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ABSTRACT 

Understanding the basic rules of bacterial evolution and adaptation is critical in 

developing new anti-bacterial drugs, the use of bacteria in biotechnology 

applications as well as in combating undesired consequences of bacterial 

presence in industrial and environmental settings such as corrosion, product 

spoilage, and degradation.  

Accumulation of single nucleotide mutations beneficial (or neutral) for bacterial 

survival is a well-studied mechanism of bacterial adaptation which also reflects the 

time of species separation from a common ancestor (molecular clock hypothesis). 

The gene loss or gain due to horizontal gene transfer is another much more 

dynamic mechanism of bacterial adaptation. Using these mechanisms, bacteria 

can acquire new features such as virulence factors, locomotion ability (flagella), 

and heat or drug resistance.  

A major functional characteristic of bacterial species is the presence of particular 

gene sets common to the species (core genome) together with genes that are 

available to individual or groups of genomes (pan genome). The technical 

difficulties however, lie in how one can identify the same genes or gene families in 

evolutionarily distant organisms: 

1. Identification of a sequence-similarity threshold 

2. Computational complexity of sequence clustering algorithms 

3. Creation of a biologically meaningful cluster topology 
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In this work, we have developed methods to improve the quality and performance 

of gene clustering including heuristics free, novel sequence alignment algorithms 

able to cluster a large number of sequences significantly faster than traditional 

methods (a few days compared to months of computation) that permit the 

identification of appropriate similarity thresholds and formation of biologically 

meaningful cluster topology.  

The developed algorithms were used to build a “functional similarity” tree of the 

species reflecting gene composition similarity. The performed analysis also 

identified co-appearance and avoidance patterns of genes in bacterial species. We 

have applied the proposed methods to 22 genomes from Bartonella spp. using 

34,060 genes. 
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Introduction 

Understanding the basic rules of bacterial evolution and adaptation is critical in 

developing anti-bacterial drugs and using bacteria in biotechnology applications 

[1]–[3]. In addition, it can help develop solutions to combat undesired 

consequences of bacterial presence in industrial and environmental settings such 

as corrosion, product spoilage, and degradation. Genes, coding or non-coding, are 

the main functional elements of bacteria regulatory and metabolic networks, 

exercising of the functions required to keep the organism alive in its environment. 

Depending upon the species, a bacterial genome contains 1,500 to 5,000 genes 

[4]. Many of these genes are involved in processes that are absolutely essential 

for the survival of the bacteria such as replication of DNA, translation of DNA into 

proteins, DNA transcription, maintenance of basic cellular structure and transport 

or blockage of materials in and out of the cell body. The “remaining” genes carry 

specific functional properties that permit the bacteria to thrive in their niches. The 

composition of genes present in a bacteria defines the complete functional profile 

of the organism and its ability to survive in each given environment. Bacteria is 

also under selective pressure to keep its genome size limited, so one of the main 

mechanisms of how bacteria can change its functional repertoire is by means of 

selective gene loss and new gene acquisition through horizontal gene transfer [5], 

[6]. 

Horizontal gene transfer can be performed through several different mechanisms 

including sexual transmission of bacterial DNA, type III and type IV secretion 

systems, and plasmid exchange or viral (phage) activities. In fact, the fastest way 
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for bacteria to acquire new functions and adapt to a new environment is not through 

the accumulation of single mutations over time, but rather, through the acquisition 

of genes or combinations of genes that are able to perform desired function(s) [6]. 

For example, genes responsible for antibiotic resistance may be transmitted from 

one bacteria species to another through physical means such as horizontal gene 

transfer, rather than through sexual reproduction and heredity.  

Dynamic gene acquisition and loss mechanisms can result in members of a 

bacterial species sharing common genes that are essential (core genome) for the 

species’ survival regardless of environmental pressure, and a flexible set of genes 

that are specific to the environment that are present in only some members of the 

species. The pan genome is defined as the complete pool of genes “available” 

(acquirable) for a given species of bacteria (including the flexible and core set of 

genes). Even though the core genome is expected to be found in every member 

of the species, only a small subset of the complete set of flexible genes available 

to the species can be seen in an individual organism due to gene gain and loss 

mechanisms and genome size limitations. 

Gene profiles (the complete set of genes present in individual bacteria) can also 

be used to estimate similarities between bacteria strains based on their functional 

characteristics. Using gene profiles, the history of the species’ evolution and 

adaptation can be reconstructed revealing insights into evolutionary bottlenecks, 

host changes, and acquisition or loss of metabolic pathways. In essence, gene 
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profiles do not only reflect the functional changes that the species has gone 

through, but also its surrounding environment, host and microbial community.  

Large number of studies have been conducted to compare gene profiles of 

organisms [7]–[10]. Several mathematical models have been developed to 

approximate the core and pan-genome size of bacterial species [7], [10]–[13], [8]. 

The following challenges, however, remain unresolved: 

1- The use of arbitrarily selected nucleotide sequence-similarity thresholds 

in identification of homologous genes. 

To date, attempts to identify homologous genes across different organisms 

have been based on establishing a “reasonable criteria”: such as the 

arbitrary sequence-similarity cutoff above which the gene sequences are 

considered similar. As a consequence, various studies employ different 

criteria to identify homologous genes which can significantly affect the 

outcome of the analysis [9], [8], [14]. 

2- The computational complexity of sequence clustering algorithms. 

Clustering of thousands of gene sequences is an extremely computationally 

intensive task. A variety of the present clustering algorithms resort to 

employing greedy heuristics methods resulting in a large number of 

artificially fragmented clusters [15], [16].   

3- The lack of biologically meaningful cluster topology. 

Gene sequences “evolve” over time through single point mutations. The 

function of genes, however, remains the same. Centroid (representative) 
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based clustering algorithms used in the majority of modern studies (such as 

UCLUST [15] and Cd-hit [16]) result in artificially “circular” clusters where 

the representative gene of the cluster is considered to be the only ancestor 

of all other genes. In the course of evolution, however, every gene can form 

its own lineage, so, a gene family (gene cluster) can have complex 

ancestor-descendant relations, which can be more appropriately described 

using undirected connected graph cluster topology. 

The presented research is focused on: 

1- Development of appropriate scoring rules for global alignment of 

bacterial gene sequences in nucleotide space. 

2- Novel clustering algorithms for large scale gene clustering including: 

a. Improved global alignment algorithms. 

b. Non-centroid based clustering topology. 

c. Dynamic identification of natural clustering similarity threshold. 

3- Novel methods to introduce distance between organisms based upon 

the similarity of their gene profiles. 

As an example, developed algorithms have been applied to create functional 

similarity profiles and create a novel mathematical model to describe the core/pan 

genome composition of Bartonella spp. 
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1. Clustering 

Gene sequences change over time through single point mutations. The function of 

genes, however, remains the same. Identification and comparison of gene 

composition across different bacterial species requires clustering of thousands of 

gene sequences. To date, a variety of algorithms have been proposed to perform 

this task [15], [16]. Computational complexity and large memory requirement, 

however, result in the development of various heuristics compromising clustering 

quality. 

Each gene clustering approach contains two steps: pairwise sequence alignment 

and the use of this information for the formation of clusters. The performance of 

every clustering algorithm primarily depends on how many pairwise alignments it 

has to perform, consequently, many heuristics focus on ways to reduce the number 

of alignments. For example, UCLUST [15] and Cd-hit [16] use predefined 

sequence-similarity thresholds where each sequence is assigned to an existing 

cluster and excluded from further analysis when the distance between the 

sequence and cluster representative sequence (centroid of the cluster) is below a 

threshold. The “random” selection of cluster representative sequences where each 

sequence not assigned to an existing cluster immediately becomes a 

representative sequence of a new cluster which can lead to a false positive new 

cluster, resulting in homologous genes to appear in different clusters. Another 

disadvantage of predefined clustering thresholds is that clustering has to be re-

done for each different threshold. This approach also causes clusters to be 

artificially “circular” where the representative sequence of the cluster is considered 
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to be the only evolutionary ancestor of all other genes in the cluster. In the course 

of evolution, however, any gene can form its own lineage, therefore, a gene family 

can have complex ancestor-descendant relations, which can be described better 

using undirected connected graph cluster topology (Figure 1.1).  

