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ABSTRACT

Nowadays, the development of machine learning shows great potential in a variety of fields,

such as retail, healthcare, and insurance. Effective machine learning models can automati-

cally learn useful information from a large amount of data and provide decisions with high

average accuracy. Although machine learning has infiltrated into many areas due to its ad-

vantages, a vast amount of data has been generated at an ever-increasing rate, which leads

to significant computational complexity for data collection and processing via a centralized

machine learning approach. Distributed machine learning thus has received huge interest

due to its capability of exploiting the collective computing power of edge devices. How-

ever, during the learning process, model updates using local private samples and large-scale

parameter exchanges among agents impose severe privacy concerns and communication bot-

tlenecks. Moreover, the decisions and predictions offered by the learning models may cause

certain fairness concerns among population groups of interest, when the grouping is based

on such sensitive attributes as race and gender.

To address those challenges, in this dissertation, we first propose a number of differen-

tially private Alternating Direction Method of Multipliers (ADMM) algorithms that lever-

age two key ideas to balance the privacy-accuracy tradeoff: (1) adding Gaussian noise

with decaying variance to reduce the negative effects of noise addition and maintain the

convergence behaviors; and (2) outputting a noisy approximate solution for the perturbed

objective to release the shackles of the exact optimal solution during each ADMM iteration

to ensure DP. It is shown that our algorithms can significantly improve the privacy-accuracy

tradeoff over existing solutions. Second, we develop a differentially private and communi-

cation efficient decentralized gradient descent method that will update the local models

by integrating DP noise and random quantization operator to simultaneously enforce DP

and communication efficiency. Finally, we focus on addressing the discrimination and pri-

vacy concerns in classification models by incorporating functional mechanism and decision

boundary covariance, a novel measure of decision boundary fairness.
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1 Introduction

Nowadays, machine learning is increasingly deployed into large-scale distributive systems

that can improve the quality of our life, such as smart home security [1] and AI-aided

medical diagnosis [2]. With the proliferation of mobile phone devices, a vast amount of

data has been generated at an ever-increasing rate, which leads to significant computational

complexity for data collection and processing via a centralized machine learning approach.

Therefore, collaborative training of a machine learning model among edge computing devices

is beneficial and essential in dealing with large scale decentralized learning tasks [3, 4, 5].

Collaborative machine learning is an appealing paradigm to build high-quality ML mod-

els. While an individual party may have limited data, it is possible to build improved, high-

quality ML models by training on the aggregated data from many parties. For example,

in healthcare, a hospital or healthcare firm whose data diversity and quantity are limited

due to its small patient base can draw on data from other hospitals and firms to improve

the prediction of some disease progression (e.g., diabetes) [6]. This collaboration can be

encouraged by a government agency, such as the National Institute of Health in the United

States. In precision agriculture, a farmer with limited land area and sensors can combine

his collected data with the other farmers to improve the modeling of the effect of various

influences (e.g., weather, pest) on his crop yield [7]. Such data sharing also benefits other

application domains, including real estate in which a property agency can pool together

its limited transactional data with that of the other agencies to improve the prediction of

property prices [8].

In the framework of collaborative learning, data providers (agents) collaboratively solve

a learning problem, which can be decomposed into several subproblems, via an interactive

procedure of local computation and message passing. While collaborative learning has

recently drawn significant attention due its decentralized implementation, it faces major

challenges in terms of privacy, efficiency and fairness:

Privacy The information exchanges during collaborative learning process raise serious

privacy concerns, and the adversary can extract private information from the shared learning
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models via various inference attacks, such as (i) attribute attacks [9] which infer sensitive

pieces of information (e.g, whether a patient has cancer) given the patient’s public record

and the ability to query the machine learning model; (ii) membership inference attacks [10]

whose goal is to find out if a patient record is in the pool of the data used to train the

machine learning model; and (iii) model inversion attacks [11] which attempt to reconstruct

the entire patient data given only access to an intermediate layer of the deep network.

Efficiency The machine learning models are becoming more and more complex, which

is the current trend in large-scale distributed machine learning. For example, ResNet-152

has 152 layers and 60.2M parameters [12], VGG-19 has 19 layers and 143M parameters

[13], while BERT-Large has 24 layers, 16 attention heads and 340M parameters [14]. Since

the size of learning model increases, model exchanges among agents become the significant

communication bottleneck. Moreover, the computation speed and computational load of

local agents vary greatly, where a subset of nodes can be largely delayed in their local

computation, which can substantially slow down the overall system efficiency.

Fairness Fairness issues in machine learning has received growing attentions in the

machine learning field due to the social inequities and unfair behaviors observed in classifi-

cation models. Discrimination indicates unfair treatment towards individuals based on the

group to which they are perceived to belong. In machine learning, discrimination may be

unintentional but have powerful effect on vulnerable groups. For example, a classification

model of automated job hiring system is more likely to hire candidates from certain racial

or gender groups [15, 16].

In this Section, we will briefly state each problem, and describe the contribution of each

work.

1.1 Overview of Dissertation Contributions and Structure

In Section 3, we focus on Alternating Direction Method of Multipliers (ADMM), one

of the most popular methods to design collaborative machine learning architectures. This
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method applies iterative local computations over local datasets at each agent and compu-

tation results exchange between the neighbors. We propose a differentially private robust

ADMM algorithm (PR-ADMM) [17] with Gaussian mechanism, and employ two kinds of

noise variance decay schemes to carefully adjust the noise addition in the iterative process

and utilize a threshold to eliminate the too noisy results from neighbors. From a theoretical

point of view, we analyze the convergence rate of PR-ADMM for general convex objectives,

which is O(1/K) with K being the number of iterations. Despite the first work relieving

some critical privacy concerns in the iterations of ADMM, differentially private ADMM still

confronts many research challenges. For example, the guarantee of differential privacy (DP)

relies on the premise that the optimality of each local problem can be perfectly attained

in each ADMM iteration, which may never happen in practice. The model trained by DP

ADMM may have low prediction accuracy. Thus, we address these concerns by proposing a

novel (Improved) Plausible differentially Private ADMM algorithm [18], called PP-ADMM

and IPP-ADMM. In PP-ADMM, each agent approximately solves a perturbed optimization

problem that is formulated from its local private data in an iteration, and then perturbs

the approximate solution with Gaussian noise to provide the DP guarantee. To further

improve the model accuracy and convergence, an improved version IPP-ADMM adopts

sparse vector technique (SVT) to determine if an agent should update its neighbors with

the current perturbed solution. The agent calculates the difference of the current solution

from that in the last iteration, and if the difference is larger than a threshold, it passes the

solution to neighbors; or otherwise the solution will be discarded. Moreover, we provide a

generalization performance analysis of our new algorithm.

In Section 4, we focus on another common algorithm in collaborative learning archi-

tectures, distributed gradient descent-type methods. As we mentioned before, during the

collaborative learning process, model updates using local private samples and large-scale

parameter exchanges among agents impose severe privacy concerns and communication

bottleneck. To address these problems, we propose two differentially private (DP) and

communication efficient algorithms, called Q-DPSGD-1 and Q-DPSGD-2 [19]. In Q-DPSGD-1,

3



each agent first performs local model updates by a DP gradient descent method to provide

the DP guarantee and then quantizes the local model before transmitting it to neighbors

to improve communication efficiency. In Q-DPSGD-2, each agent injects discrete Gaussian

noise to enforce DP guarantee after first quantizing the local model. Moreover, we provide

convergence analysis for both convex and non-convex loss functions.

Since in machine learning, privacy concerns related to the training data and unfair be-

haviors of some decisions with regard to certain attributes (e.g., sex, race) are becoming

more critical. In Section 5, we focus on how to construct a fair machine learning model

while simultaneously providing privacy protection. Specifically, we propose Purely and Ap-

proximately Differential private and Fair Classification algorithms [20], called PDFC and

ADFC, respectively, by a calibrated functional mechanism, i.e., injecting different amounts

of Laplace noise regarding different attributes to the polynomial coefficients of the con-

strained objective function to ensure ϵ-differential privacy and reduce effects of discrimina-

tion.

Finally, we conclude the dissertation and discusses some potential directions for future

research in Section 6. Moreover, Furthermore, some other work during my PhD not included

in the thesis include two of our published papers [21, 22] and two submitted manuscript

[23, 24].
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2 Preliminaries

For the privacy-preserving data analysis, the standard privacy metric, Differential pri-

vacy (DP) [25, 26], is proposed to measure the privacy risk of each data sample in the

dataset, and has already been adopted in many machine learning domains [22, 20, 27, 28, 29].

Basically, under DP framework, privacy protection is guaranteed by limiting the difference

of the distribution of the output regardless of the value change of any one sample in the

dataset.

Definition 1 ((ϵ, δ)-DP [25]). A randomized mechanism M satisfies (ϵ, δ)-DP if for any

two neighboring datasets D and D̂ differing in at most one single data sample, and for any

possible output o ∈ Range(M), we have Pr[M(D) = o] ≤ eϵPr[M(D̂) = o] + δ.

Here ϵ, δ are privacy loss parameters that indicate the strength of the privacy protection

from the mechanism M. The privacy protection is stronger if they are smaller. The

above privacy definition reduces to pure DP when δ = 0 and when δ > 0, it is referred

to as approximate DP. We can achieve pure and approximate DP by utilizing two popular

approaches called Laplace and Gaussian Mechanism, both of which share the same form

M(D) = Mq(D) + u, where Mq(D) is a query function over dataset D, and u is random

noise. We also denote two neighboring datasets D and D̂ as D ∼ D̂, and denote Lap(λ) as

a zero-mean Laplace distribution with scale parameter λ.

Definition 2 (Laplace Mechanism [25]). Given any function Mq : D → Rd, the Laplace

Mechanism is defined as: ML(D, q, ϵ) = Mq(D) + u, where u is drawn from a Laplace

distribution Lap(∆1
ϵ ) with scale parameter proportional to the L1-sensitivity of Mq given as

∆1 = supD∼D̂ ∥Mq(D)−Mq(D̂)∥1. Laplace Mechanism preservers ϵ-differential privacy.

Definition 3 (Gaussian Mechanism [25]). Given any function Mq : D → Rd, the

Gaussian Mechanism is defined as: MG(D, q, ϵ, δ) = Mq(D) + u, where u is drawn from

a Gaussian distribution N (0, σ2Id) with σ ≥
√

2 ln(1.25/δ)∆2

ϵ , and ∆2 is the L2-sensitivity

of function Mq, i.e., ∆2 = supD∼D̂ ∥Mq(D) − Mq(D̂)∥2. Gaussian Mechanism provides

(ϵ, δ)-differential privacy.
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Note that one limitation of Gaussian Mechanism is that privacy budget ϵ should be in

[0, 1]. To relax the constraint of ϵ, we can use the following Extended Gaussian Mechanism.

Definition 4 (Extended Gaussian Mechanism [30]). Given any function Mq : D →

Rd, the Extended Gaussian Mechanism is defined as: MEG(D, q, ϵ, δ) = Mq(D) + u,

where u is drawn from a Gaussian distribution N (0, σ2Id) with σ ≥
√
2∆2
2ϵ (

√
log(

√
2
π
1
δ ) +√

log(
√

2
π
1
δ ) + ϵ). Extended Gaussian Mechanism provides (ϵ, δ)-differential privacy.

Next, we introduce a generalization of DP, which is called the zero-concentrated DP

(zCDP) [31] that uses the Rényi divergence between M(D) and M(D̂), which can achieve

a much tighter privacy loss bound under multiple privacy mechanisms composition.

Definition 5 (ρ-zCDP [31]). We say that a randomized algorithm M provides ρ-zCDP, if

for all neighboring datasets D and D̂ and for all τ ∈ (1,∞), we have Dτ (M(D)∥M(D̂)) ≤

ρτ, where Dτ (M(D)∥M(D̂)) is the τ -Rényi divergence 1 between the distribution M(D)

and the distribution M(D̂).

The following lemmas show that the Gaussian mechanism satisfies zCDP, the composi-

tion theorem of ρ-zCDP, and the relationship among ρ-zCDP, ϵ-DP, and (ϵ, δ)-DP.

Lemma 1 ([31]). The Gaussian mechanism with noise N (0, σ2) satisfies ∆2
2/(2σ

2)-zCDP.

Lemma 2 (Serial Composition [31]). If randomized mechanisms M1 : D → R1 and

M2 : D → R2 obey ρ1-zCDP and ρ2-zCDP, respectively. Then their composition defined as

M′′ : D → R1 ×R2 by M′′ = (M1,M2) obeys (ρ1 + ρ2)-zCDP.

Lemma 3 (DP to zCDP conversion [31]). If a randomized mechanism M provides

ϵ-DP, then M is 1
2ϵ

2-zCDP. Moreover, for M to satisfy (ϵ, δ)-DP, it suffices to satisfy

ρ-zCDP with ρ = ϵ2

4 ln (1/δ) .

Lemma 4 (zCDP to DP conversion [31]). If a randomized mechanism M obeys ρ-

zCDP, then M obeys (ρ+ 2
√
ρ ln(1/δ), δ)-DP for all 0 < δ < 1.

1Definition can be found in [31]
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Sparse Vector Technique A powerful approach for achieving DP employs the sparse

vector technique (SVT) [32], which takes a sequence of queries with bounded sensitivity ∆

against a fixed sensitive dataset and outputs a vector representing whether each answer to

the query exceeds a threshold or not. A unique advantage of SVT is that it can output some

query answer without paying additional privacy cost. Specifically, as shown in [33], SVT

has the following four steps. (i), We first compute a noisy threshold γ̂ by adding a threshold

noise Lap(∆ϵ1 ) to the predefined threshold γ. (ii), We then utilize a noise vi ∼ Lap(2c∆ϵ2 ) to

perturb each query qi. (iii), We compare each noisy query answer qi(D)+ νi with the noisy

threshold γ̂ and respond whether it is higher (⊤) or lower (⊥) than the threshold. (iv),

This procedure continues until the number of ⊤’s in the output meets the predefined bound

c. According to [33], the SVT algorithm satisfies the ϵ-DP with ϵ = ϵ1 + ϵ2. In order to

analyze the privacy guarantee of SVT under the zCDP framework, we utilize the conversion

result in Lemma 3. We can see that SVT satisfies 1
2ϵ

2-zCDP.

Next, we introduce a new generalization of DP, called Rényi differential privacy (RDP)

[34], which is widely used in stochastic iterative learning algorithms due to the tighter

composition and subsample amplification results.

Definition 6 (RDP). Given any neighboring datasets D, D̂ differing by one element, we

say that a randomized mechanism M satisfies (ρ, ϵ)-RDP, if for ρ > 1, ϵ > 0, we have

Dρ

(
M(D)||M(D̂))

)
:= logE

(
M(D)/M(D̂)

)ρ
/(ρ− 1) ≤ ϵ,

where the expectation is taken over M(D̂).

The following lemmas from [34] The following three lemmas are some properties of RDP,

which will be used in the proofs of our theorems.

Lemma 5. The Gaussian Mechanism satisfies (ρ, ρ∆2
2/(2σ

2))-RDP.

Lemma 6. If k randomized mechanisms Mi for i ∈ [k], satisfy (ρ, ϵi)-RDP, then their

composition
(
M1(D), · · · ,Mk(D)

)
satisfies (ρ,

∑k
i=1 ϵi)-RDP. Moreover, the input of the

i-th mechanism can base on the outputs of previous (i− 1) mechanisms.
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Lemma 7. If a randomized mechanism M satisfies (ρ, ϵ)-RDP, then M satisfies (ϵ +

log(1/δ)/(ρ− 1), δ)-DP for all δ ∈ (0, 1).

Lemma 8 ([35]). Let M be any randomized algorithm that obeys (ρ, ϵ(ρ))-RDP. Then

applying M on the poisson subsampled dataset as input, it satisfies (ρ, ϵ′(ρ))-RDP. Let γ be

the poisson sampling probability and then we have for integer ρ ≥ 2,

ϵ′(ρ) ≤ 1

ρ
log

{
(1− γ)ρ−1(ργ − γ + 1) +

(
ρ

2

)
γ2(1− γ)ρ−2eϵ(2)+3

∑ρ
l=3 (

ρ
l)(1−γ)ρ−lγle(l−1)ϵ(l)

}
.
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3 Plausible Differentially Private ADMM Based Distributed

Machine Learning

3.1 Introduction

With the rapid development of sensing technologies, the past decade has witnessed an

explosive growth in size of generated data. For instance, the Cisco Visual Networking Index

predicts that the number of mobile devices will be 11.6 billion by the year 2020 and the

data will be generated at each smart phone with an average size of 4.4 gigabytes per month

[36]. Because of the ability to exploit the collective computing power of the local computing

nodes, distributed machine learning is a promising tool to accommodate such deluge data,

especially when data is produced from different locations [37]. Several distributed optimiza-

tion approaches have been developed to design distributed machine learning architectures

such as distributed subgradient descent algorithm [38, 39] and alternating direction method

of multipliers (ADMM) [40], among which the ADMM typically achieves a fast convergence

rate O(1/K), where K is the number of iterations [41]. Thus, in this work, we aim to design

distributed machine learning algorithm with ADMM.

Under the framework of ADMM, a large scale machine learning problem is divided into

several sub-problems solved by a connected network of agents locally over local training

data, and the local machine learning models are exchanged among the neighbors. However,

as many recent works [42, 43, 44] indicate, the local machine learning models exchanged

during the iterative process may result in privacy leakage of the sensitive training data such

as medical records or financial data.

To prevent such information leakage, differential privacy [25, 45] has been exploited as

a well-defined framework for performing machine learning over sensitive data. Intuitively,

it works by injecting random noise to the model parameters so that an adversary with

arbitrary background knowledge cannot confidently make any conclusions about whether

a data sample is utilized in training a model or not. Many pioneering works have focused

on integrating differential privacy with ADMM [42, 43, 44, 46]. In [42], Zhang and Zhu
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proposed a dual variable perturbation approach, where the dual variable of each agent

at each ADMM iteration is perturbed. This approach can provide dynamic differential

privacy, a new privacy framework capturing the distributed and iterative nature of ADMM.

However, Zhang and Zhu only imposed a privacy constraint on each iteration and did not

give a total privacy loss bound over the entire iterative procedure, which makes it hard to

balance the tradeoff between the utility of the proposed algorithm and privacy guarantees.

Later, in [43], Zhang et al. developed a penalty perturbation method and gave the total

privacy loss of all agents during the entire process. Moreover, in [44], Zhang et al. employed

the penalty perturbation method and modified the original ADMM to repeatedly use the

existing computational results in order to further reduce the privacy loss. However, privacy

analysis provided in above works [42, 43, 44] requires the objective functions of the learning

problem are strongly convex. Our privacy analysis only needs to assume that the gradient

of the loss function is bounded. Huang et al. in [46] and Ding et al. in [47] also performed

privacy analysis under mild conditions of objective functions, whereas their approaches need

a central server to average all shared primal variables. Instead of requiring a central server,

our approach is implemented in a fully decentralized manner.

In this section, we first present our work on differentially private robust ADMM al-

gorithm (PR-ADMM), which adds Gaussian noise with decaying variance to perturb ex-

changed variables at each iteration. To reduce the negative effects of noise addition, we

propose two noise variance decay schemes: Periodic Linear Decay Scheme and Iteration-

Based Decay Scheme, and we utilize a threshold U to examine whether the results from

neighbors are too noisy. However, the guarantee of DP in this work relies on the premise

that the optimality of each local problem can be perfectly attained in each iteration during

the whole training procedure, which is seldom seen in practice. Further, the trained models

exhibit severe degradation in terms of the convergence performance and model accuracy,

compared to their non-private versions.

Then, we present our second work on (Improved)Plausible differentially PrivateADMM
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based distributed machine learning algorithm called PP-ADMM and IPP-ADMM, respec-

tively. Instead of requiring each local problem to reach the optimality, PP-ADMM is able to

release a noisy approximate solution of the local optimization with Gaussian noise related

to the optimization accuracy, while preserving DP. To further improve the utility, we pro-

pose an improved version of PP-ADMM, i.e., IPP-ADMM, by exploiting the sparse vector

technique (SVT) to check whether the current approximate solution has enough difference

from that of the previous iteration. Moreover, the privacy analysis of our algorithms based

on the zero-concentrated DP (zCDP) yields a tight privacy loss bound. We analyze the

generalization performance of PP-ADMM.

Notations: We denote ∥x∥2 as the Euclidean norm of a vector x and ⟨x, y⟩ as the inner

product of two vectors x and y. Further, given a semidefinite matrix G,
√
xTGx represents

the G-norm of x, i.e., ∥x∥G. We also denote ϕmax(G) as the nonzero largest of G and

ϕmin(G) as the smallest nonzero singular value of G.

3.2 Problem Setting and Preliminaries

In this work, we consider a connected network contains N agents with node set N =

{1, · · · , N}, and each agent i has a dataset Di with Di = {(zni , yni )}
|Di|
n=1, where zni ∈ X is a

feature vector and yni ∈ Y is a label. The communication among agents can be represented

by an undirected graph G = {N , E}, where E denotes the set of communication links

between agents. Note that two agents i and j can communicate with each other only when

they are neighbors, i.e., (i, j) ∈ E . We also denote the set of neighbors of agent i as Vi.

The goal is to cooperatively train a classifier x ∈ Rd over the union of all local datasets in

a decentralized fashion (i.e., no centralized controller) while keeping the privacy for each

data sample, which can be formulated as the following Empirical Risk Minimization (ERM)

problem,

min
x∈Rd

N∑
i=1

1

|Di|

|Di|∑
n=1

L(yni xT zni ) + λ̂R(x), (1)

11



where L(·) : X × Y × Rd → R stands for a convex loss function with |L′(·)| ≤ 1 and

0 < L′′(·) ≤ c1, R(x) : Rd → R is a differentiable and 1-strongly convex regularizer to

prevent overfitting, and λ̂ ≥ 0 refers to a regularizer parameter that controls the impact

of regularizer. We assume that each feature vector zni is normalized to ∥zni ∥2 ≤ 1. Note

that the formulations of classification in machine learning like logistic regression, or support

vector machines, can also be fallen into the framework of ERM.

In order to solve the ERM problem (1) in a decentralized manner, we adopt the simple

but efficient optimization method, ADMM. We then in the following subsection review

some preliminaries about ADMM algorithm for solving Problem (1). It is easy to see that

the ERM problem (1) can be equivalently reformulated as the following consensus form by

introducing xi, that is, the local copy of common classifier x at agent i,

min
{xi},{ρij}

∑N
i=1 fi(xi)

s.t. xi = ρij , xj = ρij , i ∈ N , j ∈ Vi,

(2)

where {ρij |i ∈ N , j ∈ Vi} is a set of slack variables to enforce all local copies are equal

to each other, i.e., x1 = x2 = · · · ,= xN , and fi(xi) = 1
|Di|

∑|Di|
n=1 L(yni xTi zni ) + λ̂

NR(xi).

According to Problem (2), each agent i can minimize local function fi(xi) over its own

private dataset with respect to xi, under the consensus constraints. In [43], ADMM is

employed to optimize Problem (2) in a decentralized fashion. By defining a dual variable

λi for agent i, and introducing the following notion, Lnon(xi, Di) = fi(xi) + (2λt
i)
Txi +

η
∑

j∈Vi
||1
2
(xti + xtj)− xi||22, ADMM then has the following iterative updates in the (t+ 1)-

th iteration,

xt+1
i = argmin

xi

Lnon(xi, Di) (3)

and λt+1
i = λt

i +
η

2

∑
j∈Vi

(xt+1
i − xt+1

j ), (4)

where η > 0 is a penalty parameter. Note that the reason why the variable ρij is not

appeared in (3) and (4) is that it can be expressed by using the primal variable xi, as

12



shown in [48]. In the iteration t + 1, each agent i ∈ N updates its local xt+1
i via (3) by

using its previous results xti and λt
i, and the shared local classifiers xtj from its neighbors

j ∈ Vi. Next, agent i broadcasts x
t+1
i to all its neighboring agents. After obtaining all of its

neighboring computation results, each agent updates the dual variable λt+1
i through (4).

For a clear presentation, according to [49], problem (2) can be written in a matrix form

as

min
x,p

f(x) + g(p)

s.t. Ax+Bp = 0,

(5)

where x := [x1, x2, · · · , xN ]T ∈ RNd, p is a vector concatenating all {pij}, g(p) = 0 and

A := [A1;A2] with A1, A2 ∈ R2Ed×Nd whose (q, i)-th element (A1)qi = 1, (A2)qi = 1 and all

other elements are zeros if the q-th element of p is pij . Moreover, B := [−I2Ed;−I2Ed], and

aggregated function f : RNd → R is defined as f(x) =
∑N

i=1 fi(xi).

The augmented Lagrangian function of (5) is given by

Lc(x, p, λ) = f(x) + ⟨Ax+Bp, λ⟩+ η

2
∥Ax+Bp∥22, (6)

where λ ∈ R4Ed is Lagrangian multiplier and η is a positive penalty parameter.

With ADMM algorithm, alternatively, Lc(x, p, λ) is minimized in terms of variables x,

p and λ. At iteration t+ 1, the updates of ADMM are

∇f(xt+1) +ATλt + ηAT (Axt+1 +Bpt) = 0, (7)

BTλt + ηBT (Axt+1 +Bpt+1) = 0, (8)

and λt+1 − λt − η(Axt+1 +Bpt+1) = 0. (9)

If we let λ = [β; γ] with β, γ ∈ R2EN , H+ = AT
1 + AT

2 and H− = AT
1 − AT

2 , the above

13



ADMM updates can be simplified as

∇f(xt+1) + αt + 2ηMxt+1 − ηL+x
t = 0 (10)

and αt+1 − αt − ηL−x
t+1 = 0, (11)

where α = H−β ∈ RNd is a new Lagrange multiplier, and M = 1
2(L+ + L−) with L+ =

1
2H+H

T
+ and L− = 1

2H−H
T
−. Note that L+ and L− are the extended signless and signed

Laplacian matrices of the network.

Remember that x := [x1, x2, · · · , xN ]T ∈ RNd, where xi is the local classifier of agent i.

After simple manipulations, the matrix form of ADMM updates (10) and (11) are translated

to the updates of agent i by

∇fi(x
t+1
i ) + αt

i + 2η|Vi|xt+1
i = η

|Vi|xti +
∑
j∈Vi

xtj

 (12)

and αt+1
i = αt

i + η

|Vi|xt+1
i −

∑
j∈Vi

xt+1
j

 , (13)

where αi ∈ Rd is the local Lagrange multiplier of agent i and α is the concatenated form

of all αi. At iteration t + 1, every agent i updates the local xt+1
i through (12) using its

previous xti, α
t
i and its neighbors’ previous result xkj with j ∈ Vi, and then broadcasts xt+1

i

to all its neighboring agents j ∈ Vi. After collecting all xt+1
j from its neighbors, agent i

updates its local multiplier αi through (13).

3.3 Differentially Private Robust ADMM

In this section, we propose a novel differentially private robust ADMM algorithm (PR-

ADMM). Specifically, to provide differential privacy of each training data point, we let

individual agent adds Gaussian noise to the local classifiers before sharing to neighboring

agents. Moreover, we propose two techniques to mitigate the effects of noise addition and

guarantee convergence property. The first technique is that we design two kinds of noise

variance decay schemes: Periodic Linear Decay Scheme and Iteration-Based Decay Scheme,
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to carefully adjust the scale of noise in the iterative process. The second technique is to set

a threshold U to decide whether the noisy classifiers from neighboring agents introduce too

much noise or not. If it is, this agent would not use these noisy classifiers to do ADMM

updates. In addition, the privacy framework, dynamic zero-concentrated differential privacy,

is utilized to measure the privacy guarantee of PR-ADMM.

The details of PR-ADMM are given in Algorithm 1. First of all, we choose a Gaussian

noise variance decay scheme from Periodic Linear Decay Scheme and Iteration-Based Decay

Scheme to determine the relationship between (σ2)
t+1
i and (σ2)

t
i. In each iteration, each

agent i computes the primal variable xt+1
i by solving the subproblem in (14) over its own

dataset Di (Line 15). Then, each agent i computes the value of
∑t

k=0 ∥x̃ki − x̃kj ∥2 for every

neighboring agent j ∈ Vi, which is a good criterion of measuring the deviation from a

consensus at current iteration [50]. When
∑t

k=0 ∥x̃ki − x̃kj ∥2 is greater than a threshold U , it

means that agent j’s variable x̃tj is too noisy. Then each agent i will replace x̃tj with its own

variable x̃ti to do the primal variable update (Line 15). After that, each agent adds a noise

ξt+1
i drawn from a Gaussian distribution N (0, (σ2)

t+1
i Id) to perturb the local variable xt+1

i ,

according to the chosen noise variance decay scheme. Then, the perturbed local variable

x̃t+1
i is sent by agent i to all its neighboring agents j ∈ Vi. At last, each agent updates the

dual variable αt+1
i through (15). The corresponding ADMM iterations are as

∇fi(x
t+1
i ) + αt

i + 2η|Vi|xt+1
i = η

|Vi|x̃ti +
∑
j∈Vi

x̃tj

 (14)

and αt+1
i = αt

i + η

|Vi|x̃t+1
i −

∑
j∈Vi

x̃t+1
j

 . (15)

Now how to set the value of threshold U is important. Since
∑t

k=0 ∥x̃ki − x̃kj ∥2 ≤ U and∑t
k=0 ∥Qx̃k∥2 = 1√

2

∑t
k=0

∑
(i∈N ,j∈Vi)

∥x̃ki − x̃kj ∥2 with Q =
√

L−/2, then the value of noisy

local deviation statistics
∑T

t=0 ∥Qx̃t∥2 is upper bounded by
√
2EU . Note that if we set the

threshold U as U = Û/(
√
2E), we have

∑T
t=0 ∥Qx̃t∥2 is upper bounded by Û , where Û is

the upper bound of the noise-free local deviation statistics
∑T

t=0 ∥Qxt∥2. The upper bound
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Algorithm 1 Differentially Private Robust ADMM

1: Input: datasets {Di}Ni=1; initial variables x0i ∈ Rd and α0
i = 0d; threshold U ; time

period Tp, decay rate RP ∈ (0, 1) and RT > 0; initial variances (σ2)
1
i for all agents i;

2: Choose noise variance decay scheme (Line 3-7).
3: if Periodic Linear Decay Scheme is chosen then

4: (σ2)
t+1
i = (σ2)

1
i ×R

⌊t/Tp⌋
P .

5: else
6: (σ2)

t+1
i = (σ2)

1
i ×

1
RT t(t+1) . //Iteration-Based Decay Scheme

7: end if
8: for t = 0, . . . , T − 1 do
9: for i = 1, · · · , N do

10: if
∑t

k=0 ∥x̃ki − x̃kj ∥2 > U with j ∈ Vi then
11: Replace x̃tj with x̃ti.
12: else
13: Keep x̃tj .
14: end if
15: Compute xt+1

i by solving ∇fi(x
t+1
i )+αt

i+2η|Vi|xt+1
i −η

(
|Vi|x̃ti +

∑
j∈Vi

x̃tj

)
=

0.
16:

17: Generate noise ξt+1
i ∼ N (0, (σ2)

t+1
i Id).

18: Perturb xt+1
i : x̃t+1

i = xt+1
i + ξt+1

i .
19: end for
20: for i = 1, · · · , N do
21: Broadcast x̃t+1

i to all neighbors j ∈ Vi.
22: end for
23: for i = 1, · · · , N do
24: Compute αt+1

i from

αt+1
i = αt

i + η
(
|Vi|x̃t+1

i −
∑

j∈Vi
x̃t+1
j

)
.

25: end for
26: end for
27: Output: {x̃Ti }Ni=1 for any i ∈ N .

Û can be obtained from the following Lemma.

Lemma 9. If we randomly initialize x0 and the gradient ∇f(x) is bounded as ∥∇f(x)∥2 ≤

V2 and the feasible x is bounded as ∥x∥2 ≤ V1, in conventional ADMM (10-11), we have

T∑
t=0

∥Qxt∥2 ≤ Û = (ϕmax(L+) + 2ϕmax(Q))V 2
1 +

2V 2
2

η2ϕmin(L−)
+ 1.

Proof. The upper bound of
∑T

t=0 ∥Qxt∥2 can be directly derived from Lemma 8 in [51] if we

use the inequality ∥a+ b∥22 ≤ ∥a∥22 + ∥b∥22 for all a, b ∈ Rn and ∥Qx0∥ ≤ ϕmax(Q)∥x0∥.
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In distributed settings, the output of the algorithm includes all intermediate results

generated at every stage of the learning and final result. For this reason, we present the

dynamic zero concentrated differential privacy framework to quantify the privacy leakage

of ADMM-based algorithms.

