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modified with the same scale. After gradient-modulus matching, the three gradient

components don’t need to be matched again.

A small artificial structure has been made to test 2D histogram matching inside

the calculated protein mask. This artificial structure looks like a sphere and consists of

three short alpha helices, as shown in Figure 6.6.

Figure 6.6: Stereo graph of the artificial structure displayed in ball-and-sticks and
cartoons.

The space group is P43 21 2. The cell dimensions are a = 40.000Å , b = 40.000Å

and c = 40.000Å . There are 25 amino acids in the asymmetric unit. The number of non-

hydrogen atoms in the asymmetric unit is 229, including protein atoms, heterogen atoms

and some fixed solvent atoms. The solvent content is less than 50.00%. Synthetic data

has been calculated from the atomic model without any bulk solvent. The resolution of
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the synthetic data is 1.2Å. The number of unique reflections is 10658. There are 5572

unique reflections above 1.5Å and 3293 unique reflections above 1.8Å. The completeness

of the synthetic data is 100%, because no beam stop has been considered. F000 is

automatically reconstructed during the iterations. The unit cell is discretized into a

80 × 80 × 80 grid for fast Fourier transform. The distance between two nearby grid

points is about 0.5Å. The density function is defined on the grid points.

In each iteration cycle, the weighted average density is calculated to construct

a slightly loose molecular mask which includes 52% of the unit-cell volume. Corre-

spondingly, the solvent region occupies 48% of the unit-cell volume. Because gradient-

histogram matching has reduced the freedom of the electron density, the oversampling

condition is still satisfied.

A limited hybrid input-output method has been used to modify the calculated elec-

tron density in the solvent region for all iterations. The initial value of the limited density

is 0.8e/Å3 . This value linearly decreases to 0.2e/Å3 at the end of 5000 iterations. The

reference gradient histogram is computed from the artificial molecule itself.

For 1.2Å synthetic data, the evolution of the mean error in phase angle is shown

in Figure 6.7. All synthetic data has been used as working data set. There is no free

R factor. 13 successful runs have been obtained among 1000. The success rate is low

because the solvent content is low. Because synthetic data is used, the final mean error

in phase angle is about 20◦ for 1.2 Å data.
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Figure 6.7: Evolution of the phase error and R values of an artificial protein structure
using 1.2Å data.

For 1.5 Å synthetic data, a molecular mask is constructed from the weighted average

density map in each iteration cycle. A limited hybrid input-output method has also been

used with the same parameters. 2D histogram matching is applied. About 1% synthetic

reflections are set aside to calculate the free R factor. The evolution of the R values

and the mean error in phase angle has been shown in Figure 6.8. There are 3 successful
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runs among 1000. The success rate becomes lower because the resolution of the data

has decreased to 1.5 Å. The final mean error in phase angle is about 25◦ for 1.5 Å data.

The calculated electron density maps are in Figure 6.9.

Figure 6.8: Evolution of the phase error and R values of an artificial protein structure
using 1.5Å data.
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Figure 6.9: Calculated electron density maps (green) of 1.5Å synthetic data. The
artificial structure has been superimposed (blue and red).

For 1.8 Å synthetic data, a molecular mask is also automatically constructed from

the weighted average density map in each iteration cycle. A limited hybrid input-output

method has also been used with the same parameters. 2D histogram matching is applied

inside the molecular mask. About 1% synthetic reflections are set aside to calculate the

free R factor. The evolution of the R values and the mean error in phase angle is shown
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in Figure 6.10. There is only one successful run among 1000. The success rate becomes

extremely low because the resolution of the data has decreased to 1.8 Å.

Figure 6.10: Evolution of the phase error and R values of an artificial structure using
1.8Å data.
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The final mean error in phase angle is about 24◦ for 1.8Å data. The calculated

electron density maps are shown in Figure 6.11.

Figure 6.11: Calculated electron density maps (green) of 1.8Å synthetic data. The
artificial structure has been superimposed (blue and red).

154



6.4 Conclusions

Non-crystallographic symmetry can be used modify the electron density in the asym-

metric unit. NCS averaging can dramatically improve the calculated electron density.

NCS has reduced the degrees of freedom of the electron density. The independent pro-

tein volume becomes much smaller. The oversampling condition can be satisfied for

low-solvent-content crystals. The structure of 4NF2 with a three-fold NCS has been

successfully solved directly from the synthetic data at 1.74Å resolution. The solvent

content of the crystal is about 45%.

In addition to NCS, gradient constraint can also reduce the degrees of freedom of

the protein electron density. The number of independent unknown variables has been

reduced. The oversampling condition can be satisfied for crystals with small solvent

volume. The structure of a small artificial molecule without NCS has been solved directly

from the synthetic data at three resolution levels. The solvent content of the artificial

molecule is less than 50%.

More constraints will be included in the future to solve protein crystals with solvent

content less than 50%.
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