 

Figure 1.1. Centroid (A) and undirected connected graph (B) cluster topology 

 

1.1 Reducing the Number of Pairwise Alignments Using Gene Length 

Differences 

A typical example of the complexity and scale of clustering can be illustrated by 

the task of identifying homologous genes in 22 Bartonella spp. reference genomes. 

The significant scientific and practical interest in this bacteria causes cat scratch 

disease [17], [18], trench fever [18]–[21], and Carrion’s disease [18], [22] in 

humans. Transmission vectors [23] for this organism include ticks, fleas, sand flies, 
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and mosquitoes which can move this bacteria among various mammalian hosts 

[24] such as rats, bats, canines etc. With an average genome size of 1.5 million 

nucleotides, this bacteria has between 1,200 and 1,900 genes. The gene length 

varies from 100 to 16,000 nucleotides (Figure 1.2). 

 

Figure 1.2 Gene length distribution for 34,060 genes from 22 Bartonella genomes. 

Using the naïve clustering approach to identify common genes in these 22 

genomes requires performing ~578 million pairwise alignments for approximately 

34,000 genes. The only way to improve performance of the clustering is to avoid 

unnecessary alignments.  
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The greedy approach used in UCLUST [15] and Cd-hit [16] algorithms tries to 

exclude sequences from future consideration as soon as they become a certain 

distance from the existing clusters. Another method is to compare the 

subsequence composition of the sequences using, for example, different order 

Markov models [25] to identify significantly different sequences not expected to 

produce reasonable alignment scores. Unfortunately, such approaches do not 

consider the different means by which alignment scores can be calculated: 

difference in penalties of gaps and mismatches cannot be accommodated by 

Markov models. 

To address these challenges, we propose to take advantage of the significant 

variation in gene lengths. This property of gene sequences allows determination 

of whether the alignment score of a pair of gene sequences meets the minimum 

alignment score threshold by simply comparing their lengths. Assuming that in the 

best case scenario, the shorter sequence has to be a complete subsequence of 

the longer sequence (with no mismatches), the length difference can be used to 

predict the maximum possible alignment score between these sequences without 

comparing them (Formula 1.1): 

Formula 1.1. Maximum possible alignment score between two sequences 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒 =
min(||𝑠1||, ||𝑠2||) ∗ 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ + |||𝑠1|| − ||𝑠2||| ∗ 𝑠𝑐𝑜𝑟𝑒𝑔𝑎𝑝

max(||𝑠1||, ||𝑠2||) ∗ 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ

 

When the maximum possible alignment score cannot meet the threshold 

requirement, the alignment can be avoided.  
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Sorting gene sequences by length can be done using the most significant digit 

radix sort [26] algorithm (𝑂(𝑁) time complexity, where 𝑁 is the number of 

sequences to be clustered), so if the pairwise alignment tasks begin from the 

longest sequences, it can be terminated as soon as the sequence length difference 

reaches the threshold limit (figure 1.3). This approach reduces the clustering 

complexity from 𝑂(𝑁2) to 𝑂(𝑁log𝑁 𝑘) where 𝑘 is the average number of genes 

within the length (maximum possible score above threshold) range of each gene. 

 

Figure 1.3. Using sorting and sequence length differences to avoid unnecessary 
pairwise alignment during clustering. 

 

Figure 1.4 shows an example that compares the naïve approach to the sequence 

length difference-based termination approach. As one can see, for both real and 

simulated gene sequences, the sequence length difference-based termination 

approach can produce about a 9-fold improvement in performance. 



10 
 

 

Figure 1.4. Number of pairwise alignments required for clustering. 

 

Many clustering methods in use today employ heuristic clustering methods due to 

the computational complexity of an exhaustive sequence comparison [27]. The 

proposed approach can significantly improve the performance and computational 

complexity of clustering large sets of sequences without introducing missing cases. 

The ability to perform exhaustive pairwise comparisons makes it possible to 

employ clustering methods that can create biologically-meaningful cluster 

topologies not possible with heuristics based approaches. 
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2. Sequence Alignment Algorithm 

Described in the previous chapter, optimal cluster-formation strategy focuses on 

minimizing the number of pairwise sequence comparisons (alignments) to be 

performed during the clustering process. Alignment itself however, is the most time 

consuming part of the gene clustering task. There are two major types of pairwise 

alignment algorithms: global alignment [28], when two sequences must be aligned 

completely from the beginning to the end, and local alignment [29] focused on 

identification of similar regions between the sequences under investigation. 

Keeping in mind that to be homologous, two genes must be similar across the 

entire sequence, gene clustering algorithms require employment of global 

alignment. 

The global alignment algorithms are widely used to solve the so-called “optimal 

matching problem” that maximizes the similarity score calculated using pairwise 

correspondence between nucleotides and artificially introduced gaps across two 

sequences. The output of global alignment algorithms is the overall alignment 

score value and if necessary, pairwise correspondence information, usually called 

“alignment”. 

The Needleman-Wunsch global alignment algorithm (Algorithm 2.1, Figure 2.1) 

developed by Saul B. Needleman and Christian D. Wunsch and published in 1970 

[28], is the first choice of precise global alignment. The original implementation of 

this dynamic programming algorithm has 𝑂(𝑚2) time as well as space complexity. 

Numerous variations of this algorithm have been developed to reduce its 
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computational complexity, such as, memory efficient variants (primarily based on 

Hirschberg’s algorithm [30]) and time efficient variants such as a partial calculation 

of the score-matrix [31], and branch-and-bound-tree based methods [32].  

Algorithm 2.1. Needleman-Wunsch: 
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Figure 2.1. Needleman-Wunsch algorithm. A) Score-matrix (scoring rules: perfect 

match = 1, substitution = -1, gap = -2) B) Alignment 

These efforts have been made to improve this algorithm without imposing 

additional limitations on the alignment process. However, taking into consideration 

specifics which may appear in different sequence alignment tasks, can be used to 

improve the case specific performance of the algorithm. For example, in the gene 

clustering approach, one is not required to generate an alignment traceback to be 

used in the downstream cluster formation. The alignment score for dissimilar 

sequences is also not needed to form clusters. 
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2.1 Small memory footprint: Hirschberg’s Algorithm 

The original implementation of the Needleman-Wunsch algorithm requires an 𝑚2 

size matrix [28] (where 𝑚 is the sequence length) to store partial alignment scores. 

This matrix is also used to traceback optimal alignment(s) in the back-tracking step 

of the algorithm. Hirschberg’s algorithm provides memory reduction (𝑂(𝑚)) and 

performance improvement, especially if the traceback step is not required and only 

the final alignment score is needed. The basic idea of the Hirschberg’s algorithm 

[30] is to only keep in memory the two rows of the Needleman-Wunsch score-

matrix and (in our implementation) swap the rows using pointers without 

reallocating them in memory. Another advantage of this algorithm is that multiple 

pairwise alignments can be done in parallel taking advantage of a small memory 

footprint.   

Algorithm 2.2. getScore utility function: 
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Algorithm 2.3. Hirschberg’s algorithm: 

 

2.2 Time efficiency improvement: Early Alignment Termination  

Considering that a majority of the pairwise alignments in gene clustering tasks will 

not produce significant alignment scores to be used in cluster formation, early 

identification and removal of cases that do not produce acceptable scores can 

significantly improve the overall performance of the clustering algorithm. The 

following algorithms have been designed to take advantage of such specific 

properties of the gene clustering task.  