Definition 7 (Dynamic ρt-zCDP [52]). Consider a connected network G = {N , E}

that contains a set of agents/nodes N = {1, · · · , N} and each agent possesses a training

dataset Di, and D̃ = ∪i∈NDi. We denote T is a randomized version of ADMM algorithm

with updates (12) and (13). Let T k
i be the agent-i-dependent sub-algorithm of T , which

corresponds to ADMM update (12) at t-iteration that outputs xti. A randomized algorithm

T gives dynamic ρti-zCDP if for all datasets Di and D̂i differing at most a single record,

and for all agents i ∈ N , and for all t during a learning process, the privacy loss variable

of an outcome o ∈ Range(T ), Zt
i (o) = ln

Pr[xt
i,Di

=o]

Pr[xt
i,D̂i

=o]
satisfies E[e(τ−1)Zt

i (o)] ≤ e(τ−1)τρti

∀τ ∈ (1,∞).

For dynamic zCDP algorithms, the adversaries cannot obtain additional information

by observing the intermediate results and final results at each step. Since the added noise

may destroy the convergence behavior and lead to poor model performance. It is vital to

carefully design and adjust privacy budget allocation for each iteration, i.e., dynamically

reducing the noise variance in the iterative process, instead of just adding a noise ξt+1
i for

agent i in iteration t+ 1 [42].

Here we propose two kinds of noise variance decay schemes, which effectively reduce the

bad impact of noise and stabilize the convergence property.

Periodic Linear Decay Scheme In a period of time Tp, there is a decay rate RP ∈

(0, 1) to describe the decrease of noise variance. The mathematical form is

(σ2)
t+1
i = (σ2)

1
i ×R

⌊t/Tp⌋
P , (16)

where (σ2)1i is the initial noise variance determined by agent i and the value of Tp decides how

often to reduce noise variance regards the number of iterations. Without loss of generality,
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suppose the total iteration number T is divisible by Tp.

Iteration-Based Decay Scheme In the iteration t+1, the noise variance (σ2)t+1
i can

be obtained based on the previous noise variance. It has the mathematical form as

(σ2)
t+1
i = (σ2)

1
i ×

1

RT t(t+ 1)
, (17)

where RT > 0 is decay rate.

Before showing PR-ADMM satisfies dynamic zCDP, we first estimate the sensitivity of

the local primal variable xt+1
i as shown in the following lemma.

Lemma 10. The sensitivity of local primal variable xt+1
i , denoted by ∆i, is

V
η|Vi| , where V

is the Lipschitz constant of the loss function L(·), |Vi| is the number of neighboring agents

of agent i, and η is a positive penalty parameter.

Proof. According to subproblem (12) and definition of sensitivity, we have

xt+1
i,Di

= − 1

2η|Vi|
∇fi(x

t+1
i , Di) +

1

2|Vi|

|Vi|x̃ti +
∑
j∈Vi

x̃tj

− 1

2η|Vi|
αt
i

and xt+1

i,D̂i
= − 1

2η|Vi|
∇fi(x

t+1
i , D̂i) +

1

2|Vi|

|Vi|x̃ti +
∑
j∈Vi

x̃tj

− 1

2η|Vi|
αt
i,

where Di and D̂i are two neighboring datasets. Without loss of generality, suppose only

the first data sample in Di and D̂i is different, say (y1i , z
1
i ) and (ŷ1i , ẑ

1
i ) respectively. Then
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by the definitions of sensitivity, we have

∆i = ∥xt+1
i,Di

− xt+1

i,D̂i
∥2

=
1

2η|Vi|
∥∇fi(x

t+1
i , Di)−∇fi(x

t+1
i , D̂i)∥2

=
1

2η|Vi|
∥ 1

|Di|

|Di|∑
n=1

∇L(yni , zni , xt+1
i ) +

λ̂

N
∇R(xt+1

i )

− 1

|D̂i|

|D̂i|∑
n=1

∇L(ŷni , ẑni , xt+1
i )− λ̂

N
∇R(xt+1

i )∥2

=
1

2η|Vi|
∥∇L(y1i , z1i , xt+1

i )−∇L(ŷ1i , ẑ1i , xt+1
i )∥2

≤ V

η|Vi|
.

In the last inequality, we use the fact the Lipschitz constant V is an upper bound of

∥∇L(·)∥2.

The following theorems show the privacy guarantee of PR-ADMM.

Theorem 1. The PR-ADMM algorithm satisfies the dynamic ρt+1
i -zCDP, where ρt+1

i =

V 2

2η2|Vi|2(σ2)t+1
i

.

Proof. The privacy loss variable of x̃t+1
i on an output o over two neighboring datasets Di

and D̂i is

Zt+1
i (o) = ln

Pr[x̃t+1
i,Di

= o]

Pr[x̃t+1

i,D̂i
= o]

.

Since x̃t+1
i = xt+1

i + ξt+1
i and ξt+1

i ∼ N (0, (σ2)
t+1
i Id), the probability distribution x̃t+1

i,Di
is

N (xt+1
i,Di

, (σ2)
t+1
i Id), and the probability distribution of x̃t+1

i,D̂i
is N (xt+1

i,D̂i
, (σ2)

t+1
i Id). Accord-

ing to Lemma 2.5 in [31] and ∀τ ∈ (1,∞), the Rényi divergence is given by

Dτ (N (xt+1
i,Di

, (σ2)
t+1
i Id)∥N (xt+1

i,D̂i
, (σ2)

t+1
i Id)) =

τ∥xt+1
i,Di

− xt+1

i,D̂i
∥22

2(σ2)t+1
i

=
τ∆2

i

2(σ2)t+1
i

.

19



Then, we have

E[e(τ−1)Zt+1
i (o)] ≤ e

(τ−1)Dτ (N (xt+1
i,Di

,(σ2)
t+1
i Id)∥N (xt+1

i,D̂i
,(σ2)

t+1
i Id))

= e(τ−1)τ∆2
i /[2(σ

2)
t+1
i ]

≤ e
(τ−1)τ V 2

2η2|Vi|2(σ2)
t+1
i

= e(τ−1)τρt+1
i .

Therefore, PR-ADMM provides the dynamic ρt+1
i -zCDP at each agent i with ρt+1

i =

V 2

2η2|Vi|2(σ2)t+1
i

.

The parameter ρt+1
i in Theorem 1 only inspects the privacy loss of one agent in each

iteration. However, it does not show the privacy guarantee when an adversary uses the

revealed results from all iterations to perform inference. Therefore, the total privacy loss

over the entire computational process and the entire network should be calculated.

For two kinds of noise variance decay schemes: Periodic Linear Decay Scheme and

Iteration-Based Decay Scheme, we leverage (ϵ, δ)-differential privacy to derive the total

privacy loss as shown in the Theorem 2 and Theorem 3, respectively.

Theorem 2. For any RP ∈ (0, 1) and δ ∈ (0, 1), if Periodic Linear Decay Scheme is

chosen, the PR-ADMM algorithm is (ϵ, δ)-differential privacy with ϵ = maxi∈N ρtotali +

2
√
ρtotali ln 1/δ, where

ρtotali =
V 2

2η2|Vi|2(σ2)1i

(
Tp(1−R

T/Tp

P )

R
T/Tp−1
P −R

T/Tp

P

− 1

)
,

and Tp is time period, and RP ∈ (0, 1) is the decay rate, and K is the total number of

iterations.

Proof. According to Theorem 1, PR-ADMM satisfies dynamic ρt+1
i -zCDP. It ensures that

each primal variable xt+1
i perturbed by noise drawn from the Gaussian distribution

N (0, (σ2)
t+1
i Id) is ρ

t+1
i -zCDP at t + 1 iteration. By the composition theorem in Lemma 2
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and for each agent, PR-ADMM provides
∑T−1

t=0 ρt+1
i -zCDP. Since Periodic Linear Decay

Scheme is chosen, together with the result in Theorem 1, we have ρt+1
i = ρ1i /R

⌊t/Tp⌋
P and

PR-ADMM is ρtotali -zCDP for each agent with

ρtotali = ρ1i

(
Tp(1−R

T/Tp

P )

R
T/Tp−1
P −R

T/Tp

P

− 1

)
.

By Lemma 4 and ∀δ ∈ (0, 1), PR-ADMM satisfies (ϵtotali , δ)-differential privacy with ϵtotali =

ρtotali + 2
√

ρtotali ln 1/δ. Therefore, considering all of agents, the total privacy loss of PR-

ADMM is bounded by (ϵ, δ)-differential privacy with ϵ = maxi∈N ϵtotali .

Theorem 3. For any RT > 0 and δ ∈ (0, 1), if Iteration-Based Decay Scheme is chosen,

the PR-ADMM algorithm is (ϵ, δ)-differential privacy with

ϵ = max
i∈N

(
ρ1i (RTT (T

2 − 1) + 3)

3
+ 2

√
ρ1i (RTT (T 2 − 1) + 3) ln 1/δ

3

)
,

where ρ1i =
V 2

2η2|Vi|2(σ2)1i
and T is the total number of iterations.

Proof. Since Iteration-Based Decay Scheme is chosen, together with the result in Theorem

1, we have ρt+1
i = RT t(t+ 1)ρ1i . Then PR-ADMM is ρtotali -zCDP for each agent with

ρtotali = ρ1i
RTT (T

2 − 1) + 3

3
.

By Lemma 4 and ∀δ ∈ (0, 1), PR-ADMM satisfies (ϵtotali , δ)-differential privacy, where

ϵtotali = ρtotali + 2
√
ρtotali ln 1/δ

=
ρ1i (RTT (T

2 − 1) + 3)

3
+ 2

√
ρ1i (RTT (T 2 − 1) + 3) ln 1/δ

3
.

Therefore, considering all of agents, the total privacy loss of PR-ADMM is bounded by
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(ϵ, δ)-differential privacy with

ϵ = max
i∈N

ϵtotali

= max
i∈N

(
ρ1i (RTT (T

2 − 1) + 3)

3
+ 2

√
ρ1i (RTT (T 2 − 1) + 3) ln 1/δ

3

)
.

3.3.1 Convergence Analysis

In this section, we present the convergence analysis of proposed PR-ADMM algorithm

for general convex objective functions. The updates of PR-ADMM can be written in matrix

forms as

∇f(xt+1) + αt + 2ηMxt+1 − ηL+x̃
t = 0 (18)

and αt+1 − αt − ηL−x̃
t+1 = 0, (19)

where x̃t = xt + ξt and ξt ∈ RNd is a vector concatenating all noise variables {ξti}.

Given the perturbed primal variable x̃t, two auxiliary sequences rt and qt, and a matrix

G are defined as follows

rt =

t∑
s=0

Qx̃s, qt =

rt

xt

 , and G =

ηI 0

0 ηL+/2

 ,

where Q =
√
L−/2. Since the network is connected, the Laplcaian matrix L− is positive

semi-definite.

Substituting (19) into (18), we obtain xt+1 = −M−1∇f(xt+1)
2η +M−1L+x̃t

2 −M−1L−
2

∑t
s=0 x̃

s.

Based on the auxiliary sequence rt and the factM = (L−+L+)/2, we further have
∇f(xt+1)

η +

2Qrt+1 + L+(x̃
t+1 − x̃t) = 2M−1ξt+1.
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Proposition 1. For any r ∈ RNd and k > 0, we have

f(xt+1)− f(x∗)

η
+
〈
2r,Qxt+1

〉
≤ 1

η

(
∥qt − q∗∥2G − ∥qt+1 − q∗∥2G

)
+

ϕ2
max(L+)

2ϕmin(L−)
∥ξt∥22

+
〈
ξt+1, 2Q(rt+1 − r)

〉
,

where x∗ is the optimal solution of (5) and q∗ =

 r

x∗

.

We can now prove the following convergence results of PR-ADMM for the general convex

problem.

Theorem 4. Suppose the objective function f(x) is general convex. In PR-ADMM, if

Periodic Linear Decay Scheme is chosen, we have

E[f(x̂T )− f(x∗)] ≤ η

T

(
∥Qx0∥22 + ∥x0 − x∗∥2L−/2 + 2Û2

)
+

η

T

dϕ2
max(L+)Tp

∑N
i=1(σ

2)1i
2ϕmin(L−)(1−RP )︸ ︷︷ ︸
Accumulated noise term

with 0 < RP < 1 and time period Tp, where the expectation is taking with respect to the

noise and x̂T = 1
T

∑T
t=1 x

t.

Proof. Summing Proposition 1 from t = 0 to t = T − 1, we have

1

η
(

T∑
t=1

f(xt)− f(x∗)) +
〈
2r,Qxt

〉
≤

T∑
t=1

(
ϕ2
max(L+)

2ϕmin(L−)
∥ξt−1∥22 +

〈
ξt, 2Q(rt − r)

〉)
+

1

η
∥q0 − q∗∥2G

≤
T∑
t=1

(
ϕ2
max(L+)

2ϕmin(L−)
∥ξt−1∥22 + ∥2Qξt∥2

(
Û + ∥r∥2

))
+

1

η
∥q0 − q∗∥2G

≤
T∑
t=1

(
ϕ2
max(L+)

2ϕmin(L−)
∥ξt−1∥22

)
+

1

η
∥q0 − q∗∥2G +

T∑
t=1

∥2Qξt∥2
(
Û + ∥r∥2

)
≤

T∑
t=1

(
ϕ2
max(L+)

2ϕmin(L−)
∥ξt−1∥22

)
+ 2Û

(
Û + ∥r∥2

)
+

1

η
∥q0 − q∗∥2G,
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where we use the fact that
∑T

t=1 ∥Qξt∥2 ≤ Û . Letting r = 0, there is

1

η
(

T∑
t=0

f(xt)− f(x∗)) ≤
T∑
t=1

(
ϕ2
max(L+)

2ϕmin(L−)
∥ξt−1∥22

)
+ 2Û2 + ∥Qx0∥22 + ∥x0 − x∗∥2L−/2.

By taking expectation of above function and using Jensen’s inequality and convexity of the

functions, we have

E[f(x̂T )− f(x∗)] ≤ η

T

(
∥Qx0∥22 + ∥x0 − x∗∥2L−/2 + 2Û2

)
+

η

T

T∑
t=1

ϕ2
max(L+)

2ϕmin(L−)
E∥ξt−1∥22

≤ η

T

(
∥Qx0∥22 + ∥x0 − x∗∥2L−/2 + 2Û2

)
+

η

T

dϕ2
max(L+)Tp

∑N
i=1(σ

2)1i
2ϕmin(L−)(1−RP )

,

where x̂T = 1
T

∑T
t=1 x

t. In the second inequality, we use the sum of infinity terms of

geometric sequence.

Theorem 5. Suppose the objective function f(x) is general convex. In PR-ADMM, if

Iteration-Based Decay Scheme is chosen, we have

E[f(x̂T )− f(x∗)] ≤ η

T

(
∥Qx0∥22 + ∥x0 − x∗∥2L−/2 + 2Û2

)
+

η

T

dϕ2
max(L+)

∑N
i=1(σ

2)1i
2ϕmin(L−)RT︸ ︷︷ ︸

Accumulated noise term

with RT > 0, where the expectation is taking with respect to the noise and x̂T = 1
T

∑T
t=1 x

t.

Proof. Similar to the proof of Theorem 4, we have

E[f(x̂T )− f(x∗)] ≤ η

T

(
∥Qx0∥22 + ∥x0 − x∗∥2L−/2 + 2Û2

)
+

η

T

T∑
t=1

ϕ2
max(L+)

2ϕmin(L−)
E∥ξt−1∥22

≤ η

T

(
∥Qx0∥22 + ∥x0 − x∗∥2L−/2 + 2Û2

)
+

η

T

dϕ2
max(L+)

∑N
i=1(σ

2)1i
2ϕmin(L−)RT

,

where x̂T = 1
T

∑T
t=1 x

t.

Remark 1. As we can see from the above two theorems, if the variance of Gaussian noise

decays according to Periodic Linear Decay Scheme and Iteration-Based Decay Scheme, then

the averaged function value approaches the minimum function value with a convergence rate
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of O(1/T ). Note that the non-private decentralized ADMM in [50] also achieves a O(1/T )

rate for a general convex problem.

3.3.2 Numerical Experiments

In this section, we experimentally evaluate the performance of PR-ADMM under two

noise variance decay schemes: Periodic Linear Decay Scheme and Iteration-Based Decay

Scheme on binary classification tasks. Specifically, our evaluation considers logistic regres-

sion as the loss function.

Logistic regression The logistic regression loss function on a data sample (z, y) with

y ∈ {+1,−1} is defined as L(yni xTi zni ) = log(1+exp(−yni x
T
i z

n
i )), and the regularizerR(xi) =

∥xi∥22.

Data preprocessingWe also use the Adult dataset from UCI Machine Learning Repos-

itory, as in [42, 43, 44]. The dataset consists of 48,842 personal records with, including age,

work-class, sex, race, income, etc. Our goal is to predict whether the annual income an

individual is more than $50k or not. We preprocess the data by removing all individuals

with missing values. We also normalize the feature vectors such that its l2 norm is at most

1 while transforming labels of Adult {> 50k,≤ 50k} to {+1,−1}.

Baseline algorithms In our experiments, we compare our PR-ADMM algorithm against

four benchmark algorithms, namely, DVP, M-ADMM, and R-ADMM and Non-private. The

private ADMM algorithm using dual variable perturbation is called DVP [42]. ADMM with

a penalty perturbation, proposed in [43], is referred to M-ADMM. Based on the penalty

perturbation, R-ADMM with repeatedly using the existing computational results to make

updates is proposed in [44]. Furthermore, we denote the non-private ADMM algorithm [49]

as Non-private baseline. Finally, we denote our PR-ADMM with Periodic Linear Decay

Scheme and Iteration-Based Decay Scheme as PR-ADMM (Per) and PR-ADMM (Iter),

respectively. Setup As shown in Figure 1, we consider a bidirectionally connected net-

work with N = 5 agents, and each agent is randomly assigned |Di| = 8000 data samples

for training. In the testing process, we random sample 1000 instance from the remaining

25



agent  1

agent  2

agent  3

agent  4

agent  5

agent communication link 

Figure 1: A network with five agents (N = 5).
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odic Linear Decay).
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Figure 2: Hyperparameters of PR-ADMM (Periodic Linear Decay).
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Figure 3: Hyperparameters of PR-ADMM (Iteration-Based Decay).

dataset. We set η = 0.5 and the total iteration number T = 50. For privacy parameters,

we consider the total privacy loss ϵ = {0.1, 0.5, 1, 5, 10} and δ = 0.0001.

Evaluation We evaluate the convergence of the algorithms with respect to the average

loss defined by Lt =
1
N

∑N
i=1

1
|Di|

∑|Di|
n=1 L(yni (xti)T zni ). Moreover, the accuracy is measured

by classification accuracy defined as follows Accuracy = Number of correct predictions
Total number of predictions made . Since

each of the baseline algorithms introduces randomness due to noise, we perform 10 indepen-

dent runs of algorithms and report the mean of accuracy (Testing and Training). Moreover,

we also record both the mean and standard deviation of the average loss. The smaller the

standard deviation, the more stable of the algorithm.
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Figure 4: Compare convergence: Total privacy loss ϵ = 10.

As we can see from Algorithm 1, there are some hyperparameters for tuning, such as

threshold U , time period Tp, decay rate RP and RT . Given the total privacy loss ϵ = 10

and the total iteration number T = 50, we manipulate different hyperparameters separately,

while keeping the rest unchanged to show their impact on testing/training accuracy2. Figure

2(a) shows the impacts of time period Tp on the performance of PR-ADMM with Periodic

Linear Decay Scheme. The value of time period Tp represents how often to reduce noise

variance regards the number of iterations. From the figure, we see that Tp = 1 achieves

the highest testing/training accuracy. Figure 2(b) illustrates how classification accuracy

changes with varying values of U , the threshold U is to eliminate the too noisy results

from neighbors. As it was shown in the figure, U = 0.1 achieves the best testing/training

accuracy. Figure 2(c) describes how classification accuracy changes with varying values of

RP . The parameter RP controls how fast the noise variance decreases. As it can be seen

from the figure, RP = 0.925 is best. To see the impact of decay rate RT and threshold U

on performance of PR-ADMM with Iteration-Based Decay Scheme, Figure 3(b) and Figure

3(a) describe how RT and U affect the testing/training accuracy, respectively. From these

figures, we see the testing/training accuracy are highest when RT = 0.015 and U = 1.

Figure 4 compares the convergence performance of PR-ADMM algorithm with other

2Note that tuning hyperparameters may not be private. In the future work, we can consider differentially
private hyperparameter tuning algorithms proposed in [53, 54] to achieve end-to-end differential privacy.
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baseline algorithms. Compared to DVP and M-ADMM, R-ADMM indeed improves the

privacy-utility tradeoff significantly, i.e., R-ADMM has the low value of average loss, with

repeatedly using the existing computational results. However, R-ADMM performs many

iterations that do not help decrease the average loss value. As it was shown in the figure,

both PR-ADMM (Per) and PR-ADMM (Iter) significantly outperform all other algorithms

and get close to the best achievable average loss (Non-private) during the entire iterative

process. This is because, with carefully adjusting privacy budgets and setting a threshold

to eliminate the too noisy intermediate results, the negative effects of noise addition have

been reduced and the convergence behavior of ADMM has maintained.
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Figure 5: Compare testing accuracy by

varying total privacy loss ϵ.
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Figure 6: Compare training accuracy by

varying total privacy loss ϵ.

Figure 5 and Figure 6 illustrate the testing and training accuracy achieved by each

algorithm changes as the value of ϵ increases. We can see that both PR-ADMM (Per) and

PR-ADMM (Iter) achieve the competitive testing/training accuracies on a wide range of

values for total privacy loss ϵ.

3.4 Plausible Private ADMM

In this section, we will present our plausible differentially private (PP-ADMM) by adding

Gaussian noise related to the maximum tolerable gradient norm of perturbed objective in

each ADMM iteration, which relaxes the requirement of exact optimal solution as shown in
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[55, 43, 44], to provide differential privacy guarantee of each training data sample during

the iterative procedure. We also adopt the privacy framework of zCDP to compute much

tighter privacy loss estimation of PP-ADMM. In addition, the generalization performance

guarantees of PP-ADMM is provided by measuring the number of data samples at each

agent to achieve a specific criteria.

Specifically, in each iteration, we perturb the subproblem (3) with the objective per-

turbation method the same as used in previous studies [55, 43, 44], where a random linear

vector (bi1)
Txi is injected to the objective function, and bi1 is a random vector drawn from a

zero mean Gaussian distribution N (0, σ2
i1Id). Consequently the objective function (3) used

to update the primal variable xt+1
i becomes the modified function as

Lper(xi, Di) = fi(xi) + (2λt
i + bi1)

Txi + η
∑
j∈Vi

||1
2
(xti + xtj)− xi||22, (20)

where fi(xi) =
1

|Di|
∑|Di|

n=1 L(yni xTi zni )+ λ̂
NR(xi). In order to ensure DP guarantee, as pointed

out in [55, 43, 44], each agent i ∈ N needs to find the optimal solution x̃t+1
i of the perturbed

objective function Lper(xi, Di), i.e.,

x̃t+1
i = argmin

xi

Lper(xi, Di). (21)

However, the subproblem (21) may not be easy to solve and obtain an optimal solution in

a finite time. For instance, if we choose logistic regression as loss function, the subproblem

(21) cannot yield an analytical solution due to the complicated form of logistic regression.

Especially when the problem dimension or the number of training samples is large, obtaining

optimal solution might not be feasible in every iteration.

Thus, we consider obtaining the approximate solution of perturbed objective function

Lper(xi, Di) to provide privacy guarantees when the optimal solution is not attainable.

Specifically, we approximately solve the perturbed problem until the norm of gradient of

Lper is within a pre-defined threshold β. However, due to the limitations of objective
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perturbation method [56], releasing this inexact solution leads to the failure of providing

DP guarantee. We thus perturb the approximated solution x̂t+1
i with another random noise

bi2 from Gaussian distribution N (0, σ2
i2Id), to ”fuzz” the difference between x̂t+1

i and the

optimal solution x̃t+1
i . Note that the noise variance σ2

i2 has the parameter β about the

maximum tolerable gradient norm, which leads to a trade-off between the gradient norm

bound and the difficulty of obtaining an approximate solution within the norm bound.

Algorithm 2 Plausible Private ADMM

1: Input: datasets {Di}Ni=1; initial variables x0i ∈ Rd and λ0
i = 0d; step size η; privacy

parameters, ϵi1, δi1, ϵi3, ρi2; Optimizer O(·, ·) : F×β → Rd ( F is the class of objectives,
and β is the optimization accuracy, i.e., the gradient norm of objectives); gradient norm
threshold β ∈ β.

2: Set ϵi1, δi1, ϵi3, ρi2 > 0 such that ϵi1 > ϵi3.
3: Set regularizer parameter λ̂ ≥ max

i

2.8Nc1
(ϵi1−ϵi3)|Di| .

4: for t = 0, . . . , T − 1 do
5: for i = 1, . . . , N do
6: Generate noise bi1 ∼ N (0, σ2

i1Id) with σi1 = 2
√
2 ln (1.25/δi1)/(|Di|ϵi3).

7: Construct the perturbed objective function Lper(xi, Di) according to (20).
8: Compute an approximate solution x̂t+1

i : x̂t+1
i = O(Lper(xi, Di), β).

9: Generate noise bi2 ∼ N (0, σ2
i2Id) with σi2 = β/[

√
2ρi2(

λ̂
N + 2η|Vi|)].

10: Perturb x̂t+1
i : xt+1

i = x̂t+1
i + bi2.

11: end for
12: for i = 1, . . . , N do
13: Broadcast xt+1

i to all neighbors j ∈ Vi.
14: end for
15: for i = 1, . . . , N do

16: Update local dual variables λt+1
i from λt+1

i = λt
i +

η

2

∑
j∈Vi

(xt+1
i − xt+1

j ).

17: end for
18: end for

The key steps of PP-ADMM algorithm are summarized in Algorithm 2. The privacy

parameters (ϵi1, δi1) are used to perturb the objective function while the parameter ρi2

being used to perturb the approximate solution. Moreover, the parameter ϵi3, a portion of

ϵi1, is used to scale the noise injected to the objective function, and the remaining privacy

budget (ϵi1 − ϵi3) is allocated to setting the regularizer parameter. Notice that we also

define an Optimizer O(·, ·) : F × β → Rd, where F is the class of objectives, and β is the

optimization accuracy, i.e., the gradient norm of objectives. Each agent i then constructs

the perturbed function Lper(xi, Di) with a Gaussian random vector bi1 and finds an inexact
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solution x̂t+1
i where the norm of gradient is lower than β, i.e., x̂t+1

i = O(Lper(xi, Di), β).

After that each agent i generates a random Gaussian noise bi2 and transmits xt+1
i =

x̂i + bi2 to its neighbors j ∈ Vi. Finally, each agent updates the local dual variables λt+1
i

via λt+1
i = λt

i +
η

2

∑
j∈Vi

(xt+1
i − xt+1

j ).

3.4.1 Privacy Analysis

Here, we provide the privacy guarantee of PP-ADMM (Algorithm 2) in the following

two theorems. Due to the limited space, we only provide a proof idea of Theorem 6, and

the detailed proof can be found in Appendix.

Theorem 6. The PP-ADMM in Algorithm 2 satisfies ρi-zCDP for each agent i with ρi =

T (ρi1 + ρi2), where ρi1 = ϵ2i1/(4 ln (1/δi1)), and ρi2 > 0 is the privacy budget for perturbing

the approximate solution.

Proof Sketch. For achieving ρi-zCDP for each agent i at t+ 1 iteration in Algorithm 2, we

first divide the output of t + 1 iteration into two parts. The first part is to obtain the

optimal solution x̃t+1
i of the perturbed objective function Lper(xi, Di), and the second part

is to obtain the approximate solution with Gaussian noise xt+1
i . We then show obtaining the

optimal solution x̃t+1
i provides ρi1-zCDP with ρi1 = ϵ2i1/(4 ln (1/δi1)) for the first part, and

releasing an approximate solution in the second part is ρi2-zCDP. By using the composition

of zCDP in Lemma 2, we can get releasing the perturbed primal variable xt+1
i at t + 1

iteration provides (ρi1+ρi2)-zCDP. Considering T iterations, the total privacy loss for each

agent i is bounded by ρi = T (ρi1 + ρi2).

We then give the following parallel composition theorem of ρ-zCDP to provides a to-

gether characterization of total privacy loss for distributed algorithms.

Lemma 11 (Parallel Composition [57]). Suppose that a mechanism M consists of a se-

quence of k adaptive mechanism M1, · · · ,Mk where each Mi :
∏i−1

j=1Rj×D → Ri and Mi

satisfies ρi-zCDP. Let D1,D2, · · · ,Dk be the result of a randomized partition of the input
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domain D. The mechanism M(D) = (M1(D ∩ D1), · · · ,Mk(D ∩ Dk)) satisfies (max
i

ρi)-

zCDP.

Based on Lemma 11, we can directly obtain the total privacy loss of PP-ADMM given

as follows.

Theorem 7. The PP-ADMM in Algorithm 2 satisfies ρ-zCDP with ρ = max
i

ρi and satisfies

(ϵ, δ)-DP with ϵ = ρ+ 2
√
ρ ln (1/δ).

3.4.2 Sample Complexity Analysis

We next measure the generalization performance of PP-ADMM by focusing on the ERM

problem given in Section 3.2. We also assume that data samples of each agent i are drawn

from a data distribution P. The expected loss of classifier xti at iteration t is defined as

L(xti) = E(x,y)∼P
(
L(y(xti)Tx)

)
.

Following the similar analysis in [56, 55], we first introduce a reference classifier xref with

expected loss L(xref ), and we then measure the generalization performance using the num-

ber of samples Di required at each agent to achieve L(xti) ≤ L(xref ) + aacc, where aacc is

the generalization error.

PP-ADMM without Noise

Here, we consider the learning performance at all iterations rather than only the fi-

nal output. Let the intermediate updated classifier x̂t+1
i,non at iteration t + 1 be x̂t+1

i,non =

O(Lnon(xi, Di), β).

Note that {x̂t+1
i,non} is a sequence of non-private classifier without adding perturbations.

Let x∗ = argmin
xi

fi(xi, Di) be the optimal output of PP-ADMM without Noise. The

sequence {x̂t+1
i,non} is bounded and x̂t+1

i,non converges to x∗ as t → ∞. Therefore, there exists

a constant ∆t+1
i,non at iteration t+1 such that L(x̂t+1

i,non) ≤ L(x∗) +∆t+1
i,non. We then have the

following result, and the detailed proof can be found in supplemental material.
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Theorem 8. Consider a regularized ERM problem with R(x) = 1
2∥x∥

2
2, and let xref be

the reference classifier for all agents and {x̂t+1
i,non} be a sequence of outputs of PP-ADMM

without adding noise. If the number of samples at agent i satisfies

|Di| ≥ V max
t

{ log (1/ξ)
(aacc−∆t+1

i,non)
2

2∥xref∥22
− (1 + a)β

}

for some constant V , then x̂t+1
i,non satisfies

Pr
[
L(x̂t+1

i,non) ≤ L(xref ) + aacc

]
≥ 1− ξ

with aacc ≥ ∆t+1
i,non.

Remark 2. As we can see from Theorem 8, the number of data samples |Di| relies on the

l2-norm of reference classifier ∥xref∥22 and the parameter β that bounds the optimization

accuracy of the non-private intermediate classifier. The results demonstrate that if |Di|

satisfies |Di| ≥ V maxt{ log (1/ξ)

(aacc−∆t+1
i,non

)2

2∥xref ∥22
−(1+a)β

}, each agent’s non-private intermediate clas-

sifier will have an additional error less than aacc compared to any classifier with ∥xref∥22.

Moreover, if β = 0, the result reduces to |Di| ≥ V maxt{
2∥xref∥22 log (1/ξ)
(aacc−∆t+1

i,non)
2
}, the same as given

in [55], which shows that the lower optimization accuracy of the non-private intermediate

classifier, the more samples required to achieve the same accuracy.

PP-ADMM

We then show the sample complexity of the PP-ADMM algorithm. Similar to the

analysis in PP-ADMM without noise, we also consider bounding the generalization error

of the intermediate classifier xt+1
i of each agent i at all iterations. In order to compare the

private classifier xt+1
i with a reference classifier xref , we follow the same strategy used in [55].

We define a new optimization function fnew
i (xi, Di) = fi(xi, Di) + bi1

Txi and then solving

PP-ADMM algorithm is equivalent to solving a new optimization problem, where each

agent i’s performs local minimization to get xt+1
i = O(fnew

i (xi, Di), β) + bi2. The sequence

of outputs {xt+1
i } is bounded and xt+1

i converges to a fixed point x∗new as t → ∞. Thus,
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there exists a constant ∆t+1
i,new at t+1 iteration, such that L(xt+1

i ) ≤ L(x∗new) +∆t+1
i,new. We

then give the following result, and the detailed proof can be found in supplemental material.

Theorem 9. Consider a regularized ERM problem with R(x) = 1
2∥x∥

2
2, and let xref be the

reference classifier for all agents and {xt+1
i } be a sequence of outputs of PP-ADMM. If the

number of samples at agent i satisfies, for some constant V ,

|Di| ≥ V max
t

{ log (1/ξ)
(aacc−∆t+1

i,new)2

2∥xref∥22
− (1 + a)(β +H)

}

with H =
σi2(aacc−∆t+1

i,new)
√

2d log 1
ξ

∥xref∥22
+ 2σ2

i1d log
1
ξ , then x̂t+1

i,new satisfies

Pr
[
L(xt+1

i ) ≤ L(xref ) + aacc
]
≥ 1− 3ξ

with aacc ≥ ∆t+1
i,new.

Remark 3. Compared to Theorem 8, we can see that in Theorem 9, the privacy constraints

impose an additional term H with H = σi2(aacc −∆t+1
i,new)

√
2d log 1

ξ/∥xref∥
2
2+2σ2

i1d log
1
ξ . If

both noise variances σi1 and σi2 are equal to zero, the number of required samples |Di| will

reduce to the same result shown in Theorem 8. Moreover, the additional term H demon-

strates that the higher dimension of features, the more added noise to achieve the same

accuracy requires more data samples.

3.5 Improved Plausible Private ADMM

In this section, we present an improved version of PP-ADMM algorithm called Improved

Plausible Private ADMM (IPP-ADMM) by leveraging sparse vector technique (SVT) to

improve the performance and reduce the communication cost of PP-ADMM. Compared

with current differentially private ADMM algorithms [55, 43, 44], although the proposed

PP-ADMM algorithm can ensure DP guarantee without requiring the optimal solution

during each ADMM iteration, the primal variable is updated using the local data in every

iteration and frequently broadcasted to neighboring agents, which leads to the privacy loss
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unavoidably accumulating over the iterations, and compromise the accuracy during the

whole training procedure.

Hence, we adopt SVT that can output some local computational results without paying

any privacy budget, to check whether current approximate solution has a big enough differ-

ence from that of previous iteration, where the difference is quantified by a quality function,

fi(x
t
i)−fi(x̂

t+1
i ), based on the change of the values of local function over the primal variable

from previous iteration and current approximate solution. If a sufficient level of difference

α is achieved, each agent transmits the current approximate solution with Gaussian noise

to its neighbors. Intuitively, if the difference between the current approximate solution

x̂t+1
i and the previously transmitted xti is small, then using either one does not help the

convergence of the iterative process, which leads to reducing the communication cost.

However, one difficulty in using SVT is that there is no known priori bound on query

(i.e., the quality function) fi(x
t
i) − fi(x̂i). To bound the sensitivity of fi(x

t
i) − fi(x̂i), we

apply the clipping method to clipping the loss function L(·). Given a fixed clipping threshold

Closs, we compute the value of loss function L(·) on each local data sample, clip the values

at most Closs, and compute the value of fi(x
t
i) − fi(x̂i) based on the clipped values. Note

that we denote this loss function clipping procedure as Clip.

The complete procedure of IPP-ADMM algorithm for a single agent is shown in Algo-

rithm 3. The privacy parameters ϵ1 and ϵ2 are allocated to perturb the quality function and

threshold α, respectively. In each iteration, each agent i first constructs the perturbed func-

tion Lper(xi, Di) with a Gaussian random vector bi1 and finds an inexact solution x̂t+1
i , where

the norm of gradient is lower than β, i.e., x̂t+1
i = O(Lper(xi, Di), β). Then each agent apply

the clipping method Clip to clip the quality function fi(x
t
i)−fi(x̂

t+1
i ) with a clipping thresh-

old Closs to limit the sensitivity of quality function. Further, each agent uses SVT to check

whether the difference between the approximate solution x̂t+1
i and xti is below a noisy thresh-

old α̂ = α+Lap(2cCloss
ϵ1

) via a noisy quality function, Clip
[
fi(x

t
i)− fi(x̂

t+1
i )

]
+Lap(4cCloss

ϵ2
).

If yes, then agent i does not transmit any computational results and let xt+1
i = xti; otherwise,

each agent i generates a random noise bi2 ∼ N (0, σ2
i2Id) with σi2 = β/

√
2ρi2(

λ̂
N + 2η|Vi|),
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Algorithm 3 Improved Plausible Private ADMM Run by Agent i

1: Input: dataset Di; initial variables x0i ∈ Rd and λ0
i = 0d; threshold, α; Maximum

number of primal variables that can be broadcasted, c; loss function clipping threshold
Closs; step size η; privacy parameters, ϵi1, δi1, ϵi3, ρi2, ϵ1, ϵ2; Optimizer O(·, ·) : F×β →
Rd ( F is the class of objectives, and β is the optimization accuracy, i.e., the gradient
norm of objectives); gradient norm threshold β ∈ β.

2: Set ϵi1, δi1, ϵi3, ρi2, ϵ1, ϵ2 > 0 such that ϵi1 > ϵi3.
3: Set regularizer parameter λ̂ ≥ max

i

2.8Nc1
(ϵi1−ϵi3)|Di| .

4: counti = 0.
5: for t = 0, . . . , T − 1 do
6: Generate noise bi1 ∼ N (0, σ2

i1Id) with σi1 = 2
√

2 ln (1.25/δi1)/(|Di|ϵi1).
7: Construct the perturbed objective function Lper(xi, Di) according to (20).
8: Compute an approximate solution x̂t+1

i : x̂t+1
i = O(Lper(xi, Di), β).

9: if Clip
[
fi(x

t
i)− fi(x̂

t+1
i )

]
+ Lap(

4cCloss

ϵ2
) ≥ α+ Lap(

2cCloss

ϵ1
) then

10: counti = counti + 1, Abort if counti > c.

11: Generate noise bi2 ∼ N (0, σ2
i2Id) with σi2 = β/[

√
2ρi2(

λ̂
N + 2η|Vi|)].

12: Perturb x̂t+1
i : xt+1

i = x̂t+1
i + bi2.

13: Broadcast xt+1
i to all neighbors j ∈ Vi.

14: else
15: Let xt+1

i = xti.
16: end if
17: if xt+1

j is not received from neighbor j ∈ Vi then

18: Replace xt+1
j with xtj .

19: else
20: Keep xt+1

j .
21: end if
22: Update local dual variables λt+1

i from λt+1
i = λt

i +
η

2

∑
j∈Vi

(xt+1
i − xt+1

j ).

23: end for

and transmits xt+1
i = x̂t+1

i + bi2 to its neighbors. Moreover, each agent maintains a counter

counti to bound the total number of broadcasts of primal variables during the whole in-

teractive process. If a predefined transmission number c(c ≤ T ) is exceeded, agent i stops

transmitting anything even when the condition in Line 7 is satisfied. Hence, if agent i does

not receive xt+1
j from any neighbor j ∈ Vi, then lets xt+1

j = xtj . Finally, each agent updates

the local dual variables λt+1
i via λt+1

i = λt
i +

η

2

∑
j∈Vi

(xt+1
i − xt+1

j ).

3.5.1 Privacy Analysis

We provide the privacy guarantee of IPP-ADMM (Algorithm 3) in following theorem.

Theorem 10. The IPP-ADMM in Algorithm 3 satisfies ρ′i-zCDP for each agent i with
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ρ′i = ρ′1 + c(ρi1 + ρi2), where ρ′1 = (ϵ1+ϵ2)2

2 , ρi1 = ϵ2i1/(4 ln (1/δi1)), ρi2 > 0 is the privacy

budget for perturbing the approximate solution, and c (c < T ) is the maximum number

of primal variables that can be broadcasted. Moreover, the total privacy guarantee of IPP-

ADMM is ρ′-zCDP with ρ′ = max
i

ρ′i.

Proof. For achieving ρ′i-zCDP for each agent i in Algorithm 3, we first divide the procedure

of the algorithm into two parts. The first part is using SVT to compare the noisy threshold

and the perturbed query answer (i.e., the value of quality function) to check the quality

of the approximate solution obtained in Step 7 of the Algorithm 2. The second part is to

share the approximate solution with Gaussian noise, whose value is above the threshold.

We prove that DP mechanism used in the first part provides ρ′1-zCDP (shown in Lemma

13). Moreover, at each iteration, the privacy budget spending on releasing an approximate

solution in the second part is (ρi1 + ρi2)-zCDP (shown in Theorem 6). Then, using the

composition of zCDP in Lemma 2, we obtain the privacy guarantee of IPP-ADMM for each

agent i is ρi = ρ1 + c(ρi1 + ρi2) by considering c times of broadcasting primal variables.

Lastly, we get a total privacy guarantee of IPP-ADMM, i.e., ρ′-zCDP with ρ′ = max
i

ρ′i by

adopting the parallel composition in Lemma 11.

Before presenting the privacy guarantee of the first part, i.e., compare the noisy threshold

and the perturbed query answer to check the quality of the approximate solution, we first

give the sensitivity of the clipped quality function as follows.

Lemma 12. Given a clipping threshold Closs of the loss function L(·), the sensitivity of

quality function fi(x
t
i)− fi(x̂

t+1
i ) is at most 2Closs, where fi(xi) =

1
|Di|

∑|Di|
n=1 L(yni xTi zni ) +

λ̂
NR(xi).

Proof. Fix a pair of adjacent datasets Di and D̂i and we also assume that only the first

data point in Di and D̂i are different, i.e., (z1i , y
1
i ) and (x̂1i , ŷ

1
i ). According to the definition
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of L1-sensitivity, we have

∆f = ∥fi(xti, Di)− fi(x̂
t+1
i , Di)− fi(x

t
i, D̂i) + fi(x̂

t+1
i , D̂i)∥1

= ∥L(y1i (xti)T z1i )− L(ŷ1i (xti)T x̂1i )

− (L(y1i (xt+1
i )T z1i )− L(ŷ1i (xt+1

i )T x̂1i ))∥1

≤ ∥L(y1i (xti)T z1i )− L(ŷ1i (xti)T x̂1i )∥1

+ ∥L(y1i (xt+1
i )T z1i )− L(ŷ1i (xt+1

i )T x̂1i )∥1

≤ 2Closs.

Then we show the privacy guarantee of the first part in the following lemma.

Lemma 13. Given the maximum number of primal variables that we can broadcast, c, using

SVT to check whether the approximate solution is above the threshold α provides ρ1-zCDP

with ρ1 =
(ϵ1+ϵ2)2

2 .

Proof. During the whole training process, each agent will receive a stream of queries (i.e.,

a stream of clipped quality functions Clip
[
fi(x

t
i)− fi(x̂

t+1
i )

]
) with sensitivity 2Closs and

compare them with a noisy threshold α + Lap(2cCloss
ϵ1

). According to Theorem 1 in [33],

this procedure satisfies (ϵ1 + ϵ2)-DP and by Lemma 3, it also satisfies (ϵ1+ϵ2)2

2 -zCDP.

3.5.2 Numerical Experiments

Datasets. Experiments are performed on three benchmark datasets3: Adult, US, and

Brazil. Adult has 48,842 data samples and 41 features, and the label is to predict whether

an annual income is more than $50k or not. US has 40,000 records and 58 features, and

the label is to predict whether the annual income of an individual is more than $25k. BR

has 38,000 samples and 53 features, and the goal is to predict whether the monthly income

of an individual is more than $300.

Data preprocessing. We consider the same preprocessing procedure as the method

used in [43]. We first normalize each attribute so that the maximum attribute value is 1,

3http://archive.ics.uci.edu/ml/datasets/Adult, http://international.ipums.org
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and normalize each sample so its L2-norm at most 1. As for the label column, we also

map it to {−1, 1}. In each simulation, we randomly sample 35,000 records for training

and divide them into N parties, and thus each party includes 35000/N data samples (i.e.,

|Di| = 35000/N). We denote the rest of the data records as testing data.

Baselines. We compare our proposed algorithms against four baseline algorithms:

(i) DVP [55], is a dual variable perturbation method, where the dual variable of each

agent at each ADMM iteration is perturbed by Gamma noise. (ii) M-ADMM [43], is a

penalty perturbation approach, where each agent’s penalty variable is perturbed by Gamma

noise at each ADMM iteration. (iii) R-ADMM [44], is based on the penalty approach and

the re-utilization of previous iteration’s results to save the privacy loss. (iv) Non-private

(decentralized ADMM without adding noise). Note that the privacy guarantees of DVP, M-

ADMM, and R-ADMM hold only when the optimal solution of the perturbed subproblem is

obtained in each iteration. In order to have a fair comparison, we adopt the Newton solver

to obtain the optimal solution in each iteration. Notice that we also provide sharpened

and tight privacy loss of above private ADMM algorithms under the privacy framework of

zCDP.

Setup. We adopt logistic loss L(yni xTi zni ) = log(1+exp(−yni x
T
i z

n
i )) as loss function, and

the derivative L′(·) is bounded with |L′(·)| ≤ 1 and c1-Lipschitz with c1 = 1/4. We also let

R(xi) =
1
2∥xi∥

2
2. We evaluate the accuracy by classification error rate over the testing set,

defined as Error rate = Number of incorrect predictions
Total number of predictions made and the convergence of algorithms by

the average loss over the training samples, given by Lt =
1
N

∑N
i=1

1
|Di|

∑|Di|
n=1 L(yni (xti)T zni ).

We also report the mean and standard deviation of the average loss. The smaller the average

loss, the higher accuracy.

Parameter settings. We consider a randomly generated undirectedly network with

N = 5 agents and we fix the step size η = 0.5 and the total iteration number T = 30.

We also consider the maximum number of primal variables that can be shared, c = 15.

Moreover, to maximize the utility of SVT, we follow the ratio between ϵ1 and ϵ2 in [33], i.e.,

ϵ1 : ϵ2 = 1 : (2c)
2
3 . In all experiments, we set δ = 10−4, and ϵ = {0.5, 1, 1.5, 2, 10}.
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Figure 7: Effects of privacy budget splitting
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Figure 8: Effects of optimization accuracy β
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Figure 9: Effects of clipping threshold Closs

Impacts of parameters. In this set of experiments on the Adult dataset, we present

the effects of privacy budgets splitting and optimization accuracy (i.e., gradient norm thresh-

old) β on the performance of PP-ADMM, and the loss clipping threshold Closs and the

quality function significance threshold α on the performance of IPP-ADMM. Specifically,
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Figure 10: Effects of α
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Figure 11: Trade-off between classification error rate and privacy on Adult dataset

we adjust different parameter settings separately, while keeping the rest constant to repre-

sent their impacts on training and testing accuracy.

For the privacy budgets splitting of PP-ADMM, we first convert the overall privacy

budget parameters (ϵ, δ) to ρtotal =
ϵ2

4 ln(1/δ) . We set ρi1 = ρtotal
T · (1 − splits) and ρi2 =

ρtotal
T · splits, where splits denotes the fraction of ρtotal allocated to ρi2. By tuning splits,

we can find the good trade-off between the privacy budget for perturbing the objective and

perturbing the approximate solution. In addition, we compute ϵi1 = ρi1 + 2
√

ρi1 ln(1/δi1)

with δi1 = 10−4, and set ϵi3 = 0.99 · ϵi1 to dedicate most of the budget to reduce the

amount of noise for perturbing the objective and increase the influence of regularization.

Figure 7 shows the effects of privacy budget splitting on the performance of PP-ADMM by

setting β = 10−6. As splits decreases, i.e., allocating less privacy budgets for perturbing

the approximate solution, it yields better training and testing accuracy. Thus, we set
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Figure 12: Convergence comparisons on Adult dataset (left: ϵ = 1, middle: ϵ = 2, right:
ϵ = 10)
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Figure 13: Classification error rate comparisons on Brazil and US datasets.

splits = 0.001 to achieve a good trade-off between amount of noise added to the objective

and approximate solution.

Figure 8 shows how classification accuracy changes with varying values of β and fixing
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splits = 0.001. The parameter β controls the optimization accuracy of each iteration of PP-

ADMM training process and the amount of noise for perturbing the approximate solution.

As it can be observed from the figure, due to randomness of objective introduced by the

random noise, when β is too small, solving the noisy objective perfectly in each iteration

may not help the final performance. Conversely, when β is too large, large amount of noise

is added to perturb the approximate solution, which also leads to performance degradation.

In our experiments, we thus fix β = 10−3.5 that achieves lowest training/testing error rate.

The IPP-ADMM algorithm has two threshold parameters, Closs and α. These two

parameters are used to bound the sensitivity of the quality function, and the value of

quality function, respectively. If the clipping threshold Closs is set to a small value, it

significantly reduces the sensitivity but at the same time it leads much information loss

in the estimation of quality function. On the other hand, if Closs is large, the sensitivity

becomes large that results in adding too much noise to the estimation. Thus, too large or

small values of Closs have a negative effect on employing SVT to check whether the current

approximate solution has a big enough difference from that of previous iteration. As we

can see from Figure 9, Closs = 2 achieves a good trade-off between high information loss

and large sensitivity. In Figure 10, we fix the the clipping threshold Closs = 2 and vary

α from 10−3 to 10 to see the effect of α on the performance. Although large value of α

may potentially reduce the releasing of low quality approximate solution and reduce the

communication cost, we observe that it also leads the learning performance degradation.

We then choose α = 10−3 in our experiments, which achieves the lowest testing/training

error rate.

Performance comparisons. We also present the trade-off between classification error

rate and privacy cost in Figure 11, where we measured the privacy costs of all algorithms to

obtain some specified testing error rates. Figure 11 illustrates that both of our methods have

consistently lower privacy cost than those baselines algorithms. Compared with PP-ADMM,

IPP-ADMM further saves more privacy cost due to limiting the number of releasing low-

quality computational results. Additionally, we also inspect the convergence performance
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(i.e., average loss) of different algorithms under the same budgets, as shown in Fig. 12. We

can observe that when budget ϵ decreases from 10 to 1, the average loss values of baseline

algorithms increase, which matches the simulation results shown in [43, 44, 17]. Although

we also analyze the baseline algorithms using zCDP to provide tight privacy bound, using

Gaussian noise instead of Gamma noise might be more beneficial to the performance, which

usually has at least
√
d times improvement of the empirical risk bound [58], where d is the

dimension of training model. And our proposed algorithms continues to outperform the

baseline algorithms significantly.

Figure 13 compares the accuracy (classification error rate) of different algorithms on

Brazil and US. The noise parameter of all algorithms are chosen respectively so that they

can achieve the same total privacy loss. As expected, the lower privacy budget, the higher

classification error rate. As it was observed in the experiments, our proposed algorithms

get close to the best achievable classification error rate for a wide range of total privacy loss

considered in the experiments.

3.6 Omitted Proofs

Proof of Theorem 6

Proof. According to (21), we have x̃t+1
i = argmin

xi

Lper(xi, Di). First we will show that for

some o ∈ Rd, we have

pdfDi
(x̃t+1

i = o)

pdfD̂i
(x̃t+1

i = o)
≤ eϵi1 w.p. ≥ 1− δi1.

According to the KKT optimally condition of equation (21), we have

Bt+1
i1 (x̃t+1

i , Di) = −∇fi(x̃
t+1
i )− 2λt

i − η
∑
j∈Vi

(2x̃t+1
i − xti − xtj).
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Changing variables according to the function inverse theorem [59], we obtain

pdfDi
(x̃t+1

i = o)

pdfD̂i
(x̃t+1

i = o)
=

pdf(Bt+1
i1 (o,Di); ϵi1, δi1)

pdf(Bt+1
i1 (o, D̂i); ϵi1, δi1)

×
|det(J(o → Bt+1

i1 (o,Di)))|
|det(J(o → Bt+1

i1 (o, D̂i)))|
,

where J(o → Bt+1
i1 (o,Di)) is the Jacobian matrix of the mapping from o to Bt+1

i1 (o,Di)

using data Di.

We will bound the ratios of the densities and the determinants separately.

First, we will show that for ϵi3 ≤ ϵi1, we have

pdf(Bt+1
i1 (o,Di); ϵi1, δi1)

pdf(Bt+1
i1 (o, D̂i); ϵi1, δi1)

≤ eϵi3 w.p. ≥ 1− δi1,

and then we will show that

|det(J(o → Bt+1
i1 (o,Di)))|

|det(J(o → Bt+1
i1 (o, D̂i)))|

≤ eϵi1−ϵi3 .

Consider the first part, without loss of generality, we fix a pair of adjacent datasets Di

and D̂i and assume that only the first data point in Di and D̂i are different, i.e., (z
1
i , y

1
i ) and

(x̂1i , ŷ
1
i ), respectively. We assume that each feature vector ∥zni ∥2 is normalized to ∥zni ∥2 ≤ 1

and yni ∈ {+1,−1}. Then the L2-sensitivity of Bt+1
i1 (o,Di) is bounded by

∥Bt+1
i1 (o,Di)−Bt+1

i1 (o, D̂i)∥2 ≤ ∥∇fi(o,Di)− ∥∇fi(o, D̂i)∥2

≤ 1

|Di|
∥y1iL′(y1i o

T z1i )z
1
i − ŷ1iL′(ŷ1i o

T x̂1i )x̂
1
i ∥2

≤ 2

|Di|
,

where the last inequality follows as |L′(·)| ≤ 1.

Setting σi1 =
2
√

2 ln (1.25/δi1)

|Di|ϵi3 , we can get

pdf(Bt+1
i1 (o,Di); ϵi1, δi1)

pdf(Bt+1
i1 (o, D̂i); ϵi1, δi1)

≤ eϵi3 w.p. ≥ 1− δi1

from the guarantees of the Gaussian mechanism.
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Consider the second part, the Jacobian matrix J(o → Bt+1
i1 (o,Di)) is given as

J(o → Bt+1
i1 (o,Di)) =− 1

|Di|

|Di|∑
n=1

(yni )
2L′′(yni o

T zni )z
n
i (z

n
i )

T − λ̂

N
∇2R(o)− 2ηt+1

i |Vi|Id.

DefineA(t+1) = 1
|Di|((ŷ

n
i )

2L′′(ŷ1i o
T x̂1i )x̂

1
i (x̂

1
i )

T−(yni )
2L′′(y1i o

T z1i )z
1
i (z

1
i )

T ) and E(t+1) =

−J(o → Bt+1
i1 (o,Di)). Then, we have

|det(J(o → Bt+1
i1 (o,Di)))|

|det(J(o → Bt+1
i1 (o, D̂i)))|

=
|det(E(t+ 1))|

|det(E(t+ 1) +A(t+ 1))|

=
1

|det(I + E(t+ 1)−1A(t+ 1))|

=
1

|
∏r

j=1(1 + λj(E(t+ 1)−1A(t+ 1))|
,

where λj(E(t + 1)−1A(t + 1) represents the j-th largest eigenvalue of E(t + 1)−1A(t + 1)

and E(t+ 1)−1A(t+ 1) has rank at most 2.

Also, since 0 < L′′ ≤ c1 and the regularizer R is 1-strongly convex and twice differen-

tiable, the eigenvalues of E(t+ 1) and A(t+ 1) satisfy

λj(E(t+ 1)) ≥ λ̂

N
+ 2η|Vi| > 0

and − c1
|Di|

≤ λj(A(t+ 1)) ≤ c1
|Di|

,

which implies

− c1

|Di|( λ̂
N + 2η|Vi|)

≤ λj(E(t+ 1)−1A(t+ 1))) ≤ c1

|Di|( λ̂
N + 2η|Vi|)

.

If we choose η such that 2c1 < |Di|( λ̂
N +2η|Vi|), we have −1

2 ≤ λj(E(t+1)−1A(t+1))) ≤

1
2 .
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Since λmin(E(t+ 1)−1A(t+ 1))) > −1, there is

1

|1 + λmax(E(t+ 1)−1A(t+ 1)))|2
≤ 1

|det(I + E(t+ 1)−1A(t+ 1))|

≤ 1

|1 + λmin(E(t+ 1)−1A(t+ 1)))|2
.

Therefore,

|det(J(o → Bt+1
i1 (o,Di)))|

|det(J(o → Bt+1
i1 (o, D̂i)))|

≤ 1

|1− c1

|Di|( λ̂
N
+2η|Vi|)

|2

= e
−2 ln (1− c1

|Di|(
λ̂
N

+2η|Vi|)
)

≤ e

2.8c1

|Di|(
λ̂
N

+2η|Vi|) ≤ eϵi1−ϵi3 ,

where in the second inequality, we use the fact that for any real number x ∈ [0, 0.5],

− ln(1 − x) < 1.4x. If choosing λ̂ ≥ max
i

( 2.8Nc1
(ϵi1−ϵi3)|Di| − 2η|Vi|) ≥ max

i

2.8Nc1
(ϵi1−ϵi3)|Di| , the last

inequality follows.

Combine the first and second part, we can get that
pdfDi

(x̃t+1
i =o)

pdfD̂i
(x̃t+1

i =o)
≤ eϵi1 w.p. ≥ 1− δi1.

In other words, obtaining the exact minimizer x̃t+1
i of equation (21) provides (ϵi1, δi1)-DP,

and ρi1-zCDP with ρi1 = ϵ2i1/(4 ln (1/δi1)).

Now, since we have xt+1
i = x̃t+1

i + (x̂t+1
i − x̃t+1

i + bi2), we will prove that releasing

(x̂t+1
i − x̃t+1

i + bi2) is ρi2-zCDP. The L2-sensitivity of (x̂t+1
i − x̃t+1

i ) is bounded by

∥x̂t+1
i − x̃t+1

i ∥2 ≤
1

λ̂
N + 2η|Vi|

∥∇Lper(x̂
t+1
i , Di)−∇Lper(x̃

t+1
i , Di)∥2 ≤

β

λ̂
N + 2η|Vi|

.

According to Lemma 1 with bi2 ∼ N (0, σ2
i2Id) and σi2 =

β
√
2ρi2(

λ̂
N
+2η|Vi|)

, releasing (x̂t+1
i −

x̃t+1
i + bi2) provides ρi2-zCDP.

Finally, by the composition of zCDP in Lemma 2, it follows that the privacy guarantee

of outputting the perturbed approximated solution at t + 1 iteration provides (ρi1 + ρi2)-

zCDP. Considering T iterations, the total privacy loss for each agent i is bounded by

ρi = T (ρi1 + ρi2).

Proof of Theorem 8
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Proof. Let f̃(x) = L(x) + λ̂
2N ∥x∥22 and x̃i = argmin

x
f̃(x). Let xopti = argmin

x
fi(x,Di)

be agent i’s classifier learned with its own dataset. Let xappopti = O(fi(x,Di), β), which

is agent i’s approximate classifier trained with its own dataset. Then, using the analysis

method in [60], we have

L(x∗) = L(xref ) +
(
f̃(x∗)− f̃(xappopti )

)
+
(
f̃(xappopti )− f̃(x̃i)

)
+

(
λ̂

2N
∥xref∥22 −

λ̂

2N
∥x∗∥22

)

+
(
f̃(x̃i)− f̃(x̃ref )

)
.

By [61], we have f̃(xappopti ) − f̃(x̃i) ≤ (1 + a)(fi(x
appopt
i ) − fi(x

opt
i )) + O(N log(1/ξ)

λ̂|Di|
) holds

∀a > 0 with probability 1− ξ, where O is the big-O notation. Moreover, we have

fi(x
appopt
i )− fi(x

opt
i ) ≤ |fi(xappopti )− fi(x

opt
i )|

≤ ∥xappopti − xopti ∥2

≤ N

λ̂
∥∇fi(x

appopt
i )−∇fi(x

opt
i )∥2

≤ Nβ

λ̂
.

Since x̃i = argmin
x

f̃(x), then f̃(x̃i) ≤ f̃(x̃ref ).

Moreover, we also assume the difference of expected loss under xref and xappopti is

bounded by v > 0, i.e., f̃(x∗)− f̃(xappopti ) ≤ λ̂
2N (∥x∗∥22−∥xappopti ∥22)+v. Then, the following

holds ∀a > 0 with probability 1− ξ

L(x∗) ≤ L(xref ) +O(
N log(1/ξ)

λ̂|Di|
) + v +

(1 + a)Nβ

λ̂
+

(
λ̂

2N
∥xref∥22 −

λ̂

2N
∥xappopti ∥22

)
.

We assume that v is quite small in comparison to other terms. If choosing λ̂ ≤ N(aacc−∆t+1
i,non)

∥xref∥22

then, λ̂
2N ∥xref∥22 ≤

aacc−∆t+1
i,non

2 .

Thus, L(x∗) ≤ L(xref ) + O(N log(1/ξ)

λ̂|Di|
) + (1+a)Nβ

λ̂
+

aacc−∆t+1
i,non

2 holds with probability

1− ξ.
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If |Di| satisfies O(N log(1/ξ)

λ̂|Di|
) + (1+a)Nβ

λ̂
≤ aacc−∆t+1

i,non

2 , we have

|Di| ≥ V max
t

{ log (1/ξ)
(aacc−∆t+1

i,non)
2

2∥xref∥22
− (1 + a)β

}

for some constant V . Therefore, the following holds with probability 1− ξ

L(x∗) ≤ L(xref ) + aacc −∆t+1
i,non.

Since L(x̂t+1
i,non) ≤ L(x∗) + ∆t+1

i,non, then L(x̂t+1
i,non) ≤ L(xref ) + aacc holds with probability

1− ξ.

Proof of Theorem 9

Proof. Let f̃(x) = L(x) + λ̂
2N ∥x∥22 and x̃i = argmin

x
f̃(x). Let xopti = argmin

x
fi(x,Di) be

agent i’s classifier learned with its own dataset. Let xappopti = O(fi(x,Di), β) which is agent

i’s approximate classifier trained with its own dataset. Let xappopti,new = O(fnew
i (x,Di), β) and

xprivopti,new = argmin
x

fnew
i (x,Di) and xi,new = xappopti,new + bi2.

Using the analysis method in [60], we have

L(x∗new) = L(xref ) +
(
f̃(x∗new)− f̃(xi,new)

)
+
(
f̃(xi,new)− f̃(x̃i)

)
+

(
λ̂

2N
∥xref∥22 −

λ̂

2N
∥x∗new∥22

)
+
(
f̃(x̃i)− f̃(x̃ref )

)
.

Here, x∗new is the centralized classifier trained with all data samples, and xi,new is the private

classifier trained with data from agent i. We also assume that the difference of expected loss

between x∗new and xi,new is bounded, i.e., f̃(x∗new)− f̃(xi,new) ≤ λ̂
2N (∥x∗new∥22−∥xi,new∥22)+v.

By [61], f̃(xi,new)− f̃(x̃i) ≤ (1 + a)
(
fi(xi,new)− fi(x

opt
i )
)
+O(N log(1/ξ)

λ̂|Di|
) holds ∀a > 0

with probability 1− ξ, where O is the big-O notation. Then, we have

fi(xi,new)− fi(x
opt
i ) =

(
fi(xi,new)− fi(x

privopt
i,new )

)
+
(
fi(x

privopt
i,new )− fi(x

opt
i )
)
.
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We first bound fi(xi,new)− fi(x
privopt
i,new ). We have w.p. ≥ 1− ξ

fi(xi,new)− fi(x
privopt
i,new ) ≤ |fi(xi,new)− fi(x

privopt
i,new )|

≤ ∥xi,new − xprivopti,new ∥2

= ∥xappopti,new − xprivopti,new + bi2∥2

≤ ∥xappopti,new − xprivopti,new ∥2 + ∥bi2∥2

≤ Nβ

λ̂
+ σi2

√
2d log

1

ξ
.