2.2.1 Early Alignment Termination Using Diagonal-Extension 

The basic idea of the diagonal-extension based alignment termination is that 

calculation of the score-matrix values can be terminated once it is determined that 
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the final alignment score can no longer meet the minimum-required threshold 

(Formula 2.1). This can be achieved by representing the further steps of alignment 

as a perfect match diagonal-extension (‘𝑦’ in Figure 2.2) of the existing alignment 

(‘𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝑗)’ in Figure 2.2)). Depending on where the diagonal meets the 

edge of the scoring matrix (based on the origin of the diagonal’s location in the 

score-matrix), the differences in length between the two gene sequences and the 

location of the cell could result in unavoidable insertions or deletions (‘𝑧’ in Figure 

2.1). Combining the scores obtained from the diagonal’s perfect matches and the 

unavoidable gaps results in the best possible score that can be produced from a 

given location in the score-matrix (Algorithm 2.4).  

The best possible score calculation for a given location in 𝑠1 (Formula 2.1) is 

illustrated in Figure 2.2. 

 

Figure 2.2. Illustration of best possible score achievable from a given location in 

𝑠1(𝑖) 𝑎𝑛𝑑 𝑠2(𝑗) . 
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Formula 2.1. Best possible score calculation at position 𝑖, 𝑗, where ||𝑠1|| ≥ ||𝑠2|| : 

𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑗) =
𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥(𝑖,𝑗)+𝑦∗𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ+𝑧∗𝑠𝑐𝑜𝑟𝑒𝑔𝑎𝑝

||𝑠1||∗𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ
   

where: 

𝑦 = min(||𝑠1|| − 𝑖, ||𝑠2|| − 𝑗) 

𝑧 = max(||𝑠1|| − 𝑖, ||𝑠2|| − 𝑗) − 𝑦 ⇒ |(||𝑠1|| − 𝑖) − (||𝑠2|| − 𝑗)| 

Similarly, the best score achievable at a given row (one position in 𝑠1 for all 

positions in 𝑠2) is the maximum of the best possible scores at each position in the 

row (Figure 2.3 and Formula 2.2) 
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Figure 2.3. Illustration of the best score achievable from a row – diagonal-
extension for early-termination. 

 

Formula 2.2. Best possible score achievable at row 𝑖 

𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑐𝑜𝑟𝑒(𝑖) = 𝑚𝑎𝑥𝑗=0
||𝑠2||

 (
𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡𝑟𝑖𝑥(𝑖,𝑗)+𝑦∗𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ+𝑧∗𝑠𝑐𝑜𝑟𝑒𝑔𝑎𝑝

||𝑠1||∗𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ
) 

The proposed algorithm for early-termination can be defined as follows: 
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Algorithm 2.4. Modified Hirschberg algorithm for early alignment termination using 

diagonal-extension: 

  

 

The calculation of the best possible score for each position in the score-matrix can 

add additional overhead to the performance of the alignment algorithm. This is 

especially true if two sequences are very similar. In order to minimize the number 
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of unnecessary calculations of a best possible score, we propose to use a sparse 

approach where the best possible score is calculated only for log (𝑚) locations 

(Algorithm 2.6). 

Algorithm 2.5. Logarithmic-sparse early-termination: 
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2.3 Performance test: Reduction in number of calculations by early 

alignment termination approach 

The number of cells in the score-matrix for which the score value must be 

calculated can be used as an indicator of performance (improvement) of the 

alignment algorithm. When the original Needleman-Wunsch requires 𝑚2 score 

values to be calculated, the early-termination approach will leave certain locations 

in the score-matrix “empty”. To estimate the reduction of score calculations by the 

early-termination diagonal-extension approach, we used a subset of 1,000 

randomly selected sequences of Bartonella spp. genes with the same length 

range. The average percentage of calculations avoided by using early-termination 

and diagonal-extension was found to be 16.55% ± 14.16%, while the logarithmic-

sparse approach achieved 12.02% ± 10.76% decrease in calculations (see figure 

2.4 for more details). 
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Figure 2.4. Performance comparison for Hirschberg’s algorithm, early-termination 
(ET), and logarithmic-sparse early-termination (LSET) 

 

2.3.1 Performance test: Logarithmic-sparse early-termination running time 

In order to estimate the real-time gain of the logarithmic-sparse early-termination 

approach, 2,500 genes (500 nucleotides long) from Bartonella spp. were chosen 

for bootstrap testing. For each subset of gene sequences (Figure 2.5) the 

alignment experiment has been performed five times. The average run time gain 

was found to be ~10% better than the original Hirschberg’s algorithm. 
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Figure 2.5. Hirschberg’s algorithm and logarithmic-sparse early-termination 
(LSET) time comparison. 

 

The comparison of the diagonal-extension based early-termination approach 

reveals that minor additions to the original Hirschberg’s algorithm improved the 

overall performance of alignment up to ~10% which in a “real life scenario” can 

result in saving hours of computations.  

2.4 Early Alignment Termination Using “Corridor Restriction” 

The basic idea of the corridor restriction based alignment termination is that in 

order to produce a sufficient alignment score, the total number of mismatches 

(insertions, deletions, and substitutions) between two sequences must be limited. 
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The maximum number of mismatches depends on the type of mismatch, the 

scoring rules, and penalties for different types of mismatches and rewards for 

perfect matches. These requirements for the alignment permit the identification of 

locations in the score-matrix that cannot be part of the final alignment. They are 

excluded from consideration. 

To identify locations where calculations can be avoided, the scoring rules require 

consideration. Deviation from the diagonal is caused by gaps only (perfect 

matches and substitutions may not make the alignment deviate from the diagonal), 

and can be estimated using the following formula (Formula 2.3) as seen in Figure 

2.6. 

Formula 2.3. Calculation of allowed gap (deviation from diagonal): 

𝑎𝑔𝑎𝑝 =  𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑔𝑎𝑝 

𝑡 = 𝑠𝑐𝑜𝑟𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

(||𝑠1|| − ||𝑠2|| + 2 ∗ 𝑎𝑔𝑎𝑝) ∗ 𝑠𝑐𝑜𝑟𝑒𝑔𝑎𝑝 + (||𝑠2|| − 𝑎𝑔𝑎𝑝) ∗ 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ

||𝑠1|| ∗ 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ

≥ 𝑡 

𝑎𝑔𝑎𝑝 =
𝑡 ∗ ||𝑠1|| ∗ 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ − ||𝑠2|| ∗ 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ − (||𝑠1|| − ||𝑠2||) ∗ 𝑠𝑐𝑜𝑟𝑒𝑔𝑎𝑝

2 ∗ 𝑠𝑐𝑜𝑟𝑒𝑔𝑎𝑝 − 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ
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Figure 2.6. Illustration of allowed gap (abbreviated as agap). 

When the corridor restriction reduces the amount of calculations in the score-

matrix, the best results can be achieved if it is used in conjunction with the early-

termination approach. When the algorithm performs the score calculations in the 

corridor from top left to bottom right corner of the score-matrix (Figure 2.7), one 

can simultaneously monitor the best possible alignment values across the partial 

row and terminate the alignment as soon as the best possible alignment score 

drops below the required minimum threshold (Figure 2.7). Figure 2.7 illustrates the 

basic idea of corridor restriction and early-termination.  
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Algorithm 2.6. Corridor restriction algorithm:   

 

Algorithm 2.6. can be further improved by using the corridor restriction along with 

logarithmic-sparse early-termination (Algorithm 2.7). 
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Algorithm 2.7. Corridor restriction with logarithmic-sparse early-termination 
algorithm:   
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Figure 2.7. Corridor restriction and early-termination. 

2.4.1 Performance test: Reduction in number of calculations by corridor 

restriction and early-termination approaches 

To estimate the reduction of score calculations using corridor restriction and 

corridor restriction with early-termination, 19,900 pairwise alignments were 

performed using a subset of 200 randomly selected sequences of Bartonella spp. 

genes chosen with same sequence length range (between 500 and 600 

nucleotides). The average percentage of calculations avoided using corridor 

restriction was found to be 83.10% ± 0.16%, when corridor restriction combined 

with logarithmic-sparse early-termination achieved 84.72% ± 1.87% reduction 

(Figure 2.8). In order to estimate the statistical significance of the improvement 

achieved in reducing the number of calculations required, the Wilcoxon matched-

pairs signed rank test [33] was applied to the number of score calculations made 
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by each algorithm for 19,900 pairwise alignments. Approximate p-value less than 

0.0001 was obtained for each paired test. Each developed algorithm achieved a 

significant improvement over the original Hirschberg’s algorithm. 