Next, we bound fi(x
privopt
i,new )− fi(x

opt
i ). We have w.p. 1− ξ

fi(x
privopt
i,new )− fi(x

opt
i ) ≤ bi1

T (xopti − xprivopti,new )

≤ N∥bi1∥22
λ̂

≤
2Nσ2

i1d log
1
ξ

λ̂
,

where the second inequality follows the N
λ̂
-strongly convex properties of fnew

i and fi, and

the last inequality follows Lemma 14. Thus, fi(xi,new) − fi(x
opt
i ) ≤ Nβ

λ̂
+ σi2

√
2d log 1

ξ +

2Nσ2
i1d log

1
ξ

λ̂
holds w.p. 1 − 2ξ. Therefore, f̃(xi,new)− f̃(x̃i) ≤ (1 + a)(Nβ

λ̂
+ σi2

√
2d log 1

ξ +

2Nσ2
i1d log

1
ξ

λ̂
) +O(N log(1/ξ)

λ̂|Di|
) holds ∀a > 0 with probability 1− 3ξ.

Since x̃i = argmin
x

f̃(x), then f̃(x̃i) ≤ f̃(x̃ref ). We then have ∀a > 0 w.p. 1− 3ξ

L(x∗new) ≤ L(xref ) + v +O(
N log(1/ξ)

λ̂|Di|
) + (1 + a)(

Nβ

λ̂
+ σi2

√
2d log

1

ξ
+

2Nσ2
i1d log

1
ξ

λ̂
)

+

(
λ̂

2N
∥xref∥22 −

λ̂

2N
∥xi,new∥22

)
.

We assume that v is quite small in comparison to other terms. If choosing λ̂ ≤
N(aacc−∆t+1

i,new)

∥xref∥22
then, λ̂

2N ∥xref∥22 ≤
aacc−∆t+1

i,new

2 .
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Thus, we have

L(x∗new) ≤ L(xref ) +O(
N log(1/ξ)

λ̂|Di|
) + (1 + a)(

Nβ

λ̂
+ σi2

√
2d log

1

ξ
+

2Nσ2
i1d log

1
ξ

λ̂
)

+
aacc −∆t+1

i,new

2

holds w.p. 1− 3ξ.

If |Di| satisfies O(N log(1/ξ)

λ̂|Di|
) + (1 + a)(Nβ

λ̂
+ σi2

√
2d log 1

ξ +
2Nσ2

i1d log
1
ξ

λ̂
) ≤ aacc−∆t+1

i,new

2 ,

i.e., for some constant V , we have

|Di| ≥ V max
t

{ log (1/ξ)
(aacc−∆t+1

i,new)2

2∥xref∥22
− (1 + a)(β +H)

},

where H =
σi2(aacc−∆t+1

i,new)
√

2d log 1
ξ

∥xref∥22
+ 2σ2

i1d log
1
ξ .

Therefore, the followsing holds with probability 1− 3ξ

L(x∗new) ≤ L(xref ) + aacc −∆t+1
i,new.

Since L(xt+1
i ) ≤ L(x∗new) + ∆t+1

i,new, then L(xt+1
i ) ≤ L(xref ) + aacc holds with probability

1− 3ξ.

Lemma 14. [62] Let X be a random variable drawn from distribution N (0, Id). Then we

have w.p. ≥ 1− ξ, ∥X∥2 ≤
√

2d log 1
ξ .
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4 Differentially Private and Communication Efficient Decen-

tralized Gradient Descent

4.1 Introduction

Machine learning is increasingly deployed into large-scale distributive systems that can

improve the quality of our life, such as smart home security [1], and AI-aided medical diag-

nosis [2]. With the proliferation of mobile phone devices, a vast amount of data has been

generated at an ever-increasing rate, which leads to significant computational complexity

for data collection and processing via a centralized machine learning approach. Therefore,

collaborative training of a machine learning model among edge computing devices is benefi-

cial and essential in dealing with large scale decentralized learning tasks [3, 4, 5]. However,

since the dimension of learning model increases (which is the current trend in large-scale

distributed machine learning), model exchanges among agents become the significant com-

munication bottleneck. Moreover, the computation speed and computational load of local

agents vary greatly, which can substantially slow down the overall system efficiency.

While communication is a key concern in collaborative machine learning, an equally

important consideration is the critical privacy leakage of sensitive training data during the

training process [11, 63]. Fortunately, differential privacy [25] has been exploited as a well-

defined framework for providing privacy protection in machine learning, which guarantees

that the adversary with arbitrary background knowledge cannot extract any sensitive infor-

mation about the training data. Many existing mechanisms have been proposed to ensure

DP, like gradient perturbation [64, 53] and output perturbation approaches [56, 65, 17].

However, directly hammering those centralized mechanisms into distributed settings will

potentially introduce a heavy communication burden.

A majority of the existing research focuses on either communication efficiency [66, 67, 68]

or data privacy [69, 17, 70]. However, only a limited amount of works consider both

[63, 71, 72]. Agarwal et al. [63] proposed the cpSGD algorithm based on the random-

ized quantization and Binomial mechanism. However, the method was specialized for the
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distributed mean estimation problem under the server/worker architecture. The perfor-

mance of collaborative learning is not clear in general network topologies. Furthermore, in

[71], Zhang et al. adopted a sparsification operator to compress the differentially private

local differentials before transmitting to neighboring agents to reduce the communication

cost while guaranteeing privacy. However, the above works ignore the critical impact of the

straggling agents, which may significantly slow down the wall-clock time of the convergence.

In this work, we propose two differentially private and communication efficient algo-

rithms, named Q-DPSGD-1 and Q-DPSGD-2, by considering different orders between the ran-

dom quantization and DP mechanism. Particularly, in Q-DPSGD-1, a Gaussian mechanism

is applied before random quantization, and the privacy guarantee of quantized model roots

from the post-processing property of DP. In Q-DPSGD-2, we consider an alternative design

in reverse order, i.e., by applying a Gaussian mechanism after random quantization. Due

to the discretization of the quantizatized local model parameters, we propose to sample

Gaussian noises from a discretization of Gaussian distribution and add the discrete Gaus-

sian noise to the quantization values without sacrificing the communication efficiency. We

provide the privacy analysis of discrete Gaussian mechanism under the Rényi DP (RDP)

instead of Concentrated DP, i.e., CDP [73]. The reason is that CDP does not support

privacy amplification from subsampling and analytical moments accountant [35], both of

which may broaden the practical applications of discrete Gaussian mechanisms. Moreover,

a deadline based scheme for local computations is leveraged in both algorithms to address

the straggler problems and reduce the elapsed time of convergence. We also provide con-

vergence results of both algorithms for convex and non-convex loss functions. Our salient

contributions are summarized as follows.

• We propose a Q-DPSGD-1 method which will update the local models by integrat-

ing DP noise and random quantization operator to simultaneously enforce DP and

communication efficiency. Especially, different from the fixed (mini-batch) gradient

computation approaches, we utilize a deadline based approach [74] to effectively inte-

grate DP and random quantization for collaborative learning, where no privacy budget
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will be consumed if there is no gradient computation before the deadline. We prove

the convergence results under convex and non-convex cases, and analyze the trade-off

between privacy and accuracy in terms of expected population risk.

• To exploit the capability of perturbing quantized local model by DP noise in col-

laborative learning, we propose a Q-DPSGD-2 method that employs discrete Gaussian

mechanism after random quantization, instead of using Binomial mechanism [63].

We analyze privacy guarantee of discrete Gaussian mechanism under the RDP that

breaks its limited application under CDP. The convergence results of Q-DPSGD-2 are

also provided for both convex and non-convex objectives.

• Through extensive experiments on the CIFAR-10 and MNIST datasets, we show the

superior performance of the proposed algorithms over the baseline algorithms, and

the experimental results validate our theoretical analysis.

4.2 Related Work

Decentralized consensus optimization has been studied extensively. The most popu-

lar first-order choices for the convex setting are distributed gradient descent-type methods

[75, 76], distributed variants of the alternating direction method of multipliers (ADMM)

[49], and dual averaging [77]. Recently, there have been some works which study non-

convex decentralized consensus optimization and establish convergence to a stationary point

[78, 79]. There are two categories of communication-efficiency of distributed optimization.

One way to improve communication-efficiency of distributed optimization procedures is by

communicating compressed local gradients or models to parameter server via quantization

[80, 81, 82] and sparsification [83, 84]. Another line is to reduce the number of communi-

cation rounds by techniques such as periodic averaging that pay more local computation

for less communication [85]. However, most of the above communication-efficient schemes

ignore the privacy aspect.

To prevent privacy leakage in distributed machine learning, many related works focus

on secure multi-party computation or homomorphic encryption, which involve both high
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computation and communication overhead, and cannot prevent the information leakage

from the final learned model. Thus, many works [21, 17, 18, 69] have studied how to

effectively integrate distributed learning algorithms (ADMM, gradient descent) with DP.

However, most of them ignore the communication efficiency aspect.

4.3 Problem Setting and Preliminaries

In this work, we aim to solve the population risk problem as

min
x∈Rp

F (x) = Eθ∼P l(x, θ), (22)

where ℓ : Rp × Rq → R is a stochastic loss function, θ ∈ Rq is a data sample drawn

from an unknown probability distribution P. Instead of directly solving (22), we consider

minimizing the following Empirical Risk Minimization (ERM) problem as

min
x∈Rp

FN (x, D) =
1

mn

∑
θ∈D

l(x, θ), (23)

where D = {θ1, · · · , θmn} is the overall data samples.

In collaborative training, our goal is to collaboratively solve problem (23) to train a

common classifier x ∈ Rp in a decentralized manner (i.e., no centralized controller) while

keeping the privacy for each data sample. Thus, we consider a wireless edge network

containing n agents with a node set N = {1, · · · , n}, and each agent i has a dataset

Di = {θ1i , · · · , θmi }. The communication among agents can be represented by an undirected

connected graph G = {N ,E }, where E ⊆ N ×N denotes the set of communication links

between agents. Note that two agents i and j can communicate with each other only when

they are neighbors, i.e., (i, j) ∈ E . We denote the set of neighbors of agent i as Ni. Thus,

the collaborative ERM problem can be formulated as

min
x∈Rp

f(x, D) =
1

n

n∑
i=1

fi(x, Di), (24)
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where D = D1∪· · ·∪Dn is the union of all local datasets, and fi(x, Di) =
1
m

∑
θ∈Di

ℓ(x; θ),

which is only observable to agent i. In order to collaboratively solve problem (24) in a

decentralized manner, we then rewrite it as a consensus optimization problem as follows,

min
x1,··· ,xn

F̂ (x) =
1

n

n∑
i=1

fi(xi, Di) (25)

s.t. xi = xj , ∀i, j ∈ Ni,

where the vector x = [x1; · · · ;xn] ∈ Rnp denotes the concatenation of all the local models

xi at agent i, and the constraint here is to enforce all the local classifiers reach consensus,

i.e., x1 = x2 = · · · = xn. Thus, (24) and (25) are equivalent, i.e., the optimal solution

{x∗
i }ni=1 of problem (24) holds that x∗ = x∗

1 = x∗
2 = · · · = x∗

n.

To solve Problem (25) in a decentralized manner, each agent i can minimize the local

objective function fi(x, Di) over its own private dataset Di, and exchange local model xi

among its neighboring agents j ∈ Ni to enforce xi close enough to the local model xj of

its neighbors j. Although there is no need to share the local private dataset during this

iterative process, local model exchange between the distributed agents imposes the risk of

information leakage. For example, the adversary may perform model inversion attack [11,

86] and membership inference attack [10] together with some background knowledge to infer

sensitive information in the dataset. Furthermore, model exchange also brings a potentially

heavy communication burden, and this problem becomes worse when performing on edge

devices due to the receiver sensitivity and transmitter power constraints, etc. Therefore, in

this work, our objective is to achieve communication efficient collaborative learning while

preserving DP guarantee at the same time.

We then assume that the weight matrix, the quantizer, and local objective functions

satisfy the assumptions, which are commonly used in related works [80, 81]. We use ⌈x⌉

to denote the least integer greater than or equal to x, and ∥ · ∥ to denote the l2-norm of a

vector.

Assumption 1. The weight matrix W ∈ Rn×n with entries wij ≥ 0 satisfies the following

57



conditions: W = W⊤, W1 = 1 and null(I −W ) = span(1).

Assumption 2. The random quantizer Q(·) is unbiased and variance-bounded, i.e., E[Q(x)|x] =

x and E[∥Q(x)− x∥2|x] ≤ σ̃2, for any x ∈ Rp; and quantizations are carried out indepen-

dently.

Assumption 3. The local loss function ℓ is K̂-smooth and K-Lipschitz continuous with

respect to x, i.e., for any x, x̂ ∈ Rp and any θ ∈ D, ∥∇ℓ(x, θ)−∇ℓ(x̂, θ)∥ ≤ K̂∥x− x̂∥,

and ∥ℓ(x, θ)− ℓ(x̂, θ)∥ ≤ K∥x− x̂∥.

Assumption 4. Stochastic gradients ∇ℓ(x, θ) are unbiased and variance bounded, i.e.,

Eθ∼P [∇ℓ(x, θ)] = ∇F (x) and Eθ∼P
[
∥∇ℓ(x, θ)−∇F (x)∥2

]
≤ γ2.

Assumption 5. The function ℓ is µ-strongly convex, i.e., for any x, x̂ ∈ Rp and θ ∈ D we

have that ⟨∇ℓ(x, θ)−∇ℓ(x̂, θ),x− x̂⟩ ≥ µ∥x− x̂∥2.

The condition in Assumptions 3 and 5 imply that the objective function f is strongly

convex and

the local gradients of each node ∇fi(x) are also unbiased estimators of the expected risk

gradient ∇L(x) and their variance is bounded above by γ2/m as it is defined as an average

over m realizations.

4.4 Main Methods

4.4.1 Q-DPSGD-1

In this section, we introduce Q-DPSGD-1 algorithm that takes into account privacy-

preservation and communication efficiency in collaborative learning. To ensure DP guaran-

tee, each agent utilizes Gaussian mechanism to perturb the gradients of model update and

then performs noisy SGD to update the local model before sharing to neighboring agents.

To reduce the communication overhead, we consider that each agent only exchanges a ran-

domly quantized version of its local model to its neighbors. Exchanging quantized local

model instead of the original model indeed improves the communication efficiency at the
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Algorithm 4 Q-DPSGD-1 run by agent i

1: Input: Weights {wij}nj=1; Deadline Td.
2: Set initial variables xi,0 = 0 and zi,0 = Q(xi,0).
3: for t = 0, · · · , T − 1 do
4: Broadcast zi,t = Q(xi,t) to all neighbors j ∈ Ni.
5: Receive zj,t from its neighbor j ∈ Ni.
6: Take and evaluate stochastic gradients {∇ℓ(xi,t; θ) : θ ∈ Si,t} till reaching the

deadline Td, with Si,t ⊆ {1, · · · ,m}.
7: Generate gradient:

∇̃fi(xi,t) =
1

|Si,t|
∑

θ∈Si,t
∇ℓ(xi,t; θ)

8: Update xi,t+1 = (1 − ε + εwii)xi,t + ε
∑

j∈Ni
wijzj,t − αε(∇̃fi(xi,t) + ζi,t), where

ζi,t ∼ N (0, σ2K2Ip)).
9: end for

cost of injecting quantization noise to the information received by the agents in the net-

work. However, using quantized model and Gaussian mechanism induces extra noise in the

training process which makes the analysis of our algorithm more challenging.

The details of Q-DPSGD-1 algorithm are given in Algorithm 4. At each iteration t,

consider xi,t as the local classifier, each agent i sends zi,t = Q(xi,t), the quantized version

of the vector xi,t, to all neighbors j ∈ Ni to reduce the communication burden on the shared

bus. For instance, we consider the precision quantizer decribed by quantization resolution η

and s bits with the representation range {−η ·2s−1, · · · , η · (2s−1)}. Then the quantization

function Q(x) can be expressed as

Q(x) =

 kη w.p. 1− (x− kη)/η,

(k + 1)η w.p. (x− kη)/η,
(26)

where x ∈ [kη, (k + 1)η]. Note that the above quantizer satisfied Assumption 2 [80].

Note that Q-DPSGD-1 is different from the fixed (mini-batch) gradient computation in

previous works [80, 71, 63], where each agent i selects a subset of local data samples to

estimate the stochastic gradient. Motivated by [74, 81], Q-DPSGD-1 considers a deadline

based approach by setting a deadline Td to limit the time that each agent can perform

stochastic gradient estimation. Further, this deadline based approach can also avoid waiting

for the slowest agent to finish its local model update, i.e., straggler’s delay problem. Thus,
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at iteration t, each agent is given a deadline time Td to compute its per sample gradient

∇ℓ(xi,t; θ). At the end of the deadline, each agent computes its local mini-batch gradient

∇̃fi(xi,t) =
1

|Si,t|
∑

θ∈Si,t
∇ℓ(xi,t; θ), where we treat the set of collected samples as Si,t. Note

that we set ∇̃fi(xi,t) = 0 when there are not any gradient estimates by deadline Td, i.e.,

|Si,t| = 0.

In order to enforce DP guarantee, each agent i adds a noise ζi,t drawn from a Gaussian

distributionN (0, σ2K2Ip)) to perturb the local stochastic gradient ∇̃fi(xi,t). After that, the

perturbed local stochastic gradient, its local variables xi,t and the local variables received

from its neighbors {zj,t = Q(xj,t); j ∈ Ni} are used to update its local model xi,t+1. Note

that we denote the communication matrix wij as the weight that agent i assigns to the

information that it receives from agent j. If agents i and j are not neighbors, wij = 0. In

particular, at iteration t, agent i updates xi,t+1 according to the update

xi,t+1 =(1− ε+ εwii)xi,t + ε
∑
j∈Ni

wijzj,t − αε(∇̃fi(xi,t) + ζi,t), (27)

where ζi,t ∼ N (0, σ2K2Ip)) and α and ε are positive constants. The parameter α behaves

as the step size of the gradient descent step regarding to the local objective function fi

and ε acts as an averaging parameter between performing the distributed gradient update

ε(wiixi,t +
∑

j∈Ni
wijzj,t − α(∇̃fi(xi,t) + ζi,t) versus using the previous decision variable

(1− ε)xi,t.

Privacy guarantee The following theorem provides the privacy guarantee of Q-DPSGD-1

algorithm.

Theorem 11. The Q-DPSGD-1 algorithm satisfies (ϵ, δ)-DP with ϵ = ϵ(ρ) + log(1/δ)
ρ−1 and

ϵ(ρ) = maxi
∑T−1

t=0 ϵ′i,t(ρ) with ϵ′i,t(ρ) =
8ρ

m2σ2 if |Si,t| ≠ 0, and ρ = 2 log(1/δ)/ϵ+ 1.

Remark 4. Since we adopt a deadline based scheme in Q-DPSGD-1 algorithm instead of

the fixed mini-batch scheme used in [71, 53], the size of mini-batch Si,t, i.e., |Si,t| is not

deterministic but a random variable. We then need to carefully state our computation model

used for the processing time of agents in the communication network. Following the similar
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approach in [74, 81], we denote the processing speed of each machine as the number of per-

example gradient ∇ℓ(xi,t; θ) that it computes per second. We also assume that the processing

speed of each machine i at iteration t is a random variable Vi,t, and Vi,t’s are i.i.d with

probability distribution FV (v). We further assume that the domain of the random variable V

is bounded and its realizations are in [v, v]. If Vi,t is the number of stochastic gradient which

can be computed per second, the size of mini-batch Si,t is given by |Si,t| = Vi,tTd. Therefore,

the privacy budget ϵ in Theorem 11 is also a random variable and provides a good manner

to characterize the privacy consumption of decentralized learning under the straggler’s delay

problem. For instance, when Si,t ⊆ ∅, i.e., there is no gradient computation by deadline Td,

agent i then updates xi,t+1 by xi,t+1 = (1 − ε + εwii)xi,t + ε
∑

j∈Ni
wijzj,t and broadcasts

zi,t+1 = Q(xi,t+1) without spending any privacy budget while preventing stragglers holding

up the entire network.

Convergence analysis We characterize the convergence of Q-DPSGD-1 algorithm for

strongly convex and non-convex objectives, respectively.

Theorem 12 (Strongly Convex). If the conditions in Assumptions 1–5 are satisfied and

step-sizes are picked as ε = T−3δ̃/2, α = 2T−δ̃/2, for any δ̃ ∈ (0, 1/2), then for large enough

number of iterations T ≥ T c
min, the iterates generated by the Q-DPSGD-1 algorithm satisfy

1

n

n∑
i=1

E ∥xi,T−x∗∥2 ≤ O

(
E2(K̂/µ)2

(1− β)2
+

σ̃2

µ

)
1

T δ̃

+O
(
γ2

µ
max

{
E[1/V ]

Td
,
1

m

}
+

pK2σ2

µ

)
1

T 2δ̃
,

where E2 = 2K
∑n

i=1(fi(0)−f∗
i ), and f∗

i = minx∈Rp fi(x) and x∗ is the solution of Problem

(25).

Remark 5. Theorem 12 shows that the exact convergence of each local model to the global

optimal can be achieved with the sublinear convergence rate which is O(1/
√
T ) by setting

δ̃ close to 1/2. Furthermore, the above results also show the effect of stochastic gradients

variance γ2, the Gaussian noise σ2 used to provide privacy guarantee, as well as the deadline
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based scheme parameters E[1/V ]/Td that describes the inverse of the batch size computed

before the deadline Td. Moreover, the coefficient of 1/T δ̃ describes the effects of objective

function condition number K/µ, variance σ̃2 introduced by random quantization, and the

graph connectivity parameter 1/(1−β). Notice that the error term introduced by DP decays

faster than the one introduced by random quantization.

Remark 6. Utilizing the strong convexity of objective function, if we choose |Si,t| = B and

σ2 = 16T (2 log(1/δ)/ϵ+1)
m2ϵ

and T = O( m4ϵ2µ2

(log(1/δ)/ϵ+1)2p2K4 ), Q-DPSGD-1 is (ϵ, δ)-DP and the em-

pirical risk FN (xi,T )−FN (x∗) = f(xi,T )−f(x∗) ≤ O( (2 log(1/δ)/ϵ+1)pK2

m2ϵµ
). Then according to

[87], the difference between population risk F and empirical risk FN over mn data samples

is bounded by supx |F (x)− FN (x)| ≤ O(1/mn). Thus, the overall error of Q-DPSGD-1 with

respect to population risk F is O( (2 log(1/δ)/ϵ+1)pK2

m2ϵµ
+ 1

mn).

We next present the convergence result of Q-DPSGD-1 for non-convex objectives regard-

ing to first-order optimality and consensus convergence rate.

Theorem 13 (Non-convex). Under Assumptions 1–4, and for step-sizes α = T−1/6 and

ε = T−1/2, Q-DPSGD-1 guarantees the following convergence and consensus rates:

1

T

T−1∑
t=0

E ∥∇f (xt)∥2 ≤ O

(
K̂σ̃2

n
+

K̂2γ2

(1− β)2m
+

σ2K2K̂2p

(1− β)2

)
1

T 1/3

+O

(
K̂

γ2

n
max

{
E[1/V ]

Td
,
1

m

}
+

σ2K̂K2p

n

)
1

T 2/3

and
1

T

T−1∑
t=0

1

n

n∑
i=1

E ∥xt − xi,t∥2 ≤ O
(

γ2

m(1− β)2

)
1

T 1/3

+O

(
K̂2

(1− β)4
γ2

m
+

K̂

(1− β)2
σ̃2

n
+

σ2K2K̂2p

(1− β)4

)
1

T 2/3

for large enough number of iterations T ≥ T nc
min. Here xt =

1
n

∑n
i=1 xi,t denotes the average

models at iteration t.

Remark 7. Theorem 13 shows that Q-DPSGD-1 finds first-order stationary points and the

approximation error decays with a rate of O(1/T 1/3). Moreover, the local models reach
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consensus as fast as O(1/T 1/3). Notice that the consensus rate result shows a balance

between the variance of Gaussian noise and the graph connectivity.

4.4.2 Q-DPSGD-2

Note that in Q-DPSGD-1, the DP noise is applied before random quantization, and the

privacy guarantee of quantization operator roots from the post-processing property of DP.

Is it possible that we can implement communication efficient and private collaborative

learning in a reverse order, i.e., adopting DP noise after random quantization? Agarwal et

al. in [63] indeed implemented such a design on the distributed mean estimation problem

by applying the Binomial mechanism after random quantization. However, compared with

the Gaussian mechanism, Binomial mechanism has very complicated privacy analysis and

incurs large noise errors under the same privacy budget. Besides, as pointed out by [88],

the Binomial mechanism cannot inherently benefit from the powerful privacy accountant

like the moments accountant method. Thus, we consider to add Gaussian noises after

quantization instead of Binomial noises to implement the collaborative learning.

The main challenge is that the transmitted values now are real numbers and the benefits

of model quantization are lost, if we directly adding Gaussian noise after quantization. Our

solution is to sample Gaussian noise from a discretization of Gaussian distribution and add

the discrete Gaussian noise to the quantization values without sacrificing the communication

efficiency. However, the problem here is whether the discrete Gaussian distribution still

guarantees the same DP as the continuous Gaussian distribution. Fortunately, [73] has

shown that discrete Gaussian provides the same CDP [31] as the continuous one. In general,

the RDP view of privacy is broader than the CDP view as it captures finer information.

Unlike RDP, CDP cannot enjoy the benefit from the privacy amplification of subsampling.

Therefore, we in this work provide the RDP analysis for discrete Gaussian, which can use

tight composition theory like analytical moments accountant [35].

Definition 8 (Discrete Gaussian [73]). The discrete Gaussian distribution with location

µ ∈ R and scale σ ∈ R is denoted as NZ(µ, σ
2). The corresponding probability distribution
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Algorithm 5 Q-DPSGD-2 run by agent i

1: Input: Weights {wij}nj=1; Deadline Td.
2: Set initial variables xi,0 = 0 and zi,0 = Q(xi,0).
3: for t = 0, · · · , T − 1 do
4: Broadcast zi,t = Q(xi,t)+ ζi,t to all neighbors j ∈ Ni, where ζi,t ∼ NηZ(0, σ

2K2Ip).
5: Receive zj,t from its neighbor j ∈ Ni.
6: Take and evaluate stochastic gradients {∇ℓ(xi,t; θ) : θ ∈ Si,t} till reaching the

deadline Td, with Si,t ⊆ {1, · · · ,m}.
7: Generate gradient:

∇̃fi(xi,t) =
1

|Si,t|
∑

θ∈Si,t
∇ℓ(xi,t; θ).

8: Update xi,t+1 = (1− ε+ εwii)xi,t + ε
∑

j∈Ni
wijzj,t − αε∇̃fi(xi,t).

9: end for

supported on the integers and defined by

∀x ∈ Z, P
X∼NZ(µ,σ2)

[X = x] =
e−(x−µ)2/2σ2∑
y∈Z e

−(y−µ)2/2σ2 .

Theorem 14 (Discrete Gaussian Satisfies RDP). Let ∆, σ > 0, ρ > 1. Let Mq : D → Z

satisfy |Mq(D) − Mq(D̂)| ≤ ∆ for all D, D̂ ∈ D differing on a single sample. Define a

randomized algorithm M(D) = Mq(D) + X, where X is drawn from a discrete Gaussian

distribution NZ(0, σ
2). Then M satisfies (ρ, ρ∆2/(2σ2))-RDP.

Corollary 1 (Discrete Gaussian with Arbitrary Precision). Let ∆, σ, η > 0, ρ > 1. Let

Mq : D → ηZ with ηZ = {ηz : z ∈ Z} satisfy |Mq(D) − Mq(D̂)| ≤ ∆ for all D, D̂ ∈ D

differing on a single sample. Define a randomized algorithm M(D) = Mq(D) + Y , where

Y is drawn from a discrete Gaussian distribution NηZ(0, σ
2), i.e.,

∀x ∈ ηZ, P
X∼NηZ(0,σ2)

[X = x] =
e−x2/2σ2∑

y∈ηZ e
−y2/2σ2 .

Then M satisfies (ρ, ρ∆2/(2σ2))-RDP.

The details of Q-DPSGD-2 is given in Algorithm 5. At iteration t − 1, each agent

is given a deadline time Td to compute its per sample gradient ∇ℓ(xi,t−1; θ). At the

end of the deadline, each agent computes its local mini-batch gradient ∇̃fi(xi,t−1) =

1
|Si,t−1|

∑
θ∈Si,t−1

∇ℓ(xi,t−1; θ), where Si,t−1 is the batch size in such time period. Formally,
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agent i updates xi,t according to

xi,t =(1− ε+ εwii)xi,t−1 + ε
∑
j∈Ni

wijzj,t−1 − αε∇̃fi(xi,t−1). (28)

Local variables xi are then exchanged between neighboring agents. To reduce the commu-

nication cost of exchanging such variables, the quantization operator Q(·) is enforced to

reduce the required number of bits. Thus, each agent i sends zj,t = Q(xi,t) + ζi,t to all

neighbors j ∈ Ni, where ζi,t ∼ NηZ(0, σ
2K2Ip) is used to enforce DP guarantee of the quan-

tization model variables. If the range of private local model zj,t surpasses the representation

range, post-processing (i.e., truncating) can be used to limit it.

Privacy guarantee We then provide the privacy guarantee of Q-DPSGD-2 algorithm in

the following theorem.

Theorem 15. The Q-DPSGD-2 algorithm satisfies (ϵ, δ)-DP with ϵ = ϵ(ρ) + log(1/δ)
ρ−1 and

ϵ(ρ) = maxi
∑T−1

t=0
8ρ

σ2m2 (αε+
η
√
p

K |Si,t|)2 with ρ = 2 log(1/δ)/ϵ+ 1.

Remark 8. From Theorem 15, we can see that the privacy budget is related to the step

sizes α and ε, and the quantization resolution η and model dimension p. Diminishing step

sizes α and ε can not only help balance the randomness introduced by exchanging quantized

and private local models, but also improve the privacy guarantee (i.e., reduce the privacy

budget).

Convergence analysis The following is the convergence rate of Q-DPSGD-2 algorithm

for strongly convex and non-convex objectives, respectively.

Theorem 16 (Strongly Convex). If the conditions in Assumptions 1–5 are satisfied and

step-sizes are picked as ε = T−3δ̃/2, α = T−δ̃/2, for any δ̃ ∈ (0, 1/2), then for large enough

number of iterations T ≥ T c
min the iterates generated by the Q-DPSGD-2 algorithm satisfy

1

n

n∑
i=1

E ∥xi,T−x∗∥2 ≤ O

E2(K̂/µ)2

(1− β)2
+

σ̃2 + pK2σ2

η2

µ

 1

T δ̃
+O

(
γ2

µ
max

{
E[1/V ]

Td
,
1

m

})
1

T 2δ̃
,
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where E2 = 2K
∑n

i=1(fi(0)−f∗
i ), and f∗

i = minx∈Rp fi(x) and x∗ is the solution of Problem

(25).

Remark 9. From Theorem 16, the coefficient of 1/T δ̃ is dominated by the error term

introduced by random quantization and DP, i.e., the error term decays slower than that in

Theorem 12. Nevertheless, Q-DPSGD-2 still finds the global optimal for each agent with a

O(1/
√
T ) convergence rate by choosing δ̃ close to 1/2.

Remark 10. Utilizing the strong convexity of objective function, if we choose |Si,t| = B and

σ2 =
16T (2 log(1/δ)/ϵ+1)(αε+ηB

√
p/K)2

m2ϵ
and T = ( µϵm2

p(2 log(1/δ)/ϵ+1)(αεK/η+
√
pB)2

)2/3, then Q-DPSGD-2

is (ϵ, δ)-DP and the empirical risk FN (xi,T )− FN (x∗) = f(xi,T )− f(x∗) ≤

O((
p(2 log(1/δ)/ϵ+1)(αεK/η+

√
pB)2

µϵm2 )2/3), where x̂∗ is the minimizer of the empirical risk FN .

The overall error of Q-DPSGD-2 regarding to population risk F is

O((
p(2 log(1/δ)/ϵ+1)(αεK/η+

√
pB)2

µϵm2 )2/3 + 1
mn). Notice that the overall risk of Q-DPSGD-2, i.e.,

Õ( p4/3

m4/3ϵ4/3
), is higher than that of Q-DPSGD-1, i.e., Õ( p

m2ϵ2
), where Õ term omits logarith-

mic and other factors.