  

 

Figure 2.8. Performance comparison for early-termination (ET), logarithmic-sparse 
early-termination (LSET), corridor restriction (CR), and corridor restriction with 
logarithmic-sparse early-termination (CR-LSET) algorithms as compared to the 
Hirschberg’s algorithm. 
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2.4.2 Performance test: Corridor restriction with early-termination running 

time 

To estimate the real time gain using the corridor restriction with early-termination, 

2,500 genes (~500 nucleotides) from Bartonella spp. were chosen for bootstrap 

testing. For each subset of gene sequences (Figure 2.9) the alignment experiment 

was performed five times. For a set of 400 genes, we observed ~6.5 times faster 

performance compared to the original Hirschberg’s algorithm. With an additional 

number of alignments performed, the improvement can produce significant 

performance gains since the computational complexity of the algorithm was 

reduced to 𝑶(𝒎𝟏+𝐥𝐨𝐠𝒎 𝒂𝒈𝒂𝒑), where 𝑚  is sequence length and 𝑎𝑔𝑎𝑝 is the allowed 

number of gaps between two sequences. The algorithm becomes more efficient 

for a smaller 𝑎𝑔𝑎𝑝 (meaning that the required score threshold is higher), for the 

smallest possible value of 𝑎𝑔𝑎𝑝 = 1 (only pairwise alignment of identical 

sequences produce a sufficient score above a given threshold), time complexity 

becomes: 

𝑂(𝑚1+log𝑚 1)  ⇒ 𝑂(𝑚1+0)  ⇒ 𝑂(𝑚) 

Since 𝑎𝑔𝑎𝑝 ≪ 𝑚, then, 𝑶(𝒎𝟏+𝐥𝐨𝐠𝒎 𝒂𝒈𝒂𝒑) < 𝑶(𝒎𝟐) 



31 
 

 

 

Figure 2.9. Run time performance comparison for the original Hirschberg’s 
algorithm, logarithmic-sparse early-termination (LSET), corridor restriction (CR), 
and corridor restriction with logarithmic-sparse early-termination (CR with LSET) 
algorithms. 
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Figure 2.10. Run time performance comparison for original Hirschberg’s 
algorithm[30], and corridor restriction with logarithmic-sparse early-termination 
(CR with LSET) algorithms extrapolated to pairwise alignment of 100,000 genes. 

 

Figure 2.10 illustrates the run time extrapolation of the proposed algorithm 

compared to Hirschberg’s algorithm [30] for pairwise alignment of up to 100,000 

genes (~5 billion pairwise alignments). The proposed algorithm is expected to 

complete ~5 billion pairwise alignment tasks in ~111 hours (~4.5 days), while the 

original Hirschberg’s algorithm is expected to run more than ~1,659 hours (~69 

days). 

When all the approaches: diagonal-extension, logarithmic-sparse early-

termination and corridor restriction were combined, the proposed algorithm 
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improved the computational complexity of pairwise alignment from 𝑂(𝑚2) to 

𝑂(𝑚1+log𝑚 𝑐). In a real case scenario, when hundreds of thousands of genes are 

clustered, improvement can make the difference between possible and impossible 

clustering tasks.  
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3. The Application of the Gene Clustering Algorithms to Characterize the Pan 

Genome of Bartonella spp.  

Bartonella is an important pathogen originating from South-East Asia and currently 

colonizing a variety of hosts on every continent, excluding Antarctica [34]. The 

usual mammal hosts include bats and rats [24]. It is believed that Bartonella spp. 

were first introduced to Africa and the Americas via rats traveling on ships [35]. 

Comparative analysis of Bartonella spp. genomes collected across different 

geographical locations from different hosts can reveal the evolution and any 

changes in the history of the spread of Bartonella across the globe. 

Traditionally, the molecular clock approach [36] was used to estimate the 

evolutionary time separation among different strains of the same species: more 

mutations that accumulate in the same gene(s) from different two strains reflect a 

longer time of separation from their common ancestor. The mechanisms of 

bacterial adaptation however, are not limited by mutation accumulation but also 

includes genes lost and/or gained from lateral gene transfer. Regardless of the 

evolutionally separation time, the similarity in gene profiles among strains is 

expected to reflect functional similarity including adaptation to the host and its 

microbiome. Also adaptation to various external physical (temperature, humidity, 

UV light exposure) and biochemical conditions (pH, NaCl concentration) by 

mutation, permit the reconstruction of the history of its evolution/adaptation 

including bottlenecks, host changes, and acquisitions or loss of pathways. These 

changes reflect the surrounding microbiome history. 
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Clustering of the homologous genes across a number of known Bartonella 

genomes permit exploration of its evolution using functional similarities based upon 

the comparison of Bartonella gene profiles. 

This study was performed using gene sequences from 22 complete or draft 

Bartonella spp. genomes available at NCBI [37] as of April 2015 (Table 3.1). The 

number of annotated genes in the genomes under consideration ranged between 

1,188 and 2,208 (34,060 total). All the gene sequences were used in the presented 

analysis. 
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Table 3.1. List of 22 Bartonella genomes used in the analysis 

 

3.1 Gene profile identification 

The collection of Bartonella genomes used in the analysis contains strains 

significantly different from one another. Genome sizes vary almost two-fold: from 

1.445 Mb (Bartonella bacilliformis KC583) to 2.642 Mb (Bartonella tribocorum CIP 

105476). Not surprisingly, the same genes across different strains also appear 

dissimilar and the correct identification of same genes (gene families) had to be 

done carefully. To date, most attempts to identify “same” genes (homologous) in 

relatively diverse species have been based on establishing “reasonable criteria” - 
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the cutoff of the sequence-similarity score (in the nucleotide or amino acid space) 

below which genes are considered to be different [9], [14], [38]. Lack of a standard 

gene similarity threshold, various pan genome studies utilized different criteria to 

identify the homologous genes in relatively distant species. For example, in an 

Escherichia coli (E. coli) study by Rasko et al. [9], the amino acid identity threshold 

of approximately >80% was used. In a study by Lukjancenko et al. [14], two genes 

were attributed to a single gene family and considered 'conserved' when they 

shared at least a 50% amino acid identity over at least 50% of the length of the 

longest gene. Other studies consider a gene ‘conserved’ if the gene sequences 

shared over a 50% amino acid identity in conjunction with over 50% of the length 

of the longest gene [8]. Unfortunately, changing such criteria can significantly affect 

the outcome of the analysis. 

3.2 Bartonella Genus specific scoring rules for pairwise alignment 

The scoring rule which rewards perfect matches and penalizes mismatches 

defines the final score, but affects the number of gaps in the alignment. For 

example, equal penalties for gaps and substitutions lead to artificially higher 

numbers of gaps. The increased number of gaps do not reflect the nature of 

evolution of genomic sequences. It is also important to note that when single 

nucleotide substitutions are neutral (do not change the amino-acid sequence 

coded by this nucleotide) or in the worst case scenario, changes just one amino-

acid in the resulting protein, gaps, usually resulting in frame shifting mutations, can 
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dramatically alter the resulting protein product including artificial translation 

termination and/or cause non-sense mutations. 

In order to identify Bartonella spp. specific scoring rules, we decided to estimate 

the average ratio between substitutions and gaps (InDels) by comparing randomly 

selected sequences of several known genes (Table 3.2, Figure 3.1). This analysis 

identified that the gap to substitution ratio is at least 1:10 and the “natural” scoring 

rules for Bartonella spp. are in range with previously published data [39]. For the 

purpose of this study, we chose the following scoring criteria: perfect match (+2), 

substitution (-1), and InDels (-10).  
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Figure 3.1 Multiple sequence alignment [40] of the first 80 nucleotides of rpoB gene 
from 22 Bartonella spp. genomes. 
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Table 3.2. InDels/Substitution ratio for selected pairs of Bartonella spp. genes. 
Average InDels/Substitution ratio is 0.1094 

 

In order to introduce a “natural” sequence-similarity cutoff in the nucleotide space, 

we performed an alignment for each pair of gene sequences of all 22 Bartonella 

spp. under consideration (a total of 580,024,770 pairs) using algorithms presented 

in chapters 1 and 2.  

As expected, the distribution of the alignment scores for each pair of genes (Figure 

3.2) appeared to have two local maxima. The distribution on the left with a local 
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maximum alignment score value of around 0.02 represents all the dissimilar genes. 

It is important to note that due to the negative penalties for InDels and substitutions, 

alignments can have negative values. The distribution on the right, which is more 

“diverse”, represents the set of sequences (genes) with a significant level of 

similarity. It is also necessary to emphasize that the left hand side distribution is 

also located in the area of alignment scores for random sequences (Figure 3.2). 

As one can see, the distribution of alignment scores also has a well pronounced 

divider between two maximums, grouping “different” and “similar” pairs of genes 

located between alignment score values of 0.1 and 0.3. The cutoff value must to 

be taken from this interval. 
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Figure 3.2. Alignment score distribution for each pair of 34,060 genes from 22 
Bartonella genomes as well as random sequences of various lengths: (A) full 
distribution; (B) zoom on Y-axis; (C) same distribution in log scale. 
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To more accurately identify the appropriate cutoff; we decided to evaluate how the 

cutoff value would affect the number of genes conserved across the Bartonella 

spp. (core genome). The idea behind this analysis is that the total number of genes 

identified as the core genome is a result of two competing processes. An 

increasing cutoff value reduces the number of common genes by assigning even 

slightly different sequences to be different. On the other hand, decreasing the 

threshold will cluster dissimilar genes, so in extreme cases they all become a 

single cluster. 

Figure 3.3 and Table 3.3 show the dependence of the number of core genes 

common for all 22 Bartonella genomes for a chosen threshold.  A similar analysis 

of 11 E. coli reference genomes is seen on Table 3.4. Based on the analysis, we 

chose the threshold to be 0.15. As seen in Figure 3.3  the shape of the core-

genome-size function for E. coli is different. For higher cutoff values, a large flat 

region reflects E. coli genomes are more similar to each other than the Bartonella 

genomes. 
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Table 3.3. Dependence of the number of unique genes conserved across 22 
Bartonella spp. genomes to the alignment-score threshold 

 

 

 

 

 

Figure 3.3. Core-genome size for 22 Bartonella and 11 E. coli genomes as a 
function of the alignment-score cutoff. 
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Table 3.4. E.coli genomes used in the analysis 

 

It is also important to mention that in some cases, when a vast majority of the 

genes were clustered correctly, the chosen threshold clustered several relatively 

similar genes together. Examples seen in Figures 3.4a and 3.4b show several 

examples.  
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Figure 3.4a Phylogenetic tree based on nucleotide similarity among gltL 
(glutamate-aspartate ABC transporter ATP-binding component) and glnQ (amino 
acid ABC transporter, ATP-binding protein) sequences placed in the same cluster 
using a threshold of 0.15. 
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Figure 3.4b Phylogenetic tree based on nucleotide similarity among sequences 
inside of the cluster containing phage related lysozyme sequences. 
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3.3 Results 

The analysis performed using the chosen clustering parameters provided the 

identification of 6,043 gene clusters out of 34,060 total gene sequences. It also 

resulted in the presence/absence and copy-number profile for every gene and 

gene cluster in each Bartonella genome used in the analysis. The subset of the 

pan genome across all 22 Bartonella spp. contains a total of 6,043 different genes 

with 714 gene clusters conserved across all genomes. These are potential genes 

in the core genome. Interestingly, some of the core-genome genes were found to 

be present in more than one copy (up to 18 copies) in Bartonella genomes.  

Analysis of the gene-cluster profiles of Bartonella genomes provide an 

identification of correlated gene-cluster patterns. Table 3.5 shows examples of 

such groups. Such co-appearances of genes could indicate similar metabolic or 

signaling pathways (Table 3.5). Figure 3.4 shows the location of six different 

groups (335, 349, 399, 400, 541, and 544) on the gene-similarity based tree (also 

listed in Tables 3.5 and 3.6). 
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Table 3.5 Co-appearance pattern of genes for groups 335 (a), 349 and 400 (b) and 
541 (c)  

a.  
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b. 
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c. 

 

Some groups appearing in genomes also appeared to be anti-correlated, that is, 

genes belonging to two different groups never appeared in the same genome. This 

may indicate that the processes controlled by these gene clusters cannot be 

performed together (Table 3.6).  

 

 



52 
 

Table 3.6. Example of an avoidance pattern demonstrating that a group of genes 
involved in flagella development (group 399) and heat-shock (group 544) proteins 
pathways may not coincide in Bartonella spp. 

 

Using the Jaccard index [41] (number of unique common genes over the total 

number of unique genes present in at least one of two genomes), a gene profile 

similarity tree of Bartonella spp. was created using a complete linkage-tree 

algorithm (Figure 3.5). This figure shows that Bartonella spp. are organized into 

two general groups and Bartonella tamiae Th239 is distant from the other 
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Bartonella spp. based on its gene profile. Every group and organism has several 

unique genes. Values associated in the tree represent the number of gene clusters 

unique/common/total for each branch. The core-genome size (number of common 

genes) of the first group starting with Bartonella melophagi K2C and ending with 

Bartonella alsatica IBS 382 is 803 while a total number of 3,000 genes were 

identified for this group. This group is organized into two subdivisions, with the left 

most subdivision containing a group of genes (group 399) that only appears in 

genomes belonging to this subdivision. Interestingly, this gene group is responsible 

for the development of flagella. This subdivision is very distinct from the rest of the 

Bartonella spp. in the sense that it does not contain genes from group 544 while 

all other genomes contain this group. Group 544 contains LysM [42], [43] (protein 

shown to bind to other bacterial cell walls and chitin – found in insect exoskeletons) 

and Hsp20 [44] (a heat-induced stress protein). 

The other division of genomes starting with Bartonella rattimassilliensis 15908 and 

ending with Bartonella taylorii 8TBB have 1,041 genes in common where the total 

number of genes (3,607) is larger than the first group. This may be due to the 

number of genomes in each group, the first group contains 12 genomes while the 

latter contains 9, with Bartonella tamiae an outlier. 
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Figure 3.5. Gene profile similarity tree for 22 Bartonella genomes. Values 
associated to each of the tree branches include number of genes Unique 
(present in all genomes inside the branch but absent in any other genome) / 
Common (present in all genomes inside the branch and may also be present in 
other genomes) / Total (present in at least one genome inside the branch). 

 

 



55 
 

The conserved genes used in analysis are 16S rRNA (ribosomal RNA), rpoC 

(DNA-directed RNA polymerase subunit beta), aatA (aspartate 

aminotransferase), dapD (2,3,4,5-tetrahydropyridine-2,6-carboxylate N-

succinyltransferase), rpsB (30S ribosomal protein S2), and tmk (thymidylate 

kinase). As expected, the topology of the tree appears to be different from the 

trees generated using sequence-similarity from few conserved genes (Figure 

3.6a-g). For example, Bartonella koehlerae C29 and Bartonella Henselae 

Houston 1 genomes appear to be similar based on the trees using the genes: 

rpoC (Figure 3.6b), aatA (Figure 3.6c), dapD (Figure 3.6d), rpsB (Figure 3.6e), 

tmk (Figure 3.6f). The consensus tree based on these genes (Figure 3.6g) and 

the consensus tree based on all 714 core genes (Figure 3.7) show a similar 

result. In the gene-profile-based tree (Figure 3.5), however, Bartonella koehlerae 

C29 appears to be distant from all other genomes in its sub-division, and 

Bartonella Henselae Houston 1 appears to be closest to Bartonella vinsonii 

subsp. Berkhoffii Winnie. In the trees based on these genes Bartonella vinsonii 

subsp. Berkhoffii Winnie appears to be dissimilar to both previously mentioned 

genomes. 
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Figure 3.6a. Phylogenetic tree based on nucleotide similarity among single copies 
of 16S rRNA (ribosomal RNA) present in 22 Bartonella spp. 
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Figure 3.6b. Phylogenetic tree based on nucleotide similarity among rpoC (DNA-
directed RNA polymerase subunit beta) genes. 
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 Figure 3.6c. Phylogenetic tree based on nucleotide similarity among aatA 
(aspartate aminotransferase) genes. 
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Figure 3.6d. Phylogenetic tree based on nucleotide similarity among dapD 
(2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase) genes. 
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Figure 3.6e. Phylogenetic tree based on nucleotide similarity among rpsB (30S 
ribosomal protein S2) genes. 
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Figure 3.6f. Phylogenetic tree based on nucleotide similarity among tmk 
(thymidylate kinase) genes. 
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Figure 3.6g. A consensus tree based on rpoC, aatA, dapD,rpsB and tmk genes. 