Theorem 17 (Non-convex). Under Assumptions 1–4, and for step-sizes α = T−1/6 and

ε = T−1/2, Q-DPSGD-2 guarantees the following convergence and consensus rates as

1

T

T−1∑
t=0

E ∥∇f (xt)∥2 ≤ O
(
K̂

γ2

n
max {E[1/V ]

Td
,
1

m
}
)

1

T 2/3

+O

(
K̂

n
(σ̃2 +

pK2σ2

η2
) +

K̂2γ2

(1− β)2m

)
1

T 1/3

and
1

T

T−1∑
t=0

1

n

n∑
i=1

E ∥xt − xi,t∥2 ≤ O
(

γ2

m(1− β)2

)
1

T 1/3

+O

 K̂2

(1− β)4
γ2

m
+

K̂

(1− β)2

(σ̃2 + pK2σ2

η2
)

n

 1

T 2/3

for large enough number of iterations T ≥ T nc
min. Here xt =

1
n

∑n
i=1 xi,t denotes the average

models at iteration t.

Remark 11. From first upper bound in Theorem 17, Q-DPSGD-2 indeed finds the first-order

stationary points with a rate of O(1/T 1/3), while in the second upper bound of Theorem 13,
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Figure 14: Compare loss on MNIST (Tc = 3, batch size B = 20, s = 3, c = 0.3).

the error term due to DP appears in the both of coefficients of 1/T 1/3 and 1/T 2/3. Moreover,

the consensus error decays the same rate as Q-DPSGD-1.

4.5 Experimental Results

In this section, we present the performance evaluation of the proposed two algorithms

for solving a non-convex decentralized optimization problem. In particular, we compare the

privacy-accuracy trade-off and the total run-time of our proposed algorithms against the

ones for two baselines:

• Decentralized SGD (DSGD) [89]: Each agent updates its local model parameter as

xi,t+1 =
∑

j∈Ni
wijxj,t − α∇̃fi(xi,t). Note that the exchanged local parameter xi

with its neighbors is not quantized or compressed and the local gradients ∇̃fi(xi,t)

are computed for a fixed batch size.

• Sparse differential Gaussian-masked stochastic gradients (SDM) [71]: This algorithm

communicates compressed local differentials di,t−1 = yi,t−1−xi,t−1 with its neighbors

and then estimating neighbor’s copies xi,t = xi,t−1+S(di,t), where S(·) is a sparsifier

operator. The output of S(·) follows the Bernoulli(c) distribution, i.e., Pr[S(x) =

x/c] = c and Pr[S(x) = 0] = 1 − c. Thus, the update rule of SDM is yi,t = (1 −

θ)xi,t + θ(
∑

j∈Ni
wijxj,t − α(∇̃fi(xi,t) + ζi,t)), where ζi,t is a Gaussian random noise.
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Figure 15: Compare loss on CIFAR-10 (Tc = 3, batch size B = 20, s = 3, c = 0.3).

Dataset and Experiment Settings We conduct the experiments over two benchmark

datasets: MNIST and CIFAR-10. For MNIST, we consider a fully connected network with a

hidden layer of size 50. The image is transformed to a vector of length 784. For CIFAR-10,

we use a fully connected neural network with one hidden layer with 40 neurons to classify

the input image into 10 classes, where the input image is converted to a vector with 3072

dimensions. We use sigmoid function as the activation in both network.

In the experiments, we set the step sizes (α, ε) = (0.3/T 1/6, 11/T 1/2) for Q-DPSGD-1 and

Q-DPSGD-2, and α = 0.2 for DSGD and SDM. Moreover, we also set θ = 0.6 as stated in [71]

for SDM. To control the sensitivity of the gradient, we adopt gradient clipping threshold

technique,

∇ℓ(xi,t; θ) = ∇ℓ(xi,t; θ)/max (1, ∥∇ℓ(xi,t; θ)∥/K). Here, we set K = 0.5 for Q-DPSGD-1 and

Q-DPSGD-2 and SDM. In each simulation, we randomly sample 10, 000 records for training

and divide them into n parties, and thus each party consists of 10000/n data samples (i.e.,

m = 10000/n). In all experiments, we set δ = 10−5.

We also set the processing speed of each machine follows a uniform distribution given

as

V ∼ Uniform(10, 90), and then choose the deadline Td = B/E[V ], where B is the expected

batch size used in each machine. We consider a low precision quantizer in (26) with various

quantization levels s, and we denote Tc as the communication time of a p-dimension vector

without quantization (16 bits). Thus, the communication time for a quantized vector and

68



0 200 400 600
Time (sec)

3

3.5

4

4.5

5

5.5

 L
os

s

SDM, N = 20
SDM, N = 50
Q-DPSGD-1, N = 20
Q-DPSGD-1, N = 50
Q-DPSGD-2, N = 20 
Q-DPSGD-2, N = 50

(a) ϵ = 1

0 100 200 300 400 500
Time (sec)

2.5

3

3.5

4

 L
os

s

SDM
Q-DPSGD-1
Q-DPSGD-2
DSGD

(b) ϵ = 1

Figure 16: Left: loss comparisons for different number of agents on MNIST (B = 20, Tc = 3,
c = 0.3); Right: loss comparisons for large batch size B = 50 on MNIST.

compressed vector are proportioned according the quantization level and the compressed

rate c, respectively.

Network Model We adopt a network with 10 agents, where the communication graph G

is generated by the ERdös-Rényi graph with edge connectivity pc = 0.4. The weight matrix

is designed as W = I −L/κ with Laplacian matrix L of G and κ > λmax(L)/2, where λmax

is the largest eigenvalue of L.

We present the convergence performance (i.e., loss) of different algorithms on MNIST

and CIFAR-10 under the same budgets and same communication time, as shown in Figure

14. We can observe that when privacy budget decreases from 1.5 to 1, the loss values of

private algorithms increase. Moreover, our proposed algorithms significantly outperform

the baseline algorithms in terms of total run-time, since the utilization of quantization and

deadline based scheme can reduce the communication cost while mitigating the straggler

problem. Notice that Q-DPSGD-2 exhibits a lower convergence rate compared to Q-DPSGD-1,

which is consistent with our theoretical analysis in Remark 10.

Moreover, we also consider the impact of number of agents on the algorithm convergence,

as shown in Fig. 16(a), The results shows that the proposed algorithms continue to have

the highest accuracy for large networks. To evaluate the effect of batch sizes, we observe

that large batch size can further reduce the loss while consuming more training time from

Fig 14(a) and Fig. 16(b).
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4.6 Omitted Proofs

Proof of Theorem 11

Proof. At iteration t, agent i updates xi,t+1 according to the update

xi,t+1 =(1− ε+ εwii)xi,t + ε
∑
j∈Ni

wijzj,t − αε(∇̃fi(xi,t) + ζi,t),

where ζi,t ∼ N (0, σ2K2Ip)).

We first show that the L2-sensitivity of gradient M̂i,t = ∇̃fi(xi,t) =
1

|Si,t|
∑

θ∈Si,t
∇ℓ(xi,t; θ).

Assume neighboring datasets Si,t and S ′
i,t differ by one samples θs and θ′s, by the definition

of sensitivity, we have

∆(M̂i,t) = sup
Si,t∼S′

i,t

∥ 1

|Si,t|
∑

θ∈|Si,t|

∇ℓ(xi,t; θ)−
1

|S ′
i,t|

∑
θ∈S′

i,t

∇ℓ(xi,t; θ)∥

=
1

|Si,t|
sup ∥∇ℓ(xi,t; θs)−∇ℓ(xi,t; θ

′
s)∥

≤ 2K

|Si,t|
.

By Lemma 5, M̂i,t preserves (ρ, ϵi,t(ρ))-RDP with respect to Si,t, i.e., ϵi,t(ρ) =
2ρ

|Si,t|2σ2 .

Since Si,t is a randomized subsample of Di, by Lemma 8 and its approximate version [90]

with sampling probability p =
|Si,t|
m , we then can compute ϵ′i,t(ρ) so that M̂i,t preserves

(ρ, ϵ′i,t(ρ))-RDP with respect to Di, i.e., ϵ
′
i,t(ρ) ≈ 8ρ

mσ2 . Note that if |Si,t| = 0, i.e., there

are not any gradient computation by deadline Td, we set ϵ′i,t(ρ) = 0. Since the algorithms

has run T iterations, according to Lemma 6 and parallel composition [25], Q-DPSGD-1 is

(ρ, ϵ(ρ))-RDP with ϵ(ρ) = maxi
∑T−1

t=0 ϵ′i,t(ρ). Moreover, Q-DPSGD-1 is also (ϵ, δ)-DP with

ϵ = ϵ(ρ)+log(1/δ)
ρ−1 .

Proof of Theorem 12

In our analysis for both convex and non-convex scenarios, we need to have the noise of vari-

ous stochastic gradient functions evaluated. Hence, let us start this section by the following
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lemma which bounds the variance of stochastic gradient functions under our customary

Assumption 4.

Lemma 15. Assumption 4 results in the followings for any x ∈ Rp and i ∈ [n]:

i. EDi [∇fi(x, Di)] = Eθ[∇l(x, θ)] = ∇F (x)

ii. EDi

[
∥∇fi(x, Di)−∇F (x)∥2

]
≤ γ2

m

iii. ED

[
∥∇f(x, D)−∇F (x)∥2

]
≤ γ2

nm

iv. Eθ

[
∥∇fi(x, Di)−∇f(x, D)∥2

]
≤ γ21 := γ2

(
1
m + 1

nm

)
v. E

[
∇̃fi(x)

]
= ∇F (x)

vi. E
[∥∥∥∇̃fi(x)−∇fi(x)

∥∥∥2] ≤ γ22 := 2γ2max
{

E[1/V ]
Td

, 1
m

}
Proof. The first five expressions (i)-(v) in the lemma are immediate results of Assumption

4 together with the fact that the noise of the stochastic gradient scales down with the

sample size. To prove (vi), let Si denote the sample set for which node i has computed the

gradients, i.e., ∇̃fi(x) =
1

|Si|
∑

θ∈Si
∇ℓ(x; θ). We have

E
[∥∥∥∇̃fi(x)−∇F (x)

∥∥∥2] =∑
b

Pr [|Si| = b]E

∥∥∥∥∥∥1b
∑
θ∈Si

∇ℓ(x; θ)−∇F (x)

∥∥∥∥∥∥
2

≤ γ2
∑
b

Pr [|Si| = b]
1

b

= γ2E[1/|Si|]

= γ2
E[1/V ]

Td
,

and therefore

E
[∥∥∥∇̃fi(x)−∇fi(x)

∥∥∥2] = E
[∥∥∥∇̃fi(x)−∇F (x)

∥∥∥2]+ E
[
∥∇fi(x)−∇F (x)∥2

]
≤ γ2

(
E[1/V ]

Td
+

1

m

)
≤ 2γ2max

{
E[1/V ]

Td
,
1

m

}
.
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We first establish two Lemmas 16 and 17 and then easily conclude the theorem from

the two results.

The main problem is to minimize the global objective defined in (25). We denote the

vector x = [x1; · · · ;xn] ∈ Rnp denotes the concatenation of all the local models. Clearly,

x̃∗ := [x∗; · · · ;x∗] is the solution to (25). We also define the matrix W = W ⊗ I ∈ Rnp×np

as the Kronecker product of the weight matrix W inRn×n and the identity matrix I ∈

Rn×n given in Assumption 1. Similarly, we further define Wd = Wd ⊗ I ∈ Rnp×np, where

Wd = [wii] ∈ Rn×n is the diagonal matrix of the entries on the main diagonal of W . We

also denote the boldface I as the identity matrix of size np. Then the constraint in the

alternative problem (25) can be stated as (I −W )1/2x = 0. Inspired by this fact, we define

the following penalty function for every α

hα(x) =
1

2
x⊤(I −W )x+ αnF̂ (x), (29)

and denote by x∗
α the (unique) minimizer of hα(x). That is

x∗
α = argmin

x∈Rnp
hα(x) = argmin

x∈Rnp

1

2
x⊤
(
I −W

)
x+ αnF̂ (x). (30)

Next lemma characterizes the deviation of the models generated by the Q-DPSGD-1

method at iteration T , that is xT = [x1,T ; · · · ;xn,T ] from the optimizer of the penalty

function, i.e. x∗
α.

Lemma 16. Suppose Assumptions 1–5 hold. Then, the expected deviation of the output of

Q-DPSGD-1 from the solution to Problem (29) is upper bounded by

E
[
∥xT − x∗

α∥
2
]
≤ O

(
nσ2

µ
∥W −WD∥2

)
1

T δ̃
+O

(
nγ2

µ

(
E[1/V ]

Td
+

1

m

))
1

T 2δ̃

+O
(
npK2σ2

µ

1

T 2δ̃

)
(31)
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for ε = T−3δ̃/2, α = 2T−δ̃/2, any δ̃ ∈ (0, 1/2) and T ≥ T c
min1, where

T c
min1 := max

{⌈(
(2 +K)2

µ

) 1

δ̃

⌉
,

⌈
ee

1
1−2δ̃

⌉
,
⌈
µ

1

2δ̃

⌉}
. (32)

Proof of Lemma 16. First note that the gradient of the penalty function hα defined in (29)

is as

∇hα(xt) = (I −W )xt + αn∇F̂ (xt), (33)

where xt = [x1,t; · · · ;xn,t] denotes the concatenation of models at iteration t. Now consider

the following stochastic gradient function for hα

∇̃hα(xt) = (WD −W ) zt + (I −WD)xt + αn∇̃F̂ (xt), (34)

where ∇̃F (xt) =
[
1
n∇̃f1(x1,t); · · · ; 1

n∇̃fn(xn,t)
]
, and zt = [z1,t; · · · ; zn,t] as the concatena-

tion of the quantized variant of the local updates xt.

We let F t denote a sigma algebra that measures the history of the system up until time

t. According to Assumptions 2 and 4, the stochastic gradient defined above is unbiased,

that is

E
[
∇̃hα(xt)|F t

]
= (WD −W )E

[
zt|F t

]
+ (I −WD)xt + αnE

[
∇̃F̂ (xt)|F t

]
= (I −W )xt + αn∇F̂ (xt)

= ∇hα(xt).

By denoting ζt = [ζ1,t; · · · ; ζn,t] with ζi,t ∼ N (0, σ2K2Ip)) as the concatenation of noise

vectors at iteration t, we can also write the update rule of Q-DPSGD-1 method as

xt+1 = xt − ε
(
(WD −W ) zt + (I −WD)xt + αn∇̃F̂ (xt) + αζt

)
= xt − ε∇̃hα(xt)− εαζt, (35)

which also represents an iteration of the Stochastic Gradient Descent (SGD) algorithm with
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step-size ε in order to minimize the penalty function hα(x) over x ∈ Rnp. We can bound

the deviation of the iteration generated by Q-DPSGD-1 from the optimizer x∗
α as

E
[
∥xt+1 − x∗

α∥
2 |F t

]
(36)

= E
[∥∥∥xt − ε∇̃hα(xt)− εαζt − x∗

α

∥∥∥2 |F t

]
= ∥xt − x∗

α∥
2 − 2ε

〈
xt − x∗

α,E
[
∇̃hα(xt)− εαζt|F t

]〉
+ ε2E

[∥∥∥∇̃hα(xt)− αζt

∥∥∥2 |F t

]
= ∥xt − x∗

α∥
2 − 2ε ⟨xt − x∗

α,∇hα(xt)⟩+ ε2E
[∥∥∥∇̃hα(xt)− αζt

∥∥∥2 |F t

]
≤ (1− 2µαε) ∥xt − x∗

α∥
2 + 2ε2E

[∥∥∥∇̃hα(xt)
∥∥∥2 |F t

]
+ 2ε2α2K2σ2np, (37)

where we used the fact that the penalty function hα is strongly convex with parameter

µα := αµ, and E[∥a+ b∥2] ≤ 2E ∥a∥2 + 2E ∥b∥2. Moreover, we can bound the second term

in RHS of (37) as

E
[∥∥∥∇̃hα(xt)

∥∥∥2 |F t

]
= E

[∥∥∥(WD −W ) zt + (I −WD)xt + αn∇̃F̂ (xt)
∥∥∥2 |F t

]
= E

[∥∥∥(I −W )xt + αn∇F̂ (xt) + (WD −W ) (zt − xt) + αn∇̃F (xt)− αn∇F̂ (xt)
∥∥∥2 |F t

]
= ∥∇hα(xt)∥2 + E

[
∥(WD −W ) (zt − xt)∥2 |F t

]
+ α2n2E

[∥∥∥∇̃F̂ (xt)−∇F̂ (xt)
∥∥∥2 |F t

]
≤ K2

α ∥xt − x∗
α∥

2 + nσ̃2 ∥W −WD∥2 + α2nγ22 . (38)

To derive (38), we used the facts that hα is smooth with parameter Kα := 1−λn(W )+αK;

the quantizer is unbiased with variance ≤ σ̃2 (Assumption 2); stochastic gradients of the

loss function are unbiased and variance-bounded (Assumption 4 and Lemma 15). Plugging
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(38) in (37) yields

E
[
∥xt+1 − x∗

α∥
2 |F t

]
≤
(
1− 2µαε+ 2ε2K2

α

)
∥xt − x∗

α∥
2 + 2ε2nσ̃2 ∥W −WD∥2 + 2α2ε2nγ22 + 2ε2α2K2σ2np.

(39)

To ease the notation, let et := E[ ∥xt − x∗
α∥

2] denote the expected deviation of the models at

iteration t i.e. xt from the optimizer x∗
α with respect to all the randomnesses from iteration

t = 0. Therefore, we have

et+1 ≤
(
1− 2µαε+ 2ε2K2

α

)
et + 2ε2nσ̃2 ∥W −WD∥2 + 2α2ε2γ22 + 2ε2α2K2σ2np

=
(
1− ε(2µα − 2εK2

α)
)
et + 2ε2nσ̃2 ∥W −WD∥2 + 2α2ε2nγ22 + 2ε2α2K2σ2np. (40)

For any T ≥ T c
min1 and the proposed pick ε = T−3δ̃/2, we have T δ̃ ≥ (T c

min1)
δ̃ ≥ (2+K)2

µ and

therefore

ε =
1

T 3δ̃/2

≤ µ

(2 +K)2
· 1

T δ̃/2

≤ µα

2(2 + αK)2

≤ µα

2K2
α

.

Hence, we can further bound (40) as

et+1 ≤
(
1− ε

(
2µα − 2εK2

α

))
et + 2ε2nσ̃2 ∥W −WD∥2 + 2α2ε2nγ22 + 2ε2α2K2σ2np

≤ (1− µαε) et + 2ε2nσ̃2 ∥W −WD∥2 + α2ε2n(2γ22 + 2K2σ2p)

=

(
1− 2µ

T 2δ̃

)
et +

2nσ̃2 ∥W −WD∥2

T 3δ̃
+

2nγ22 + 2npK2σ2

T 4δ̃
.

Now, we let (a, b, c) = (2µ, 2nσ̃2 ∥W −WD∥2 , 2nγ22 + 2npK2σ2) and employ Lemma 18
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which yields

eT = E
[
∥xT − x∗

α∥
2
]

≤ O
(
b/a

T δ̃

)
+O

(
c/a

T 2δ̃

)
= O

(
nσ̃2

µ
∥W −WD∥2

1

T δ̃

)
+O

(
nγ2

µ

(
E[1/V ]

Td
+

1

m

)
1

T 2δ̃

)
+O

(
npK2σ2

µ

1

T 2δ̃

)
,

and the proof of Lemma 16 is concluded.

Now we also bound the deviation of the optimizers of the penalty function and the main

loss function, that is x∗
α and x̃∗.

Lemma 17. [81] Suppose Assumptions 1, 3–5 hold. Then the difference between the optimal

solutions to (25) and its penalized version (30) is bounded above by

∥x∗
α − x̃∗∥ ≤ O

(√
2nc2D (3 + 2K/µ)

1− β

1

T δ̃/2

)
,

for α = T−δ̃/2, any δ̃ ∈ (0, 1/2) and T ≥ T c
min2 with

T c
min2 := max

{⌈(
K

1 + λn(W )

) 2

δ̃

⌉
,
⌈
(µ+K)

2

δ̃

⌉}
,

where E2 = 2K
∑n

i=1(fi(0)− f∗
i ), and f∗

i = minx∈Rp fi(x).

Having proved Lemmas 16 and 17, we can now plug them in Theorem 12 and write for
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T ≥ T c
min := max{T c

min1, T
c
min2}. We then have

1

n

n∑
i=1

E
[
∥xi,T−x∗∥2

]
=

1

n
E
[
∥xT − x̃∗∥2

]
=

1

n
E
[
∥xT − x∗

α + x∗
α − x̃∗∥2

]
≤ 2

n
E
[
∥xT − x∗

α∥
2
]
+

2

n
∥x∗

α − x̃∗∥2

≤ O
(
E2(K/µ)2

(1− β)2
+

σ̃2

µ

)
1

T δ̃
+O

(
γ2

µ
max

{
E[1/V ]

Td
,
1

m

})
1

T 2δ̃

+O
(
pK2σ2

µ

1

T 2δ̃

)
.

In the end, we state and proof Lemma 18 which we used its result earlier in the proof of

Lemma 16.

Lemma 18. [81] Let the non-negative sequence et satisfy the inequality

et+1 ≤
(
1− a

T 2δ̃

)
et +

b

T 3δ̃
+

c

T 3δ̃
, (41)

for t = 0, 1, 2, · · · , positive constants a, b, c and δ̃ ∈ (0, 1/2). Then, after

T ≥ max

{⌈
ee

1
1−2δ̃

⌉
,
⌈
a

1

2δ̃

⌉}

iterations, the iterate eT satisfies

eT ≤ O
(
b/a

T δ̃

)
+O

(
c/a

T 2δ̃

)
. (42)
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Proof of Theorem 13

We the characterize the convergence rate of Q-DPSGD-1 for non-convex and smooth

objectives. We are interested in finding a set of local models which satisfy first-order

optimality condition approximately, while the models are close to each other and satisfy the

consensus condition up to a small error. To be more precise, we are interested in finding

a set of local models {x∗
1, . . . ,x

∗
n} where their average x∗ := 1

n

∑n
i=1 x

∗
i (approximately)

satisfy first-order optimality condition, i.e., E ∥∇f (x∗)∥2 ≤ ν, while the iterates are close

to their average, i.e., E∥x∗ − x∗
i ∥2 ≤ ρ.

To ease the notation, we agree in this section on the following shorthand notations for

t = 0, 1, 2, · · · ,

Xt = [x1,t · · · xn,t] ∈ Rp×n,

Zt = [z1,t · · · zn,t] ∈ Rp×n,

xt =
1

n

n∑
i=1

xi,t ∈ Rp,

Xt = [xt · · · xt] ∈ Rp×n,

∂̃f(Xt) =
[
∇̃f1(x1,t) · · · ∇̃fn(xn,t)

]
∈ Rp×n,

∂f(Xt) = [∇f1(x1,t) · · · ∇fn(xn,t)] ∈ Rp×n,

and ζt = [ζ1,t · · · ζn,t] ∈ Rp×n with ζi,t ∼ N (0, σ2K2Ip)).

As stated before, we can write the update rule of the proposed Q-DPSGD-1 in the matrix

form as

Xt+1 = Xt ((1− ε)I + εW ) + ε(Zt −Xt)(W −WD)− αε∂̃f(Xt)− αεζt. (43)

Let us denote Wε = (1− ε)I + εW and write (43) as

Xt+1 = XtWε + ε(Zt −Xt)(W −WD)− αε∂̃f(Xt)− αεζt. (44)
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Assumption 1 implies that W is symmetric and doubly stochastic. Moreover, all the

eigenvalues of W are in (−1, 1], i.e., 1 = λ1(W ) ≥ λ2(W ) ≥ · · · ≥ λn(W ) > −1. We

also denote by 1 − β the spectral gap associated with the stochastic matrix W , where

β = max {|λ2(W )|, |λn(W )|}. Clearly for any ε ∈ (0, 1], Wε is also doubly stochastic with

eigenvalues λi(Wε) = 1−ε+ελi(W ) and spectral gap 1−βε = 1−max {|λ2(Wε)|, |λn(Wε)|}.

We start the convergence analysis by using the smoothness property of the objectives

and write

Ef
(
Xt+11n

n

)
= Ef

(
XtWε1n

n
+

ε(Zt −Xt)(W −WD)1n
n

− αε∂̃f(Xt)1n
n

− αεζt1n
n

)
Assumption 3

≤ Ef
(
Xt1n
n

)
− αεE

〈
∇f

(
Xt1n
n

)
,
∂f(Xt)1n

n

〉
+

ε2K

2
E

∥∥∥∥∥(Zt −Xt)(W −WD)1n
n

− α
∂̃f(Xt)1n

n
− α

ζt1n
n

∥∥∥∥∥
2

. (45)

We specifically used the following equivalent form of the smoothness (Assumption 3) for

every local and hence the global objective

fi(x1) ≤ fi(x) + ⟨∇fi(x),x1 − x⟩+ K

2
∥x1 − x∥2 , for all i ∈ [n],x,x1 ∈ Rp.

Also, we used the simple fact in Assumption 1 as

Wε1n = ((1− ε)I + εW )1n = (1− ε)1n + εW1n = 1n.

Now let us bound the term in (45) as
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E

∥∥∥∥∥(Zt −Xt)(W −WD)1n
n

− α
∂̃f(Xt)1n

n
− α

ζt1n
n

∥∥∥∥∥
2

≤ 3E
∥∥∥∥(Zt −Xt)(W −WD)1n

n

∥∥∥∥2 + 3E

∥∥∥∥∥α∂̃f(Xt)1n
n

∥∥∥∥∥
2

+ 3E
∥∥∥∥αζt1n

n

∥∥∥∥2

=
3

n2

n∑
i=1

(1− wii)
2E ∥zi,t − xi,t∥2 + 3α2E

∥∥∥∥∥ ∂̃f(Xt)1n
n

∥∥∥∥∥
2

+
3α2K2σ2p

n

≤ 3σ̃2 + 3α2K2σ2p

n
+ 3α2E

∥∥∥∥∥ ∂̃f(Xt)1n
n

∥∥∥∥∥
2

, (46)

where we used Assumption 2 to derive the first term in (46). To bound the second term in

(46), we have

E

∥∥∥∥∥ ∂̃f(Xt)1n
n

∥∥∥∥∥
2

= E

∥∥∥∥∥
∑n

i=1 ∇̃fi(xi,t)

n

∥∥∥∥∥
2

= E

∥∥∥∥∥
∑n

i=1 ∇̃fi(xi,t)−∇fi(xi,t) +∇fi(xi,t)

n

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
∑n

i=1 ∇̃fi(xi,t)−∇fi(xi,t)

n

∥∥∥∥∥
2

+ E
∥∥∥∥∑n

i=1∇fi(xi,t)

n

∥∥∥∥2
≤ γ2

n

(
E[1/V ]

Td
+

1

m

)
+ E

∥∥∥∥∑n
i=1∇fi(xi,t)

n

∥∥∥∥2
=

γ22
n

+ E
∥∥∥∥∑n

i=1∇fi(xi,t)

n

∥∥∥∥2 , (47)

where the last inequality follows from Lemma 15.
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Plugging (47) in (45) yields

Ef
(
Xt+11n

n

)
≤ Ef

(
Xt1n
n

)
− αεE

〈
∇f

(
Xt1n
n

)
,
∂f(Xt)1n

n

〉
+

ε2K

2n
(3σ̃2 + 3α2K2σ2p) +

3α2ε2K

2n
γ22 +

3α2ε2K

2
E
∥∥∥∥∑n

i=1∇fi(xi,t)

n

∥∥∥∥2
= Ef

(
Xt1n
n

)
− αε− 3α2ε2K

2
E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 − αε

2
E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
+

ε2K

2n
(3σ̃2 + 3α2K2σ2p) +

3α2ε2K

2n
γ22 +

αε

2
E
∥∥∥∥∇f

(
Xt1n
n

)
− ∂f(Xt)1n

n

∥∥∥∥2︸ ︷︷ ︸
T1

, (48)

where we used the identity 2⟨a,b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2. The term T1 defined in (48)

can be bounded as

T1 = E
∥∥∥∥∇f

(
Xt1n
n

)
− ∂f(Xt)1n

n

∥∥∥∥2
≤ 1

n

n∑
i=1

E
∥∥∥∥∇fi

(
Xt1n
n

)
−∇fi(xi,t)

∥∥∥∥2
≤ K2

n

n∑
i=1

E
∥∥∥∥Xt1n

n
− xi,t

∥∥∥∥2︸ ︷︷ ︸
Qi,t

.

Let us define Qi,t := E
∥∥Xt1n

n − xi,t

∥∥2 and Mt :=
1
n

∑n
i=1Qi,t =

1
n

∑n
i=1 E

∥∥Xt1n
n − xi,t

∥∥2 .
Here, Qi,t captures the deviation of the model at node i from the average model at iteration

t and Mt aggregates them to measure the average total consensus error. To bound Mt, we

need to evaluate the recursive expressions as

Xt = Xt−1Wε + ε(Zt−1 −Xt−1)(W −WD)− αε∂̃f(Xt−1)− αεζt−1

= X0W
t
ε + ε

t−1∑
s=0

(Zs −Xs)(W −WD)W
t−s−1
ε − αε

t−1∑
s=0

∂̃f(Xs)W
t−s−1
ε − αε

t−1∑
s=0

ζsW
t−s−1
ε .

(49)
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Now, using (49) we can write

Mt =
1

n

n∑
i=1

E
∥∥∥∥Xt1n

n
− xi,t

∥∥∥∥2
=

1

n
E
∥∥Xt −Xt

∥∥2
F

=
1

n
E
∥∥∥∥Xt

11⊤

n
−Xt

∥∥∥∥2
F

=
1

n
E

∥∥∥∥∥X0

(
11⊤

n
−W t

ε

)
+ ε

t−1∑
s=0

(Zs −Xs)(W −WD)

(
11⊤

n
−W t−s−1

ε

)

− αε
t−1∑
s=0

∂̃f(Xs)

(
11⊤

n
−W t−s−1

ε

)
− αε

t−1∑
s=0

ζs

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

=
(αε)2

n
E

∥∥∥∥∥
t−1∑
s=0

∂̃f(Xs)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F︸ ︷︷ ︸
T2

+
(αε)2

n
E

∥∥∥∥∥
t−1∑
s=0

ζs

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F︸ ︷︷ ︸
T4

+
ε2

n
E

∥∥∥∥∥
t−1∑
s=0

(Zs −Xs)(W −WD)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F︸ ︷︷ ︸
T3

,

where we used the fact that quantiziations, stochastic gradients, and DP noise are statisti-

cally independent and X0 = 0. According the proof of Theorem 2 in [81], we can bound T2

as

T2 = E

∥∥∥∥∥
t−1∑
s=0

∂̃f(Xs)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

= E

∥∥∥∥∥
t−1∑
s=0

(
∂̃f(Xs)− ∂f(Xs) + ∂f(Xs)

)(11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

≤ 2E

∥∥∥∥∥
t−1∑
s=0

(
∂̃f(Xs)− ∂f(Xs)

)(11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

+ 2E

∥∥∥∥∥
t−1∑
s=0

∂f(Xs)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

≤ 2nγ2
2

1− β2
ε

+ 6K2
t−1∑
s=0

n∑
i=1

Qi,s

∥∥∥∥11⊤

n
−W t−s−1

ε

∥∥∥∥2 + 6

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n

n

)
1⊤
n

∥∥∥∥2
F

∥∥∥∥11⊤

n
−W t−s−1

ε

∥∥∥∥2

+ 12

t−1∑
s=0

(
3K2

n∑
i=1

Qi,s + 3E
∥∥∥∥∇f

(
Xs1n

n

)
1⊤
n

∥∥∥∥2
F

)
βt−s−1
ε

1− βε
+ 18nγ2

1

1

(1− βε)2
.
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Moreover, the term T3 can be bounded as

T3 = E

∥∥∥∥∥
t−1∑
s=0

(Zs −Xs)(W −WD)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

≤ E
t−1∑
s=0

∥Zs −Xs∥2F ∥W −WD∥2
∥∥∥∥11⊤n −W t−s−1

ε

∥∥∥∥2
≤ 4nσ̃2

1− β2
ε

,

where we used the fact that ∥W −WD∥ ≤ 2.