Using the entire core genome identified using the clustering algorithm also allowed 

a more comprehensive consensus molecular-clock-based tree using all 714 core 

genes (Figure 3.7) 
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Figure 3.7. Consensus tree based on 714 core genes from Bartonella spp.  
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The molecular clock tree reflects the time of separation of bacterial species in 

their evolution while the tree based on gene-profile similarities reflect functional 

similarity such as adaptation to the host and its microbiome, as well as various 

external physical (temperature, humidity, UV light exposure) and biochemical 

conditions (pH, NaCl concentration). These differences detected by gene profiles 

permit the reconstruction of the history of the species’ evolution and adaptation 

including bottlenecks, host changes, and acquisitions/loss of pathways (which 

can also be a reflection of the surrounding microbiome history). 

 

 

 

 

 

 

 

 

 

 

 



65 
 

4. Core and pan genome estimation model for Bartonella spp. 

Too few genomes used for analysis cannot identify new genes which may appear 

in a particular genus (pan genome) or identify which genes are conserved across 

all the species belonging to the genus (core genome). Figures 4.1 and 4.2 show 

the number of genes in common and the total number of genes present in groups 

containing 1, 2, 3, …, 22 Bartonella spp. genomes. It must be noted that the curve 

representing the pan genome (collector’s curve [45]) in Figure 4.1 shows signs of 

saturation. The pan-genome size of Bartonella spp. is expected to approach a finite 

asymptotic value as number of sequenced Bartonella genomes increase. 
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Figure 4.1. Box-and-Whisker plots of total number of genes found in varying size 

groups of Bartonella genomes. Each Box-and-Whisker plot represents the 

distribution of pan-genome size for all possible combinations of genomes within 

the group. The top and bottom whiskers represent the upper and lower 25% 

quartiles respectively – excluding outliers. The box represents the second and 

third quartiles (50%). The horizontal lines inside the boxes represent the group 

medians, red circles represent the group averages and the black circles 

represent the outliers. The blue curve represents the model fitting applied to 

group averages. 
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Figure 4.2. Box-and-Whisker plots of number of common genes found in varying 

size groups of Bartonella genomes. Each Box-and-Whisker plot represents the 

distribution of core-genome size for all possible combinations of genomes within 

the group. The top and bottom whiskers represent the upper and lower 25% 

quartiles respectively – excluding outliers. The box represents the second and 

third quartiles (50%). The horizontal lines inside the boxes represent the group 

medians, red circles represent the group averages and the black circles 

represent the outliers. The blue curve represents the model fitting applied to 

group averages. 
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Several studies [10]–[12], [8], [46]–[49] in the past 10 years have focused on pan 

genome analysis including its size estimation for many species of bacteria. Some 

of these studies also include development of the mathematical models to predict 

pan/core-genome sizes using various assumptions [10], [11], [50]. 

In order to fulfill the intuitive understanding of the core and pan genomes of 

bacteria, a mathematical model to predict them must include the following basic 

principles: 

1- Finite size of the core genome. 

2- Finite size of the pan genome. 

3- Different genes must be present with different abundances/probabilities in 

the flexible (pan minus core) part of the pan genome. 

 

Figure 4.3. The illustration of the core and pan genome concepts. 
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Tettelin et al. 2005 [8] proposed using an exponential-decay function to estimate 

the number of new genes introduced into the pan genome of a species by the 

addition of a new genome, with the assumption that the pan genome is “open”. 

The assumption is made that the core-genome size approaches a finite value as 

more genomes are added, however, the function that describes the number of 

“new genes introduced to pan genome” is asymptotic to a non-zero value, 

indicating that the pan-genome size of bacteria is unbounded. 

The assumption that the pan genome is unbounded violates the finite pan-genome 

size requirement. The existence of gene classes with different 

abundance/probabilities is also not considered in this model, violating the third 

requirement. Tettelin et al. [12] in 2008 proposed to use the Heaps’ law [51] model 

which allows for an “open” pan genome assumption. Based on model parameters, 

this approach can potentially produce an asymptotic pan genome curve which 

supports the finite pan genome assumption, however, it can also predict infinite 

growth of the pan genome. Similar to the previous study, the finite pan-genome 

size and different genes appearing with different abundance/probability 

requirements are violated.  

In summary, the exponential-decay and power law models predict an infinite 

growth of the number of genes in the pan genome when the number of genomes 

under consideration increases. This assumption contradicts the common belief 

that the number of genes in pan genome is finite [7], [52]–[54] and the models are 
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not adequate in describing multiple classes of genes appearing in different 

abundance/probability. 

In 2007, Hogg et al. [54] proposed a finite pan genome model using a mixture of 

binomial distributions, introducing the concept of “gene classes”. The model has 

been developed under the assumption that the pan genome contains classes of 

genes with equal probabilities but a different number of genes per class so the 

probability of a particular gene’s appearance in a genome can be predicted based 

on predefined proportion of a particular gene class in a genome and the number 

of genes in this class. The model complies with all the principles described 

previously, however, the approach is not robust, so manually selected parameters 

can significantly affect results and the large degree of freedom can cause 

overfitting. Figure 4.4 shows the effect of choosing a number of parameters in pan 

genome-size estimation. Using this approach, Figure 4.5 shows these effects on 

core-genome-size estimation. The original study used seven predefined bins to 

create seven classes of genes. Each bin represented the probability to pick a 

particular gene from itself. For example, a gene class probability of 1.0 represents 

the gene class we refer to as the core genome. In order to measure the effects of 

the artificial creation of gene classes, we calculated the model’s estimated core- 

and pan-genome sizes using a different number of bins. 
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Figure 4.4. Effect of the number of bins used for pan-genome-size estimation. 
Hogg et al. [54] binomial model 

 

Figure 4.5. Effect of number of bins used for core-genome-size estimation. Hogg 
et al. [54] binomial model 

 

It can be seen (Figures 4.4 and 4.5) that the number of bins chosen significantly 

affects the estimation. 
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4.1 Single Gene Pool Model 

The following model has been proposed to resolve the prediction instability issues. 

Let 𝑛 be the average number of unique genes observed in an organism; 𝑚𝑝𝑎𝑛 be 

the total number of unique genes present in a finite pool of genes. Assume that  

𝑚𝑝𝑎𝑛 consists of a fixed set of core genes present in every organism in the data 

set, 𝑚𝑐𝑜𝑟𝑒, and a flexible set of genes, 𝑚𝑓𝑙𝑒𝑥. The number of unique genes 

expected to be found in the union of all organisms is 

𝑚𝑝𝑎𝑛 = 𝑚𝑐𝑜𝑟𝑒 + 𝑚𝑓𝑙𝑒𝑥 

The number of unique genes expected to be found in a single organism, 𝑛, can be 

represented as 𝑚𝑐𝑜𝑟𝑒 and some genes coming from of 𝑚𝑓𝑙𝑒𝑥. The number of genes 

contributed to 𝑛 by 𝑚𝑓𝑙𝑒𝑥 is: 

𝑛 − 𝑚𝑐𝑜𝑟𝑒 

Assuming that the appearance of a gene belonging to the flexible set of genes can 

be described as a random process, the probability of finding a gene in an organism 

that belongs to 𝑚𝑓𝑙𝑒𝑥 is then: 

𝑛 − 𝑚𝑐𝑜𝑟𝑒

𝑚𝑓𝑙𝑒𝑥
 

The probability of finding a gene in 𝑘 organisms simultaneously that belong to the 

flexible part is 𝛽𝑘 and the number of genes expected to be in found in the 

intersection of 𝑘 organisms that belong to the flexible part is: 



73 
 

𝑚𝑓𝑙𝑒𝑥(
𝑛 − 𝑚𝑐𝑜𝑟𝑒

𝑚𝑓𝑙𝑒𝑥
)𝑘 

The total number of genes expected to be found in the intersection of 𝑘 organisms 

is: 

𝑓𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 = 𝑚𝑐𝑜𝑟𝑒 + 𝑚𝑓𝑙𝑒𝑥(
𝑛 − 𝑚𝑐𝑜𝑟𝑒

𝑚𝑓𝑙𝑒𝑥
)𝑘 

Out of 𝐾, the total number of organisms, the number of unique combinations of 𝑘 

organisms 𝐶𝑘 is: 

𝐶𝑘 =
𝐾!

(𝐾 − 𝑘)! 𝑘!
 

The average number of unique of genes observed in the 𝑘𝑡ℎ combinatorial of 𝐾 

organisms in the intersection, 𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘, is: 

𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 =
1

𝐶𝐾
∑ 𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑖,𝑘

𝐶𝑘

𝑖=1

 

The relative error in estimating the number of genes found in the intersection is: 

𝑒𝑟𝑟𝑜𝑟𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 = |
𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 − 𝑓𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘

𝑜𝑘
| 

The probability of not finding a given gene from the flexible part in an organism is: 

1 −
𝑛 − 𝑚𝑐𝑜𝑟𝑒

𝑚𝑓𝑙𝑒𝑥
 

The probability of not finding the gene from the flexible part in any of the 𝑘 

organisms is: 
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(1 −
𝑛 − 𝑚𝑐𝑜𝑟𝑒

𝑚𝑓𝑙𝑒𝑥
)𝑘 

 The probability of finding the gene in at least one or more organisms is: 

1 − (1 −
𝑛 − 𝑚𝑐𝑜𝑟𝑒

𝑚𝑓𝑙𝑒𝑥
)𝑘 

The number of unique genes expected to be observed in the union of 𝑘 genomes 

is therefore: 

𝑓𝑢𝑛𝑖𝑜𝑛,𝑘 = 𝑚𝑐𝑜𝑟𝑒 + 𝑚𝑓𝑙𝑒𝑥(1 − (1 −
𝑛 − 𝑚𝑐𝑜𝑟𝑒

𝑚𝑓𝑙𝑒𝑥
)

𝑘

) 

The average number of unique of genes observed in the 𝑘𝑡ℎ combination of 𝐾 

organisms in the union, 𝑜𝑢𝑛𝑖𝑜𝑛,𝑘, is: 

𝑜𝑢𝑛𝑖𝑜𝑛,𝑘 =
1

𝐶𝐾
∑ 𝑜𝑢𝑛𝑖𝑜𝑛,𝑖,𝑘

𝐶𝑘

𝑖=1

 

The relative error in estimating the number of genes found in the union of  𝑘 

organisms is: 

𝑒𝑟𝑟𝑜𝑟𝑢𝑛𝑖𝑜𝑛,𝑘 = |
𝑜𝑢𝑛𝑖𝑜𝑛,𝑘 − 𝑓𝑢𝑛𝑖𝑜𝑛,𝑘

𝑜𝑢𝑛𝑖𝑜𝑛,𝑘
| 

In order to estimate the size of the core and the pan genomes, we can minimize 

the total error for 𝑚𝑐𝑜𝑟𝑒 𝑎𝑛𝑑 𝑚𝑓𝑙𝑒𝑥 : 

min
𝑚𝑓𝑙𝑒𝑥

min
𝑚𝑐𝑜𝑟𝑒

∑(𝑒𝑟𝑟𝑜𝑟𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 + 𝑒𝑟𝑟𝑜𝑟𝑢𝑛𝑖𝑜𝑛,𝑘)

𝐾

𝑘=1
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The number of possible combinations of values that are averaged for 𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 

and 𝑜𝑢𝑛𝑖𝑜𝑛,𝑘 are significantly different such as 𝐶1 = 22 and 𝐶11 = 705,432 for the 

Bartonella dataset. The deviation in the averages calculated for values of 𝑘 closer 

to 𝐾/2 is expected to be much smaller than values of 𝑘 that are distant from 𝐾/2, 

therefore the error contribution of each step of 𝑘 can be multiplied by a weight, 

𝑤𝑘 = 𝐶𝑘 to improve the fit. 

min
𝑚𝑓𝑙𝑒𝑥

min
𝑚𝑐𝑜𝑟𝑒

∑ 𝑤𝑘(𝑒𝑟𝑟𝑜𝑟𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 + 𝑒𝑟𝑟𝑜𝑟𝑢𝑛𝑖𝑜𝑛,𝑘)

𝐾

𝑘=1

 

4.2 Mixture of Gene Pools Model 

The single gene pool model based on the assumption that there is a single finite 

gene pool with an equal probability to pick genes cannot sufficiently describe highly 

diverse species. One can imagine a finite supply of gene pools of varying size and 

density to describe a diverse-species gene pool. It can be seen that the number of 

genes in the intersection of organisms is over-estimated and the union is under-

estimated by a large difference for both data sets. 
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Figure 4.6 Illustration of single and multiple gene pools models with different gene 
abundance/probability. 

 

Assume that 𝑚𝑓𝑙𝑒𝑥 consists of smaller pools. Let 𝛼𝑖 be the contribution ratio of the 

𝑖𝑡ℎ pool out of 𝑁 finite pools to 𝑚𝑓𝑙𝑒𝑥: 

𝑚𝑓𝑙𝑒𝑥 = ∑ 𝛼𝑖𝑚𝑓𝑙𝑒𝑥 

𝑁

𝑖=1

 

The pan-genome size can be defined as: 

𝑚𝑝𝑎𝑛 = 𝑚𝑐𝑜𝑟𝑒 + ∑ 𝛼𝑖𝑚𝑓𝑙𝑒𝑥

𝑁

𝑖=1

 

If we assume that the significant portion of the observed genes can be represented 

by two independent pools: 

∑ 𝛼𝑖

𝑁

𝑖=3

≪  𝛼1 + 𝛼2 
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Since: 

∑ 𝛼𝑖

𝑁

𝑖=1

= 1 

Then: 

𝛼1 + 𝛼2  ≅ 1 

 

Similarly the proportional contribution of individual pools which make up 𝑚𝑓𝑙𝑒𝑥 to 

the average number of unique genes observed in an organism can also be defined 

as: 

∑ 𝛽𝑖

𝑁

𝑖=3

≪  𝛽1 + 𝛽2 

We can rewrite the model that estimates the unique number of genes found in the 

intersection of 𝑘 organisms coming from the flexible part as: 

𝑚𝑓𝑙𝑒𝑥𝛼1 (
𝛽1(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥𝛼1
)

𝑘

+  𝑚𝑓𝑙𝑒𝑥𝛼2 (
𝛽2(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥𝛼2
)

𝑘

  + 𝑚𝑓𝑙𝑒𝑥 ∑ 𝛼𝑖 (
𝛽𝑖(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥𝛼𝑖
)

𝑘𝑁

𝑖=3

 

Ignore the last term as 𝛼1 + 𝛼2  ≅ 1 

𝑚𝑓𝑙𝑒𝑥𝛼1 (
𝛽1(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥𝛼1 1

)

𝑘

+  𝑚𝑓𝑙𝑒𝑥𝛼2 (
𝛽2(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥𝛼2 2

)

𝑘
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Replace 𝛼2  ≅ 1 − 𝛼1, and 𝛽2  ≅ 1 − 𝛽1, and add 𝑚𝑐𝑜𝑟𝑒to find the total number of 

unique genes expected to be observed in the intersection 𝑘 organisms. 