We can also bound term T4 as

T4 = E

∥∥∥∥∥
t−1∑
s=0

ζs

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

≤ E
t−1∑
s=0

∥ζs∥2F

∥∥∥∥11⊤n −W t−s−1
ε

∥∥∥∥2
≤ nσ2K2p

1− β2
ε

.
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Now we use the bounds derived for T2 and T3 and T4 to bound the consensus error Mt as

Mt ≤
α2ε2

n
T2 +

ε2

n
T3 +

α2ε2

n
T4

≤ 2α2ε2γ22
1− β2

ε

+
6α2ε2K2

n

t−1∑
s=0

n∑
i=1

Qi,s

∥∥∥∥11⊤n −W t−s−1
ε

∥∥∥∥2

+
6α2ε2

n

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

∥∥∥∥11⊤n −W t−s−1
ε

∥∥∥∥2

+
12α2ε2

n

t−1∑
s=0

(
3K2

n∑
i=1

Qi,s + 3E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

)
βt−s−1
ε

1− βε

+
18α2ε2γ21
(1− βε)2

+
4ε2σ̃2

1− β2
ε

+
α2ε2σ2K2p

1− β2
ε

≤ 2α2ε2γ22
1− β2

ε

+
18α2ε2γ21
(1− βε)2

+
4ε2σ̃2

1− β2
ε

+
α2ε2σ2K2p

1− β2
ε

+
6α2ε2K2

n

t−1∑
s=0

n∑
i=1

Qi,sβ
2(t−s−1)
ε

+
6α2ε2

n

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

β2(t−s−1)
ε

+
12α2ε2

n

t−1∑
s=0

(
3K2

n∑
i=1

Qi,s + 3E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

)
βt−s−1
ε

1− βε

≤ 2α2ε2γ22
1− β2

ε

+
18α2ε2γ21
(1− βε)2

+
4ε2σ̃2

1− β2
ε

+
α2ε2σ2K2p

1− β2
ε

+
6α2ε2

n

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

(
β2(t−s−1)
ε +

2βt−s−1
ε

1− βε

)

+
6α2ε2

n
K2

t−1∑
s=0

n∑
i=1

Qi,s

(
2βt−s−1

ε

1− βε
+ β2(t−s−1)

ε

)
. (50)

As we defined earlier, we have Ms =
1
n

∑n
i=1Qi,s which simplifies (50) as

Mt ≤
2α2ε2γ2

2

1− β2
ε

+
18α2ε2γ2

1

(1− βε)2
+

4ε2σ̃2

1− β2
ε

+
α2ε2σ2K2p

1− β2
ε

+
6α2ε2

n

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n

n

)
1⊤
n

∥∥∥∥2
F

(
β2(t−s−1)
ε +

2βt−s−1
ε

1− βε

)

+ 6α2ε2K2
t−1∑
s=0

Ms

(
2βt−s−1

ε

1− βε
+ β2(t−s−1)

ε

)
. (51)
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Now we can sum (51) over t = 0, 1, · · · , T − 1, which yields

T−1∑
t=0

Mt ≤
2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2σ̃2

1− β2
ε

T +
α2ε2σ2K2p

1− β2
ε

T

+
6α2ε2

n

T−1∑
t=0

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

(
β2(t−s−1)
ε +

2βt−s−1
ε

1− βε

)

+ 6α2ε2K2
T−1∑
t=0

t−1∑
s=0

Ms

(
2βt−s−1

ε

1− βε
+ β2(t−s−1)

ε

)
≤ 2α2ε2γ22

1− β2
ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2σ̃2

1− β2
ε

T +
α2ε2σ2K2p

1− β2
ε

+
6α2ε2

n

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

( ∞∑
k=0

β2k
ε +

2
∑∞

k=0 β
k
ε

1− βε

)

+ 6α2ε2K2
T−1∑
t=0

Mt

(
2
∑∞

k=0 β
k
ε

1− βε
+

∞∑
k=0

β2k
ε

)

≤ 2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2σ̃2

1− β2
ε

T +
α2ε2σ2K2p

1− β2
ε

+
18α2ε2

n(1− βε)2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

+
18α2ε2K2

(1− βε)2

T−1∑
t=0

Mt. (52)

Note that
∥∥∇f

(
Xs1n
n

)
1⊤n
∥∥2
F
= n

∥∥∇f
(
Xs1n
n

)∥∥2, which simplifies (52) as

T−1∑
t=0

Mt ≤
2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2σ̃2

1− β2
ε

T +
α2ε2σ2K2p

1− β2
ε

T

+
18α2ε2

(1− βε)2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 + 18α2ε2K2

(1− βε)2

T−1∑
t=0

Mt. (53)

Rearranging the terms implies that

(
1− 18α2ε2K2

(1− βε)2

) T−1∑
t=0

Mt ≤
2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2σ̃2

1− β2
ε

T +
α2ε2σ2K2p

1− β2
ε

T

+
18α2ε2

(1− βε)2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 . (54)
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Now define D2 := 1− 18α2ε2K2

(1−βε)2
and rewrite (54) as

T−1∑
t=0

Mt ≤
2α2ε2γ22

(1− β2
ε )D2

T +
18α2ε2γ21

(1− βε)2D2
T +

4ε2σ̃2

(1− β2
ε )D2

T +
α2ε2σ2K2p

(1− β2
ε )D2

T

+
18α2ε2

(1− βε)2D2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 . (55)

Note that from definition of T1 we have T1 ≤ K2

n

∑n
i=1Qi,t = K2Mt. Now use the above

fact in the recursive equation (48) which we started with, that is

Ef
(
Xt+11n

n

)
≤ Ef

(
Xt1n
n

)
− αε− 3α2ε2K

2
E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 − αε

2
E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
+

ε2K

2n
(3σ̃2 + 3α2K2σ2p) +

3α2ε2K

2n
γ22 +

αεK2

2
Mt. (56)

If we sum (56) over t = 0, 1, · · · , T − 1, we get

αε− 3α2ε2K

2

T−1∑
t=0

E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 + αε

2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
≤ f(0)− f∗ +

ε2K

2n
(3σ̃2 + 3α2K2σ2p)T +

3α2ε2K

2n
γ22T +

αεK2

2

T−1∑
t=0

Mt

from (55)

≤ f(0)− f∗ +
ε2K

2n
(3σ̃2 + 3α2K2σ2p)T +

3α2ε2K

2n
γ22T

+
αεK2

2

{
2α2ε2γ22

(1− β2
ε )D2

T +
18α2ε2γ21

(1− βε)2D2
T +

4ε2σ̃2

(1− β2
ε )D2

T +
α2ε2σ2K2p

(1− β2
ε )D2

T

}
+

9α3ε3K2

(1− βε)2D2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 . (57)

We can rearrange the terms in (57) and rewrite it as

αε− 3α2ε2K

2

T−1∑
t=0

E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 + αε

(
1

2
− 9α2ε2K2

(1− βε)2D2

) T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
≤ f(0)− f∗ +

ε2K

2n
(3σ̃2 + 3α2K2σ2p)T +

3α2ε2K

2n
γ22T

+
αεK2

2

{
2α2ε2γ22

(1− β2
ε )D2

T +
18α2ε2γ21

(1− βε)2D2
T +

4ε2σ̃2

(1− β2
ε )D2

T +
α2ε2σ2K2p

(1− β2
ε )D2

T

}
. (58)
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Now, we define D1 as D1 :=
1
2 − 9α2ε2K2

(1−βε)2D2
and replace in (58) which yields

1

αεT

{
αε− 3α2ε2K

2

T−1∑
t=0

E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 + αεD1

T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
}

≤ 1

αεT
(f(0)− f∗) +

ε

α

K

2n
(3σ̃2 + 3α2K2σ2p) + αε

3Kγ22
2n

+
α2ε2

1− β2
ε

K2γ22
D2

+
α2ε2

(1− βε)2
9K2γ21
D2

+
ε2

1− β2
ε

2K2σ̃2

D2
+

α2ε2

(1− βε)2
σ2K4p

2D2
. (59)

To balance the terms in RHS of (59), we need to know how βε behaves with ε. As we

defined before, Wε = (1 − ε)I + εW . Hence, λi(Wε) = 1 − ε + ελi(W ). Therefore, for

ε ≤ 1
1−λn(W ) , we have

βε = max {|λ2(Wε)|, |λn(Wε)|}

= max {|1− ε+ ελ2(W )|, |1− ε+ ελn(W )|}

= max {1− ε+ ελ2(W ), 1− ε+ ελn(W )}

= 1− ε (1− λ2(W )) .

Therefore,

1− βε = ε (1− λ2(W )) ≥ ε(1− β)

and 1− β2
ε = 2ε (1− λ2(W ))− ε2 (1− λ2(W ))2 ≥ ε(1− β2).

Moreover, if αε ≤ 6
K , we have

D1

T

T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2 ≤ 1

αεT
(f(0)− f∗) +

ε

α

K

2n
(3σ̃2 + 3α2K2σ2p) + αε

3Kγ22
2n

+
α2ε

1− β2

K2γ22
D2

+
α2

(1− β)2
9K2γ21
D2

+
ε

1− β2

2K2σ̃2

D2

+
α2

(1− β)2
σ2K4p

2D2
. (60)

87



For α ≤ 1−β
6K , we have

D2 = 1− 18α2ε2K2

(1− βε)2

= 1− 18α2ε2K2

ε2(1− β)2

= 1− 18α2K2

(1− β)2

≥ 1

2
, (61)

and for α ≤ 1−β

6
√
2K

we have

D1 =
1

2
− 9α2ε2K2

(1− βε)2D2

≥ 1

2
− 18α2ε2K2

ε2(1− β)2

=
1

2
− 18α2K2

(1− β)2

≥ 1

4
.

Now, we pick the step-sizes as

α =
1

T 1/6
, (62)

and ε =
1

T 1/2
. (63)

It is clear that in order to satisfy the conditions mentioned before, that are ε ≤ 1
1−λn(W ) ,

αε ≤ 6
K and α ≤ 1−β

6
√
2K

, it suffices to pick T as large as

T ≥ T nc
min := max

(1− λn(W ))2 , (K/6)3/2,

(
6
√
2K

1− β

)6
 . (64)

For such T , we have
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1

T

T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
≤ 1

T 1/3
4(f(0)− f∗) +

1

T 1/3

K

n
(6σ̃2 +

1

T 1/3
6K2σ2p) +

1

T 2/3

6Kγ22
n

+
1

T 5/6

8K2γ22
1− β2

+
1

T 1/3

72K2γ21
(1− β)2

+
1

T 1/2

16K2σ̃2

1− β2
+

1

T 1/3

4σ2K4p

(1− β)2

=
B1

T 1/3
+

B2

T 1/2
+

B3

T 2/3
+

B4

T 5/6
(65)

= O
(
Kσ̃2

n
+

K2γ2

(1− β)2m
+

σ2K4p

(1− β)2

)
1

T 1/3
+O

(
K2

1− β2
σ2

)
1

T 1/2

+O
(
K

γ2

n
max

{
E[1/V ]

Td
,
1

m

}
+

σ2K3p

n

)
1

T 2/3

+O
(

K2

1− β2
γ2max

{
E[1/V ]

Td
,
1

m

})
1

T 5/6
,

where

B1 := 4(f(0)− f∗) +
K

n
(6σ̃2) +

72K2γ21
(1− β)2

+
4σ2K4p

(1− β)2
,

B2 :=
16K2σ̃2

1− β2
,

B3 :=
6Kγ22
n

+
6σ2K3p

n
,

and B4 :=
8K2γ22
1− β2

.

Now we bound the consensus error. From (55) we have
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1

T

T−1∑
t=0

1

n

n∑
i=1

E
∥∥∥∥Xt1n

n
− xi,t

∥∥∥∥2
≤ 2α2ε2γ22

(1− β2
ε )D2

+
18α2ε2γ21

(1− βε)2D2
+

4ε2σ̃2

(1− β2
ε )D2

+
α2ε2σ2K2p

(1− β2
ε )D2

+
18α2ε2

(1− βε)2D2

1

T

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2
≤ α2ε

2γ22
(1− β2)D2

+ α2 18γ21
(1− β)2D2

+ ε
4σ̃2

(1− β2)D2
+ α2ε

σ2K2p

(1− β2)D2

+ α2 18

(1− β)2D2

1

T

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 .
For the same step-sizes α and ε defined in (62) and large enough T as in (64), we can use

the convergence result in (65) which yields

1

T

T−1∑
t=0

1

n

n∑
i=1

E
∥∥∥∥Xt1n

n
− xi,t

∥∥∥∥2
≤ 1

T 5/6

4γ22
1− β2

+
1

T 1/3

36γ21
(1− β)2

+
1

T 1/2

8σ̃2

(1− β2)
+

1

T 5/6

2σ2K2p

(1− β2)

+
1

T 1/3

36

(1− β)2

(
B1

T 1/3
+

B2

T 1/2
+

B3

T 2/3
+

B4

T 5/6

)
=

C1

T 1/3
+

C2

T 1/2
+

C3

T 2/3
+

C4

T 5/6
+

C5

T
+

C6

T 7/6

= O
(

γ2

m(1− β)2

)
1

T 1/3
+O

(
σ̃2

1− β2

)
1

T 1/2

+O
(

K2

(1− β)4
γ2

m
+

K

(1− β)2
σ̃2

n
+

σ2K4p

(1− β)4

)
1

T 2/3

+O
(

γ2

1− β2
max

{
E[1/V ]

Td
,
1

m

}
+

K2σ̃2

(1− β)4
+

2σ2K2p

(1− β2)

)
1

T 5/6

+O
(

K

(1− β)2
γ2

n
max

{
E[1/V ]

Td
,
1

m

}
+

σ2K3p

(1− β)2n

)
1

T

+O
(

K2

(1− β)4
γ2max

{
E[1/V ]

Td
,
1

m

})
1

T 7/6
,
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where

C1 :=
36γ21

(1− β)2
,

C2 :=
8σ̃2

1− β2
,

C3 :=
36

(1− β)2
(4(f(0)− f∗)) +

216Kσ̃2

(1− β)2n
+

2592K2γ21
(1− β)4

+
144σ2K4p

(1− β)4
,

C4 :=
4γ22

1− β2
+

2σ2K2p

(1− β2)
+

576K2σ̃2

(1− β)2(1− β2)
,

C5 :=
216Kγ22
(1− β)2n

+
216σ2K3p

(1− β)2n
,

and C6 :=
288K2γ22

(1− β)2(1− β2)
.
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Proof of Theorem 14

Proof. For ρ > 1, ϵ > 0, a randomized mechanism M satisfies (ρ, ϵ)-Rényi differential

privacy, i.e., (ρ, ϵ)-RDP, if for all adjacent datasets D, D̂ differing by one element, we have

Dρ

(
M(D)||M(D̂)

)
:= logE

(
M(D)/M(D̂)

)ρ
/(ρ− 1) ≤ ϵ,

where the expectation is taken over M(D̂). Then we get

e(ρ−1)Dρ

(
M(D)||M(D̂)

)
= e(ρ−1)Dρ

(
NZ(Mq(D),σ2)||NZ(Mq(D̂),σ2)

)
=
∑
x∈Z

P
X∼NZ(Mq(D),σ2)

[X = x]ρ P
X∼NZ(Mq(D̂),σ2)

[X = x]1−ρ

=
∑
x∈Z

 e−(x−Mq(D))2/2σ2∑
y∈Z e

−(y−M(D))2

2σ2

ρ
 e−(x−Mq(D̂))2/2σ2

∑
y∈Z e

−(y−Mq(D̂))2

2σ2


1−ρ

=

∑
x∈Z e

(−x2+2ρ(Mq(D)−Mq(D̂))x−ρ(Mq(D)−Mq(D̂))2)/2σ2∑
y∈Z e

−y2/2σ2

= eρ(ρ−1)∆2/2σ2

∑
x∈Z e

−(x−ρ∆)2/2σ2∑
y∈Z e

−y2/2σ2

≤ eρ(ρ−1)∆2/2σ2
.

Thus, we have Dρ

(
M(D)||M(D̂))

)
≤ ρ∆2/(2σ2). According to Definition 6, M satisfies

(ρ, ρ∆2/(2σ2))-RDP.
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Proof of Corollary 1

Proof. We have

e(ρ−1)Dρ

(
M(D)||M(D̂)

)
= e(ρ−1)Dρ

(
NηZ(Mq(D),σ2)||NηZ(Mq(D̂),σ2)

)
=
∑
x∈ηZ

P
X∼NηZ(Mq(D),σ2)

[X = x]ρ P
X∼NηZ(Mq(D̂),σ2)

[X = x]1−ρ

=
∑
x∈ηZ

P
X∼NZ(Mq(D)/η,σ2/η)

[X =
x

η
]
ρ

P
X∼NZ(Mq(D̂)/η,σ2/η)

[X =
x

η
]
1−ρ

=
∑
x∈ηZ

 e−(x−M(D))2/2σ2

∑
y∈Z e

−(y−Mq(D)/η)2

2σ2/η2


ρ e−(x−Mq(D̂))2/2σ2

∑
y∈Z e

−(y−Mq(D̂)/η)2

2σ2/η2


1−ρ

=
∑
x∈ηZ

 e−(x−Mq(D))2/2σ2∑
y∈Z e

−(ηy−Mq(D))2

2σ2


ρ e−(x−Mq(D̂))2/2σ2

∑
y∈Z e

−(ηy−Mq(D̂))2

2σ2


1−ρ

=

∑
x∈ηZ e

(−x2+2ρ(Mq(D)−Mq(D̂))x−ρ(Mq(D)−Mq(D̂))2)/2σ2∑
y∈Z e

−y2/2σ2

= eρ(ρ−1)∆2/2σ2

∑
x∈ηZ e

−(x−ρ∆)22σ2∑
y∈Z e

−η2y2/2σ2

= eρ(ρ−1)∆2/2σ2

∑
y∈Z e

−(ηy−ρ∆)2/2σ2∑
y∈Z e

−η2y2/2σ2

≤ eρ(ρ−1)∆2/2σ2
,

where the last inequality is from Lemma 6 in [73]. Then, we have Dρ

(
M(D)||M(D̂))

)
≤

ρ∆2/(2σ2). According to Definition 6, M satisfies (ρ, ρ∆2/(2σ2))-RDP.

Proof of Theorem 15

Lemma 19. The sensitivity of quantized local model Q(xi,t), denoted by ∆i,t, is
2Kαε
|Si,t−1| +

2η
√
p.

Proof. Assume neighboring mini-batches Si,t−1 and S ′
i,t−1 differ by one samples θs and θ′s.
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Then, by the definition of sensitivity, we have

∆i,t = sup
Si,t−1∼S′

i,t−1

∥Q(xi,t(Si,t−1))−Q(xi,t(S ′
i,t−1))∥

≤ sup
Si,t−1∼S′

i,t−1

∥xi,t(Si,t−1) + ηIp − xi,t(S ′
i,t−1)− ηIp)∥

≤ sup
Si,t−1∼S′

i,t−1

∥xi,t(Si,t−1)− xi,t(S ′
i,t−1)∥+ 2η

√
p

≤ sup
Si,t−1∼S′

i,t−1

αε∥∇̃fi(xi,t,Si,t−1)− ∇̃fi(xi,t,S ′
i,t−1)∥+ 2η

√
p

≤ αε

|Si,t−1|
∥∇ℓ(xi,t; θs)−∇ℓ(xi,t; θ

′
s)∥+ 2η

√
p

≤ 2Kαε

|Si,t−1|
+ 2η

√
p.

Proof. According to Lemma 19, we have the sensitivity ∆i,t of Q(xi,t(Si,t−1)) with respect to

the subsample dataset Si,t−1, is
2Kαε
|Si,t−1| +2η

√
p. By Corollary 1, Q(xi,t) satisfies (ρ, ϵi,t(ρ))-

RDP with ϵi,t(ρ) = 2ρ
σ2 (

αε
|Si,t−1| +

η
√
p

K )2. Since Si,t is a randomized subsample of Di, by

Lemma 8 and its approximate version in [90], for each agent i, each iteration of Algorithm 5

preserves (ρ, ϵ′i,t(ρ))-RDP with respect toDi, i.e., ϵ
′
i,t(ρ) ≈

8ρ2

σ2m2 (αε+
η
√
p

K |Si,t−1|)2. Since the

algorithms has run T iterations, according to Lemma 6 and parallel composition, Q-DPSGD-2

is (ρ, ϵ(ρ))-RDP with ϵ(ρ) = maxi
∑T−1

t=0 ϵ′i,t(ρ). Moreover, Q-DPSGD-1 is also (ϵ, δ)-DP with

ϵ = ϵ(ρ)+log(1/δ)
ρ−1 .

Proposition 2 (Variance of Discrete Gaussian [73]). For all σ ∈ R with σ > 0, we have

Var[NZ(0, σ
2)] ≤ σ2

(
1− 4π2σ2

e4π
2σ2−1

)
and Var[NZ(0, σ

2)] ≥ 1

e1/σ
2−1

.

Corollary 2 (Variance of Discrete Gaussian with Arbitrary Precision). For all σ ∈ R with

σ > 0, and η > 0, Var[NηZ(0, σ
2)] ≤ σ2/η2

(
1− 4π2σ2/η2

e4π
2σ2/η2−1

)
≤ σ2/η2 and Var[NηZ(0, σ

2)] ≥

1

eη
2/σ2−1

.
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Proof of Theorem 16

Next lemma characterizes the deviation of the models generated by the Q-DPSGD-2

method at iteration T , that is xT = [x1,T ; · · · ;xn,T ] from the optimizer of the penalty

function, i.e. x∗
α.

Lemma 20. Suppose Assumptions 1–5 hold. Then, the expected deviation of the output of

Q-DPSGD-2 from the solution to Problem (29) is upper bounded by

E
[
∥xT − x∗

α∥
2
]
≤ O

n(σ̃2 + pK2σ2

η2
)

µ
∥W −WD∥2

1

T δ̃

+O
(
nγ2

µ

(
E[1/V ]

Td
+

1

m

)
1

T 2δ̃

)
(66)

for ε = T−3δ̃/2, α = T−δ̃/2, any δ̃ ∈ (0, 1/2) and T ≥ T c
min1, where

T c
min1 := max

{⌈(
(2 +K)2

µ

) 1

δ̃

⌉
,

⌈
ee

1
1−2δ̃

⌉
,
⌈
µ

1

2δ̃

⌉}
. (67)

Proof of Lemma 20. First note that the gradient of the penalty function hα defined in (29)

is

∇hα(xt) = (I −W )xt + αn∇F̂ (xt), (68)

where xt = [x1,t; · · · ;xn,t] denotes the concatenation of models at iteration t. Now consider

the stochastic gradient function for hα as

∇̃hα(xt) = (WD −W ) (zt + ζt) + (I −WD)xt + αn∇̃F̂ (xt), (69)

where ∇̃F (xt) =
[
1
n∇̃f1(x1,t); · · · ; 1

n∇̃fn(xn,t)
]
, and ζt = [ζ1,t; · · · ; ζn,t] with

ζi,t ∼ NηZ(0, σ
2K2Ip) is the concatenation of noise vectors at iteration t. Moreover, zt =

[z1,t; · · · ; zn,t] as the concatenation of the quantized variant of the local updates xt.

We let F t denote a sigma algebra that measures the history of the system up until time

t. According to Assumptions 2 and 4, the stochastic gradient defined above is unbiased,
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that is,

E
[
∇̃hα(xt)|F t

]
= (WD −W )E

[
zt + ζt|F t

]
+ (I −WD)xt + αnE

[
∇̃F̂ (xt)|F t

]
= (I −W )xt + αn∇F (xt)

= ∇hα(xt).

We then can also write the update rule of Q-DPSGD-2 method as

xt+1 = xt − ε
(
(WD −W ) (zt + ζt) + (I −WD)xt + αn∇̃(F (xt)

)
= xt − ε∇̃hα(xt), (70)

which also represents an iteration of the Stochastic Gradient Descent (SGD) algorithm with

step-size ε in order to minimize the penalty function hα(x) over x ∈ Rnp. We can bound

the deviation of the iteration generated by Q-DPSGD-2 from the optimizer x∗
α as

E
[
∥xt+1 − x∗

α∥
2 |F t

]
= E

[∥∥∥xt − ε∇̃hα(xt)− x∗
α

∥∥∥2 |F t

]
= ∥xt − x∗

α∥
2 − 2ε

〈
xt − x∗

α,E
[
∇̃hα(xt)|F t

]〉
+ ε2E

[∥∥∥∇̃hα(xt)
∥∥∥2 |F t

]
= ∥xt − x∗

α∥
2 − 2ε ⟨xt − x∗

α,∇hα(xt)⟩+ ε2E
[∥∥∥∇̃hα(xt)

∥∥∥2 |F t

]
≤ (1− 2µαε) ∥xt − x∗

α∥
2
+ ε2E

[∥∥∥∇̃hα(xt)
∥∥∥2 |F t

]
, (71)

where we used the fact that the penalty function hα is strongly convex with parameter

µα := αµ. Moreover, we can bound the second term in RHS of (71) as

E
[∥∥∥∇̃hα(xt)

∥∥∥2 |F t

]
= E

[∥∥∥(WD −W ) (zt + ζt) + (I −WD)xt + αn∇̃F (xt)
∥∥∥2 |F t

]
= E

[∥∥∥(I −W )xt + αn∇F (xt) + (WD −W ) (zt − xt + ζt) + αn∇̃F̂ (xt)− αn∇F̂ (xt)
∥∥∥2 |F t

]
= ∥∇hα(xt)∥2 + E

[
∥(WD −W ) (zt − xt + ζt)∥2 |F t

]
+ α2n2E

[∥∥∥∇̃F̂ (xt)−∇F̂ (xt)
∥∥∥2 |F t

]
≤ K2

α ∥xt − x∗
α∥

2
+ (nσ̃2 +

npK2σ2

η2
) ∥W −WD∥2 + α2nγ2

2 . (72)
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To derive (72), we used the facts that hα is smooth with parameter Kα := 1−λn(W )+αK;

the quantizer is unbiased with variance ≤ σ̃2 (Assumption 2); stochastic gradients of the

loss function are unbiased and variance-bounded (Assumption 4 and Lemma 15). Plugging

(72) in (71) yields

E
[
∥xt+1 − x∗

α∥
2 |F t

]
≤
(
1− 2µαε+ ε2K2

α

)
∥xt − x∗

α∥
2 + ε2n(σ̃2 +

pK2σ2

η2
) ∥W −WD∥2

+ α2ε2nγ22 . (73)

To ease the notation, let et := E[ ∥xt − x∗
α∥

2] denote the expected deviation of the models

at iteration t, i.e. xt from the optimizer x∗
α with respect to all the randomnesses from

iteration t = 0. Therefore, we have

et+1 ≤
(
1− 2µαε+ ε2K2

α

)
et + ε2n(σ̃2 +

pK2σ2

η2
) ∥W −WD∥2 + α2ε2nγ22

=
(
1− ε(2µα − εK2

α)
)
et + ε2n(σ̃2 +

pK2σ2

η2
) ∥W −WD∥2 + α2ε2nγ22 . (74)

For any T ≥ T c
min1 and the proposed pick ε = T−3δ̃/2, we have T δ̃ ≥ (T c

min1)
δ̃ ≥ (2+K)2

µ and

therefore

ε =
1

T 3δ̃/2

≤ µ

(2 +K)2
· 1

T δ̃/2

≤ µα

(2 + αK)2

≤ µα

K2
α

.
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Hence, we can further bound (74) as

et+1 ≤
(
1− ε(2µα − εK2

α)
)
et + ε2n(σ̃2 +

pK2σ2

η2
) ∥W −WD∥2 + α2ε2nγ22

≤ (1− µαε) et + ε2n(σ̃2 +
pK2σ2

η2
) ∥W −WD∥2 + α2ε2nγ22

=

(
1− µ

T 2δ̃

)
et +

n(σ̃2 + pK2σ2

η2
) ∥W −WD∥2

T 3δ̃
+

nγ22

T 4δ̃
.

Now, we let (a, b, c) = (µ, n(σ̃2+ pK2σ2

η2
)σ̃2 ∥W −WD∥2 , nγ22) and employ Lemma 18, which

yields

eT = E
[
∥xT − x∗

α∥
2
]

≤ O
(
b/a

T δ̃

)
+O

(
c/a

T 2δ̃

)

= O

n(σ̃2 + pK2σ2

η2
)

µ
∥W −WD∥2

1

T δ̃

+O
(
nγ2

µ

(
E[1/V ]

Td
+

1

m

)
1

T 2δ̃

)
.

Combining Lemmas 20 and 17, we can now plug them in Theorem 12 and write for

T ≥ T c
min := max{T c

min1, T
c
min2}

1

n

n∑
i=1

E
[
∥xi,T−x∗∥2

]
=

1

n
E
[
∥xT − x̃∗∥2

]
=

1

n
E
[
∥xT − x∗

α + x∗
α − x̃∗∥2

]
≤ 2

n
E
[
∥xT − x∗

α∥
2
]
+

2

n
∥x∗

α − x̃∗∥2

≤ O

E2(K/µ)2

(1− β)2
+

σ̃2 + pK2σ2

η2

µ

 1

T δ̃

+O
(
γ2

µ
max

{
E[1/V ]

Td
,
1

m

})
1

T 2δ̃
.
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Proof of Theorem 17

We then characterize the convergence rate of Q-DPSGD-2 for non-convex and smooth

objectives. We are interested in finding a set of local models which satisfy first-order

optimality condition approximately, while the models are close to each other and satisfy the

consensus condition up to a small error. To be more precise, we are interested in finding

a set of local models {x∗
1, . . . ,x

∗
n} where their average x∗ := 1

n

∑n
i=1 x

∗
i (approximately)

satisfy first-order optimality condition, i.e., E ∥∇f (x∗)∥2 ≤ ν, while the iterates are close

to their average, i.e., E∥x∗ − x∗
i ∥2 ≤ ρ.

To ease the notation, we agree in this section on the following shorthand notations for

t = 0, 1, 2, · · · ,

Xt = [x1,t · · · xn,t] ∈ Rp×n,

Zt = [z1,t · · · zn,t] ∈ Rp×n,

xt =
1

n

n∑
i=1

xi,t ∈ Rp,

Xt = [xt · · · xt] ∈ Rp×n,

∂̃f(Xt) =
[
∇̃f1(x1,t) · · · ∇̃fn(xn,t)

]
∈ Rp×n,

∂f(Xt) = [∇f1(x1,t) · · · ∇fn(xn,t)] ∈ Rp×n,

and ζt = [ζ1,t · · · ζn,t] ∈ Rp×n with ζi,t ∼ NηZ(0, σ
2K2Ip)).

As stated before, we can write the update rule of the proposed Q-DPSGD-2 in the matrix

form as

Xt+1 = Xt ((1− ε)I + εW ) + ε(Zt −Xt + ζt)(W −WD)− αε∂̃f(Xt). (75)

Let us denote Wε = (1− ε)I + εW and write (75) as

Xt+1 = XtWε + ε(Zt −Xt + ζt)(W −WD)− αε∂̃f(Xt). (76)
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We start the convergence analysis by using the smoothness property of the objectives

and write

Ef
(
Xt+11n

n

)
= Ef

(
XtWε1n

n
+

ε(Zt −Xt + ζt)(W −WD)1n
n

− αε∂̃f(Xt)1n
n

)
Assumption 3

≤ Ef
(
Xt1n
n

)
− αεE

〈
∇f

(
Xt1n
n

)
,
∂f(Xt)1n

n

〉
+

ε2K

2
E

∥∥∥∥∥(Zt −Xt + ζt)(W −WD)1n
n

− α
∂̃f(Xt)1n

n

∥∥∥∥∥
2

. (77)

We specifically used the following equivalent form of the smoothness (Assumption 3) for

every local and hence the global objective is bounded by

fi(x1) ≤ fi(x) + ⟨∇fi(x),x1 − x⟩+ K

2
∥x1 − x∥2 , for all i ∈ [n],x,x1 ∈ Rp.

Also, we used the simple fact in Assumption 1 as

Wε1n = ((1− ε)I + εW )1n = (1− ε)1n + εW1n = 1n.

Now let us bound the term in (77) as

E

∥∥∥∥∥(Zt −Xt + ζt)(W −WD)1n
n

− α
∂̃f(Xt)1n

n

∥∥∥∥∥
2

≤ E
∥∥∥∥(Zt −Xt + ζt)(W −WD)1n

n

∥∥∥∥2 + E

∥∥∥∥∥α∂̃f(Xt)1n
n

∥∥∥∥∥
2

=
1

n2

n∑
i=1

(1− wii)
2E ∥zi,t − xi,t + ζi,t∥2 + α2E

∥∥∥∥∥ ∂̃f(Xt)1n
n

∥∥∥∥∥
2

≤
σ̃2 + pK2σ2

η2

n
+ α2E

∥∥∥∥∥ ∂̃f(Xt)1n
n

∥∥∥∥∥
2

≤
σ̃2 + pK2σ2

η2

n
+

γ22
n

+ E
∥∥∥∥∑n

i=1∇fi(xi,t)

n

∥∥∥∥2 , (78)

where we used Assumption 2 to derive the first term in (46) and the second term is from

(47).