𝑓𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 = 𝑚𝑐𝑜𝑟𝑒 + 𝑚𝑓𝑙𝑒𝑥𝛼 (
𝛽(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥𝛼
)

𝑘

+  𝑚𝑓𝑙𝑒𝑥(1 − 𝛼) (
(1 − 𝛽)(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥(1 − 𝛼)
)

𝑘

 

Similarly, the total number of unique genes expected to be observed in the union 

of 𝑘 organisms is: 

𝑓𝑢𝑛𝑖𝑜𝑛,𝑘 = 𝑚𝑐𝑜𝑟𝑒 + 𝑚𝑓𝑙𝑒𝑥𝛼 (1 − (1 −
𝛽(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥𝛼
)

𝑘

) + 𝑚𝑓𝑙𝑒𝑥(1 − 𝛼) (1 − (1 −
(1 − 𝛽)(𝑛 − 𝑚𝑐𝑜𝑟𝑒)

𝑚𝑓𝑙𝑒𝑥(1 − 𝛼)
)

𝑘

) 

In order to estimate the size of the core and the pan genomes, using the same 

relative error calculation with weights, we can minimize the total error for 

𝑚𝑐𝑜𝑟𝑒, 𝑚𝑓𝑙𝑒𝑥 𝑎𝑛𝑑 𝛼 𝑎𝑛𝑑 𝛽 : 

min
𝛽

min
𝛼

min
𝑚𝑓𝑙𝑒𝑥

min
𝑚𝑐𝑜𝑟𝑒

∑ (𝑤𝑘(𝑒𝑟𝑟𝑜𝑟𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛,𝑘 + 𝑒𝑟𝑟𝑜𝑟𝑢𝑛𝑖𝑜𝑛,𝑘))

𝐾

𝑘=1

 

4.3 Bootstrapping and model fitting 

Bootstrapping is a viable alternative to making inferences on the population mean 

of an unknown distribution for small sample sizes. In this study 50 samples of 

identical size (22) were generated by resampling the original dataset using equal 

probabilities for genome selection with replacement. The model was fit to each 

bootstrap sample and the averages of the model parameters were calculated.  

The resulting core and pan-genome size estimates show variation due to 

Bartonella spp. present in the dataset that are significantly distant from each other. 
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Table 4.1. Averages of model parameters used in bootstrap fitting 

 

 

 

Figure 4.7 Distribution of model estimates for core and pan-genome size of 
bootstraps using all genomes 

 

In order to observe the core/pan-genome size distribution of bootstraps created 

from functionally closer species and reduce the influence of outliers, separate 

bootstrap groups were created. We used the Jaccard index [41] as a score to 

determine the distance between genomes. In the gene-profile tree below there are 

two main groupings of Bartonella spp. falling under two main branches and one 

outlier (Bartonella tamiae). Two separate bootstrap sets were created using 
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genomes labeled as group A and B (Table 4.2) excluding the outlier Bartonella 

tamiae genome. Each bootstrap group contains 50 datasets created using only the 

genomes allowed in the groups, with replacement. 

Table 4.2 Bootstrap groups A and B 
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Figure 4.8. Distribution of model estimates for core- and pan-genome size for 
bootstraps created using genomes from group A 

 

Table 4.3. Averages of model parameters used in bootstrap fitting for group A 
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Figure 4.9. Distribution of model estimates for core- and pan-genome size for 
bootstraps created using genomes from group B 

 

Table 4.4. Averages of model parameters used in bootstrap fitting for group B 

 

There are 12 genomes in group A and 9 genomes in group B. The bootstraps 

generated using group A genomes are expected to share a smaller core genome 

than group B. Contrary to expectations, the average pan-genome size of 

bootstraps generated from group A is also smaller than group B. This observation 

may be attributed to the difference in number of genes found in these groups of 

genomes (average number of genes in group A is ~1,344 while group B is ~1,772). 
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Figure 4.10. Distribution of model estimates for core- and pan-genome size for 
bootstraps using genomes from groups A and B (all genomes except Bartonella 
tamiae). 

 

In order to observe the effects of the outlier organism (Bartonella tamiae), the same 

bootstrap process was repeated using genomes from both groups A and B 

excluding Bartonella tamiae. A lack of significant difference between averages 

shows that bootstrapping is effective in reducing the influence of outliers. 

Table 4.5. Averages of model parameters used in bootstrap fitting for groups A 
and B combined (all genomes except Bartonella tamiae) 
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The proposed model appeared to be more robust, having less parameters and 

fulfill intuitive understanding of the core and pan genome. Bootstrapping showed 

that the model estimations are prone to sampling bias based on the selection of 

available genomes. This is especially true in practice as certain strains of a species 

are studied more often and therefore, complete genomes (with annotated genes) 

of a genus in a given database might predominantly contain only a few species of 

a genus. 

Using this model, based on bootstrap averages (when all genomes are allowed), 

one can expect the total size of the core genome for 22 Bartonella genomes will 

be ~788 while the pan genome is expected to grow up to ~5,444 (Table 4.1). It 

also provides identification of the relative proportion of core (14%) and flexible 

(86%) genomes in Bartonella spp. The model can achieve the highest possible 

pan-genome size when all individual genomes are used without bootstrapping 

(with no repetitions allowed in the sampling). In this case, the core-genome size is 

expected to be smaller (~721) while the pan-genome size is expected to be 

significantly larger (~11,377) where the core genome only makes up ~6.4% of the 

pan genome. These findings reflect the wide range of biological, physical, and 

chemical conditions in which the bacteria can survive. 

The parameters obtained from the model calculations using all genomes (upper 

bound) can be used for extrapolation in order to identify the minimum number of 

genomes required to capture at least 99% of all genes in Bartonella spp. pan 
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genome (Figure 4.11). 99% of the pan genome (11,263 genes) can be captured 

using 186 Bartonella spp. genomes. 

Figure 4.11 Extrapolation of Bartonella spp. pan-genome size using all available 
genomes 
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Conclusion and Future Work 

Bacterial adaptation through gene loss and acquisition are the fundamental 

dynamic mechanisms that describe the nature of the core and pan genomes. 

Gene profiles reflect the functional adaptation of the organisms to their 

environment in contrast with the molecular clock based differentiation which 

reflects the time of separation from a common ancestor. The challenge in 

identifying gene profiles (which results in the identification of core and pan 

genomes as well) is the absence of appropriate clustering algorithms. In this 

work, we have developed methods to improve the quality and performance of 

gene clustering including heuristics free, novel sequence alignment algorithms 

that provide clustering of a large number of sequences significantly faster than 

traditional methods (a few days compared to months of computation). We 

demonstrated that the developed alignment algorithm (corridor restriction with 

logarithmic-sparse early-termination) requires significantly less number of 

calculations (84.72% less) than the original Hirschberg’s algorithm. Such 

methods also enable the identification of appropriate similarity thresholds and 

form biologically meaningful cluster topology. The proposed mathematical model 

permits us to describe the core/pan genome of Bartonella spp. while the 

suggested methods allow creation of a functional similarity tree of Bartonella spp. 

based on gene profiles. Functional similarity-based trees, in contrast with 

molecular clock based similarity trees (using similarity of conserved gene(s)), can 

describe the environment and the role of organisms rather than time-based 

evolution (changes in nucleotide sequences of genes).  
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The developed approaches can be applied to other species of bacteria as well as 

extended to a higher level of taxonomy or used in comparison and characterization 

of microbial communities – previously only possible using heuristics. These new 

approaches can provide important insights and information to the long term 

evolution of the species and organization of microbial communities. The developed 

core/pan-genome-estimation method makes the ability to compare bacterial 

species based on their core/pan-genome size possible, which can provide 

additional information in understanding the functional diversity of species and their 

functional evolution. 
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