100



Plugging (78) in (77) yields

Ef
(
Xt+11n

n

)
≤ Ef

(
Xt1n
n

)
− αεE

〈
∇f

(
Xt1n
n

)
,
∂f(Xt)1n

n

〉
+

ε2K

2n
(σ̃2 +

pK2σ2

η2
) +

α2ε2K

2n
γ22 +

α2ε2K

2
E
∥∥∥∥∑n

i=1∇fi(xi,t)

n

∥∥∥∥2
= Ef

(
Xt1n
n

)
− αε− α2ε2K

2
E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 − αε

2
E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
+

ε2K

2n
(σ̃2 +

pK2σ2

η2
) +

α2ε2K

2n
γ22 +

αε

2
E
∥∥∥∥∇f

(
Xt1n
n

)
− ∂f(Xt)1n

n

∥∥∥∥2
≤ Ef

(
Xt1n
n

)
− αε− α2ε2K

2
E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 − αε

2
E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
+

ε2K

2n
(σ̃2 +

pK2σ2

η2
) +

α2ε2K

2n
γ22 +

K2

n

n∑
i=1

E
∥∥∥∥Xt1n

n
− xi,t

∥∥∥∥2︸ ︷︷ ︸
Qi,t

, (79)

where we used the identity 2⟨a,b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2.

Let us defineQi,t := E
∥∥Xt1n

n − xi,t

∥∥2 andMt :=
1
n

∑n
i=1Qi,t =

1
n

∑n
i=1 E

∥∥Xt1n
n − xi,t

∥∥2 .
Here, Qi,t captures the deviation of the model at node i from the average model at

iteration t and Mt aggregates them to measure the average total consensus error. To bound

Mt, we need to evaluate the following recursive expressions, i.e.,

Xt = Xt−1Wε + ε(Zt−1 −Xt−1 + ζt−1)(W −WD)− αε∂̃f(Xt−1)

= X0W
t
ε + ε

t−1∑
s=0

(Zs −Xs + ζs)(W −WD)W
t−s−1
ε − αε

t−1∑
s=0

∂̃f(Xs)W
t−s−1
ε . (80)
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Now, using (80) we can write

Mt =
1

n

n∑
i=1

E
∥∥∥∥Xt1n

n
− xi,t

∥∥∥∥2
=

1

n
E
∥∥Xt −Xt

∥∥2
F

=
1

n
E
∥∥∥∥Xt

11⊤

n
−Xt

∥∥∥∥2
F

=
1

n
E

∥∥∥∥∥X0

(
11⊤

n
−W t

ε

)
+ ε

t−1∑
s=0

(Zs −Xs + ζs)(W −WD)

(
11⊤

n
−W t−s−1

ε

)

− αε
t−1∑
s=0

∂̃f(Xs)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

=
(αε)2

n
E

∥∥∥∥∥
t−1∑
s=0

∂̃f(Xs)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F︸ ︷︷ ︸
T2

+
ε2

n
E

∥∥∥∥∥
t−1∑
s=0

(Zs −Xs + ζs)(W −WD)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F︸ ︷︷ ︸
T3

,

where we used the fact that quantiziations, stochastic gradients, and differential privacy

noise are statistically independent and X0 = 0.

Moreover, the term T3 can be bounded as

T3 = E

∥∥∥∥∥
t−1∑
s=0

(Zs −Xs + ζs)(W −WD)

(
11⊤

n
−W t−s−1

ε

)∥∥∥∥∥
2

F

≤ E
t−1∑
s=0

∥Zs −Xs + ζs∥2F ∥W −WD∥2
∥∥∥∥11⊤n −W t−s−1

ε

∥∥∥∥2

≤
4n(σ̃2 + pK2σ2

η2
)

1− β2
ε

,

where we used the fact that ∥W −WD∥ ≤ 2.

Now we use the bounds derived for T2 and T3 and T4 to bound the consensus error Mt

as
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Mt ≤
α2ε2

n
T2 +

ε2

n
T3

≤ 2α2ε2γ22
1− β2

ε

+
6α2ε2K2

n

t−1∑
s=0

n∑
i=1

Qi,s

∥∥∥∥11⊤n −W t−s−1
ε

∥∥∥∥2

+
6α2ε2

n

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

∥∥∥∥11⊤n −W t−s−1
ε

∥∥∥∥2

+
12α2ε2

n

t−1∑
s=0

(
3K2

n∑
i=1

Qi,s + 3E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

)
βt−s−1
ε

1− βε

+
18α2ε2γ21
(1− βε)2

+
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

≤ 2α2ε2γ22
1− β2

ε

+
18α2ε2γ21
(1− βε)2

+
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

+
6α2ε2K2

n

t−1∑
s=0

n∑
i=1

Qi,sβ
2(t−s−1)
ε

+
6α2ε2

n

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

β2(t−s−1)
ε

+
12α2ε2

n

t−1∑
s=0

(
3K2

n∑
i=1

Qi,s + 3E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

)
βt−s−1
ε

1− βε

≤ 2α2ε2γ22
1− β2

ε

+
18α2ε2γ21
(1− βε)2

+
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

+
6α2ε2

n

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

(
β2(t−s−1)
ε +

2βt−s−1
ε

1− βε

)

+
6α2ε2

n
K2

t−1∑
s=0

n∑
i=1

Qi,s

(
2βt−s−1

ε

1− βε
+ β2(t−s−1)

ε

)
. (81)

As we defined earlier, we have Ms =
1
n

∑n
i=1Qi,s which simplifies (81) to

Mt ≤
2α2ε2γ22
1− β2

ε

+
18α2ε2γ21
(1− βε)2

+
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

+
6α2ε2

n

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

(
β2(t−s−1)
ε +

2βt−s−1
ε

1− βε

)

+ 6α2ε2K2
t−1∑
s=0

Ms

(
2βt−s−1

ε

1− βε
+ β2(t−s−1)

ε

)
. (82)

103



Now we can sum (82) over t = 0, 1, · · · , T − 1, which yields

T−1∑
t=0

Mt ≤
2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

T

+
6α2ε2

n

T−1∑
t=0

t−1∑
s=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

(
β2(t−s−1)
ε +

2βt−s−1
ε

1− βε

)

+ 6α2ε2K2
T−1∑
t=0

t−1∑
s=0

Ms

(
2βt−s−1

ε

1− βε
+ β2(t−s−1)

ε

)

≤ 2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

T

+
6α2ε2

n

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

( ∞∑
k=0

β2k
ε +

2
∑∞

k=0 β
k
ε

1− βε

)

+ 6α2ε2K2
T−1∑
t=0

Mt

(
2
∑∞

k=0 β
k
ε

1− βε
+

∞∑
k=0

β2k
ε

)

≤ 2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

T

+
18α2ε2

n(1− βε)2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)
1⊤n

∥∥∥∥2
F

+
18α2ε2K2

(1− βε)2

T−1∑
t=0

Mt. (83)

Note that
∥∥∇f

(
Xs1n
n

)
1⊤n
∥∥2
F
= n

∥∥∇f
(
Xs1n
n

)∥∥2, which simplifies (83) as

T−1∑
t=0

Mt ≤
2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

T +
18α2ε2

(1− βε)2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2
+

18α2ε2K2

(1− βε)2

T−1∑
t=0

Mt. (84)

Rearranging the terms implies that

(
1− 18α2ε2K2

(1− βε)2

) T−1∑
t=0

Mt ≤
2α2ε2γ22
1− β2

ε

T +
18α2ε2γ21
(1− βε)2

T +
4ε2(σ̃2 + pK2σ2

η2
)

1− β2
ε

T

+
18α2ε2

(1− βε)2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 . (85)
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Now define D2 := 1− 18α2ε2K2

(1−βε)2
and rewrite (85) as

T−1∑
t=0

Mt ≤
2α2ε2γ22

(1− β2
ε )D2

T +
18α2ε2γ21

(1− βε)2D2
T +

4ε2(σ̃2 + pK2σ2

η2
)

(1− β2
ε )D2

T

+
18α2ε2

(1− βε)2D2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 . (86)

Note that from definition of T1 we have T1 ≤ K2

n

∑n
i=1Qi,t = K2Mt. Now use the above

fact in the recursive equation (79) which we started with, that is

Ef
(
Xt+11n

n

)
≤ Ef

(
Xt1n
n

)
− αε− α2ε2K

2
E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 − αε

2
E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
+

ε2K

2n
(σ̃2 +

pK2σ2

η2
) +

α2ε2K

2n
γ22 +

αεK2

2
Mt. (87)

If we sum (87) over t = 0, 1, · · · , T − 1, we get

αε− α2ε2K

2

T−1∑
t=0

E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 + αε

2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
≤ f(0)− f∗ +

ε2K

2n
(σ̃2 +

pK2σ2

η2
)T +

α2ε2K

2n
γ22T +

αεK2

2

T−1∑
t=0

Mt

from (86)

≤ f(0)− f∗ +
ε2K

2n
(σ̃2 +

pK2σ2

η2
)T +

α2ε2K

2n
γ22T

+
αεK2

2

{
2α2ε2γ22

(1− β2
ε )D2

T +
18α2ε2γ21

(1− βε)2D2
T +

4ε2σ̃2

(1− β2
ε )D2

T

}
+

9α3ε3K2

(1− βε)2D2

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 . (88)

We can rearrange the terms in (88) and rewrite it as

αε− α2ε2K

2

T−1∑
t=0

E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 + αε

(
1

2
− 9α2ε2K2

(1− βε)2D2

) T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
≤ f(0)− f∗ +

ε2K

2n
(σ̃2 +

pK2σ2

η2
)T +

α2ε2K

2n
γ22T

+
αεK2

2

{
2α2ε2γ22

(1− β2
ε )D2

T +
18α2ε2γ21

(1− βε)2D2
T +

4ε2σ̃2

(1− β2
ε )D2

T

}
. (89)
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Now, we define D1 as D1 :=
1
2 − 9α2ε2K2

(1−βε)2D2
and replace in (89) which yields

1

αεT

{
αε− α2ε2K

2

T−1∑
t=0

E
∥∥∥∥∂f(Xt)1n

n

∥∥∥∥2 + αεD1

T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
}

≤ 1

αεT
(f(0)− f∗) +

ε

α

K

2n
(σ̃2 +

pK2σ2

η2
) + αε

Kγ22
2n

+
α2ε2

1− β2
ε

K2γ22
D2

+
α2ε2

(1− βε)2
9K2γ21
D2

.

(90)

To balance the terms in RHS of (90), we need to know how βε behaves with ε. As we

defined before, Wε = (1 − ε)I + εW . Hence, λi(Wε) = 1 − ε + ελi(W ). Therefore, for

ε ≤ 1
1−λn(W ) , we have

βε = max {|λ2(Wε)|, |λn(Wε)|}

= max {|1− ε+ ελ2(W )|, |1− ε+ ελn(W )|}

= max {1− ε+ ελ2(W ), 1− ε+ ελn(W )}

= 1− ε (1− λ2(W )) .

Therefore,

1− βε = ε (1− λ2(W )) ≥ ε(1− β)

and 1− β2
ε = 2ε (1− λ2(W ))− ε2 (1− λ2(W ))2 ≥ ε(1− β2).

Moreover, if αε ≤ 1
K we have from (90) that

D1

T

T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2 ≤ 1

αεT
(f(0)− f∗) +

ε

α

K

2n
(σ̃2 +

pK2σ2

η2
) + αε

Kγ22
2n

+
α2ε

1− β2

K2γ22
D2

+
α2

(1− β)2
9K2γ21
D2

+
ε

1− β2

2K2σ̃2

D2
. (91)
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For α ≤ 1−β
6K , we have

D2 = 1− 18α2ε2K2

(1− βε)2

= 1− 18α2ε2K2

ε2(1− β)2

= 1− 18α2K2

(1− β)2

≥ 1

2
, (92)

and for α ≤ 1−β

6
√
2K

, we have

D1 =
1

2
− 9α2ε2K2

(1− βε)2D2

≥ 1

2
− 18α2ε2K2

ε2(1− β)2

=
1

2
− 18α2K2

(1− β)2

≥ 1

4
.

Now, we pick the step-sizes as

α =
1

T 1/6
, (93)

and ε =
1

T 1/2
. (94)

It is clear that in order to satisfy the conditions mentioned before, that are ε ≤ 1
1−λn(W ) ,

αε ≤ 1
K and α ≤ 1−β

6
√
2K

, it suffices to pick T as large as

T ≥ T nc
min := max

(1− λn(W ))2 ,K3/2,

(
6
√
2K

1− β

)6
 . (95)

For such T we have
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1

T

T−1∑
t=0

E
∥∥∥∥∇f

(
Xt1n
n

)∥∥∥∥2
≤ 1

T 1/3
4(f(0)− f∗) +

1

T 1/3

K

n
(2σ̃2 + 2

pK2σ2

η2
) +

1

T 2/3

2Kγ22
n

+
1

T 5/6

8K2γ22
1− β2

+
1

T 1/3

72K2γ21
(1− β)2

+
1

T 1/2

16K2σ̃2

1− β2

=
B1

T 1/3
+

B2

T 1/2
+

B3

T 2/3
+

B4

T 5/6
(96)

= O
(
K

n
(σ̃2 +

pK2σ2

η2
) +

K2γ2

(1− β)2m

)
1

T 1/3
+O

(
K2

1− β2
σ2

)
1

T 1/2

+O
(
K

γ2

n
max

{
E[1/V ]

Td
,
1

m

})
1

T 2/3
+O

(
K2

1− β2
γ2max

{
E[1/V ]

Td
,
1

m

})
1

T 5/6
,

where

B1 := 4(f(0)− f∗) +
K

n
(2σ̃2 + 2

pK2σ2

η2
) +

72K2γ21
(1− β)2

,

B2 :=
16K2σ̃2

1− β2
,

B3 :=
2Kγ22
n

,

and B4 :=
8K2γ22
1− β2

.

Now we bound the consensus error. From (86) we have

1

T

T−1∑
t=0

1

n

n∑
i=1

E
∥∥∥∥Xt1n

n
− xi,t

∥∥∥∥2

≤ 2α2ε2γ22
(1− β2

ε )D2
+

18α2ε2γ21
(1− βε)2D2

+
4ε2(σ̃2 + pK2σ2

η2
)

(1− β2
ε )D2

+
18α2ε2

(1− βε)2D2

1

T

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2

≤ α2ε
2γ22

(1− β2)D2
+ α2 18γ21

(1− β)2D2
+ ε

4(σ̃2 + pK2σ2

η2
)

(1− β2)D2

+ α2 18

(1− β)2D2

1

T

T−1∑
t=0

E
∥∥∥∥∇f

(
Xs1n
n

)∥∥∥∥2 .
For the same step-sizes α and ε defined in (93) and large enough T as in (95), we can use
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the convergence result in (96) which yields

1

T

T−1∑
t=0

1

n

n∑
i=1

E
∥∥∥∥Xt1n

n
− xi,t

∥∥∥∥2 ≤ 1

T 5/6

4γ22
1− β2

+
1

T 1/3

36γ21
(1− β)2

+
1

T 1/2

8(σ̃2 + pK2σ2

η2
)

(1− β2)

+
1

T 1/3

36

(1− β)2

(
B1

T 1/3
+

B2

T 1/2
+

B3

T 2/3
+

B4

T 5/6

)
=

C1

T 1/3
+

C2

T 1/2
+

C3

T 2/3
+

C4

T 5/6
+

C5

T
+

C6

T 7/6

= O
(

γ2

m(1− β)2

)
1

T 1/3
+O

(σ̃2 + pK2σ2

η2
)

1− β2

 1

T 1/2

+O

 K2

(1− β)4
γ2

m
+

K

(1− β)2

(σ̃2 + pK2σ2

η2
)

n

 1

T 2/3

+O
(

γ2

1− β2
max

{
E[1/V ]

Td
,
1

m

}
+

K2σ̃2

(1− β)4

)
1

T 5/6

+O
(

K

(1− β)2
γ2

n
max

{
E[1/V ]

Td
,
1

m

})
1

T

+O
(

K2

(1− β)4
γ2max

{
E[1/V ]

Td
,
1

m

})
1

T 7/6
,

where

C1 :=
36γ21

(1− β)2
,

C2 :=
8(σ̃2 + pK2σ2

η2
)

1− β2
,

C3 :=
36

(1− β)2
(4(f(0)− f∗)) +

72K(σ̃2 + pK2σ2

η2
)

(1− β)2n
+

2592K2γ21
(1− β)4

,

C4 :=
4γ22

1− β2
+

576K2σ̃2

(1− β)2(1− β2)
,

C5 :=
432Kγ22
(1− β)2n

,

and C6 :=
288K2γ22

(1− β)2(1− β2)
.
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5 Differentially Private and Fair Classification via Calibrated

Functional Mechanism

5.1 Introduction

In this big data era, machine learning has been becoming a powerful technique for

automated and data-driven decision making processes in various domains, such as spam

filtering, credit ratings, housing allocation, and so on. However, as the success of machine

learning mainly rely on a vast amount of individual data (e.g., financial transactions, tax

payments), there are growing concerns about the potential for privacy leakage and unfairness

in training and deploying machine learning algorithms [11, 91]. Thus, the problem of fairness

and privacy in machine learning has attracted considerable attention.

Fairness-aware learning has received growing attentions in the machine learning field due

to the social inequities and unfair behaviors observed in classification models. For example,

a classification model of automated job hiring system is more likely to hire candidates

from certain racial or gender groups [15, 16]. Hence, substantial effort has centered on

developing algorithmic methods for designing fair classification models and balancing the

trade-off between accuracy and fairness, mainly including two groups: pre/post-processing

methods [92, 93, 94] and in-processing methods [95, 96]. Pre/post-processing methods

achieve fairness by directly changing values of the sensitive attributes or class labels in

the training data. As pointed out in [96], pre/post-processing methods treat the learning

algorithm as a black box, which can result in unpredictable loss of the classification utility.

Thus, in-processing methods, which introduce fairness constraints or regularization terms

to the objective function to remove the discriminatory effect of classifiers, have been shown

a great success.

At the same time, differential privacy [26] has emerged as the de facto standard for

measuring the privacy leakage associated with algorithms on sensitive databases, which has

recently received considerable attentions by large-scale corporations such as Google [97]

and Microsoft [98], etc. Generally speaking, differential privacy ensures that there is no
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statistical difference to the output of a randomized algorithm whether a single individual

opts in to, or out of its input. A large class of mechanisms has been proposed to ensure dif-

ferential privacy. For instance, the Laplace mechanism is employed by introducing random

noise drawn from the Laplace distribution to the output of queries such that the adversary

will not be able to confirm a single individual is in the input with high confidence [25]. To

design private machine learning models, more complicated perturbation mechanisms have

been proposed like objective perturbation [56] and functional mechanism [99], which inject

random noise into the objective function rather than model parameters.

Thus, in this work, we mainly focus on achieving classification models that simulta-

neously provide differential privacy and fairness. As pointed out in recent study [100],

achieving both requirements efficiently is quite challenging, due to the different aims of

differential privacy and fairness. Differential privacy in a classification model focuses on the

individual level, i.e., differential privacy guarantees that the model output is independent of

whether any individual record presents or absents in the dataset, while fairness in a classifi-

cation model focuses on the group level, i.e., fairness guarantees that the model predictions

of the protected group (such as female group) are same to those of the unprotected group

(such as male group). Lots of researches have emerged in achieving both privacy protection

and fairness. Specifically, in [92], Dwork et al. gave a new definition of fairness that is

an extended definition of differential privacy. In [101], Hajian et al. imposed fairness and

k-anonymity via a pattern sanitization method. Moreover, Ekstrand et al. in [102] put

forward a set of questions about whether fairness are compatible with privacy. However,

only Xu et al. in [100] studied how to meet the requirements of both differential privacy and

fairness in classification models by combining functional mechanism and decision boundary

fairness together. Therefore, how to simultaneously meet the requirements of differential

privacy and fairness in machine learning algorithms is under exploited.

In this work, we propose Purely and Approximately Differential private and Fair

Classification algorithms, called PDFC and ADFC, respectively, by incorporating func-

tional mechanism and decision boundary covariance, a novel measure of decision boundary
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fairness. As shown in [103], due to the correlation between input features (attributes), the

discrimination of classification still exists even if removing the protected attribute from the

dataset before training. Hence, different from [100], which adds same scale of noise in each

attribute, in PDFC, we consider a calibrated functional mechanism, i.e., injecting different

amounts of Laplace noise regarding different attributes to the polynomial coefficients of the

constrained objective function to ensure ϵ-differential privacy and reduce effects of discrim-

ination. To further improve the model accuracy, in ADFC, we propose a relaxed functional

mechanism by inserting Gaussian noise instead of Laplace noise and leverage it to perturb

coefficients of the polynomial representation of the constrained objective function to enforce

(ϵ, δ)-differential privacy and fairness. Our salient contributions are listed as follows.

• We propose two approaches PDFC and ADFC to learn a logistic regression model

with differential privacy and fairness guarantees by applying functional mechanism to

a constrained objective function of logistic regression that decision boundary fairness

constraint is treated as a penalty term and added to the original objective function.

• For PDFC, different magnitudes of Laplace noise regarding different attributes are

added to the polynomial coefficients of the constrained objective function to enforce

ϵ-differential privacy and fairness.

• For ADFC, we further improve the model accuracy by proposing the relaxed functional

mechanism based on Extended Gaussian mechanism, and leverage it to introduce

Gaussian noise with different scales to perturb objective function.

• Using real-world datasets, we show that the performance of PDFC and ADFC signifi-

cantly outperforms the baseline algorithms while jointly providing differential privacy

and fairness.

6 Problem Statement

This work considers a training dataset D that includes n tuples t1, t2, · · · , tn. We

also denote each tuple ti = (xi, yi) where the feature vector xi contains d attributes, i.e.,
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xi = (xi1, xi2, · · · , xid), and yi is the corresponding label. Without loss of generality, we

assume
√∑d

j=1 x
2
ij ≤ 1 where xij ≥ 0, and yi ∈ {0, 1} for binary classification tasks.

The objective is to construct a binary classification model ρ(x, w) with model parameters

w = (w1, w2, · · · , wd) that taken x as input, can output the prediction ŷ, by minimizing the

empirical loss on the training dataset D over the parameter space w of ρ.

In general, we have the optimization problem as

w∗ = argmin
w

f(D,w) = argmin
w

n∑
i=1

f(ti, w), (97)

where f is the loss function. In this work, we consider logistic regression as the loss function,

i.e., f(D,w) =
∑n

i=1[log(1 + exp(xT
i w)) − yix

T
i w]. Thus, the classification model has the

form ρ(x, w∗) = exp(xTw∗)
1+exp(xTw∗)

.

Although there is no need to share the dataset during the training procedure, the risk

of information leakage still exists when we release the classification model parameter w∗.

For example, the adversary may perform model inversion attack [11] over the release model

w∗ together with some background knowledge about the training dataset to infer sensitive

information in the dataset.

Furthermore, if labels in the training dataset are associated with a protected attribute

zi (note that we denote xi as unprotected attributes), like gender, the classifier may be

biased, i.e., P (ŷi = 1|zi = 0) ̸= P (ŷi = 1|zi = 1), where we assume the protected attribute

zi ∈ {0, 1}. According to [104], even if the protected attribute is not used to build the classi-

fication model, this unfair behavior may happen when the protected attribute is correlated

with other unprotected attributes.

Therefore, in this work, our objective is to learn a binary classification model, which is

able to guarantee differential privacy and fairness while preserving good model utility.

6.1 Background

In this section, we first introduce some background knowledge of Functional Mechanism

in differential privacy, which helps us to build private classification models. Then we present
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fairness definition, which helps us to enforce classification fairness.

6.1.1 Functional Mechanism

Functional mechanism, introduced by [99], as an extension of the Laplace mechanism

is designed for regression analysis. To preserve ϵ-differential privacy, functional mechanism

injects differentially private noise into the objective function f(D,w) and then publishs a

noisy model parameter ŵ derived from minimizing the perturbed objective function f̂(D,w)

rather than the original one. As a result of the objective function being a complex function

of w, in functional mechanism, f(D,w) is represented in polynomial forms trough Taylor

Expansion. The model parameter w is a vector consisting of several values w1, w2, · · · , wd.

We denote ϕ(w) as a product of w1, w2, · · · , wd, namely, ϕ(w) = wc1
1 wc2

2 · · ·wcd
d for some

c1, c2, · · · , cd ∈ N. We also denote Φj(j ∈ N) as the set of all products of w1, w2, · · · , wd

with degree j, i.e., Φj = {wc1
1 wc2

2 · · ·wcd
d |
∑d

l=1 cl = j}.

According to the Stone-Weierstrass Theorem [105], any continuous and differentiable

function can always be expressed as a polynomial form. Therefore, the objective function

f(D,w) can be written as

f(D,w) =
n∑

i=1

J∑
j=0

∑
ϕ∈Φj

λϕtiϕ(w), (98)

where λϕti represents the coefficient of ϕ(w) in polynomial.

To preserve ϵ-differential privacy, the objective function f(D,w) is perturbed by adding

Laplace noise into the polynomial coefficients, i.e., λϕ =
∑n

i=1 λϕti+Lap(∆1/ϵ), where ∆1 =

2maxt
∑J

j=1

∑
ϕ∈Φj

∥λϕt∥1. And then the model parameter ŵ is obtained by minimizing

the noisy objective function f̂(D,w). The sensitivity of logistic regression is given in the

following lemma

Lemma 21 (l1-Sensitivity of Logistic Regression). Let f(D,w) and f(D′, w) be the

logistic regression on two neighboring datasets D and D′, respectively, and denote their

polynomial representations as f(D,w) =
∑n

i=1

∑J
j=1

∑
ϕ∈Φj

λϕtiϕ(w) and
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f(D′, w) =
∑n

i=1

∑J
j=1

∑
ϕ∈Φj

λϕt′i
ϕ(w). Then, we have the following inequality

∆1 =

2∑
j=1

∑
ϕ∈Φj

∥
∑
ti∈D

λϕti −
∑
t′i∈D′

λϕt′i
∥1 ≤ 2max

t

2∑
j=1

∑
ϕ∈Φj

∥λϕt∥1 ≤
d2

4
+ d,

where ti, t
′
i or t is an arbitrary tuple.

6.1.2 Classification Fairness

The goal of classification fairness is to find a classifier that minimizes the empirical

loss while guaranteeing certain fairness requirements. Many fairness definitions have been

proposed for in the literature including mistreatment parity [106], demographic parity [104],

etc.

Demographic parity, the most widely-used fairness definition in the classification fairness

domain, requires the decision made by the classifier is not dependent on the protected

attribute z, for instance, sex or race.

Definition 9. (Demographic Parity in a Classifier) Given a classification model ŷ =

ρ(x, w) and a labeled dataset D, the property of demographic parity in a classifier is defined

by Pr(ŷ = 1|z = 1) = Pr(ŷ = 1|z = 0) where z ∈ {0, 1} is the protected attribute.

Moreover, demographic parity is quantified in terms of the risk difference (RD) [107], i.e.,

the difference of the positive decision made in between the protected group and unprotected

group. Thus, the risk difference produced by a classifier is defined as RD = |Pr(ŷ = 1|z =

1)− Pr(ŷ = 1|z = 0)|.

One of the in-processing methods, called decision boundary fairness [96], to ensure

classification fairness is to find a model parameter w that minimizes the loss function f(D,w)

under a fairness constraint. Thus, the fair classification problem is formulated as

minimize f(D,w)

subject to g(D,w) ≤ τ, g(D,w) ≥ −τ, (99)
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where g(D,w) is a constraint term, and τ is the threshold. For instance, Zafar et al. [96]

have proposed to adopt the decision boundary covariance to define the fairness constraint,

i.e.,

g(D,w) = E[(z − z̄)d(x, w)]− E[z − z̄]d(x, w) ∝
n∑

i=1

(zi − z̄)d(xi, w), (100)

where {d(xi, w)}ni=1 is decision boundary, z̄ is the average of the protected attribute and

E[z−z̄] = 0. For logistic regression classification models, the decision boundary is defined by

xTw. The decision boundary covariance (100) then reduces to g(D,w) =
∑n

i=1(zi− z̄)xT
i w.

6.2 Differentially Private and Fair Classification

In this section, we first present our approach PDFC to achieve fair logistic regression

with ϵ-differentially private guarantee. Then we propose a relaxed functional mechanism by

injecting Gaussian noise instead of Laplace noise to provide (ϵ, δ)-differential privacy. By

leveraging the relaxed functional mechanism, we will show that our second approach ADFC

can jointly provide (ϵ, δ)-differential privacy and fairness.

6.2.1 Purely DP and Fair Classification

In order to meet the requirements of ϵ-differential privacy and fairness, motivated by

[100], we consider to combine the functional mechanism and decision boundary fairness. We

first consider to transform the constrained optimization problem (99) into unconstrained

problem by treating the fairness constraint as a penalty term, where the fairness constraints

are shifted to the original objective function f(D,w). Then, we have the new objective

function f̃D(w) defined as f̃(D,w) = f(D,w) + α1|g(D,w) − τ |, where we consider α1

as a hyperparameter to optimize the trade-off between model utility and fairness. For

convenience of discussion, we set τ = 0 and choose suitable values to make α1 = 1. Note

that our theoretical results still hold if we choose other values of α1 and τ . By equation
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(100), we have

f̃(D,w) =

n∑
i=1

[log(1 + exp(xT
i w))− yix

T
i w] +

∣∣∣∣∣
n∑

i=1

(zi − z̄)xT
i w

∣∣∣∣∣ . (101)

To apply functional mechanism, we first write the approximate objective function f̄(D,w)

based on (98) as

f̄(D,w) =
n∑

i=1

2∑
j=0

f
(j)
1 (0)

j!
(xT

i w)
j −

(
n∑

i=1

yix
T
i

)
w +

∣∣∣∣∣
n∑

i=1

(zi − z̄)xT
i w

∣∣∣∣∣
=

n∑
i=1

2∑
j=0

∑
ϕ∈Φj

λ̄ϕtiϕ(w), (102)

where λ̄ϕti denotes the coefficient of ϕ(w) in the polynomial of f̄(ti, w) and f1(·) = log(1 +

exp (·)).

The attributes involving in the dataset may not be independent from each other, which

means some unprotected attributes in x are quite correlated with the protected attribute

z. For instance, the protected attribute, like gender, may be correlated with the attribute,

marital status. Thus, to reduce the discrimination between the protected attribute z and the

labels y, it is important to weaken the correlation between these most correlated attributes

and protected attribute z. However, it is often impossible to determine the degree of relation

between an unprotected attribute and the protected attribute. Therefore, we randomly

select an unprotected attribute xs and leverage functional mechanism to add noise with

large scale to the corresponding polynomial coefficients of the monomials involving ws.

Interestingly, this approach not only helps to reduce the correlation between attributes xs

and z, but also improve the privacy on attribute xs to prevent model inversion attacks, as

shown in [108].

The key steps of PDFC are outlined in Algorithm 6. We first set two different privacy

budgets, ϵs and ϵn, for attribute xs and the rest of attributes {x \ xs}. Before injecting

noise to the coefficients, all coefficients ϕ should be separated into two groups Φs and Φn

by considering whether ws involves in the corresponding monomials (i.e., whether their the
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Algorithm 6 Purely DP and Fair Classification (PDFC)

1: Input: Dataset D; The objective function f(D,w); The fairness constraint g(D,w);
The privacy budget ϵs for unprotected attribute xs; The privacy budget ϵn for other
unprotected attributes {x \ xs}; l1-sensitivity ∆1.

2: Output: ŵ, ϵ.
3: Set the approximate function f̄(D,w) by equation (102).
4: Set two sets Φs = {}, Φn = {}.
5: for 1 ≤ j ≤ 2 do
6: for each ϕ ∈ Φj do
7: if ϕ includes ws for a particular attribute xs then
8: Put ϕ into Φs.
9: else

10: Put ϕ into Φn.
11: end if
12: end for
13: end for
14: for 1 ≤ j ≤ 2 do
15: for each ϕ ∈ Φj do
16: if ϕ ∈ Φs then
17: Set λ̂ϕ =

∑n
i=1 λ̄ϕti + Lap(∆1/(ϵs)).

18: else
19: Set λ̂ϕ =

∑n
i=1 λ̄ϕti + Lap(∆1/(ϵn)).

20: end if
21: end for
22: end for
23: Let f̂(D,w) =

∑2
j=1

∑
ϕ∈Φj

λ̂ϕϕ(w).

24: Compute ŵ = argminw f̂(D,w).
25: Compute ϵ = ϵs/d+ ϵn(d− 1)/d.
26: return: ŵ, ϵ.

coefficients contain attribute xs). We then add Laplace noises drawn from Lap(∆1/ϵs) and

Lap(∆1/ϵn) to the coefficients of ϕ ∈ Φs and ϕ ∈ Φn respectively to reconstruct the differen-

tially private objective function f̂(D,w), where ∆1 can be found in Lemma 22. Finally, the

differentially private model parameter ŵ is obtained by minimizing f̂(D,w). Note that ŵ

also ensures classification fairness due to the objective function involving fairness constraint.

Lemma 22. Let D and D′ be any two neighboring datasets differing in at most one tuple.

Let f̄(D,w) and f̄(D′, w) be the approximate objective function on D and D′, then we have
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the inequality as,

∆1 =

2∑
j=1

∑
ϕ∈Φj

∥
n∑

i=1

λ̄ϕti −
n∑

i=1

λ̄ϕt′i
∥1 ≤

d2

4
+ 3d.

Proof. Assume that D and D′ differ in the last tuple tn and t′n. We have that

∆1 =

2∑
j=1

∑
ϕ∈Φj

∥
n∑

i=1

λ̄ϕti −
n∑

i=1

λ̄ϕt′i
∥1

=

2∑
j=1

∑
ϕ∈Φj

∥λ̄ϕtn − λ̄ϕt′n∥1

≤ 2 max
t=(x,y)

2∑
j=1

∑
ϕ∈Φj

∥λ̄ϕt∥1

≤ 2 max
t=(x,y)

(
1

2
− yi + |zi − z̄|)

d∑
e=1

x(e) +
1

8

∑
1≤e,l≤d

x(e)x(l)

≤ d2

4
+ 3d,

where x(e) represents e-th element in feature vector x.

The following theorem shows the privacy guarantee of PDFC.

Theorem 18. The output model parameter ŵ in PDFC (Algorithm 6) preserves ϵ-differential

privacy, where ϵ = 1
dϵs +

d−1
d ϵn.

Proof. We assume there are two neighboring datasets D and D′ that differ in the last tuple

tn and t′n. As shown in the Algorithm 6, all polynomial coefficients ϕ are divided into two

subsets Φs and ϕn in view of whether they include sensitive attribute xs or not. After

injecting Laplace noise, we have

Pr
(
f̂(D,w)

)
=
∏
ϕ∈Φs

exp

(
ϵs∥
∑n

i=1 λ̄ϕti − λ̂ϕ∥1
∆1

) ∏
ϕ∈Φn

exp

(
ϵn∥

∑n
i=1 λ̄ϕti − λ̂ϕ∥1

∆1

)
.
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Then, the following inequality holds

Pr
(
f̂(D,w)

)
Pr
(
f̂(D′, w)

)
≤
∏
ϕ∈Φs

exp

(
ϵs∥
∑n

i=1 λ̄ϕti −
∑n

i=1 λ̄ϕt′i
∥1

∆1

) ∏
ϕ∈Φn

exp

(
ϵn∥

∑n
i=1 λ̄ϕti −

∑n
i=1 λ̄ϕt′i

∥1
∆1

)

≤
∏
ϕ∈Φs

exp

(
ϵs∥λ̄ϕtn − λ̄ϕt′n∥1

∆1

) ∏
ϕ∈Φn

exp

(
ϵn∥λ̄ϕtn − λ̄ϕt′n∥1

∆1

)

≤
∏
ϕ∈Φs

exp (
ϵs
∆1

2max
t

∥λϕt∥1)
∏
ϕ∈Φn

exp (
ϵn
∆1

2max
t

∥λϕt∥1)

= exp (ϵs/d+ ϵn(d− 1)/d)

= exp (ϵ).

In the last second equality, we directly adopt the result in [108].

6.2.2 Approximately DP and Fair Classification

We now focus on using the relaxed version of ϵ-differential privacy, i.e., (ϵ, δ)-differential

privacy to further improve the utility of differentially private and fair logistic regression.

Hence, in order to satisfy (ϵ, δ)-differential privacy, we propose the relaxed functional mecha-

nism by making use of Extended Gaussian mechanism. As shown in Definition 4, before ap-

plying Extended Gaussian mechanism, we first calculate the sensitivity of a query function,

i.e., the objective function of logistic regression f(D,w) =
∑n

i=1[log(1+exp(xT
i w))−yix

T
i w],

given in the following lemma.

Lemma 23 (l2-Sensitivity of Logistic Regression). For polynomial representations of

logistic regression, two f(D,w) and f(D′, w) given in Lemma 21, we have the inequality as

∆2 = ∥A1 − A2∥2 ≤
√

d2

16
+ d,

where we denote A1 = {
∑n

i=1 λϕti}ϕ∈∪J
j=1Φj

and A2 =
{∑n

i=1 λϕt′i

}
ϕ∈∪J

j=1Φj

as the set of
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polynomial coefficients of f(D,w) and f(D′, w). And we denote ti or t′i as an arbitrary

tuple.

Proof. Assume that D and D′ differ in the last tuple tn and t′n. For logistic regression, we

have

f(D,w) =

n∑
i=1

2∑
j=0

f
(j)
1 (0)

j!
(xT

i w)
j −

(
n∑

i=1

yix
T
i

)
w

=
n∑

i=1

2∑
j=0

∑
ϕ∈Φj

λϕtiϕ(w),

where we have

{λϕti}ϕ∈Φ1 =: λ1ti =
f
(1)
1 (0)

1!
xi − yixi = (

1

2
− yi)xi

and {λϕti}ϕ∈Φ2 =: λ2ti =
f
(2)
1 (0)

2!
x2
i =

1

8
x2
i .

Denote A1 = {
∑n

i=1 λϕti}ϕ∈∪2
j=1Φj

and A2 =
{∑n

i=1 λϕt′i

}
ϕ∈∪2

j=1Φj

as the set of polynomial

coefficients of f(D,w) and f(D′, w), and E =



(12 − y)x(1)

· · ·

(12 − y)x(d)

1
8x(1)x(1)

· · ·

1
8x(d)x(d)


(d+d2)×1

, where x(e) represents

e-th element in feature vector x.
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Then, we have

∆2 = ∥A1 − A2∥2

= ∥{
n∑

i=1

λϕti −
n∑

i=1

λϕt′i
}ϕ∈∪2

j=1Φj
∥2

= ∥{λϕtn − λϕt′n}ϕ∈∪2
j=1Φj

∥2

≤ 2 max
t=(x,y)

∥E ∥2

= 2 max
t=(x,y)

√√√√ d∑
j=1

((
1

2
− y)xj)2 +

∑
1≤e,l≤d

(
1

8
x(e)x(l))2

=

√
d2

16
+ d,

where t is an arbitrary tuple.

We then perturb f(D,w) by injecting Gaussian noise drawn from N (0, σ2) with σ =
√
2∆2
2ϵ (

√
log(

√
2
π
1
δ ) +

√
log(

√
2
π
1
δ ) + ϵ) into its polynomial coefficients, and obtain the dif-

ferentially private model parameter ŵ by minimizing the noisy function f̂(D,w), as shown

in Algorithm 7. Finally, we provide a privacy guarantee of proposed relaxed functional

mechanism by the following theorem.

Theorem 19. The relaxed functional mechanism in Algorithm 7 guarantees (ϵ, δ)-differential

privacy.

Proof. Assume that the neighboring datasets D and D′ differ in the last tuple tn and t′n.

∣∣∣∣∣∣log
Pr
(
f̂(D,w)

)
Pr
(
f̂(D′, w)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣log
∏J

j=1

∏
ϕ∈Φj

exp

(
− 1

2σ2

(∑n
i=1 λ̄ϕti − λ̂ϕ

)2)
∏J

j=1

∏
ϕ∈Φj

exp

(
− 1

2σ2

(∑n
i=1 λ̄ϕt′i

− λ̂ϕ

)2)
∣∣∣∣∣∣∣∣

=
1

2σ2

∣∣∣∣∣∣
J∑

j=1

∑
ϕ∈Φj

(
n∑

i=1

λ̄ϕti − λ̂ϕ

)2

−

(
n∑

i=1

λ̄ϕt′i
− λ̂ϕ

)2
∣∣∣∣∣∣

=
1

2σ2

∣∣∥A ∥22 − ∥A + B∥22
∣∣ ,
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where A =
{∑n

i=1 λ̄ϕti − λ̂ϕ

}
ϕ∈∪J

j=1Φj

and B =
{∑n

i=1 λ̄ϕt′i
−
∑n

i=1 λ̄ϕti

}
ϕ∈∪J

j=1Φj

.

We know the fact that the distribution of a spherically symmetric normal is not depen-

dent of the orthogonal basis where its constituent normals are drawn. Thus, we work in a

basis aligned with B. Fix such a basis C1, · · · ,C|∪J
j=1Φj| and draw A by first drawing signed

lengths Vϕ ∼ N (0, σ2) for ϕ ∈ ∪J
j=1Φj , then let Aϕ = VϕCϕ and A =

∑
ϕ∈∪J

j=1Φj
Aϕ. With-

out loss of generality, we assume that C1 is parallel to B. Based on the triangle with the

base B+A1 and the edge
∑|∪J

j=1Φj|
ϕ=2 Aϕ orthogonal to B, apparently, we have ∥A +B∥22−

∥A ∥22 = ∥B∥22 + 2C1∥B∥2. Since ∥B∥2 ≤ ∆2, we have
∣∣∣Pr(f̂(D,w)

)
/Pr

(
f̂(D′, w)

)∣∣∣ ≤
1

2σ2

∣∣∆2
2 + 2|V1|∆2

∣∣. When |V1| ≤ 1
2(2σ

2ϵ − 1), the privacy loss is bounded by ϵ(ϵ > 0),

i.e.,
∣∣∣Pr(f̂(D,w)

)
/Pr

(
f̂(D′, w)

)∣∣∣ ≤ ϵ. Next, we need to prove that the privacy loss is

bounded by ϵ with probability at least 1 − δ, which requires Pr
(
V1 >

1
2(2σ

2ϵ− 1)
)
≤ δ/2.

Now we use the tail bound of V1 ∼ N (0, σ2), we have

Pr (V1 > r) ≤ σ√
2r

exp(− r2

2σ2
).

By letting r = 1
2(2σ

2ϵ− 1) in the above inequality, we have

Pr

(
V1 >

1

2
(2σ2ϵ− 1)

)
≤

√
2σ

2σ2ϵ− 1
exp

(
−1

2

(
2σ2ϵ− 1

2σ

)2
)
.

When σ ≥
√
2∆2
2ϵ (

√
log(

√
2
π
1
δ ) +

√
log(

√
2
π
1
δ ) + ϵ), ϵ > 0 and δ is very small, we have

Pr

(
V1 >

1

2
(2σ2ϵ− 1)

)
≤ δ/2.

We then can easily prove

Pr

(
|V1| ≤

1

2
(2σ2ϵ− 1)

)
≥ 1− δ.

Based on the proof above, we know that the privacy loss
∣∣∣Pr(f̂(D,w)

)
/Pr

(
f̂(D′, w)

)∣∣∣
is bounded by ϵ with probability at least 1 − δ, which represents the the computation of
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Algorithm 7 Relaxed Functional Mechanism

1: Input: Dataset D; The objective function f(D,w) =
∑n

i=1

∑J
j=1

∑
ϕ∈Φj

λϕtiϕ(w); The
privacy parameters ϵ, δ.

2: Output: ŵ
3: Set ∆2 according Lemma 23.
4: for 1 ≤ j ≤ J do
5: for each ϕ ∈ Φj do

6: Set λϕ =
∑n

i=1 λϕti + N (0, σ2), where σ =
√
2∆2
2ϵ (

√
log(

√
2
π
1
δ ) +√

log(
√

2
π
1
δ ) + ϵ).

7: end for
8: end for
9: Let f̂(D,w) =

∑J
j=1

∑
ϕ∈Φj

λϕϕ(w).

10: Compute ŵ = argminw f̂(D,w).
11: return: ŵ.

f̂(D,w) satisfies (ϵ, δ)-differential privacy. Therefore, Algorithm 7 satisfies (ϵ, δ)-differential

privacy.

Our second approach called, ADFC, applies the relaxed functional mechanism into the

objective function with decision boundary fairness constraint to enforce (ϵ, δ)-differential

privacy and fairness. As shown in Algorithm 8, we first derive the polynomial representa-

tion f̄(D,w) according to (102), and employ random Gaussian noise to perturb the objective

function f̄(D,w), i.e., injecting Gaussian noise into its polynomial coefficients. Furthermore,

we also allocate differential privacy parameters, (ϵs, δs) and (ϵn, δn) for a particular unpro-

tected attribute xs and the rest of unprotected attributes {x \ xs} to improve the privacy

on attribute xs and reduce the correlation between attributes xs and z. Hence, we add

random noise drawn from N (0, σ2
s) to polynomial coefficients of ϕ ∈ Φs. For polynomial

coefficients in Φn, we inject noise drawn from N (0, σ2
n).

Lemma 24. Let D and D′ be any two neighboring datasets differing in at most one tuple.

Let f̄(D,w) and f̄(D′, w) be the approximate objective function on D and D′, then we have

the inequality as

∆′
2 = ∥A ′

1 − A ′
2∥2 ≤

√
d2

16
+ 9d.
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Algorithm 8 Approximately DP and Fair Classification (ADFC)

1: Input: Dataset D; The objective function f(D,w); The fairness constraint g(D,w);
The privacy parameters ϵs, δs for unprotected attribute xs; The privacy parameters
ϵn, δn for other unprotected attributes {x \ xs}.

2: Output: ŵ, ϵ and δ.
3: Set the approximate function f̄(D,w) by equation (102).
4: Set two sets Φs = {}, Φn = {}.
5: for 1 ≤ j ≤ 2 do
6: for each ϕ ∈ Φj do
7: if ϕ includes ws for a particular attribute xs then
8: Put ϕ into Φs.
9: else

10: Put ϕ into Φn.
11: end if
12: end for
13: end for
14: Set l2-sensitivity ∆′

2 by Lemma 24.
15: for 1 ≤ j ≤ 2 do
16: for each ϕ ∈ Φj do
17: if ϕ ∈ Φs then

18: Set λ̂ϕ =
∑n

i=1 λ̄ϕti + N (0, σ2
s), where σs =

√
2∆′

2
2ϵs

(

√
log(

√
2
π

1
δs
) +√

log(
√

2
π

1
δs
) + ϵs).

19: else

20: Set λ̂ϕ =
∑n

i=1 λ̄ϕti + N (0, σ2
n), where σn =

√
2∆′

2
2ϵn

(

√
log(

√
2
π

1
δn
) +√

log(
√

2
π

1
δn
) + ϵn).

21: end if
22: end for
23: end for
24: Let f̂(D,w) =

∑2
j=1

∑
ϕ∈Φj

λ̂ϕϕ(w).

25: Compute ŵ = argminw f̂(D,w).
26: Compute ϵ = 1

dϵs +
d−1
d ϵn and δ = 1− (1− δs)(1− δn).

27: return: ŵ, ϵ and δ.

where we denote A ′
1 =

{∑n
i=1 λ̄ϕti

}
ϕ∈∪2

j=1Φj
and A ′

2 =
{∑n

i=1 λ̄ϕt′i

}
ϕ∈∪2

j=1Φj

as the set of

polynomial coefficients of f̄(D,w) and f̄(D′, w). And we denote ti or t′i as an arbitrary

tuple.

Proof. Assume that D and D′ differ in the last tuple tn and t′n. For objective f̄(D,w), we
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have

f̄(D,w) =

n∑
i=1

2∑
j=0

f
(j)
1 (0)

j!
(xT

i w)
j −

(
n∑

i=1

yix
T
i

)
w +

∣∣∣∣∣
n∑

i=1

(zi − z̄)xT
i w

∣∣∣∣∣
=

n∑
i=1

2∑
j=0

∑
ϕ∈Φj

λ̄ϕtiϕ(w),

where we have

{λ̄ϕti}ϕ∈Φ1 =: λ̄1ti = (
1

2
− yi + |zi − z̄|)xi

and {λ̄ϕti}ϕ∈Φ2 =: λ̄2ti =
1

8
x2
i .

Denote A ′
1 =

{∑n
i=1 λ̄ϕti

}
ϕ∈∪2

j=1Φj
and A ′

2 =
{∑n

i=1 λ̄ϕt′i

}
ϕ∈∪2

j=1Φj

as the set of polynomial

coefficients of f̄(D,w) and f̄(D′, w), and E =



(12 − y + |z − z̄|)x(1)

· · ·

(12 − y + |z − z̄|)x(d)
1
8x(1)x(1)

· · ·

1
8x(d)x(d)


(d+d2)×1

, where x(e)

represents e-th element in feature vector x.
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Then, we have

∆2 = ∥A ′
1 − A ′

2∥2

= ∥{
n∑

i=1

λ̄ϕti −
n∑

i=1

λ̄ϕt′i
}ϕ∈∪2

j=1Φj
∥2

= ∥{λ̄ϕtn − λ̄ϕt′n}ϕ∈∪2
j=1Φj

∥2

≤ 2 max
t=(x,z,y)

∥E ∥2

= 2 max
t=(x,z,y)

√√√√ d∑
j=1

((
1

2
− y + |z − z̄|)xj)2 +

∑
1≤e,l≤d

(
1

8
x(e)x(l))2

=

√
d2

16
+ 9d,

where t is an arbitrary tuple.

Finally, by minimizing the differentially private objective function f̂(D,w), we derive

the model parameter ŵ, which achieves differential privacy and fairness at the same time.

We now show that ADFC satisfies (ϵ, δ)-differential privacy in the following theroem.

Theorem 20. The output model parameter ŵ in ADFC (Algorithm 8) guarantees (ϵ, δ)-

differential privacy, where ϵ = 1
dϵs +

d−1
d ϵn and δ = 1− (1− δs)(1− δn).

Proof. Assume that the neighboring datasets D and D′ differ in the last tuple tn and t′n.

We have

Pr
(
f̂(D,w)

)
=
∏
ϕ∈Φs

exp

− 1

2σ2
s

(
n∑

i=1

λ̄ϕti − λ̂ϕ

)2
 ∏

ϕ∈Φn

exp

− 1

2σ2
n

(
n∑

i=1

λ̄ϕti − λ̂ϕ

)2
.
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Considering the absolute values, we have

∣∣∣∣∣∣log
Pr
(
f̂(D,w)

)
Pr
(
f̂(D′, w)

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

2σ2
s

∑
ϕ∈Φs

( n∑
i=1

λ̄ϕti − λ̂ϕ

)2

−

(
n∑

i=1

λ̄ϕt′i
− λ̂ϕ

)2


+
1

2σ2
n

∑
ϕ∈Φn

( n∑
i=1

λ̄ϕti − λ̂ϕ

)2

−

(
n∑

i=1

λ̄ϕt′i
− λ̂ϕ

)2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 1

2σ2
s

∑
ϕ∈Φs

( n∑
i=1

λ̄ϕti − λ̂ϕ

)2

−

(
n∑

i=1

λ̄ϕt′i
− λ̂ϕ

)2
∣∣∣∣∣∣

+

∣∣∣∣∣∣ 1

2σ2
n

∑
ϕ∈Φn

( n∑
i=1

λ̄ϕti − λ̂ϕ

)2

−

(
n∑

i=1

λ̄ϕt′i
− λ̂ϕ

)2
∣∣∣∣∣∣

=
1

2σ2
s

∣∣∥A ′∥22 − ∥A ′ + B′∥22
∣∣+ 1

2σ2
n

∣∣∥A ′′∥22 − ∥A ′′ + B′′∥22
∣∣ ,

where we let A ′ =
{∑n

i=1 λ̄ϕti − λ̂ϕ

}
ϕ∈Φs

, B′ =
{∑n

i=1 λ̄ϕt′i
−
∑n

i=1 λ̄ϕti

}
ϕ∈Φs

, A ′′ ={∑n
i=1 λ̄ϕti − λ̂ϕ

}
ϕ∈Φn

and B′′ =
{∑n

i=1 λ̄ϕt′i
−
∑n

i=1 λ̄ϕti

}
ϕ∈Φn

.

Now we will use the fact that the distribution of a spherically symmetric normal is not

dependent of the orthogonal basis where its constituent normals are drawn. Thus, we work

in two basis aligned with B′ and B′′ separately. Fix the basis C ′
1, · · · ,C ′

|Φs| of B′ and draw

A ′ by first drawing signed lengths V ′
ϕ ∼ N (0, σ2

s) for ϕ ∈ Φs, then let A ′
ϕ = V ′

ϕC ′
ϕ and

A ′ =
∑

ϕ∈Φs
A ′

ϕ. Fix the basis C ′′
1 , · · · ,C ′′

|Φn| of B′′ and draw A ′′ by first drawing signed

lengths V ′′
ϕ ∼ N (0, σ2

n) for ϕ ∈ Φn, then let A ′′
ϕ = V ′′

ϕ C ′′
ϕ and A ′′ =

∑
ϕ∈Φn

A ′′
ϕ .

Without loss of generality, we assume that C ′
1 is parallel to B′ and C ′′

1 is parallel to

B′′. Based on the triangle with the base B′ + A ′
1 and the edge

∑|Φs|
ϕ=2 A ′

ϕ orthogonal

to B′, we have ∥A ′ + B′∥22 − ∥A ′∥22 = ∥B′∥22 + 2C ′
1∥B′∥2. Since ∥B′∥2 ≤ 1

d∆2, we have

1
2σ2

s

∣∣∥A ′∥22 − ∥A ′ + B′∥22
∣∣ ≤ 1

2dσ2
s

∣∣∆2
2 + 2|V ′

1 |∆2

∣∣. Similarly, consider that the triangle with

the base B′′+A ′′
1 and the edge

∑|Φn|
ϕ=2 A ′′

ϕ orthogonal to B′′, we have ∥A ′′+B′′∥22−∥A ′′∥22 =

∥B′′∥22 + 2C ′′
1 ∥B′′∥2. Since ∥B′′∥2 ≤ d−1

d ∆2, we have 1
2σ2

n

∣∣∥A ′′∥22 − ∥A ′′ + B′′∥22
∣∣ ≤

d−1
2dσ2

n

∣∣∆2
2 + 2|V ′′

1 |∆2

∣∣. When set |V ′
1 | ≤ 1

2(2σ
2
sϵs − 1) and |V ′′

1 | ≤ 1
2(2σ

2
nϵn − 1), we have

1
2dσ2

s

∣∣∆2
2 + 2|V ′

1 |∆2

∣∣ ≤ 1
dϵs and d−1

2dσ2
n

∣∣∆2
2 + 2|V ′′

1 |∆2

∣∣ ≤ d−1
d ϵn. Thus, we have the privacy

loss
∣∣∣Pr(f̂(D,w)

)
/Pr

(
f̂(D′, w)

)∣∣∣ ≤ 1
dϵs +

d−1
d ϵn = ϵ.
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To ensure the privacy loss is bounded by ϵ with probability at least 1− δ, we require

Pr

(
|V ′

1 | ≤
1

2
(2σ2

sϵs − 1), |V ′′
1 | ≤ 1

2
(2σ2

nϵn − 1)

)
= Pr

(
|V ′

1 | ≤
1

2
(2σ2

sϵs − 1)

)
Pr

(
|V ′′

1 | ≤ 1

2
(2σ2

nϵn − 1)

)
≥ 1− δ.

Now we will give the upper bound of Pr
(
|V ′

1 | ≤ 1
2(2σ

2
sϵs − 1)

)
by using the tail bound of

V ′
1 ∼ N (0, σ2

s). Hence, we have Pr (V
′
1 > r′) ≤ σs√

2r′
exp(− r′2

2σ2
s
). By letting r′ = 1

2(2σ
2
sϵs−1)

in the above inequality, we have Pr
(
V ′
1 > 1

2(2σ
2
sϵs − 1)

)
≤

√
2σs

2σ2
sϵs−1

exp

(
−1

2

(
2σ2

sϵs−1
2σs

)2)
.

When σs ≥
√
2∆2
2ϵs

(

√
log(

√
2
π
1
δ ) +

√
log(

√
2
π

1
δs
) + ϵs), ϵs > 0 and δs is very small, we have

Pr
(
V ′
1 > 1

2(2σ
2
sϵs − 1)

)
≤ δs/2. Thus, we can prove that Pr

(
|V ′

1 | ≤ 1
2(2σ

2
sϵs − 1)

)
≥ 1− δs.

In the same way, we can prove Pr
(
|V ′′

1 | ≤ 1
2(2σ

2
nϵn − 1)

)
≥ 1 − δn. Therefore, if we let

δ = 1− (1− δs)(1− δn), we have

Pr

(
|V ′

1 | ≤
1

2
(2σ2

sϵs − 1), |V ′′
1 | ≤ 1

2
(2σ2

nϵn − 1)

)
≥ 1− δ,

which proves that the computation of f̂(D,w) satisfies (ϵ, δ)-differential privacy. Apparently,

the final result ŵ also satisfies (ϵ, δ)-differential privacy.

6.3 Performance Evaluation

6.3.1 Simulation Setup

Data preprocessing We evaluate the performance on two datasets, Adult dataset

and US dataset. The Adult dataset from UCI Machine Learning Repository 4 contains

information about 13 different features (e.g., work-class, education, race, age, sex, and

so on) of 48,842 individuals. The label is to predict whether the annual income of those

individuals is above 50K or not. The US dataset is from Integrated Public Use Microdata

4http://archive.ics.uci.edu/ml/datasets/Adult
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Figure 17: Compare accuracy under different values privacy budgets ϵ and δ on US.
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Figure 18: Compare accuracy under different privacy budgets on Adult (δ = 10−3).

Series 5 and consists of 370,000 records of census microdata, which includes features like

age, sex, education, family size, etc. The goal is to predict whether the income is over 25K

a year. In both datasets, we consider sex as a binary protected attribute.

Baseline algorithms In our experiments, we compare our approaches, PDFC, and

ADFC against several baseline algorithms, namely, LR and PFLR*. LR is a logistic re-

gression model. PFLR* [100] is a differentially private and fair logistic regression model

that injects Laplace noise with shifted mean to the objective function of logistic regression

with fairness constraint. Moreover, we compare our relaxed functional mechanism against

the original functional mechanism proposed in [99] and No-Privacy, which is the original

functional mechanism without injecting any noise to the polynomial coefficients.

Evaluation The utility of algorithms is measured by Accuracy, defined as Accuracy =

Number of correct predictions
Total number of predictions made , which demonstrates the quality of a classifier. The fairness

5http://international.ipums.org
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of classification models is qualified by risk difference (RD),i.e.,

RD = |Pr(ŷ = 1|z = 1)− Pr(ŷ = 1|z = 0)|,

where z is the protected attribute. We consider a random 80-20 training-testing split

and conduct 10 independent runs of algorithms. We then record the mean values and

standard deviation values of Accuracy and RD on the testing dataset. For the parame-

ters of differential privacy, we consider ϵ = {10−2, 10−1.5, 10−1, 100, 100.5, 101}, and δ =

{10−3, 10−4, 10−5, 10−6, 10−7}.

6.3.2 Results and Analysis

In Figure 17(a), we show the accuracy of each algorithm, functional mechanism, relaxed

functional mechanism and No-Privacy, as a function of the privacy budget with fixed δ =

10−3. We can see that the accuracy of No-Privacy remains unchanged for all values of ϵ, as

it does not provide any differential privacy guarantee. Our relaxed functional mechanism

exhibits quite higher accuracy than functional mechanism in high privacy regime, and the

accuracy of relaxed functional mechanism is the same as No-Privacy baseline when ϵ > 10−1.

Figure 17(b) studies the accuracy of each algorithm under different values of δ with fixed

ϵ = 10−2. Relaxed functional mechanism incurs lower accuracy when δ decreases, as a

smaller δ requires a larger scale of noise to be injected in the objective function. But

the accuracy of functional mechanism remains considerably lower than relaxed functional

mechanism in all cases.

Figure 18(a) studies the accuracy comparison among PFLR*, LR, PDFC and ADFC on

Adult dataset with the particular unprotected attribute xs denoted by marital status. We

can observe that ADFC continuously achieves better accuracy than PFLR* in all privacy

regime, and PDFC only outperforms PFLR* when ϵ is small. We also evaluate the effect of

choosing different attributes as xs by performing experiments on Adult dataset. As shown

in Figure 18(b) and Figure 18(c), choosing different attributes, marital status, age, relation

and race, has different effects on the accuracy of PDFC and ADFC. However, PDFC and
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ADFC still outperform PFLR* under varying values of ϵ. As expected, as the value of ϵ

increases, the accuracy of each algorithm becomes higher in above three figures.

Table 1 shows how different privacy budgets affect the risk difference of LR, PFLR*,

PDFC and ADFC on two datasets. Note that we consider the attribute xs as race on

Adult dataset, and work on US dataset. It is clear that PDFC and ADFC produce less risk

difference compared to PFLR* in most cases of ϵ. The key reason is that adding differ-

ent amounts of noise regarding different attributes indeed reduces the correlation between

unprotected attributes and protected attributes.

Table 1: Risk difference with different privacy budgets ϵ on two datasets (δ = 10−3).
Data ϵ LR PFLR* PDFC ADFC

Adult

0.01 0.187± 0.049 0.045± 0.095 0.048± 0.108 0.146± 0.131
0.1 0.187± 0.049 0.004± 0.009 0.005± 0.022 0.068± 0.028
1 0.187± 0.049 0.022± 0.088 0.002± 0.011 0.045± 0.027
10 0.187± 0.049 0.003± 0.001 0.035± 0.041 0.019± 0.003

US

0.01 0.191± 0.014 0.037± 0.038 0.003± 0.034 0.004± 0.007
0.1 0.191± 0.014 0.078± 0.021 0.001± 0.006 0.008± 0.003
1 0.191± 0.014 0.069± 0.007 0.022± 0.047 0.031± 0.004
10 0.191± 0.014 0.067± 0.003 0.022± 0.031 0.045± 0.002
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7 Future Work

In my future research, I will continue my investigation on the privacy, efficiency, and

fairness of (collaborative) machine learning.

For the studies on private collaborative learning, we have proposed a number of differen-

tially private Alternating Direction Method of Multipliers (ADMM) algorithms to balance

the privacy-accuracy tradeoff. However, the privacy analyses and convergence rate of our

current approach crucially rely on the convexity and smoothness of the objective function.

More complicated non-convex problems arise in the context of neural networks, it is worth-

while to study the privacy guarantee and analyze the convergence rate in this practical case.

Furthermore, since only the total privacy guarantee after T iterations would be of interest

in practice, an adaptive privacy budget allocation (i.e., different ϵ for different iterations)

may be preferable to a fixed allocation (as long as the total privacy cost is the same). Thus,

we will also develop several adaptive privacy allocation schemes where each iteration has a

different share of the overall privacy budget. We also plan to verify our trade-off analysis

with sensitive medical data.

Our current works on collaborative learning needs to assume that each agent has access

to data generated IID (identically and independently distributed) from a single distribution.

However, in practice, the local data is generated and stored across the clients. The totality

of data is typically highly imbalanced (clients have different quantities of training data)

and statistically heterogeneous (the training samples on clients may come from different

distributions). When the goal is to train a single global model for all agents, non-IID data

partitioning can be challenging, especially with limited communication budgets. Moreover,

number of clients in collaborative learning can be extremely large and some of clients may

be temporarily unavailable, dropping out or joining during the training. One potential

future direction is to design robust and efficiency collaborative learning algorithms that can

tolerate the limited availability of the clients, limited reliability of the network, and the

heterogeneous of data distribution.

To address the issues of privacy and discrimination in machine learning, we have designed
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classification models with fairness and differential privacy guarantees by jointly combining

functional mechanism and decision boundary fairness. However, the privacy guarantee of

using functional mechanism needs strict assumption of objective function. We will thus

attempt to mitigate the disparate impacts of DP in learning SGD framework. DP-SGD

does not restrict focus on convex loss functions rendering it an appealing framework for DP

learning tasks. Furthermore, we will also investigate how to achieve privacy and fairness in

distributed learning setting.
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